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RESUMO 
 

WESTMANN, Cauã Antunes. A multiscale approach for exploring bacterial transcriptional 

systems. [dissertação]. Ribeirão Preto: Universidade de São Paulo, Faculdade de Medicina de 

Ribeirão Preto; 2018. 

 

A vida é um fenômeno intrinsicamente complexo e, para melhor compreender seus princípios 

fundamentais, devemos ser capazes de investigar todas as camadas organizacionais que a 

compõem (desde as -ômicas até as populacionais e ecológicas). O estudo de como a informação 

molecular extra e intracelular flui através dessas camadas bem como estas se interconectam na 

geração de respostas fenotípicas são essenciais para uma compreensão mais profunda e para 

(re)engenharia de sistemas biológicos. Além disso, a combinação de diferentes abordagens (in 

vivo e in silico) para dissecção destas redes complexas nos permite alcançar uma visão mais 

holística e preditiva destes sistemas. Nesse contexto, a presente dissertação foca na exploração 

da camada regulatória transcricional em bactérias, um dos sistemas mais basais na regulação 

gênica e na integração de estímulos ambientais. Ao combinar uma gama de abordagens 

diferentes, porém complementares, tais como Biologia Sintética, Biologia de Sistemas 

Evolutiva e Metagenômica, nós observamos sistema através de diferentes perspectivas para 

uma compreensão mais geral de seus fundamentos. Adotamos a abordagem da Biologia 

Sintética para explorar como a arquitetura combinatória de promotores complexos pode 

originar diferentes lógicas transcricionais e fenômenos emergentes, combinando sítios 

específicos de ligação de fatores de transcrição (TFBSs) - para os fatores de transcrição (TFs) 

globais de E. coli Fis e IHF. Nossos resultados mostraram que não apenas fenômenos 

emergentes podem ser observados em promotores sintéticos, mas também respostas específicas 

que se assemelham à dinâmica de cada um dos componentes. Em seguida, nos concentramos 

na aplicação Biologia de Sistemas Evolutiva para compreender como a inovação evolutiva 

poderia surgir em elementos cis-regulatórios e quais seriam os principais processos que 

restringem a diversidade destes. Nossos resultados computacionais baseados em conjuntos de 

dados de TFBSs para três reguladores globais em E. coli - CRP, Fis e IHF - apontaram que o 

crosstalk transcricional (o compartilhamento de TFBSs por diferentes TFs) é não somente 

muito comum nesses sistemas, mas também um elemento chave em relação à evolução de 

lógica regulatória e restrição da diversidade de TFBS em bactérias. Por fim, adotamos uma 



 

xii 

 

abordagem Metagenômica para expandir nossa compreensão dos elementos cis-regulatórios 

além de E. coli, avaliando e caracterizando a diversidade de promotores constitutivos em 

amostras ambientais. Esses resultados forneceram dados qualitativos e quantitativos sobre o 

espaço de sequências naturais de promotores constitutivos em bibliotecas metagenômicas. No 

capítulo final desta dissertação, investigamos redes metabólicas bacterianas, a camada mais 

basal de organização molecular em sistemas vivos, que se encontra profundamente entrelaçada 

com redes transcricionais. Assim, desenvolvemos uma nova série de algoritmos para geração 

automática de modelos metabólicos estequiométricos a partir de dados (meta)genômicos, que 

podem, no futuro, ser prontamente integrados com dados transcricionais para a geração de 

modelos in silico de células únicas. Em resumo, o trabalho atual forneceu novas informações 

sobre muitos aspectos dos sistemas de transcrição em bactérias que, dada uma base teórica 

adequada, podem ser extrapoladas para sistemas mais complexos, como eucarióticos. 

Acreditamos, assim, que essa abordagem multi-escala é fundamental tanto para compreensão 

dos princípios gerais que permeiam o processamento de informações em sistemas vivos quanto 

para (re)estruturá-los em aplicações biotecnológicas. 

 

Palavras-chave: 1. Informação molecular; 2. Transcrição em bactérias; 3. Biologia Sintética; 

4. Biologia de Sistemas Evolutiva; 5. Metagenômica  
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ABSTRACT 
 

WESTMANN, Cauã Antunes. A multiscale approach for exploring bacterial transcriptional 

systems. [dissertação]. Ribeirão Preto: Universidade de São Paulo, Faculdade de Medicina de 

Ribeirão Preto; 2018. 

 

Life is a complex phenomenon and in order to understand its underlying principles, we must be 

able to investigate every organizational layer that comprises it (from –omics to ecological ones). 

Exploring how the molecular information flows from both extra- and intracellular worlds 

through these layers and how they interact in the generation of phenotypic responses shall 

provide a more consistent background for both understanding and (re)engineering living 

systems. Besides, combining different approaches (in vivo and in silico) for dissecting these 

complex networks should allow us to achieve a more holistic and predictive view of biological 

phenomena. In this context, the present dissertation focus on exploring the transcriptional 

regulatory layer of bacteria, one of the most basal systems in gene regulation and in the 

integration of environmental stimuli. By merging a range of different yet complementary 

frameworks such as Synthetic Biology, Evolutionary Systems Biology and Metagenomics we 

have delved into the different aspects of this system for a more general understanding of its 

foundations. We have adopted the Synthetic Biology approach to explore how transcriptional 

logic and emergent phenomena might arise from the combinatorial architecture of complex 

promoters regarding the combination of specific Transcription Factor Binding Sites (TFBSs) - 

for the E. coli global transcription factors (TFs) Fis and IHF. Our results have shown that not 

only emergent phenomena might be observed in synthetic promoters, but also specific 

responses that resemble the dynamics of each of the individual components. Next, we have 

focused on applying the Evolutionary Systems framework to understand how evolutionary 

innovation might rise in cis-regulatory elements and what would be the main processes 

constraining their diversity. Our computational results based on datasets of TFBSs for three 

global regulators in E. coli - CRP, Fis and IHF - have pointed that transcriptional crosstalk (the 

sharing of TFBSs by different TFs) is ubiquitous in these systems and a key element regarding 

the evolution of regulatory logic and the constraining of TFBS diversity in bacteria. Lastly, we 

have adopted a Metagenomics approach to expand our understanding of transcriptional cis-

elements beyond E. coli, by assessing and characterizing the diversity of constitutive promoters 



