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Resumo

Binárias de buracos negros em raio X são conhecidas por apresentarem diferentes esta-

dos espectrais ao longo de suas vidas. Esses estados podem ser explicadas pela presença de

um disco quente e geometricamente espesso para o estado duro e um disco mais frio e fino

para o estado mole. Entretanto, o grau em que a corona quente a o disco fino coexistem

não é bem entendido. Em particular, não é claro como o disco interno do disco fino e as

propriedades da corona (e.g. tamanho e temperatura) estão relacionadas às propriedades

fundamental do sistema como a taxa de acreção do buraco negro Ṁ . Neste trabalho, si-

mulações hidrodinâmicas de discos de acreção ao redor de buracos negros estelares com

resfriamento radiativo em duas dimensões foram realizadas para investigar a interação en-

tre o disco fino e a corona quente e a relação entre o raio de truncamento Rtr e Ṁ . As

contribuições de processos de resfriamento como Bremsstrahlung, śıncrotron e śıncrotron

comptonizado foram incorporados na equação de energia. Os principais resultados deste

trabalho são (i) a nova relação Rtr ∝ ṁ−1/2 conectando as duas propriedades básicas de

buracos negros acretando e (ii) a diminuição da temperatura e da extensão espacial da co-

rona com o aumento de Ṁ . Espera-se que estes resultados lancem luz sobre as observações

de binárias de buracos negros.





Abstract

Black hole (BH) X-ray binaries are characterized by different spectral states along their

lives. These states can be explained by the presence of a hot, geometrically thick corona

for the hard state and a colder thin disk for the soft state. However, the degree to which

the hot corona and the thin accretion disk coexist is not well understood. In particular, it

is unclear how the inner radius of the thin disk and the properties of the hot corona (e.g.

size and temperature) are related to the fundamental system properties such as the BH

mass accretion rate Ṁ . In this work, two-dimensional hydrodynamical simulations with

radiative cooling of accretion flows around stellar black holes were performed to investigate

the interplay between the thin disk and hot corona and the relation between the truncation

radius Rtr and Ṁ . The contribution of Bremsstrahlung, synchrotron and comptonized

synchrotron cooling processes were incorporated in the energy equation. The main results

of this work are (i) the new relation Rtr ∝ ṁ−1/2 connecting two basic properties of

accreting BHs and (ii) the decrease of both temperature and spatial extent of the corona

with increasing Ṁ . These results are expected to shed light on observations of BH binaries.
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Chapter 1

Introduction

Black holes (BHs) are regions of the spacetime where gravitational potential wells are

so deep that not even light can escape from it. They are not only expected from general

relativity (GR), but actually exist in nature (Frolov and Novikov, 1998). Within the last

decades, with the improvement in the observational astronomy, BHs have called a lot of

attention due to their impressive effects in the universe. They are associated with very

powerful astrophysical events such as gamma-ray bursts, active galactic nuclei (AGN), su-

pernovas, X-ray binary systems, and others (Meier, 2012). Some of the most recent events

associated with BHs are the gravitational waves detected by LIGO collaboration (Abbott

et al., 2016), which opened a whole new era for astrophysics of BH. The investigation of

these events are essential to understand BHs, gravity, and the universe itself.

The most simple solution to a BH is the Schwarzschild solution, which are BHs that

have no rotation and which radius can be defined as RS = 2GM/c2, where G is the

gravitational constant, M is the mass of the BH and c is the speed of light. Using this

solution, the only parameter that matters for a BH is its mass, but in the real universe

their rotation can be described by the spin parameter a ≡ J/Mc, where J is the angular

momentum of the BH and Mc is the maximum angular momentum permitted. Thus, for

describing a BH the main parameters are: mass and spin (Hartle, 2003). There are some

solutions that consider the charge of the BH (Newman et al., 1965), but we do not take it

into account because the surrounding plasma would rapidly neutralize its charge.

There are two categories of BHs: the supermassive (SMBH) and stellar mass ones.

While SMBHs have masses of more than ten millions of solar masses, a stellar BH usually

has a mass of five to several tens of solar masses. Between these two mass ranges we can

find the intermediate mass BHs. However, until today there is no firm observational proof
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of their existence (Greene et al., 2019). The focus of this work is on stellar mass BHs in

binary systems.

The strongest evidence for the existence of stellar BHs come from observations of X-

ray binary systems. Dynamical measurements of the orbit indicate the presence of massive

objects with masses above ≈ 2M� which is the maximum mass for a neutron star, but there

is no evidence for emission from a solid surface (e.g Ozel et al., 2012). The pioneer candidate

BH X-ray binary (BHB) system detected was Cygnus X-1 (Bowyer et al., 1965). After

confirming that the object in question was indeed a BHB system, astronomers discovered

many tens of them in the Milky Way and throughout the local universe (McClintock and

Remillard, 2009).

BHBs are complex systems with variability timescales ranging from months to many

years. They are essential targets for astronomy since they are laboratories for learning

more about the BH accretion and its effects. It is likely that the behavior of stellar BHs

scales up to SMBHs in AGNs (Merloni et al., 2003; Fender and Belloni, 2012; Nemmen

et al., 2012). In fact, there are some authors that propose that the bright AGN are analogy

to BHBs in the soft state, while low-luminosity AGN are correspondent to BHBs in the

hard state (Ho, 2008; Antonucci, 2012; Done, 2014). If this is the case, it could also be

a laboratory for us to understand the growth of galaxies, because while SMBHs—which

are encountered in most, if not in all, galaxies—have very large timescales, BHBs have

humanly accessible ones, and it is known that SMBHs play a crucial role in their galaxies’

evolution by releasing energy. This released energy may have the effect of quenching the

star formation by heating or ejecting the material of the galaxy (Cattaneo et al., 2009).

Thus, it would be possible to extrapolate the results to SMBHs and, therefore, to study

galaxy evolution.

Over time, these systems display different spectral features (cf. section 1.2) correspon-

ding to distinct states. The issue here is how and why these features change with time.

What is the physics behind the state transitions of the accretion flow? One appealing

possibility is that the state transitions are related to the temporal evolution of radiative

cooling in the disk.
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1.1 Accretion physics

Because of angular momentum conservation, the matter that falls into the BH will

form a disk-like structure. For this matter to be accreted by the BH we need a dissipa-

tion mechanism that removes angular momentum from the flow. Magnetic forces in an

ionized plasma are the favored mechanism that supplies this friction, efficiently transpor-

ting angular momentum outwards and allowing accretion to proceed (Balbus and Hawley,

1998).

This accretion process also converts some of the gravitational energy into heat and can

release part of its rest mass, providing the main power source of AGNs, BHBs and gamma-

ray bursts (Meier, 2012). An accretion flow is characterized primarily by the efficiency of

the conversion of rest-mass energy associated with the accreting matter into radiation:

ε = L/Ṁc2 where L is the luminosity produced by the accretion flow and Ṁ is the mass

accretion rate of the BH, which means that Ṁc2 is the rate at which energy is accreted

onto the BH.

The geometry and dynamics of the accretion flow is sensitive to this efficiency, which is

commonly parameterized in terms of the accretion rate in Eddington units ṁ ≡ Ṁ/ṀEdd

where ṀEdd ≡ 4πGMmp/(ηcσT) is the Eddington accretion rate, M is the mass of the

BH, mp is the proton mass, σT is the Thompson cross section and η is usually fixed at 0.1

(Frank et al., 2002). Thus, based on the radiative efficiency and the value of ṁ we can

divide the accretion flow into three main different types:

Radiatively inefficient accretion flow at low ṁ: Due to the low densities, meaning low Ṁ—

more precisely, ṁ . 0.01—the gas cannot radiate its thermal energy efficiently and

becomes extremely hot (T ∼ 1010−12 K). This causes the accretion flow to puff up,

becoming geometrically thick (H ∼ R, where H is the scale height of the accretion

flow) and optically thin with ε� 1 (Nemmen et al., 2014; Yuan and Narayan, 2014).

From now on we will refer to this kind of accretion a RIAF.

Thin Accretion disks: At higher densities, which means moderately high accretion rate

(0.01 . ṁ . 1) the cooling time is shorter than the accretion time scale. Thus, the

gas cools efficiently (usually ε ∼ 0.1), becomes cold and collapses into a geometrically

thin accretion disk (H � R; Shakura and Sunyaev, 1973; Nemmen and Brotherton,

2010).
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RIAF at high ṁ: because of the high densities associated with super-Eddington accretion

rates (ṁ & 1), the gas is optically thick and the radiation gets trapped in the gas,

not being able to radiate. Thus, the flow gets very hot and becomes geometrically

thick (Abramowicz et al., 1998). This kind of accretion flow is out of the scope of this

work because our work does not include radiation pressure, which is very important

in this regime.

In Figure 1.1 the different states of the accretion flow as a function of ṁ are illustrated.

In this cartoon, the high-Ṁ RIAF is not shown. As mentioned before, it is possible to

see that the so called “High State”corresponds to the thin accretion disk while the “Low

State”as well as the “Quiescent State”correspond to the RIAF state at low accretion rates.

