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Resumo

Esta tese busca explorar de forma multifacetada os aglomerados globulares Galácticos

(GCs) para desvendar suas implicações na formação e evolução do bojo e da barra da Via

Láctea.

A fase inicial do estudo envolve uma análise meticulosa dos GCs Palomar 6 (Pal 6)

e NGC 6355, localizados na região interna da Galáxia fortemente afetadas pela extinção.

Realizamos a análise cronoqúımio-dinâmica por meio de uma abordagem abrangente que

combina informações qúımicas usando espectros FLAMES-UVES e APOGEE DR17, deter-

minação de idade por meio de fotometria HST e análise orbital graças à astrometria Gaia.

Notavelmente, Pal 6 e NGC 6355 foram identificados como pertencentes ao ramo in-situ

da relação idade-metalicidade (AMR) dos GCs da Via Láctea. Pal6 foi inequivocamente

confirmado como um aglomerado in-situ com uma idade de 12, 4± 1, 0 Gyr e metalicidade

de [Fe/H]= −1, 10 ± 0, 09. Por outro lado, o NGC 6355, com idade de 13, 2 ± 0, 9 Gyr

e metalicidade de [Fe/H]= −1, 39 ± 0, 08, apresenta caracteŕısticas mais parecidas a de

um aglomerado ex-situ, manifestadas por seu movimento retrógrado e composição qúımica

distinta.

A investigação se estende a uma coleção mais ampla de GCs com caracteŕısticas seme-

lhantes às de Pal 6 e NGC 6355, com o objetivo de revelar seus papéis na evolução Galáctica.

Nossa descoberta destaca a importância dos GCs in-situ, caracterizados por composições

moderadamente pobres em metais (MMP, [Fe/H]< −1, 0) e idades que variam de 12, 0

a 13, 4 Gyr. Além disso, seus valores enriquecidos de [α/Fe] fornecem informações sobre

os estágios iniciais do bojo. Dinâmicamente, os GCs in-situ do bojo exibem movimento

prógrado e baixa energia total, indicando que estão fortemente ligados ao potencial da

Galáxia. Além disso, a pesquisa investiga o histórico de formação dos primeiros aglomera-

dos do bojo usando a AMR dos GCs MMP do bojo, rastreando suas origens até 13, 69±0, 12



Gyr atrás. Além disso, o valor da taxa de enriquecimento qúımico encontrado é dez vezes

maior do que o que melhor se ajusta ao ramo ex-situ, corroborando as previsões do rápido

enriquecimento qúımico experimentado pelo bojo durante seus estágios iniciais.

Um aspecto fundamental da pesquisa envolve a exploração da interação entre os GCs

e a barra Galáctica. Ao identificar uma estrela rica em N-Al presa dentro da barra,

recuperamos seu provável GC original sendo o GC Terzan 5. Estimamos que a estrela foi

completamente capturada do Terzan 5 há 315±12 Myr pela barra, suavemente após várias

interações. Essas descobertas lançam luz sobre a influência mútua da barra na evaporação

dos GCs e das estrelas ricas em N e Al vindas de GCs que compõem a população de campo

da barra Galáctica. Esse resultado é particularmente interessante porque é a evidência

observacional para o modelo teórico que melhor explica a evaporação de Terzan 5 para

atingir sua massa atual.

Em essência, esta tese representa um avanço significativo na arqueologia Galáctica,

elucidando o papel fundamental dos GCs na formação do bojo da Galáxia e da estrutura

e evolução qúımica da barra. Desde a decifração das origens de aglomerados individuais

até o desvendamento de padrões mais amplos de montagem Galáctica, a pesquisa oferece

uma compreensão abrangente da complexa interação entre os GCs e a dinâmica evolutiva

da nossa Galáxias.



Abstract

This thesis delves into the multifaceted exploration of Galactic globular clusters (GCs)

to unravel their implications for the formation and evolution of the Milky Way bulge and

bar.

The initial phase of the study involves a meticulous analysis of Palomar 6 (Pal 6) and

NGC 6355, located within the inner parts of the Galaxy strongly affected by extinction.

We performed the chrono-chemodynamical analysis through a comprehensive approach

combining chemical information using FLAMES-UVES and APOGEE spectra, age deter-

mination via HST photometry, and orbital analysis thanks to GAIA astrometry. Notably,

Pal 6 and NGC 6355 were identified as belonging to the in-situ branch of the age-metallicity

relation (AMR) of Milky Way GCs. Pal6 was unequivocally confirmed as an in-situ cluster

with a determined age of 12.4 ± 1.0 Gyr and a metallicity of [Fe/H]= −1.10 ± 0.09. Con-

versely, NGC 6355, with an age of 13.2± 0.9 Gyr and metallicity of [Fe/H]= −1.39± 0.08,

exhibits characteristics indicative of an ex-situ cluster, manifested through its retrograde

motion and distinct chemical composition.

The investigation extends to a broader collection of GCs with similar characteristics

as Pal 6 and NGC 6355, aiming to unveil their roles in Galactic evolution. Our results

highlight the significance of in-situ GCs, characterized by moderately metal-poor compo-

sitions (MMP, [Fe/H]< −1.0) and ages spanning from 12.0 to 13.4 Gyr. Also, their [α/Fe]

enhanced values provide insights into the early stages of the bulge. Dynamically, in-situ

bulge GCs exhibit prograde motion and low total energy, indicating that they are strongly

bound to the Galaxy potential. Furthermore, the research delves into the formation history

of early bulge clusters using the AMR of the MMP bulge GCs, tracing their origins back

to 13.69± 0.12 Gyr ago. Also, the effective yield obtained is ten times larger than the one

fitted to the ex-situ branch, corroborating predictions of the rapid chemical enrichment



experienced by the bulge during its early stages.

A pivotal aspect of the investigation involves exploring the interplay between GCs and

the Galactic bar. By identifying an N-Al-rich star trapped within the bar, we recovered its

probable parent cluster as Terzan 5. We estimated that the star was completely captured

315 ± 12 Myr ago by the bar from Terzan 5 smoothly after several interactions. These

findings shed light on the mutual influence of the bar on the evaporation of GCs and the

N-Al-rich stars came from GCs that compose the field population of the Galactic bar. This

result is particularly interesting because it is the observational evidence for the theoretical

model that better explains the evaporation of Terzan 5 to reach its present mass.

In essence, this thesis represents a significant advancement in Galactic archaeology,

elucidating the pivotal role of GCs in shaping the Galaxy bulge and bar structure and

chemical evolution. From deciphering the origins of individual clusters to unravelling

wider patterns of Galactic assembly, the research offers a comprehensive understanding of

the complex interplay between GCs and the evolving dynamics of our Galaxy.



List of Figures

1.1 Galaxy formation and evolution through Eris and EMOSAICs simulations. 24

1.2 Lindblad Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Examples of globular clusters . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Colour-magnitude diagram highlighting all the evolutionary phases. . . . . 31

1.5 (Anti)Correlations elemental abundances example . . . . . . . . . . . . . . 32

1.6 Evolution of Photometric studies of Multiple Stellar Populations in Globular

Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.7 HST UV and CTIO passbands and molecular variations counterpart. . . . 34

1.8 How the MPs looks like on the CMD. . . . . . . . . . . . . . . . . . . . . . 35

1.9 Internal chemical evolution of AGB stars. . . . . . . . . . . . . . . . . . . 37

1.10 Internal pollution from FRMS. . . . . . . . . . . . . . . . . . . . . . . . . 37

1.11 MPs formation from SMS yields. . . . . . . . . . . . . . . . . . . . . . . . 38

1.12 SIRIUS flow-chart shows the steps to perform the isochrone fitting. . . . . 40

1.13 Graphical explanation of how the main five parameters change the morpho-

logy and position of the isochrone. . . . . . . . . . . . . . . . . . . . . . . . 41

1.14 Procedure to construct synthetic CMDs. . . . . . . . . . . . . . . . . . . . 44

1.15 PFANT workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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Chapter 1
Introduction

The Galaxy formation and evolution: According to the ΛCDM hierarchical theory of

galaxy formation, galaxies form from successive mergers of low-mass objects that are absor-

bed by more massive objects (Figure 1.1; Peebles, 1974; White and Rees, 1978; Kauffmann

et al., 1993; Springel et al., 2006; Pfeffer et al., 2018). The less massive objects are gradu-

ally absorbed while orbiting the massive ones. The Milky Way (MW) contains remnants

of this early history that can be divided into two groups: those still orbiting the Galaxy,

with their structures entirely or almost intact (e.g. the Magellanic Clouds), and another

group composed of objects that were already dissolved by the MW after several encounters

and were completely accreted, remaining only their debris. The latter objects could have

retained the dynamical signatures of their progenitor if the merger event had occurred

during the evolution of the Galaxy. An example is Gaia-Sausage-Enceladus (GSE), known

as the remnant of the last major merger of the MW with a dwarf galaxy (Belokurov et al.,

2018; Helmi et al., 2018). The estimated merger time of GSE is ∼ 8 Gyr (Gallart et al.,

2019; Montalbán et al., 2021), therefore allowing the identification of its debris since they

did not have enough time to change their dynamical properties completely.

The halo and bulge are the first components to be formed (Chiappini et al., 1997; Spitoni

et al., 2023). They formed from the first major merger of massive objects called “building

blocks”. The proto-MW is then composed of a diffuse stellar halo and a spheroidal bulge.

Pillepich et al. (2015) analysed the formation and evolution of the stellar components in

Eris (Guedes et al., 2011), a 120 pc resolution cosmological hydrodynamic simulation of a

late-type spiral galaxy of a Mvir = 8 × 1011 M⊙ galaxy halo evolved from z = 90 until the

present. In their simulation, star particles form in cold gas that reaches a limit density of

nSF = 5 atoms cm−3 following the initial mass function (IMF) from Kroupa et al. (1993)
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with initial mass m∗ = 6 × 103 M⊙. We invite the reader to see the original paper by

Pillepich et al. (2015) for more details regarding the simulation input parameters. The

authors studied the relative contributions of in-situ and ex-situ star formation to each

major Galactic component, and some simulation snapshots are shown in Figure 1.1 in the

A, B, and C columns of panels.

Figure 1.1: Galaxy formation and evolution through Eris (left) and E-MOSAICs (right) simulations. The
columns from A to C show a random projection of Eris’s stellar density field in a (240 comoving kpc)3

box, from redshift z ∼ 4 (row 1) to present time (row 4) taken from Pillepich et al. (2015) The columns
B and C show only stars formed ex-situ and in-situ, respectively. Surface mass densities range from 100
to 108 M⊙ kpc−2. The panels in column D are the zoom-in mock optical images of Gal004, an MW-like
galaxy from the EAGLE Recal-L025N0752 simulation, taken from Pfeffer et al. (2018). The four panels
from D1 to D4 show snapshots of the formation history of the galaxy and its star cluster population,
where grey-scale shows the gas surface density and the points show positions of star clusters (with masses
> 5× 104 M⊙) coloured by metallicity (yellow for [Z/H]= 0.5, blue for [Z/H]= −2.5) and with point area
scaling with cluster mass. On the right side are the pictures of the most studied merger events along the
MW timeline obtained from Kruijssen et al. (2019). Their positions are approximately according to their
merger time. The loockback time rule on the right is also approximately in agreement with the redshitf
values of the snapshots.

After the first Gyrs of the proto-MW (row 1 in Figure 1.1), the Galaxy in-situ material

forms the proto-bulge and the stellar halo (panel C1), while the ex-situ material contributes

to the outer halo and the formation of the disc (panel B1). At this time, it is expected that

the Galactic bar starts to form (∼ 8 Gyr ago; Bovy et al., 2019; Wylie et al., 2022; de Sá-

Freitas et al., 2023) from the instability of the disc. At redshift z ∼ 2 (panels A2, B2, and
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C2), the well-known merger events start to occur, as noticed by the overdensities orbiting

the Galaxy, until approximately z = 1 (panels A3, B3, and C3) when the closest dwarf

galaxies already were captured by the Galaxy. Some authors speculated the possibility

of the Galactic bar starts to form indeed at this time (∼ 3 Gyr ago; Nepal et al., 2024).

Reaching the present day (z = 0, panels A4, B4, and C4), the simulation shows that

approximately 70% of the Galaxy is composed of stars formed in-situ, being the majority

of ex-situ stars located in the disc and the bulge. In contrast, in-situ stars dominate the

inner 5 kpc from the centre.

As a globular cluster (GC) counterpart for the Eris simulations, Pfeffer et al. (2018)

analysed the co-formation and evolution of spiral galaxies and their GC system using E-

MOSAICs simulations (column D of Figure 1.1). The MOdelling Star cluster population

Assembly In Cosmological Simulations within EAGLE project (E-MOSAICS; Pfeffer et al.,

2018) combines the semi-analytic MOSAICS model of star cluster formation and evolution

of Kruijssen et al. (2011, 2012) to the EAGLE simulations of galaxy formation (Schaye

et al., 2015; Crain et al., 2015). The snapshots for redshifts from z = 6 to the present day

are shown in panels from D1 to D4. The GCs are the coloured dots with colour codes based

on the metallicity value from [Z/H]= 0.5 (yellow) to [Z/H]= −2.5 (blue). Interestingly,

some GCs are forming already at redshift z = 6 (∼ 13.0 Gyr, panel D1). At this time, the

Galaxy is still in the phase of proto-Galaxy when the bulge and halo are forming (first infall

Chiappini et al., 1997; Spitoni et al., 2023). Reaching the present day (panel D4), the GCs

are mostly located in the inner regions of the Galaxy in agreement with the findings using

Eris simulations (Pillepich et al., 2015). The first GCs present within the building blocks

before the formation of the proto-MW could be considered as relics of the building

blocks , a new category of GCs with a crucial importance for the early Galaxy formation.

The system of GCs of the MW is composed of more than 200 objects (Bica et al., 2019),

and a significant amount of new GCs was discovered in the direction of the Galactic bulge

(Minniti et al., 2017; Garro et al., 2021, 2022). GCs are of the oldest objects of the Galaxy,

reaching ages as old as the Galaxy (Forbes, 2020). Most of them are relics (remnants) of

the merger process that occurred early in the Galaxy evolution timeline (Kruijssen et al.,

2019; Callingham et al., 2022). Also, some of the most massive GCs like M54, ω−Cen,

NGC 6273, and NGC 6934 are considered to be the nuclear star clusters of the accreted

dwarf galaxies Sagittarius, GSE, Kraken, and Helmi Streams, respectively (Pfeffer et al.,
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2021). The age-metallicity relation (AMR) of the MW GCs shows a bifurcation that splits

it into two main groups (Maŕın-Franch et al., 2009; Forbes and Bridges, 2010; Leaman

et al., 2013; Kruijssen et al., 2019; Massari et al., 2019; Forbes, 2020; Limberg et al., 2022;

Callingham et al., 2022): the steeper branch, in which older GCs are concentrated, is

associated with an in-situ population; the broader component that includes very young to

old ages is associated with accretion events. Also, in an analysis supported by chemistry

and employing a steady Galactic mass model without non-axisymmetric components, it

is possible to split the GCs, in total orbital energy ET and angular momentum in the

z-direction LZ , into different progenitors to recover these accretion events (Massari et al.,

2019; Callingham et al., 2022; Horta et al., 2023; Belokurov and Kravtsov, 2024) as in

Figure 1.2. Also, since the majority of the relics of mergers are located in the Galactic

halo, this analysis using the integrals of motion (like ET and LZ) is reliable because for

these objects, for example, all the components mixed in the inner Galaxy are seen as

pontual source of mass on the Galactic mass model1.

Figure 1.2: Distribution of the identified halo substructures in total orbital energy (ET ) vs angular
momentum in the z-direction (LZ). The black dots in background represent the parent sample selected
by the authors. The coloured dots show the different structures studied by the authors. The figure is split
into two panels for clarity. Taken from Horta et al. (2023).

According to Baade (1946), most stars in the inner part of the Galaxy are examples of

population II, differing from disc stars which are type I. Even though the Galactic bulge

is supposed to have been formed during the first phases of Galaxy formation, its origin is

1 Newton’s second theorem for gravitational potentials in spherical systems:The gravitational force on

a body that lies outside a spherical shell of matter is the same as it would be if all the shell’s matter were

concentrated into a point at its center.
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still under discussion. This early formation forms what is called “classical bulges”, which

are a spheroidal structure concentrated in the Galaxy. Nevertheless, secular evolution

processes of the disc can originate what is known as “pseudo-bulges” via an instability

of the disc leading to a bar formation. Ness and Lang (2016) provided with WISE pho-

tometry the picture of an X-shape structure in the bulge, indicating that the MW hosts

a pseudo-bulge. The stars in a pseudo-bulge have characteristic kinematics and were ob-

served to be cylindrically rotating, which means that the stars present similar velocities

independent of their Galactic latitude (Ness et al., 2013). For instance, a spheroidal sys-

tem presents high-velocity dispersion (dynamically hot) and latitude-dependent velocities.

On the other hand, some studies have demonstrated the existence of a stellar population

pressure supported, which is compatible with a spheroidal structure (Kunder et al., 2016;

Queiroz et al., 2021; Razera et al., 2022). The Galactic bulge today appears to be mostly a

pseudo-bulge with the presence of a less evident spheroidal structure (Barbuy et al., 2018a,

and references therein).

Besides the dichotomy on the Galactic bulge origin, the complexity of the inner Galaxy

relies on the fact that it also hosts material from the inner disc (Nogueras-Lara et al.,

2023), from the inner halo (Pérez-Villegas et al., 2017), the MW nuclear star cluster (NSC;

Nogueras-Lara, 2022), as well as from the other components passing through the inner

Galaxy. Most of the stars in the bulge seem to be old stars, typical members of the type

II stellar population (Baade, 1946). Following the oldest population of the Galactic halo,

which can reach low metallicities as [Fe/H]∼ −3, the Galactic bulge should host stars with

similar metallicities since its stellar population is as old as the halo. However, the bulge

metallicity distribution function peaks at −1.0 (Bica et al., 2016; Pérez-Villegas et al.,

2020, , and Bica et al. accepted). These metallicities of about 10% of the solar one and 10

times larger than the halo indicate that the bulge may have been passed through a rapid

chemical enrichment.

Kruijssen et al. (2020) analysed the MW GCs system to provide the first complete

MW merger tree. They considered only the well-known major mergers Sagittarius stream,

Sequoia, Kraken, Helmi streams, and GES (see the review by Helmi, 2020). These 5 merger

events could have contributed to the Galaxy with at least 48 GCs (Massari et al., 2019;

Kruijssen et al., 2019; Forbes, 2020; Callingham et al., 2022; Belokurov and Kravtsov,

2024). Nevertheless, the merger history is somewhat unknown for lookback times older
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than 11.5 Gyr. At this lookback time, the GCs are located mainly in the bulge and

the halo (Barbuy et al., 2018b; Kerber et al., 2019; Ortolani et al., 2019; Souza et al.,

2020, 2021, 2023), both formed during the proto-Galaxy phase. Therefore, it is expected

that the majority of the bulge GCs are members of the relics of the building blocks

classification, and the other part, in-situ GCs formed during the formation of the Galactic

discs (second infall; Chiappini et al., 1997; Spitoni et al., 2023, 1 − 3 Gyr).

1.1 Globular Clusters

GCs are roughly spherical and extremely dense (e.g. of the order of a few parsecs;

McLaughlin and van der Marel, 2005, Figure 1.3) self-gravitating objects composed of

tens to hundreds of thousands stars born from the same primordial cloud at almost the

same time, and because of that, all stars share the same age, chemical composition, and

kinematics, but different values of mass. These characteristics define a simple/single stellar

population (SSP; Renzini, 1986). Since a GC hosts stars with different masses, it means

that there are stars of different evolutionary phases making them perfect laboratories of

stellar evolution (e.g. Salaris et al., 2014). Also as a result of the meaning of SSP in GCs,

they host the remnants of final stellar phase (e.g. white dwarfs and black holes) and exotic

interaction systems (e.g. blue stragglers).

Figure 1.3: Examples of globular clusters. On the left panel is a view of the globular cluster UKS1
captured by the VVV survey (Fernández-Trincado et al., 2021). In the right panel is the globular cluster
Terzan 5 combined F110W/F160W image captured with the WFC3 camera from HST.
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1.1.1 Basic concepts

In principle, the stellar population within GCs follow the same initial mass function

(IMF) as the entire universe (e.g. Chabrier, 2003), which shows that it is more common

to form low-mass stars than massive ones. Upper panel of Figure 1.4 is a visual support for

the following explanation. The majority of the stars of a GC are still in the main-sequence

(MS), where a star is burning hydrogen (H) into helium (He) in its core. The star passes

∼ 90% of its life in this phase, but the stellar lifetime depends mainly on its mass: the

most massive stars can evolve to the next phase in a few million years (Myr), while the

less massive stars can remain in the MS for several billion years (Gyr, like the Sun, which

is ∼ 4.6 Gyr old; Bonanno et al., 2002, and it is expected to evolve to the next phase when

it has ∼ 10 Gyr).

When the star exhausts the hydrogen in its core, the core begins to contract while the

outer envelope expands and cools down. At that moment, the star leaves the MS through

the subgiant branch (SGB) to the red giant branch (RGB) phase. Here, the stellar core

becomes inert until it reaches a high enough temperature to burn He. At the RGB phase,

the H burning actually occurs in a shell around the core. The temperature at which He

starts burning in the core is reached at the tip of the RGB with the He-flash, after which

the stellar nucleus starts to convert He into carbon and oxygen.

After the RGB phase, the star enters the horizontal branch (HB) phase. This phase is

characterized by a tight magnitude distribution that spreads horizontally in colour on the

left side of the RGB along the colour-magnitude diagram (CMD). Initially, the morphology

of the HB was credited to the overall metallicity of the GC, with the most metal-poor

GCs displaying a wide and blue HB (left bottom panel of Figure 1.4). In contrast, the

most metal-rich ones showed a narrow and redder HB (right bottom panel of Figure 1.4).

Subsequent studies have found that some metal-poor GCs have red HB, but these GCs also

have different ages. Consequently, the age of GC was also associated with the morphology

of the HB. It was known as “the second parameter problem” (Sandage and Wildey, 1967;

van den Bergh, 1967). In the last decades, some studies have increased the problem to a

“third parameter problem” because, with the increased number of GCs observed, thanks

mainly to the advent of Hubble Space Telescope (HST), the age and metallicity could not

explain all the morphology of the HB. The most recent studies include the helium mass



30 1: Introduction

fraction (Y) as a “third parameter” candidate (D’Antona and Caloi, 2004; Carretta et al.,

2009; Legnardi et al., 2022; Johnson et al., 2023; Carini et al., 2024, among others).

Finally, the mass loss during the RGB phase is also an important parameter, not to

explain the HB morphology but to set where a star will be in the HB region. When He

is also exhausted in the core, the stellar core contracts, and He starts burning in the shell

above the core, expanding the envelope and, consequently, the star. This phase is called

the asymptotic giant branch (AGB) phase. At this phase, the star loses its entire envelope

through massive stellar winds, finishing its life as a white dwarf.

1.1.2 Multiple stellar populations

The paradigm of GCs being examples of simple stellar populations has lost space with

the evidence that all GCs host multiple stellar populations with distinct chemistry (see

Gratton et al., 2004, 2012, , and references therein) and kinematics (Lardo et al., 2011;

Richer et al., 2013; Cordoni et al., 2020). Harding (1962) observed ω−Cen stars with

anomalous enhancement in C abundances using the Cassegrain spectrograph at Radcliffe

Observatory (1.88 meter telescope). He found the first CH strong star globular-cluster like

because CH stars were considered field stars belonging to the population I. Later, Osborn

(1971) observed the carbon molecule abundance (CN λ = 4216Å) for stars in two GCs:

M5 and M10. He measured CN strength with the colour index C(41 − 42) and compared

it with surface gravity (log g) colour index indicator C(45 − 48). Two stars, one in each

GC analysed, showed to be CN enhanced when compared with stars inside their clusters

and stars with the same log g range.

In the past decades, Hartwick and McClure (1972) discovered the anomaly also in

Nitrogen, Auer and Demarque (1977) observed the CNO abundances for M92 stars. Cohen

(1978) analysed in turn five red giant stars in M13 and three in M3. They found that the

chemical pattern of these stars is compatible with the observed for field stars, having,

however, a large spread in Na. The works led by Kraft et al. also provided significant

improvements in this field during the 80’s and 90’s. Kraft et al. (1982) analysed red giants

in globular clusters, looking for C and N anomalies. They found that for M92, 40% of

the analysed stars show [N/Fe] above +0.6, never observed in field stars. In Kraft et al.

(1992), they found for M13, a depletion in O (< −0.4) followed by an enhancement in Na

(> +0.2). All the results until that epoch were compiled in the review Kraft (1994). After
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Figure 1.4: How the CMD diagram works. Upper panel: schematic CMD of a typical GC (https:
//sites.astro.caltech.edu/~george/ay20/eaa-globcl.pdf). The left and right panels represent two
GCs, one metal-poor (NGC6752) and another metal-rich (NGC5927), respectively. The fundamental pa-
rameter of each cluster and the indication of the HB type and white dwarf sequence (for NGC6752) are dis-
played inside the CMD. The CMD was taken from https://people.smp.uq.edu.au/HolgerBaumgardt/
globular/.

that, in Kraft et al. (1997), a wide spread in Al (> 1.0 dex) was observed for 11 giant

stars in M13. Kraft et al. (1998) further analysed the GC NGC7006, trying to explain the

wide and bluer HB of this cluster. They suggested that the enhancement in some elements

of the proton capture chain could explain it. Later, Carretta et al. (2009) analysed 214

red giant stars of 19 GCs with UVES spectra. They demonstrated the (anti)correlations

https://sites.astro.caltech.edu/~george/ay20/eaa-globcl.pdf
https://sites.astro.caltech.edu/~george/ay20/eaa-globcl.pdf
https://people.smp.uq.edu.au/HolgerBaumgardt/globular/
https://people.smp.uq.edu.au/HolgerBaumgardt/globular/
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among the CNO, α, and light elements. Figure 1.5 shows some of the (anti)correlations

found by Carretta et al. (2009). The left panel is the anti-correlation between Na and O.

The colours indicate the metalicity of the owner cluster from metal-rich (red) to metal-

poor (blue). The middle panel shows the relation Al−Mg. It is interesting to note that

the distribution of Mg is almost uniform, around 0.45. Finally, the right panel exhibits

the almost uncorrelated relation between Si−Mg.

Figure 1.5: (Anti)Correlations for NaOSiAlMg abundances of 214 RGB stars of 19 GCs analysed with
UVES spectra. Left panel : Na vs O anticorrelation. Stars are coloured according to cluster metallicity,
from red stars of metal-rich clusters (−1.1 < [Fe/H] < −0.4 dex), green giants of clusters of intermediate
metallicity (−1.8 < [Fe/H] < −1.1 dex) blue colours for stars in the most metal-poor clusters (−2.4 <
[Fe/H] < −1.8 dex). Arrows indicate upper limits in O abundances. Middle panel : Al vs Mg correlation.
Right panel : Si vs Mg almost uncorrelated relation. (Carretta et al., 2009)

In parallel with the spectroscopic studies, many authors have found features compatible

with those anomalous stars in the GCs CMDs. Lee et al. (1999) observed a metalicity

distribution with at least four peaks and the presence of multiple structures on the RGB of

ω−Cen CMD (Figure 1.6, upper-left panel). Pancino et al. (2002) further studied this CMD

and associated the modes of metallicity with a multimodal distribution of Calcium (Ca)

and carried out the split of those stars in which they called Multiple Stellar Populations

(MPs, Figure 1.6 upper-right panel). Later, Bedin et al. (2004) with the Wide Field Camera

(WFC) of HST demonstrated the presence of MPs on the entire CMD of ω−Cen (Figure 1.6

bottom panel). Interestingly, since α-elements are generated from core-collapse supernovae

(SNe II) and Fe from type Ia supernovae, these elements together are stellar population

indicators. Therefore, the multimodal metallicity distribution function of ω−Cen indicates

that its is a complex object and more compatible with being the nuclear star cluster of a

ancient dwarf galaxy(see the review Neumayer et al., 2020).

The photometric study of MPs in GCs has become very important through the UV
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Figure 1.6: Sumary of first ω−Cen photometry study of MPs. (upper-left panel : Lee et al. (1999))
CMD of ω−Cen displaying several distinct RGBs. The outermost RGBs are overplotted by isochrones.
(upper-right panel : Pancino et al. (2002)) RGB of ω−Cen. Small-filled triangles are the main RGB. Large
open circles are stars with −1.5 < [Ca/H] < −1.3, large open stars for ones with −1.1 < [Ca/H] < −0.85,
large open squares are stars with −0.65 < [Ca/H] < −0.40, large open triangles with [Ca/H] > −0.3. The
bottom histogram is the distribution of the distances from the fiducial line of the main RGB. Also, the
mean [Ca/H] abundances for the prominent components of the RGB are marked. (bottom panel : Bedin
et al. (2004)) CMDs of ω−Cen using data from WFPC and ACS. The panels from a to d are zoom of
distinct regions of CMD, and the panel e is a zoom to turn-off point.

data from the HST. The greatest improvement with HST was the high quality and the

photometry depth, even in the UV bands. In the last decade, a great effort has been

made to construct filters based on ultra-violet (UV) elemental abundance variation to the

HST. This effort culminated in the HST UV Legacy Survey of Galactic Globular Clusters

(Piotto et al., 2015). These allow us to obtain the separation of MPs in the entire CMD

(all evolutionary stages). Figure 1.7 exemplifies the WFC3 UV filters conception. The UV

filters F275W and F336W were thought to be perfect in the wavelength range of CN, NH,

OH, and CH molecular bands. Many works have been devoted to characterising the MPs

in the last decades. The most important characteristics are summarised in Piotto et al.
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(2015), which analysed 57 known GCs in different regions of the Galaxy, and the recent

reviews by Bastian and Lardo (2018a) and Milone and Marino (2022). It is worth noting

that other studies have developed their own photometric systems in order to investigate

the MPs phenomenon independently of HST (see right panel of Figure 1.7; Lee, 2017).

Combining the HST UV filters, the resulting CMD in Figure 1.8 clearly show different

stellar populations.

Figure 1.7: Left: HST UV passbands and molecular variations contrapart to build the UV WFC3 filters.
Top panel : Observed NGC 6752 spectrum simulating the 1G star (red, depleted in N) and synthetic
spectrum of a supposed third generation of NGC 6752 (blue, enhanced in N). Middle panel : Flux ratio
between the observed and synthetic spectra from the upper panel. Bottom panel : Transmission curves
of the WFC3/UVIS camera with the filters F275W, F336W, e F438W. Taken from (Piotto et al., 2015).
Right: (a) Comparison of synthetic spectra for typical CN-w and CN-s RGB stars in GCs. (b) Flux ratio
between the two spectra along with the transmission functions for the various filter systems used in the
UV and in the blue part of the visible light. The red dashed line denotes the interstellar extinction curve
for E(B−V)= 0.1 mag, and the green solid line represents the atmospheric extinction curve for Maunakea,
given in units of mag/airmass. Taken from Lee (2017).

We know that most known GCs host from two (the majority; Milone et al., 2017) to

many stellar populations (the case of ω−Cen with 15 MPs; Tailo et al., 2016; Bellini et al.,

2017; Latour et al., 2021). Also, it is known, from spectroscopy, that the first generation

(1G) stars have a chemical composition similar to the primordial cloud which formed

the GC and field stars. The second generation (2G) stars are depleted in C and O and

enhanced in N, Na, Al, and helium mass fraction (Y; Carretta et al., 2009, 2012; Meszaros

et al., 2020). On the other hand, the abundance of iron ([Fe/H]) almost has no variations,
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Figure 1.8: CMDs of NGC 6352 from GO-13297 data. mF336W vs. CF275W,F336W,F438W , defined as
(mF275W −mF336W )−(mF336W −mF438W ) (left panels), mF336W vs. mF275W −mF336W (middle panels),
and mF336W vs. mF336W − mF438W (right panels). Lower panels show a zoom of the MS. Red dots
highlight 2G stars; blue dots 1G stars. Taken from Piotto et al. (2015).

pointing out a possible formation without accretion of SN yields, except for massive GCs

as for example ω−Cen and NGC 2808, since the winds from SN are excessively fast to be

held by the GC gravitational potential(Piotto et al., 2015).

Although there are many works focused on MPs (see the reviews Bastian and Lardo,

2018a; Milone and Marino, 2022), their origin is still under debate. In general, we can

divide the possible scenarios into two groups: GC interacting with an external object

(Galaxy, for example) or an internal interaction among the stars of the GC. The first

group is more compatible with massive GCs like ω−Cen, probably the nucleous of a dwarf

Galaxy accreted by the MW (e.g. Bekki and Freeman, 2003; Massari et al., 2019; Forbes,

2020; Limberg et al., 2022). On the other hand, Lee (2020) proposed that another massive

GC, M22, were formed by the merger of two different GCs, reinforced by the bimodal

[Fe/H] distribution that is observed.

The internal interactions aim to pollute the intracluster medium (ICM). These scenarios
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are based on the stellar evolution of 1G stars. The most energetic contamination event of

the medium is the final evolution of massive stars, the SNe. The shock wave caused by these

events spreads with a velocity order of magnitudes greater than the typical escape velocity

of GCs (∼ 10 − 30 km s−1; Baumgardt and Makino, 2003). Therefore, the gravitational

potential of the GC does not hold the reminiscent gas, preventing a new star formation

event from this enhanced gas. This argument is compatible with the metallicity distribution

function of the majority of GCs.

On the other hand, there are low energy events due to mass ejection from intermediate-

mass stars (M∼ 4M⊙) and fast-rotating stars. During the RGB phase, the intermediate-

mass stars experience a dredge-up process mixing the nucleosynthesis yields from the in-

nermost shell to the outermost ones. After the RGB phase, the star reaches the AGB

phase, in which phase a successive dredge-up process on the stellar atmosphere can occur.

The atmosphere’s inner shells are enhanced by C and O, while the outer ones are enhan-

ced by N and helium mass fraction Y (Figure 1.9). During the AGB phase, several mass

ejection events occur through stellar winds, polluting the medium. Finally, before reach

the white dwarf phase, the complete stellar external shells of the star are ejected in the

post-AGB phase. These AGB nucleosynthesis yields are contained by the GC mainly in

the central region, which can be fuel to form 2G stars after the radiative cooling of the

gas during ∼ 100 Myr (D’Antona et al., 2016) up to ∼ 500 Myr considering the massive

binary interaction systems (Renzini, 2013; Renzini et al., 2015). The AGB scenarios can

answer the question about the C, N, and O variations among the MPs. However, a huge

amount of AGB stellar winds would be necessary to explain the predominance of 2G stars

in some GCs (mass-bugdet problem; Milone et al., 2017; Bastian and Lardo, 2018a).

Another simple mass ejection event can occur due to high rotation in massive stars

(fast-rotating massive stars - FRMS; Prantzos and Charbonnel, 2006). With the high

rotational velocity, the mixing of the layers described for AGB can be reached even during

the MS. An equatorial disc is formed from the external shells (Figure 1.10). The enriched

material is then ejected to the ICM with enough low velocities to be held in the GC

potential well and accumulate in the cluster centre in an interval of ∼ 6 Myr (Decressin

et al., 2007; Krause et al., 2013). At this time scale, most of the massive stars have reached

SNe II, and the shockwave triggers a new star formation in the accumulated gas.

After the formation of the GC, remnants of the primordial cloud remain in the medium.
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Figure 1.9: Schematic structure of an AGB star during its thermally pulsing phase demonstrated on
notes from Pols (2011). The CO core is degenerate, very compact, and surrounded by two burning shells
close together in mass coordination. The convective envelope, by contrast, is very extended and tenuous,
having a radius 104 − 105 times the size of the core. The strong stellar wind gradually erodes this loosely
bound envelope, forming a dusty circumstellar envelope that runs to several hundreds of stellar radii.
The convective envelope, stellar atmosphere and circumstellar envelope have a rich and changing chemical
composition driven by nucleosynthesis processes in the burning shells in the deep interior.

Figure 1.10: A schematic view of the FRMS scenario illustrates the possible ejection of stellar material
at various evolutionary stages: a) During the main sequence, when the star rotates near or at critical
velocity, the matter is predominantly ejected in the equatorial plane through an equatorial disc (pink ring)
due to centrifugal acceleration; b) After the main sequence, the surface velocity is no longer critical, and
the wind is primarily driven by radiation. This wind becomes isotropic rather than equatorial; c) If a
supernova explosion occurs in a star that initially had a fast rotation, it may favour ejection through jets
aligned along the rotational axis. Decressin et al. (2007)

The most massive stars in a GC are mainly in the central region. The supermassive stars

(SMS, 103M⊙; Gieles et al., 2018) are the main actors of this scenario. Due to their mass,
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the SMSs attract the gas to their atmosphere. This process enriches the external shells

and increases the stellar mass, consequently increasing the stellar winds ejecta due to the

increment of luminosity. The SMS scenario predicts the pattern abundance present in

MPs with no variation in [Fe/H]. Also, this scenario has two ways of observing MPs. The

presence of MPs can be explained by the pollution of SMSs itself or the pollution of the

medium by the mass ejection from SMSs stellar winds. The first approach meaning no age

difference among the MPs. However, the second approach could result in multiple bursts

of continuous star formation or with intervals of a few Myr (Figure 1.11).

Similarly, the lifetime of FRMS and AGB are fast enough to pollute the ICM, while

low-mass stars are still in their pre-MS phase. These stars can pass through (at different

timescales) the processed ejected gas and capture part of this material, forming an accretion

disc. In this scenario, the star will enter the MS phase already with the chemical pattern

of 2G stars but without the necessity of a new star formation burst. This scenario is

called the “accretion disc scenario” (Bastian et al., 2013) and eliminates the mass-budget

problem.

Figure 1.11: A schematic representation of the enrichment scenario described in Gieles et al. (2018): Cold,
pristine gas accretes onto the stars within the cluster, causing the cluster to contract. The increased stellar
density leads to stellar collisions, forming a Supermassive Star (SMS) at the cluster’s centre. The SMS
emits a wind enriched with hot hydrogen products, which interact with and mix into the inflowing gas.
This mixed material then accretes onto the stars, enriching them with the yields from the SMS. Two main
scenarios can occur from this: The falling gas can be captured by pre-existent stars, and the phenomenon
observed today is a result of atmosphere pollution of these stars; the falling cold gas generates new stars
through a new star formation event.
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1.2 The chrono-chemo-dynamical analysis

This section presents the methodology developed along the Ph.D. project, called chrono-

chemodynamical analysis. Besides the well-established chemodynamical interpretation of

the data (e.g. Barbuy et al., 2018b; Queiroz et al., 2021), it is necessary to date the stellar

objects to properly identify each subpopulation of a specific Galactic component (Queiroz

et al., 2023). Here, we are deriving the age of GCs using the isochrone fitting method

(Section 1.2.1). The chemical analysis is explained in Section 1.2.2, and the dynamics

through orbital analysis is given in Section 1.2.3.

1.2.1 Fundamental parameters - SIRIUS code

We developed the Python code named SIRIUS (Souza et al., 2020), which stands for

Statistical Inference of physical paRameters of sIngle and mUltiple populations in Stellar

clusters, to extract information on a stellar cluster from its CMDs. SIRIUS was designed

to analyse stellar clusters, applied here both to synthetic data and to observed data.

SIRIUS has already been successfully applied to derive the parameters of several GCs.

In Kerber et al. (2019), we applied for HP 1 the isochrone fitting for a multi-band (KS

and J from Gemini-GSAOI+GeMS, and F606W from HST-ACS). For the GC ESO 456-

SC38(Ortolani et al., 2019), we used the HST photometry in the filters F606W from ACS

and F110W from WFC3, and FORS2@VLT photometry in V and I. We also applied

SIRIUS for several GCs in different Galactic and extra-Galactic contexts (see more details

in Chapter 5 and the list of publications in the Appendix A). A detailed description of the

SIRIUS code flow-chart is presented in Figure 1.12.