 

xvi 

 

in environmental samples. These results have provided both qualitative and quantitative data 

regarding the natural sequence space of constitutive promoters in metagenomic libraries. In the 

final chapter of this dissertation, we have investigated bacterial metabolic networks, the most 

basal layer of molecular organization in living systems, which is deeply intertwined with 

transcriptional networks. Thus, we have developed a novel series of algorithms for automatic 

generation of stoichiometric metabolic models from (meta)genomic data, which can, in the 

future, be readily integrated with transcriptional data for the generation of in silico whole-cell 

models. Altogether, the current work has provided resourceful information regarding many 

aspects of transcriptional systems in bacteria which, provided the adequate theoretical 

framework, can be extrapolated to more complex systems such as eukaryotes. We believe this 

multiscale approach is fundamental for both understanding the general principles underpinning 

information processing in living systems and (re)engineering them for biotechnological 

applications. 

 

Keywords: 1. Molecular Information; 2. Bacterial transcriptional systems; 3. Synthetic 

Biology; 4. Evolutionary Systems Biology; 5. Metagenomics  
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 Biological networks, structure, relevance and the organization of 

regulatory systems 

According to the autopoietic theory of Maturana & Varella (Varela, 1980), an essential 

characteristic of living beings is their ability to undergo continuous structural changes, while 

retaining their network-based pattern of organization. As epiphenomena of this adaptive 

dynamicity of organisms to variations in the outer and intracellular environments, complex, 

dynamic, plastic and resilient systems arise, capable of persisting, changing and multiplying 

over time, within the context of Darwinian evolution (Wagner, 2005; Whitacre, 2010). 

 

There are a myriad of mechanisms behind this adaptive dynamicity that can be analysed under 

different organizational perspectives of the system they are embedded into, which extend from 

the molecular to the macroscopic/phenotypic levels (Schuster, 2002; Ibáñez-Marcelo and 

Alarcón, 2014). However, despite the variations among its members, all these systems converge 

to a common architecture that can be represented in the form of graphs: scale-free biological 

networks (Albert, 2005). In these networks the distribution of connectivity is not homogeneous, 

but follows a power-law: there are a few highly connected nodes (hubs) and the rest has low 

connectivity, in contrast with random networks where connectivity follows a Poisson 

distribution. The consequence of this mode of organization is the formation of a redundant 

adaptive system of high robustness, yet substantially fragile - with few deeply interconnected 

nodes of high biological relevance (Csete and Doyle, 2002; Barabasi and Oltvai, 2004; Kitano, 

2004; Albert, 2005) 

        

Within the set of interconnected networks – each network representing an organizational layer 

of the observed system - that regulate the dynamicity of organisms, molecular-level systems 

are considered the most basal ones in terms of information processing modules (Farnsworth, 

Nelson and Gershenson, 2013) - reception and response to stimuli -, especially those in the form 

of gene expression controlling networks. These regulatory networks can be traditionally 

subdivided into transcriptional, translational and post-translational, according to the targets of 

their components, mechanisms of action and sometimes the context of the gene expression 

process under which they may act. In this context, following the “central dogma” of Molecular 

Biology, in which the flow of all cellular information begins in DNA, the importance of 

transcriptional regulation - which directly acts on this nucleic acid and other peripheral 
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components - is highlighted as one of the initial controlling points for modulating the entire 

information flow inside the cell (Tkačik and Bialek, 2014; Ledezma-Tejeida, Ishida and 

Collado-Vides, 2017). 

 

 Transcriptional Regulation and General Roles of Transcription 

Factors in bacteria 

Evolution has shaped a very compact genomic arrangement in bacteria, in which only about 

10% does not correspond to the production of RNAs (coding or non-coding) (Koonin and Wolf, 

2008; Koonin, 2009). Remarkably, this relatively small portion of the genome is responsible 

for most of the gene regulation events that occur in response to the most diverse environmental 

conditions (Cases, De Lorenzo and Ouzounis, 2003; Cases and de Lorenzo, 2005; Browning 

and Busby, 2016; Westmann et al., 2018). There are many different mechanisms responsible 

for these events, however they all converge to regulate the RNA polymerase (RNAP) 

distribution rates through the transcriptional units of bacterial DNA (Akira, 2000; Bintu, 

Buchler, Garcia, Gerland, Hwa, Kondev and Phillips, 2005; Bintu, Buchler, Garcia, Gerland, 

Hwa, Kondev, Kuhlman, et al., 2005; Ishihama, 2009). Such rates are dependent on the affinity 

of RNAP for the promoter region of the gene and this affinity is, ultimately, subject to 

modulations by a wide range of mechanisms, such as: association of different sigma (σ) factors; 

variations in DNA consensus sequences for polymerase and transcription factors binding; 

folding/looping of the DNA in the promoter region due to thermodynamic constraints; 

transcription factors that bind to the promoter by activating or repressing gene transcription 

through interactions with the polymerase or the DNA strand itself (Browning, Grainger and 

Busby, 2010; Browning and Busby, 2016). Two groups of regulatory proteins are involved in 

the modulation of the RNAP gene selectivity in E. coli: seven types of σ factors and 

approximately 300 types of transcription factors (Pérez-Rueda, Collado-Vides and Perez-

Rueda, 2000; Ishihama, 2010, 2017). 

 

While the σ factors constitute the first stage of gene regulation (Gruber and Gross, 2003; 

Sharma and Chatterji, 2010; Lee, Minchin and Busby, 2012), transcription factors are the major 

modulators in the later stages. They are proteins sensitive to internal and external environmental 

variations, with one or more domains - usually one that interacts with the nucleic acid and 

another which functions as a sensor of the environmental stimuli -, capable of acting 
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individually or together on: the DNA molecule itself; adjacent regulators or on RNAP, 

modulating its affinity to the promoter region (Pabo and Sauer, 1992; Browning and Busby, 

2004, 2016). Transcription factors are functionally classified into activators – the ones that 

promote gene expression and might generally bind in a motif upstream the core promoter region 

- or repressors - the ones that decrease gene expression and might generally bind in a motif 

upstream the core promoter region. However, over the past decades, it was discovered that 

activators and repressors are not immutable functions, they are interchangeable and depend on 

many factors such as the architecture of the regulatory region (e.g. density and relative position 

of TFBS), the environmental context etc. (Akira, 2000; Ishihama, 2009; Monteiro, Arruda and 

Silva-Rocha, 2017). 