Figure 1.1: The different states of BH accretion around stellar mass BHs with the corres-

ponding accretion rates in Eddington units. Image taken from Narayan et al. (1998).
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1.2 State transition in BHBs

BHBs are systems where a BH is fed by a companion star with a mass of about 1M�

(Figure 1.2). The mass transfer occurs through the L1 point in the Roche Lobe, which

is the gravitational equipotential surface found in the solution of a restricted three-body

problem (Figure 1.3).

Figure 1.2: Artistic impression of a BHB. The components of the system are based on the

system GX 339-4. Image taken from Fender and Belloni (2012).

Now that the main kinds of accretion flows have been presented, it is possible to

discuss the main subject of this work: black hole binaries. These systems are known to be

characterized by at least two distinct states characterized by dramatically different spectral

and timing properties (e.g. Remillard and McClintock 2006; Fender and Belloni 2012).

Generally, as the source enters its outburst it goes through the so-called hard state

which is lower in luminosity and has a hard power-law spectrum. The thermal component is

suppressed and the accretion flow is explained as a RIAF. As the system gets more luminous

it enters the soft state, in which the spectrum is now dominated by a thermal component.

This multiblackbody spectrum can be explained as a thin accretion disk. During the

transition there is a state where both the hard and soft components are comparable: the

intermediate state.

The BHB states can be understood in the context of the widely accepted truncated
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Figure 1.3: Example of the Roche lobe in a binary system, where the Lagrangian points are

displayed. The most important point is L1 at which the BH accretes matter from the compa-

nion. Credit: https://www.daviddarling.info/encyclopedia/R/Roche_lobe.html, ac-

cessed on January 6th 2020.

accretion-jet model (Esin et al., 1997; Yuan et al., 2005; Plant et al., 2014; Ingram and

Done, 2011). In this model, the thin accretion disk is believed to be truncated at cer-

tain truncation radius Rtr inside of which it transitions into a RIAF. There is also a jet

component launched when the system is in hard or intermediate state.

Figure 1.4 shows the evolution of a BHB as it evolves and goes through each state,

with the different components: disk, jet and wind. Before the outburst the sources are in

quiescence state and because of that they are rarely monitored, so the first thing detected

is an increase of the luminosity of the system (A −→ B). This happens because initially the

accretion rate of the BH is lower than the mass transfer from the companion star, which

means that the accretion flow starts getting denser and, consequently, the accretion rate

increases. That increase of accretion rate causes an increase in the luminosity. Meanwhile,

the thin accretion disk starts getting closer to the BH and the thermal spectra becomes

important (B −→ C). The intermediate state has been reached.

As the truncation radius decreases, the thermal component becomes dominant and the

system transitions to the soft state (C −→ D). Now, with the dense and thin accretion disk

very close to the BH (Rtr ∼ RISCO, where RISCO is the innermost stable circular orbit)

the accretion rate is greater than the mass transfer and the total mass of the disk starts

dropping. As the gas gets accreted the inner parts of the thin accretion disk become less

dense and the cooling time becomes bigger than the viscous time (Narayan and Yi, 1995;

https://www.daviddarling.info/encyclopedia/R/Roche_lobe.html
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Figure 1.4: Hardness-intensity diagram for a BHB. The horizontal axis represents the X-ray

hardness and the vertical one is the X-ray luminosity. The observations correspond to GX

339-4. Credit: Fender and Belloni (2012).

Yuan and Narayan, 2014), so the gas becomes hotter and puffs up into a hot, geometrically

thick and optically thin corona (i.e. the RIAF). Thus, the accretion rate drops along with

an increase of Rtr, which means a drop in luminosity until it transitions back to the hard

state and the cycle begins again (D −→ E −→ F −→ A).

Different features are observed along with each part of the cycle. In the hard state (A

−→ B), it is seen that the characteristic time scales of quasi-periodic oscillations (QPOs)

decrease and the jets appear. In the transition (B −→ D), the characteristic frequencies

of variability rises until it is replaced by a single QPO. The jet, on the other hand, starts

disappearing. In the soft state (D −→ E) the QPOs disappear and the jets fade away.

Finally, in the return to the quiescent state (E−→ F) the jet reappear and the characteristic

time scale of variability starts rising. A more detailed description of the observational
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characteristics of BHBs can be found in Fender and Belloni (2012)

The main purpose of this work is to study the dependence of the truncation radius on

the mass accretion rate and the dynamics of a two phase disk (RIAF + thin disk). In

order to address this, hydrodynamical simulations were performed, implementing radia-

tive cooling including the relevant processes for BHBs (breemstrahlung, synchrotron and

comptonized synchrotron) by adding extra terms to the energy equation, so that it would

be possible to calculate the energy loss due to these cooling processes, which plays a major

role in truncating the disk.

This work is organized as follows: in Chapter 2, the methods and equations for the HD

simulations will be described, as well as the implementation of the radiative cooling. In

Chapter 3 the results from the analysis of the simulations will be presented. In Chapter 4

the results and the caveats of the simulations will be discussed. Finally, in Chapter 5 all

results will be summarized and future perspectives will be presented.



Chapter 2

Methods

In this work, numerical simulation of accretion flows will be performed following the

prescription of Papaloizou and Pringle (1984) (cf. section 2.4), where the flow is initi-

ally a torus in order to mimic the RIAF state. The implementation of energy loss via

breemstrahlung, synchrotron and Comptonized synchrotron cooling is described as well.

The summary of this chapter is as follows. The basic equations of hydrodynamics and

the numerical solver will be presented in sections 2.1 and 2.2. An approximation for the

cooling will be presented in section 2.3. The pseudo-Newtonian potential of Paczynsky and

Wiita (1980) (cf. section 2.1) will be used. This is a good approximation to a Schwarzs-

child BH. Since our simulations are purely hydrodynamical (HD)—i.e. there will be no

magnetic fields—the magnetorotational instability (MRI; Balbus and Hawley, 1998) which

is responsible for the energy and angular momentum dissipation will be incorporated by

an appropriate viscous stress tensor prescription (section 2.4).

2.1 Equations of hydrodynamics

For this work, the code PLUTO is adopted which solves the equations of fluid dynamics

in spherical coordinates (R, θ, φ):

dρ

dt
+ ρ∇ · v = 0, (2.1)

ρ
dv

dt
= −∇Ptot − ρ∇φ+∇ · T , (2.2)

ρ
d(e/ρ)

dt
= −Pgas∇ · v + T 2/µ−Q−

rad. (2.3)
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Here, ρ is the mass density, v is the gas velocity, Ptot ≡ Pgas + Pmag is the total pressure

(gas + magnetic), e is the internal energy density, T is the viscous stress tensor, and

φ = − GM

R−Rs

(2.4)

is the pseudo-Newtonian gravitational potential adopted in the simulations (Paczynsky

and Wiita, 1980). The radiative cooling rate Q−
rad is incorporated in the energy equation

2.3. This will be described in more details in section 2.3.

Magnetohydrodynamical turbulence driven by MRI is expected in accretion flow simu-

lations (Balbus and Hawley, 1998; Porth et al., 2019; Stone and Pringle, 2001). In this

case, the simulations are purely HD. A simpler approach to incorporate angular momentum

dissipation is adopted: the α-viscosity of Shakura and Sunyaev (1973). Concretely, this

consists of taking into account a non-zero azimuthal component of T is included, following

Stone et al. (1999):

Trφ = µR
∂

∂R

(vφ
R

)
, (2.5)

Tθφ =
µ sin θ

R

∂

∂θ

( vφ
sin θ

)
. (2.6)

Here, µ = νρ is the viscosity coefficient and ν is the kinematic viscosity coefficient.

In this work, the prescription used for the kinematic coefficient is the “K-model”in

Stone et al. (1999), which corresponds to ν = αr1/2 where α is a constant similar to the

standard α-prescription of Shakura and Sunyaev (1973). Here, α = 0.01 is set which is a

common and well discussed choice (Wu et al., 2016; Das and Sharma, 2013).

2.2 PLUTO

2.2.1 Numerical methods

All simulations were done using the code PLUTO (Mignone et al., 2007). PLUTO is a

finite-volume, shock-capturing code designed to integrate the system of conservation laws

∂U

∂t
= −∇ · T (U) + S(U), (2.7)

where U encompass the conservative quantities, T (U) is a rank-2 tensor representing

the flux of the quantities and S(U) represents the source terms, such as gravity and the

radiative cooling rate.
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The components of U are the primary variables that will be updated. The fluxes

are more easily computed using a different set of primitive variables contained in the

primitive vector V = (ρ,v, p)T , where p is the pressure. The transformation U → V is

beneficial because the interpolation on the primitive variables enforces physical constraints

as pressure positivity and sub-luminal speed in the relativistic case. Besides that, as the

flux is more easily computed using V , the Riemann problem will be facilitated.

Figure 2.1 summarizes the steps taken by PLUTO, which are also listed below (e.g. Toro

2013):

1. The conversion from conserved variables into primitive ones;

2. The values of primitive variables are computed at the edges of the cells;

3. The Riemann problem is solved using one of the Riemann Solvers available in the

code (for the simulations in this work, hll will be used; see Toro et al., 1994; Batten

et al., 1997, for HD equations);

4. A new temporal state is calculated

.