The simple χ2 isochrone fitting procedures do not necessarily represent a physical in-

terpretation of a GC CMD since the best fit is the isochrone that seems most similar to

the CMD, and many combinations of the parameters can fit the CMDs well as the best fit

(minimum χ2; D’Antona et al., 2018). The morphology of the isochrone depends on the

age, metallicity, and helium abundance. Figure 1.13 illustrates the effects on the shape of

isochrones due to the change in each parameter. The reddening E(B − V ) changes the

location of the isochrone in the diagonal direction because it contributes to the apparent

distance modulus (m−M)λ and to the apparent reddening E(λ1−λ2), without varying the

morphology of the isochrone (first panel of Figure 1.13). For high values of reddening and
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Figure 1.12: SIRIUS flow-chart shows the steps to perform the isochrone fitting. Taken from (Souza et al.,
2020).

large passbands, a second-order correction from the effective temperature (e.g. Ortolani

et al., 2017; Kerber et al., 2019), has to be taken into account during the isochrone fitting.

A vertical displacement results from a change in distance modulus (m−M)0 (second panel

of Figure 1.13). Age essentially affects the position of the turn-off point (TO, third panel

of Figure 1.13). The metallicity [Fe/H] has a complex effect on the isochrone, but more

strikingly, by changing the slope of the RGB, with a sub-giant branch (SGB) and RGB

steeper towards lower metallicities (fourth panel of Figure 1.13). A variation in Y changes

the slope of the SGB and the location of the TO, shifting the isochrone to the bluer region

of the CMD (last panel of Figure 1.13). It is worth noting that the above explanation

is for the specific filter combination. Nevertheless, the behaviour of the variations on the

isochrone morphology will be almost similar when the colour baseline is composed by the

simple combination of two filters. The exceptions are the pseudocolours like UBI colour

((U −B) − (B − I)).

SIRIUS , in principle, extract the fundamental parameters age, metallicities ([Fe/H],

[M/H], or Z), distance to the Sun (d⊙), reddening (E(B−V )), total-to-selective extinction

ratio (RV ), and binary fraction. The code employs the Bayesian method of Markov Chain

Monte Carlo (McMC) to obtain probability distributions for each parameter. The code

compares the observed colour-magnitude diagram with synthetic colour-magnitude dia-
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Figure 1.13: Graphical explanation of how the main five parameters change the morphology and position
of the isochrone. The first panel shows the variation due to changes in E(B−V ), the second in (m−M)0,
the third in Age, the fourth in [Fe/H], and the last one in Y. Taken from (Souza et al., 2020)

grams constructed from each set of parameters randomly drawn during the fitting process.

In the following, we describe the steps to construct the synthetic CMDs used to compare

with observational CMDs that is visual explained in Figure 1.14.

To construct the synthetic diagrams, SIRIUS utilizes isochrones from the DSED2 (Dart-

mouth Stellar Evolutionary Database - Dotter et al., 2008) and BaSTI3 (A Bag of Stellar

Tracks and Isochrones - Pietrinferni et al., 2006) databases, which initially spans ages

between 10 Gyr and 15 Gyr with intervals of 0.1 Gyr, and metallicities between −2.30 and

0.0 with intervals of 0.01 dex. However, the code interpolates different isochrones during

the fitting process to obtain the model with exact values. In this explanation, we employed

a DSED isochrone with age equal to 13 Gyr and metallicity of [Fe/H]= −1.18 (panel a of

Figure 1.14). These values are often observed in bulge GCs.

After interpolating in mass a sample of N random stellar mass, these values are then

interpolated to obtain the corresponding magnitude values (panel b of Figure 1.14).. The

code calculates the extinction coefficients following the total-to-selective parameter RV of

each iteration. The extinction law is interpolated from the curves of Cardelli et al. (1989),

and the extinction coefficients for the specific magnitudes are obtained from this. Then,

each absolute magnitude is converted to apparent magnitude as follows:

2 http://stellar.dartmouth.edu/models/
3 http://basti.oa-teramo.inaf.it/

http://stellar.dartmouth.edu/models/
http://basti.oa-teramo.inaf.it/
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mλ = Mλ + (m−M)0 + E(B − V ) ×RV ×Rλ (1.1)

where (m-M)0 is the intrinsic distance modulus, and Rλ is the ratio between the ex-

tinction coefficient in band λ and in the V band AV , computed in each iteration varying

with RV . Here, we are using a distance of d⊙ = 7.52 and reddening E(B−V)= 0.14 (panel

c of Figure 1.14).

A cut in magnitude is applied to remove stars with mass lower than 0.8M⊙ and bigger

than 3.0M⊙ (panel d of Figure 1.14). These mass limits were select because they agree

very well with fainter and brighter limits for most of the GCs observed with HST. A second

cut is applied, however, adopting the initial mass function (IMF) of Chabrier (2003) (the

code is also able to select other IMF), this step is in the panel e of Figure 1.14. A fraction

of these mass values are associated with photometric binary stars (stars close enough to

have their flux overestimated; panel f of Figure 1.14). While the first star has mass MassA,

the hypothetical secondary star will have mass MassB calculated as MassB = q × MassA,

where q is the mass ratio defined as:

q = qmin + (1.− qmin) ×NA(0., 1) (1.2)

where qmin is the minimum mass ratio value, and NA(0,1) is a randomly chosen number

uniformly between 0 and 1. The value of qmin is adopted as 0.6 as it is the minimum value

to observe the effect of binaries in the CMD (Milone et al., 2023). The calculation of the

final magnitude of binary stars is computed from the sum of the flux of each star:

m = −2.5 log
(
10(−mA/2.5) + 10(−mB/2.5)

)
(1.3)

With the synthetic diagram already with the apparent magnitudes, a luminosity func-

tion is applied to reproduce the observation conditions to which the data were subjected.

The luminosity function is calculated as the number of stars in each magnitude bin. When

applied to the synthetic diagram, some stars will be excluded to make the synthetic dia-

gram more similar to the observed one in terms of the number of stars at each magnitude

(panel g of Figure 1.14).

An error function is applied to spread the points that survived to all the cuts (panel h

of Figure 1.14). The error function is derived from the observed data by calculating the
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median error in magnitude bins and shifted to the position of the synthetic CMD from

the turn-off point to ensure no bias in the position of the synthetic diagram relative to the

observed one. Thus, whatever set of parameters is drawn, the error function will generate

a synthetic CMD.

When the RV is a free parameter, the isochrone fitting is performed simultaneously for

the two CMDs, one of them must to be in the IR to reduce the effect of the extinction.

Simultaneous fitting allows the determination of the extinction law since it will force the fit

of a single set of distance and reddening for the two CMDs (Pallanca et al., 2021). Another

advantage of this approach is determining an unbiased age using one specific photometric

system.

As a proxy of distance, in some cases, we employ a prior to the distance according

to the magnitude level of RR Lyrae stars (or the HB magnitude level). For each McMC

interaction, the values of metallicity and reddening can be used to obtain the distance prior

using the Mλ−[Fe/H] calibrations (e.g. Oliveira et al., 2022, for V and I magnitudes).

This calculated distance is then compared with the distance value for the specific McMC

interaction assuming a Gaussian distribution.

We used the Python library emcee (Foreman-Mackey et al., 2013) to perform the

McMC. The likelihood function is an adaptation of Tremmel et al. (2013), which is ba-

sically a Poisson distribution comparing the number of observed and synthetic stars in

a colour and magnitude bin. The adaptation includes a simple isochrone fitting compo-

nent comparing the isochrone to the two-dimensional distribution of observed points. This

change allows the code to reach the stability of the distance and reddening values more

quickly. Meanwhile, the likelihood component that compares the synthetic diagram with

the observed one allows for better age and binary fraction calculation.

As explained before, the age difference between the first and next generations is an

important parameter to elucidate the origin of the MP phenomenon in GCs. From the

methods to split the stellar populations, we can tag each star of the GC according to which

population it belongs, separating each generation along the whole CMD.

Since the stellar evolutionary models available today do not consider the chemical

pattern observed in GCs, the isochrone fitting for MPs must be performed in the optical

and near IR filters.

We developed an algorithm to estimate the age difference between stellar populations
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Figure 1.14: Visual explanation of the procedure to construct synthetic CMD. a: original DSED isochrone
with age= 13 Gyr and [Fe/H]= −1.18. b: sample of 20,000 random mass values interpolated along the
original isochrone. c: The panel’s stars translated to apparent magnitudes, adopting a distance of 7.5 kpc
and a reddening of 0.14. d: Selection of stars after the magnitude cut to mimic the photometric limits
(in this case, HST). e: Selection of stars after applying the IMF. f : Draw photometric binaries uniformly
sampled for the mass ratio between 0.6 (minimum value for observing the effect of binaries) and 1 (binaries
with similar mass values). g: Sample of stars after the luminosity function selection. h: Final CMD with
stellar magnitudes spread following an error function.

when they are split in the CMD. The algorithm considers each stellar population as an

SSP. In the context of MPs, it is expected that the age derived using all stellar popula-

tions together is the weighted average age of each stellar population derived individually.

The algorithm then fits the first stellar population4 and applies the constraints of dis-

tance, reddening, and metallicity to the second (or subsequent) one(s). Hence, the unique

free parameter among the stellar population is the age. This procedure considers that

1G stars are older than subsequent populations or they are coeval. The total likelihood

ln P(Model|Data) is a linear combination of the priors and the likelihood of each generation

with constrained by the likelihood of the entire CMD:

ln P(Model|Data) = ln(priors) +
N∑
i=1

L( [i]G )all. (1.4)

4 Another possibility is to use the largest population.
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where [i]G is the i-th population of the cluster.

1.2.2 Chemical abundances - PFANT code

PFANT is a stellar spectral synthesis software written in Fortran and integrated into

Python as PyFANT5. PFANT is a development effort of years (Spite, 1967; Barbuy, 1982;

Cayrel et al., 1991; Barbuy et al., 2003; Coelho et al., 2005; Barbuy et al., 2018a) of the

initial ABOND code by Monique Spite in 1967. The upper panel of Figure 1.15 shows the

complete PFANT workflow indicating each sub-function, input, and output.

Figure 1.15: Spectral synthesis pipeline - Fortran programs (boxes) and their input/output files. CREDIT:
J. Trevisan6.

The PFANT spectral synthesis pipeline is shortly explained in the bottom panel of

Figure 1.15. As the first step, PFANT interpolates (innewmarcs; Gustafsson et al., 2008)

a 3D grid of atmospheric models (the file grid.mod in the upper panel of Figure 1.15 or

5 https://trevisanj.github.io/pyfant/intro.html
6 http://trevisanj.github.io/PFANT/reference.html

https://trevisanj.github.io/pyfant/intro.html
http://trevisanj.github.io/PFANT/reference.html
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.moo for models containing opacities) to construct a new model for a given set of effective

temperature, surface gravity, and metallicity contained within the limits of the grid. The

inputs are specified in the main configuration file. The output is used to generate the

hydrogen line profiles. After that, PFANT, a set of FORTRAN subroutines including the

ABONDs (listed on the left of ”pfant”instance in the full workflow, containing the input

abundances), generates the synthetic spectra. The final step in the short workflow in

Figure 1.15 is optional, and it convolves the synthetic spectra provided by PFANT with a

Gaussian kernel.

We generate a sample of the synthetic spectra for each star with different abundances

and the same atmospheric parameters. To obtain the best abundance value, we perform

a chi-square minimisation algorithm that fits the different values to a spectrum region.

When needed, a variation on the level of the continuum is taken into account. Figure 1.16

shows an example of the result obtained with this algorithm for the YI 6435.004Å line

for a hypothetic star. The blue-shaded region represents the best-fit spectrum within 1σ,

while the grey vertical stripe shows the fit region.

Figure 1.16: Fit to the YI 6435.004 Å line for a hypothetic star. The red dotted line is the synthetic
spectrum, the blue strip represents the 1σ region, and the observed spectrum is the black solid line. The
values of χ2 are in the insert plot. The grey region represent the wavelength range to perform the fit, this
region can be increased or decreased depending on the line.

1.2.3 Orbital analysis - Galactic potentials

Along this thesis, we employed three different Galactic potentials according to the

need of each work in order to perform the orbit integration to obtain the orbital pa-

rameters apogalactic distance (rapo) and perigalactic distance (rperi), eccentricity (ecc =
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(rapo−rperi)/(rapo+rperi)), and the maximum absolute height relative to the Galactic plane

(|Z|max). In general, each Galactic potential has its numerical integrator code behind it.

Therefore, the hard work for the thesis was to combine the numerical integrator with a

Python -friendly environment responsible for deriving the errors on the orbital parameters

from a Monte Carlo (MC) resampling of the initial conditions (IC) considering the errors

on the observable parameters radial velocity, distance, and proper motions.

The orbital integration is crucial for analysing GCs in the context of Galactic com-

ponents. Since all objects continually orbit the Galactic centre, they can pass very close

to the centre and then move away tens of kpc from the centre. As a result, the current

position of the GC does not completely reflect its orbital family. (Pérez-Villegas et al.,

2020) derived the orbital parameters for 78 GCs and searched for substructures on dif-

ferent orbital parameters planes (left panels of Figure 1.17). With their classification, it

is possible to calculate the probability of belonging to each Galactic component for any

cluster: bulge/bar, thick disc, inner and outer halos. On the right panels of Figure 1.17 are

the X-Y (top) and X-Z (bottom) projections for all GCs after classification. These panels

show the importance of obtaining the classification considering the entire orbit because,

for example, some GCs currently located within the bulge/bar region are actually passing

by this region but belong to another component. These GCs are called intruders (e.g.

Ortolani et al., 2019).

For all the cases, the Sun’s position to the Galactic centre is R0 = 8.2 kpc with circular

velocity V0 = 241 km s−1 (Gerhard et al., 2016). At the same time, the peculiar velocity

of the Sun with respect to the local standard of rest (LSR) is adopted as (U, V,W )⊙ =

(11.1, 12.24, 7.25) km s−1 (Schönrich et al., 2010). The reference frame adopted aligned

the Sun to the x-axis, which means (x, y, z)⊙ = (8.2, 0.0, 0.02) kpc.

Pérez-Villegas et al. (2020).

This potential uses the Numerical Integrator of Galactic Orbits (NIGO; Rossi, 2015).

Basically, this potential is composed of a exponential disc made by the superposition of

three Miyamoto-Nagai potentials (Miyamoto and Nagai, 1975; Smith et al., 2015), a NFW

density profile to model the dark matter halo (Navarro et al., 1997), and a triaxial Ferrers

bar. For the details of each component, we refer to the original paper Pérez-Villegas et al.

(2020). We also set up three values for the pattern speed of the bar: 40, 45, and 50 km
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Figure 1.17: Orbital parameters are presented as functions of the median values of the perigalactic
distance < rmin >, the apogalctic distance < rmax >, the maximum distance from the Galactic plane
< |z|max >, and eccentricity < ecc >, for Ωb = 40 km s−1 kpc−1 (left panel). The four groups are

identified asÂ bulge/bar (purple), thick disc (cyan), inner halo (green), and outer halo (red). In the right
panel, the spatial distribution of the globular clusters (GCs) is shown in the x-y (top panel) and x-z
(bottom panel) projections. The colours indicate the stellar component to which GCs are associated. The
black dashed line shows the size of the Galactic bar. Modified from Pérez-Villegas et al. (2020)

s−1 kpc−1.

McMillan (2017).

We used this potential with the Python package GalPy (Bovy, 2015) and the Action-

based GAlaxy Modelling Architecture (AGAMA Vasiliev, 2019). Basically, this potential is

composed of a spherical bulge (an axisymmetric approximation of Bissantz and Gerhard,

2002), two exponential stellar thick and thin discs, two components representing the H I

and molecular gas discs (Dehnen and Binney, 1998), a dark matter halo (Navarro et al.,

1997). For the details of each component, we refer to the original paper McMillan (2017).

It is worth noting that there are no non-axisymmetric components on this potential, and

it is supposed to be static, like the model used in Pérez-Villegas et al. (2020). Therefore,

the total orbital energy and angular momentum perpendicular to the disc (in this case,

the z-axis) are conserved along the entire orbits. This is the advantage of this potential.

However, it has to be used carefully since the description of the inner Galaxy (interest of
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the thesis) is not accurate.

Portail et al. (2017).

This potential possesses the most accurate description of the inner Galaxy. Firstly

created by Portail et al. (2017), this model was adapted to be used in combination with

AGAMA through an analytical approximation by Sormani et al. (2022). Now, the model

was improved by Hunter et al. (2024) including more information about the inner Galaxy.

The model is composed of the black hole (as a Plummer sphere Plummer, 1911), the MW

nuclear star cluster (Dehnen, 1993), the nuclear stellar disc, the Galactic bars (the bar

and the long bar Portail et al., 2017), the disc, and the dark matter halo using an Einasto

(1969) model. For the details of each component, we refer to the original paper by Hunter

et al. (2024).

1.3 Objectives and layout of the thesis

The goal of this thesis is to understand the connection between the evolution of GCs

and the formation of the Galaxy itself. Which GCs have formed in-situ? Where and when

were formed the early bulge clusters? Can we recover the building blocks using GCs? How

old is the Galactic Bulge? Is there observational evidence for the contribution of GCs in

the bar formation in terms of stellar population? In a more general view, we also studied

the formation of stellar clusters to comprehend the mechanisms that lead to the multiple

stellar population phenomenon observed in old clusters. How does the multiple stellar

population phenomenon manifest? Is there an age difference among the different stellar

populations? Is there a more probable formation scenario, or can it be a combination of

different scenarios?

Another specific aim of the thesis is to develop the three areas of photometry, chemistry,

and dynamics together. This objective has been successfully achieved and reflected in

my publication list (see the complete list in Appendix A). The spectroscopic work was

carried out using FLAMES-UVES and APOGEE. Besides the main work of Palomar 6

(Souza et al., 2021), NGC 6355 (Souza et al., 2023), and SOS1 (Souza et al. submitted),

I contributed to another 19 papers including the following studies: Fernández-Trincado

et al. (2020), Fernández-Trincado et al. (2021), Barbuy et al. (2021a), Romero-Colmenares
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et al. (2021), Barbuy et al. (2021), Limberg et al. (2022), Razera et al. (2022), and Barbuy

et al. (2023). For the dynamical side, we developed techniques to integrate the GC orbits

and how to classify them in terms of the Galactic components and the GC evaporation

in dwarf galaxies. The contributions were in the following studies: Pérez-Villegas et al.

(2020), Razera et al. (2022), Barbuy et al. (2023), and Moreno-Hilario et al. (2024).

From the extra-galactic point of view, I have been involved in the VISCACHA Survey.

VISCACHA (VIsible Soar photometry of star Clusters in tApii and Coxi HuguA; Maia

et al., 2019, ; PI: B. Dias) is a photometric survey dedicated to observing star clusters in the

Small and Large Magellanic Clouds (SMC and LMC) using the SOuthern Astrophysical

Research (SOAR) telescope together with the SOAR Adaptive Module Imager. Inside

VISCACHA, besides the work on the eMSTO in star clusters of the Magellanic Clouds

(MCs), I have been involved in the determination of the fundamental parameters for the

star clusters in specific studies where SIRIUS code was employed: Maia et al. (2019), Dias

et al. (2021), Dias et al. (2022), Bica et al. (2022), Oliveira et al. (2023), and Parisi et al.

(2024).

The thesis comprises six papers, of which I am the first author, being three already

published and three submitted. The thesis also includes one Chapter containing all the

important contributions to the age determination for GCs using different photometric

systems. I was not the first author of these papers, but my contribution was crucial to the

final results. The chapters essentially reproduce the papers as Chapters 2 to 8. Chapter 6

consists of discussions of chapters from 2 to 5. Finally, the thesis is divided into two parts:

Part I: Looking for the Galactic bulge/bar formation and evolution relic fossils.

In this part, we performed a comprehensive analysis of individual Globular Clusters.

The difficulty of these studies is that all the clusters are towards the Galactic centre,

having, therefore, substantial gas, dust, and stars in between the cluster and the observer

and a huge amount of bulge field stars behind the cluster, contaminating its photometry.

• Chapter 2 reproduces almost integrally the paper Photo-chemo-dynamical analysis

and the origin of the bulge globular cluster Palomar 6 (Souza et al., 2021), where

we analysed the GC Palomar 6 in terms of age, chemistry, and dynamics to provide

insights of its origin regarding the progenitors of the Galaxy. We used data from
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ESO FLAMES-UVES high-resolution spectrograph, HST photometry, and the state-

of-the-art Galactic mass models.

• Chapter 3 contains the paper Chrono-chemodynamical analysis of the globular cluster

NGC 6355: Looking for the fundamental bricks of the Bulge (Souza et al., 2023).

In this paper, we present in more detail the chrono-chemo-dynamical approach we

developed during this thesis. NGC6355 was previously classified as coming from

the main bulge progenitor, we, however, show some arguments against this previous

classification.

• Chapter 4 presents integrally the paper we submitted to Nature with some modifi-

cations due to the journal copyright rules. The modifications include the title and

figures. The motivation for this paper comes from the analysis of a sample of stars

observed by the Kepler satellite in the program K2. This paper results from my

period at the Leibniz-Institüt für Astrophysik Potsdam (AIP) working with Dr. Ma-

rica Valentini. In this work, we found observation evidence for the contribution of

Globular Clusters’ evaporation for the Galactic bar formation and evolution, and

also the observation constraints to the theory about the Globular Cluster Terzan 5.

• Chapter 5 includes the collection of papers whose results constitute part of this

thesis but were not integrally performed by me. In this Chapter, we present the

age determination of the NGC6558 age. This result was submitted to A&A titled

as GSAOI/Gemini and ACS/HST photometry of the globular cluster NGC 6558: A

steep age-metallicity relation of the metal-poor bulge.

• Chapter 6 compose the discussion on the results collected in the previous Chapters

2 to 5.

Part II: Supplementary studies – What drives the origin of multiple stellar

populations in star clusters?

In this part, we studied the stellar populations within star clusters. The primary aim

of this part is to understand how the multiple stellar populations in star clusters originate

and evolve into the present phenomenon we observe today. To perform this analysis, we
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compared the present phenomenon with the eMSTO observed in intermediate-age star

clusters of the MCs within the VISCACHA collaboration.

• Chapter 7 reproduces integrally the scientific case of the paper Self-consistent Analy-

sis of Stellar Clusters: An Application to HST Data of the Halo Globular Cluster

NGC 6752 (Souza et al., 2020), where we analysed the multiple stellar populations

of the GC NGC6752 looking for a possible age difference among them. The motiva-

tion for this paper primarily came from the necessity of presenting the SIRIUS code

to the community, but also an experiment to be incorporated within the collaboration

HST UV Legacy Survey for Galactic Globular Clusters.

• Chapter 8 represents the paper The VISCACHA Survey: The eMSTO for low mass

star clusters submitted to A&A and is under review. This paper aims to analyse the

low mass regime (logMass < 4.3) for star clusters of the MCs. We are motivated

by the lack of analysis of this mass regime in the literature because HST studies

comprise only relatively high mass clusters.

Finally, Chapter 9 provides the conclusions of the thesis and presents the perspectives

for future research.



Part I
Looking for the relic fossils of the
Galactic bulge/bar formation and

evolution.
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Chapter 2
Palomar 6, an authentic bulge

globular cluster

This chapter presents the description of the globular cluster Palomar 6, published in

Souza et al. (2021).1

Figure 2.1: F110W/F160W combined colour image from HST for Pal 6.

1 https://ui.adsabs.harvard.edu/abs/2021A%26A...656A..78S/abstract

https://ui.adsabs.harvard.edu/abs/2021A%26A...656A..78S/abstract
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2.1 Introduction

Palomar 6 (Pal 6) is a GC projected towards the Galactic bulge (l = 2.10◦ and

b = 1.78◦), located in a highly-extincted region with AV > 4.3 (Harris, 1996, 2010 edition)2.

Despite that, the information about Pal 6 is conflicting, preventing further analysis, parti-

cularly concerning its distance and, consequently, the Galactic component to which Pal 6

should belong. Pal 6 has been considered to belong to the Galactic bulge due to its cur-

rent position (Ortolani et al., 1995; Bica et al., 2016). In Lee et al. (2004) suggested that,

based on its chemical and kinematic determinations, Pal 6 should belong to an internal

component related to a contribution of the halo (inner halo). Pérez-Villegas et al. (2020)

discussed the case of Pal 6 using a distance of d⊙ = 5.8 kpc (Baumgardt et al., 2019), and

for their dynamical orbital analysis, they classified the cluster as a thick disc member. This

result is opposite to Ortolani et al. (1995), who found a distance of d⊙ = 8.9 kpc placing

Pal 6 in the Galactic bulge. Recently, Massari et al. (2019) presented a classification of

clusters in terms of their plausible progenitors, indicating whether a cluster originates in a

well-defined component of the Galaxy or if it came from one of the merger processes that

occurred in the history of the Galaxy, besides other possibilities. They again indicated

Pal 6 as an associated Low-Energy cluster based on the distance estimated by Baumgardt

et al. (2019).

The controversy on which Galactic component Pal 6 is part is also due to an uncertain

metallicity. The first Pal 6’s metallicity estimation by Malkan (1981) from a reddening-free

index resulted in [Fe/H]∼ −1.30. Ortolani et al. (1995), from the V vs V − I CMD based

on data observed at the ESO NTT-EMMI, found [Fe/H] ∼ −0.40 by the slope of the red

giant-branch (RGB) and the presence of a red-horizontal-branch (RHB). Lee and Carney

(2002) obtained [Fe/H] = −1.22±0.18 analysing the slope of the RGB on the near-infrared

(NIR) CMD with NICMOS3 JHK bands. Spectroscopic analysis from the same authors

using high-resolution NIR spectra of three RGB stars resulted in [Fe/H]= −1.08 ± 0.06.

Finally, a metallicity of [Fe/H]= −1.0±0.1 was confirmed by Lee et al. (2004) from a high-

resolution spectroscopic analysis of five probable member stars observed with the CSHELL

spectrograph at the NASA Infrared Telescope Facility.

2 http://physwww.mcmaster.ca/ harris/mwgc.dat
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2.2 Observations and data reduction

The UVES spectra were obtained using the FLAMES-UVES setup centred at 580

nm in the ESO Program 0103.D-0828 (A) (PI: M. Valentini). The ESO program was

coordinated with the program GO11126 (PI: M. Valentini) for the Campaign 11 of the K2

satellite (K2 is the repurposed Kepler mission; Howell et al., 2014): the goal was to obtain

asteroseismology for the giants in the proposed GCs. K2 observed four giants in Pal 6,

but their UVES spectra were not collected due to clouds and strong winds that affected

ESO observations. UVES spectra have a coverage ranging from 480 nm to 680 nm. Six

giant stars of Pal 6 were observed, and the log of observations is given in Table 2.1. The

JHKS-combined image of Pal 6 is shown in Figure 1, obtained from the Vista Variables

in the Via Lactea (VVV) survey (Saito et al., 2012).

The data were reduced using the ESO-Reflex software with UVES-Fibre pipeline (Bal-

lester et al., 2000; Modigliani et al., 2004). After reduction, we have six spectra for each

star. The corresponding spectra of each star were corrected by the radial velocity. To

compute the radial velocities and the barycentric corrections, we used the python li-

brary PyAstronomy cross-correlating the spectra with the Arcturus spectrum (Hinkle et al.,

2000).

The values of the heliocentric radial velocity of each spectrum and their mean are

presented in Table 2.2. From these values, we calculate a mean heliocentric radial velocity

for Pal 6 of 174.3 ± 1.6 km s−1, excluding the stars ID730 and ID030 for which the radial

velocities are very discrepant as compared with the other stars. Our mean radial velocity

determination agrees with the recent value of 176.3±1.5 km s−1 given by Baumgardt et al.

(2019). Finally, each spectrum is normalised and combined through the median flux to get

the final stellar spectrum.

For the photometric analysis, we used the HST data collected during the GO-14074

(PI: Cohen, Cohen et al., 2018) in F110W/F160W (WFC3/IR) and F606W (ACS/WFC)

(first panel of Figure 2.2). Data were reduced using the pipeline described in Nardiello

et al. (2018). We also followed their recipe (based on the quality-of-fit and photometric

error parameters) to select well-measured stars and reject poor photometric measurements.

Additionally, we selected the stars within a radius of 300 pixels from the cluster centre

that is equivalent to a core radius (∼ 0.66 arcmin; Harris, 1996, 2010). The cleaned CMD
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is shown in the second panel of Figure 2.2, which contains the final selected stars.

Another critical effect in the photometric data is the differential reddening. Mainly

for the clusters with a high reddening value, differential reddening increases the spread on

the CMD. This is the case of Pal 6, which has an extinction of AV > 4. We perform a

reddening correction with a method similar to that described in Milone et al. (2012). The

third panel of Figure 2.2 presents the final CMD after the reddening correction is applied,

and the map of differential reddening is on the last panel of Figure 2.2. The contamination

by field stars, combined with the high extincted region, results in low values of differential

reddening. However, we obtained a more clear main sequence (MS) turn-off (TO) and

sub-giant-branch (SGB) structures for the Pal 6 CMD.

Figure 2.2: Procedure to obtain the photometry of Pal 6. First panel: HST photometry from Cohen et al.
(2018). Second panel: Stars selected by the quality method within a ∼ 0.66 arcmin radius from the cluster
centre. Third panel: Differential reddening corrected CMD. Last panel: Differential reddening map.

We perform a membership analysis to determine which stars observed spectroscopically

are members of Pal 6. We selected the Gaia Early Data Release 3 (EDR3; Gaia Collabo-

ration et al., 2022) stars within 10′ from the cluster centre (top-left panel of Figure 2.3).

For the proper-motion distribution presented in the bottom-left panel of Figure 2.3, we

applied the Gaussian Mixture Models (GMM; Pedregosa et al., 2011) clustering method

to separate the cluster members from the field stars. The derived mean proper-motion for

Pal 6 is < µ∗
α >= −9.19± 0.06 mas yr−1 and < µδ >= −5.30± 0.05 mas yr−1, in excellent

agreement with the new values computed by Vasiliev and Baumgardt (2021).

The membership probabilities are computed considering (both cluster and field distri-
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butions, derived using GMM. See Bellini et al. (2009) for the mathematical description of

the membership distribution. Once we have the membership probability, we cross-matched

our sample stars with the Gaia data (Table 2.3), indicated as green stars in Figure 2.3.

We found that two stars of our sample have zero membership probability (non-members),

and four stars have probabilities above 80%. The non-member stars are the same with

discrepant radial velocities (ID730 and ID030).

Table 2.1 - Log of the spectroscopic FLAMES-UVES observations of program 0103.D-0828 (A), carried
out in 2019. The quoted seeing and airmass are the mean values along the exposures. In the last column
is given the corresponding GIRAFFE setup, in which additional stars were observed

Date UT exp Airmass Seeing GIRAFFE

( s ) (′′)

Program 0103.D-0828 (A)

2019-06-24 23:44:40 2400 1.810 0.87′′ H13-1

2019-06-25 01:30:48 2400 1.190 0.85′′ H13-3

2019-06-25 02:31:52 2700 1.057 0.95′′ H14-1

2019-06-25 03:20:48 2700 1.012 0.91′′ H14-2

2019-06-25 05:35:43 2700 1.097 0.93′′ H14-3

2019-06-25 06:24:35 2700 1.223 0.93′′ H14-4

2.3 Atmospheric Stellar Paramaters

The photometric effective temperature (Teff) and surface gravity (log g) are derived

from the V IJHKS magnitudes given in Table 2.4. For comparison purposes, we also

obtained the effective temperature from the Transiting Exoplanet Survey Satellite (TESS)

input catalogue (TIC; Stassun et al., 2018) for 5 of our six observed stars. We collected

the 2MASS J , H, and KS magnitudes from Skrutskie et al. (2006) and the VVV survey

(Saito et al., 2012). Finally, according to Alonso et al. (1999), the colour V − I is the best

colour index to derive the effective temperature of giant stars. To get the V − I colour for

our sample, we employed the photometric systems relationships G − V = f(GBP − GRP )

and G− I = f(GBP −GRP ) from Gaia EDR3 (Riello et al., 2021).
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Table 2.2 - Radial velocity obtained for each extracted spectra and the average value for each star.

Target Vhel
r σVr Target Vhel

r σVr

km s−1 km s−1 km s−1 km s−1

730 1 −87.83 6.12 243 1 +172.80 6.06

730 2 −87.79 6.10 243 2 +172.34 6.38

730 3 −87.61 5.84 243 3 +172.50 6.18

730 4 −86.73 6.05 243 4 +172.85 5.87

730 5 −86.56 5.87 243 5 +172.84 6.00

730 6 −87.43 6.02 243 6 +173.02 6.54

730 −87.33 2.65 243 172.73 2.61

030 1 −62.94 6.34 785 1 +175.41 8.79

030 2 +14.63 9.36 785 2 +175.72 7.77

030 3 −32.31 9.82 785 3 +174.17 5.56

030 4 −56.20 6.81 785 4 +174.01 6.58

030 5 +14.36 8.82 785 5 +175.50 7.20

030 6 +14.86 12.0 785 6 +174.69 7.80

030 −12.36 17.44 785 174.99 3.25

145 1 +179.81 7.07 401 1 +170.16 6.12

145 2 +178.59 7.39 401 2 +170.82 7.13

145 3 +178.38 6.27 401 3 +169.62 6.82

145 4 +178.33 5.67 401 4 +168.72 6.18

145 5 +179.65 6.51 401 5 +170.87 6.06

145 6 +179.23 7.27 401 6 +171.00 6.34

145 179.02 2.98 401 170.21 2.96

Effective temperatures

Effective temperatures Teff were derived from V − I, V − K, and J − K using the

colour-temperature calibrations from Casagrande et al. (2010). The VVV JHK colours

were transformed into the 2MASS JHKS system, using relations given by Soto et al.

(2013). For Pal 6 the distance modulus of (m−M)0 = 13.87, extinction AV = 4.53, and

metallicity [Fe/H]= −0.91 were used (Harris, 1996, 2010 edition) to perform the reddening

correction of the colours. Table 2.5 lists the derived photometric effective temperatures.

The < Teff > is the mean effective temperature considering only values below 5000 K.
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Table 2.3 - Gaia EDR3 information about the observed stars; the last column shows the membership
probabilities.

ID †µ∗
α µδ G GRP Pmemb

(mas/yr) (mas/yr) (mag) (mag) (%)

730 −6.18± 0.10 −2.61± 0.06 17.187 15.873 0

243 −9.32± 0.07 −5.37± 0.04 15.859 14.493 100

30 +0.04± 0.10 −2.11± 0.06 16.913 15.820 0

785 −9.26± 0.14 −5.12± 0.08 17.598 15.997 97

145 −9.49± 0.12 −5.58± 0.07 17.141 15.788 93

401 −9.33± 0.08 −4.92± 0.05 16.430 15.056 83

†µ∗
α = µα cos δ.

Figure 2.3: Proper motion analysis to obtain the cluster members. Top left panel: Sky distribution of
stars within ten arcmins from the cluster centre. Left bottom panel: Vector point diagram with the cluster
(colourful dots) and field (grey dots) stars, the green star symbols are the observed stars with FLAMES-
UVES, and the insert plots show the density distributions found using GMM. Right panel: Gaia EDR3
G vs. GBP −GRP CMD, the green stars symbols are the observed stars. From the left bottom and right
panel, we can identify that two observed stars have zero membership probability (yellow stars symbol).

Surface Gravities

To derive the photometric surface gravities log g, we used the ratio log(g∗/g⊙) where

log g⊙ = 4.44:

log g∗ = 4.44 + 4 log
Teff∗
T⊙

+ 0.4(Mbol −Mbol⊙) + log
M∗

M⊙
. (2.1)
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Table 2.4 - Identifications, coordinates, and magnitudes. JHKs from both 2MASS and VVV surveys
are given.

ID ID RA DEC KP V V − I J H KS J H K

2MASS ( hh:mm:ss ) (dd:mm:ss) 2MASS VVV

730† 174338762612551 17 : 43 : 38.75 −26 : 12 : 55.2 16.05 18.29 3.22 13.43 12.23 11.83 13.22 12.21 11.82

243 174342502614101 17 : 43 : 42.51 −26 : 14 : 10.2 14.75 16.91 3.12 11.86 10.66 10.25 11.95 11.32 10.73

30† 174338622615013 17 : 43 : 38.47 −26 : 15 : 04.8 15.82 17.62 2.19 13.58 12.46 11.93 14.02 13.53 13.26

785 174344402612418 17 : 43 : 44.38 −26 : 12 : 42.5 16.44 18.56 2.94 13.35 12.36 11.87 13.65 12.77 12.37

145 174338892614359 17 : 43 : 38.86 −26 : 14 : 34.7 15.98 18.07 2.87 12.76 11.61 11.51 13.28 12.27 11.98

401 174338062613426 17 : 43 : 38.05 −26 : 13 : 42.7 15.28 17.43 3.03 12.55 11.46 11.08 12.52 11.45 11.23

† Stars are classified as non-members based on proper motion and radial velocities.

Table 2.5 - Atmospheric parameters derived from photometry using calibrations by Casagrande et al.
(2010) for V − I, V −K, J −K and spectroscopic analysis of Fe lines.

Photometric parameters Spectroscopic parameters

2MASS VVV

ID TTESS T(V−I) T(V−K) T(J−K) T(V−K) T(J−K) <Teff > BCV Mbol log g Teff log g [FeI/H] [FeII/H] [Fe/H] vt

(K) (K) (K) (K) (K) (K) (K) (K) (km s−1)

730 3973 4267 4764 4240 4742 4534 4535 −0.721 −0.89 1.67 4857 1.40 −1.09 −1.10 −1.10 2.5

243 4323 4385 4592 4212 5024 5304 4385 −0.623 −2.18 1.09 4350 0.80 −0.93 −0.91 −0.92 1.0

30 5058 7610 5632 4103 8780 8095 4103 −0.093 −0.94 1.48 4800 1.50 −1.65 −1.61 −1.63 2.3

785 – 4659 4568 4601 5013 4985 4630 −0.446 −0.35 1.92 4860 2.40 −1.21 −1.20 −1.21 2.0

145 4865 4790 4676 5455 5120 4871 4790 −0.380 −0.77 1.81 4800 1.90 −1.31 −1.26 −1.28 2.5

401 4387 4511 4866 4634 5002 4888 4750 −0.534 −1.57 1.48 4500 1.50 −1.00 −0.99 −1.00 1.0

We adopted the values of < Teff > from Table 2.5, M∗ = 0.85M⊙, and Mbol⊙ = 4.75.

The derived values of the photometric Teff and log g are given in the left columns of

Table 2.5.

2.4 Abundance Analysis

We carried out a detailed abundance analysis using ionisation and excitation equili-

brium to derive stellar parameters and line-by-line spectrum synthesis for the derivation

abundance ratios.
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2.4.1 Spectroscopic Stellar Parameters

To determine the final stellar parameters Teff , log g, metallicity [Fe/H], and micro-

turbulence velocity vt of Pal 6, we measured the equivalent width (EW) for a list of FeI

and FeII lines using DAOSPEC (Stetson and Pancino, 2008). To evaluate the impact of

blending lines, we remeasured some lines with IRAF, mainly for FeII.

In the line list of Table B.1 are also given the adopted oscillator strengths (log gf) for

FeI lines obtained from VALD3 and NIST 3 databases (Piskunov et al., 1995; Mart́ın et al.,

2002), and for FeII lines from Meléndez and Barbuy (2009).

Using the MARCS grid of atmospheric models (Gustafsson et al., 2008), we extracted

the 1D photospheric models for our sample. These CN-mild models consider [α/Fe]= +0.20

for [Fe/H]= −0.50 while [α/Fe]= +0.40 for [Fe/H]≤ −1.00. We adopted ϵ(Fe) = 7.50

(Grevesse and Sauval, 1998) for the solar Fe abundance.

Adopting the mean photometric <Teff > and log g calculated in Section 2.3 as initial

guesses, we derived the spectroscopic parameters. Through an iterative method, we obtai-

ned the excitation and ionisation equilibrium. The excitation equilibrium means a constant

distribution of FeI vs χexc and is obtained iterating the value of Teff . The similar values

of [FeI/H] and [FeII/H] indicate that the ionisation equilibrium is reached by iterating in

log g. Finally, the microturbulence velocity vt is obtained by imposing a constant distribu-

tion of FeI abundance vs. EW. Figure 2.4 shows the excitation and ionisation equilibrium

for the four-member stars.