 

In addition to their general function, transcription factors can also be classified according to 

their topology in the regulatory network, as represented in Figure 1 (Martínez-Antonio et al., 

2003). Global regulators are the top nodes of the network, few deeply interconnected nodes 

with a low degree of edges going into these nodes (not regulated by many genes) and a high 

degree of edges going to other nodes (they regulate many genes). Hence, they are the regulators 

with the highest percentage of regulated transcriptional units in the network and usually related 

to global responses in the cell such as growth phase transitions, catabolite repression etc. Local 

regulators, on the other hand, are very heterogeneous (many different families) and are related 

to more specific and adaptive responses. Of the approximately 300 transcription factors 

described in E. coli, it is estimated that only 7 are global (CRP, FNR, IHF, Fis, ArcA, NarL and 

Lrp), modulating the expression of more than 50% of regulated genes (Martínez-Antonio et al., 

2003). 
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Figure 1. Overview of the regulatory network in E. coli. From top to bottom of the image: (i) global 

blue regulators (ArcA, FNR, Fis, CRP, IHF, Lrp and HNS); (ii) local regulators in green and (iii) yellow 

modulated genes. Green lines represent activation, red repression and double-blue blending. Retrieved 

from (Martínez-Antonio et al., 2003). 

 

Within this set of global factors, new subsets can be created between free transcription factors 

and factors associated with the nucleoid. The latter, in turn, can be subdivided into universal 

nucleoid proteins (UNPs), which always remain bound to the nucleoid and growth-condition 

specific nucleoid proteins (GNPs), which appear only at specific stages of growth (Ishihama, 

1999, 2017; Dillon and Dorman, 2010). In this context, IHF is a heterodimer UNP that plays 

both structural role - DNA super-folding and destabilization of DNA duplexes - and regulator 

of genomic functions - DNA replication, recombination and gene expression (Ishihama, 2009). 

The Fis protein (inversion stimulation factor), on the other hand, is a GNP associated with cell 

growth (Ball et al., 1992; Azam et al., 1999; Nowak-Lovato et al., 2013). In optimal growth 

conditions, Fis is dominant in the nucleoid and regulates the transcription of several genes 

related to growth and bacterial metabolism - 21% of the genes are modulated by Fis directly or 

indirectly (Cho et al., 2008). 
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 Integration of signals into complex promoters 

The activity of most bacterial promoters is dependent on various environmental stimuli. Thus, 

many promoters are controlled by two or more transcription factors, with each of them 

conveyed to a specific stimulus (Rydenfelt et al., 2014; Browning and Busby, 2016). Databases 

indicate that approximately 50% of the E. coli promoters are under the control of a single 

specific regulator (M. Madan Babu, 2013; Rydenfelt et al., 2014; Gama-Castro et al., 2016), 

whereas the other 50% of the genes are regulated by more than two factors. This complex 

regulation depends on combinations between repressors and activators or co-dependence of 

more than one activator (Barnard, Wolfe and Busby, 2004; Hermsen, Tans and Ten Wolde, 

2006; Browning and Busby, 2016). For example, at the same time nucleotide-associated factors 

- Fis, IHF and H-NS - work together to repress transcription in the Nir regulatory region, these 

are also recruited as transcriptional activators in other promoters (Browning, Cole and Busby, 

2000; McLeod and Johnson, 2001). Thus, the analysis of the DNA context in which the 

regulator is embedded becomes much more relevant to determine its function than an absolute 

classification. 

 

Within this scenario, regulatory interactions in E. coli become much more elaborate than 

previously thought and probably as complex as those found in some eukaryotes, involving 

multifactor promoters and multi-target regulators, together, forming hierarchical regulatory 

networks. As an example of regulatory complexity in E. coli, more than 10 factors were 

characterized as directly involved in regulating the promoter for csgD encoding the master 

regulator of biofilm formation in this organism (Figure 2) (Gerstel, Park and Römling, 2003; 

Ogasawara et al., 2010). 
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Figure 2. Transcription factors and environmental stimuli involved in regulation of csgD. (a) A 

number of primary transcription factors, indicated in the inner circle, participate directly in the regulation 

of the csgD promoter. (b) The genes coding for these transcription factors are organized under the control 

of secondary transcription factors. The primary and secondary transcription factors together monitor 

various environmental signals and stresses. Retrieved from (Ishihama, 2010). 

 

 A multiscale approach for understanding molecular systems 

“What I cannot create I do not understand”. Many scientists have adopted this argument shaped 

by Richard Feynman as the reasoning for exploring biological systems through Synthetic 

Biology. However, life is a complex system continually shaped by evolutionary processes and 

the gap between designing an organism and fully understanding its complex nature is enormous. 

Thus, in order to bridge this gap and establish a more holistic framework, there is an urgent 

need for merging multiple perspectives. Building with “biological parts” to understand through 

Synthetic Biology and understanding to build through Systems Biology are complementary 

approaches that have become extremely influential. However, as Theodosius Dobzhansky once 

wrote: “nothing in Biology makes sense except in the light of Evolution”. In this context, one 

of the goals of the current dissertation is to expand the current views on bacterial transcriptional 

systems by combining a wide range of experimental strategies and theoretical backgrounds. 



INTRODUCTION 

9 

 

These different approaches can act in a synergistic manner for dissecting the basic principles 

underlying the organization patterns and evolution of living systems (Bayer, 2010; Wagner et 

al., 2012; Soyer and O’Malley, 2013; Crocker and Ilsley, 2017; Schaerli et al., 2017).  

In this context, as explained before,  the multi-layered process of decision-making in bacteria 

(such as biofilm formation, motility, differential expression of catabolic genes etc.) has 

transcriptional regulation in its core (Browning and Busby, 2004, 2016; Silva-Rocha, Tamames 

and de Lorenzo, 2012). In bacteria, most of the environmental and intracellular information is 

embodied inside of the cell by the conformational changes of signal-specific Transcription 

Factors (TFs) – in one-, two- or three-component systems – and ultimately integrated into short 

cis-regulatory regions (a few hundred of base pairs) which can bear multiple transcription factor 

binding sites (TFBSs) in an overlapped or individual architecture. These regions might be 

analogously compared to electronic microprocessors in the sense of information integration, 

ultimately comprising the set of logic rules for the expression of a gene or operon (Silva-Rocha, 

Tamames and de Lorenzo, 2012; Huminiecki and Horbańczuk, 2017; Bashor and Collins, 2018; 

Westmann, Guazzaroni and Silva-Rocha, 2018). 