Figure 2.1: Flowchart of the conversion of U to V in PLUTO. Image taken from Mignone

et al. (2007).

PLUTO uses a Godunov-type scheme to solve the hyperbolic systems of partial differential

equations 1. This method is a conservative finite-volume method which solves the exact

or approximate Riemann problems at each inter-cell boundary. Riemann problem shows

1 The equations of hydrodynamics are hyperbolic (Toro, 2013).
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up naturally in the finite volume method when solving conservation laws such as equation

2.7, due to the discretization of the grid.

For simplicity, the Godunov scheme will be presented in only one dimension and without

including the source terms; it can easily be extended to higher dimensions and the imple-

mentation of the source terms is trivial. Figure 2.2 shows a one dimensional grid which

will be used to present the Godunov method.

Figure 2.2: One dimensional grid illustrating the derivation of the Godunov

method. Image taken from https://numericalastrophysics.files.wordpress.com/

2018/08/cap5-godunov.pdf (lecture notes for numerical astrophysics course, IAG USP).

The exact expression of the Godunov scheme is given by

Un+1
i = Un

i +
∆t

∆x

(
F i−1/2 − F i+1/2

)
, (2.8)

where F i±1/2 is the flux between cells. To compute this flux, a Riemann solver is needed.

Another method is needed to solve for the time step. Here, the 3rd-order Runge-Kutta

method was used. For this method, the increment between two consecutive steps in time,

∆tn = tn+1 − tn, needs to be calculated. Using L as the discrete spatial operator (right

hand side of Eq. 2.7), Un+1 is given by

U ∗ = Un + ∆tnL(Un),

U ∗∗ =
1

4
(3Un + U ∗ + ∆tnL(U ∗)),

Un+1 =
1

3
(Un + 2U ∗∗ + 2∆tnL(U ∗∗)).

(2.9)

https://numericalastrophysics.files.wordpress.com/2018/08/cap5-godunov.pdf
https://numericalastrophysics.files.wordpress.com/2018/08/cap5-godunov.pdf
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2.2.2 Hydrodynamical module

For the HD module used in this work, PLUTO solves the equations (2.1)-(2.3) which can

be formulated as

∂

∂t


ρ

m

E + ρΦ

+∇ ·


ρv

mv + pI

(E + p+ ρΦ)v


T

=


0

−ρ∇Φ + ρg

m · g

 (2.10)

where m = ρv is the momentum density, E = ρe + m2/2ρ is the total energy and I

is the unit tensor. Two source terms need to be added to the right hand side of this

equation: the viscous stress tensor—which incorporates the angular momentum removal

through the α-viscosity—and the radiative cooling rate—which include the energy losses

due to radiation.

The viscous stress tensor T is added as ∇ · T . The radiative cooling rate will be

described in the next subsection.

2.2.3 Radiative cooling rate module

The cooling module of PLUTO allows the inclusion of time-dependent optically thin ra-

diative losses. This means that radiation pressure will not be considered in the momentum

equation such as in Sadowski et al. (2014), McKinney et al. (2014) and Ryan et al. (2015).

In addition, radiation transfer will not be taken into account into detail. Instead, it will

be incorporated in an approximated, first-order fashion.

This is implemented following a fractional step formalism in which the hydrodynamical

evolution and the source step are solved separately using operator splitting. This splitting

method separates the original equation into two parts over a time step, computes them

separately and then combines them to yield one solution to the original equation (Glowinski

et al., 2016, Chapter 3). Thus, PLUTO solves the internal energy equation

∂(ρe)

∂t
= −Q−

rad(ne, R, Te) (2.11)

where R is the distance from the BH, Te is the electron temperature and ne = ρ/µe/mu is

the electron number density, where µe = 1.14 and mu is the atomic mass unit. In fact, in

the original PLUTO code it was not possible to implement a distance dependent cooling rate

because of how the code was structured. It was necessary to make some important changes
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to the radiative cooling portion of the code. This required some time for implementation

and successful testing.

The method used to compute equation 2.11 was the standard one, as will be explained

below. Firstly, a collection of values for Q−
rad(ne, R, Te) were precalculated (cf. section 2.3

for the approximations used) using a range of values for each parameter: 1011 ≤ ne/cm−3 ≤

1020, 1.3Rs ≤ R ≤ 400Rs and 106 ≤ Te/K ≤ 1012 which are typical values for the accretion

flows in BHBs. For each parameter, 100 values were generated thereby producing a table

with 106 values of cooling rate in units of erg s−1 cm−3. These values were equally spaced

in the log space. Secondly, it was necessary to write codes that generate a lookup table

with the radiative cooling rates tabulated as a function of ne, R and Te. The lookup-table

approach is faster than computing Q−
rad on-the-fly during the HD simulations. Finally, a

linear interpolation was used to get the values of Q−
rad in points of the parameter of space

in-between tabulated values. By doing this, the code is able to solve equation 2.11 and

advance to the next time steps of the simulations.

An important point to stress here is that both the radiative cooling and viscosity are

only taken into account within the accretion flow. In order to do that, a tracer variable

available in PLUTO is used which tracks the region occupied by the accretion flow. Using

the tracer variable, it is possible to distinguish the accretion flow from the low-density

artificial atmosphere. Basically, this variable is set to ∼ 1 in the accretion flow and � 1

in the rest of the domain.

2.3 Radiative cooling equation

Due to the difference in mass between ions and electron, the gas cooling occurs primarily

via electrons through a variety of processes. Here, the main radiative cooling processes

that take place in hot accretion flows are incorporated following Narayan and Yi (1995).

The total radiative cooling rate will be expressed as

Q−
rad = Q−

brem +Q−
syn +Q−

ssc (2.12)

where Q−
brem is the bremsstrahlung emission including both the electron-ion and electron-

electron interactions, Q−
syn is the optically thin synchrotron emission and Q−

ssc is the radi-

ative cooling due to the comptonized synchrotron emission.
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2.3.1 Bremsstrahlung

The bremsstrahlung emission is given by Narayan and Yi (1995) as

Q−
brem = Q−

ei +Q−
ee (2.13)

where the subscript ei and ee denote the electron-ion and the electron-electron rates.

Here, the final equations were derived by Stepney and Guilbert (1983). For the formulas

of electron-ion breemstrahlung, it is assumed that the temperature of the protons is small

enough to neglect its motion and the electrons follow a Maxwellian energy distribution.

The spectral emissivity is integrated and the fit results in the following equations

Q−
ei = 1.48× 10−22n2

e × F (θe), (2.14)

which is given in units of erg cm−3 s−1, where F (θe) is given by different expressions

depending on the value of θe ≡ kTe/mec
2:

F (θe) =


9θe
2π

[ln (1.123θe + 0.48) + 1.5] if θe < 1,

4
(

2θe
π3

)1/2
(1 + 1.781θ1.34

e ) if θe > 1.

For the electron-electron rate, Stepney and Guilbert (1983) gives the photon spectrum

and integrate it with an approximated cross-section, resulting in the equations below.

Q−
ee =

2.56× 10−22n2
eθ

3/2
e

(
1 + 1.1θe + θ2

e − 1.25θ
5/2
e

)
if θe < 1,

3.40× 10−22n2
eθe (ln 1.123θe + 1.28) if θe > 1.

According to Stepney and Guilbert (1983), with all the approximations the formulas

above incur in errors of less than 5 per cent. Note that there are some constants here

that are different from Stepney and Guilbert (1983); these changes were implemented in

Narayan and Yi (1995) to ensure smoothness across θe = 1.

2.3.2 Synchrotron

For the derivation of the synchrotron formula, the optically thin limit is adopted accor-

ding to which the spectrum of synchrotron emission is given by a relativistic Maxwellian

distribution of electrons (Pacholczyk, 1970). It is assumed that the angle between the velo-

city vector of the electron and the direction of the local magnetic field follows an isotropic
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distribution, an assumption that introduces an error of less than 2 per cent (Narayan and

Yi, 1995).

In the optically thin limit of synchrotron emission, the emission is assumed to be self-

absorbed below a critical frequency νc. νc is estimated by assuming that at each radius R,

the synchrotron emission occurs over a volume 2×H×∆s where H is the scale height and

∆s is the surface area, following Wu et al. 2016. Equating the synchrotron emission to the

Rayleigh-Jeans blackbody emission results in a transcendental equation for xm given by

exp
(
1.8899x1/3

m

)
= 2.49× 10−10 12πneH

B

1

θ3
eK2(1/θe)

(
1

x
7/6
m

+
0.40

x
17/12
m

+
0.5316

x
5/3
m

)
(2.15)

where K2 is the modified Bessel’s function. This equation is solved at each H (i.e. each

R) to obtain xm; afterwards, it is then used to calculate νc from equation

νc =
3

2
νoθ

2
exm (2.16)

where νo = 2.80× 106B Hz and B is given in units of Gauss.