The derived spectroscopic parameters Teff , log g, [FeI/H], [FeII/H], [Fe/H], and vt are

presented in the right columns of Table 2.5. Based on the four-member stars, our metallicity

determination is [Fe/H]= −1.10± 0.09 dex. This metallicty is in excellent agreement with

Lee and Carney (2002) and Lee et al. (2004) spectroscopic determinations, of [Fe/H] =

−1.08 ± 0.06 and −1.0 ± 0.1, respectively.

2.4.2 Spectrum Synthesis

We derived the abundance ratios for the elements C, N, O, Na, Mg, Al, Si, Ca, Ti, Zr,

Ba, La, and Eu. We employed the PFANT code described in Barbuy et al. (2018a) for the

spectrum synthesis. The basic atomic line list is from VALD3 (Ryabchikova et al., 2015).

The solar abundances A(X) were taken from Grevesse et al. (2015).
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Figure 2.4: Excitation and ionisation equilibria of FeI and FeII lines for the four-member stars. The black
dots are the values considered to compute the metallicity of FeI lines after a sigma-clipping of 1σ. The
crosses are the omitted values. The red squares are the values of FeII lines. The α values show the slope
of the trends of FeI lines.

The CNO abundances are listed in Table 2.6, as detailed below. For the odd-Z, α, and

heavy elements, we used the line list from Barbuy et al. (2016). In Table B.2, we give the

line-by-line abundances ratios of the odd-Z elements Na, Al, the α-elements Mg, Si, Ca,

and Ti, neutron-capture dominant s-elements Y, Zr, La, Ba, and the r-element Eu. We do

not measure Sr lines because they are faint in the observed spectra. The mean values for

each star and the cluster mean (considering only the mean of the member stars) are given

in Table 2.7.

CNO abundances

To measure the CNO abundances, we perform an iterative fitting of C, N, and O

abundances. We use the extended C2(1,0) Swan molecular bandhead at 5635.3Å for

the C abundance. We considered the average fit of the region (left panel Figure 2.5) and

assumed the abundances as upper limits. For the oxygen (Figure 2.5) forbidden line at [OI]
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6300.31Å , a selection among the original spectra where telluric lines did not contaminate

the line was needed since most of the observations were contaminated, showing that these

spectra seem to have been observed at too high airmasses. A few spectra showing a clean

[OI] 6300.31Å line could be retrieved, and the oxygen abundance could be derived. The

nitrogen abundance is derived from the CN(5,1) at 6332.2Å and CN(6,2) at 6478.48Å of

the A2ΠX2Σ system bandheads (Figure 2.5). The derived abundances are listed in Table

2.6.

Figure 2.5: Example for star 243 line fit of the bandhead C2(0,1) (upper left), [OI] (upper right), N from
CN(5,1) (bottom left), and CN(6,2) (bottom right). The solid cyan line is the best-fit abundance ratio,
while the dotted lines are considering [X/Fe]=[X/Fe]best ± 0.20 (red, plus - blue, minus).
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Table 2.6 - Carbon, nitrogen, and oxygen abundances [X/Fe] from C2, CN bandheads, and [OI], respec-
tively.

[C/Fe] [N/Fe] [O/Fe]

Star C2 CN(5,1) CN(6,2) [OI]

5635.50 Å 6332.26 Å 6478.60Å 6300.31 Å

730 ≤ +0.04 — +0.98 +0.37

243 ≤ −0.18 +0.52 +0.64 +0.28

030 ≤ +0.00 +0.82 +0.77 +0.16

785 ≤ +0.10 +0.34 — +0.38

145 ≤ +0.05 +0.62 — +0.42

401 ≤ −0.12 +0.90 +0.74 +0.45

Odd-Z Elements

We derived the sodium abundances using three NaI lines, one in the blue arm at

5682.633Å . The blue-arm spectrum has a lower SNR than the red-arm one. Due to

the lower SNR values in all stars, these lines show a higher noise. For this reason,

the abundance ratios were derived essentially from the lines in the red arm, 6154.23Å

and 6160.753Å . The aluminium abundances were derived from lines at 6696.185Å and

6698.673Å .

α-elements

The fast early enrichment of the proto-cluster gas by supernovae type II (SNII) can

be seen through the abundances of α-elements O, Mg, Ca, Si, and Eu produced through

the rapid neutron capture process. We obtained a consistent enrichment for all α-elements

with a mean value of [α/Fe]= +0.35 with a dispersion of 0.06.

Figure 2.6 shows the line profile fitting of the MgI 6318.720Å, SiI 6142.494Å, CaI

5867.562Å, and TiI 6336.113Å for the member star 243. The cyan line represents the best

fit. We also show the lines considering a variation of 0.20 dex plus (red) and minus (blue)

concerning the best abundance.
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Figure 2.6: Same as Figure 2.5 for α−elements Mg (top left), Si (top right), Ca (bottom left), and Ti
(bottom right).

Heavy elements

We derive the heavy neutron-capture elements Y, Zr, Ba, La, and Eu abundances.

The Eu abundance is essentially the reference for the r-process. We measured the YI

6435.004Å and the YII 6613.73Å lines. For the final [Y/Fe] values, we assumed that the

ionised species of Y contributes 99% to the abundance. Figure 2.7 shows the line profile

fitting of the YI 6435.004Å, BaII 6496.897Å, LaII 6390.477Å, and EuII 6437.640Å for the

member star 243. The [Y/Fe] is systematically enhanced for Pal 6 and follows the same

pattern observed for the bulge GCs with the same metallicity.

The barium abundance was measured considering only the BaII 5853.675Å and 6496.897Å

lines. For zirconium, we fit four ZrI lines 6127.47Å, 6134.58Å, 6140.53Å, and 6143.25Å.

We neglected ZrI’s strong lines in the blue arm.

The lanthanum abundances are based on five LaII lines, located at 6172.72Å, 6262.287Å,

6296.079Å, 6320.376Å, and 6390.477Å. Finally, we adopted the lines of EuII 6437.6Å and

6645.1Å for the europium abundances.
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Figure 2.7: Same as Figure 2.5 for heavy-elements Y (top left), Ba (top right), La (bottom left), and Eu
(bottom right).

Table 2.7 - Abundances in the six UVES sample stars. The mean abundance for the clusters is computed
using only the four-member stars.

[X/Fe] star 730 star 243 star 030 star 785 star 145 star 401 <Pal 6>

C +0.04± 0.15 −0.18± 0.15 +0.00± 0.15 +0.10± 0.15 +0.05± 0.15 −0.12± 0.15 −0.04± 0.15

N +0.98± 0.15 +0.58± 0.16 +0.79± 0.12 +0.34± 0.15 +0.62± 0.15 +0.82± 0.08 +0.59± 0.14

O +0.37± 0.15 +0.28± 0.15 +0.16± 0.15 +0.38± 0.15 +0.42± 0.15 +0.45± 0.15 +0.38± 0.15

Na +0.29± 0.22 +0.42± 0.10 +0.17± 0.26 +0.27± 0.12 +0.40± 0.12 +0.10± 0.15 +0.30± 0.12

Al +0.44± 0.12 +0.26± 0.11 +0.49± 0.10 +0.19± 0.10 +0.11± 0.14 +0.40± 0.17 +0.24± 0.13

Mg +0.43± 0.12 +0.40± 0.09 +0.53± 0.14 +0.25± 0.08 +0.48± 0.16 +0.30± 0.17 +0.36± 0.13

Si +0.33± 0.19 +0.37± 0.16 +0.32± 0.15 +0.38± 0.15 +0.38± 0.19 +0.41± 0.17 +0.38± 0.17

Ca +0.30± 0.26 +0.37± 0.19 +0.11± 0.35 +0.19± 0.21 +0.28± 0.17 +0.34± 0.18 +0.29± 0.19

Ti +0.32± 0.19 +0.44± 0.11 +0.29± 0.20 +0.27± 0.21 +0.34± 0.20 +0.32± 0.18 +0.34± 0.17

Y +0.33± 0.16 +0.23± 0.10 +0.49± 0.32 +0.84± 0.13 +0.57± 0.16 +0.09± 0.15 +0.43± 0.20

Zr +0.76± 0.17 +0.68± 0.19 +0.65± 0.13 +0.61± 0.12 +0.74± 0.24 +0.41± 0.35 +0.61± 0.22

Ba — +0.58± 0.17 — +0.23± 0.15 — +0.49± 0.13 +0.43± 0.18

La +0.46± 0.15 +0.24± 0.13 +0.57± 0.28 +0.69± 0.12 +0.68± 0.18 +0.24± 0.16 +0.46± 0.15

Eu +0.43± 0.12 +0.31± 0.19 +0.49± 0.12 +0.73± 0.08 +0.74± 0.13 +0.58± 0.11 +0.59± 0.13
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2.4.3 Errors

Spectroscopic parameter uncertainty is given in Table 2.8 for star 243. For each stellar

parameter, we have adopted the usual uncertainties as for similar samples (Barbuy et al.,

2014, 2016, 2018a): ±100 K in effective temperature, ±0.2 on gravity, and ±0.2 km s−1 on

the microturbulence velocity. The sensitivities are computed by employing models with

these modified parameters and recomputing lines of different elements considering changes

of ∆Teff = +100 K, ∆log g= +0.2, ∆vt = 0.2 km s−1. The given error is the difference

between the new abundance and the adopted one. Uncertainties due to non-LTE effects

are negligible for these stellar parameters, as discussed in Ernandes et al. (2018). The same

error analysis and estimations can be applied to other stars in our sample. The abundance

derivations from strong lines are, in general, avoided since they are too sensitive to stellar

parameters and spectral resolution, as can be seen for the sensitivity of BaII lines of Table

2.8. On the other hand, the La lines are faint and are at least not affected by the same

problem. Finally, it is essential to note that the main uncertainties in stellar parameters

are due to uncertainties in the effective temperature, as seen in Table 2.5. The second most

important source of error is the EWs, given the limited SNR of the spectra, estimated from

the formula by Cayrel (1988): σEW = 1.5
√
FWHM.δx/(S/N), where δx is the pixel size.

2.4.4 Comparison with previous results

The metallicity derived in this work is in excellent agreement with the values derived by

Lee and Carney (2002) ([Fe/H] = −1.08±0.06) and Lee et al. (2004) ([Fe/H] = −1.0±0.1)

from high-resolution spectroscopy. It is also in good agreement with the Carretta et al.

(2009) metallicity scale, where Pal 6 has [Fe/H] = −1.06±0.09. The metallicity scale of Dias

et al. (2016) gives a value of [Fe/H] = −0.85±0.11 for Pal 6. For comparison purposes, we

selected the stars of Dias et al. (2016) and calculated their membership probabilities. The

stars Pal 6-9 and Pal 6-13 in their sample seem to be members of Pal 6 with metallicities

[Fe/H] = −0.76± 0.18 and [Fe/H] = −1.14± 0.28, respectively. Therefore, we can suppose

that the star Pal 6-13 is the most probable member of Pal 6. This fact shows Gaia’s power,

which was not available until very recently, and the stellar membership should be verified

in all samples preceding the Gaia data.

Recently, Kunder et al. (2021) analysed Pal 6 in the context of the data release 16
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Table 2.8 - Sensitivity in abundances due to variation in atmospheric parameters, for the star 243
considering uncertainties of ∆Teff = 100 K, ∆log g = 0.2, ∆vt = 0.2 km s−1, and the last column is the
total error. The errors are to be added to reach the reported abundance.

Element ∆T ∆log g ∆vt (
∑

x2)1/2

100 K 0.2 dex 0.2 kms−1

(1) (2) (3) (4) (5)

[FeI/H] −0.05 +0.03 +0.06 +0.08

[FeII/H] +0.13 −0.15 +0.02 +0.20

[C/Fe] +0.02 +0.02 +0.00 +0.03

[N/Fe] +0.15 +0.10 +0.00 +0.18

[O/Fe] +0.00 +0.05 +0.00 +0.05

[NaI/Fe] +0.13 +0.05 +0.04 +0.15

[AlI/Fe] +0.10 +0.03 −0.01 +0.10

[MgI/Fe] +0.07 +0.03 +0.00 +0.08

[SiI/Fe] +0.02 +0.12 +0.08 +0.14

[CaI/Fe] +0.18 +0.10 −0.05 +0.21

[TiI/Fe] +0.25 +0.09 −0.04 +0.27

[TiII/Fe] −0.04 +0.10 −0.03 +0.11

[YI/Fe] +0.13 +0.13 −0.12 +0.22

[YII/Fe] +0.07 +0.08 −0.02 +0.11

[ZrI/Fe] +0.22 +0.06 −0.12 +0.26

[BaII/Fe] +0.05 +0.12 −0.16 +0.21

[LaII/Fe] +0.08 +0.16 +0.07 +0.19

[EuII/Fe] −0.01 +0.10 +0.00 +0.10

(DR16) of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) sur-

vey for five observed stars. We inspected the membership probabilities of their sample.

With our analysis, all stars are members of the cluster. Their mean radial velocity of

174.5± 1.5 is in agreement with our derivation. Their mean metallicity given by the three

stars with good ASPCAPFLAG is [Fe/H] = −0.92± 0.10, which is compatible within 1σ with

our result.

We also have abundances for C, N, O, Na, Mg, Si, and Ca elements from APOGEE

DR16. The CNO abundances are [C/Fe] = −0.05 ± 0.04, [N/Fe] = +0.31 ± 0.27, and

[O/Fe] = +0.22 ± 0.05. These values agreed with our results considering our derived

errors, except for the carbon abundance, which is in excellent agreement with our determi-
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nation. The abundances of α-elements [Mg/Fe] = +0.34±0.03, [Si/Fe] = +0.22±0.07, and

[Ca/Fe] = +0.20 ± 0.03, individually are following the results of Table 2.7. Additionally,

the abundances of α-elements give a value of [α/Fe] = +0.25± 0.06, which agrees with our

UVES analysis. This value also agrees with Coelho et al. (2005) [α/Fe] = +0.28 ± 0.05.

Finally, only the two stars with ASPCAPFLAG ̸= 0 have [Na/Fe] values with a mean of

[Na/Fe] = +0.35±0.10. However, it is expected that Na should show variations due to the

probable presence of first and second-generation stars, as discussed below.

2.4.5 s-process elements analysis

The presence of heavy elements in old stars can be explained through the r-process

contribution to these elements, as the first suggested by Truran (1981). Otherwise, the

early enhancement of heavy elements can be explained by the ignition of the s-process for

the first generation of stars with high rotation, the fast-rotating massive stars (Chiappini

et al., 2011; Cescutti et al., 2013, 2015; Frischknecht et al., 2016; Choplin et al., 2018). The

rotation transports the 12C from the internal layers to external ones to burn into 14N and

13C. The activation of the s-process occurs when the 14N is converted into 22Ne. Therefore,

this mechanism does not predict carbon enhancements.

An alternative explanation is an s-process contribution within a binary system in which

the main companion has gone through the asymptotic giant branch (AGB) phase (Beers

and Christlieb, 2005; Sneden et al., 2008, and references therein). Due to the mass transfer

from AGB, the second companion receives s-process yields (see discussion in Barbuy et al.,

2021a).

The top panel of Figure 2.8 highlights the region for solar system r-process abundance

ratio of [Eu/Ba]= +0.60± 0.13 (Simmerer et al., 2004), that would characterise r-II stars.

Otherwise r-I stars are defined to have 0.3 ≤ [Eu/Fe] ≤ +1.0 and [Ba/Eu] < 0, and r/s

stars to have 0.0 < [Ba/Eu] < +0.5 (Beers and Christlieb, 2005). These ratios are shown

for the present sample of stars in the bottom panel of Figure 2.8.

We also tentatively investigate the nature of heavy element enhancement through the

diagnostic plots of Figure 2.8 using the [Zr/Ba] ratio. The use of [Zr/Ba] as presented by

Siqueira-Mello et al. (2016) consisted in using [Y/Ba], and values from the six r-rich halo

stars compiled in Sneden et al. (2008), as representatives of the main r-process, that have a

mean of [Y/Ba] = −0.42 ± 0.12. On the other hand, Siqueira-Mello et al. (2016) gathered
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six other halo metal-poor stars showing enhancement of the first peak of heavy elements,

which have [Y/Ba] = +0.58± 0.18 on the other extreme. The same is applied to Zr-to-Ba,

having [Zr/Ba] = −0.18 ± 0.12 and +0.95±0.15 in the two extremes.

In the middle panel of Figure 2.8, we show the [Zr/Ba] vs [Y/Ba] diagram for Pal 6

and the other three reference bulge GCs. For diagnostics purposes, we highlighted the

region of main r-process stars (red region) at [Y/Ba]r = −0.4 ± 0.1 (Sneden et al., 2008)

and [Zr/Ba]r = −0.2 ± 0.1 (Siqueira-Mello et al., 2016). Only three of the six observed

stars are plotted due to the absence of Ba abundance. The member stars 785 and 401 are

consistent with r-rich stars, considering the errors. Besides that, star 401 is located at the

highest star density and, consequently, compatible with the reference GCs.

The bottom panel of Figure 2.8 shows the further inspection of the r- and s-process to

the r-rich stars selected by the [Eu/Ba] vs. [Fe/H], and [Zr/Ba] vs. [Y/Ba] diagrams. The

two-member stars (785 and 401) classified as r-rich are compatible with the definition of

r-I, in agreement with the observed for the reference GCs.

2.4.6 Two stellar populations?

The expected N-O anticorrelation (Carretta et al., 2010; Gratton et al., 2004, 2012) is

given in the left panel of Figure 2.9. We also found two N-rich non-member stars, possible

field members, with [N/Fe]> +0.70. These could be stars that were Pal 6 or other cluster

members trapped by the Galactic bulge (Schiavon et al., 2017). Another indicator of MPs

is the Na-O anticorrelation. Carretta et al. (2009) demonstrated that this anticorrelation

is more probable to be seen in massive clusters. Since Pal 6 is a relatively low-mass cluster

(with an absolute magnitude of MV = −6.79; Harris, 1996, 2010), in Figure 2.9 (right

panel) we can observe a slight Na-O anticorrelation.

To verify if our N-enhanced star 401 is a probable second-generation member, we in-

vestigated the Al-NaON relations (Figure 2.10). Meszaros et al. (2020) analyzed stars

observed with the APOGEE for 31 GCs. They observed that the stars are split reasonably

well into two populations at [Al/Fe]= +0.30. We investigated these patterns and observed

that our N-enhanced star has [Al/Fe]> +0.30, while the other three member stars have

[Al/Fe]< +0.30. Even though the phenomenon of MPs (Bastian and Lardo, 2018a) is a

characteristic of the majority of GCs (Piotto et al., 2015), Lagioia et al. (2019) presented

the first evidence of a GC consistent with hosting a simple stellar population (Terzan 7).
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Figure 2.8: Heavy-elements enhancement diagnostic. Top panel: [Eu/Ba] vs. [Fe/H] diagram for the four
reference GCs. The orange strip highlights the solar system r-process region for [Eu/Ba]= +0.60 ± 0.13
(see text). Middle panel: [Zr/Ba] vs [Y/Ba] diagram for the three reference GCs which have Zr, Y, Ba
abundances determinations. The region of main r-process stars domains with 3σ as red. bottom panel:
[Ba/Eu] vs [Eu/Fe] diagram for the selected r-rich stars from the upper panel (see text). The light green
region represents the enhancement regime by both the r- and s-process. The cyan and magenta regions
show the domains of mainly r-process enhancement.

Therefore, the abundance pattern observed for Pal 6 is essential to check if it hosts at least

two stellar populations.
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Figure 2.9: Anticorrelations N-O (left) and Na-O (right) for Pal 6 member stars.

2.5 Age and Distance

Previous photometric studies did not attempt to derive the age of Pal 6, and there are

controversies about its distance in the literature. These are largely due to the absence of

observed standard candle stars in Pal 6, and different values result from different methods.

Ortolani et al. (1995) derived a distance of ∼ 8.9 kpc from the HB magnitude method with

an extinction of AV = 4.12. Lee and Carney (2002), comparing the Pal 6 HB magnitude

to the 47 Tuc one, obtained a distance of ∼ 7.2 kpc with AV = 4.1 mag. Harris (1996)

gives a distance of 5.80 kpc, which was adopted by Baumgardt et al. (2019), and used in

Massari et al. (2019) and Pérez-Villegas et al. (2020).

With the final corrected CMD, we used the SIRIUS code (Souza et al., 2020) to perform

the statistical isochrone fitting to get the accurate probability distributions for the fun-

damental parameters of Pal 6. We employed isochrones from MESA Isochrones & Stellar

Tracks database (MIST; Dotter, 2016; Choi et al., 2016) with metallicity [Fe/H] ranging

from 0.0 to -2.0 dex in steps of 0.01 dex, ages from 10 Gyr to 15 Gyr with an interval

of 0.1 Gyr, and the reddening and distance modulus can vary freely. To obtain a con-

sistent analysis, we used a Gaussian prior for the metallicity with information from the

high-resolution spectroscopic determination by this work.

We also obtained the temperature-dependent second-order extinction corrections ∆Cλ

(∆Aλ/A
reff
V ) through comparing the MIST isochrones with AV = 0.00 and 6.0 for each
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Figure 2.10: Al-NaON (anti)correlations. The dots are coloured with the same colour code as Figure 2.9.
The dotted grey line represents the generation split around [Al/Fe] = +0.30 (Meszaros et al., 2020). The
black dashed lines show the obtained linear regression.

value of Teff . The correction is given by the second order polynomial function ∆Cλ =

a0 × (log Teff)2 + a1 × log Teff + a2, and the Areff
V = 6.0. As mentioned in Oliveira et al.

(2020), the second-order correction is obtained by interpolation considering the desired

AV . The coefficients a0,1,2 are listed in Table 2.9.

We adopted the 50th percentile as the best solution and 50th − 16th and 84th − 50th

percentiles for the uncertainties. The red line in Figure 2.11 represents the best fit, while

the red strip shows the region of 1σ solutions. We want to stress that the HB model fits

well with the HB region in the CMD. Also, this technique allows us to get a better distance

determination with low uncertainty. The best distance, reddening, and well-constrained
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Table 2.9 - Coefficients for effective temperature second-order correction to different passbands. The
coefficients order are given by the equation: ∆Cλ = a0 × (log Teff)

2 + a1 × log Teff + a2.

∆Cλ a0 a1 a2

F606W −0.325 +2.555 −5.041

F110W +0.056 −0.365 +0.571

F160W +0.012 −0.078 +0.127

V * −0.328 +2.515 −4.840

I −0.056 +0.442 −0.878

G −0.506 +4.129 −8.495

GBP −0.191 +1.723 −3.847

GRP −0.302 +2.342 −4.584

metallicity values gave us the first derivation of age for Pal 6 as 12.4± 0.9 Gyr, among the

oldest GCs in the Galaxy.
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24
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Age    = 12.4 ± 1.0 Gyr
[Fe/H] = 1.11 ± 0.1 
E(606 160) = 3.38 ± 0.04 
(m M)606 = 18.55 ± 0.07

Figure 2.11: Best-fit from isochrone fitting (solid line) and results for ±1σ (red region).

The reddening E(606−160)= 3.38±0.04 and distance modulus (m−M)606 = 18.55±0.07

obtained from isochrone fitting can be converted in E(B−V) and (m−M)0 by using the



2.5. Age and Distance 77

relations:

E(606 − 160) = RV × E(B − V ) × (C606,RV
− C160,RV

) (2.2)

(m−M)606 = (m−M)0 + RV × C606,RV
× E(B − V ) (2.3)

where Cλ,RV
is the ratio of temperature- gravity-dependent coefficients at the λ for an

extinction law with RV (Pallanca et al., 2021, and references therein). Since the extinction

is given by Aλ = RV × Cλ,RV
× E(B − V ), the reddening is inversely proportional to RV .

Therefore, the assumption of RV will affect the fundamental parameters of the cluster.

The isochrone fitting is expected to use the extinction law setting RV = 3.1, which is

the case for all the fundamental parameters calculated for Pal 6 in the literature. With this

extinction law, our determination is AV = 4.56±0.06 (E(B−V ) = 1.47±0.02), compatible

with the reddening used to derive the photometric temperatures. However, Nataf et al.

(2016) argue that a lower value of RV is more compatible with the Galactic bulge population

where it could reach down to RV = 2.5 at least for (absolute) Galactic latitudes between

2 and 7 degrees and −10◦ < l < 10◦. Vasiliev and Baumgardt (2021) compared the

distance from literature to the Gaia EDR3 parallaxes. They found a discrepancy between

the photometric distances and the inverse of parallaxes for the bulge GCs, precisely those

with high reddening values (E(B−V)>1.0). Also, Pallanca et al. (2021) shows that the

RV = 3.1 needs different values of reddening and distance moduli to fit the CMD with

different colours well in the case of the bulge GC Liller 1. They demonstrated that to fit the

three CMDs simultaneously with a unique set of reddening and distance values, adopting

an extinction law with RV = 2.5 is necessary. They also conclude that the variation in the

extinction law results in variations in the reddening and distance modulus determinations

(consequently in the distance).

To determine the value of RV for Pal 6, we compare the optical (V I; Ortolani et al.,

1995), Gaia GBP − GRP vs. G, and NIR HST CMDs using the best-fit parameters of

Figure 2.11. Since we varied the RV , we rederived the extinction coefficients in the adopted

bands (AF606W/AV , AF110W/AV , AF160W/AV , AGBP
/AV , AGRP

/AV , AG/AV , and AI/AV )

using the extinction laws from Cardelli et al. (1989). The corresponding extinction law

to a given RV value has been done by interpolating the curves in a grid with the values

RV = 2.1, 3.1, 4, 5 (Figure 2.12). We derived RV = 2.6 by maximising the χ2 for the

optical and Gaia CMDs (first and second panels of Figure 2.13). Finally, we determined
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an extinction of AV = 4.21±0.05 (E(B−V ) = 1.62±0.02) and a distance of d⊙ = 7.67±0.19

kpc, a result within the range between 5.8 kpc (Harris, 1996, 2010) and 8.9 kpc (Ortolani

et al., 1995) and very close to the Lee and Carney (2002) value of 7.2 kpc. We stress that

the latter distance determination derived from near-IR JHK photometry is independent of

the RV optical value.

Figure 2.12: Extinction law curves derivation. The effective wavelengths are computed from λeff =∫
λ2Tλdλ/

∫
λTλdλ.

We performed the distance calculation using the other two methods to confirm our

determination. From the relation Mv−[Fe/H] derived by Oliveira et al. (2022) for RR

Lyrae stars, we can obtain the HB absolute magnitude of 0.758 ± 0.086 in the V band.

Assuming the apparent V magnitude value of 19.70 ± 0.15 calculated for the HB of Pal 6

by Ortolani et al. (1995), we obtain the distance modulus of (m−M)V = 18.94 ± 0.18.

Finally, with the extinction value found in the present work (AV = 4.21±0.05, compatible

with the average calculated with dust map of the Galaxy using the DUST web tool3), we

have a distance of d
(HB)
⊙ = 8.73 ± 0.75 kpc.

Using the Gaia EDR3 membership analysis (Section 2.2), we identified five stars with

distances derived by the StarHorse calculations (with Gaia EDR3 and APOGEE DR16;

Queiroz et al., 2020, 2021). Due to the low statistics, we expanded the sample with a

bootstrapping method, considering the uncertainties. The mean distance derived from the

expanded sample is d
(SH)
⊙ = 7.3 ± 0.8 kpc.

3 https://irsa.ipac.caltech.edu/applications/DUST/

https://irsa.ipac.caltech.edu/applications/DUST/
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Figure 2.13: Posterior fitting to obtain the best value of RV . First panel: optical CMD V − I vs. I from
Ortolani et al. (1995). Second panel: Gaia EDR3 GBP −GRP vs. G CMD. Third panel: Corrected NIR
HST CMD. The cyan dotted lines are the isochrones considering the best fit from the standard isochrone
fitting and standard extinction coefficient (RV = 3.0). The embedded plots show the χ2 function to the
variation of RV . The solid red lines are the isochrones with the best RV value. Finally, the blue horizontal
lines denote the isochrone HB and Turn-off mean-locus.

The individual distance determinations through the HB and StarHorse are already

compatible within 1.5σ with our determination from the isochrone fitting of 7.67±0.19 kpc.

In addition, the average of these determinations results in a distance of < d⊙ >(HB,SH)=

8.0 ± 1.1 kpc, compatible with the distance of the present work. Finally, we added the

average of the literature of 7.05 ± 0.46 kpc given by Baumgardt and Vasiliev (2021)4,

resulting in < d⊙ >(HB,SH,B&V21)= 7.5 ± 1.0kpc, which is in good agreement with our

determination. Therefore, these results reinforce the one we found through the isochrone

fitting of d
(Pal 6)
⊙ = 7.67 ± 0.19 kpc calculated with the derived extinction law (RV = 2.6).

2.6 Dynamical properties

The chemical information, age, and distance obtained in the previous sections make it

possible to infer a plausible origin of Pal 6.

Using the distance of (Harris, 1996) and adopted by Baumgardt et al. (2019), Pérez-

Villegas et al. (2020) classified Pal 6 as belonging to the Galaxy thick disc with a probability

4 They considered the distances from Ortolani et al. (1995), Barbuy et al. (1998), Lee and Carney

(2002), and Lee et al. (2004). Because of the expected distance for Pal 6, they did not consider the inverse

of the parallax given by Vasiliev and Baumgardt (2021).
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of 98%. Caution was recommended, given other distance estimations in the literature. (e.g.

Ortolani et al., 1995).

Given the much more reliable distance now derived in the present paper, we calculated

orbits for the cluster. We employed the same Galactic model of Pérez-Villegas et al. (2020)

that includes a triaxial Ferrers bar of 3.5 kpc (major axis). The total mass of the bar is

1.2×1010 M⊙ with an angle of 25◦ with the Sun-major axis. We also assume three pattern

speeds of the bar Ωb = 40, 45, and 50 km s−1 kpc−1.

We generated a set of 1000 initial conditions employing a Monte Carlo approach. To

do that, we considered the observational uncertainties of distance, heliocentric radial ve-

locity, and absolute proper motion components to evaluate the errors in those observa-

tional parameters. Using the NIGO tool, we integrate the orbits forward for 10 Gyr

(Rossi 2015). In Table 2.10, we give the new orbital parameters as the median va-

lue of the perigalactic distance < rmin >, apogalactic distance < rmax >, eccentricity

< e >= (rmax − rmin)/(rmax + rmin), and maximum vertical excursion from the Galactic

plane < |z|max >. The error of each orbital parameter is given as the standard deviation

of the distribution.

Figure 2.14 shows the probability density map of the orbits of Pal 6 in the x − y and

R−z projections co-rotating with the bar. The gold colour displays the space region where

the orbits of Pal 6 cross more frequently, while the black curves are the orbits considering

the central values of the observational parameters.
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Figure 2.14: Probability density map for the x − y and R − z projections of the set of orbits for Pal 6
using three different values of Ωb = 40, 45, and 50 km s−1 kpc−1. The orbits are co-rotating with the bar
frame. The gold colour corresponds to the higher probabilities, while the black lines show the orbits using
the central observational parameters.
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Table 2.10 - Orbital parameters of Pal 6 for the McMillan (2017) potencial and the potential employed
in Pérez-Villegas et al. (2020) assuming three different bar pattern speed values. The energy units are
[E]=km2 s−2 and angular momentum [L]=km s−1 kpc.

Parameter PV Ωb = 40 PV Ωb = 45 PV Ωb = 50 McMillan17

<rmin > [kpc] 0.08 ± 0.03 0.09 ± 0.04 0.10 ± 0.04 0.07 ± 0.04

<rmax > [kpc] 2.06 ± 0.07 2.06 ± 0.07 2.10 ± 0.09 2.14 ± 0.19

< |z|max > [kpc] 1.07 ± 0.10 1.14 ± 0.05 1.16 ± 0.07 1.29 ± 0.04

<e> 0.92 ± 0.03 0.91 ± 0.03 0.90 ± 0.03 0.96 ± 0.05

<E> [105E] — — — −2.40 ± 0.05

<Lz > [L] — — — 7.88 ± 13.2

<L†
perp > [102L] — — — 1.67 ± 0.22

<Lzc > [102L] — — — 3.07 ± 0.19

PBulge [%] 99.4 99.4 99.3 99.1

PDisc [%] 0.6 0.6 0.7 0.9

† The Lperp is not conserved for axisymmetric potentials. However, it is a good parameter to describe

the origin of a group of stars (Helmi and de Zeeuw, 2000; Massari et al., 2019).



Chapter 3
The intriguing globular cluster

NGC6355

The results presented in this chapter were published in Souza et al. (2023).1

Figure 3.1: F438W/F555W combined colour image from the HST WFC3 camera for NGC 6355.

3.1 Introduction

Observing GCs within the Galactic bulge is difficult because the extinction tends to

hide the objects. One example is NGC 6355 (also called GCl-63 and ESO 519-SC15),

projected towards the direction of the Galactic bulge (l = 359.58◦, b = +5.43◦) with a

1 https://ui.adsabs.harvard.edu/abs/2023A%26A...671A..45S/abstract

https://ui.adsabs.harvard.edu/abs/2023A%26A...671A..45S/abstract
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relatively high extinction (E(B − V ) = 0.79; Harris, 1996). NGC 6355 is a well-known

cluster that has been studied since the 1900s. It was classified as a probable open cluster

(Shapley and Shapley, 1919). However, it did not take long before its globular nature

was confirmed based on its relatively high mass, which according to Baumgardt and Hilker

(2018) is 1.01×105 M⊙. Djorgovski and King (1986) classified NGC 6355 as a core-collapse

cluster. This result was recently confirmed by Cohen et al. (2021) using the Hubble Space

Telescope (HST) filters F606W and F814W from the Advanced Camera for Survey (ACS).

Ortolani et al. (2003) analysed the horizontal branch (HB) and the red giant branch

(RGB) of NGC 6355 using a [V ,V − I] colour-magnitude diagram (CMD). They obtained

a reddening of E(B − V ) = 0.78, a distance of d⊙ = 8.8 kpc, and a metallicity of [Fe/H]∼
−1.3. This was deduced by comparing the cluster mean locus with the mean loci of

the well-studied clusters NGC 6171 and M 5. Assuming their distance derivation, the

authors concluded that the cluster is near the Galactic center (see also Bica et al., 2006).

Valenti et al. (2007) analysed the RGB slope and the K magnitude of the RGB tip using

the [K,J − K] and [H, J − H] CMDs. They found E(B − V ) = 0.82, d⊙ = 8.7kpc,

and [Fe/H]= −1.42. Both results agree with the metallicity scales of Carretta et al.

(2009) and Zinn and West (1984) of [Fe/H]= −1.33 ± 0.14 and [Fe/H]= −1.50 ± 0.15,

respectively. Subsequent metallicity derivation by Vásquez et al. (2015) and Dias et al.

(2016) of [Fe/H]∼ −1.49 and [Fe/H]∼ −1.46, respectively, are also within the range of

both metallicity scales.

Barbuy et al. (2009) identified NGC 6355 as a blue horizontal branch (BHB) metal-

poor GC, located in the ring at −6◦ – −12◦ around the Galactic centre. This suggested

that NGC 6355 belonged to the BHB moderately metal-poor clusters of the Galactic

bulge, such as NGC 6558 (Barbuy et al., 2007, 2018b), HP 1 (Barbuy et al., 2006, 2016),

AL 3 (Ortolani et al., 2006; Barbuy et al., 2021a), Terzan 9 (Ernandes et al., 2019), and

UKS 1 (Fernández-Trincado et al., 2020). Nevertheless, when examined from the orbital

viewpoint, it was suggested that NGC 6355 is more compatible with the Galactic thick

disk with a probability of 93% (Rossi, 2015; Pérez-Villegas et al., 2018, 2020), assuming

a distance of 8.70 ± 0.87 kpc. It also has a probability of 7% to be part of the Galactic

bulge. Here we stress the importance of having a precise distance derivation.

Kharchenko et al. (2016, hereafter KC16) analysed 147 GCs including NGC 6355 using

integrated JHKs magnitudes. They derived its age as log t = 10.10 (∼ 12.5 Gyr). As-
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suming this age derivation and the distances derived by Baumgardt and Hilker (2018),

Massari et al. (2019) found that NGC 6355 may have been formed from the main-bulge

progenitor and might therefore be an in-situ cluster. Their result for NGC 6355 was con-

firmed with a more realistic approach adopted in Moreno et al. (2022), who employed

the formalism for dynamical friction. More recently, Cohen et al. (2021, hereafter C21)

derived a relative age of 1.1 Gyr by comparing the CMDs of NGC 6355 and NGC 6205.

The authors give an absolute age of ∼ 13.2 Gyr for NGC 6355 and assume an age of 12.1

Gyr for NGC 6205 (VandenBerg et al., 2013, hereafter VB13). This relatively older age

compared to the previous one by KC16 was used by Callingham et al. (2022) to reclassify

NGC 6355 as compatible with the main-bulge progenitor and also with the Kraken accre-

ted structure as an alternative origin. It is worth noting that a possible accreted structure

within the Galactic bulge was hypothesized also by Massari et al. (2019) (low-energy pro-

genitor), Kruijssen et al. (2019) (Kraken), Forbes (2020) (Koala), and Horta et al. (2021)

(Heracles).

3.2 Data

HST photometry processing

The photometric data for NGC 6355 were retrieved from the HST Project (GO-11628,

PI:Noyola), which used the Wide Field Camera for Surveys 3 (WFC3) with the filters

F438W and F555W. The observation consists of three F438W images with an exposure

time of 440 s, and three F555W images with an exposure time of 80 s. Figure 3.1 shows

the colour image composed of the combined HST images. We performed a further selec-

tion based on the pipeline described in Nardiello et al. (2018) using the quality-of-fit and

photometric error parameters to select well-measured stars and reject poor measurements

(top left panel of Figure 3.2). Additionally, we selected stars within a half-light radius of

0.88 arcmin (Harris, 1996) to avoid a substantial number of field stars. For the resulting

sample, we computed a simple membership probability by combining the stars offset from

the fiducial line on the CMD with the star distance to the cluster centre.

The extinction towards the cluster is relatively high, and it increases the CMD spread.

To reduce the effect of differential reddening, we used the same method as was applied to

Palomar 6 in Souza et al. (2021) (adapted from Milone et al., 2012; Bedin et al., 2017). The
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differential reddening map (bottom left panel of Figure 3.2) shows that δE(B−V ) ∼ −0.04,

which is approximately 5% of the expected reddening (E(B-V)= 0.79; Harris, 1996), and

which we can convert into a magnitude difference of δmF438W = +0.17 and δmF555W =

+0.13, and into a difference in colour δ (mF438W − mF555W) = +0.04.

Finally, to scale the photometry to the same zero-point as in the evolutionary models,

we converted the AB magnitudes into the Vega system. The final sample corrected for

differential reddening shows a smaller spread and a clear morphology from the RGB and

HB to the lower MS (top right panel of Figure 3.2).

The ACS F438W/F555W photometry is saturated for magnitudes brighter than F555W∼
17. Therefore, our spectroscopic targets were not observed for these filters. To estimate

the position of our stars in the CMD, we derived an approximation of their F438W and

F555W magnitudes. We fixed the reddening, metallicity, and distance modulus from Harris

(1996). For each star, we fitted the magnitudes J , KS, G, GBP , and GRP (green triangles

in Figure 3.2). We also used this method for a sample of RGB stars of the Gaia EDR3 from

the Vasiliev and Baumgardt (2021) catalogue (open red circles). It is worth noting that

the F438W filter is affected by variations in C, N, and O abundances. Hence, this filter

can better be estimated via spectral convolution and integration with the filter response

curve.

Spectral data reduction

The UVES spectra were obtained using the FLAMES-UVES setup centred at 580 nm,

covering the wavelength range 480 - 680 nm, from the ESO Programs 083.D-0063 (A) (PI: S.