Here, we wanted to explore bacterial transcriptional systems under different, yet 

complementary perspectives such as Synthetic Biology, Evolutionary Systems Biology and 

Metagenomics (Figure 3). Each of these fields has its own framework and methods and is 

focused on specific biological questions. Synthetic Biology is usually based on the 

deconstruction/re-engineering of natural systems in order to understand its underlying 

principles (Andrianantoandro et al., 2006; Cameron, Bashor and Collins, 2014). The 

Evolutionary Systems Biology (Wagner et al., 2012; Soyer and O’Malley, 2013) field is a 

combination of Systems Biology (Kitano, 2002) and the Evolutionary framework which is 

concerned with understanding how evolutionary innovation might arise in biological systems 

in different scales, from molecules to ecosystems. It is a deeply interdisciplinary field that 

merges both omics data with the modern evolutionary synthesis and population genetics in the 

search of general trends regarding biological systems. Lastly, the field of Metagenomics is 

concerned on exploring the universe of uncultivable microbes, using different approaches for 

studying the structure and function of bacterial communities and allowing the prospection of 

biological parts (such as genes, promoters etc.) through functional assays (Singh et al., 2009; 

Delmont et al., 2011). We believe this multiscale approach is fundamental for both 
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understanding the general principles underpinning information processing in living systems and 

(re)engineering them for biotechnological applications.  

 

Figure 3. A multiscale approach for understanding and (re)engineering life. The combination of 

Synthetic Biology, Systems Biology, Evolution and Metagenomics provide a combined strategy for 

exploring a single molecular system through multiple lenses in a more holistic manner. Credits for central 

image: Drawing Hands by M. C. Escher (1948). 

 

We also emphasize the relevance of data integration as an important aspect of these multiscale 

approaches. The gigantic volume of omics data accumulated over the last decades has shown 

that although high-throughput technologies are able to generate an enormous amount of data, 

without the correct framework, the real biological meaning beneath it remains hidden 

(Gehlenborg et al., 2010; Gomez-Cabrero et al., 2014; Dolinski and Troyanskaya, 2015; 

Stephens et al., 2015). Thus, this is the age of generating novel ways of interpreting and 

integrating big data for a comprehensive view of biological phenomena as a whole and not 

through its individual parts. In this context, understanding and developing novel tools for 

modelling biological networks is essential for simulating and predicting systemic behaviours in 

whole-cell computational models (Figure 4) (Covert et al., 2004; Fondi and Liò, 2015; Karr, 
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Takahashi and Funahashi, 2015; Yugi et al., 2016). In the next sections, we shall briefly 

introduce each of the previously cited fields for a better understanding of how they can be 

applied to the study of transcriptional regulatory systems in bacteria. 

 

 

 

Figure 4. Data integration in biological systems. Currently, there is a lack of a holistic/systemic view of 

how organizational layers are interconnected in the implementation of cellular functions and information 

processing mechanisms in living organisms.  The literature is surrounded by reductionist studies on small 

portions of the cellular systems, however, the making of an integrated representation of biological 

phenomena is still in its embryonic phase. Connections between genes and their outputs or within -omic 

layers can provide some clues to the molecular organization inside an organism, however, integrating -omic 

datasets through multi-omic analysis and modelling approaches can provide a much deeper and insightful 

view of biological phenomena. Modified from (Yugi et al., 2016) 

 

 

4.1 Synthetic Biology  

 

4.1.1 Advances and challenges in Synthetic Biology  

The term Synthetic Biology was first introduced in 1912 by Stéphane Leduc (Leduc, 1912); 

However, only in the last few years has its meaning come to describe the interface between the 

areas of Molecular Biology and Engineering (Andrianantoandro et al., 2006; Decoene et al., 

2017; Del Vecchio et al., 2018; Westmann, Guazzaroni and Silva-Rocha, 2018). This field 

seeks to understand and utilize "biological parts" - biobricks - (e.g. genes, promoters, regulators, 
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etc.) as building blocks in the "engineering" of biological systems, adopting a hierarchical, 

qualitative and quantitative approach to their standardization (Galdzicki et al., 2014; Beal et 

al., 2016; Beal, Haddock-Angelli, Baldwin, et al., 2018; Beal, Haddock-Angelli, Farny, et al., 

2018) (Figure 5). Their applications are vast and range from biotechnology (e.g., drug 

transporter systems, biofuels, water purification, etc.) to basic sciences (e.g. origins of life, 

robustness analyzes, molecular architecture etc.). One of the ultimate goals of Synthetic 

Biology is to recreate a cell as an automaton that can process information algorithmically and 

perform specific functions (de Lorenzo and Danchin, 2008). 

 

 

Figure 5 A possible hierarchy for synthetic biology is inspired by computer engineering. Retrieved 

from (Andrianantoandro et al., 2006) 

 

 

However, in order to achieve its objectives and become a discipline with strong roots in 

engineering, Synthetic Biology needs to overcome at least one major limitation: the struggle in 

executing the rational engineering of dynamic biosystems in a predictive and quantitative 

manner. Such an approach is difficult to apply even in less complex systems (in the sense of 

the molecular network connectivity) since there is still a huge gap between the mechanistic 

study of individual parts and the systemic understanding of the organism and the intrinsic logic 

embedded in its organizational layers (Danchin, 2012). Thus, without adequate knowledge 

about the properties of the biological components - and especially of the properties that emerge 
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from a system with multiple components - the generation of new gene circuits and biological 

functions intuitively becomes very ineffective. In this context, it is essential not only to study 

as many systems and molecular components as possible, but also to bring these studies into a 

Systemic and Synthetic Biology perspective. This interdisciplinary approach will allow deeper 

insights regarding some of the underlying principles of Life and how to re-engineer them. 