To obtain the cooling rate per unit volume from synchrotron radiation, the total cooling

over a shell extending from R to R+dR is equated with the net flux reaching an observer at

infinity from this shell and assuming that at each frequency ν the observer sees a blackbody

source with radius determined by the condition ν = νc(R). This results in

Q−
syn =

2π

3c2
kTe(R)

dν3
c (R)

dR
≈ 2π

3c2
kTe(R)

ν3
c (R)

R
. (2.17)

Equation 2.17 is written in a form that explicitly ensures that the integral of Q−
syn over the

entire flow is equal to the total cooling radiation that reaches infinity. It is also written in

a way to simplify the computation, avoiding the derivative dν3
c (R)/dR, which would cause

the integration to be much slower.

2.3.3 Comptonization of Synchrotron Radiation

In this work the nonlocal radiative transfer effects in the optically thin mode are ne-

glected. It is very important to take into account the scattering of the photons by hot

thermal electrons, specially in the inner regions of the accretion flow.

The Compton cooling is mainly characterized by the comptonized energy enhancement

factor η. This parameter is defined as the average change in energy of a photon between
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injection and escape. An approximate description for η is given by Dermer et al. (1991) as

η = 1 +
P (A− 1)

1− PA

[
1−

(
x

3θe

)−1− lnP
lnA

]
(2.18)

where x ≡ hν
mec2

, P is the probability of an escaping photon to be scattered,

P = 1− exp (−τes), (2.19)

τes = 2neσTH the scattering optical depth and A is the mean amplification factor in the

energy of a scattered photon when the scattering electrons have a Maxwellian velocity

distribution of temperature θe,

A = 1 + 4θe + 16θ2
e . (2.20)

In the synchrotron cooling model, the escaping radiation is emitted mostly at the

local self-absorption cutoff frequency νc. The Comptonization of this radiation gives an

additional cooling rate of

Q−
ssc = Q−

syn [η(νc, τes)− 1] . (2.21)

2.3.4 Optically thick cooling

Since the interest of this work is to understand the interplay between the two possible

accretion flows in BHBs—RIAF + thin disk—it is important to compute the radiative

cooling of the higher density and colder regions: the thin accretion disk. Thin disks

are geometrically thin and optically thick, thus they radiate like a modified, multicolor

blackbody.

To take this into account, the effective surface flux from a thin disk is needed. An

improved expression for the net volume cooling rate of the accreting gas of Hubeny (1990)

is adopted,

Q−
rad =

4σT 4
e

H

1

3τ/2 +
√

3 + 1/τabs
. (2.22)

Here, τ = τabs + τes is the total optical depth and τabs can be approximated as

τabs =
H

4σT 4
e

(
Q−
brem +Q−

syn +Q−
ssc

)
. (2.23)

(cf. Eq. 3.33 from Narayan and Yi 1995). Note that this expression is valid for both

optically thick and thin limits, because when τ � 1, Eq. 2.22 results in the appropriate

blackbody limit. On the other hand, when τ � 1, Eq. 2.22 becomes exactly Eq. 2.12.

Thus, Eq. 2.22 is the final equation that is used to compute the radiative cooling.
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2.4 Initial conditions

2.4.1 Units and grid

The units adopted are such that G = M = 1 and c =
√

2, which result in Rs = 1.

Distances in the simulations are parameterized in terms of the Schwarzschild radius. For

the analysis of all simulations, M = 10M� was adopted which is suitable for the BHBs.

The grid used in all simulations is a logarithmic grid in R bounded by 1.3Rs < R <

400Rs and a uniform grid in θ bounded by 2◦ < θ < 178◦. As the spin parameter a∗ does

not seem to be a crucial parameter to understand BHB state transitions (Remillard and

McClintock, 2006) and this work is not concerned with jet formation, it is appropriate to

consider only Schwarzschild BHs—which are adopted in this work.

The spatial grid is divided such that the resolution is concentrated in the accretion flow

domain. Thus, the θ-grid is not uniform and chosen as

Ncell in the θ-direction =

 10, if θ < 15◦ or θ > 165◦

380, if 15◦ < θ < 165◦
(2.24)

which gives more focus on the equatorial plane than at the poles, where Ncell is the number

of cells in the θ-direction.

The grid resolution is 400× 400. The reason why the resolution in θ is slightly higher

here compared to some of the other works in the literature is the following. When the

radiative cooling turns on and if the density is large enough, the flow will collapse into a

dense and cold thin disk. Therefore, more resolution in the equatorial plane is needed to

properly model the dynamics of this region. The whole grid can be seen in Figure 2.3. A

zoomed-in version showing the inner parts of the grid is displayed in Figure 2.4.

2.4.2 Initial torus

The initial condition for the torus is a stationary torus in dynamical equilibrium pro-

posed by Papaloizou and Pringle (1984). In this work, the torus is in equilibrium under

the three basic forces given in Eq. 2.25: gravitational (F g), rotational (F r) and forces due

to the pressure of the fluid (F P ).

Assuming axial symmetry and the equation of state P = κργ (where P is the pressure,

ρ the density and γ the adiabatic index), it is possible to simplify the problem using the
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Figure 2.3: Grid used in all simulations of this work

potential formalism F i = −∇φi, which leads to Eq. 2.26, where C is an arbitrary constant,

coming from the integration.

F g + F r + F P = 0, (2.25)

∇(φg + φr + φP ) = 0→ (φg + φr + φP ) = C. (2.26)

The pressure potential is given by the Eq. (2.27),

∇φP =
∇P

ρ
→ φP =

γ

γ − 1

(
P

ρ

)
+ φP,0. (2.27)

In the case of Papaloizou and Pringle (1984), a newtonian gravitational potential is used.

However, for the purpose of this work, the equations are derived for the Paczynsky and

Wiita (1980) potential (cf. Eq. 2.4).

For the rotational potential φr, it was assumed that the specific angular momentum is

given by a power law. It is related to the angular velocity Ω by l(r) = Ω(r)r2 2. Thus, the

2 Note that in this section r is the cylindrical radius and R is the spherical one.
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Figure 2.4: Zoomed-in version of Figure 2.3

angular momentum can be parameterized by

l(r) = l0

(
r

r0

)a
, (2.28)

where r0 is an arbitrary radius in which l(r0) = l0. For the purpose of this work, a = 0

will be used just as in Papaloizou and Pringle (1984), i.e. a constant specific angular

momentum is assumed. Thus the “rotational potential” is given by

φr = −
∫
dr
l(r)2

r3
=

l2

2r2
+ φr,0. (2.29)

As a pseudo-newtonian gravitational potential is being used, it is necessary to use the

keplerian specific angular momentum, given by

−∇φg(r) + r̂
l2K
r3

= 0⇒ l2K(r) = r3dφg(r)

dr
=

GMr3

(r − rS)2
(2.30)

Now, to solve the Eq. 2.26, it is necessary to make some assumptions. First, axisym-

metry is adopted. Second, it is important to set up some essential constants: rmin is the
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inner radius of the initial torus, r0 is the radius where the density is at its maximum (by

symmetry, it should be in the z = 0 plane) and ρ0 is the value of the density in (r0, z = 0).

The resulting density is

ρ =

[
γ − 1

κγ
(C − φg(R)− φr(r))

] 1
γ−1

, (2.31)

where C and κ are defined from the boundary condition, written as

C = φg(rmin) + φr(rmin), (2.32)

κ =
γ − 1

γ
[C − φg(r0)− φr(r0)] ρ1−γ

0 . (2.33)

The definition given for r0 from Eq. 2.28 forces l0 to be the keplerian specific angular

momentum (Eq. 2.30) in r = r0, since there is no force due to pressure at this place

(∇P = 0). It is obtained that

l20 = l2K(r0) =
GMr3

0

(r0 − rS)2
(2.34)

Finally, the important parameters that describe the shape of the torus are rmin, r0 and

ρ0. For this work, the size of the initial torus was chosen by setting rmin = 75Rs and

r0 = 100Rs, which gives a torus extending all the way to rmax = 150Rs as can be seen in

Figure 2.5.

The ρ0 parameter is set according to the accretion rate wanted for the simulation,

because it is basically controlled by the total amount of mass available for the BH to

accrete. One thing to note is that if the simulations were adiabatic (i.e. no radiative

cooling included), the results would be scale free meaning that it would be possible to

scale the results to any values of ρ0 and M after the simulation was finished. However,

since radiative cooling was taken into account in these simulations, both the parameters ρ0

and M turn out to be essential to determine the overall importance of cooling—as cooling

gets more important with increasing accretion rate (Wu et al., 2016; Narayan et al., 1998)—

and the relative importance of the cooling mechanisms because they depend with different

powers on the mass.

Another important point is that the density outside of the initial torus, referred to

here as the “atmosphere”, is not set to zero (i.e. a vacuum) as it should be for technical

reasons. Instead, it is assumed to be ρamb = 10−4ρ0, which is small enough to not affect the

general results and is not so small that it would cause numerical problems due to numerical

fluctuations that could lead to non-physical results as negative density.
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Figure 2.5: Torus initial condition in hydrodynamical equilibrium following Papaloizou and

Pringle (1984). Here, rmin = 75Rs and r0 = 100Rs, which gives a initial torus extending all

the way up to rmax = 150Rs.