Ortolani) and 099.D-0136 (A) (PI: M. Valentini). The latter ESO program was coordinated

with the program GO11126 (PI: M. Valentini) for campaign 11 of the K2 satellite: the

goal was to obtain asteroseismology for the giants in the sample GCs. However, obtaining

reliable light curves for these stars was not possible. The log of observations is given in

Table 3.1.

We performed the FLAMES-UVES data reduction procedure using the ESO-Reflex

software with the UVES-Fibre pipeline (Ballester et al., 2000; Modigliani et al., 2004). The

corresponding spectra of each star were corrected for the radial velocity computed using

the Python library PyAstronomy. The radial velocities were obtained by cross-correlating

the stellar spectra with the Arcturus spectrum (Hinkle et al., 2000). The values of the
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Figure 3.2: Photometric data processing. Left panel: All stars within the FOV obtained from the HST
Project (GO-11628, PI: Noyola). Middle panel: Final differential-reddening-corrected CMD with selected
stars (black) and discarded stars (grey). The Gaia EDR3 member stars from the Vasiliev and Baumgardt
(2021) catalogue matched with 2MASS to obtain the HST are shown in red. The green triangles represent
the spectroscopically observed stars with HST magnitudes obtained from the isochrone calibration, and
the sizes are from the S/N. The HB region is plotted in blue. Right panel: Differential reddening map for
stars within a half-light radius. The resolution of the map is 0.024 arcminutes (1.44 arcseconds).

Table 3.1 - Log of the spectroscopic FLAMES-UVES observations of programs 083.D-0063 (A) and
099.D-0136 (A), carried out in 2009 and 2017, respectively. The reported seeing and airmass are the mean
values in the exposures. The last column contains the corresponding GIRAFFE setup, in which additional
stars were observed.

Date UT exp Airmass Seeing SETUP

( s ) (′′) GIRAFFE

Program 083.D-0063 (A)

2009-09-02 02:48:43 2700 1.455 1.88 H13-1

2009-09-01 01:03:00 2700 1.184 0.87 H13-2

2009-09-01 01:50:54 2700 1.191 0.72 H13-3

2009-09-13 23:32:32 2700 1.091 0.91 H13-4

2009-09-14 00:31:12 2700 1.182 0.82 H14-1

2009-09-14 01:17:51 2700 1.467 0.78 H14-2

2009-09-14 02:04:21 2700 1.848 0.75 H14-3

Program 099.D-0136 (A)

2017-07-14 06:21:39 2400 1.751 0.75 H11-1

2017-07-14 04:34:44 2400 1.172 0.67 H11-2

2017-09-02 01:50:12 2400 1.279 0.61 H11-4

2017-09-07 02:53:12 2400 1.831 0.54 H13-1

heliocentric radial velocity of each spectrum and their mean values are presented in Table

3.2 for the member stars, selected from the membership analysis (see section 3.2).

The spectra of stars 1546 and 1239 from ESO Program 083.D-0063, have a low signal-

to-noise ratio (S/N < 15), which is significantly lower than those obtained from ESO
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Program 099.D-0136. The spectra of these two stars are therefore strongly affected by

noise, which makes it very difficult to distinguish strong lines and prevents a satisfactory

radial velocity derivation from the cross-correlation method. For consistency, they can

therefore not be confirmed as members of NGC 6355 given the uncertainties in their radial

velocity values even though these stars are considered members from the proper-motion

membership check. Consequently, the final observed star sample is composed of the four

stars of ESO Program 099.D-0136.

Based on our final sample, we found a mean heliocentric radial velocity for NGC 6355

of −193.2 ± 1.1 km s−1, which agrees well with the value of −194.6 ± 1.2 km s−1 obtained

from the individual stars of Gaia DR22. Finally, the normalized spectra were combined

and were weighted by the median flux to obtain the final stellar spectra.

Table 3.2 - Heliocentric radial velocity obtained for each extracted spectrum and the average value for
each star.

Target Vhel
r σVr Target Vhel

r σVr

km s−1 km s−1 km s−1 km s−1

1546 1 −227.40 1.40 1239 1 −66.95 0.19

1546 2 −29.98 0.70 1239 2 −192.62 0.56

1546 3 −216.96 0.34 1239 3 −68.47 0.31

1546 4 −318.81 0.42 1239 4 −192.17 0.90

1546 5 −166.55 0.35 1239 5 −187.30 0.22

1546 −216.96 94.72 1239 −187.30 60.28

133 1 −192.92 0.47 1176 1 −196.35 0.56

133 2 −191.65 0.52 1176 2 −196.85 0.65

133 3 −192.80 0.48 1176 3 −193.25 0.69

133 4 −192.03 0.45 1176 4 −193.79 0.68

133 −192.41 0.53 1176 −195.07 1.56

1539 1 −192.25 0.41 1363 1 −193.93 0.41

1539 2 −192.36 0.40 1363 2 −194.01 0.40

1539 3 −192.30 0.41 1363 3 −192.44 0.40

1539 4 −191.90 0.41 1363 4 −192.34 0.39

1539 −192.27 0.18 1363 −193.18 0.79

Membership selection

The power of Gaia astrometry has been demonstrated in different ways, such as in the

2 https://people.smp.uq.edu.au/HolgerBaumgardt/globular/appendix/ngc6355.txt

https://people.smp.uq.edu.au/HolgerBaumgardt/globular/appendix/ngc6355.txt
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search for new open clusters and in the selection of the most probable members of a GC.

In particular, regarding the latter, Gaia was not available until recent years, and now the

membership probabilities should be verified in all samples preceding the Gaia era, and in

particular for our sample stars.

To remove bias from our sample, we performed a membership analysis to determine

which stars observed in both ESO programs are members of NGC 6355. Considering both

programs, we have a total of nine stars. We selected the Gaia DR3 stars within 10′ from the

cluster center, and we applied the Gaussian mixture models (GMM; Pedregosa et al., 2011)

clustering method to separate the cluster members from the field stars. The derived mean

proper-motion for NGC 6355 is < µ∗
α >= −4.76±0.06 mas yr−1 and < µδ >= −0.58±0.05

mas yr−1. This agrees very well with the new values computed by Vasiliev and Baumgardt

(2021).

The membership probabilities were computed considering cluster and field distributi-

ons, following the method presented in Bellini et al. (2009). When we had determined

the membership probability, we cross-matched our sample stars with the Gaia data (Table

3.3.1), which are indicated with stars in Figure 3.3. We found that six of nine stars from

both programs have membership probabilities above 80%. Combining the information of

radial velocity and the proper-motion membership probability, we therefore disregard the

non-member stars in the following analysis.

Figure 3.3: Proper-motion density map from Gaia DR3. The stars show all the observed stars in both
programs (members are plotted in white, and non-members are given in black). The red lines show the
position of the mean proper motion of NGC 6355.
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3.3 Fundamental parameters

3.3.1 Atmospheric stellar parameters

Stellar magnitudes

The photometric effective temperature (Teff) and surface gravity (log g) were derived

from the V IJHKS magnitudes given in Table 3.3.1. For comparison purposes, we obtained

the Teff from the Transiting Exoplanet Survey Satellite (TESS) input catalogue (TIC;

Stassun et al., 2018) for our sample. The 2MASS J , H, and KS magnitudes were taken

from Skrutskie et al. (2006). To obtain the Teff from a wide wavelength range, we calculated

the colour V − I employing the photometric systems relations G − V = f(GBP − GRP )

and G− I = f(GBP −GRP ) from Gaia EDR3 (Riello et al., 2021).

Table 3.3 - Identifications, coordinates, magnitudes from JHKs 2MASS survey, V I, HST/ACS, and
matched Gaia DR3 information. The first two stars are from program 083.D-0063 (A), and the four last
stars are from 099.D-0136 (A).

ID ID RA DEC V V − I J H KS F438W F555W †µ∗
α µδ G BP−RP S/N

2MASS (deg) (deg) 2MASS HST/WFC3 (mas yr−1)

1546 17235883− 2620183 260.996 −26.338 15.06 2.24 11.359 10.45 10.19 17.46 15.42 −4.747 −0.523 14.32 2.39 10.33

1239 17240227− 2621267 261.010 −26.357 14.40 2.50 10.284 9.25 8.92 16.81 14.81 −4.839 −0.394 13.51 2.66 12.05

1539 17235356− 2620223 260.973 −26.339 14.82 2.25 10.942 10.12 9.73 17.30 15.19 −4.780 −0.659 14.08 2.40 79.19

1363 17240101− 2620597 261.004 −26.349 14.74 2.34 10.892 9.944 9.63 17.16 15.09 −4.942 −0.591 13.95 2.49 44.93

1176 17235712− 2621441 260.988 −26.362 15.28 2.11 11.684 10.90 10.59 17.66 15.69 −5.041 −0.609 14.60 2.26 51.33

133 17235528− 2621088 260.980 −26.352 15.30 2.24 11.435 10.62 10.21 17.64 15.64 −4.572 −0.635 14.56 2.39 36.36

†µ∗
α = µα cos δ.

Photometric effective temperatures Teff and gravities log g

The Teff values were derived from V − I, V − KS, and J − KS colour-temperature

calibrations of Casagrande et al. (2010). To use the calibrations, we must perform the

reddening corrections. For NGC 6355, we assumed the metallicity [Fe/H] = −1.33, E(B−
V ) = 0.77, and (m − M)V = 17.21 from Harris (1996) . Table 3.4 lists the derived

photometric effective temperatures. The < Teff > value given in the fifth column is the

mean effective temperature without the TESS values (which are too hot).

To derive the photometric log g value, we used the classical ratio log(g∗/g⊙), where
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Table 3.4 - Photometric parameters derived using calibrations by Casagrande et al. (2010) for V − I,
V − K, J − K colours are given in columns 2-8. In columns 9-14 are given the spectroscopic stellar
parameters.

Photometric parameters Spectroscopic parameters

ID T(V−I) T(V−KS) T(J−KS) <Teff > BCV Mbol log g Teff log g [FeI/H] [FeII/H] [Fe/H] vt

(K) (K) (K) (K) (K) (km s−1)

1539 4359 4330 4297 4330 −0.615 −3.02 0.74 4300± 65 0.87± 0.23 −1.35± 0.11 −1.33± 0.18 −1.34± 0.15 1.0± 0.1

1363 4246 4315 4152 4246 −0.702 −3.19 0.64 4296± 76 0.84± 0.24 −1.36± 0.09 −1.35± 0.02 −1.36± 0.07 1.2± 0.1

1176 4573 4642 4660 4642 −0.481 −2.43 1.10 4580± 69 1.20± 0.26 −1.48± 0.08 −1.48± 0.23 −1.48± 0.17 1.0± 0.1

133 4373 4328 4250 4328 −0.606 −2.53 0.94 4378± 76 1.24± 0.19 −1.46± 0.07 −1.44± 0.17 −1.45± 0.13 0.9± 0.1

log g⊙ = 4.44 is3:

log g∗ = 4.44 + 4 log
Teff∗
T⊙

+ 0.4(Mbol −Mbol⊙) + log
M∗

M⊙
. (3.1)

We adopted the values of < Teff > from Table 3.4, M∗ = 0.85M⊙ and Mbol⊙ = 4.75.

The derived values of the photometric Teff and log g are given in the left columns of Table

3.4.

Spectroscopic stellar parameters

The final spectroscopic stellar parameters Teff , log g, and the microturbulence velocity

vt of NGC 6355 were derived together with [Fe/H] based on excitation and ionization

equilibria. Equivalent widths (EW) for a list of lines of FeI and FeII lines were measured

using DAOSPEC (Stetson and Pancino, 2008). Using a visual inspection of the stellar

spectrum, we remeasured some lines with the IRAF routine to evaluate the impact of

blending lines, mainly for FeII, and some lines that were poorly fitted with DAOSPEC.

The employed lines are listed in the appendix (Table B.3) with the adopted oscillator

strengths (log gf) for FeI lines obtained from the VALD3 and NIST databases (Piskunov

et al., 1995; Mart́ın et al., 2002) and for FeII lines from Meléndez and Barbuy (2009).

We extracted 1D photospheric models for our sample using the MARCS grid of at-

mospheric models (Gustafsson et al., 2008). The adopted CN-mild models consider [α/Fe]=

+0.20 for [Fe/H]= −0.50 and [α/Fe]= +0.40 for [Fe/H]≤ −1.00. For the solar Fe abun-

dance, we adopted ϵ(Fe) = 7.50 (Grevesse and Sauval, 1998).

The mean photometric < Teff > and log g values calculated in Section 3.3.1 were as-

sumed as initial guesses to derive the spectroscopic parameters. The method consists of

3 This equation is the same as Equation 2.1 in Chapter 2. It is repeated here because this chapter

represents another paper (as mentioned before).
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obtaining the excitation and ionization equilibrium of FeI and FeII lines. Figure 3.4 shows

the excitation and ionization equilibrium for star 133. The derived spectroscopic parame-

ters Teff , log g, [FeI/H], [FeII/H], [Fe/H], and vt are presented in the right columns of Table

3.4.

To derive the final metallicity, we generated a Monte Carlo (MC) sample for each star

to construct their [FeI/H] and [FeII/H] distributions4. The distributions composed of the

individual MC sample of each star are shown in Figure 3.5 as grey and red for [FeI/H]

and [FeII/H], respectively. Finally, the cluster metallicity distribution was obtained by

combining the two distributions (grey and red). The best metallicity value, the correspon-

ding standard deviation, and the error of the mean are [Fe/H]= −1.39 ± 0.15 (0.08). This

metallicity agrees well with the Carretta et al. (2009) metallicity scale, which gives a value

of [Fe/H] = −1.33 ± 0.02 for NGC 6355.

Figure 3.4: Ionization and excitation equilibria for NGC 6355 star 133. The black dots and red squares
correspond to the [FeI/H] and [FeII/H] lines, respectively. The crosses are the FeI lines that were excluded
through a 3σ clipping method.

4 This method is an improvement of the procedure employed in Souza et al. (2021) and described in

Chapter 2.
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Figure 3.5: Metallicity distribution from sample stars of NGC 6355. The final distribution (black step
histogram) considers both [FeI/H] (grey) and [FeII/H] (red) for all lines of our sample member stars.

3.3.2 Age and distance

We employed the SIRIUS code (Souza et al., 2020) to perform the isochrone fitting to

the CMD [F555W, F438W-F555W] of NGC 6355. The code can provide a Bayesian view

of the fundamental parameters age, reddening (E(B − V )), d⊙, and metallicity ([Fe/H]).

We adopted the isochrones from the Dartmouth Stellar Evolutionary Database (Dotter

et al., 2008) with a further linear interpolation in age and [Fe/H] with the random values

given by the algorithm. As a Gaussian prior for the metallicity, we employed the value

derived in this work, while for the other parameters, we adopted uniform priors: 10 Gyr ≤
age ≤ 14 Gyr, E(B−V) ≥ 0.0, and d⊙ ≤ 20 kpc. We used the CMD structure constraints

similar to the procedure described by VB13 to improve the code. Nevertheless, we kept

the Bayesian nature of the code and used the structure pattern of the CMD as priors.

The direct comparison between observational data and isochrones cannot give an accu-

rate physical interpretation of the cluster (D’Antona et al., 2018) because the likelihood in

this case is purely geometrical. Therefore, the prior distributions are of great importance

to improve the method. In that sense, we adopted a more robust prior to the magnitude

of the horizontal branch (HB). This prior is crucial to give a more precise distance deriva-

tion when it is very close to the magnitude level of RR Lyrae stars. To constrain the HB

magnitude, we employed the relation by Recio-Blanco et al. (2005):

MZAHB
F555W = 0.981 + 0.410 × [M/H] + 0.061 × [M/H]2, (3.2)
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where [M/H] = [Fe/H] + log
(
0.638 × 10[α/Fe] + 0.362

)
. We assumed [α/Fe]= +0.4 because

this is the expected value for GCs with a similar metallicity (Barbuy et al., 2018b). Then,

we recalculated the magnitude level for each iteration of the Markov chain Monte Carlo

(McMC) sampling. For the apparent magnitude of the HB, we assumed mZAHB
F555W = 17.9±0.1

by a visual inspection, which is very close to the value derived by Ortolani et al. (2003) of

VHB = 17.8 ± 0.2.

Another morphological parameter is the magnitude difference between zero-age HB

(ZAHB) and the turn-off point (TO), also known as vertical parameter (Vandenberg et al.,

1990; Rosenberg et al., 1999). However, this parameter is strongly dependent on the ZAHB

level. Because of this, we decided to use the horizontal parameter (Vandenberg et al., 1990;

Rosenberg et al., 1999). The horizontal parameter is the colour difference between the TO

and the point at the RGB that is 2.5 magnitude brighter than the TO.

In order to implement the horizontal method in the observed CMD, we computed the

fiducial or ridge line of NGC 6355 using the method described in Maŕın-Franch et al.

(2009). The procedure is briefly described as follows. We first computed a simple fiducial

line by binning the cluster magnitude and calculating the median colour for each bin. We

applied a differential binning method to have more points around the TO. The second step

was to derive the median colour perpendicular to each bin. This method is most important

for the subgiant branch (SGB) because this sequence is almost horizontal for bluer filters.

Finally, the algorithm computes the horizontal parameter for the cluster fiducial line and

each McMC isochrone.

The posterior distributions of the parameters are given by the 50th percentile as the

best value, and the 16th and 84th percentiles to provide the uncertainties (right corner

plots of Figure 3.6). In Figure 3.6, the NGC 6355 CMD (left panel) is over-plotted by the

best solution of the isochrone fitting composed of the median value (solid line) and the 1σ

region (shaded region).

Because the expected extinction is relatively high, it is necessary to consider the Teff

correction to the isochrones. It is worth noting that the Teff correction effect increases with

the temperature and changes the isochrone morphology. The method is well described in
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Oliveira et al. (2020) and Souza et al. (2020). We found the following equations:

AF438W/AV = 7.688 − 86.606x + 325.254x2 − 407.219x3 (3.3)

AF555W/AV = 12.043 − 135.394x + 507.496x2 − 634.233x3 (3.4)

AJ/AV = −0.128 + 1.428x− 5.309x2 + 6.573x3 (3.5)

AKS
/AV = 0.061 − 0.677x + 2.522x2 − 3.134x3 (3.6)

AG/AV = 4.346 − 48.867x + 183.277x2 − 229.296x3 (3.7)

AGBP
/AV = 6.899 − 77.627x + 291.243x2 − 364.345x3 (3.8)

AGRP
/AV = −0.154 − 1.695x− 6.175x2 + 7.449x3, (3.9)

where x is log Teff . The immediate effect on the isochrone is an offset in the direction of

the CMD blue-brighter region. Therefore, the horizontal (E(438−555)) and vertical ((m−
M)F555W) displacements should be different from those without a correction. In addition,

the morphology is defined essentially by the age and metallicity when the helium mass

fraction (Y) is fixed (see Souza et al., 2020). In our case, the metallicity was constrained

to the value derived here from high-resolution spectroscopy. Therefore, only age changes

the isochrone morphology. Because of this, the age considering the Teff correction tends to

be older than the simple isochrone fitting. The result is shown in Figure 3.6.

In this work, we derived the absolute age of 13.2 ± 1.1 Gyr for NGC 6355. The

considerable uncertainty on the age derivation is due to the narrow colour baseline adopted

in this work (F438W-F555W), which spread the TO region slightly more. Although we

provide the first absolute age for NGC 6355 through isochrone fitting, KC16 derived an

age of ∼ 12.5 Gyr using integrated magnitudes, and C21 reported the age as 13.2 Gyr for

NGC 6355 by comparing its CMD with that of NGC 6205. The age derived in this work

assuming the Teff correction agrees very well with the age in C21+VB13. This illustrates

the importance of this correction for highly reddened clusters in the central part of the

Galaxy.

Nataf et al. (2016) discussed the extinction towards GCs located in the Galactic bulge,

where the RV value can be as low as 2.5. Pallanca et al. (2021) reported a straightforward

method for determining the best value of RV for highly reddened clusters. The method

was also applied by Souza et al. (2020), who derived a value of 2.6 for Pal 6. The method

for deriving the RV consists of simultaneously fitting CMDs with different colour baselines

with the same set of reddening and distance. Here we fitted (in addition to the HST CMD)
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Figure 3.6: Isochrone fitting for NGC 6355. The best solution is composed of the median values of the
posterior distributions (solid dark red line), and the 1σ extrapolation is constructed from the 16th and
84th percentiles (shaded dark red region). The corner plot shows the correlations among the parameters.

the CMDs [J , J−KS] from Valenti et al. (2007) and [G, GBP−GRP] from Gaia DR3. From

the HST CMD, we found E(438 − 555) = 0.78 ± 0.03 and (m−M)F555W = 17.31 ± 0.12.

These values were converted into E(B − V ) and (m −M)0 for different values of RV , as

shown in Figure 3.7. The best RV is the mean between the best values for Valenti et al.

(2007) and Gaia DR3 CMDs. We find RV = 2.84 ± 0.02. Hence, for NGC 6355 with the

derived RV , we find E(B − V ) = 0.89 ± 0.03 and d⊙ = 8.54 ± 0.19 kpc.

The distance value is crucial for deriving the orbital parameters of the clusters, as

demonstrated by Pérez-Villegas et al. (2020) and illustrated by the case of Palomar 6, as

discussed in Souza et al. (2021). To verify our distance derivation, we collected the RR

Lyrae star members of NGC 6355 from the fourth data release of the Optical Gravitational

Lensing Experiment (OGLE-IV; Soszyński et al., 2019). We adopted the calibrations from

(Gaia Collaboration et al., 2017, G17) using the least-squares (LQS) and Bayesian (BA)

methods (Muraveva et al. (2018, M18), and Oliveira et al. (2022, O22)). All distances are

displayed in Figure 3.8, including the derivation by Baumgardt and Vasiliev (2021, B22) 5.

The value of 8.54 ± 0.19 kpc derived in this work agrees well with the others, particularly

the B22 value of 8.65 ± 0.22 kpc, which is the most recent value.

5 https://people.smp.uq.edu.au/HolgerBaumgardt/globular/fits/disfit/ngc6355_dist.pdf

https://people.smp.uq.edu.au/HolgerBaumgardt/globular/fits/disfit/ngc6355_dist.pdf
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Figure 3.7: Simultaneous isochrone fitting to derive the cluster RV using three CMDs: HST (left panel),
2MASS JKS from Valenti et al. (2007) (top right panel), and Gaia DR3 (bottom right panel). The
isochrones are coloured according to their RV value. In each panel, the best solution is represented by
the solid dark red isochrone. For the two right panels, the χ2 analysis is plotted in the inset plot, and the
dots are coloured by the same colour as the corresponding isochrone.

Figure 3.8: Our distance derivation compared with the literature. The violins show the distance distri-
bution using RR Lyrae stars, the recent distance derivation by Baumgardt and Vasiliev (2021), and the
distance found in this work through isochrone fitting. For the derived RR Lyrae distances, four calibrati-
ons were adopted that are represented by the first four violins (see the text).

3.4 Abundance analysis

We carried out a detailed abundance analysis employing line-by-line spectrum synthesis.
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We employed the spectrum synthesis code PFANT (Barbuy et al., 2018a) to derive the

abundances of the elements C, N, O, Na, Mg, Al, Si, Ca, Ti, V, Mn, Co, Cu, Zn, Y, Zr,

Ba, La, Nd, and Eu. The line list with the abundance ratios for each line are given in the

appendix (Table B.4). The code PFANT is an update of the Meudon code by M. Spite

and adopts local thermodynamic equilibrium (LTE). The atomic line list is from VALD3

(Ryabchikova et al., 2015).

The abundance values were derived through the χ2 minimization algorithm described

in detail in Souza et al. (2021). Figure 3.9 gives a visual illustration of the method for star

1363, where the observed spectrum around the lines NaI 5682.633Å and AlI 6698.673Å

is shown in black. The best-fit solution is the solid red line. For completeness, we also

compare the spectrum without the abundance contribution of the current element (solid

green line), the best fit plus 0.15 (solid magenta line), and the best fit minus 0.15 (solid

cyan line). Finally, we adopted the solar abundances from Grevesse et al. (2015).

Figure 3.9: Example of line-profile fitting for star 1363. The upper panel shows the result for the NaI
5682.633Å, and the bottom panel shows the fit for the AlI 6698.673Å line. The black lines correspond
to the observed spectra. The solid red line shows the best-fit solution as the median. For comparison
purposes, we also plot the best-fit solution with a variation of ±0.15 (solid cyan and magenta lines) and
the spectrum without the element abundance (green line).

C, N, and O abundances

The CNO abundances were derived through an iterative fitting of the C2(1,0) Swan

bandhead at 5635.3Å, and CN(6,2) at 6478.48Å of the A2ΠX2Σ system band heads and

the forbidden oxygen line [OI] 6300.31Å. The algorithm fits the three lines simultaneously
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and takes the interdependent continuum variation due to changes in C, O, and N values

into account. Table 3.5 lists the derived abundances. Because the region of the C2(1,0)

bandhead is strongly affected by the S/N and the line is weak, we assumed the C abun-

dances as upper limits. Finally, before fitting the [OI] line, we verified the contamination

by telluric lines in this region and concluded that for our sample, none of the stars has

telluric line contamination on the [OI] line. The spectral fitting for C, N, and O for star

1363 are shown in Figure 3.10.

Figure 3.10: Spectral fitting of C, N, and O for star 1363. The observed spectrum is given in black. The
solid red line is the best fit, and the cyan and magenta lines show the best fit ±0.15, respectively. The
yellow line shows the line region. For C2 (upper panel) we also show the bandhead lines in dotted silver
lines.

As expected for most GCs (Piotto et al., 2015; Milone et al., 2017), NGC 6355 seems to

host multiple stellar populations (MPs; see the reviews Gratton et al., 2004, 2012; Bastian

and Lardo, 2018a; Milone and Marino, 2022). The relatively high nitrogen abundance of

stars 1176 and 133 with relatively low values of carbon abundances indicates the presence of

MPs in NGC 6355. The other two stars have a relatively low N abundance and relatively

normal (solar) C. Because stellar evolution theory predicts an N-C anti-correlation, we

must further investigate to confirm the presence of MPs in NGC 6355. This is further

analysed below.
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Table 3.5 - Carbon, nitrogen, and oxygen abundances from C2, CN bandhead, and [OI], respectively.

[C/Fe] [N/Fe] [O/Fe]

Star C2 CN(6,2) [OI]

5635.50Å 6478.60Å 6300.31Å

1539 ≤ +0.10 +0.21 +0.43

1363 ≤ +0.18 +0.25 +0.49

1176 ≤ +0.00 +0.87 +0.37

133 ≤ −0.09 +0.70 +0.24

alpha-elements

The α-elements O and Mg are the most reliable indicators of enrichment in α-elements

from hydrostatic phases of massive stars (Woosley and Weaver, 1995). Together with the

explosive α-elements Si and Ca, they are good indicators of a fast early enrichment of

the proto-cluster gas by supernovae type II (SNII). Ti is classified as an iron-peak element

(Woosley and Weaver, 1995), but shows a similar α-element behaviour and is often included

as another α-element. The spectral fitting results for Mg, Si, Ca, and Ti of star 1363 are

shown in Figure 3.11, and the results are presented in Table 3.6.

Odd-Z elements

The sodium abundances were derived from NaI 5682.633Å, 5688.194Å, 6154.23Å, and

6160.753Å lines. The Al abundances were derived from lines AlI 6696.185Å, 6698.673Å.

The (anti-)correlations indicating the effect of MPs are shown in Figure 3.12. We also

calculated the Spearman correlation parameter for each combination. For N-Al, we found a

strong correlation, and the anti-correlation for N-O, Na-O, and Al-O is high. Moreover, the

main correlations come from the nitrogen abundances (Fernández-Trincado et al., 2022).

However, [Al/Fe]= +0.30 is also a threshold for second-generation (2G) stars (Meszaros

et al., 2020). The figure shows a visible separation of our sample into two groups: two stars

are moderately rich in N and Al, and two stars have low values of [Al/Fe]. This affects

their mean abundances (Table 3.6). This is further discussed below.
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Figure 3.11: Same as figure 3.10 for Mg, Si, Ca, and Ti. The solid red line is the best fit, and the cyan
and magenta lines show the best fit ±0.15, respectively.

Iron-peak elements

We derived the abundances of the iron-peak elements V, Mn, Co, Cu, and Zn. While V

and Mn are members of the lower iron-peak element group, Co, Cu, and Zn are considered

to belong to the upper iron-peak group (Woosley and Weaver, 1995). The first group

is mainly produced in type Ia supernovae (SNIa) with a contribution from core-collapse

supernovae (Nomoto et al., 2013, and refereces therein). In contrast, Co, Cu, and Zn are

predominantly produced by core-collapse supernovae (Woosley et al., 2002, and references

therein). The atomic lines were adopted from Ernandes et al. (2018) and Ernandes et al.

(2020), together with their hyperfine structure. The spectral fitting results for V, Mn, and

Co are shown in Figure 3.13 for star 1363, and Cu and Zn are given in Figure 3.14 for star

1539.
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Figure 3.12: (Anti-)Correlations indicating effects of multiple stellar populations. The dotted orange line
in both left panels represents the transition to the N-rich regime at [N/Fe]∼ 0.7 for [Fe/H] around the
NGC 6355 value (Fernández-Trincado et al., 2022). Additionally, the grey line in the two bottom panels
shows the upper limit for first-generation stars (Meszaros et al., 2020). The colour bar shows the Mg
abundances.

Heavy elements

The abundances of the heavy neutron-capture s-elements Y, Zr, Ba, La, and Nd, and

the r-element Eu also were derived. For Y, we measured the YI 6435.004Å and the

YII 6613.73Å lines, and we assumed for the mean that the ionized species of Y con-

tributes with 99% to the abundance. For the barium abundance, we used the BaII lines

5853.675Å, 6141.713Å, and 6496.897Å, with hyperfine structure from Barbuy et al. (2014).

The ZrI 6127.47Å, 6134.58Å, 6140.535.58Å, and 6143.25Å, LaII 6262.287Å, 6320.376Å, and

6390.477Å, NdII 6740.078Å, 6790.372Å, and 6549.525Å, and EuII 6437.6Å and 6645.1Å

were used for Zr, La, Nd, and Eu. The spectral fitting results for Y, Zr, Ba, La, Eu, and

Nd are shown in Figures 3.15 for star 1363.

Errors

The uncertainties in spectroscopic parameters are given in the last four columns of

Table 3.6 for star 133. For each stellar parameter, we adopted the usual uncertainties



3.4. Abundance analysis 103

Figure 3.13: Same as figure 3.10 for V, Mn, and Co. The solid red line is the best fit, and the cyan and
magenta lines show the best fit ±0.15, respectively.

Figure 3.14: Same as figure 3.10 for Cu and Zn. The solid red line is the best fit, and the cyan and
magenta lines show the best fit ±0.15, respectively.

for similar samples (Barbuy et al., 2014, 2016, 2018b). The sensitivities were computed

by employing models with these modified parameters and recomputing lines of different

elements considering changes of ∆Teff = +100 K, ∆log g= +0.2, ∆vt = 0.2 km s−1. The

given error is the difference between the new and the adopted abundance. The uncertainties

due to non-LTE effects are negligible for these stellar parameters, as discussed in Ernandes



104 3: The intriguing globular cluster NGC6355

Figure 3.15: Same as figure 3.10 for Y, Zr, and Ba on the left, and for La, Eu, and Nd on the right. The
solid red line is the best fit, and the cyan and magenta lines show the best fit ±0.15, respectively.

et al. (2018). The same error analysis and estimations can be applied to other stars in our

sample. It is worth noting that star 133 has the lowest S/N of the four sample stars. The

uncertainties given in Table 3.6 can therefore be considered as upper limits. The faint La

lines appear to be more reliable than the strong Ba lines. Finally, it is important to note

that the main uncertainties in stellar parameters are due to uncertainties in the Teff , as

shown in Table 3.6.

3.5 Dynamical properties

In order to obtain the orbital parameters of NGC 6355, we employed an axisymmetric

potential McMillan (2017) adopting the Python package galpy (Bovy, 2015). We integra-

ted a set of 1000 initial conditions forward for 10 Gyr. The set was generated by using a

MC algorithm adopting the observational uncertainties of the cluster data on proper mo-

tions µ∗
α and µδ, heliocentric radial velocity, and the heliocentric distance. The McMillan

(2017) Galactic potential was adopted to compare our results with those of Massari et al.

(2019) and to relate NGC 6355 with its plausible progenitor. A more realistic potential, in-

cluding a contribution of the Galactic bar (Pérez-Villegas et al., 2018, 2020), could provide

a farther inward orbit for the GC members of the Galactic bulge. The orbital parameters

are listed in Table 3.7, including the values of the IOM.
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Table 3.6 - Abundances in the four UVES member stars. The mean values were computed considering
all four stars (< all >), considering only 1G stars (< 1G >), and only 2G stars (< 2G >). The last
four columns show the abundance sensitivity due to variation in atmospheric parameters for star 15 (133)
considering uncertainties of ∆Teff = 100 K, ∆log g = 0.2, and ∆vt = 0.2 km s−1, and the last column is
the total error. These errors were taken into account when we composed the final reported abundances.

[X/Fe] star 1539 star 1363 star 1176 star 133 < all > < 1G > < 2G > ∆T ∆ log g ∆vt (1
3

∑
x2)1/2

1G 2G K kms−1

C +0.10 ± 0.05 +0.18 ± 0.05 +0.00 ± 0.05 −0.09 ± 0.05 +0.05 ± 0.11 +0.14 ± 0.06 −0.04 ± 0.07 +0.02 +0.03 +0.00 +0.03

N +0.21 ± 0.05 +0.25 ± 0.05 +0.87 ± 0.05 +0.70 ± 0.05 +0.51 ± 0.29 +0.23 ± 0.05 +0.78 ± 0.10 +0.12 +0.08 +0.00 +0.08

O +0.43 ± 0.05 +0.49 ± 0.05 +0.37 ± 0.05 +0.24 ± 0.05 +0.38 ± 0.11 +0.46 ± 0.06 +0.30 ± 0.08 +0.00 +0.03 +0.00 +0.03

Mg +0.33 ± 0.05 +0.44 ± 0.05 +0.38 ± 0.05 +0.47 ± 0.05 +0.41 ± 0.07 +0.39 ± 0.07 +0.42 ± 0.07 +0.02 −0.02 −0.03 +0.03

Si +0.27 ± 0.10 +0.25 ± 0.12 +0.33 ± 0.15 +0.28 ± 0.27 +0.28 ± 0.16 +0.26 ± 0.11 +0.30 ± 0.21 −0.02 −0.02 −0.07 +0.04

Ca +0.48 ± 0.16 +0.47 ± 0.10 +0.34 ± 0.26 +0.57 ± 0.12 +0.46 ± 0.18 +0.47 ± 0.13 +0.45 ± 0.22 +0.26 +0.04 −0.08 +0.16

Ti +0.30 ± 0.12 +0.34 ± 0.12 +0.28 ± 0.12 +0.38 ± 0.10 +0.33 ± 0.12 +0.32 ± 0.12 +0.33 ± 0.12 −0.03 +0.09 −0.06 +0.06

Na −0.29 ± 0.08 −0.15 ± 0.15 −0.22 ± 0.15 +0.20 ± 0.12 −0.11 ± 0.23 −0.22 ± 0.14 −0.01 ± 0.25 +0.10 −0.00 −0.05 +0.06

Al −0.29 ± 0.05 −0.15 ± 0.15 < +0.30 ± 0.05 < +0.30 ± 0.05 < +0.04 ± 0.28 −0.22 ± 0.12 < +0.30 ± 0.06 +0.08 −0.00 −0.02 +0.05

Y +0.20 ± 0.07 −0.00 ± 0.07 −0.00 ± 0.07 — +0.06 ± 0.12 +0.10 ± 0.12 −0.00 ± 0.07 +0.24 +0.09 −0.14 +0.17

Zr −0.06 ± 0.08 +0.09 ± 0.08 — −0.11 ± 0.26 −0.02 ± 0.16 +0.02 ± 0.11 −0.11 ± 0.26 +0.20 +0.02 −0.01 +0.12

Ba +0.84 ± 0.17 +0.93 ± 0.09 +0.92 ± 0.19 +1.02 ± 0.16 +0.93 ± 0.17 +0.89 ± 0.14 +0.97 ± 0.19 +0.02 +0.03 −0.13 +0.08

La +0.08 ± 0.12 +0.06 ± 0.08 +0.10 ± 0.07 +0.27 ± 0.05 +0.13 ± 0.12 +0.07 ± 0.10 +0.19 ± 0.11 +0.03 +0.09 −0.02 +0.06

Eu +0.53 ± 0.05 +0.55 ± 0.05 +0.57 ± 0.08 +0.60 ± 0.10 +0.56 ± 0.07 +0.54 ± 0.05 +0.59 ± 0.09 −0.03 +0.07 −0.02 +0.05

Nd +0.47 ± 0.06 +0.28 ± 0.10 +0.06 ± 0.08 −0.30 ± 0.05 +0.13 ± 0.30 +0.38 ± 0.12 −0.12 ± 0.19 +0.03 +0.09 −0.03 +0.06

V +0.03 ± 0.06 +0.19 ± 0.10 −0.33 ± 0.06 +0.00 ± 0.08 −0.03 ± 0.20 +0.11 ± 0.11 −0.17 ± 0.18 +0.20 +0.02 −0.07 +0.12

Mn −0.34 ± 0.05 −0.42 ± 0.10 −0.39 ± 0.13 −0.43 ± 0.08 −0.39 ± 0.10 −0.38 ± 0.09 −0.41 ± 0.11 +0.11 −0.00 −0.02 +0.06

Co +0.03 ± 0.05 +0.07 ± 0.05 +0.07 ± 0.09 +0.16 ± 0.11 +0.08 ± 0.09 +0.05 ± 0.06 +0.11 ± 0.11 +0.15 +0.04 −0.00 +0.09

Cu −0.35 ± 0.05 −0.07 ± 0.07 −0.12 ± 0.17 −0.17 ± 0.17 −0.18 ± 0.16 −0.21 ± 0.15 −0.15 ± 0.18 +0.13 +0.04 −0.09 +0.09

Zn −0.30 ± 0.05 −0.20 ± 0.05 −0.30 ± 0.05 −0.10 ± 0.05 −0.23 ± 0.10 −0.25 ± 0.07 −0.20 ± 0.11 +0.01 +0.03 −0.06 +0.04

[Fe/H] −1.34 ± 0.15 −1.36 ± 0.07 −1.48 ± 0.17 −1.45 ± 0.13 −1.39 ± 0.08 −1.35 ± 0.09 −1.46 ± 0.13 +0.10 +0.10 +0.04 +0.08

Figure 3.16 shows the density probability map of the orbits of NGC 6355 in the x− y

and R − z projections. The space region in which the orbits of NGC 6355 cross more

frequently are shown in orange, and the black curves are the orbits considering the central

values of the observational parameters. NGC 6355 is mostly confined within ∼ 2.6 kpc

and therefore has a high probability of belonging to the bulge component (> 95%) when

we adopt the distance of 8.54±0.22 kpc that we estimated in this work. Our new distance

derivation indicates that the cluster NGC 6355 lies far inward based on its maximum height

of |z| < 2.1 kpc and the high eccentric orbit > 0.8. It may well be that this perigalactic

distance is one the closest distances to the Galactic center.



106 3: The intriguing globular cluster NGC6355

Figure 3.16: Density probability map for the x−y and R−z projections of the set of orbits for NGC 6355.
Orange corresponds to higher probabilities, and the black lines show the orbits using the main observational
parameters.

Table 3.7 - Orbital parameters, velocities, and membership probabilities.

Parameter Mean Unit

E −2.31 ± 0.03 ×105km2 s−2

LZ −31.28 ± 24.42 km s−1kpc

rperi 0.25 ± 0.08 kpc

rapo 2.46 ± 0.14 kpc

|z|max 1.91 ± 0.08 kpc

ecc 0.82 ± 0.05 —

vR −218.27 ± 66.25 km s−1

vϕ −192.39 ± 34.54 km s−1

Pbulge 95.00 %

Pdisk 5.00 %

Pinner halo 0.00 %

Pouter halo 0.00 %



Chapter 4
A GC like star lost in the Galactic bar

The results presented in this chapter were submitted to Nature (Souza et al. submitted)

with some modifications due to the journal copyright rules.