 

4.1.2 Prokaryotic regulatory networks as a model system 

Within this scenario, a model of great interest for Synthetic Biology is that of prokaryotic gene 

regulation. Regulatory networks are phylogenetically highly conserved, robust and 

hierarchically organized systems (Barabasi and Oltvai, 2004; Aldana et al., 2007; Payne and 

Wagner, 2015) that can be also be embedded in frameworks such as Information Theory and 

Engineering (e.g. Boolean Logic and molecular switches). The studies of these networks 

provide valuable substrates for the understanding and application of logic among the 

components of the system, as observed in recent works that have uncovered part of the 

regulatory logic in the development of model eukaryotes (Hart et al., 2012; Peter, Faure and 

Davidson, 2012; Wunderlich et al., 2012). 

 

On the other hand, the focus on prokaryotes such as Escherichia coli, besides taking advantage 

of their great biotechnological potential, also provides some of the best characterized regulatory 

systems (Gama-Castro et al., 2016), with less complexity in several biological scales 

(Lawrence, 1999; Lane and Martin, 2010) and relatively simple genetic manipulation methods 

(Sambrook, J.; Fritsch, E. F.; Maniatis, 1989) - in relation to eukaryotes -. It is also worth noting 

that prokaryotes have regulatory elements that are usually larger and less frequent in their 

genome than in eukaryotes (Koonin and Wolf, 2008; van Hijum, Medema and Kuipers, 2009), 

usually organized together with functional genomic regions (operons) and with a high degree 

of informational compression regulatory logic. This is a phenomenon that has been gradually 

unravelled in recent years (Milo et al., 2002; Silva-Rocha and de Lorenzo, 2008; Bendtsen et 

al., 2011), bearing enormous potential for the generation of new tools and applications in 

Synthetic Biology (Bashor and Collins, 2018; Xie and Fussenegger, 2018). 
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4.2 Evolutionary Systems Biology 

 

4.2.1 An introduction to Evolutionary Systems Biology 

At its most basic, evolutionary systems biology (ESB) is the synthesis of system-level 

approaches to biological function with evolutionary explanations of multilevel properties. 

“System” in this context refers to dynamically interacting components that produce behaviour 

not revealed by analyses of isolated components. Cellular interactions of signalling, regulatory, 

and metabolic components are all considered as systems or networks that can display structural 

complexity and nonlinear dynamics. In this context, ESB recognizes that the system-level 

properties of cellular networks are subject to evolutionary change and that evolved network 

properties will variously influence the future evolutionary course of the organism. It is this 

interdependency between evolutionary processes and system properties that ESB aims to 

understand. One of the earliest articles to describe ESB was published in 2005 (Medina, 2005), 

highlighting that the field goes beyond existing efforts to merge molecular and evolutionary 

biology (Dean and Thornton, 2007). It focuses on the study of phenotypes as the results of 

evolving intracellular interaction networks (Figure 6), integrating theoretical tools, 

experimental methods, and extensive datasets within an evolutionary framework. This 

integration is occurring in a highly pragmatic manner to develop closer insight into evolving 

genotype-phenotype mappings across different biological scales (Figure 6). Researchers with 

this goal seize upon tools and datasets as they become available (e.g. dynamical models, gene-

knockout studies, flux balance analyses, in silico evolution, reverse engineering, comparative 

omics data) to address questions as old as biology or to reformulate new ones in light of system 

level insight. While specific organizational features may have evolved to cope with 

environmental perturbations, it is getting a grip on “how” these are implemented at the 

molecular level rather than “why” that is considered the important task. 
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Figure 6. Systems under evolutionary forces. At the core of ESB lies the aim of achieving a deep 

mechanistic understanding of genotype-phenotype mappings in biological systems. While these mappings 

can be drawn at different levels in different combinations of ESB, a major area of interest is currently 

intracellular systems. These systems give rise to cellular physiology, which – in the case of unicellular 

organisms – directly determines species’ interactions with their environment and other organisms. These 

higher-level interactions are responsible for the fitness of organisms. Evolutionary processes (i.e. neutral 

drift and adaptation) move populations of these organisms on this dynamic fitness landscape by altering the 

properties of their intracellular systems. Retrieved from (Soyer and O’Malley, 2013). 

 

4.2.2 An introduction to regulatory complexity 

As explained before, the decision-making process in bacterial cells is the result of a myriad of 

regulatory interactions, which can, in a simplistic manner, be represented as intertwined 

hierarchical regulatory layers. In this context, gene regulatory networks (GRNs), which 

represent the coordination of bacterial transcription processes, represent the most fundamental 

layer in the molecular decision-making process. GRNs consist in Transcription Factors (TFs) 

that may act as repressors or activators of gene expression depending on environmental signals 

– which can be extracellular or intracellular (Browning and Busby, 2016). TFs that regulate the 

largest fraction of genes in a bacterial cell are considered global regulators, whereas TFs that 

modulate just a few genes are considered local regulators (Martínez-Antonio et al., 2003; 

Martínez-Antonio, 2011). Both global and local regulators act on specific cis-regulatory 

elements (CREs) modulating the RNA-Polymerase (RNAP) physical access and/or affinity to 

the core promoter region, modulating the transcription initiation (Browning and Busby, 2016). 
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Although a great effort has been made over the last decades for elucidating the individual roles 

of TFs on gene expression, it has become clear that the nature of most bacterial promoters 

allows the environmental signal integration to be densely compacted in bacterial genomes yet 

extremely precise in terms of gene expression.  

Recent studies have applied high throughput techniques and rational design approaches to 

evaluate the transcriptional outcomes of different complex promoter architectures (Buchler, 

Gerland and Hwa, 2003; Hermsen, Tans and Ten Wolde, 2006; Kinkhabwala and Guet, 2008; 

Gertz, Siggia and Cohen, 2009; van Hijum, Medema and Kuipers, 2009; Sharon et al., 2012; 

Peeters, Peixeiro and Sezonov, 2013; Rydenfelt et al., 2014; Monteiro, Arruda and Silva-

Rocha, 2017; Yuan et al., 2018) - regarding the relative position and nature of their 

Transcription Factor Binding Sites (Figure 7). The general messages from all these studies are: 

(i) the generation of synthetic complex promoters reveal principles of design for many 

regulatory functions and (ii) unpredictable emergent properties rise in those systems (Buchler, 

Gerland and Hwa, 2003; Kinkhabwala and Guet, 2008; Gertz, Siggia and Cohen, 2009; van 

Hijum, Medema and Kuipers, 2009; Sharon et al., 2012; Peeters, Peixeiro and Sezonov, 2013; 

Monteiro, Arruda and Silva-Rocha, 2017).  