2.4.3 β parameter

For HD simulations there are no magnetic fields; however, the presence of magnetic

fields is essential for synchrotron and comptonized synchrotron emission. Thus, it is ne-

cessary to use some approach to estimate the expected field strength which will be used

to calculate the cooling processes.

What is usually done in these cases is to assume the presence of a local, isotropic,

randomly tangled magnetic field in the flow and quantify its importance using the plasma-

β parameter given by β = Pgas/Pmag. Equipartition between gas pressure and magnetic

pressure is assumed such that Pgas = ρc2
s with Pmag = B2/8π. Therefore, it is possible to

obtain an approximation for the magnetic field strength, given by

B2 =
8πρc2

s

β
. (2.35)

Wu et al. (2016) has a whole discussion of the effects of different values of β. Their

fiducial model adopts β = 10, which is also the values adopted in the present work. This

value is appropriate for this approximation because it is known that this kind of system is
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dominated by gas pressure, so β > 1. If β � 1, the effect would be negligible (see Yuan

and Narayan, 2014, for a more detailed review).

2.4.4 Temperature approximation

RIAFs should be characterized by a two-temperature plasma (Narayan and Yi, 1995;

Yuan and Narayan, 2014). In this context, this means that the electron temperature in

the inner region of the accretion flow is considerably lower than the ion temperature.

This happens because electrons can cool more efficiently than ions due to the large mass

difference between the particles, and also their adiabatic index are different which means

that at high temperatures (T & 1010K) electrons become relativistic while ions do not.

Figure 2.6 shows approximately the temperature difference between the species in a RIAF.

Figure 2.6: Temperatures of ions and electrons in a a RIAF as a function of the distance

from the BH. Figure taken from Narayan and Yi (1995).

The following formula incorporates the results from the height-integrated treatment of

accretion flows on the temperature difference between electrons and ions:

Te =
Tion

(R/r0)−1 + 2.0
, (2.36)

where r0 is the radius where the density is at its maximum (Wu et al., 2016) and where

Tion is taken from the simulation, being

Tion =
p

ρ

µmu

kB

. (2.37)
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The effect of Eq. 2.36 can be seen in Figure 2.7 which shows the behavior of the electron

and ion temperature as a function of the radius.

Figure 2.7: Radial dependence of the ion and electron temperatures from eq. 2.36. The data

used to compute the temperatures come from the simulation snapshot displayed in Figure

2.8. Note that the temperatures are compatible with the results from Figure 2.6, although

the electron temperature is ∼ 3 times higher than the predicted in Narayan and Yi (1995).

2.4.5 Radiative cooling

The approach adopted here to incorporate the radiative cooling is the following. Before

the radiative cooling is “turned on”, the simulation is first evolved without any cooling until

the flow reaches a quasi-steady state. This state is characterized by an almost constant

accretion rate over timescales of 5000GM/c3. The quasi-steady state is a proxy to judge

when it is safe to switch on the radiative cooling—to judge when the accretion flow has

achieved inflow equilibrium (Narayan et al., 2012). The value of Ṁ from the simulations

is never constant because of the effect of convective turbulence (and MRI turbulence if

magnetic fields were present).

Figure 2.8 shows the exact simulation snapshot at which cooling is turned on, when it

is judged that quasi-steady state has been reached. Figure 2.9 shows the Ṁ time series,

where it is indicated the time at which cooling is turned on. This precaution is done to

avoid numerical errors and to avoid non-physical effects.

The beginning of all simulations without radiative cooling is the same: radiative cooling
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Figure 2.8: Accretion flow state when it reaches the quasi-steady state. At this point in the

simulation, radiative cooling is turned on.

Figure 2.9: Accretion rate of an arbitrary simulation indicating when the radiative cooling

is turned on. The moment when cooling is activated is indicated by a red dot.
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is turned on at t = 1.4torb, where

torb =
2πr0

vφ0

' 17506
GM

c3
. (2.38)

is the orbital time of the accretion flow in R = r0.



Chapter 3

Analysis and results

In section 3.1 the general properties of the accretion flow are described, comparing

them with the properties expected from analytical models. In section 3.2, the relation

between the truncation radius and the mass accretion rate is presented, comparing it with

observations. Finally, in section 3.3, the properties of the hot corona will be presented.

3.1 Accretion flow properties

In this section all the five simulations carried out in the work will be described. Table

3.1 displays the main parameters that describe each model, together with the results for

the truncation radius of the simulations.

Table 3.1 - Main parameters of the simulations and the resulting truncation radii.

ID Ṁacc/ṀEdd Rtr/Rs

1 0.35± 0.09 11.2± 2.5

2 0.24± 0.07 13.2± 2.7

3 0.11± 0.02 20.3± 5.3

4 0.06± 0.01 27.5± 5.8

5 0.02 -

A snapshot from each simulation can be seen in Figures 3.1 and 3.2, where the den-

sity and the temperature maps are shown respectively. They were taken at t = 2torb =
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34112GM/c3. The first thing to notice here is the formation of a very dense (10-100 times

denser than the torus before the radiative cooling; cf. Figure 2.8) and thin accretion disk

at the equatorial plane. The second is that this thin disk is embedded in a very hot corona

(T ∼ 1010−11K) and is very cold compared to the surrounding corona. This behavior is

expected as explained in the section 1.2, where there is a coexistence of both cold and hot

phases (thin disk + RIAF) and is consistent with other simulations with radiative cooling

(Wu et al., 2016; Das and Sharma, 2013).

Figure 3.1: Density maps of the five simulations carried out in this work. The colors indicate

the log of the density in g cm−3. They were taken at t = 34112GM/c3, which corresponds

to 2torb, a value between the ranges used in Figure 3.3. For each model, a different mean

accretion rate is set by hand, changing the unit density in the code. The accretion rates are

listed in Table 3.1.

Besides that, it is possible to note in Figures 3.1e and 3.2e that when the accretion rate

is lower than a certain critical value (ṁacc . ṁcrit, where ṁ = Ṁ/ṀEdd) the accretion flow

does not collapse into a thin, dense and cold disk, instead it remains very hot, low-density

and geometrically thick. This is expected because as the accretion rate gets lower the

density gets lower, and the gas starts becoming inefficient in radiating i.e. the cooling time
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Figure 3.2: Temperature maps of the simulations for t = 34112GM/c3. The colors indicate

the log of the temperature in units of K.

is longer than the viscous time.

In this work, a value of

0.06 > ṁcrit & 0.02 (3.1)

is found. This can be written in terms of the α-parameter, 6α > ṁcrit & 2α. This is

the first result of this work and is consistent with the results of Wu et al. (2016), where

ṁcrit ∼ 3α. However, it is not consistent with the value given by Narayan and Yi (1995)

and Xie and Yuan (2012), where ṁcrit ∼ α2
SS, although they adopt the α-viscosity of

Shakura and Sunyaev (1973), which is slightly different from the one defined by Stone

et al. (1999) which is adopted in this work.

As a clarification, the mass accretion rate is calculated using

Ṁacc = 2πr2

∫ π

0

ρvr sin θ dθ. (3.2)

This is based on the traditional approach pioneered by Stone et al. (1999) (cf. their

equation 8). This is the flux of material through a sphere with radius R. The value of
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Ṁacc in Table 3.1 was computed at the inner boundary of the simulations, where R = 1.3Rs.

In the simulations, there is no mass injection. As the models are evolved, the mass

in the computational box decreases which can lead to issues and can affect the long-term

evolution of Ṁ . For this reason, the mean value of Ṁacc is computed over a certain range of

time during which it remains relatively constant. The temporal ranges used for computing

Ṁacc are shown in Figure 3.3.

Figure 3.3: Temporal evolution of the mass accretion rate of all simulations after the radiative

cooling is turned on. Here, the accretion rate is shown until t = 2.5torb = 42640GM/c3, which

is the range of time that is interesting for the work. The dotted black lines span a range of

time from 32400GM/c3 − 37520GM/c3 used for the simulation ID4 and ID5 and the dashed

line from 35815GM/c3 − 40930GM/c3 used for the other simulations. These ranges were

chosen where the accretion rate is almost constant.

3.1.1 Dependency of the variables

In this subsection the dependencies of the variables ρ, vr, vφ and T on the distance from

the BH will be presented. All the variables are time averaged between 1.6torb and 1.8torb

and are taken from the equatorial plane to be more representative of the thin disk.
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As is possible to see in the top left image from Figure 3.4, the density in the simulation

with radiative cooling can get 100 times denser than the simulation where ṁacc < ṁcrit

(ID5).

A radial power-law function was fitted to the four variables displayed in Figure 3.4 in

order to characterize the corresponding slopes. For example, in the case of the density,

the function ρ(r) = Arp was fitted to the numerical data from the simulation where A

is a constant, resulting in p = −1.25; this value is similar to the prediction for a RIAF

with mass-loss, p < −1.5 (the ADIOS model of Blandford and Begelman 1999; Yuan and

Narayan 2014). On the other hand, for the thin disk the power-law dependency is −1.45,

whereas the value predicted for a Shakura and Sunyaev (1973) accretion disk is −1.88

(Frank et al., 2002). Note that for the RIAF, ID5 simulation was used, because there is

no formation of cold clumps or thin disk, and for the thin disk, ID1 was used, because it

is the simulation with the smallest truncation radius.