Figure 4.1: Colorful image presenting the SOS1 star and Terzan 5. Panel (a) shows the Gaia all-sky view
of the Milky Way based on measurements of almost 1.7 billion stars. Panel (b) shows the PanSTARRS
y/i/g combined image of SOS1 star, and panel (c) the F110W/F160W combined colour image from HST
of Terzan 5. Credit:ESA/Gaia/DPAC, CC BY-SA 3.0 IGO

4.1 Introduction

The bar structure is the most prominent component in the inner Galaxy. It extends up

to approximately 5 kpc from the Galactic centre and is tilted by around 25◦ with respect
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to the Sun position Portail et al. (2017). Even though the Galactic bar formation happens

through a gravitational instability of the disk, it is still under debate whether the bar

formed earlier (∼ 8 Gyr ago Bovy et al., 2019; Wylie et al., 2022; de Sá-Freitas et al.,

2023) or more recently in the Galaxy evolution timeline (∼ 3 Gyr ago Nepal et al., 2024).

Due to the dynamical mechanisms that the bar induces in the Galaxy, it captures material

over time. Nevertheless, obtaining observational evidence for this process is a complex task

because almost all objects in the bar have already lost their origin signatures. Therefore,

investigating the nature of the material that composes the bar needs additional information

beyond dynamics (e.g., chemical composition and age).

To show the bar trapping effect, we analysed the star 2M17454705-2639109 (hereafter

SOS1), which is part of the sample observed with the NASA-Kepler project K2GO4 2-0125

(PI: M. Valentini) in the K-2 Campaign 11, targeting the Galactic Bulge/thick disc region.

We crossmatched the K2 sample with APOGEE DR17, obtaining chemical abundances

and atmospheric parameters for all stars. After that, we crossmatched the resulting table

with Gaia DR3. The information is listed in Table 4.1. This star is located within the

innermost part of the MW (l = 1.97◦ and b = 1.16◦) in a heliocentric distance of ∼ 6.9

kpc. These values place SOS1 confined into the inner Galaxy with a bar-shape orbit (blue

line in Figure 4.2).

We integrated the orbits 13 Gyr backwards using the newest Galactic potential cons-

tructed using the method made-to-measure and that fits very well the Galactic centre,

the focus of the present work, including the bar and X-shape structures (Portail et al.,

2017; Sormani et al., 2022). We used the analytic approximation implemented with the

AGAMA code by Sormani et al. (2022). For each object, SOS1 and all MW GCs, we

generated 500 initial conditions considering the errors in proper motion, radial velocity,

and distance.Â The orbital parameters are listed in Table 4.1.

We employed the orbital criteria by Portail et al. (2015) to compute the probability of

the object orbits to support the bar structure. To do that, for each orbit (corresponding to

one initial condition), we computed the frequencies in the X, Z, and R directions through

a Fourier transformation. With these frequencies, we can analyse the ratios fR/fx and

fR/fx, which provide a numerical interpretation of how many radial or vertical excursions

the orbits have for one loop. Orbits that support the bar structure must be confined

no farther than the corotation radius (which is around 6 kpc for the Galactic Potential
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Figure 4.2: Proojections face-on X-Y (upper) and edge-on X-Z (bottom) of the Galaxy with the orbit
of SOS1 star in blue line. The colorful face-on image of the Galaxy is from NASA/JPL-Caltech/R. Hurt
(SSC/Caltech) while the edge-on picture is Gaia all-sky view of the Milky Way based on measurements of
almost 1.7 billion stars created by ESA/Gaia/DPAC.

employed here) and also has fR/fx = 2.0±0.1 (Portail et al., 2015). Therefore, we compute

the fR/fx ratio and the apogalactic distance for each orbit. After that, the final probability

of following the bar (Pbar) for the object is the number of orbits with fR/fx = 2.0±0.1 and

with apogalactic distance lower than 6kpc divided by the total of the initial conditions (in

this case, 500).

Since we are working with a Galactic potential, which includes a non-axisymmetric

bar component that rotates, the total energy (ET ) and the z component of the angular

momentum (LZ) are not conserved during the orbit. Nonetheless, the Jacobi energy (EJ)

is conserved if we move in the bar rotating frame. The EJ , in units of mass, is calculated

as follows:
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EJ =
1

2
V′2 + Φ(r′) − 1

2
Ω2

(
x

′2 + y
′2
)

(4.1)

where Ω is the pattern speed of the bar, assumed to be −39 km/s/kpc (Portail et al.,

2017).

SOS1 exhibits an abundance pattern of α-1 and light-elements2 (Figure 4.3) different

than expected for the field stellar population of the bar (Queiroz et al., 2021). Even though

the high N and Al abundances were already observed in many field stars (Fernández-

Trincado et al., 2022), this abundance pattern cannot be explained by stellar evolution

alone, indicating that this kind of star (therefore SOS1 as well) is more likely to come

from another part of the Galaxy, being GCs the perfect environment to for these chemical

anomalies (Bastian and Lardo, 2018a; Milone and Marino, 2022).

Figure 4.3: Abundances of α and light-elements for SOS1 (yellow star symbol) compared with field stars
in the inner Galaxy (density plot). The red dotted line shows the mean locus of field stars, while the red
shared region represents the 1σ interval.

1 Elements created by summing up of He nuclei. Here: Oxygen, Magnesium, Silicon, and Calcium.
2 Low atomic number elements. Here: Carbon, Nitrogen, and Aluminium.
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Table 4.1 - Atmorspheric and chemical information of SOS1 and STARB stars. We added 50K to the
temperature and 0.05 dex in the abundance errors.

SOS1 STARB

APOGEE ID 2M17454705-2639109 2M07273047-7511343

µ∗
α −1.45 ± 0.10 +5.12 ± 0.01

µδ −6.20 ± 0.06 −4.72 ± 0.01

Teff (K) 4366 ± 61 4357 ± 62

log g 1.51 ± 0.04 1.51 ± 0.04

SNR 129 117

RUWE 1.008 1.078

ASPCAPFLAG 0 0

STARFLAG 0 0

Value FLAG Value FLAG

[Fe/H] −0.94 ± 0.06 0 −1.07 ± 0.06 0

[C/Fe] −0.37 ± 0.08 0 −0.36 ± 0.08 0

[N/Fe] +1.15 ± 0.08 0 +0.11 ± 0.08 0

[O/Fe] +0.13 ± 0.08 0 +0.28 ± 0.08 0

[Mg/Fe] +0.13 ± 0.07 0 +0.19 ± 0.07 0

[Ca/Fe] +0.35 ± 0.08 0 +0.14 ± 0.09 0

[Si/Fe] +0.18 ± 0.07 0 +0.17 ± 0.08 0

[Na/Fe] +0.27 ± 0.14 0 +0.32 ± 0.18 0

[Al/Fe] +0.96 ± 0.08 0 −0.16 ± 0.09 0

[Mn/Fe] −0.17 ± 0.08 0 −0.34 ± 0.09 0

[V/Fe] +0.14 ± 0.13 0 +0.16 ± 0.09 0

[Ce/Fe] +0.43 ± 0.08 0 −0.18 ± 0.08 0

[Co/Fe] +0.23 ± 0.11 0 −0.78 ± 0.13 0

4.2 Chemical analysis

From the Apache Point Observatory Galactic Evolution Experiment (APOGEE; Al-

lende Prieto et al., 2008)) data release 17 (DR17), SOS1 presents high nitrogen (N) and

aluminium (Al) abundances ([N/Fe]> 1.0, [Al/Fe]> 1.0) and a carbon (C) depletion

([C/Fe]< −0.2), being in good agreement with the Galactic ArchaeoLogIcaL Excavati-

Ons (GALILEO; Fernández-Trincado et al., 2022). This chemical pattern is characteristic

of the GC multiple stellar populations phenomenon, where GCs present a peculiar chemical

pattern showing abundance variation star-by-star mainly regarding light elements sodium

(Na) and Al, also for C, N, O, and metallicity 3 for more complex GCs (Carretta et al.,

2009, 2012; Meszaros et al., 2020). The most significant variation is in N abundance, which

can differ one dex star-by-star, followed by depletion in O and C. The well-known Na-O

anticorrelation is also evidence of MPs (Carretta et al., 2012). The SOS1 O abundance

(+0.13) is slightly lower than those observed in GCs (∼ +0.40), and the Na abundance

(+0.27) is higher than the solar value, indicating that SOS1 come from a Na-O anticorre-

3 Here in the form of iron abundance [Fe/H].
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lated population. These N-Al-enhanced stars are called the second stellar generation (2G)

since they are supposed to be formed after the cluster formation by atmosphere pollution

of first-generation stars (1G) or by a new star formation burst. However, the origin of

MPs is still under debate (Bastian and Lardo, 2018a; Milone and Marino, 2022). Table

4.1 presents the APOGEE DR17 information for SOS1. Since the parameter errors are

sometimes sub-estimated by the ASPCAP pipeline, we added 50 K to the final error in

effective temperature and 0.05 dex in the abundance error of all elements. We also provide

the ASPCAP flag for SOS1 and the flag in each abundance.

We verified the high N-Al abundances of SOS1 through a double-check. First, we

selected a star with similar atmospheric parameters gravity log g, effective temperature

Teff , metallicity [Fe/H], and SNR as SOS1, but with solar N and Al. The selected star

(hereafter STARB) has APOGEE ID 2M07273047-7511343 (the information of STARB

star is in Table 4.1). Figure 4.4 shows the direct comparison between SOS1 and STARB

spectra. The upper panels compare the Al abundance for the lines 16718.90Å (left) and

16763.30Å (right). The blue line represents the STARB, while the SOS1 is in red. The

direct comparison for N abundances is in the bottom panels. This analysis clearly shows

the difference between both spectra for Al and N.

For the second verification method, we remeasured Al, C, and N abundances through

spectrum synthesis using the MOOG2017 code with solar abundances adopted from Asplund

et al. (2009). Figure 4.5 shows the spectral fitting for the Al lines 16718.90Å (upper

left) and 16763.30Å (upper right), where the very high Al abundance is made clear from

a comparison with the synthetic spectra for different [Al/Fe] values. For the C and N

abundances (bottom panel), we overplotted synthetic spectra with different combinations

of C, N, and O abundances between 15300.00Å and 15400.00Å. We can see that, on

average, the SOS1 observed spectrum is well reproduced by the high N and low C, as

provided by APOGEE DR17.

The validation experiments showed that the abundances provided by APOGEE DR17

for SOS1 are recovered, which is also expected due to the SNR> 50, RUWE (renormalised

unit weight error) below 1.4, and APSCAPFLAGs= 0. These quality cuts are similar to the

recent studies using APOGEE DR17 data (Hasselquist et al., 2021; Queiroz et al., 2021;

Horta et al., 2021; Limberg et al., 2022; Horta et al., 2023, , among others). Therefore, we

can rely on the hypothesis that SOS1 is a 2G star.
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Figure 4.4: Verification of the APOGEE-ASPCAP abundances of Al (upper panels) and N (bottom
panels): comparison of spectra of the sample star SOS1 (red line) with a reference star with similar stellar
parameters and solar abundances (blue line). The dots are the observed spectrum.

4.3 Dynamical properties

The assumption of SOS1 coming from a GC has two main scenarios. For instance, the

star could have been ejected from the cluster due to a strong encounter (e.g. star - binary

interaction), resulting in a star with a velocity larger than 103 km s−1 (hypervelocity star

Weatherford et al., 2023), the SOS1, however, presents a maximum velocity of ∼ 300 km

s−1. On the other hand, the GCs that are tidally interacting with the bar can lose stars to

the Galaxy via tidal stripping, mainly those stars placed in the outer parts of the cluster

(Moreno et al., 2022). The star is then captured slowly during several passages of the

GC through the bar. In this case, the captured star might retain the original dynamical

signature in the Jacobi energy (EJ) for more time. Assuming that the parent cluster of
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Figure 4.5: Verification of APOGEE-ASPCAP abundances. Upper panels: Spectrum synthesis of Al.
The coloured lines represent synthetic spectra with no Al abundance (blue), solar Al abundance (orange),
and [Al/Fe]= 1.17 (green, the value provided by APOGEE). Bottom panels: Spectrum synthesis of C, N,
and O. The blue line is the normal CNO abundance set [C, N, O/Fe]= (0.0, 0.0,+0.40), orange line [C,
N, O/Fe]= (−0.15,+0.60,+0.06), and green line [C, N, O/Fe]= (−0.31,+1.15,+0.13) the set provided by
APOGEE.

SOS1 is still orbiting the MW4, we selected the GCs with EJ compatible within 1σ with

the EJ of SOS1 (Figure 4.6, left panel), this sample is composed of the most probable

SOS1’s parent clusters. The closest GC to SOS1 with similar EJ is Terzan 5 (Figure 4.6,

right panel). However, SOS1 is far from the cluster centre a distance equivalent to six

tidal radii of Terzan 5, showing that it is no longer gravitationally bound to any cluster.

The parameters for the selected clusters were taken from Baumgardt’s compilation and

are listed in Table 4.2.

4 A third approach could be that the parent cluster was completely destroyed during the Galaxy evolu-

tion. However, we did not find any tracer of a remnant stellar population due to the dynamical mixing of

the inner Galaxy. This lack of information is one caveat of this work.
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Figure 4.6: Dynamical selection of most propable parent clusters for SOS1. The left panel shows the
Jacobi energy of the GCs compatible within 1σ with SOS1 Jacobi Energy (shaded yellow region), and the
right panel shows the SOS1 distance to the centre of the selected clusters.

Table 4.2 - Orbital input and output parameters of SOS1 and its most likely parent cluster. The input

values were taken from Baumgardt’s compilation1, and the output was obtained from orbital integration.

SOS 1 Palomar 1 Terzan 2 Terzan 5 NGC 6440 Terzan 6 NGC 6528

Input parameters

RA (deg) 266.446 +53.334 261.888 267.020 267.220 267.693 271.207

DEC (deg) −26.653 +79.581 −30.802 −24.779 −20.360 −31.275 −30.056

Rsun (kpc) 6.9 ± 1.0 11.1 ± 0.3 7.8 ± 0.3 6.6 ± 0.2 8.3 ± 0.2 7.3 ± 0.4 7.8 ± 0.2

<RV> (km s−1) −75.4 ± 0.1 −75.7 ± 0.2 133.5 ± 0.7 −81.9 ± 0.9 −69.4 ± 0.9 137.2 ± 1.7 211.9 ± 0.4

µ∗
α (mas yr−1) −1.45 ± 0.02 −0.26 ± 0.03 −2.14 ± 0.03 −1.86 ± 0.03 −1.19 ± 0.02 −4.99 ± 0.05 −2.17 ± 0.02

µδ (mas yr−1) −6.20 ± 0.06 +0.02 ± 0.03 −6.26 ± 0.03 −5.11 ± 0.03 −4.00 ± 0.02 −7.46 ± 0.05 −5.64 ± 0.02

Mass (M⊙) — (9.26 ± 1.83) × 102 (8.05 ± 2.31) × 104 (1.09 ± 0.08) × 106 (5.69 ± 0.45) × 105 (1.00 ± 0.01) × 105 (9.44 ± 0.91) × 104

Massini (M⊙) — 1.23 × 104 5.89 × 106 4.20 × 107 6.17 × 106 4.57 × 106 2.14 × 106

rt (pc) — 22.84 12.45 51.26 33.88 13.89 10.98

Age (Gyr) > 10.0 7.3 ± 1.2 — 12.0 ± 1.0 13.0 ± 1.5 — 11.0 ± 1.0

Output parameters

rapo (kpc) 1.6 ± 0.3 21.6 ± 0.4 0.9 ± 0.1 1.9 ± 0.1 1.5 ± 0.2 1.5 ± 0.2 1.7 ± 0.2

rperi (kpc) 0.04 ± 0.02 15.81 ± 0.14 0.21 ± 0.06 0.10 ± 0.02 0.04 ± 0.02 0.03 ± 0.01 0.04 ± 0.02

|Z|zm (kpc) 0.71 ± 0.20 5.51 ± 0.14 0.49 ± 0.08 0.87 ± 0.06 1.23 ± 0.05 1.01 ± 0.09 1.11 ± 0.06

ecc 0.95 ± 0.02 0.16 ± 0.01 0.63 ± 0.12 0.89 ± 0.02 0.95 ± 0.03 0.96 ± 0.02 0.96 ± 0.02

EJ (105km2 s−1) −1.652 ± 0.072 −1.635 ± 0.008 −1.699 ± 0.018 −1.602 ± 0.009 −1.582 ± 0.007 −1.620 ± 0.032 −1.582 ± 0.008

Pbar % 84 0 0 94 0 9 27

Ndiss % — 0 0 1 0 0 0

1 https://people.smp.uq.edu.au/HolgerBaumgardt/globular/

4.4 Dissociation points and dissociation time

The SOS1’s parent cluster can be found recovering its (and the GCs’) entire orbit

around the Galaxy. Since SOS1 and each GC have 500 initial conditions, for each pair

SOS1-GC, we have 2.5 × 105 combinations of orbits and in each of them we searched for

a crossing point. It is also important to consider that if the star has enough velocity, it

https://people.smp.uq.edu.au/HolgerBaumgardt/globular/
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can pass through the cluster volume without being bound to it. Therefore, to consider

the crossing point as a dissociation point (the probable point when and where SOS1 is

captured from the cluster by the bar), the star should be inside the cluster volume defined

as a tidal radius and gravitationally bound to the cluster (Figure 4.7).

Figure 4.7: Dissociation point selection criterea. The left panel shows the SOS1 distance to GC’s centre
in tidal radius units as a time function. The black dotted line shows the one tidal radius region limiting
the cluster volume. The right panel shows the SOS1 total energy concerning the GC as a function of time.
The black dotted line represents the bound energy limit. The red dotted lines show the dissociation point
with the corresponding distance to the cluster centre (top panel) and the bound energy (bottom panel).

We computed the dissociation points employing the values of tidal radius from Table

4.2. During the orbital time, SOS1 can pass through all the MW GCs during its orbits.

Therefore, we only accepted the close encounter point where the star is also gravitatio-

nally bound to the cluster potential. We calculated the total energy of SOS1 for all close

encounter points due to the cluster potential, where the points with negative energy were

considered gravitationally bound. For the combinations with more than one close encoun-

ter gravitationally bound point, we considered only the first one (closest to the present

day). We assume that SOS1 belongs to the cluster before the first point. The number of

combinations with gravitationally bound close encounter points shows the probability of

SOS1 being a cluster member. Performing the dissociation point analysis for each pair,

Terzan 5 was the most probable parent cluster. In contrast, the other clusters did not

present any dissociation point.

We then recovered the time at the dissociation point, called the dissociation time (τd).

The result is a time distribution where we fitted the peak to obtain the time when the

bar captured the star from the cluster. For Terzan 5, we found the dissociation time
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approximately 300 Myr ago (Figure 4.8). Even though the time distribution presents

values up to 13 Gyr ago, these points do not make physical sense because the Galaxy’s

potential evolves with time, and at that time, even the bar had not been formed yet. For the

potential employed here (Portail et al., 2017), we can trust the results until approximately

−1 Gyr (Moreno et al., 2022). Therefore, the result for SOS1-Terzan 5 is inside the time

range for physical meaning.

Figure 4.8: Dissociation time distribution fitting. The figure shows the distribution of lookback time
obtained from the dissociation points. The dissociation time is adopted as the distribution peak (insert
plot).

A more detailed analysis of the link between SOS1 and Terzan 5 will be provided in

Chapter 6.
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Chapter 5
Dating other GCs using SIRIUS code

Figure 5.1: Colorful images of the GCs studied in parallel with the thesis. Panel (a) shows the combined
F606W/F814W HST image of NGC6558. Panel (b) is the PanSTARRS image taken from Baumgardt’s
website database. Panel (c) is the VVV image of VVV CL001 taken from Minniti et al. (2011). Panel
(d) is also the VVV image, but for the GC UKS1 taken from Fernández-Trincado et al. (2021). Panel
(e) shows the combined F110W/F160W HST image for Djor2. Finally, panel (f) represents the colour
composite GSAOI+GeMS image of HP 1 (Credit: Gemini Observatory/AURA/NSF; a composite image
produced by Mattia Libralato of Space Telescope Science Institute).

In this Chapter, I present my other contributions to the field through different collabo-

rations. The SIRIUS code (Section 1.2.1) was designed in collaboration with Dr. Leandro

Kerber. Since we published the paper presenting the code, although it is not public for

the community, several works have been done using it. We present some studies where

SIRIUS had an important contribution and whose results were used in this thesis.
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The GC NGC6558

NGC 6558 is a low Galactic latitude globular cluster projected in the direction of the

Galactic bulge along its minor axis. We obtained GSAOI/Gemini high-resolution JHKS

images and optical HST/ACS F606W/F814W photometries in two epoches which allows

a proper motion and field stars cleaned CMD reaching almost six magnitudes below the

main sequence turnoff. These data allowed us to provide a more precise age determination

for NGC 6558. We applied the method to compare the observed and synthetic CMDs,

employing a Bayesian isochrone fitting using the Markov chain Monte Carlo algorithm,

using the SIRIUS code. The isochrone fitting using the method of synthetic CMDs gives a

distance of 8.41+0.11
−0.10 kpc, age of 13.0 ± 0.9 Gyr with a reddening of E(B-V)= 0.34 ± 0.02,

adopting as a prior the RR Lyrae apparent magnitude level and the metallicity from the

literature. We also derived a total-to-selective coefficient RV = 3.2 ± 0.2 thanks to the

simultaneous NIR-Optical synthetic CMD fitting. Figure 5.2 shows the NIR and Optical

CMDs overplotted by the results from the isochrone fitting.

This work is titled as GSAOI/Gemini and ACS/HST photometry of the globular cluster

NGC 6558: A steep age-metallicity relation of the metal-poor bulge submitted to the A&A,

which author list is:

S. O. Souza, M. Libralato, D. Nardiello, L. O. Kerber, S. Ortolani, A. Pérez-Villegas,

R. A. P. Oliveira, B. Barbuy, E. Bica, and M. Griggio.

The GC AL 3

We here carried out the isochrone fitting using the SIRIUS code to the B, V , and

Cousins I images of AL 3, observed on 2000 March 6, using the 1.54m Danish telescope at

the European Southern Observatory (ESO) at La Silla. The data is the same as presented

in Ortolani et al. (2006). The metallicity was limited by using a Gaussian prior with the

value of Ortolani et al. (2006). We adopted the DSED isochrone database, with [α/Fe]=0.4

and primordial helium. The AGB is also shown, based on BaSTI isochrones, since they

are not available in DSED. We obtain a reddening of E(B − V ) = 0.38 ± 0.04, a distance

of d⊙ = 6.0 ± 0.6 kpc, and a metallicity of [Fe/H]= −1.34 ± 0.18. Our age determination

indicates an old age of 13.4+1.0
−1.2 Gyr, indicating that AL 3 is another relic fossil. Figure 5.3

shows the solution of isochrone fitting. In the right panel, the solid blue line represents the
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Figure 5.2: Simultaneous isochrone fitting for NGC 6558 using the differential reddening correction from
fiducial line 1 (DRCFL1). The left panels show the NIR GSAOI CMD, and the right panels show the
optical F606W/F814W HST CMD. The small panels show the Hess diagram of the data (upper) and
model (best-fit synthetic CMD, lower). In the bigger panel, the blue dots are the cluster member stars,
the red line represents the isochrone of the best synthetic CMD fit, and the thin lines are solutions within
the errors. The values obtained from the simultaneous fitting are in the bottom left corner of the bigger
panels, with the respective binary fraction value highlighted.

median solution, while the shaded regions indicate the solutions within 1σ. The red stars

are the three sample stars analysed in this paper using spectroscopy. Finally, the right

panel exhibits the corner plots showing the (anti)correlations between the parameters.

This paper was published in the Astronomy & Astrophysical journal as Gemini/Phoenix

H-band analysis of the globular cluster AL 3, and the author list is:

Barbuy, B., H. Ernandes, S. O. Souza, R. Razera, T. Moura, J. Meléndez, A. Pérez-

Villegas, M. Zoccali, D. Minniti, B. Dias, S. Ortolani, & E. Bica A&A, 648, A16 (2021)

The GC VVVCL001

The paper focused on VVV CL001, a GC discovered by the VVV survey (Minniti et al.,

2011). This GC lies in the direction of the Galactic bulge and is strongly dominated by

large foreground extinction, E(B−V)∼ 2.0, hampering the observations of this object in

the optical bands. In order to have a self-consistent age derivation via statistical isochrone

fitting, we use the SIRIUS code and the most probable cluster members in the VVV catalo-

gue located inside 1.5 arcmin from the cluster centre that have proper motions compatible

with that of VVV CL001, as well as those sources with radial velocities information. Due

to the quality of our data, we applied some assumptions to obtain an age distribution: a
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Figure 5.3: Left panel: AL 3 V vs. V − I CMD. The black dots are the stars within 120 pixels of the
cluster centre (see Ortolani et al. 2006). The red stars are the observed stars of the present work. The
solid blue line represents the median solution of the isochrone fitting, while the blue region reveals the
solutions within 1σ. Right panel: The corner plot represents the N-D parameter space of the Markov-Chain
constructed by Monte-Carlo during the isochrone fitting. To represent the solutions, we adopt the mode
of the distribution as the best value, and the uncertainties are computed by the 16th and 84th percentiles.

uniform prior in age between 1 and 15 Gyr combined with a slow drop above the age of

the universe; the metallicity was varied around the value determined with high-resolution

spectroscopy in this work; the isochrone is limited to log g < 4.5 representing the RGB

region. We dereddened and extinction-corrected the VVV+2MASS Kss and J − KS co-

lours with the bulge-specific reddening maps from Gonzalez et al. (2011, 2012) assuming

the reddening law of Cardelli et al. (1989). Finally, we adopted the DSED isochrones with

[α/Fe]= +0.4 and canonical helium. Figure 5.4 presents the best isochrone fits in the

[Ks, J − KS] CMD. Our fit provides a reasonable solution in the overplotted isochrone

(left panel) and the posterior distributions of the corner plot (right panel). We adopt the

median as the most probable value and the uncertainties calculated from the 16th and

84th percentiles to represent the distributions. We found an age of 11.9 ± 3.12Gyr and a

probable distance of ∼ 8.22 ± 1.84 kpc. Our probable solutions, within 1σ, fit the central

part of the CMD, providing confidence that the age estimate is reasonable for VVV CL001.

This paper was published as a letter to the editor in the Astrophysical Journal with

the title VVV CL001: Likely the Most Metal-poor Surviving Globular Cluster in the Inner

Galaxy, which the author list is:
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Figure 5.4: Isochrone fitting results for VVV CL001. Left panel: the best isochrone fit in the [KS , J−KS ]
CMD using DSED models, where the blue line shows the most probable solution and the blue shadowed
region indicates the solutions within 1σ. The orange symbols mark the potential candidates from the
VVV survey, while the black open squares and triangles refer to stars with radial velocities information
from APOGEE-2 and Baumgardt’s compilation, respectively. Right panel: the posterior distributions of
the indicated quantities.

Fernández-Trincado, J. G., D. Minniti, S. O. Souza, T. C. Beers, D. Geisler, C. Moni

Bidin, S. Villanova, S. R. Majewski, B. Barbuy, A. Pérez-Villegas, L. Henao, M. Romero-

Colmenares, A. Roman-Lopes, & R. R. Lane ApJL, 908, L42 (2021)

The GC UKS1

In this work, we employ the VVV Infrared Astrometric Catalogue (VIRAC) to study

the bulge globular cluster UKS 1. Deriving the age of the UKS 1 GC is not easy because, as

mentioned before, it is in a region with very high extinction (Minniti et al., 2011). Through

isochrone fitting, we tried to estimate the age using the SIRIUS code. We adopted the

DSED with an α−enhancement of +0.4 and canonical helium (Y ∼ 0.25) models. The

DSED isochrones are available in the 2MASS photometry system and were converted to the

VVV photometry system. Since we do not have the entire CMD available, in particular, the

TO region, we imposed Gaussian distribution priors for the metallicity of [Fe/H]= −0.98,

determined within this work, with a standard deviation of 0.11 dex, and for the distance of

7.8 kpc (Baumgardt et al., 2019) with a standard deviation of 0.78 kpc. Figure 5.5 presents

the best isochrone fitting in the [KS, J −KS] CMD. Our fit provides a reasonable solution

in the overplotted isochrone (left panel) and the posterior distributions of the corner plot
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(right panel). As the best determination to represent the distributions, we adopted the

median as the most probable value and the uncertainties calculated from the 16th and

84th percentiles. Based on the DSED isochrones, we found an age of 13.10 ± 0.90 Gyr.

The 1σ region (the red stripe in Figure 5.5) is mostly affected by age uncertainties. It is

relevant to mention that in the RGB region of the CMD, an age variation could be seen

as a colour displacement (see Figure 1.13). Also, we want to highlight that our probable

solutions within 1σ fit the central part of the CMD, reinforcing that the age estimation is

a reasonable determination for UKS 1.

Figure 5.5: Best isochrone fit for UKS1 in the [KS , J −KS ] CMD using DSED models. Left panel: CMD
with the results from the fitting. The red line is the most probable solution, and the red stripe is the
solution within 1σ. Right panel: posterior distributions.

This paper was published in the Astronomy & Astrophysical journal with the title

The enigmatic globular cluster UKS 1 obscured by the bulge: H-band discovery of nitrogen-

enhanced stars. The author list is as follows:

Fernández-Trincado, J. G., D. Minniti, T. C. Beers, S. Villanova, D. Geisler, S. O.

Souza, L. C. Smith, V. M. Placco, K. Vieira, A. Pérez-Villegas, B. Barbuy, A. Alves-

Brito, C. M. Bidin, J. Alonso-Garćıa, B. Tang, & T. Palma A&A, 643, A145 (2020)
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ESO 456-SC38 (Djorgovski 2)

The GC ESO 456-SC38 (also known as Djorgovski 2, hereafter Djor2) is one of the

GCs closest to the Galactic centre. It is on the blue horizontal branch and has a moderate

metallicity of [Fe/H]= −1.0, similar to the very old inner bulge globular clusters NGC 6522,

NGC 6558, and HP 1, and therefore appears to be part of the early formation stages of

the Milky Way. We analysed ESO 456-SC38 based on HST photometry, with the filters

F606W from ACS, F110W and F160W from WFC3. We selected a subsample of stars

within a radius of 1.7 mas yr−1 around the mean proper motion to increase the cluster

membership probability and reduce the contamination by the Galactic disk and bulge.

In Figure 5.6, we plot the inner region of the CMD (within 0.15 arcmin of the cluster

centre) from the HST. The subsample of probable cluster members from the Gaia DR2

match is plotted as red dots. The BaSTI alpha-enhanced isochrones were adopted for the

isochrone fitting. The isochrones were corrected for reddening dependency on effective

temperatures, as discussed in Ortolani et al. (2017). We used the star-by-star reddening

provided for the PARSEC. This correction mainly shrinks the CMDs in colour, and the

fit quality greatly improves for very reddened clusters. In Figure 5.6, the HST [F606W ,

F606W − F110W ] CMD of Djor2 is fit SIRIUS code. In the middle and right panels, we

superimpose the same parameters as are adopted in the left panel for the CMDs [F606W ,

F606W − F160W ] (middle) and [F110W , F110W − F160W ] (right). The panels show

very good compatibility. This Figure shows that the isochrone fitting is near the MS blue

edge due to a combined effect of field contamination (prevailing on the red side), binarity,

and loss of completeness in the cluster sequence at the faint end. We derive an accurate

distance of d⊙ = 8.75±0.12 kpc and a reddening of E(B−V)= 0.81±0.02. The best-fitting

corresponds to an age of 12.7 ± 0.7 Gyr and a metallicity of [Fe/H]= −1.11 ± 0.03. Our

findings on Djor2 have led to its inclusion in the list of the oldest moderately metal-poor

globular clusters in the inner bulge.

This paper was published in the Astronomy & Astrophysical journal with the title

Another relic bulge globular cluster: ESO 456-SC38 (Djorgovski 2). The author list is:

Ortolani, S., E. V. Held, D. Nardiello, S. O. Souza, B. Barbuy, A. Pérez-Villegas, S.

Cassisi, E. Bica, Y. Momany, & I. Saviane A&A, 627, A145 (2019)
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Figure 5.6: Results for Djor2 using the [F606W , F606W − F110W ] CMD from HST/ACS and WFC3
observations fitted with BaSTI isochrones. The green solid lines are the most probable solution, and
the green region represents the solutions inside 1σ from the posterior distributions. Large red dots are
stars identified in Gaia within 25 arcsec of the cluster centre. The middle and right panels show the
solution computed in the left panel projected over the [F606W , F606W −F160W ] (middle) and [F110W ,
F110W − F160W ] (right) CMDs. Stars within 0.15 arcmin of the cluster centre are selected.

HP 1

HP 1 is an α-enhanced ([α/Fe]∼ +0.3) and moderately metal-poor bulge globular clus-

ter ([Fe/H]= −1.06± 0.15) with a blue horizontal branch. These combined characteristics

make it a probable relic of the early star formation in the innermost Galactic regions. In

this paper, we presented a detailed analysis of a deep near-infrared (NIR) photometry of

HP 1 obtained with the NIR GSAOI+GeMS camera at the Gemini-South telescope. We

combine our GSAOI data with archival F606W-filter HST ACS/WFC images to compute

relative proper motions and select bonafide cluster members. Figure 5.7 presents the best

isochrone fits in the [Ks, J−Ks] (left panel) and [F606W , F606W − KS] (right panel)

CMDs, using DSED isochrones with [Fe/H]= −1.06. Each panel shows an overview of the

best solution, a zoom-in panel with the stars that were effectively used in the fit. The best

fits provide excellent solutions, as attested by the overplotted isochrone. According to the

analysis using DSED isochrones and the [Ks, J−Ks] CMD, the age of HP 1 is 12.9+0.8
−0.5 Gyr,

without any significant uncertainties from metallicity. The results from the optical-NIR

[F606W , F606W − KS] CMD indicate an age of 12.7±0.5 Gyr, in excellent agreement

with the NIR one. Taking the average results from statistical isochrone fits in the NIR

and optical-NIR CMDs, an age of 12.8+0.8
−0.7 Gyr is obtained, confirming that HP 1 is one of

the oldest clusters in the Milky Way.
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Figure 5.7: Best isochrone fit in the [Ks, J−Ks] (left panel) and [F606W , F606W − KS ] (right panel)
CMDs using DSED models. The CMD shows all observed stars (grey) and those used in the fit (black).
The red arrow is the reddening vector corresponding to δE(B − V ) = 0.10. The zoom-in panel in the
CMD shows the region more sensitive to the age variation. A thick line highlights the best fit. The green
area shows the region between the two isochrones using the values within 1σ for all the parameters.

This paper was published in the MNRAS with the title A deep view of a fossil relic in

the Galactic bulge: the Globular Cluster HP 1, and the author list:

Kerber, L. O., M. Libralato, S. O. Souza, R. A. P. Oliveira, S. Ortolani, A. Pérez-

Villegas, B. Barbuy, B. Dias, E. Bica, & D. Nardiello MNRAS, 484, 5530 (2019)
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Chapter 6
Discussion: The fossils of the Galactic

Bar/Bulge formation

This chapter discusses the fossil relics of the Galactic bulge and bar formation and

evolution using the GCs as tracers. The discussion comprises four previous chapters and

is based on the discussions of the paper about Pal6 (Souza et al., 2021) and NGC6355

(Souza et al., 2023), the submitted paper about NGC6558 (Souza et al.) and SOS1 (Souza

et al.).

6.1 The fundamental bricks of the Galactic Bulge

The orbital analysis shows that the orbits of Palomar 6 and NGC 6355 are compatible

with a location at the Galactic bulge volume according to the classification of Pérez-Villegas

et al. (2020), which presents the probability distribution of belonging to each Galactic com-

ponent through the values of rapo and |z|max. Table 6.1 summarises the orbital parameters

and other fundamental parameters used in this section. It is essential to mention that

their classification is based on a Galactic potential that includes the contribution of the

Galactic bar. Another robust Galactic potential, considering the dynamical friction, was

applied by Moreno et al. (2022). Their orbital parameters are essentially compatible with

our results. The values of E are precisely the same. The LZ and rperi are compatible

within 1σ. In contrast, our value of rapo for NGC 6355 is higher than that of Moreno et al.

(2022), indicating that a more realistic Galactic potential confines NGC 6355 even more

within the Galactic bulge volume. With the results using the McMillan (2017) Galactic

potential, Palomar 6 and NGC 6355 are Galactic bulge GCs with a probability above 99%.

The other clusters in Table 6.1 were also classified as bulge members by Pérez-Villegas

et al. (2020) or in their respective papers as mentioned in Chapter 5.
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Table 6.1 - Age, metallicity, and orbital parameters for the GCs used in the final discussion of this thesis.
The clusters are divided into three groups: those analysed in this thesis, where I am the first author;
those analysed in parallel; and the GCs analysed by our group.* The total energy and angular momentum
in the Z direction were derived from the orbital integration employing the McMillan (2017) mass model
because it does not have a non-asymmetric component. Therefore, these quantities are conserved in the
entire orbit. References: S21 Souza et al. (2021); S23 Souza et al. (2023); SIP Souza et al. submitted;
B21 Barbuy et al. (2021a); O19 Ortolani et al. (2019); K19 Kerber et al. (2019); F20 Fernández-Trincado
et al. (2020); F21 Fernández-Trincado et al. (2021); B21 Barbuy et al. (2021); O20 Oliveira et al. (2020).

Cluster Age [Fe/H] REF rperi rapo |Z|max ecc ET LZ

(Gyr) (kpc) (105km2 s−2)∗ (102km s−1 kpc)∗

Main objects of the thesis

Palomar 6 12.4 ± 1.0 −1.10 ± 0.09 S21 0.08 ± 0.03 2.06 ± 0.07 1.07 ± 0.10 0.92 ± 0.03 −2.40 ± 0.05 +0.07 ± 0.13

NGC 6355 13.2 ± 1.0 −1.39 ± 0.08 S23 0.25 ± 0.08 2.46 ± 0.14 1.91 ± 0.08 0.82 ± 0.05 −2.31 ± 0.03 −0.31 ± 0.24

NGC 6558 13.0 ± 0.9 −1.18 ± 0.05 SIP 0.05 ± 0.04 1.83 ± 0.28 1.51 ± 0.04 0.95 ± 0.04 −2.45 ± 0.02 +0.30 ± 0.17

Secondary objects

AL 3 13.4 ± 1.0 −1.34 ± 0.18 B21 0.42 ± 0.26 4.32 ± 0.30 1.59 ± 0.24 0.83 ± 0.10 −2.12 ± 0.03 +4.29 ± 0.55

Djor 2 12.7 ± 0.7 −1.11 ± 0.03 O19 0.25 ± 0.17 1.46 ± 0.24 1.38 ± 0.09 0.71 ± 0.19 −2.53 ± 0.03 −1.36 ± 0.29

HP 1 12.8 ± 0.8 −1.06 ± 0.15 K19 0.07 ± 0.11 3.04 ± 0.52 2.12 ± 0.06 0.95 ± 0.09 −2.34 ± 0.02 +0.03 ± 0.08

UKS 1 13.1 ± 1.1 −0.98 ± 0.02 F20 0.09 ± 0.10 9.76 ± 0.63 5.65 ± 1.10 0.98 ± 0.02 −1.83 ± 0.04 −1.29 ± 0.91

VVVCL001 11.9 ± 3.5 −2.37 ± 0.16 F21 0.09 ± 0.15 4.71 ± 0.74 3.10 ± 0.34 0.96 ± 0.07 −2.12 ± 0.12 −2.34 ± 1.63

Analysed by our group

NGC 6522 12.8 ± 1.0 −1.05 ± 0.11 B21 0.06 ± 0.08 1.54 ± 0.11 1.18 ± 0.04 0.92 ± 0.08 −2.47 ± 0.03 +0.88 ± 0.25

NGC 6723 12.6 ± 0.6 −1.01 ± 0.05 O20 1.26 ± 0.05 4.08 ± 0.33 3.72 ± 0.03 0.54 ± 0.03 −2.06 ± 0.02 +0.53 ± 0.19

NGC 6717 13.5 ± 0.8 −1.26 ± 0.07 O20 0.05 ± 0.02 3.09 ± 0.10 1.88 ± 0.10 0.96 ± 0.01 −2.28 ± 0.02 +2.06 ± 0.07

After establishing that Palomar 6 and NGC 6355 currently are members of the Galactic

bulge, we investigated whether these clusters originated from the primordial material of

the Galaxy or if they are a remnant of the first mergers of the MW. For this task, we

must analyse the chemodynamical and photometric information derived previously in this

thesis.