However, most of the conclusions from those studies are restricted to eukaryotes and may not 

be applicable to prokaryotic systems as their core regulatory logics are intrinsically different 

(Struhl, 1999). Thus, there is an urgent need for understanding the fundamental rules underlying 

transcriptional regulation in bacterial systems. In this context, our research group has been 

providing essential information to fill this gap and to expand the design rule principles for 

engineering bacterial transcriptional systems (Silva-Rocha and de Lorenzo, 2008; Guazzaroni 

and Silva-Rocha, 2014; Amores, Guazzaroni and Silva-Rocha, 2015; Monteiro, Arruda and 

Silva-Rocha, 2017). 
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Figure 7. GRNs and complex promoters in E. coli. Left. Most global regulators extracted from E. coli 

transcriptional regulatory network, originally published by 2010 Nature Education, All rights reserved. 

Right. In silico prediction of regulatory output functions – as logic gates AND, OR, NOR etc. – in a range 

of complex promoter architectures. Each small box (red, orange or green) is a representation of a single 

TFBS within the complex promoters, modified from (Hermsen, Tans and Ten Wolde, 2006). 

 

4.2.3 The rise of innovation in regulatory systems from the perspective of CREs 

As Theodosius Dobzhansky once said, “nothing in Biology makes sense except in the light of 

evolution” (Dobzhansky, 1973) and it also applies to the understanding the evolutionary 

principles underpinning the diversity of TF binding sites and the architecture of complex 

promoters. Evolution usually navigates through a small set of possible solutions (genotype 

space) for locally optimizing specific functions, depending on the selective pressures 

(Kauffman, 1994; Loewenstein, 2006). Each optimization step relates – directly or indirectly - 

to a specific phenotype, which, in turn, composes the set of adaptive traits of an organism. 

Changes in the cis-regulation of gene expression have been proposed as a major source of 

evolutionary innovation (King and Wilson, 1975; Wittkopp and Kalay, 2012; Payne and 

Wagner, 2015; Lagator et al., 2016). For example, across insect species, there has been 

increasing evidence for the essential role that cis-regulatory changes have in shaping body plan 

formation (Carroll, 2008; Wittkopp and Kalay, 2012). Changes in the regulation of gene 

expression can occur through mutations in the transcription factor coding sequence (trans-

regulatory elements) and/or in CREs, which contain the transcription factor and the RNAP 

binding sites (Jacob and Monod, 1961). Mutations in CREs may be important targets of 

selection (Stern and Orgogozo, 2008), as it is hypothesized that, compared with trans elements, 

mutations in CREs have a wider range of effects, giving rise to a greater diversity of phenotypes 
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that could be selected upon (Wray, 2007). When considering transcriptional systems, the 

potential set of DNA sequences that are bound by a specific TF can be classified as the available 

genotype space for evolution’s navigation. The combination of multiple TFBSs in a complex 

promoter generates specific regulatory outputs for gene expressions, considered here as 

bacterial phenotypes, which will ultimately compose the fitness functions - the paths under 

selection for evolution’s navigation (see Figure 8).  

 

Figure 8. Representation of the connection between genotype, phenotype and fitness. Many genotypes 

give rise to the same phenotypes, which, in turn, will confer different fitness values depending on the 

selective pressures upon them. Modified from (Schuster, 2002) 

 

In this context, one way to explore the principles underlying the rise of “innovation” in 

regulatory complexity is to adopt mutational models, which consider that evolution navigates a 

nucleotide space through the rise of spontaneous mutations. Indeed, many recent studies that 

have focused on understanding the dynamics of this process by experimental approaches, 

accessing parameters as the rate of de novo promoter acquisition in random DNA sequences 

(Yona, Alm and Gore, 2018), the role of epistatic interactions in gene regulation (Payne and 

Wagner, 2014; Lagator et al., 2016; Aguilar-Rodríguez, Payne and Wagner, 2017) and the role 

of each nucleotide in determining the binding affinity of TFBSs (Newburger and Bulyk, 2009; 

Orenstein and Shamir, 2016; Belliveau et al., 2018). A recent computational study using 

eukaryotic data has also provided essential information regarding evolution’s navigability in 

thousands of adaptive landscapes for eukaryotic TFBSs, suggesting that landscape navigability 

may have contributed to the enormous success of transcriptional regulation as a source of 

evolutionary adaptations and innovations (Payne and Wagner, 2014; Aguilar-Rodríguez, Payne 
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and Wagner, 2017). However, most studies in this area are based on eukaryotic models, which, 

as described before, possess markedly different regulatory attributes in comparison to 

prokaryotes (Struhl, 1999; Berg, Willmann and Lässig, 2004; Wunderlich and Mirny, 2009; 

Stewart, Hannenhalli and Plotkin, 2012; Stewart and Plotkin, 2013) – such as smaller 

TFBSs/longer promoter regions, higher density of cis-regulatory sites, variable information 

content per TFBS. 

 

4.3  Metagenomics 

 

4.3.2 A brief introduction to metagenomics 

About thirty years ago, in 1986, Pace and collaborators (Pace et al., 1986) proposed, for the 

first time, the revolutionary idea of cloning DNA directly from environmental samples to 

analyse the complexity of natural microbial populations. The adopted strategy was based on 

shotgun-cloning of 16S rRNA genes using purified DNA from natural samples. At that time, 

authors stressed that although the DNA was originated from a mixed population of 

microorganisms, the methodology allowed the recovery and subsequent sequencing of 

individual rRNA genes. Thus, by evaluating complete or partial rRNA sequences, the 

composition of the original microbial populations could be retrieved. 

Around ten years later, in 1998, the term “metagenome” appeared, when Handelsman and 

collaborators (Handelsman et al., 1998) described the importance of soil microorganisms as 

sources for new natural compounds. According to them, a new frontier in science was emerging 

– the mining for novel chemical compounds from uncultured microorganisms, which comprises 

more than 99% of the microbial diversity (Sleator, Shortall and Hill, 2008). This new concept 

in microbial ecology opened the mind of the scientific community in respect to the astonishing 

large catalogue of biochemical functions available in nature remaining to be discovered. 