Figure 3.4: Comparison of the radial dependency of the density, radial velocity, orbital velocity and

temperature for both hot and thin phases. Top left: density; top right: radial velocity in terms of the

speed of light; bottom left: angular velocity in keplerian units; bottom right: temperature.

Similarly to the density, a power-law was fitted to the radial velocity in the top right
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image. vr of the RIAF has a slope of −0.52, which is consistent with the −0.5 value

predicted from the self-similar solutions of Yuan et al. (2012), although the uncertainty is

very high. For the thin disk, the radial velocity predicted here is much higher than the

expectation for a Shakura and Sunyaev (1973) disk. This is because the accretion theory

predicts that v ∼ αcsH/R, and the aspect ratio and the sound speed for a thin disk is low,

and is lower than a RIAF, which means that the radial velocity of a thin disk should be at

least smaller than the hot accretion flow. This big difference is essentially because of the

treatment given to the processes of cooling, which will be discussed later at the end of this

subsection. The slope is also not consistent with the predicted −0.25 values (Frank et al.,

2002; Shakura and Sunyaev, 1973).

It should be noted that the slopes predicted from the analytical calculations are a

useful guide to the numerical models. However, the analytical and numerical models will

not necessarily give the same results because our simulations include the time and more

physics than the more simple calculations of Narayan and Yi (1995) and Shakura and

Sunyaev (1973)—otherwise there would be no point in carrying out the simulations.

The angular velocity is the only variable in which the dependency is compatible with

the theory. For the Shakura and Sunyaev (1973) disk, the angular velocity is keplerian

(Frank et al., 2002), as it is shown in the bottom left image of the Figure 3.4. For the

RIAF, the simulation predicts it is sub-keplerian, in agreement with the theory (Yuan and

Narayan, 2014), although it is only slightly sub-keplerian.

At last, the power-law slope of the temperature for both RIAF and thin disk are

consistent with the theory. The RIAF temperature is virial (i.e. ∝ r−1) and the thin disk

has a slope of −0.71, consistent with the −3/4 (Frank et al., 2002). The thin disk in the

simulations is hotter (T ∼ 107.5K) than a Shakura and Sunyaev (1973) disk (T ∼ 104−6K).

This feature may not be a problem, because in the simulations there are more physics

included than the analytical calculations, as mentioned before.

The differences between the structure of the simulated thin disk and that predicted by

Shakura and Sunyaev (1973) are due to several reasons. First, the Shakura and Sunyaev

(1973) disk adopts Kramer’s law opacity, which is not taken into account here. Secondly,

the techniques used for the radiative cooling (specially for the optically thick disk) has a

lot of approximations and does not take into account radiative transfer, which is important

for the comptonization process. It is expected that, improving these treatments and im-
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plementing magnetic fields in the simulations, the structure of the thin disk will eventually

become more similar to a Shakura and Sunyaev (1973) disk.

3.2 Truncation radius

This section describes the main result of this paper: the relation between the truncation

radius, or the transition radius between the outer thin disk and the RIAF, and the mass

accretion rate.

The first thing to describe is how the truncation radius was estimated from the si-

mulations. Our simulations do not tell us directly where the cold thin disk is. This is

similar to the situation in many numerical astrophysical simulations where there is a phy-

sical property of interest but the simulation does not give the number directly; instead, a

search mechanism for the property of interest must be explicitly designed—e.g. in n-body

cosmological simulations of structure formation, the meaning of a dark matter halo must

be defined before they can be identified (Vogelsberger et al., 2014). Here, firstly a concrete

definition of a thin disk is given, then the thin disk is identified and the transition radius

estimated from the simulated arrays.

The focus is on identifying the colder, denser equatorial region of the accretion flow

and characterizing its thickness and the point at which it transitions to a hotter phase.

Concretely, whenever a thin disk is formed, its density is at least ten times larger than the

surrounding RIAF. In addition, the thin disk’s temperature is at least ten times lower than

the RIAF’s. For practical purposes, the cold thin disk phase is defined to occur whenever

the colder, denser gas has H/R < 0.015, which is consistent with the expectations from the

theory of thin disks according to which H/R should be in the range 10−3−0.01 (Piran et al.,

2015; Frank et al., 2002). The thin disks in our simulations settle to vertical equilibrium

with H/R > 4 × 10−3. Our results are not very sensitive to the particular value of the

threshold thickness as long as it is not much larger than 0.01.

The method for estimating the transition radius is now described. First, the density

array was converted from the native polar coordinates adopted in PLUTO to cylindrical

coordinates—a procedure called regridding for which GPU-accelerated routines written by

the group are used for faster calculations. The density values at each cylindrical radius

are obtained in the R− z plane (Figure 3.5).
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Figure 3.5: Schematic example illustrating how the scale height H/R was obtained from

the simulation. For each Ri (Ri here refers to the cylindrical radius), the corresponding

one-dimensional array with the density was selected and a Gaussian was fitted. The width σ

of the Gaussian gives approximately H.

At each value of R, the vertical density distribution of the accretion flow resembles

the superposition of two Gaussian functions centered at z = 0 (the midplane of the disk):

one Gaussian with a low amplitude and small width corresponding to the thin disk phase

whenever it occurs, and a second, large amplitude, broader Gaussian that describes the

RIAF phase. The ρ(R, z) distribution for several snapshots of the simulations were carefully

inspected in order to verify the above statements.

At each value of R, a Gaussian function was fitted in order to characterize the vertical

density distribution. One example is displayed in Figure 3.6. Whenever the disk collapses

into a thin disk, the density increases by a factor of 10 − 100 times the RIAF equatorial

density. The width σ of the Gaussian fit will in this case probe the vertical density

distribution of the thin disk instead of the RIAF, as argued in the previous paragraph.

In summary, with the method outlined above it is possible to estimate the aspect ratio

H/R of the thin disk as a function of R for each time step of the simulation, as illustrated

in Figure 3.7. The same time range used for the calculation of the mass accretion rates (cf.

Figure 3.3) is also used to compute the truncation radius. More specifically, the value of

R at which the mean value of the based on 80 points (from smaller to larger R) at which

H/R < 0.015 is taken to be the inner radius of the thin disk.

As it can be seen in Figure 3.7, the transition between a hot accretion flow (H/R ∼ 0.1)
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Figure 3.6: Example of a Gaussian fit to the vertical density distribution of the accretion

flow to estimate the thickness of the disk. Here, the shaded area indicates the 1σ width of

the Gaussian. The accretion flow in this particular snapshot contains a thin disk.

Figure 3.7: Disk thickness H/R as a function of the cylindrical radius R/Rs (i.e. the distance

from the BH). The dashed line indicates the truncation radius, i.e. the point at which H/R

becomes smaller than 0.015.

and the cold thin disk (H/R . 0.01) is not precise which makes it hard to define exactly

where the truncation radius begins. The definition used in this work ensures that the

truncation radius is located where the oscillations in the value of H/R reaches a minimum

(cf. dashed line in Figure 3.7). Although the location of the truncation radius is not exact,

this rough estimate obtained with this approach should be enough for our purposes of

quantifying the relation between the truncation radius and the accretion rate.

The final truncation radius for each model corresponds to the median value of the
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truncation radii obtained from each time step and the uncertainty is given by the standard

deviation. Each time step corresponds to a point in Figure 3.8. Figure 3.8 displays the

results for the 4 simulations where thin accretion disk were formed.

Figure 3.8: Distribution of truncation radii (or inner radius of the thin disk) in units of the Schwarzschild

radius for each model, as a function of the mass accretion rate in Eddington units. Each image corresponds

to one of the simulation: top left is ID1; top right is ID2; bottom left is ID3; and bottom right is ID4.

Each point corresponds to a different timestep used to estimate rtr from a model. The distributions on

top and to the right of each panel correspond to the histograms of each variable.

With these results it is now possible to assess the relation between the thin disk trun-

cation radius and the mass accretion rate, displayed in Figure 3.9. A power-law fit to the

numerical data results in Rtr ∝ ṁ−1/2.
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Figure 3.9: The relation between the truncation radius and the mass accretion rate. The

blue circles indicate the points from this work. The red dashed line shows the power-law fit

obtained in this work: Rtr/Rs = 6.4ṁ0.52.

3.3 Contraction and cooling of hot corona

In this section, the hot corona will be studied. More precisely, its extension and tem-

perature will be characterized. By extension here it is meant both its vertical thickness

and lateral extension.

The vertical thickness is given by the corona scale height. This is computed following

the procedure adopted for calculating the thickness of the thin disk described in section 3.2.

There is one difference though: as the thin disk is denser than the corona, the Gaussian

contributed by the thin disk will dominate in the estimates. Therefore, the denser part

corresponding to the thin disk needs to be removed for the calculations involving the

corona.