6.1.1 Comparison with bulge field stars

To study Palomar 6 and NGC 6355 in the context of the Galactic bulge, we compared

the orbital parameters derived in this thesis with the field star population composed by

the reduced proper motion (RPM) sample from Queiroz et al. (2021) and the bulge RR

Lyrae from the OGLE Galaxy Variability Survey (Soszyński et al., 2019). We also selected

the globular clusters analysed and classified as bulge members by our group. They are

NGC6558 (with our recent age determination; Barbuy et al., 2018b), Djorg 2 (Ortolani

et al., 2019), HP1 (Kerber et al., 2019), NGC6717 (Oliveira et al., 2020), NGC6723 (Oli-

veira et al., 2020), UKS1 (Fernández-Trincado et al., 2020), AL3 (Barbuy et al., 2021b),
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NGC6522 (Barbuy et al., 2021), and VVV CL001 (Fernández-Trincado et al., 2021). We

reintegrate their orbits to obtain their orbital parameters. For NGC6717, NGC6723, and

Djor2, we obtained the chemical abundances from APOGEE DR17 by selecting the mem-

bers for each cluster via proper motion membership probability. In the case of Pal6, we

also obtained chemical abundances from APOGEE DR17 for the iron-peak elements to

complement the abundances derived in Souza et al. (2021). The sample of GCs of Table

6.1 will be called hereafter as moderately metal-poor GCs (MMPGCs).

We matched the OGLE sample with APOGEE DR17, which already provides the

abundances, radial velocities, and proper motions (previously obtained from Gaia EDR3).

After that, we matched the sample with Starhorse (Queiroz et al., 2020) to obtain the

distance values. The final OGLE sample is composed of 4132 stars.

Pal 6 and NGC 6355, have a relatively high |Z|max and ecc, placing them in the cell F

of Figure 20 in Queiroz et al. (2021). The same figure is reproduced here in the upper left

panel of Figure 6.1 for the RPM sample and in the upper right panel for the RR Lyrae

sample. It is worth noting that the cell F is populated by all the reference bulge GCs,

making it the so-called old-bulge region. The 58 stars of the spheroidal bulge defined by

Razera et al. (2022) are also confined in the region of high ecc (yellow squares), indicating

that the cells C, F, and I are pressure-supported (spheroidal). The normalised population

densities as a function of [Fe/H] (MDF), Rmean (mean between rapo and rperi), and vϕ are

shown in the three bottom panels of Figure 6.1, respectively. Based on the MDF (lower

left panel ), the RPM sample comprises the moderately metal-rich bulge MDF, while the

RR Lyrae sample is the metal-poor tail one. As expected, Pal 6 and NGC 6355, both old

GCs, match the peak of the RR Lyrae MDF and Rmean distribution.

The comparison with the bulge field populations shows that Palomar 6 and NGC 6355

are likely in-situ GCs compatible with the Galactic bulge’s old and metal-poor RR Lyrae

component.

6.1.2 Comparison with chemodynamical models

To investigate the chemical abundances in the context of nucleosynthesis, we compared

our results with chemical evolution models. The models for O, Mg, Si, Ca, V, Mn, Co,

Cu, and Zn were computed with the code described in Friaça and Barbuy (2017) (see also

Barbuy et al., 2015; Ernandes et al., 2020, 2022, for V, Mn, Co, Cu, and Zn). The star
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Figure 6.1: Pal 6 and NGC6355 compared with the RPM bulge sample of Queiroz et al. (2021) (left
panel) and Galactic bulge RR Lyrae population (right panel). Upper panels: |Z|max as a function of the
eccentricity plane divided into nine frames defined by the letter close to the horizontal lines. The magenta
star represents Pal 6, and the golden one represents the locus of NGC 6355. The bottom panels show
the population density of [Fe/H], Rmean, and vϕ for cell F. The magenta and gold lines represent the
position of Palomar 6 and NGC 6355, respectively, in each panel, and the shaded gold region shows the
1σ distribution.

formation rate (SFR) was found to be best suited with ν = 1 Gyr−1 to fit the abundances

of a selected sample of bulge stars in Razera et al. (2022). Therefore, we adopted this

SFR for all elements. The SFR is the rate at which the available gas mass is turned

into stars. Consequently, it measures the inverse of the system formation timescale: Our

adopted ν = 1.0 Gyr−1 represents a relatively fast star formation of 1.0 Gyr. The chemical

evolution models assume a baryonic mass of 2 × 109 M⊙, a dark halo mass 1.3 × 1010

M⊙, and the cosmological parameters from Planck Collaboration et al. (2016). The bulge

is considered a classical spheroidal component. Finally, the models project the chemical

abundance distribution at different radius ranges r< 0.5 kpc (dash-dotted line in Figure

6.2), 0.5 < r < 1 kpc (dashed line), 1 < r < 2 kpc (dotted line), and 2 < r < 3 kpc (solid

line). For Na and Al, we used the Kobayashi et al. (2020) models for the Galactic bulge.

These models also assume an SFR ν ∼ 1.0 Gyr−1.
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In addition to the chemodynamical models, in the following analysis, we also compare

the abundance ratios obtained in this work with the reference clusters. To compare with

the RPM and RR Lyrae samples, we selected only stars within the cell F of Figure 6.1.

Figure 6.2 shows the abundances of O, Mg, Si, and Ca as a function of [Fe/H]. To

better illustrate the comparison, the mean locus of the RPM sample is shown as a solid

black line. We derived [α/Fe] considering the α elements O, Mg, Si, and Ca. Our means

[α/Fe] are compatible within 1σ with the assumed value for the isochrone fitting for Pal6

and BGC6355, reinforcing the analysis’s consistency. Pal 6 and NGC 6355 are compatible

with the RR Lyr locus in all cases. Moreover, they are also compatible with the other

GCs, except for Ca, in which NGC6355 is relatively richer than the others.

Figure 6.2: O, Mg, Si, and Ca abundance as a function of [Fe/H]. The KDE plot represents the RPM
bulge selection from cell F, and the blue contours represent the RR Lyrae sample. The magenta and
golden stars represent the mean abundance of Palomar 6 and NGC 6355, respectively. The spheroidal
bulge 58 stars are the yellow squares. The chemodynamical evolution models are shown in different radii
ranges: r< 0.5 kpc (dash-dotted line), 0.5 < r < 1 kpc (dashed line), 1 < r < 2 kpc (dotted line), and 2 <
r < 3 kpc (solid line).

Due to the presence of MPs, the spread in [Na/Fe] is higher than for the other elements.

This effect can be observed in the top panel of Figure 6.3 with the discrepancy between

the two models and the mean locus for the case of low metallicities. Palomar 6 is not

compatible with a bulge [Na/Fe]. The reason is due to the presence of a 2G star in their

sample. The same effect is expected for [Al/Fe] because the Al abundance is a good

indicator of 2G stars (Meszaros et al., 2020). The lower panel of the same figure shows

the high error bars of [Al/Fe] for NGC 6355 due to the presence of two moderately Al-rich

stars.

We investigate the iron-peak elements V, Mn, Co, and Cu (Figure 6.4). We also
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Figure 6.3: Same as Figure 6.2 for odd-Z elements Na (upper) and (bottom). The solid red line is the
chemical evolution model from Kobayashi et al. (2020).

compared our results with bulge GC stars from Ernandes et al. (2018) and bulge field

stars from Ernandes et al. (2020) to increase the bulge sample. The chemical evolution

model fits Pal 6 and NGC 6355 perfectly. For Cu abundances, the selected bulge clusters

have relatively lower values than NGC 6355, indicating a different possible scenario for its

early evolution. In the case of V (top left panel), the evolution model is shifted to lower

abundances for all metallicities than the mean locus. The models suitably fit Palomar 6

and NGC 6355 abundances, the selected clusters, and the bulge GC stars for Mn, Co, and

Cu.

The Zn abundances derived are based only on the line ZnI 6362.339 Å. In Figure 6.5,

NGC 6355 is perfectly fitted by the models and is compatible with all reference clusters.

Here, it is worth noting that the models predict supersolar zinc abundances for metallicities

above −1.0 and subsolar abundances for values below −1.0. The low Zn as an indicator

of an ex-situ origin was suggested only for the case of near-solar metal-rich stars (Minelli

et al., 2021). Palomar 6 is not presented in this analysis because there is no Zn abundance

for this cluster, even from APOGEE.

The comparison of heavy-element abundances of Palomar 6 and NGC 6355 with lite-

rature GCs is shown in Figure 6.6. NGC 6355 abundances are compatible with HP 1 in
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Figure 6.4: Same as Figure 6.2 for V, Mn, Co, and Cu. The black squares are bulge GC stars from Ernandes
et al. (2018), and black crosses show bulge field stars from Ernandes et al. (2020). The chemodynamical
evolution models are shown in different radius ranges: r< 0.5 kpc (dash-dotted line), 0.5 < r < 1 kpc
(dashed line), 1 < r < 2 kpc (dotted line), and 2 < r < 3 kpc (solid line).

Figure 6.5: Same as Figure 6.2 for Zn. The Friaça and Barbuy (2017) evolution models are shown in
different radius ranges: r< 0.5 kpc (dash-dotted line), 0.5 < r < 1 kpc (dashed line), 1 < r < 2 kpc (dotted
line), and 2 < r < 3 kpc (solid line).

almost all heavy elements except for Ba, which NGC 6355 has higher values. Palomar 6,

for its part, agrees only regarding Ba and Eu abundances with HP1. There is a rather large

scatter in the abundance of n-capture elements, especially Y, Zr, and Ba. This pattern is

better explained in Chiappini et al. (2011), Cescutti and Chiappini (2014), and Barbuy

et al. (2018b).
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Figure 6.6: Abundance pattern [X/Fe] vs atomic number (Z) for heavy elements Y, Zr, Ba, La, Nd, and
Eu. The colours are the same as in Figure 6.2.

6.1.3 Analysis of abundance discriminators

The [Mg/Mn]-[Al/Fe] plane is often used in the context of the Galactic halo to split the

original MW population from merger remnants (Hawkins et al., 2015; Limberg et al., 2022)

because the accreted population shows lower [Al/Fe] abundances and high α abundances

due to the abrupt evolution interruptions of the merger progenitor. Horta et al. (2021)

applied the same idea for a star sample located in the Galactic centre to find debris stars

within the Galactic bulge. They called Heracles this inner Galaxy structure placed in the

ex-situ portion of the [Mg/Mn]-[Al/Fe] plane and defined it as follows (Horta et al., 2021):

Heracles =



−2.60 ≤ E/105 ≤ −2.00 km2 s−2

ecc ≥ 0.60

r† ≤ 4kpc −→ † Galactic centre distance

[Mg/Mn] > +0.25, [Al/Fe] < −0.07

[Mg/Mn] > 5 × [Al/Fe] + 0.5

[Fe/H] > −1.7

(6.1)

In the context of the [Mg/Mn]−[Al/Fe] plane (right panel of Figure 6.7), the reference

bulge GCs have no preferential position. However, Palomar 6 and NGC 6355 show interes-

ting behaviours. Palomar 6 is an in-situ member confirmed through the [Mg/Mn]−[Al/Fe]

plane, with APOGEE abundances, because this cluster is located perfectly in the high-α
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in-situ region as well as Djor2, NGC6723, and NGC6558. In contrast, NGC 6355, HP1,

and NGC6717 are located at the border between Heracles and the in-situ high-α region.

Two of our four stars of NGC6355 present a maximum Al abundance of +0.30, which

could be 2G stars (2G; Meszaros et al., 2020; Fernández-Trincado et al., 2022). Figure

3.12 shows the (anti-)correlations that indicate the presence of MPs. We do not find a

Mg-Al anticorrelation, although this is expected mainly for massive clusters because of the

metallicity multimodality (Meszaros et al., 2020). We can also observe a slight difference

between the 1G and 2G [La/Fe] mean abundances. Marino et al. (2021) showed that sepa-

rating the MPs using La abundances is impossible. However, the mean abundance value

is higher for anomalous stars than for normal stars. For the case of NGC6522, although

the high error bars, the mean value is clearly in the high-α in-situ region.

The mean on the [Mg/Mn]-[Al/Fe] plane changes in the diagonal direction going to the

left or right when only the 1G or 2G stars are considered for computing the cluster mean

abundance, respectively. Then, assuming the mean abundance of the 1G stars, NGC 6355

is placed inside the Heracles region on the [Mg/Mn]-[Al/Fe] plane. It is worth pointing

out that Queiroz et al. (2021) showed that a sample of counter-rotating stars in the RPM

sample presents no preferential location in the [Mg/Mn]-[Al/Fe] plane, suggesting that this

region may not be entirely composed of accreted objects as can be seen by the contours

of the spheroidal bulge stars. Therefore, even though NGC 6355, HP1, and NGC6717 are

placed in the accreted region, this does not signify an ex-situ origin.

Figure 6.7: [Mg/Mn]-[Al/Fe] plane with the identification of Heracles in red contours. The colours and
density map are the same as Figure 6.1. The circles represent the mean considering only 1G (left) and 2G
(right) stars in NGC 6355.
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6.1.4 Age-metallicity relation and integral-of-motion space

Figure 6.1 shows that most bulge GCs are located in F, representing high eccentric or-

bits supported by pressure, indicating a spheroidal structure. Razera et al. (2022) analysed

a sample of 58 stars from the RPM sample of the inner Galaxy (Queiroz et al., 2021) with

metallicity values around the peak of the bulge metallicity distribution function (∼ −1.1;

Bica et al., 2016). After meticulous chemical analysis, the authors concluded that this

star sample is a genuine member of a spheroidal structure in the inner Galaxy, also placed

in the high eccentricity region. The fact that all MMPGCs are located in cells C and

F indicates that they are also possible members of a pressure supported structure more

consistent with a spheroidal bulge. Moreover, since all MMPGCs are in cell F, this cell

probably represents the oldest population of the inner Galaxy.

In principle, the AMR of the Galactic bulge MMP GCs shows they are almost coeval

among them (Figure 6.8, left panel). The grey dots in the right panel of Figure 6.8 compose

the sample of 96 Galactic GCs collected by Kruijssen et al. (2019). The authors provide

an average age for all GCs using the three by Forbes and Bridges (2010), Dotter et al.

(2010, 2011), and VandenBerg et al. (2013). In order to investigate the old and spheroidal

structure of the inner Galaxy (cell F), we fitted the AMR for the MMP GCs using the

leaky-box formalism often used in the literature (e.g. Massari et al., 2019; Forbes, 2020;

Limberg et al., 2022; Callingham et al., 2022) with some modifications:

Z = −ρ · ln

(
t

tf

)
= Z⊙ · 10[M/H] (6.2)

where tf is the lookback time when the stellar population starts to form stars, Z⊙ = 0.019

for the solar total metallicity, and ρ is the effective yield of the stellar population. The

ρ represents the mass ratio of the new stars formed from the enriched gas expelled from

supernovae, being, therefore, a measure of chemical enrichment efficiency of the stellar

population and is in units of solar total metallicity (Z⊙). We are considering the relation

[M/H] = [Fe/H] + log10

(
0.694 · 10[α/Fe] + 0.306

)
. For the MMP GCs of the Galactic bulge

we assumed [α/Fe] = +0.4 (Barbuy et al., 2018b) and [α/Fe] = +0.0 for the ex-situ GCs

(Helmi et al., 2018). Therefore:

t = tf · exp

(
−Z⊙

ρ
· 10[Fe/H]+∆

)∆ = 0.312 for MMPGCs

∆ = 0.0 for ex-situ GCs

(6.3)
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For the MMP GCs Galactic bulge population (Table ref family), we obtained a yield

ρ = 0.061±0.013 Z⊙ and tf = 13.679±0.135 Gyr. The derived tf value indicates that this

population is among the oldest ones in the Galaxy since their formation time is close to the

age of the Universe of 13.799± 0.021 Gyr (Planck Collaboration et al., 2016). This finding

raises intriguing questions about the early formation of the Galactic bulge population. To

investigate the derived effective yield, we also fitted the ex-situ branch of the AMR. The

result is the cyan solid line in the right panel of Figure 6.8 with ρ = 0.007± 0.009 Z⊙ and

tf = 13.083 ± 0.124 Gyr. The effective yield is approximately 8 times smaller than the

value derived for the MMP GCs. In the right panel of Figure 6.8, we also present as a red

dashed line the AMR with an effective yield 10 times smaller than the MMP GCs and with

the same tf . It indicates that the spheroidal structure of the inner Galaxy represented by

cell F was formed at the beginning of the Galaxy at 13.679 ± 0.135 Gyr ago and has been

chemically enriched approximately ten times faster than the rest of the Galaxy (Barbuy

et al., 2018b). These implications of rapid chemical enrichment in the spheroidal structure

of the inner Galaxy open up new avenues for further research and exploration.

Figure 6.8: AMR for the Galactic GCs system. The left panel shows the AMR fitting for the GCs from
Table 6.1. The red line shows the best fit with the parameters in the legend, and the thin red lines are the
results of the errors. The right panel shows the complete AMR for all GCs of the Galaxy from Kruijssen
et al. (2019) (grey dots). The red dashed line represents the locus of ex-situ GCs considering a chemical
enrichment efficiency ten times lower than the bulge, as represented by the effective yields (ρ). The cyan
line is the best-fit for the ex-situ branch.

In Figure 6.8, we show Palomar 6 and NGC 6355 as magenta and gold star symbols,

respectively, together with the bulge GCs. Age is hugely crucial for the progenitor of a

GC classification. For the case of NGC 6355, the isochrone fitting considering the Teff
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correction indicates an in-situ candidate. Nevertheless, the uncertainty on age still gives

NGC 6355 a low probability of having an ex-situ origin. The same hypothesis could be

said for the Palomar 6 case. Nevertheless, since the chemical analysis indicates an in-situ

origin, the age error bar for Palomar 6 does not enable another origin.

The dynamics based on the orbital parameters of Table 6.1 place the MMPGCs in

the low-energy and low absolute LZ region. Horta et al. (2021) also analysed the IOM

space in the context of the inner Galaxy separating Heracles (as defined above) from

the bulge selection (Figure 6.9). The main-bulge progenitor is in the left panel, and the

Heracles (supposedly ex-situ) progenitor is in the right. While Palomar 6 and the MMPGCs

are placed almost in the same prograde region in the IOM space (LZ > 0, Figure 6.9),

NGC 6355 presents a retrograde motion (LZ < 0 = −31.28 ± 24.42 km s−1kpc). Even

though it is not possible to distinguish a specific region for the main bulge and Heracles

progenitors, the retrograde motion of NGC6355 strongly indicates an external origin.

Figure 6.9: IOM space for the bulge stars selected by Horta et al. (2021). The left panel shows the contours
of the main-bulge progenitor stars. The right panel shows the contours of the Heracles progenitor. The
stars are coloured as in Figure 6.1.

Although NGC 6355 has properties of ex-situ GCs such as the [Mg/Mn] and [Al/Fe]

abundances, which are compatible with Heracles, we cannot confirm that it is in-situ GC

only because it is confined to the volume of the Galactic bulge. From the point of view of

chemical abundances, most of its element abundances follow the in-situ clusters and bulge
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RR Lyrae population, including its low Zn abundance, which appears to be compatible

with the chemodynamical evolution models. The old age of NGC 6355 completes a possible

in-situ scenario for the cluster because its age fits the predictions for the early evolution of

the Galactic bulge. Therefore, NGC6355 may be one member of the primordial building

blocks of the Galaxy that formed even before the Galaxy formation.

6.2 The GC Terzan 5 versus the Galactic bar.

Terzan 5 is a massive cluster (2 × 106 M⊙; Lanzoni et al., 2010) located in the inner

Galaxy (d⊙ = 6.62 kpc; Baumgardt and Vasiliev, 2021) obscured by a high reddening

(E(B − V ) = 2.38; Valenti et al., 2007). Some studies (Origlia et al., 2011, 2013) have de-

monstrated that Terzan 5 possesses a three-peak metallicity distribution function (MDF):

[Fe/H]= +0.30 (popA), [Fe/H]= −0.30 (popB), and [Fe/H]= −0.87 (popC). SOS1 has a

metallicity value that agrees with Terzan 5’s popC. Figure 6.10 shows SOS1 abundances of

O, Mg, Ca, Si, C, and Al compared with Terzan 5 (Origlia et al., 2011, 2013). Even though

popC comprises only three stars, it is possible to observe good compatibility between SOS1

and popC for the alpha elements. We show the expected variation from 1G stars with

similar metallicity values as SOS1 (arrows) to form the 2G stars for the O, Mg, C, and Al

cases. To construct the arrows, we took the abundance differences between the extreme

stellar generations for all GCs of the HST UV Legacy Survey in Milone et al. (2018). We

applied different methods to calculate the differences. These expected variations can ex-

plain the SOS1 abundances, chemically making its GC 2G origin more evident. Moreover,

the chemical evolution model that better fits Terzan 5 comprises a double-burst of a pri-

mordial cloud with a mass of 4 × 107 M⊙ with a delay of 5 Gyr between both bursts, gas

loss, and ∼ 60% of stars stripped (Romano et al., 2023). Also, the metal-poor population

of Terzan 5 is located mainly in the outer part of the cluster (Romano et al., 2023), being

easier to be trapped by the Galactic bar than most internal stars, a scheme consistent with

SOS1 properties.

Another important link we can provide between SOS1 and Terzan 5 is the stellar age.

We employed the abundance ratio [C/N] and age relation to date SOS1. The [C/N] abun-

dances of red giants can be used as a proxy for ages because they change their [C/N]

atmospheric abundance ratio after experiencing their first dredge-up. This process synthe-



142 6: Discussion: The fossils of the Galactic Bar/Bulge formation

Figure 6.10: Chemical abundances comparison between SOS1 and Terzan 5. The abundances of α
elements, C, and Al vs. the iron content [Fe/H] for Terzan 5 (Origlia et al., 2011, 2013) (blue) and the
SOS1 (yellow). The arrows show the abundance difference due to the phenomenon of MPs for the most
metal-poor population of Terzan 5 derived following different methods. The arrow’s length in each panel
shows the average maximum difference from Milone et al. (2018) between 1G (dotted line) and 2G for
metallicity around [Fe/H]= −1.0 (the arrows are shifted in the x-axis to make the plot clearer).

sises new material in their cores through the CNO cycle toward the atmosphere. Since the

maximum penetration during the first dredge-up depends on the stellar mass, the mixture

brought up to the stellar surface also depends on the mass, consequently related to the

stellar age (Masseron and Gilmore, 2015; Salaris et al., 2015; Lagarde et al., 2017). The

[C/N]−age relation is widely used in the literature. Before applying the calibrations for

SOS1, we remove the effect of MPs from the C and N abundances of SOS1. This correction

is necessary because the calibrations derived in the literature (e.g. Martig et al., 2016;

Casali et al., 2019; Spoo et al., 2022) are based on stellar evolution. The corrections are

as follows:

[C/N ]SOS1 = [C/N ]1G + [C/N ]MPs (6.4)

the abundances derived from APOGEE for 2G stars are the abundance of 1G stars added

by a contribution from MPs: enhancement for N and depletion for C. The variations due

to MPs were derived using the values provided for the GCs inside the HST UV Legacy

Survey (Piotto et al., 2015; Milone et al., 2018) and from different approaches:

1. Considering all GCs and doing a linear regression for logMass (Baumgardt and Va-

siliev, 2021) vs. abundance variations (Milone et al., 2018). The differences are then

obtained by interpolating for the Terzan 5’s mass.

2. Considering all GCs and doing a bootstrap to get the median values.



6.2. The GC Terzan 5 versus the Galactic bar. 143

3. Taking only the GCs with [Fe/H] (Kruijssen et al., 2019) around the SOS1 value

(within a range of 0.20 dex). Then, the median differences are computed through a

bootstrap.

4. Taking only the GCs with Mass round the Terzan 5 value within a range of 0.5 in

logMass.

5. Considering only the GCs inside the cell F (old bulge, Queiroz et al., 2021), ecc > 0.7

and 1kpc< |z|max < 2kpc.

The values are represented in Figure 6.10 as arrows coloured according to the above-

mentioned approach. We placed the arrows starting from the median value of the Terzan

5’s popC since there is no evidence of 2G stars in the reference sample taken from Origlia

et al. (2013). It is also important to note that the N abundance is not presented in Figure

6.10 because there are no calculations for this element. The variations due to MPs are

then removed (or added) from the values derived by APOGEE, resulting in the possible 1G

values. The distributions are also displayed in Figure 6.11. The best approach is obtaining

the abundance variations interpolating by cluster mass due to the narrow distributions

compared with the other approaches.

Figure 6.11: Derivation of the abundance contribution due to the MPs. The coloured lines represent
different methods to determine the variations to SOS1, as listed on the right side of the figure. The
method 1 interpolates the variations as a function of cluster mass. Since Terzan 5 is the most probable
host of SOS1, we adopted its mass value. This method is the most reliable, evidenced by the narrow
variation distributions. See the text for a detailed explanation of the methods employed.
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In possession of the corrected [C/N] abundance, we applied the [C/N]−age relation

using four different calibrations:

1. Spoo et al. 2022 for APOGEE DR16.

2. Spoo et al. 2022 for APOGEE DR17.

3. Casali et al. 2019 derived using Gaia-ESO Survey.

4. The generalised calibration using Kepler data by Martig et al. 2016.

Figure 6.12 shows the resulting age distributions using mass interpolation in the best

variation derivation method, case 1. We also plotted the age distribution for Terzan 5 (Fer-

raro et al., 2016) for comparison purposes. In the left panel is the abundance distribution

for [C/N] corrected by the variations due to MPs. On the right are the age distributions

derived using the abovementioned calibrations. The age distributions are essentially old

for the case of interpolating the variations by cluster mass. However, concluding anything

about the SOS1 age is impossible for the other cases. Moreover, the calibrations employed

in this work were derived for higher metallicities than the SOS1 value. Therefore, the

discussion about the SOS1 age is only quantitative, aiming to say if SOS1 is as old as the

Terzan 5’s popC.

Figure 6.12: Age derivation for SOS1 using the variation derivation method 1. We derived the age
distribution of SOS1. On the left is the corrected [C/N] abundance. On the right is the age distribution
according to different calibrations (coloured lines). The shaded grey distributions show the expected age
for Terzan 5.



Part II
What drives the origin of multiple
stellar populations in star clusters?
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Chapter 7
Multiple stellar populations in the
halo globular cluster NGC6752

This chapter presents the description of the globular cluster NGC6752 concerning single

and multiple stellar populations. These results were published in Souza et al. (2020).1

Figure 7.1: F390W/F555W/F814W combined colour image from the HST WFC3 camera for NGC 6752.

1 https://ui.adsabs.harvard.edu/abs/2020ApJ...890...38S/abstract

https://ui.adsabs.harvard.edu/abs/2020ApJ...890...38S/abstract
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7.1 Introduction

NGC 6752 is a halo globular cluster, located at l = 336◦49, b = -25◦63, with a distance

from the Sun of d⊙ = 4.0 kpc (Harris, 1996, edition 2010)2. Gratton et al. (2005) derived

a metallicity of [Fe/H]= −1.48 ± 0.07 using high-resolution spectroscopy (R = 40, 000)

of seven stars near the RGB bump. Gratton et al. (2003) and VandenBerg et al. (2013)

obtained an age of 12.50±0.25 Gyr and 13.4±1.1 Gyr, respectivaly. Additionally, Carretta

et al. (2012) identified three stellar populations based on three values of abundances of O,

Na, Mg, Al, and Si elements that are sensitive to stellar populations in GCs, denominated

as first (P), intermediate (I), and extreme (E) populations. Milone et al. (2013) gave the

first photometric evidence of three stellar populations by using HST data. Nardiello et al.

(2015), using FORS2/VLT data, have observed the split of the MS of NGC 6752 using

UBI filters and calculated the radial distribution of the populations and the difference in

helium between the 1G and 2G stars. Milone et al. (2019) confirmed the existence of three

stellar populations from NIR photometric data on MS stars. Finally, Cordoni et al. (2020)

analysed the kinematics of the P and E populations of NGC 6752, and they found no

difference in rotation between the two stellar populations.

7.2 Data

We used the HST photometric data for NGC 6752 in the ultraviolet (UV) filters within

the UV-Legacy Survey GO-13297 (PI. G. Piotto) and the optical within GO-10775 (PI.

A. Sarajedini). These programs made available data in the UV filters F275W, F336W,

and F438W from the Wide Field Camera 3 (WFC3) and the optical filters F606W and

F814W from the Wide Field Camera of the Advanced Camera for Survey (WFC/ACS).

The reduced catalogues are presented in Nardiello et al. (2018). The combined colourful

image of NGC 6752 is in Figure 7.1.

7.3 Controlled Experiment

In this Section, we test the reliability of our analysis that will be employed to NGC6752,

by using synthetic CMDs. First, we constructed a synthetic CMD using an error function

2 www.physics.mcmaster.ca/ harris/mwgc.dat
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obtained from the atlas extracted by Nardiello et al. (2018) from the data of the HST UV-

Legacy Survey of Galactic Globular Clusters (Piotto et al., 2015), allowing us to simulate

MPs with the synthetic data. The stellar evolutionary model adopted was the DSED

isochrone with Z ∼ 0.002 with [α/Fe] = +0.4, and age of 13.0 Gyr, as reported in Table 7.1,

corresponding to typical values of moderately metal-poor bulge GCs (e.g. Kerber et al.,

2018, 2019). We simulated the CMD of a cluster with a total number of 10, 000 stars

(Ntotal) that host 36% of 1G stars with an age of 13.0 Gyr and 64% of 2G stars 0.1, 0.5,

1.5 Gyr younger than 1G stars (12.90, 12.5, 11.5 Gyr). We considered a fraction of binaries

(fbin) of 30% and a minimum mass ratio (qmin) of 0.60. The resulting CMDs combining

the different available filters are shown in Figure 7.2.

Figure 7.2: CMDs for the Synthetic Data using a DSED isochrone with age = 13.0 Gyr, [Fe/H]= −1.26,
E(B − V ) = 0.18, (m − M)0 = 14.38, ∆τ = 0.50 Gyr and fraction of 1G stars (N1G/Ntotal)= 0.360,
generated from HST filters. All available combinations of filters are shown.
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Table 7.1 - Input parameters for the construction of the synthetic catalogues.

Parameter No-Spread Spread

Evolutionary Model DSED DSED

Ntotal 260 10, 000

τSSP (Gyr) 13.0 13.0

∆τ (Gyr) – 0.1, 0.5, 1.5

[Fe/H] (dex) −1.26 −1.26

E(B − V ) 0.18 0.18

(m-M)0 14.38 14.38

fbin – 0.30

qmin – 0.60

N1G/Ntotal 1.000 0.360

7.3.1 Sources of uncertainty

In our method, we compute the likelihood star-by-star during the isochrone fitting. To

keep the high performance of MCMC, we imposed a range in magnitudes based on stellar

evolutionary models. The third panel of Figure 1.13 shows no significant difference in age

for the ∼ 3 magnitudes brighter than the TO. For this reason, we do not take stars above

this limit into account in the likelihood calculation.

The faintest stars are limited to the completeness limit, meaning that the number of

faint stars depends on the photometric depth. There are no differences between the isoch-

rones in the databases employed in SIRIUS for the faintest stars (∼ 2 magnitudes below the

TO). Therefore, the fit does not depend on the faintest stars. Ramı́rez-Siordia et al. (2019)

presented an analysis considering the faintest stars. They concluded that the effect of the

faintest stars only increases the uncertainties without changing the distribution mode since

the isochrones do not seem different for the faintest stars, as shown in Figure 1.13 (third

panel).

Binary stars’ magnitudes represent the combination of the fluxes from the two compa-

nion stars. Since the magnitude is the logarithm of the stellar flux, for a binary system with

two stars of the same mass, the magnitude of this system corresponds to the magnitude

of one star subtracted by 2.5 × log(2) ∼ 0.75 (Kerber et al., 2002, 2007). The decrement
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in magnitude tends to cause the binary stars to be brighter and redder on the CMD.

The standard BaSTI isochrones overestimate ages by ∼ 0.80 Gyr concerning DSED

isochrones. The main reason for this discrepancy is that BaSTI isochrones do not include

atomic diffusion in the calculations, among other differences in basic physics. Whereas the

solar alpha-to-iron, more complete models, including atomic diffusion, are already available

in Hidalgo et al. (2018), the available alpha-enhanced models taking this effect into account

have yet to be available.

7.3.2 Stellar population tagging

The stellar population tagging allows us to distinguish the first (1G) and second (2G)

generation stars (and subsequent ones) from a given CMD. Figure 7.3 shows the procedure

to separate the stellar populations in each region of the created synthetic CMD generated

using SIRIUS code recipes. Milone et al. (2013) defined the HST pseudo-colour C to

maximise the separation among MPs on the CMD. Piotto et al. (2015) have shown the

power of HST UV filters F275W, F336W, and F438W to separate the MPs. F275W is

sensitive to OH and F438W to CN and CH. For these filters, the 1G stars are fainter

than the 2G because the latter are oxygen- and carbon-poorer than the 1G ones. For

the filter F336W, which is sensitive to NH, the 1G stars are brighter than the 2G stars,

given that the 2G stars are nitrogen-richer (see Figure 1.7). Note that stronger lines lead

to larger opacity and lower brightness. For these reasons, the colour (F275W-F438W)

inverts the stellar populations on the CMD concerning the colour (F336W-F438W). The

2G stars in that colour seem redder than the 1G stars. Therefore, combining both colours,

the resulting pseudo-colour increases the effect on N abundance through the filter F336W,

which is considered twice: CF275W,F336W,F438W = (F275W−F336W )−(F336W−F438W ).

Chromosome maps (RGB and MS): Milone et al. (2017) describe the method to separa-

ting the stars likely to belong to each stellar population using the so-called chromosome

maps based on combinations of UV HST filters. Lee (2019) used UBV data to distinguish

MPs and reviewed methods discussed earlier. To construct the chromosome map diagrams,

we adopted the method presented in Milone et al. (2017) that is briefly described below.

For the CMDs [mF814W, CF275W,F336W,F438W ] and [mF814W, (mF275W−mF814W)], the red and

blue fiducial lines are defined as 96th (Cr) and 4th (Cb) percentiles for bins of magnitudes,
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respectively. The top- and bottom-middle panels of Figure 7.3 show the red and blue

fiducial lines enclosing the RGB and MS stars, respectively. The chromosome map axes

are the relative distance between each star and the fiducial lines, defined by:

∆CF275W,F336W,F438W
=

Cr − C

Cr − Cb

(7.1)

∆F275W,F814W =
G−Gr

Gr −Gb

(7.2)

where the indices r and b refer to the red and blue fiducial lines, respectively, and G

represents the colour mF275W −mF814W, which is more sensitive to helium mass fraction Y

abundance (Milone et al., 2017).

The diagram [∆CF275W,F336W,F438W
, ∆F275W,F814W ] quantifies the colour distance of each

star to the blue and red envelopes so that the ∆-value is closer to zero as the star is closer

to the red envelope. The right panels of Figure 7.3 show the final chromosome maps for

the RGB (top) and MS (bottom), respectively, for the synthetic CMD.

Some modifications to the identification of the MPs were implemented in the original

method from Milone et al. (2017) to preserve uniformity in the MPs separation for the

three evolutionary stages (MS, SGB, RGB). The MPs are identified using the Gaussian

Mixture Models (GMM), a non-supervised machine learning algorithm that searches to fit

K Gaussian distributions to a sample of N data. The fit comes from the basic equation

of the Bayes’ theorem:

G(x) =
K∑
i=1

ϕi ×N (x |µi, σi) (7.3)

where N (x |µi, σi) represents the ith Gaussian distribution with mean of µi and stan-

dard deviation of σi. This algorithm was adopted from the Python library Scikit-learn

(Pedregosa et al., 2011).

Here, we assume two subclasses for GMM on a two-dimensional plane. Then, each star

is classified as 1G or 2G according to the strength of the two Gaussian distributions on

that point of the chromosome map. The separation between the two populations includes

clear members of both and stars in the limiting intersection, which can contaminate each

other samples. This analysis can be improved by increasing the number of subdivisions in

GMM to select the bona-fide stars of each stellar population, as in Milone et al. (2018).
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Two-color diagrams (SGB): The slope of the SGB sequence depends on the adopted fil-

ter and the cluster’s metallicity and age, which are sometimes nearly horizontal. The

MPs could appear mixed in this phase, making applying the chromosome map method

ineffective. Therefore, we applied a conventional two-color diagram [mF336W − mF438W,

mF275W − mF336W], as described in Nardiello et al. (2015). In order to apply the GMM

procedure (same as described in the previous Section), ∆1 and ∆2 are the axes that were

normalised and then rotated counterclockwise by an angle of 45◦ to align the stellar dis-

tribution with the x-axis. The method is graphically represented in Figure 7.3 (middle

panels).

Figure 7.3: MP separation and population tagging applyed to synthetic data with ∆τ = 0.5 Gyr. The

left panel shows the pseudo-colour C, which gives a pronounced MP separation. The middle panels show

the procedure we apply to separate the stellar populations. The RGB, SGB, and MS stars are shown from

top to bottom. The right panels show the stars identified to belong to 1G and 2G.
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7.3.3 Sanity Check

For the NIR filters, the effect of interstellar medium extinction is considerably lower

than that of the UV filters. Also, colour-combining filters with a small bandwidth are

more suitable for observing the structures on the CMD. Therefore, the combination of

magnitudes and colours on the CMD is very important in terms of the information expected

to be obtained from isochrone fitting. In order to estimate the effect of the choice of colour,

we performed the isochrone fitting using ten different colours, without spreading the stars,

combining the five HST filters available in the UV Legacy survey of globular clusters

(Piotto et al., 2015).

Firstly, we perform the fit considering the SSP without the photometric spread of

stars. The DSED isochrones are here fitted to the synthetic No-Spread catalogue data

(Table 7.1) to check if we can recover the synthetic CMD’s input parameters. For this

test, we adopted uniform distribution priors for all parameters. The range of values we

used are: for age, between 10 to 15 Gyr; for the metallicity, between 0.00 to −2.00 in

[Fe/H]; for reddening, between 0.0 to 1.0 mag; and for the distance modulus, between 12.0

to 16.0 mag. Figure 7.4 shows the behaviour of the parameter space as a function of colour.

Age is the most sensitive parameter to the filters, whereas the other parameters vary only

slightly with the choice of filters. For colour 8 (third lower panel in Fig. 7.2), which is

equivalent to B-V, there is a strong effect on the age, whereas for colour 6 (first lower panel

in Fig. 7.2) the parameters are closer to the original ones. Colour 10 (mF606W − mF814W ,

last lower panel in Fig. 7.2), is also close to the input values and has small uncertainties

due to its lowest reddening-dependency. Therefore, for our analysis, we chose colour 10.

Secondly, to verify the sensitivity of the method, we simulate real data through synthe-

tic CMDs to perform the isochrone fitting, taking into account a spread of stars and as-

suming Gaussian priors centred on the parameters given in Table 7.1 (Spread). In Figure

7.5, we show the isochrone fitting for the synthetic CMD with ∆τ = 0.50 Gyr, assuming

that it is SSP (left panel) and MPs (right panel).

We employ the corner plots to present the posterior distributions. (Figure 7.6). They

show the N parameter space in a 2D representation, where it is possible to see the cor-

relations between the parameters. As the best value for each parameter, we adopted the

distribution mode. For the confidence interval, we selected the 16th and 84th percentile of
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Figure 7.4: Sanity checks with no-spread data, the parameter space as a function of colour. The posterior
distributions of each parameter for the ten combinations of HST filters of the UV Legacy survey of globular
clusters (Piotto et al., 2015). DSED isochrones are adopted. The numbers represent each colour.

the distributions that give us the values inside 1σ from the mode. The top-left panel in

Figure 7.6 shows the corner plot for the DSED SSP isochrone fitting. Figure 7.6, in the

top-right, bottom-left, and bottom-right panels, show the results for the age derivation in

the context of MPs using DSED.