Currently, metagenomics is subdivided into two major approaches, which target different 

aspects of the local microbial community associated with a determined environment. In the first 

one, the so-called structural metagenomic approach, the main focus is to study the structure of 

the uncultivated microbial population, which can be expanded to other properties, such as the 

reconstruction of the complex metabolic network established between community members 
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(Handelsman, 2005; Tringe et al., 2005). In this sense, the microbial community structure can 

be defined as the population composition and its dynamics in a specific ecosystem, in response 

to selective pressures and spatiotemporal parameters. The study of the community structure 

allows a deeper understanding about the relationships between the individual components that 

build a community and is essential for deciphering ecological or biological functions among its 

members (Tringe et al., 2005; Vieites et al., 2009). In a different manner, the functional 

metagenomic approach aims to identify genes that code for a function of interest, which 

involves the generation of expression libraries with thousands of metagenomic clones followed 

by activity-based screenings (Schmeisser, Steele and Streit, 2007; Guazzaroni, Silva-Rocha and 

Ward, 2015).   

 

4.3.3 Metagenomics as a novel approach for exploring transcriptional systems 

The study of prokaryotic transcriptional regulation is essential for understanding the molecular 

mechanisms underlying decision-making processes in microorganisms (Ishihama, 2010), 

comprising populational, ecological and pathogenic behaviours. The activity of most bacterial 

promoters is usually dependent on the combined action of transcription factors and sigma 

factors in response to multiple environmental stimuli (Browning and Busby, 2016). For 

instance, in E. coli, the compilation of decades of experimental data indicate that approximately 

50% of its promoters are under the control of a single specific regulator, while all other genes 

are regulated by at least two transcription factors (Gama-Castro et al., 2016). Moreover, the 

recent development of experimental and large-scale sequencing techniques, together with 

powerful computational approaches have allowed both the discovery of insightful information 

about other bacterial transcriptional systems and the development of novel approaches for 

studying them n higher depth (Shen-Orr et al., no date; Martínez-Antonio et al., 2003; Covert 

et al., 2004; Shimada et al., 2005). However, despite technical innovations, most of the studies 

are still centered on E. coli, a single bacterial species among at least 30,000 other already 

sequenced (Land et al., 2015), in an estimated total of 1 trillion species (Locey and Lennon, 

2016; Thompson et al., 2017).  

With the advent of Metagenomics (Handelsman et al., 1998), the exploration of unculturable 

bacteria (approximately 99% of a bacterial community (Amann, Ludwig and Schleifer, 1995) 

widely expanded genomic information, providing resourceful data about populational 
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structures and genetic diversity in a myriad of environmental samples (Torsvik and Øvreås, 

2002; Venter, 2004; Tringe, 2005). In this context, although a large number of genes/ORFs has 

been discovered through the previously described approaches, the detection of novel bacterial 

regulatory elements using high-throughput technologies has been poorly explored. So far, the 

most relevant researches concerning regulatory elements in metagenomic are: a single well-

defined method for the discovery of substrate-inducible regulatory sequences – SIGEX 

(Uchiyama et al., 2005) -; a direct assay for prospecting promoters for industrial applications 

(Han et al. 2008) and a recent large-scale metagenomic mining of thousands of natural 5′ 

regulatory sequences from diverse bacteria, and their multiplexed gene expression 

characterization in industrially relevant microbes (Johns et al., 2018) . This scarce number of 

methodologies is directly related to the biased search towards novel enzymatic activities and to 

a lack of both experimental and computational tools for finding and validating promoter 

sequences in metagenomic libraries (Guazzaroni, Silva-Rocha and Ward, 2015).  

Unravelling novel bacterial promoters is essential for understanding the regulatory diversity of 

microorganisms, addressing important questions, such as the abundance of both constitutive 

and inducible elements in a metagenomic library, the bottlenecks regarding host choices (i.e. 

the constraints limiting the diversity of exogenous promoters that can be recognized by different 

hosts) and the correlation between promoter strength, transcriptional noise and the functional 

role of the regulated gene/operon (Ekkers et al., 2012; Silander et al., 2012; Guazzaroni, Silva-

Rocha and Ward, 2015; Vester, Glaring and Stougaard, 2015). Furthermore, prospecting and 

characterizing novel promoters is crucial for expanding the current Synthetic Biology toolbox 

and generating novel biotechnological applications as there is a high demand for constitutive 

and inducible promoters responding to process-specific parameters (Figure 9) (Uchiyama et 

al., 2005; Silva-Rocha and de Lorenzo, 2008; Boyle and Silver, 2009; Blount et al., 2012; 

Guazzaroni, Silva-Rocha and Ward, 2015). 
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Figure 9. Synergies between Synthetic Biology and Metagenomics. Synthetic Biology is an emerging 

interdisciplinary field that combines engineering principles and molecular biology. Genetic features such 

as genes, promoters and ribosome binding sites are conceptually seen as biological parts that can be 

assembled in the design and building of genetic circuits with specific functions. Thus, one of the greatest 

challenges is the discovery and characterization of new biological parts. In this context, the parallel progress 

in the Functional Metagenomics field over the last decade has turned it into a powerful tool for mining new 

genetic components. 

 

4.4 Data Integration and –omics-based models 

The ease at which genomes are currently sequenced has assigned to genomics one of the first 

steps in microbial systems biology. Regardless of the technique used, assembly and annotation 

typically follow genome sequencing and return an almost complete picture of the genetic 

reservoir of a given microorganism. On the other hand, genome sequence only represents a 

snapshot of the real phenotypic capabilities of an organism, providing very few indications on 

other crucial aspects of the underlying life cycle such as response to environmental and genetic 

perturbations, fluctuations in time, gene essentiality and so on (Costanzo et al., 2010; Papp, 

Notebaart and Pál, 2011; Stallins et al., 2018). To gain a systemic and exhaustive description 

of living entities, static information deriving from genome sequence is not enough and other 

levels of knowledge must be taken into consideration. Nowadays, technologies do exist for 
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measuring, in a large-scale fashion, other crucial aspects of cellular life, including the level of 

RNA within the cell (transcriptomics), the nature of metabolites present within the cell 

(metabolomics), the interaction among different proteins (protein–protein interaction) and 

many others (O’Malley and Soyer, 2012; Gomez-Cabrero et al., 2014; Fondi and Liò, 2015; 

Goldberg et al., 2018). In addition, metabolic biodiversity of microbial communities can be 

today evaluated through metagenomics and metatranscriptomics approaches (Figure 10). 