To accomplish that, the following simple procedure is adopted: a density threshold

is set; if the density at any point is higher than this threshold, the gas at that region is

substituted by the value of the threshold. This is represented in Figure 3.10, where it is

possible to see what happens with the accretion flow after applying the threshold—the

corona now dominates. The threshold chosen here was log (ρ/ρ0) ≥ −0.5. This value

eliminates the region of the disk that is 10− 100 times denser than the corona, and keeps

the lower density gas of the corona.

Before applying of threshold density cut, the snapshot of each time step in the same
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Figure 3.10: Application of the procedure to remove the thin disk contribution. Here, the

time-averaged density of model ID3 is displayed. Following this procedure, it is possible to

estimate the scale height, i.e. the vertical thickness of the corona.

range of values used to calculate the truncation radius (and shown in Figure 3.3) is taken

and an average of the density values in time is done. Then, the threshold is applied. After

that, a Gaussian is fitted and then, as the corona has a big gradient in density, the height

of the corona is assumed to be equal to 2H, where H ∼ σ (σ is the Gaussian width).

For the lateral extension of the corona, it is assumed to have an elliptical-like shape.

Figures 3.1 and 3.10 demonstrate that this is indeed a very good approximation. Its lateral

extension is twice the location where the maximum height happens, which means that if

the vertical height of the accretion flow is at z = 10Rs, its extension would be 20Rs.

Figure 3.11 shows that the corona tends to contract as the accretion rate increases—

both its height and lateral size. This is one of the two main results from this work, together

with the correlation between the thin disk inner radius and ṁ.

Another feature which is worth being estimated from the simulations is the coronal

temperature. To analyse only the corona, eliminating everything that is not the hot corona

is necessary. In order to achieve that, both a tracer (cf. Section 2.2.3) and a temperature

threshold are adopted in order to eliminate the contribution of the cold disk (instead of

simply using a density threshold). The threshold corresponds to discarding all regions of

the flow at which the temperature is lower than 109K. Figure 3.12 shows an example of

density map after eliminating both the atmosphere and the thin disk are shown. Note that

the temperature is time-averaged in the same range used before.



Section 3.3. Contraction and cooling of hot corona 57

Figure 3.11: Height and extension of the corona as a function of the mass accretion rate.

The corona contracts as ṁ increases.

Figure 3.12: Example of what the coronal temperature map looks like after removing all

features but the corona, for the purposes of characterizing the coronal temperature. This

figure corresponds to model ID3. The lines denote a contour plot of the tracer. Note that

the entire accretion flow is contained within the lines with values of ∼ 1.

Following this procedure, the median value of the coronal temperature for every simu-

lation which has a cold thin disk (i.e. models ID1-ID4) was computed. Figure 3.13 shows

the resulting relation between the median coronal temperature and ṁ. This figure shows

that the temperature of the corona tends to decrease with increasing mass accretion rate,

if only slightly.

This can be explained by looking at the rate of collisional energy transfer from ions to
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Figure 3.13: Median coronal temperature as a function of the mass accretion rate. It is

possible to see that the corona cools very slightly, from 4.5× 1010 K to 3.3× 1010 K.

electrons equation, given by Stepney and Guilbert (1983) and approximated as

Qcol = 1.639× 10−17neni
Ti − Te
T

3/2
e

(3.3)

where Ti is the ion temperature, Te is the electron temperature, ni the ion number den-

sity and ne the electron number density. This equation shows that when the electron

temperature decreases the energy transfer increases, which means that the ion tempera-

ture decreases, because there will be more energy being transferred from ions to electrons.

This will happen because as the accretion rate increases, the radiative cooling also incre-

ases, which in this case will make the electron temperature decrease, decreasing the ion

temperature.
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Discussion

4.1 Comparison with observations

In this section, a comparison is made between the results of the model and observations

of stellar-mass BHs.

The observational data used to compare with this work’s results are from Garcia et al.

(2015), regarding the source GX 339-4. This system is one of the most studied BHXRBs.

Garcia et al. (2015) analysed and reduced the data from the Principal Counter Array

(PCA) detector on board of the Rossi X-ray Timing Explorer (RXTE). The analysed data

comes from 6 regions (from A to F) in the hard state of the system, as shown in the

hardness-intensity diagram in Figure 4.1.

The truncation radius in Garcia et al. (2015) is estimated by modeling the reflection

spectrum of the system, mainly the Fe K line in the 6-8 keV energy range. For that, they

assumed a fixed value of the spin parameter of a∗ = 0.998 and fitted the spectrum of the

6 regions using their canonical Model 3 (check Table 3 from Garcia et al., 2015), as can be

seen in Figure 4.2. Besides that, the luminosity was estimated assuming a distance of 8

kpc and a mass of the BH of 10M�, and was based on the fluxes computed over the 1-100

keV band (check Table 1 from Garcia et al., 2015).

Figure 4.3 displays the observational results from Garcia et al. (2015). Note that Garcia

et al. (2015) quotes the source luminosity L instead of ṁ, so it is necessary to convert it

to ṁ for an appropriate comparison. The conversion from L to ṁ was carried out using

the equation L = ηṀc2 with the efficiency of conversion of accreted rest-mass energy into

radiation η given by

η(Rtr) =
Rg

2Rtr

(
1− C

(
Rout

Rtr

))
(4.1)
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Figure 4.1: Hardness intensity diagram from GX 339-4 system. The vertical axis shows the

count rate. On the horizontal axis is the hardness ratio HR defined as the ratio of source

counts at 8.6–18 keV to the counts at 5–8.6 keV. Image taken from Garcia et al. (2015).

Figure 4.2: Fit to spectra A-F, where in the top image the ratio between the data and the

canonical model 3 is plotted. The model produces an excellent fit, giving χ2
red = 1.06. The

bottom image shows the χ2 for the model. Image taken from Garcia et al. (2015).

where

C(x) ≡ 3x−1 − 2x−3/2, (4.2)

Rg is the gravitational radius and Rout is the thin disk outer edge, which is fixed at an
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arbitrarily large value, because the system has a large size and C(x) ≈ 0 for x � 1 (Reb

et al., 2018).

Figure 4.3: Comparison between the Rtr − ṁ relation predicted by our model and observa-

tions. The green squares indicates the points from this work and the blue circles the data

from Garcia et al. (2015). The red dashed line indicates the power law fit for the data from

Garcia et al. (2015) (where Rtr/Rs = 0.7ṁ0.74) and the black dot-dashed line the power law

fit for this work (where Rtr/Rs = 6.4ṁ0.51).

In Figure 4.3, it is possible to see that the overall dependency of rtr on ṁ found in

this work is consistent with that found for GX 339-4 from Garcia et al. (2015) within 1σ

uncertainties. The main difference between the results is that for a given ṁ, the predicted

radii are systematically larger by a factor of four. As argued by Garcia et al. (2015), their

estimates of the truncation radius seem to be the most accurate. One of the reasons is the

development of a calibration tool which can improve the precision of the detector response

by approximately one order of magnitude (check section 1.3 from Garcia et al., 2015). One

should keep in mind that Garcia et al. (2015) may be underestimating the values of the

truncation radius because of the lack of evidence for the thermal disk component in their

modeling. It is also worth to note that previous estimates of the truncation radius have

very high uncertainties (check table 5 of Garcia et al., 2015).

If the parameters obtained in Garcia et al. (2015) reflect the physical reality of the

source, one possible explanation for the larger values of rtr obtained in the present work

could be the effect of a nonzero BH spin. For non-rotating BHs the ISCO (see section 1.2)

is located at 6 gravitational radii. For a Kerr BH—which is the case for the system studied

in Garcia et al. (2015)—the ISCO can extend all the way down to one gravitational radius

for a∗ close to 1. It is possible that rtr might shift to lower values if the effects on the disk
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of the Kerr spacetime were taken into account.

Another explanation could be the way the truncation radius was obtained here. If the

assumption was that the truncation radius starts at the first time that the aspect ratio

reached a value of < 0.015 (check Figure 3.7 and the explanation on how the truncation

radius was obtained), the truncation radius would certainly be smaller, which would shift

the power-law fit in Figure 3.9.

4.2 Comparison with other models

Our result is consistent with the expectation that the truncation radius should increase

with decreasing accretion rate. However, the -1/2 slope is inconsistent with some earlier

studies such as the evaporation model (Meyer and Meyer-Hofmeister, 1994; Liu et al.,

1999) which predicts −1/1.17 and the turbulent diffusion model (Honma, 1996; Kato and

Nakamura, 1998) where the predicted slope is −2. Both models will be briefly discussed

in the next paragraphs.

For the evaporation model, the following physical mechanism is proposed. The coronal

flow is dominated by heat conduction by electron and the thin disk is dominated by radi-

ative cooling. But, in somewhere near the surface of the thin disk there is an equilibrium

between them. If the system were in an stationary state, it would be in equilibrium, but

the coronal flow is being accreted. Thus, because of the accretion the density of the equi-

librium region gets smaller and then the heat conduction start dominating, meaning that

the gas lost by the corona is resupplied by the evaporation of the surface of the thin disk

(for more details on the evaporation model check: Meyer and Meyer-Hofmeister, 1994; Liu

et al., 1999).