Table 7.2 - Sanity check with spread data, results summarized for synthetic-data in SSP context and
MPs.

Sanity Check N1G/NTot Model
τSSP ∆τ1G,2G [Fe/H] E(B − V ) (m−M)0

(Gyr) (Gyr) (dex) (mag) (mag)

SSP –
DSED 12.70+0.36

−0.37 – −1.26+0.03
−0.03 0.18+0.01

−0.01 14.35+0.03
−0.03

BaSTI 13.80+0.61
−0.61 – −1.26+0.03

−0.03 0.18+0.01
−0.01 14.30+0.04

−0.03

MPs ∆τ = 0.10 Gyr 0.377 ± 0.011
DSED – 0.11+0.36

−0.38 −1.26+0.02
−0.03 0.18+0.01

−0.01 14.38+0.03
−0.03

BaSTI – 0.19+0.49
−0.49 −1.26+0.03

−0.03 0.18+0.01
−0.01 14.33+0.03

−0.03

MPs ∆τ = 0.50 Gyr 0.370 ± 0.012
DSED – 0.41+0.43

−0.37 −1.26+0.03
−0.02 0.18+0.01

−0.01 14.38+0.03
−0.03

BaSTI – 0.51+0.54
−0.54 −1.26+0.02

−0.02 0.18+0.01
−0.01 14.33+0.03

−0.03

MPs ∆τ = 1.50 Gyr 0.339 ± 0.008
DSED – 1.20+0.44

−0.38 −1.26+0.02
−0.03 0.18+0.01

−0.01 14.37+0.03
−0.03

BaSTI – 1.47+0.53
−0.46 −1.26+0.03

−0.02 0.18+0.01
−0.01 14.35+0.03

−0.03

Even though the spread of stars changes the visual aspect of the CMD, the parameters
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Figure 7.5: Sanity check with spread data, isochrone fitting for the synthetic CMD considering SSP (left)
and MPs (right) for DSED isochrones. The grey dots are discarded for the fit.

obtained from the isochrone fitting given in Table 7.2 for SSP and MPs are both in good

agreement with the input values from Table 7.1. In conclusion, in this Section, we could

describe the approach and check the validity of SIRIUS in the context of MPs.

7.4 Analysis of NGC 6752

In order to separate the populations P, I, and E (hereafter 1G, 2G, and 3G), the number

of components on GMM were increased to three for the RGB and SGB, and to four for the

MS. The classification of 1G, 2G, and 3G stars is in agreement with Milone et al. (2013)

since a clear distinction of three stellar populations can be verified in Figure 7.7. Milone

et al. (2013) derived the mass fraction of each population to be of ∼ 25, ∼ 45, and ∼ 30

per cent, respectively. We found a fraction of stars of 25 ± 5, 46 ± 7, and 29 ± 5 per cent

for the 1G, 2G, and 3G, respectively, in excellent agreement with Milone et al. (2013).
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Figure 7.6: Sanity check 2, corner plots using DSED isochrones, relating physical parameters. Top left
panel: results of the sanity check applied to a synthetic SSP CMD where Monte Carlo spread of data is
implemented, with a ∆τ = 0.50 Gyr. Other panels: 1G and 2G combined for ∆τ = 0.10 Gyr (top right),
∆τ = 0.50 Gyr (bottom left), and ∆τ = 1.50 Gyr (bottom right).

In the following, the analysis of NGC 6752 is restricted to DSED isochrones. The

procedure starts with the isochrone fitting assuming the CMD to consist of an SSP and

the method is subsequently applied to the MPs. In order to carry out the isochrone fitting,

we employed the same CMD mF606W vs (mF606W − mF814W ) used for the synthetic data.

In the left panel of Figure 7.7 is shown the CMD of NGC 6752, including all-stars as an

SSP. The value of [Fe/H] = −1.48 dex was used as prior through Gaussian distribution

with a standard deviation of 0.07. A prior in distance was applied with the value of

apparent distance modulus (m − M)V = 13.26 ± 0.08 taken from Gratton et al. (2003).
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Figure 7.7: Multiple stellar populations in NGC 6752. Left panel: SSP; Middle panel: same as left
panel, but color-identified stars; Right panel: pseudo-color showing the clear separation of three stellar
populations.

The results of SSP isochrone fitting are shown in Table 7.3 and Figures 7.8 and 7.9. The

SSP age derivation of 13.7 ± 0.5 Gyr is in good agreement with Gratton et al. (2003),

which obtained 13.4±1.1 Gyr, and with the Bayesian technique from Wagner-Kaiser et al.

(2017) that resulted in an age of 13.202+0.174
−0.152 Gyr. The parallax from Gaia DR2 (Gaia

Collaboration et al., 2018) for the NGC 6752, ω̄ = 0.2610 ± 0.0011 mas, corrected by the

zero point of −0.03 mas given by Lindegren et al. (2018), gives a heliocentric distance of

3.85± 0.02 kpc. Considering NGC 6752 as an SSP, the derived distance is 4.11± 0.08 kpc,

in agreement with 3σ with Gaia DR2.

The metallicity estimated from SSP isochrone fitting, [Fe/H] = −1.49+0.05
−0.05, was fixed

for the MPs approach. The metallicity can be fixed because no [Fe/H] variation is detected

in this cluster.

The fit is carried out simultaneously to 1G, 2G, and 3G. Firstly, we consider the

primordial helium content value for all populations. In a second run, we assume a helium

enhancement by a type of polluter star, changing the amount of helium for each generation,

according to values computed by Milone et al. (2019): δY1G,2G = 0.010 and δY1G,3G = 0.042

for the 2G, and 3G, respectively (Figures 7.7, 7.9, and Table 7.3). We assumed the helium

enhancement values from Milone et al. (2019) since they were derived using the same
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DSED stellar evolutionary models employed here, therefore there is compatibility. For

the metallicity of NGC 6752, the corresponding canonical helium content in the DSED

isochrones is 0.247, which was associated to 1G. The 2G and 3G helium contents were

assumed to be of 0.257 and 0.289, adopting the δY values from Milone et al. (2019).

Table 7.3 - Results of isochrone fitting for NGC 6752 in SSP context and MPs.

Y τ ∆τ1G,2G ∆τ2G,3G ∆τ1G,3G [Fe/H] E(B − V ) (m−M)0 (m−M)V d⊙

(Gyr) (Gyr) (Gyr) (Gyr) (dex) (kpc)

SSP Y(Z)† 13.70+0.61
−0.38 – – – −1.49+0.05

−0.05 0.03+0.02
−0.02 13.07+0.03

−0.03 13.16+0.07
−0.07 4.11 ± 0.08

MPs with Y canonical

1G 0.247 13.80+0.45
−0.40

0.30+0.42
−0.39 0.20+0.39

−0.38 0.50+0.43
−0.39 −1.49†† 0.04+0.01

−0.01 13.08+0.02
−0.02 13.20+0.03

−0.03 4.13 ± 0.06
2G 0.247 13.50+0.39

−0.38

3G 0.247 13.30+0.39
−0.38

MPs with Y enhancement

1G 0.247 13.50+0.39
−0.42

0.20+0.38
−0.41 0.30+0.37

−0.41 0.50+0.38
−0.42 −1.49†† 0.04+0.01

−0.01 13.07+0.03
−0.03 13.19+0.03

−0.03 4.11 ± 0.08
2G 0.257 13.20+0.39

−0.41

3G 0.289 13.00+0.41
−0.41

† Y as function of Z, defined by: 0.245 + 1.5 × Z.

†† Fixed value from the SSP isochrone fitting.

Table 7.3 and Figure 7.10 provide the results of isochrone fitting to the MPs. The

derived distances using canonical helium and helium enhanced are 4.13±0.06 and 4.11±0.08

kpc, respectively. The latter distance determination is in agreement with the distance from

the inverse Gaia DR2 parallax (Gaia Collaboration et al., 2018) (see above). We derive

age differences of ∆τ1G,2G = 300 ± 400 Myr, and ∆τ1G,3G = 500 ± 400 Myr, relative to the

age of 1G stars, considering that there is no helium enhancement within the GC. However,

taking into account the GC helium enhancement cf. Milone et al. (2019), and noting that

the method fits the three stellar populations simultaneously, the 1G is less old (even if

its He is still canonical), and the age differences are of ∆τ1G,2G = 200 ± 400 Myr, and

∆τ1G,3G = 500±400 Myr. These results could give hints on the possible mechanism of GC

internal pollution.

It is interesting to note that, for the He enhanced populations, the result is similar to

those with no He enhancement. Assuming the primordial helium for the 1G, 2G, and 3G

stars, the χ2 values are 0.10, 0.13, and 0.12, respectively, resulting in a total value of 0.35.
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Figure 7.8: Results for the SSP analysis of NGC 6752. Left panel: CMD with the result from isochrone
fitting, green line is the most probable solution, and the blue strip is the solutions within 1σ. Right panel:
The posterior distributions.
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Figure 7.9: Corner plots for NGC 6752. Left panel: simultaneous fitting of the three stellar populations,
adopting canonical helium abundance; Right panel: same as in left panel, but taking into account helium
abundance differences.

For He enhanced isochrones, the values of χ2 are 0.09, 0.14, and 0.11, for the 1G, 2G, and

3G stars, respectively and with a total of 0.34. Therefore, the fitting using He enhanced

isochrones are similarly well-fit.

Even though the uncertainties on the age derivation do not take into account the

differences between the stellar evolutionary models, our uncertainty determinations are
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Figure 7.10: Isochrone fitting for NGC 6752. Left panel: MPs all together. Second to fourth panels:
isochrone fitting to 1G, 2G, and 3G. Upper panels: Canonical helium. Lower panels: Enhanced helium.
The strips are the solutions within 1σ.

of the same order of magnitude as those by Monty et al. (2018). Given that we did not

propagate the uncertainties from the grid size of the parameter space, the uncertainties

given here are the formal errors from MCMC algorithm and they are larger than the ones

reported by Wagner-Kaiser et al. (2017).

7.5 Conclusions

The SIRIUS code is applied to analyse the halo globular cluster NGC 6752 of metal-

licity [Fe/H]≈-1.49. Three stellar populations are identified, confirming previous findings

by Carretta et al. (2012) from spectroscopy, and Milone et al. (2019) from photometry.

The age derivation of the three stellar populations, taking into account He abundance

differences from Milone et al. (2019), results to be of 200/300 ± 400 Myr between 1G and

2G and between 2G and 3G. This points to a possible interpretation of having the same

mechanism producing 2G, and later the 3G.

Many authors have extensively discussed the probable candidates to produce the chemi-

cal abundance patterns of second (and subsequent) stellar populations from self-enrichment
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of the cluster. The main candidates are the AGB stars, and SMS, in both cases through

their winds, as well as FRMSs (Decressin et al., 2007; Krause et al., 2013). All of them

predict an age difference between the stellar populations.

In conclusion, given the uncertainties in the models of pollution, and the uncertainties

in the age difference derived from the CMDs, it is not possible to firmly indicate a scenario

for the formation of a second stellar population. The age differences derived for NGC

6752 could be compatible with the AGB scenario if only the best value determinations are

taken into account. However, considering the uncertainties, the results could be compatible

with all scenarios regarding the origin of MPs (SMS and FRMS), even those with no age

difference. Further analyses of age differences of multiple stellar populations are of great

interest. In particular, within the HST Legacy survey collaboration, Nardiello et al. (2015)

derived the relative age of NGC 6352 MPs from χ2 minimization isochrone fitting, assuming

each of them as SSPs, and Oliveira et al. (2020) applied the methods described here to

derive the ages for seven bulge globular clusters and their MPs.



Chapter 8
The extended Main Sequence Turn-Off

in low mass star clusters

This chapter presents the results submitted to A&A as a Letter to the Editor titled

The VISCACHA survey X. Deciphering the eMSTO in intermediate-age MC star clusters

(Souza et al. submitted).

8.1 Introduction

Some studies have found some peculiarities in the colour-magnitude diagram (CMD)

of the Magellanic Clouds (MCs) star clusters obtained with the Hubble Space Telescope

(HST, e.g. Goudfrooij et al., 2009; Milone et al., 2009). They found that intermediate-

age (1-3Gyr) clusters host an extended main-sequence turn-off (eMSTO). More recently,

Martocchia et al. (2017, 2018) have analysed a wider age range of MC clusters. They found

that some clusters older than ∼ 2 Gyr show a spread the red-giant branch (RGB) as in the

Milky Way globular clusters (Bastian and Lardo, 2018b; Milone and Marino, 2022) when

using HST ultra-violet filters, which indicates chemical abundance variations star-by-star.

For the clusters younger than ∼ 2 Gyr, the eMSTO takes place. In addition to that, the

eMSTO phenomenon was also observed in open clusters of the Galaxy (e.g. Cordoni et al.,

2018; Bastian et al., 2018; Cordoni et al., 2022).

The eMSTO was first associated with a prolonged star formation (e.g. Mackey et al.,

2008; Milone et al., 2009). Nevertheless, it is well-known that stellar rotation can mimic the

age variation (gyrochronology, Vidotto et al., 2014; Niederhofer et al., 2015). That effect

occurs because the rotation carries the hydrogen (H) from the outer layers to the nucleus,

keeping the star in the main-sequence (MS) phase and, consequently, extending the MSTO.

Therefore, a rotation velocity spread of MSTO stars can explain the eMSTO (Bastian and
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de Mink, 2009). Indeed, Milone et al. (2018) found a population of fast rotator stars spread

along the MSTO. However, some works have demonstrated that stellar rotation is essential

but not unique in explaining the eMSTO (e.g. Goudfrooij et al., 2014; Salinas et al., 2016).

Stellar rotation also produces gravity darkening, making the star brighter and hotter

when seen in pole-on (Rivinius et al., 2013). Usually, one can detect this effect when the

rotation velocity is close to the critical value (v/vcritic = ω ∼80-90%), as in the case of Be

stars (ω ≥ 0.75 Rivinius et al., 2013). On the other hand, a distribution of spin orientation

can spread the MSTO uniformly, contributing to the eMSTO, even though a preferred

direction of the rotation angle to the observer is expected (e.g. Healy et al., 2023).

The binary fraction anticorrelates with cluster luminosity (Milone et al., 2016) because

unresolved binary stars, which appear as a single, typically brighter and redder star along

the main sequence (MS) in the CMDs, are a purely observational effect caused by the

spatial resolution limits.

Recently, Cordoni et al. (2022) analysed the 40 Myr old cluster NGC 1818 of the Large

Magellanic Cloud (LMC) with HST photometry. Their method concluded that NGC 1818

has no extended star formation, and stellar rotation explains the eMSTO almost wholly.

In this work, we analyse the effects on the MSTO caused by an extended star formation

or multiple bursts, stellar rotation and spin orientation angle, and unresolved binaries in

explaining the presence of eMSTO. We selected for a first analysis seven intermediate-age

stellar clusters in the Small Magellanic Cloud (SMC).

This letter is organized as follows. Section 2 presents the star clusters selection, the

VISCACHA data, and the decontamination method. In Section 3, we discuss the parame-

trisation of the eMSTO in terms of the physical ingredients we employ and the selection

of MSTO stars. Section 4 shows the results and discussion. Finally, the conclusions are

drawn in Section 5.

8.2 VISCACHA data

We based our sample selection on the SMC clusters: NGC152, Kron 37, Lindsay 106,

Kron 6, HW20, HW67, and Lindsay 116. All clusters are within the age range classified

as intermediate-age, ∼ 1 − 3 Gyr, which predicts the presence of a more evident eMSTO

(e.g. Goudfrooij et al., 2014).
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We exploit the SAMI/SOAR (Tokovinin et al., 2016) instrument, which delivers high

quality images in V and I-bands due to its adaptive optics module excellent performance.

The observations are part of the VISCACHA survey (Maia et al., 2019). The data reduc-

tion is based on Diolaiti et al. (2000) - more details can be found in Maia et al. (2019).

The photometric completeness level reaches V ∼ 23 mag within the clusters’ core radius,

allowing us to analyse their low-mass MS stars.

Following the decontamination recipes given by Maia et al. (2010), we estimated the

star membership probability for each cluster. Briefly, the method compares the density

of field and cluster stars. Finally, we concluded the photometric treatment of the sample

CMDs with a differential reddening correction following the method presented by Milone

et al. (2012). The method consists essentially of computing the star distance to the cluster

fiducial line, substantially reducing the spread of the eMSTO (Platais et al., 2012). The

final clusters CMD have enough stars to populate them well, with small photometric errors,

which are conditions that help the analysis of CMDs morphology and density (see Figure

8.1).

Figure 8.1: CMDs for our star cluster sample. The bars are the photometric errors. All panels show the
CMD after the differential reddening correction.
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8.3 eMSTO Parametrization

For this work, we use the newly released PARSEC isochrones, which include stellar

rotation (Nguyen et al., 2022). The novelty of those isochrones is the inclination angle,

which is the angle between the symmetry axis of the system and the observer (Carciofi

et al., 2010). With that, we can consider angles between 0◦ (pole-on) and 90◦ (equator-

on), which changes considerable the CMD morphology. We adopted the maximum rotation

value of ω = 0.99 for our analysis, varying the inclination angle. Therefore, the conclusions

regarding the rotation phenomenon is in the limit case.

When preparing this work, only isochrones with metallicities higher than −0.6 dex

were available. Most of our sample has a metallicity around 0.1 − 0.2 dex lower than this

limit. Therefore, we make an approximation in our analysis using the isochrones with

[Fe/H] = −0.6 dex. In order to estimate the impact of that assumption in our analysis,

we fixed the age as 1.5 Gyr (mean age of our sample) and varied the metallicity values.

Left panels of Figure 8.2 shows different values of metallicity. The solid lines consider the

pole-on view (0◦) while the dashed lines are equator-on view (90◦). Since our analysis in

terms of rotation is based on the inclination angle, we estimate the width of the MSTO

between pole-on and equator-on for different metallicities. We found that, for a variation

of 0.6 dex in metallicity, the width decreased by 20%. Therefore, assuming a linear trend,

we can expect that for a metallicity variation of 0.2 dex the spread increment will be of

∼ 6%, which is imperceptible for the eMSTO spread. For the models with rotation, we

are taking the degeneracy age-metallicity to find the corresponding age which, together

with [Fe/H]= −0.58, mimics the morphology of the isochrone with the metallicity value

provided by the literature (see Table 8.1).

Another effect to be considered is the isochrone age. We are fixing an age value when

analyzing the rotation effect. However, the width of the MSTO increases with age until

1.5 Gyr and decreases up to ∼ 3 Gyr (Martocchia et al., 2017, 2018). In Figure 8.2 (right

panels), we estimate the effect of the mean age on the MSTO width between pole-on and

equator-on for maximum rotation value. The expected behaviour is observed here, and we

can estimate that the width is maximum for an age around 1.5 Gyr.

To consider the unresolved binaries in the CMD, we follow the method proposed by

Milone et al. (2012). The main parameter to construct the binary sequence is the mass
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Figure 8.2: Effect due to the inclination angle. The left panels show the variation in the metallicity value,
fixing an age of 1.5 Gyr. The right panels show the variation in the age value, fixing the metallicity at
−0.60 dex. In the bottom panels, the Euclidian distance between a star with the same mass value in
pole-on (solid lines) and equator-on (dashed lines) views are shown as a function of magnitude I.

ratio q, defined as q = M2/M1 assuming values from 0 to 1, being q = 0 for the no binaries

case and q = 1 for equal mass binaries. For the latter, the difference in magnitude is

equal to −0.75 what means that the star appears 0.75 magnitude brighter in the CMD.

We defined several binary sequences with different mass ratios. In panel c of Figure 8.3,

we highlighted the q = 0.7 isochrone in solid-black line.

Following the assumption in Cordoni et al. (2022), we negleted the effect of metallicity

in our analysis. This simplification is based on the fact that we do not expect a large

metallicity dispersion. In addition, the narrow metallicity distribution can be inferred by

a well-defined RGB.

We follow the method applied by Goudfrooij et al. (2014) and Correnti et al. (2021)

to define the eMSTO region. Briefly, the eMSTO region, represented by the blue box

in Figure 8.3, is defined by two lines. The X’ axis is the line crossing the different age

isochrones in the region where their difference is higher. While the Y’ axis is the line nearly

parallel to the isochrones and perpendicular to the first line. We adapted the method for
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the context of our data because some clusters have low statistics. The changes are: the X’

is parallel to the top of the MS, and the box size is adapted to contain approximately 10%

of stars without going much fainter in the MS. Note that, for a cluster with a large number

of stars, one can construct a box as thin as possible so that Y’ goes to zero. This method

is particularly useful because it maximizes the effect of an age variation in the eMSTO.

The X’ and Y’ axes are represented in Figure 8.3 with black arrows.

To convert the spread in X’ into the parameters age, inclination angle, and mass ratio,

we calculate the distance of each star inside the MSTO box to the X’ and Y’ axes. After

that, we applied the same for the isochrone points inside the same box. Then, we have

each parameter as a function of X’ and Y’.

8.4 Discussion

It is relatively well established that, neither an age variation nor a stellar rotation

spread can explain by itself the effect observed in the MSTO of intermediate-age clusters

(e.g. Girardi et al., 2011; Goudfrooij et al., 2014; Brandt and Huang, 2015; Niederhofer

et al., 2015; Cordoni et al., 2018; Sun et al., 2019). Some studies have devoted efforts to

finding a combination of regions of the CMD that would enable to explain the phenomenon

thoroughly. Cordoni et al. (2022) combined the eMSTO with the turn-on point. The latter

was adopted because stellar rotation does not affect it due to its low mass regime. We

cannot analyse this region because the turn-on point gets fainter with increasing age, and

the magnitude of VISCACHA photometry only reaches turn-on of clusters younger than

about 10-20 Myr. Nevertheless, we can analyse the MSTO with the red clump (RC), as

in Girardi et al. (2009, 2013). Similar to the turn-on point, the stellar rotation does not

affect the RC also because this region is outside the mass limit to rotation. The authors

found that the spread in the RC can be explained by different overshooting efficiency and

an age spread. Therefore, we employed the RC as a constraint for the parameters variation

range in the following discussion.

In Figure 8.3, we show the result of our analysis for the case of NGC152. In the litera-

ture, many studies have dedicated to analyse this cluster, making it a perfect benchmark

for our analysis. Rich et al. (2000) found that NGC152 is compatible with two different

age values. Dias et al. (2016) performed synthetic CMD fitting and converged to a good fit.
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Figure 8.3: Simultaneous analysis of the eMSTO and RC for the NGC152 template cluster. The age
variation analysis is illustrated in the left column (panels a, d, g, and j), the i inclination view angle
variation in the middle column (panels b, e, h, and k), and the q binary mass ratio variation in the right
column (panels c, f, i, and l). The top panels a, b, and c show the [I, V-I] CMDs with the set of isochrones
varying the correspondent parameter. The black dashed line is the best fit of age and [Fe/H] provided
by the literature. In the middle CMD, the solid magenta line shows the isochrone of the new dataset
limited to [Fe/H]≥ −0.58 with age 250 Myr younger than the best fit to mimic the black-dashed line. The
coloured lines in the middle CMD are also 250 Myr rejuvenated, with a rotation rate of ω = 0.99. The
black-solid line in the right CMD is the mean locus for q = 0.70. Inside the blue box are the selected
MSTO stars. Panels d, e, and f show the zoomed RC regions. The histogram in the X’ axis with vertical
lines representing the identification of different values of the corresponding parameter is plotted in the
panels g, h, and i. The colours are the same as in the bottom row panels (j, k, and l), that display the
histograms of the X’ converted to age (left), i (middle), and q (right). The grey-shaded histogram is the
synthetic distribution of SSP computed from the best-fit and photometric errors.

However, the best synthetic CMD exhibited a much narrow MSTO, suggesting the need

of a more detailed analysis. Even though they considered binaries, that effect combined

to a single age value does not explain the eMSTO (see their Figure 8). Dias et al. (2022)

determined another isochrone-fitting age using the SIRIUS code (Souza et al., 2020). Their
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Figure B.1 shows that the age posterior distribution possesses two peaks, at 1.3 and 1.5

Gyr.

In the left panels of Figure 8.3, we show the effect of age spread. Ages are identified

by the colour line following the colour code of the bottom panels histograms. The black

dashed line is the best fit provided by the literature. We found for NGC152 a double

peak distribution along the X’ axis (panels g, h, and i). Converting that to age, we also

found a double peak distribution in age (panels j, k, l), which is expected. For comparison,

we show the expected distribution for a single stellar population (SSP) without binaries

as grey-shaded regions in the histograms constructed using the photometric errors and a

Monte Carlo resample. For that age regime, the mass of the eMSTO is around 1.4 M⊙.

The age spread can explain the eMSTO assuming a scenario where a second star formation

burst happened around 500 Myr after the cluster formation. However, it is known that

there are some fast rotator stars in this region (e.g. Milone et al., 2018). Therefore, the

age spread is not the unique physical effect.

The fast rotator effect is represented in the panels of the middle column in Figure 8.3.

We assumed a rotation rate of ω = 0.99, close to the breakout limit in order to intensify

the effect of stellar rotation. For the present analysis, we are mainly interested in the

effect of the inclination angle (i). As explained, the fast rotating isochrones are limited

to [Fe/H]> −0.58 dex. Therefore, we assume a different age (magenta solid line, Table

7.1) in other to mimic the position and morphology of the black dashed isochrone. We

can observe in the centre histogram that the inclination angle variation can explain the

spread, but only if combined with an adittional age spread. However, even if both effects

act together, they explain a magnitude spread but cannot explain the colour spread on the

RC.

With the similar argument by Cordoni et al. (2022), we can use the RC to constrain

the age range inside the first peak with age 1.0 − 1.6 Gyr, which limits the isochrones in

the first panel to the cyan one. This means that an age spread does not explain the red

half of the eMSTO. On the other hand, the red half of the eMSTO is inside the inclination

angle variation region (for a fixed age). However, as mentioned before, the stellar rotation,

and consequently the inclination angle, do not affect the spread in the RC region (Nguyen

et al., 2022). Therefore, the binarity effect becomes more important. In the right panel,

we show the effect of binaries with different mass ratio values. We can observe that the
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binaries effect causes a spread that is much smaller than that caused by photometric errors

in the eMSTO, but has an essential role in the colour spread of the RC. The black solid

line in this panel is the binary boundary for which q = 0.7. The red lines on the left side

of the black line show the contribution of binaries with q > 0.7 to the colour spread of the

RC (Milone et al., 2012).

The same analysis has been done for the other clusters in our sample. For the most

massive ones that include Kron 37 (Figure 8.4), Lindsay 106 (Figure 8.5), Kron 6 (Figure

8.6), and HW20 (Figure 8.7), we have reasonable statistics in the RC region, which allows

to constrain the age spread around the expected age distribution for an SSP without

binaries. For the less massive clusters (figs 8.8 and 8.9), we point out a similar conclusion

having the low statistics of the RC as a caveat. Therefore, the RC region can be used to

constrain the age spread and the binary population in order to find their contributions to

the eMSTO morphology.

8.5 Conclusions

In this letter, using VISCACHA data, we tested the hypothesis that neither age, rota-

tion, nor binaries can explain the full extent of the eMSTO alone. We also used the shape

of the RC simultaneously to constrain the range of the parameters.

We found that the RC is an excellent region to analyse in combination with the eMSTO.

As observed in previous works, the age spread alone easily explains the extent of the MSTO.

However, when we look at the RC, we see that only a few age values fit that region well.

The measured age range limits the isochrones to the blue region of the MSTO, explaining

the red region by the spread in the inclination angle of fast rotator stars.

Results found in this work revealed that eMSTO phenomenon is not mainly caused

by an age spread. It is consistent with previous findings (e.g. Bastian and Lardo, 2018b;

Cordoni et al., 2018, 2022) concerning several star clusters with eMSTO feature and located

in the Milky Way and the Large Magellanic Cloud.

In this work, we also show the importance of the inclination angle apart from the

rotation rate since the inclination angle is not equal for each cluster. Even though the

inclination angle seems to be isotropic (e.g. Healy et al., 2023), a distribution of angles is

observed. Therefore, the spin angle and the rotation velocity must be taken into account
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together. Future works should analyse the contribution of each parameter, looking for the

convolved effects.

8.6 Appendix

8.6.1 eMSTO analysis for the other clusters

In this Apendix, we show the analysis for the other clusters in our sample: Kron 37

(Figure 8.4), Lindsay 106 (Figure 8.5), Kron 6 (Figure 8.6), HW20 (Figure 8.7), HW67

(Figure 8.8), and Lindsay 116 (Figure 8.9).

Figure 8.4: Same as Figure 8.3 for Kron 37.

8.6.2 Literature parameters

In this Appendix we list the fundamental parameters age, metallicity, distance, and

reddening from the literature. In the case of metallicity, we also provide, when available,

the value derived from spectroscopy. The references are listed in the last column.
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Figure 8.5: Same as Figure 8.3 for Lindsay 106.

Figure 8.6: Same as Figure 8.3 for Kron 6.
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Figure 8.7: Same as Figure 8.3 for HW20.

Figure 8.8: Same as Figure 8.3 for HW67.
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Figure 8.9: Same as Figure 8.3 for Lindsay 116.
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Table 8.1 - Previous clusters parameters age, metallicity, distance, and extinction derived from other
works. In the case of absence of distance and extinction values, we fitted visually the CMD with the fixed
age and metallicity. The Agerot is the derived age which, together with metallicity of −0.58, mimics the
isochrone morphology with the literature metalicity value. NT and NeMSTO are the total number of stars
and the number of stars inside the eMSTO box, respectively.

Age (Gyr) [Fe/H]phot [Fe/H]spec d (kpc) AV Agerot (Gyr) NeMSTO NT ref.

NGC 152

1.40+0.20
−0.20 −0.94+0.15

−0.15 — 60.7+1.9
−1.9 0.10+0.01

−0.01 — — — Crowl et al. (2001)

1.23+0.07
−0.07 −0.87+0.07

−0.07 — 60.0+2.9
−2.9 0.09+0.03

−0.03 — — — Dias et al. (2016)

1.27+0.20
−0.08 −0.77+0.07

−0.21 −0.75+0.08
−0.08 55.2+1.8

−1.5 0.34+0.21
−0.12 — — — Dias et al. (2022)

— — — — — 1.10 180 1963 This work

Kron 37

— — −0.79+0.11
−0.11 — — — — — Parisi et al. (2015)

1.81+0.24
−0.21 −0.81+0.13

−0.14 — 62.4+2.3
−1.8 0.15+0.03

−0.06 — — — Maia et al. (2019)

— — — — — 1.40 65 1002 This work

Lindsay 106

— — −0.88+0.06
−0.06 — — — — — Parisi et al. (2009)

2.00+0.30
−0.30 — — — — — — — Parisi et al. (2014)

1.58+0.41
−0.33 −0.70+0.43

−0.43 — 59.7+1.7
−1.6 0.00+0.03

−0.03 — — — Perren et al. (2017)

— — — — — 1.10 16 181 This work

Kron 6

— — −0.63+0.02
−0.02 — — — — — Parisi et al. (2015)

1.81+0.24
−0.21 −0.81+0.13

−0.14 — 62.4+2.3
−1.8 0.15+0.03

−0.06 — — — Maia et al. (2019)

— — — — — 1.40 36 452 This work

HW 20

1.10+0.08
−0.14 −0.55+0.13

−0.10 — 62.2+2.5
−1.2 0.22+0.03

−0.06 — — — Maia et al. (2019)

1.26+0.05
−0.05 −0.87+0.14

−0.14 — — — — — — Parisi et al. in prep

— — — — — 1.10 16 181 This work

HW 67

— — −0.72+0.04
−0.04 — — — — — Parisi et al. (2015)

1.89+0.22
−0.18 — — 55.18+3.33

−3.13 0.14+0.04
−0.04 — — — Piatti (2022)

— — — — — 1.50 15 237 This work

Lindsay 116

2.80+1.00
−1.00 −1.10+0.20

−0.20 — — — — — — Piatti et al. (2001)

— — −0.89+0.02
−0.02 — — — — — Parisi et al. (2022)

— — — — — 2.6 22 206 This work



Chapter 9
Conclusions and Outlook

In this thesis, we further analysed the GCs Palomar 6 and NGC 6355 from a chrono-

chemodynamical point of view (Souza et al., 2021, 2023). We gathered high-resolution spec-

troscopy from FLAMES-UVES, photometry from the HST F438W/F555W/F606W/F110W

filters, and Galactic dynamics calculations. Other six clusters HP1 (Kerber et al., 2019),

Djor 2 (Ortolani et al., 2019), UKS1 (Fernández-Trincado et al., 2020), VVVCL001 (Fernández-

Trincado et al., 2021), AL3 (Barbuy et al., 2021), and NGC6558 (Souza et al. submitted)

had their age determined using the SIRIUS code (Souza et al., 2020) in their respective

work. We also include three GCs previously analysed by our group: NGC6522 (Barbuy

et al., 2021b); NGC6717 and NGC6723 (Oliveira et al., 2020). We collected their chemical

abundances, and when they were not available in the literature, we obtained them from

APOGEE DR17.

Which GCs have formed in-situ?

• Our studies show that the metallicity of in-situ globular clusters typically is around

[Fe/H]∼ −1.0, which we call moderately metal-poor (MMP). The ages are estimated

to be between 12 and 13.6 billion years. For example, the age of NGC6355 ([Fe/H]=

−1.39 ± 0.08) we estimated as 13.2 ± 0.9 Gyr, while Pal6 ([Fe/H]= −1.10 ± 0.09) is

12.4 ± 1.0 Gyr old. The in-situ GCs often exhibit enhanced α-element abundances,

with [α/Fe] ratios around +0.4. Also, since the in-situ GCs are essentially old, their

dynamics and cinematics are mixed with the bulge field population. Therefore, in-

situ bulge GCs are strongly bound to the Galaxy and rotate in the same direction

as the Galaxy, which means very low values of total energy ET and present prograde

motion (LZ > 0). Palomar 6 satisfies all these characteristics, making it a genuine
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in-situ bulge GC. In contrast, NGC 6355 do not satisfy the prograde motion and

some chemical patterns (such as [Mg/Mn] vs [Al/Fe]). This cluster has a retrograde

motion with LZ = −31 ± 24 km s−1 kpc. With the low value of LZ and its high

uncertainty, NGC 6355 has a probability of flipping its rotation and starting to

present a prograde motion. Therefore, more analysis is necessary for this cluster to

exclude this ambiguity.

Where and when were formed the early bulge clusters?

• The MMP GCs were shown to form the oldest population of the in-situ bulge GCs.

Employing the AMR for the MMP GCs, we found that the bulge population started

to form 13.69 ± 0.12 Gyr ago. This forming age is consistent with the age of the

universe (13.799 ± 0.021 Gyr; Planck Collaboration et al., 2016) and the predictions

by the two-infall and three-infall models (Chiappini et al., 1997; Spitoni et al., 2023)

where the bulge forms between 200 to 500 Myr after the major mergers of the building

blocks. Therefore, the in-situ bulge GCs form before and after the bulge itself. The

oldest GCs, like NGC 6355, come from the building blocks, and the GCs younger

than 13.0 Gyr, like Palomar 6, form from the material of the proto bulge. Also,

the AMR result evidenced the rapid enrichment experienced by the bulge during its

early evolution. We found an effective yield of ρ = 0.03± 0.01Z⊙, which is ten times

larger than the obtained fitting the ex-situ population.

Can we recover the building blocks using GCs?

• The study of the MMP GCs offers a unique opportunity to recover the building

blocks of the Milky Way and unravel its formation history. By analysing the che-

mical abundances and kinematic properties, NGC 6355 was shown to be a likely

representative example of a cluster originating within a building block. Therefore,

GCs with low metallicities and old ages, like NGC 6355, compose the sample of GCs

that can reconstruct the building blocks of the Galaxy.

How old is the Galactic Bulge?

• As mentioned before, using the AMR for the bulge MMP GCs, we found an age

for the bulge population of 13.69 ± 0.12 Gyr. It is important to mention that this



179

age is when the bulge population starts forming stars (and, therefore, GCs). Also,

the AMR equation used in this thesis is a leak-box formalism under the assumption

of instantaneous recycling approximation (IRA) often used in the literature (e.g.

Massari et al., 2019; Forbes, 2020; Limberg et al., 2022). This approximation means

that all the SNe yields are instantaneously used to form new stars, which is close to

the prediction of rapid enrichment for the bulge population.

In this thesis, we also investigated the role of GCs in the formation and evolution of

the galactic bar. To do that, we analysed an N-Al-rich star trapped in the Galactic bar

today.

Is there observational evidence of GCs in the bar formation?

• The presence of N-rich stars composing the sample of field stars is well-known in the

literature (e.g. Fernández-Trincado et al., 2022). The chemical pattern of these stars

is undoubtedly of 2G stars of GCs. Nevertheless, finding evidence of this interaction

between the Galactic bar and GCs is difficult. We successfully managed to link the

SOS1 star, an N-Al-rich star trapped in the bar, with a GC: Terzan 5. We derived

that the SOS1 star was completely captured by the Galactic bar from Terzan 5

at 315 ± 12 Myr ago. This finding is incredible because we provide, at the same

time, observational evidence for the predicted huge destruction which Terzan 5 has

experienced to reach its present mass. Therefore, Terzan 5 may have contributed to

forming most of the N-rich stars that compose the inner Galaxy today.

The results concerning the multiple stellar populations in GCs allow us to conclude the

following points in this thesis.

Is there an age difference among the different stellar populations? Is there

a more probable formation scenario, or can it be a combination of different

scenarios?

• We found for NGC 6752 (Souza et al., 2020) three stellar populations differing from

each other 500 Myr. This result agrees with the predictions for intracluster pollution
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via stellar winds from AGB stars. Our studies of the MCs’ star clusters show that the

stellar rotation is not the unique effect that explains the eMSTO in intermediate-age

clusters. Moreover, some studies have found different results (Oliveira et al., 2020;

Lucertini et al., 2021). Therefore, the phenomenon may happen differently depending

on the environment, or multiple events can occur within the same GC.

Perspective for a future work

While significant progress has been made in identifying GCs formed in-situ, further

investigations are crucial to determine the exact mechanisms and conditions under which

they formed. A Galaxy mass model that takes into account different astrophysical pro-

cesses, like dynamical friction, can provide profound insights into the in-situ formation

of GCs and their evaporation process, potentially revolutionizing our understanding of

galactic dynamics and stellar populations.

Despite efforts to constrain the age of the Galactic bulge, uncertainties persist due to

observational limitations and complex stellar populations. However, the advent of next-

generation telescopes, combined with refined stellar models and statistical methods, holds

great promise in narrowing down the age range of the Galactic bulge more accurately.

High-resolution observations targeting the inner regions, like 4MOST (PI: R. de Jong; de

Jong et al., 2019), and asteroseismology surveys like HADYN (PI: A. Miglio; Miglio et al.,

2021), are poised to provide precise ages for individual stars located in the inner Galaxy

and also within GCs, ushering in a new era of precision in galactic research.

While observational evidence suggests the presence of GC-like stars in the Galactic bar,

the exact mechanisms driving their formation and evolution within it remain elusive. Fu-

ture observational campaigns targeting regions with prominent bar features, coupled with

numerical simulations, can provide deeper insights into the role of GCs in bar formation

and dynamics. We also had observation time approved to observe stars members of the

most metal-poor population of Terzan 5. With these data, we will be able to improve

our finding regarding SOS1 and provide more insights on the formation and evolution of

Terzan 5.