For the turbulent diffusion, Honma (1996) and Kato and Nakamura (1998) propose

that the energy from the hot accretion flow is transported by means of diffusion through

turbulence and by means of radial flow.

Liu et al. (1999) compared their analytical evaporation model with observations and

they found it is consistent with the observation of three BHXB systems. However, as

Garcia et al. (2015) shows in Figure 11, different models fitting observational data to

estimate the truncation radius for the same object result in very different values compared

to one another, spanning a range of values from ∼ 1 to ∼ 103 gravitational radii.



Section 4.3. Caveats 63

Regarding our result that the corona contracts in response to an increase in ṁ. There

is much debate over whether the state transition from the hard to the soft state in BHBs

is driven mainly by a reduction of the truncation radius of the disk (Ingram and Done,

2011) or by a reduction in the spatial extent of the corona (Fabian et al., 2014; Kara et al.,

2019). In this work, both properties are affected by the increasing ṁ.

4.3 Caveats

In this section, the simplifications used in the simulations will be discussed.

4.3.1 Simplification in radiative cooling

The first simplification made was the use of the critical frequency νc of the self-absorbed

synchrotron emission for the synchrotron cooling rate. It is also used as the seed photon

frequency for the comptonized synchrotron. This was done to avoid the integration over

frequencies thereby reducing the computational cost.

Another simplification is the fact that the comptonization is local, meaning that the

photons do not propagate over long distances. Photons can interact with hot electrons

very far away from where it was produced, but to account for this, the inclusion of a

radiative transfer codes (applying Monte Carlo technique) would be necessary, which is

very time-consuming.

4.3.2 Magnetic fields

This work consisted of hydrodynamic simulations in which there are no global magnetic

fields. Instead, the plasma β parameter approximation was used assuming equipartition

to estimate the magnetic field strength and thus compute the synchrotron emission.

The β parameter can only account for the local and randomly oriented (tangled) mag-

netic field. MHD simulations show that it is not constant as assumed here (e.g. Yuan and

Narayan 2014). Meyer and Meyer-Hofmeister (2002) argues that with increasing magnetic

field there is a reduction of the strength of the coronal mass flow if dynamo action occurs,

meaning that, as inside of the truncation radius all matter is accreted in a hot corona form,

the truncation radius would be shifted to smaller radii. But as shown in Figure 1 from

Meyer and Meyer-Hofmeister (2002), the slope of the Rtr-ṁ relation will not change. This
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dynamo effect could also be one of the explanations of the discrepancy for the truncation

radius values in section 3.2.

4.3.3 α-viscosity

An α-viscosity prescription that is proportional to the density of the gas was assumed

in this work. This means that most of the viscous heating is taking place at the equatorial

plane of the accretion flow. But, MHD simulations considering magnetic reconnection as

the physical heating mechanism, indicates that the vertical distribution of energy dissipa-

tion can extend to much higher heights (Jiang et al., 2014). If this is taken into account

the equatorial plane would be cooler and the higher altitudes would be hotter.
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Conclusions

In this work, global numerical hydrodynamical simulations of black hole accretion flows

were performed, incorporating the contribution of radiative cooling from bremmstrahlung,

synchrotron and comptonized synchrotron to energy losses in a simplified way. The natural

emergence of a thin disk embedded in a hot corona is observed in the simulations, whose

inner radius is truncated at a range of radii from 11.2 to 27.5 Schwarzschild radii which

are larger than the innermost stable circular orbit of 6GM/c2 for a Schwarzschild BH. The

truncated, colder, denser thin disk is embedded in a hot, geometrically thick corona which

is believed to be a RIAF.

Analysing the properties of the accretion flow in the simulations, the following radial

dependency of the disk properties were found for the thin disk: ρ ∝ r−1.43, vr ∝ r−0.44,

T ∝ r−0.71 and vφ ∼ vK. These are in disagreement with the analytical predictions of the

Shakura and Sunyaev (1973) disk. One possible reason for the mismatch are the simpli-

fications imposed on the radiative cooling calculations which mainly affect the optically

thick flow, and the opacity not being the Kramer’s law.

For the RIAF, the following radial variation were found: ρ ∝ r−1.25, vr ∝ r−0.52,

T ∝ r−0.95 and vφ < vK. They seem to be consistent with the results expected from

analytical RIAF models (Narayan and Yi, 1995; Yuan and Narayan, 2014). Thus, even

though the radiative cooling was treated in a simplified manner, this suggests it is a

consistent approximation—at least for the optically thin flow.

When the accretion rate is above a critical value in the range ṁcrit = 0.06 − 0.02, a

thin disk is observed to emerge. This would correspond to the thermal or soft state of

BHBs. Below this critical value, the accretion flow remained very hot, low in density and

geometrically thick and no thin disk is observed. This suggests that the accretion flow is
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dominated by a RIAF, i.e. probably the very beginning of the hard state.

The models imply that the inner radius of the thin disk gets larger as ṁ increases,

following the power-law dependency Rtr ∝ ṁ−Γ where Γ = 0.52± 0.01. The slope Γ found

in this work is compatible with the results of Garcia et al. (2015) within uncertainties,

where they studied the hard state of GX 339-4 in six different epochs.

Our inner radii are systematically larger by a factor of four than those obtained for GX

339-4. One possible explanation is that a Schwarzschild BH was modeled here whereas a

spinning BH would be more appropriate depending on the source being modeled. Another

possible explanation is Garcia et al. (2015) might be underestimating the values of the

truncation radius, because they find no evidence for the thermal disk component.

The hot corona was found to decrease in size as ṁ is increased. This result, together

with the relation between the truncation radius and the accretion rate, favours the scenario

where, in the hard state the disk is truncated at large radii (or entirely absent) and in the

soft state there is a decrease in the illuminating source height (e.g. Plant et al. 2014;

Garcia et al. 2015) together with a smaller inner radius.

Finally, another feature observed analysing the simulations was that the temperature

decreases slightly as ṁ increases. This was also found and shown in Table 6 of Garcia et al.

(2015). This result is expected because of the radiative cooling, which makes the electron

temperature to decrease, increasing the the energy transfer rate and finally decreasing the

temperature of the ions.

5.1 Perspectives

The simulations of this work are purely hydrodynamical. Hence, a natural next step to

move to magnetohydrodynamic (MHD) simulations which incorporate the effect of mag-

netic fields. The advantage of MHD simulations is that they self-consistently incorporate

the angular momentum dissipation via the MRI mechanism. The disadvantage is that

the computational costs will be considerably increased, especially for the thin disk when

small-scale magnetic fields threading the disk will need to be resolved, requiring conside-

rable numerical resolutions.

Another aspect to improve are the approximations of the radiative cooling. But this

is actually very difficult to take into account as the more accurate techniques (e.g. Monte
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Carlo) are very time consuming. Furthermore, radiation pressure gets increasingly im-

portant as ṁ increases, and it is entirely neglected here. This certainly deserves further

investigations.

As was argued when comparing the results of this work with the BHB GX 339-4,

the Kerr spacetime is also relevant. This would require to use general relativistic MHD

codes. Overall, GRRMHD (general relativistic radiation magnetohydrodynamic) codes

would need to be adopted to properly describe the full regime of BH accretion. While the

field of GRRMHD simulations is still young, this certainly remain a promising avenue of

research for the future.

Finally, it is very important to compare the observational results with the numerical

ones to obtain physical insights. Thus, it is hoped that more observational data will

be available, so that it is possible to constrain the physical explanations of the truncation

radius and its relation with the mass accretion rate. Also, plans are being made to generate

synthetic electromagnetic spectra from our simulations that can be compared against BHB

observations.
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Appendix A

Computational infrastructure

A.1 Codes

The main code used for the simulations was the PLUTO code by Mignone et al. (2007).

A general description of this code was given in Section 2.2.

Besides PLUTO, some scripts were written to analyse the data and to compute the

radiative cooling. The main script written by some members of the group to analyse

and visualize PLUTO’s output is called mickey. This code was written mainly in python

language with some C routines to make regridding faster. The script to compute the

table with the values of radiative cooling for a combination of the variables Te, ne and R

was written by the author of this work. This script was written in python and is called

radiative cooling.

A.2 Clusters

Below, in the subsections, the clusters used in this work to compute the numerical

simulation will be briefly described.

A.2.1 Águia

The Águia cluster is constituted by 128 physical servers with 20 cores and 512 GB of

RAM. The processor is the Intel(R) Xeon(R) CPU E7- 2870 @ 2.40GHz. The cluster also

has a Filesystem with 256 TB for temporary files.
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A.2.2 Santos Dumont

The Santos Dumont cluster is located in Laboratório Nacional de Computação Ci-

ent́ıfica (LNCC). It has a processing capacity of 5.1 Petaflop/s and a total of 34688 CPU

cores in 1132 computational nodes. Besides that, there is also a special node projected to

Artificial Intelligence applications with 8 GPUs NVIDIA Tesla V100-16Gb with Nvlink.
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