Understanding the origin and nature of multiple stellar populations in old clusters

requires a multi-faceted approach. We already have ongoing work to implement new stellar

evolutionary tracks, taking into account the chemical pattern observed in 2G stars. With
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this study, it will be possible to determine the age difference among the stellar populations

within a GC with a more precise method. Besides that, we are progressing within the

VISCACHA collaboration on studying the secular evolution of MPs in star clusters.
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Villegas A., Quint B., Sanmartim D., Santos J. F. C., Westera P., The VISCACHA

survey. III. Star clusters counterpart of the Magellanic Bridge and Counter-Bridge in

8D, A&A, 2021, vol. 647, p. L9

Dias B., Barbuy B., Saviane I., Held E. V., Da Costa G. S., Ortolani S., Gullieuszik

M., Vásquez S., FORS2/VLT survey of Milky Way globular clusters. II. Fe and Mg

abundances of 51 Milky Way globular clusters on a homogeneous scale, A&A, 2016,

vol. 590, p. A9

Dias B., Palma T., Minniti D., Fernández-Trincado J. G., Alonso-Garćıa J., Barbuy B.,
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Colmenares M., Roman-Lopes A., Lane R. R., VVV CL001: Likely the Most Metal-poor

Surviving Globular Cluster in the Inner Galaxy, ApJ, 2021, vol. 908, p. L42

Ferraro F. R., Massari D., Dalessandro E., Lanzoni B., Origlia L., Rich R. M., Mucciarelli

A., The Age of the Young Bulge-like Population in the Stellar System Terzan 5: Linking

the Galactic Bulge to the High-z Universe, ApJ, 2016, vol. 828, p. 75

Forbes D. A., Reverse engineering the Milky Way, MNRAS, 2020, vol. 493, p. 847

Forbes D. A., Bridges T., Accreted versus in situ Milky Way globular clusters, MNRAS,

2010, vol. 404, p. 1203

Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., emcee: The MCMC Hammer,

PASP, 2013, vol. 125, p. 306

Friaça A. C. S., Barbuy B., Tracing the evolution of the Galactic bulge with chemodyna-

mical modelling of alpha-elements, A&A, 2017, vol. 598, p. A121

Frischknecht U., Hirschi R., Pignatari M., Maeder A., Meynet G., Chiappini C., Thie-

lemann F.-K., Rauscher T., Georgy C., Ekström S., s-process production in rotating

massive stars at solar and low metallicities, MNRAS, 2016, vol. 456, p. 1803



Bibliography 195

Gaia Collaboration Clementini G., Eyer L., Ripepi V., Marconi M., Muraveva T., Garofalo

A., Sarro L. M., Palmer M., Luri X., Molinaro R., Rimoldini L., Szabados L., Musella I.,

Anderson R. I., Prusti T., de Bruijne J. H. J., Brown A. G. A., Vallenari A., Babusiaux

C., Bailer-Jones C. A. L., Bastian e. a., Gaia Data Release 1. Testing parallaxes with

local Cepheids and RR Lyrae stars, A&A, 2017, vol. 605, p. A79

Gaia Collaboration Helmi A., van Leeuwen F., McMillan P. J., Massari D., Antoja T.,

Robin A. C., Lindegren L., Bastian U., Arenou F., Babusiaux C., Biermann M., Breddels

M. A., Hobbs D., Jordi C., Pancino E., Reylé C., Veljanoski J., Brown e. a., Gaia Data
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J., Ramı́rez Alegŕıa S., Saito R. K., Valenti E., New VVV Survey Globular Cluster

Candidates in the Milky Way Bulge, ApJ, 2017, vol. 849, p. L24

Minniti D., Hempel M., Toledo I., Ivanov V. D., Alonso-Garćıa J., Saito R. K., Catelan
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Ortolani S., Nardiello D., Pérez-Villegas A., Bica E., Barbuy B., Halo intruders in the

Galactic bulge revealed by HST and Gaia: the globular clusters Terzan 10 and Djorgovski

1, A&A, 2019, vol. 622, p. A94

Osborn W., Two new CN-strong globular cluster stars, The Observatory, 1971, vol. 91, p.

223

Pallanca C., Lanzoni B., Ferraro F. R., Casagrande L., Saracino S., Purohith Bhaskar

Bhat B., Leanza S., Dalessandro E., Vesperini E., A New Identity Card for the Bulge

Globular Cluster NGC 6440 from Resolved Star Counts, ApJ, 2021, vol. 913, p. 137

Pancino E., Pasquini L., Hill V., Ferraro F. R., Bellazzini M., High-Resolution Spectroscopy

of Metal-rich Giants in ω Centauri: First Indication of Type Ia Supernova Enrichment,

ApJ, 2002, vol. 568, p. L101
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S. L., Smith V. V., Garćıa-Hernández D. A., Manchado A., Schönrich R., Bastian N.,

Chiappini C. e. a., Chemical tagging with APOGEE: discovery of a large population of

N-rich stars in the inner Galaxy, MNRAS, 2017, vol. 465, p. 501

Schönrich R., Binney J., Dehnen W., Local kinematics and the local standard of rest,

MNRAS, 2010, vol. 403, p. 1829

Shapley H., Shapley M. B., Studies based on the colors and magnitudes in stellar clusters.

XIV. Further remarks on the structure of the galactic system., ApJ, 1919, vol. 50, p.

107

Simmerer J., Sneden C., Cowan J. J., Collier J., Woolf V. M., Lawler J. E., The Rise of

the s-Process in the Galaxy, ApJ, 2004, vol. 617, p. 1091

Siqueira-Mello C., Chiappini C., Barbuy B., Freeman K., Ness M., Depagne E., Cantelli E.,

Pignatari M., Hirschi R., Frischknecht U., Meynet G., Maeder A., Looking for imprints

of the first stellar generations in metal-poor bulge field stars, A&A, 2016, vol. 593, p.

A79

Skrutskie M. F., Cutri R. M., Stiening R., Weinberg M. D., Schneider S., Carpenter J. M.,

Beichman C., Capps R., Chester T., Elias J., Huchra J., Liebert J., Lonsdale C., Monet

D. G., Price S., Seitzer P., Jarrett T., Kirkpatrick J. D., Gizis J. E., Howard E., Evans

T., Fowler J., Fullmer L., Hurt R., Light R., Kopan E. L., Marsh K. A., McCallon H. L.,

Tam R., Van Dyk S., Wheelock S., The Two Micron All Sky Survey (2MASS), AJ, 2006,

vol. 131, p. 1163

Smith R., Flynn C., Candlish G. N., Fellhauer M., Gibson B. K., Simple and accurate

modelling of the gravitational potential produced by thick and thin exponential discs,

MNRAS, 2015, vol. 448, p. 2934



Bibliography 217

Sneden C., Cowan J. J., Gallino R., Neutron-capture elements in the early galaxy.,

ARA&A, 2008, vol. 46, p. 241

Sormani M. C., Sanders J. L., Fritz T. K., Smith L. C., Gerhard O., Schödel R., Magorrian
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B.1 Palomar 6

Table B.1 - Equivalent widths for FeI and FeII lines.

Ion
λ χex

loggf
star 730 star 243 star 030 star 785 star 145 star 401

[Å] [eV] [mÅ]

FeII 5991.38 3.15 −3.65 32.60 39.20 25.5 — 32.3 —

FeII 6084.11 3.20 −3.97 35.20 26.20 25.6 28.7 14.3 18.70

FeII 6149.25 3.89 −2.69 63.80 43.50 22.3 31.1 24.0 —

FeII 6247.56 3.89 −2.52 — — 27.3 25.9 49.4 35.20

FeII 6416.93 3.89 −2.64 68.90 36.90 27.1 — 35.4 29.10

FeII 6432.68 2.89 −3.57 22.70 31.90 10.2 34.7 28.3 30.10

FeII 6456.39 3.90 −2.31 — 37.30 29.6 23.3 47.4 54.00

FeII 6516.08 2.89 −3.31 62.20 59.2 30.8 43.1 26.7 47.80

FeI 5902.48 4.59 −1.81 — 5.10 2.6 — 8.7 —

FeI 5905.67 4.65 −0.73 40.90 — 28.5 — 31.9 —

FeI 5905.69 4.65 −0.73 — 40.60 — 46.7 — 43.90

FeI 5909.97 3.21 −2.78 — 84.90 — 32.7 — 59.80

FeI 5916.25 2.45 −2.97 59.50 — — — — —

FeI 5916.26 2.45 −2.99 — 91.10 30.9 25.1 32.0 72.10

FeI 5927.79 4.65 −1.09 38.50 37.70 44.4 46.7 — —

FeI 5929.67 4.55 −1.41 45.50 44.90 31.3 — — 30.70

FeI 5930.18 4.65 −0.23 51.70 — — — — —

FeI 5930.19 4.65 −0.23 — 78.70 — 68.3 — 68.70
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Tabela B.1 – continued

Ion λ χex loggf star 730 star 243 star 030 star 785 star 145 star 401

FeI 5934.65 3.93 −1.17 34.30 — 54.0 — 70.4 —

FeI 5934.67 3.93 −1.17 — 76.40 — 28.8 — 62.30

FeI 5952.73 3.98 −1.44 48.50 50.40 — 30.8 52.7 40.10

FeI 5956.69 0.86 −4.60 42.10 — 37.5 — — —

FeI 5956.71 0.86 −4.61 — 79.10 — — — 82.50

FeI 5975.35 4.84 −0.69 36.80 — 15.6 — 42.3 —

FeI 5983.69 4.55 −1.47 30.80 52.80 17.2 — 20.1 43.90

FeI 5987.06 4.80 −0.43 43.30 — 27.0 — — —

FeI 5987.07 4.79 −0.15 — 62.90 — — — 59.60

FeI 6003.01 3.88 −1.12 44.80 — — — — —

FeI 6003.02 3.88 −1.12 — 90.40 25.4 44.3 63.7 76.00

FeI 6005.54 2.59 −3.61 40.50 — 34.4 — 43.6 —

FeI 6008.56 3.88 −0.99 31.50 — 25.3 — 57.2 —

FeI 6020.17 4.61 −0.27 38.10 — 29.2 — 64.5 —

FeI 6024.05 4.55 −0.12 31.20 90.40 2.00 73.9 45.0 69.90

FeI 6027.06 4.08 −1.09 80.00 79.70 29.7 43.2 32.5 59.10

FeI 6054.08 4.37 −2.31 46.50 16.50 — — — —

FeI 6056.01 4.73 −0.46 — 62.30 35.7 41.9 23.8 41.70

FeI 6065.48 2.61 −1.53 66.00 — — — — —

FeI 6065.49 2.61 −1.53 — 132.60 — — — 101.5

FeI 6078.49 4.80 −0.32 57.70 — — — — —

FeI 6078.50 4.79 −0.40 — 65.90 18.0 49.5 41.5 65.40

FeI 6079.00 4.65 −1.13 — — — — 44.2 36.90

FeI 6079.01 4.65 −1.12 57.10 — — — — —

FeI 6082.71 2.22 −3.57 31.20 — — — — —

FeI 6082.72 2.22 −3.57 — 69.20 — 72.2 — 65.10

FeI 6093.64 4.61 −1.50 25.10 — 11.3 — 41.9 —

FeI 6093.67 4.60 −1.51 — 15.50 — — — 25.70

FeI 6094.36 4.65 −1.94 46.10 18.80 — — — —

FeI 6096.66 3.98 −1.93 — 43.00 — 39.1 — —
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Tabela B.1 – continued

Ion λ χex loggf star 730 star 243 star 030 star 785 star 145 star 401

FeI 6105.15 4.54 −2.07 — 16.50 — — — 10.40

FeI 6137.70 2.59 −1.40 40.00 142.10 — — — 146.5

FeI 6151.62 2.18 −3.30 59.50 114.00 56.4 48.4 37.3 110.8

FeI 6157.73 4.08 −1.25 — 67.10 27.9 37.8 35.1 58.30

FeI 6159.38 4.61 −1.97 26.40 — — — — —

FeI 6165.36 4.14 −1.47 43.50 64.90 43.1 — 17.7 —

FeI 6173.34 2.22 −2.88 — 122.80 — 46.9 — 96.80

FeI 6180.21 2.73 −2.59 56.30 89.50 36.3 — 58.5 63.90

FeI 6187.99 3.94 −1.72 63.80 60.10 34.2 48.4 — 62.90

FeI 6200.32 2.61 −2.44 — 88.40 — — — 80.40

FeI 6213.44 2.22 −2.48 88.90 129.90 39.5 — — 105.50

FeI 6219.29 2.20 −2.43 96.80 134.10 — — — 116.50

FeI 6220.78 3.88 −2.46 65.00 — — — — 24.60

FeI 6226.73 3.88 −2.22 47.40 32.00 — 18.4 — —

FeI 6229.23 2.84 −2.97 — 83.70 11.7 58.5 31.3 52.30

FeI 6240.65 2.22 −3.21 — 97.30 17.9 44.6 40.6 77.20

FeI 6246.33 3.60 −0.88 — 34.30 — 89.4 — 87.30

FeI 6252.57 2.40 −1.69 54.20 162.20 — 137.8 — 110.40

FeI 6254.25 2.28 −2.44 24.30 — — — — —

FeI 6265.14 2.18 −2.55 61.90 119.90 — 121.9 — 105.40

FeI 6270.23 2.86 −2.46 36.70 61.10 21.2 32.4 90.8 61.50

FeI 6271.28 3.32 −2.70 23.20 40.70 19.0 36.4 24.6 39.70

FeI 6297.80 2.22 −2.74 — 130.10 — 58.6 84.8 101.60

FeI 6301.51 3.65 −0.72 138.40 118.20 — 127.7 — —

FeI 6302.50 3.69 −0.91 — 94.40 — 148.5 — —

FeI 6311.50 2.83 −3.14 85.60 81.20 — 26.2 63.2 36.50

FeI 6315.31 4.14 −1.23 51.70 79.10 5.7 42.9 25.1 53.60

FeI 6315.81 4.08 −1.71 35.30 48.60 22.4 58.1 37.2 50.10

FeI 6322.69 2.59 −2.43 — 80.80 — 36.9 — 92.80

FeI 6330.84 4.73 −1.74 — 44.60 — — — —
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Tabela B.1 – continued

Ion λ χex loggf star 730 star 243 star 030 star 785 star 145 star 401

FeI 6335.34 2.20 −2.18 43.4 143.30 1.5 88.4 — 119.30

FeI 6336.83 3.69 −1.05 — 105.70 38.7 84.5 60.5 102.80

FeI 6344.16 2.43 −2.92 87.20 127.10 22.8 75.8 82.3 90.70

FeI 6355.04 2.84 −2.29 — 128.30 — — — 92.70

FeI 6358.69 0.86 −4.47 — 160.90 — — — 149.70

FeI 6380.75 4.19 −1.38 50.80 42.00 15.9 23.8 36.2 50.30

FeI 6392.54 2.28 −4.03 52.50 63.10 11.7 — — —

FeI 6393.61 2.43 −1.43 46.5 158.70 — — — —

FeI 6408.03 3.69 −1.00 — 101.50 — — 74.9 95.80

FeI 6411.11 4.73 −1.92 40.10 13.70 — — — 5.0

FeI 6411.66 3.65 −0.60 48.50 121.10 — — 105. 98.70

FeI 6419.94 4.73 −0.24 44.40 78.70 15.6 75.9 44.2 80.60

FeI 6421.35 2.28 −2.03 71.10 158.20 — — 107. 113.50

FeI 6430.86 2.18 −2.01 51.30 174.20 — — — 123.40

FeI 6469.21 4.83 −0.77 73.50 84.00 — 56.5 27.7 —

FeI 6475.63 2.56 −2.94 63.00 127.30 18.3 70.5 31.2 —

FeI 6481.88 2.28 −2.98 — 140.40 16.6 55.1 70.5 97.50

FeI 6494.99 2.40 −1.27 143.20 — 57.1 — — —

FeI 6498.95 0.96 −4.70 — 123.10 — 33.8 — 109.60

FeI 6518.37 2.83 −2.30 — 83.60 — 51.1 — 81.30

FeI 6533.93 4.56 −1.45 — 31.30 2.00 — 29.5 —

FeI 6546.25 2.75 −1.54 106.10 159.90 63.3 — — 141.80

FeI 6556.81 4.79 −1.72 — 19.00 — 28.1 — —

FeI 6569.22 4.73 −0.42 99.40 77.60 31.6 — 55.9 69.30

FeI 6574.25 0.99 −5.02 — 116.30 — 26.7 — 93.60

FeI 6575.04 2.59 −2.71 — 121.80 — — — 80.90

FeI 6581.21 1.48 −4.68 85.20 97.20 — 32.0 23.1 65.70

FeI 6591.31 4.59 −2.07 28.10 10.70 1.00 — — 11.50

FeI 6593.87 2.43 −2.42 39.60 136.20 69.4 — — 103.70

FeI 6597.56 4.80 −1.07 45.70 36.50 26.7 — — 36.00
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Tabela B.1 – continued

Ion λ χex loggf star 730 star 243 star 030 star 785 star 145 star 401

FeI 6608.04 2.28 −4.03 74.30 62.60 10.0 — 49.4 45.40

FeI 6609.12 2.56 −2.69 73.40 132.60 24.5 73.0 — 131.60

FeI 6627.54 4.55 −1.68 36.80 42.40 5.1 — 9.9 —

FeI 6678.00 2.69 −1.42 45.00 157.60 — — — 118.10

FeI 6699.14 4.59 −2.10 24.40 24.20 2.70 — — —

FeI 6705.11 4.61 −1.06 — — 16.3 — 30.8 —

FeI 6726.67 4.59 −1.09 — — 28.0 — 16.0 —
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Table B.2 - Line-by-line abundances ratios in the six UVES sample stars for the CNO, odd-Z (Na and

Al), alpha- (Mg, Si, Ca, and Ti), and heavy-elements (Y, Zr, Ba, La, and Eu).

Species
λ χex

loggf
star 730 star 243 star 030 star 785 star 145 star 401

[Å] [eV] [X/Fe]

NaI 5682.633 2.10 −0.71 +0.07 +0.28 −0.09 +0.27 — —

NaI 6154.230 2.10 −1.56 — +0.48 +0.43 +0.42 +0.42 —

NaI 6160.753 2.10 −1.26 +0.51 +0.51 — +0.13 +0.37 +0.10

AlI 6696.185 4.02 −1.58 +0.47 +0.37 +0.59 +0.09 +0.08 +0.33

AlI 6698.673 3.14 −1.65 +0.42 +0.14 +0.39 +0.29 +0.15 +0.47

MgI 5528.405 5.11 −2.10 — — — +0.14 — —

MgI 6318.720 5.11 −2.36 +0.41 +0.48 +0.58 +0.34 +0.49 +0.24

MgI 6319.242 5.11 −2.80 +0.45 +0.45 +0.53 — +0.40 +0.40

MgI 6765.450 5.75 −1.94 — +0.27 +0.47 +0.27 +0.55 +0.25

SiI 5665.555 4.92 −2.04 +0.48 +0.19 +0.38 +0.60 +0.51 +0.61

SiI 5666.690 5.62 −1.74 +0.41 +0.59 +0.50 +0.20 — +0.44

SiI 5690.425 4.93 −1.87 +0.07 +0.58 +0.12 — +0.43 +0.60

SiI 5948.545 5.08 −1.30 +0.21 +0.18 +0.13 +0.15 +0.54 +0.39

SiI 6142.494 5.62 −1.50 +0.24 +0.22 — +0.50 +0.02 +0.29

SiI 6145.020 5.61 −1.45 +0.49 +0.19 — — +0.23 +0.42

SiI 6155.142 5.62 −0.85 +0.05 +0.40 +0.20 +0.30 +0.09 +0.25

SiI 6237.328 5.61 −1.01 +0.43 +0.48 +0.31 +0.29 +0.43 +0.48

SiI 6243.823 5.61 −1.30 +0.53 +0.46 — +0.42 +0.46 +0.06

SiI 6414.987 5.87 −1.13 +0.12 +0.45 +0.42 +0.51 +0.67 +0.64

SiI 6721.844 5.86 −1.17 +0.60 +0.43 +0.52 +0.49 +0.40 +0.31

CaI 5601.277 2.53 −0.52 −0.33 +0.07 — — — +0.22

CaI 5867.562 2.93 −1.55 +0.50 +0.02 +0.49 +0.40 +0.41 +0.40

CaI 6156.030 2.52 −2.39 — — — +0.40 +0.56 +0.44

CaI 6161.295 2.51 −1.02 +0.26 — +0.50 −0.10 −0.09 +0.48

CaI 6166.440 2.52 −0.90 +0.37 +0.53 −0.39 +0.30 +0.27 +0.11

CaI 6169.044 2.52 −0.54 +0.45 +0.43 — +0.00 +0.11 +0.28

CaI 6169.564 2.52 −0.27 +0.55 +0.44 — — +0.15 +0.42



Section B.1. Palomar 6 235

Tabela B.2 – continued

Species λ χex loggf star 730 star 243 star 030 star 785 star 145 star 401

CaI 6439.080 2.52 +0.30 +0.24 +0.55 — — — +0.50

CaI 6455.605 2.52 −1.35 +0.47 +0.48 +0.43 +0.10 +0.40 +0.47

CaI 6464.679 2.52 −2.10 — — — +0.49 +0.37 +0.55

CaI 6493.788 2.52 −2.44 −0.07 +0.14 — — — −0.10

CaI 6499.654 2.52 −0.85 +0.36 +0.58 +0.15 — +0.20 +0.43

CaI 6572.779 0.00 −4.32 — — −0.16 +0.20 +0.32 +0.08

CaI 6717.687 2.71 −0.61 +0.46 — −0.23 −0.10 +0.33 +0.43

TiI 5689.459 2.29 −0.44 +0.39 +0.39 +0.42 +0.49 +0.44 +0.58

TiI 5866.449 1.07 −0.84 +0.36 +0.51 +0.12 +0.09 +0.48 +0.29

TiI 5922.108 1.05 −1.46 — +0.43 +0.32 +0.40 +0.27 +0.35

TiI 5941.750 1.05 −1.50 +0.49 +0.28 +0.50 +0.30 +0.23 +0.35

TiI 5965.825 1.88 −0.42 +0.54 +0.53 +0.47 +0.20 +0.30 +0.33

TiI 5978.539 1.87 −0.53 +0.02 +0.36 +0.46 +0.60 +0.56 +0.13

TiI 6064.623 1.05 −1.94 — +0.58 +0.48 — +0.44 +0.35

TiI 6091.169 2.27 −0.42 +0.36 +0.43 +0.49 +0.40 +0.49 +0.33

TiI 6126.214 1.07 −1.43 +0.46 +0.57 +0.36 +0.00 +0.33 +0.22

TiI 6258.110 1.44 −0.36 +0.11 +0.31 +0.22 +0.00 −0.08 −0.22

TiI 6261.106 1.43 −0.48 +0.57 +0.45 +0.13 +0.00 −0.04 +0.06

TiI 6303.767 1.44 −1.57 +0.56 +0.56 — +0.20 +0.57 +0.39

TiI 6312.240 1.46 −1.60 — — +0.09 +0.50 — +0.26

TiI 6336.113 1.44 −1.74 — +0.25 — — — +0.56

TiI 6508.150 1.43 −2.05 — +0.60 — — — +0.28

TiI 6554.238 1.44 −1.22 −0.10 +0.47 +0.33 +0.20 +0.37 +0.38

TiI 6556.077 1.46 −1.07 +0.25 — +0.42 +0.40 +0.46 +0.59

TiI 6599.113 0.90 −2.09 +0.52 +0.50 +0.46 +0.60 +0.68 +0.40

TiI 6743.127 0.90 −1.73 +0.39 +0.47 +0.10 +0.40 +0.49 +0.52

TiII 5418.751 1.58 −2.13 — — −0.23 — +0.20 +0.27

TiII 6491.580 2.06 −2.10 +0.18 +0.38 +0.23 −0.10 +0.00 +0.41

TiII 6559.576 2.05 −2.35 +0.14 +0.26 +0.48 +0.10 +0.26 —
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Tabela B.2 – continued

Species λ χex loggf star 730 star 243 star 030 star 785 star 145 star 401

TiII 6606.970 2.06 −2.85 +0.26 +0.39 +0.02 +0.40 +0.36 +0.23

YI 6435.004 0.07 −0.82 +0.02 +0.44 +1.12 +0.78 +0.89 −0.01

YII 6795.414 1.74 −1.19 +0.33 +0.23 +0.48 +0.84 +0.57 +0.09

ZrI 6127.475 0.15 −1.06 +0.71 +0.74 +0.58 +0.60 +0.85 +0.29

ZrI 6134.585 0.00 −1.42 +0.86 +0.37 +0.84 — +0.33 +0.48

ZrI 6140.535 0.52 −1.60 — +0.86 — — +0.95 +0.92

ZrI 6143.252 0.07 −1.10 +0.71 +0.75 +0.54 +0.63 +0.84 −0.04

BaII 5853.675 0.60 −1.10 — +0.52 — — — +0.36

BaII 6496.897 0.60 −0.32 — +0.65 — +0.23 — +0.62

LaII 6172.721 0.13 −2.25 +0.72 +0.03 +0.86 +0.78 +0.81 +0.32

LaII 6262.287 0.40 −1.60 +0.55 +0.30 — — +0.37 +0.16

LaII 6296.079 1.25 −0.84 +0.37 — — — — +0.19

LaII 6320.376 0.17 −1.56 +0.37 +0.29 +0.19 +0.52 +0.79 +0.21

LaII 6390.477 0.32 −1.41 +0.31 +0.10 +0.67 +0.77 +0.75 +0.30

EuII 6437.640 1.32 −0.32 +0.55 +0.50 +0.62 +0.65 +0.77 +0.57

EuII 6645.064 1.38 +0.12 +0.31 +0.12 +0.37 +0.82 +0.72 +0.59

B.2 NGC6355

Table B.3 - Equivalent widths for FeI and FeII lines.

Ion
λ χex

loggf
star 1539 star 1363 star 1176 star 133

[Å] [eV] [m Å]

FeII 5991.38 3.10 −3.65 — 21.1 33.4 17.0

FeII 6084.11 3.20 −3.97 — 16.8 13.2 11.8

FeII 6149.25 3.80 −2.69 — 62.4 28.1 17.5

FeII 6247.56 3.80 −2.30 41.6 — 47.1 29.9

FeII 6416.93 3.80 −2.64 29.7 34.6 25.5 18.1
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Tabela B.3 – continued

Ion λ χex loggf star 1539 star 1363 star 1176 star 133

FeII 6432.68 2.80 −3.57 42.2 42.4 40.2 33.1

FeII 6456.39 3.90 −2.31 — 48.2 61.7 40.8

FeII 6516.08 2.80 −3.31 53.8 17.1 47.0 42.7

FeI 5905.67 4.60 −0.73 — 30.3 — 27.2

FeI 5916.25 2.40 −2.97 87.1 — 55.6 —

FeI 5927.79 4.60 −1.09 — 23.7 17.1 19.3

FeI 5929.67 4.50 −1.41 23.9 17.7 14.4 16.0

FeI 5930.18 4.60 −0.23 66.3 62.6 46.7 49.9

FeI 5934.65 3.90 −1.17 70.3 — 49.0 54.2

FeI 5952.73 3.90 −1.44 50.9 49.2 38.9 43.3

FeI 5956.69 0.80 −4.60 119.8 — 78.4 —

FeI 5975.35 4.80 −0.69 33.6 35.7 23.6 —

FeI 5983.69 4.50 −1.47 — 44.4 34.0 —

FeI 5987.06 4.80 −0.43 39.7 — 25.3 —

FeI 6003.01 3.80 −1.12 74.9 74.5 54.2 65.3

FeI 6005.54 2.50 −3.61 37.8 41.6 19.2 24.9

FeI 6008.56 3.80 −0.99 84.3 — 60.1 67.0

FeI 6020.17 4.60 −0.27 73.3 — 50.0 54.5

FeI 6024.05 4.50 −0.12 82.2 85.0 67.4 72.0

FeI 6027.06 4.00 −1.09 55.7 57.8 34.0 38.6

FeI 6054.08 4.30 −2.31 — — — —

FeI 6065.48 2.60 −1.53 148.7 — 124.5 —

FeI 6078.49 4.80 −0.32 43.5 45.5 26.9 37.8

FeI 6079.01 4.60 −1.12 21.2 23.2 13.6 17.0

FeI 6082.71 2.20 −3.57 67.4 69.1 33.1 50.0

FeI 6093.64 4.60 −1.50 20.3 14.6 20.1 12.8

FeI 6137.70 2.50 −1.40 — — 137.6 —

FeI 6151.62 2.10 −3.30 82.6 — 53.7 72.7

FeI 6165.36 4.10 −1.47 32.4 30.1 16.6 17.6



238 Appendix B. Line lists

Tabela B.3 – continued

Ion λ χex loggf star 1539 star 1363 star 1176 star 133

FeI 6180.21 2.70 −2.59 82.4 84.8 49.6 64.2

FeI 6187.99 3.90 −1.72 40.0 37.3 22.4 31.8

FeI 6213.44 2.20 −2.48 122.4 — 96.4 —

FeI 6219.29 2.20 −2.43 131.7 — 109.2 —

FeI 6220.78 3.80 −2.46 10.3 — — —

FeI 6226.73 3.80 −2.22 17.5 23.1 13.8 16.1

FeI 6252.57 2.40 −1.69 — — 134.3 —

FeI 6254.25 2.20 −2.44 133.7 — 114.8 —

FeI 6265.14 2.10 −2.55 128.2 — 110.6 —

FeI 6270.23 2.80 −2.46 71.7 76.1 42.6 58.0

FeI 6271.28 3.30 −2.70 27.4 27.3 15.2 16.9

FeI 6301.51 3.60 −0.72 104.0 — 86.7 —

FeI 6311.50 2.80 −3.14 43.6 42.7 23.3 28.9

FeI 6315.31 4.10 −1.23 45.3 41.9 28.3 —

FeI 6315.81 4.00 −1.71 29.2 28.7 10.3 18.2

FeI 6335.34 2.20 −2.18 142.7 — 122.2 —

FeI 6344.16 2.40 −2.92 91.2 — 62.8 72.9

FeI 6380.75 4.10 −1.38 42.2 35.9 26.3 33.5

FeI 6392.54 2.20 −4.03 36.9 37.5 — —

FeI 6393.61 2.40 −1.43 — — 140.8 —

FeI 6411.66 3.60 −0.60 115.8 — 98.5 101.7

FeI 6419.94 4.70 −0.24 57.5 55.9 40.6 45.1

FeI 6421.35 2.20 −2.03 — — 132.5 —

FeI 6430.86 2.10 −2.01 — — 132.8 —

FeI 6469.21 4.80 −0.77 — — — —

FeI 6475.63 2.50 −2.94 82.5 — 52.8 68.5

FeI 6546.25 2.70 −1.54 136.6 — 116.3 —

FeI 6569.22 4.70 −0.42 54.3 55.8 42.5 46.4

FeI 6581.21 1.40 −4.68 52.6 63.0 16.7 39.1

FeI 6593.87 2.40 −2.42 125.9 — 98.8 —
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Tabela B.3 – continued

Ion λ χex loggf star 1539 star 1363 star 1176 star 133

FeI 6597.56 4.80 −1.07 21.0 21.1 — 14.9

FeI 6608.04 2.20 −4.03 37.5 37.9 — —

FeI 6609.12 2.50 −2.69 97.6 — 64.0 81.1

FeI 6627.54 4.50 −1.68 — 14.5 — 11.2

FeI 6678.00 2.60 −1.42 — — 134.5 —

Table B.4 - Line-by-line abundances ratios in the six UVES sample stars for the odd-Z (Na and Al),

alpha- (Mg, Si, Ca) + Ti, iron-peak (V, Mn, Co, Cu, and Zn), and heavy elements (Y, Zr, Ba, La, Nd,

and Eu).

Species
λ χex

loggf
star 1539 star 1363 star 1176 star 133

[Å] [eV] [X/Fe]

MgI 6318.720 5.11 −2.36 +0.35 +0.47 +0.38 +0.47

MgI 6319.242 5.11 −2.80 +0.32 +0.41 — —

SiI 5665.555 4.92 −2.04 +0.20 +0.20 +0.25 +0.40

SiI 5666.690 5.62 −1.74 — — +0.56 +0.10

SiI 5690.425 4.93 −1.87 +0.35 +0.33 +0.40 +0.30

SiI 5948.545 5.08 −1.30 +0.30 +0.30 +0.30 +0.35

SiI 6142.494 5.62 −1.50 +0.45 +0.30 — −0.40

SiI 6145.020 5.61 −1.45 +0.30 +0.50 +0.15 +0.50

SiI 6155.142 5.62 −0.85 +0.25 +0.19 +0.35 +0.30

SiI 6237.328 5.61 −1.01 +0.06 +0.14 +0.25 +0.35

SiI 6243.823 5.61 −1.30 +0.26 +0.21 +0.35 +0.35

SiI 6414.987 5.87 −1.13 +0.23 +0.06 +0.56 +0.10

SiI 6721.844 5.86 −1.17 — — +0.10 +0.69

CaI 5601.277 2.53 −0.52 +0.43 +0.47 +0.09 +0.68

CaI 5867.562 2.93 −1.55 +0.26 +0.31 +0.35 +0.45

CaI 6156.030 2.52 −2.39 — — — —
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Tabela B.4 – continued

Species λ χex loggf star 1539 star 1363 star 1176 star 133

CaI 6102.723 1.88 −0.79 +0.60 +0.50 +0.70 +0.70

CaI 6122.217 1.89 −0.20 +0.50 +0.50 +0.70 +0.70

CaI 6161.295 2.51 −1.02 +0.36 +0.44 +0.20 +0.44

CaI 6162.167 1.90 −1.09 +0.30 +0.30 +0.70 +0.50

CaI 6166.440 2.52 −0.90 +0.15 +0.30 +0.09 +0.30

CaI 6169.044 2.52 −0.54 +0.61 +0.50 +0.05 +0.55

CaI 6169.564 2.52 −0.27 +0.65 +0.58 +0.15 +0.71

CaI 6439.080 2.52 +0.30 +0.75 +0.55 +0.70 +0.75

CaI 6455.605 2.52 −1.35 +0.30 +0.44 +0.20 +0.53

CaI 6464.679 2.52 −2.10 +0.60 +0.70 +0.55 +0.70

CaI 6493.788 2.52 −2.44 +0.50 +0.50 +0.55 +0.50

CaI 6499.654 2.52 −0.85 +0.50 +0.50 +0.10 +0.50

CaI 6572.779 0.00 −4.32 +0.60 +0.49 −0.01 +0.55

CaI 6717.687 2.71 −0.61 +0.50 +0.50 +0.25 +0.50

TiI 5922.108 1.05 −1.46 +0.51 +0.55 +0.18 +0.48

TiI 5941.750 1.05 −1.50 +0.36 +0.40 +0.28 +0.33

TiI 5965.825 1.88 −0.42 +0.30 +0.45 +0.08 +0.34

TiI 5978.539 1.87 −0.53 +0.40 +0.30 +0.13 +0.37

TiI 6064.623 1.05 −1.94 +0.31 +0.30 +0.05 +0.28

TiI 6091.169 2.27 −0.42 +0.14 +0.26 — +0.23

TiI 6126.214 1.07 −1.43 +0.30 +0.40 +0.10 +0.30

TiI 6258.110 1.44 −0.36 +0.10 +0.15 +0.19 +0.10

TiI 6261.106 1.43 −0.48 +0.30 +0.50 +0.10 +0.30

TiI 6312.240 1.46 −1.60 +0.24 +0.40 +0.09 +0.35

TiI 6336.113 1.44 −1.74 +0.20 +0.34 +0.26 +0.18

TiI 6554.238 1.44 −1.22 +0.10 +0.15 +0.06 +0.26

TiI 6556.077 1.46 −1.07 +0.30 +0.40 +0.22 +0.32

TiI 6599.113 0.90 −2.09 +0.28 +0.30 +0.10 +0.30

TiI 6743.127 0.90 −1.73 +0.20 +0.26 −0.19 +0.20

TiII 5418.751 1.58 −2.13 +0.30 +0.38 +0.30 +0.43
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Tabela B.4 – continued

Species λ χex loggf star 1539 star 1363 star 1176 star 133

TiII 6491.580 2.06 −2.10 +0.30 +0.38 +0.30 +0.43

TiII 6559.576 2.05 −2.35 +0.26 +0.30 +0.23 +0.36

TiII 6606.970 2.06 −2.85 +0.35 +0.30 +0.31 +0.30

NaI 5682.633 2.10 −0.71 −0.32 −0.30 −0.00 +0.31

NaI 5688.194 2.10 −1.40 −0.35 −0.30 −0.30 +0.20

NaI 6154.230 2.10 −1.56 −0.15 −0.00 — +0.30

NaI 6160.753 2.10 −1.26 −0.35 −0.00 −0.35 +0.00

AlI 6696.185 4.02 −1.58 −0.30 −0.30 < +0.30 < +0.30

AlI 6698.673 3.14 −1.65 −0.29 +0.00 < +0.30 < +0.30

VI 5703.560 1.05 −0.21 +0.05 +0.17 — +0.14

VI 6081.440 1.05 −0.58 −0.02 +0.17 — +0.02

VI 6090.220 1.08 −0.16 +0.05 +0.14 −0.32 +0.08

VI 6119.520 1.06 −0.47 −0.05 +0.08 −0.26 −0.05

VI 6199.190 0.29 −1.48 +0.05 +0.17 — −0.11

VI 6243.100 0.30 −0.88 +0.11 +0.38 — +0.05

VI 6251.820 0.29 −1.44 +0.11 +0.32 −0.41 −0.05

VI 6274.650 0.27 −1.72 −0.05 +0.11 — −0.08

MnI 5394.669 0.00 −3.55 −0.40 −0.50 −0.40 −0.50

MnI 6013.513 3.07 −0.40 −0.30 −0.25 −0.30 −0.30

MnI 6016.640 3.07 −0.22 −0.35 −0.50 −0.60 −0.40

MnI 6021.800 3.08 −0.10 −0.30 −0.45 −0.25 −0.50

CoI 5212.691 3.51 −0.11 — +0.15 — +0.15

CoI 5301.047 1.71 −2.00 +0.00 +0.10 — +0.10

CoI 5342.708 4.02 +0.69 +0.05 +0.05 — +0.00

CoI 5454.572 4.07 +0.24 — +0.10 +0.20 +0.10

CoI 5647.234 2.28 −1.56 +0.05 +0.05 +0.00 +0.30

CoI 6188.996 1.71 −2.45 +0.00 +0.00 +0.00 +0.30

CuI 5105.537 1.39 −1.52 −0.40 −0.15 −0.30 −0.35

CuI 5218.197 3.82 +0.00 −0.30 +0.00 +0.05 +0.00
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Tabela B.4 – continued

Species λ χex loggf star 1539 star 1363 star 1176 star 133

ZnI 6362.339 5.79 −0.30 −0.30 −0.20 +0.30 −0.10

YI 6435.004 0.07 −0.82 −0.30 −0.32 −0.30 +0.00

YII 6795.414 1.74 −1.19 +0.20 +0.00 +0.00 —

ZrI 6127.475 0.15 −1.06 −0.08 +0.05 — −0.08

ZrI 6134.585 0.00 −1.42 +0.05 +0.20 — +0.23

ZrI 6140.535 0.52 −1.60 — — — −0.50

ZrI 6143.252 0.07 −1.10 −0.14 +0.02 — −0.08

BaII 5853.675 0.60 −1.10 +0.92 +1.00 +1.00 +1.05

BaII 6141.713 0.70 −0.08 +0.60 +0.80 +0.65 +0.80

BaII 6496.897 0.60 −0.32 +1.00 +1.00 +1.10 +1.20

LaII 6262.287 0.40 −1.60 +0.00 +0.00 +0.17 +0.26

LaII 6320.376 0.17 −1.56 +0.00 +0.00 +0.14 +0.30

LaII 6390.477 0.32 −1.41 +0.25 +0.17 +0.00 +0.26

NdII 6740.078 0.06 −1.53 +0.45 +0.15 +0.17 −0.30

NdII 6790.372 0.18 −1.77 +0.55 +0.40 +0.00 −0.30

NdII 6549.525 0.06 −2.01 +0.40 +0.30 +0.00 —

EuII 6437.640 1.32 −0.32 +0.55 +0.55 +0.65 +0.50

EuII 6645.064 1.38 +0.12 +0.50 +0.55 +0.50 +0.70
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