However, no single -omics analysis can fully unravel the complexities of fundamental 

microbiology (Zhang, Li and Nie, 2010). Multi- and integrated -omics approaches have thus 

started spreading among several research areas, from bio-based fuel production (Zhu et al., 

2013) to biopharmaceuticals processes (Schaub et al., 2012), from medical research (Wiench 

et al., 2013) to host–pathogen interactions (Ansong et al., 2012). The integration of such diverse 

data types may be considered one of the key challenges of present-day bioinformatics, due to 

different data formats, high data dimensionality and need for data normalization. 

One of the most important drawbacks associated with the booming of genomics resides in the 

possibility to (almost) automatically derive the potential metabolic landscape of a strain, given 

its genome. Bacteria continuously provide industry with novel products/processes based on the 

use of their metabolism and numerous efforts are being undertaken to deliver new usable 

substances of microbial origin to the marketplace (Beloqui et al., 2008), including 

pharmaceuticals, biofuels and bioactive compounds in general (García-Ochoa et al., 2000; Tan, 

Mccue and Stormo, 2005; Zou et al., 2012). In this context, computational modelling and in 

silico simulations are often adopted by metabolic engineers to quantitatively simulate chemical 

reactions fluxes within the whole microbial metabolism (Lewis, Nagarajan and Palsson, 2012; 

Bordbar et al., 2014). To exploit computational approaches, genome annotation-derived 

metabolic networks are transformed into models by defining the boundaries of the system, a 

biomass assembly reaction, and exchange fluxes with the environment (Durot, Bourguignon 

and Schachter, 2009). Also needed are (i) structured (mathematical) representation of that 

network, (ii) possibly quantitative parameters enabling simulations or predictions on the joint 

operation of all network reactions in a given environment and, in particular, (iii) predictions on 

the values of metabolite fluxes and/or concentrations (Papin et al., 2003). A constraint-based 

modelling framework can then be used to automatically compute the resulting balance of all 

the chemical reactions predicted to be active in the cell and, in turn, to bridge the gap between 
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knowledge of the metabolic network structure and observed metabolic processes (Varma and 

Palsson, 1994). 

 

Figure 10. Data integration in microbial -omics pipelines. Nowadays, to gain a systems-level 

perspective on biotechnologically relevant strains NGS and preliminary genome annotation is 

usually performed. After this step, information on the presence/absence of metabolic pathways and 

overall metabolic capabilities of a given microbe is gained. Nevertheless, to obtain a systems-level 

knowledge, a body of additional information can be mapped onto a genome annotation (the “-

omics wheel”). This includes: gene and genomic constraints (derived from a deep inspection of 

genome properties), taxonomic and metabolic information, “-omics” data (transcriptomics, 

proteomics, metabolomics, epigenomics, phenomics), other phenotypic information (e.g. high-

resolution microscopy), ecosystem information, (microbiome composition, community functional 

characterization, meta-transcriptomics). Furthermore, these different layers of information can be 

combined and integrated to merge together datasets resulting from the application of different 

technologies. Links among -omics represent present-day study cases in which integration among 

two or more information layers has been performed (see corresponding references). After -omics 

integration has been performed, a more comprehensive perspective on the microbe(s) under study 

is gained, providing clues on the possible interactions with the surrounding environment (including 

metabolic cross-talk with other microbial species), statistically grounded inferences and novel 

questions to be addressed (possibly re-iterating the pipeline). In this figure, orange boxes include 

possible softwares, while green-blue boxes specific tasks of general -omics strategy. Modified 

from (Fondi and Liò, 2015) 
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4.4.1 The importance of metabolic models for understanding phenotypes 

Bottom-up approaches to systems biology rely on constructing a mechanistic basis for the 

biochemical and genetic processes that underlie cellular functions. Genome-scale network 

reconstructions of metabolism are built from all known metabolic reactions and metabolic genes 

in a target organism (Orth, Palsson and Fleming, 2010; Monk, Nogales and Palsson, 2014). 

Networks are constructed based on genome annotation, biochemical characterization, and the 

published scientific literature on the target organism. The reactome of a cell is assembled, or 

reconstructed, from all the biochemical reactions known or predicted to be present in the target 

microorganism. Importantly, network reconstruction includes an explicit genetic basis for each 

biochemical reaction in the reactome as well as information about the genomic location of the 

gene (Orth, Palsson and Fleming, 2010; Monk, Nogales and Palsson, 2014; O’Brien, Monk and 

Palsson, 2015). Thus, reconstructed networks, or an assembled reactome, for a target organism 

represent biochemically, genetically, and genomically structured knowledge bases, or BiGG k-

bases (Schellenberger et al., 2010). Network reconstructions have different biological scope 

and coverage. They may describe metabolism, protein-protein interactions, regulation, 

signalling, and other cellular processes, but they have a unifying aspect: an embedded, 

standardized biochemical and genetic representation amenable to computational analysis 

(O’Brien, Monk and Palsson, 2015). 

A network reconstruction can be converted into a mathematical format and thus lend itself to 

mathematical analysis and computational treatment. Genome-scale models, called GEMs, have 

been under development for nearly 15 years and have now reached a high level of 

sophistication. The first GEM was created for Haemophilus influenza and appeared shortly 

after this first genome was sequenced (Edwards and Palsson, 1999) and GEMs have now grown 

to the level where they enable predictive biology (Oberhardt, Palsson and Papin, 2009; 

McCloskey, Palsson and Feist, 2013; Bordbar et al., 2014). Some of the analysis made possible 

through GEMs are represented in Figure 11. 

 

. 
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Figure 11. Uses of the E. coli reconstructions divided into five categories. (A) A drawing of a predicted 

effect from a loss of function mutation in a simple system is shown. Metabolic engineering studies have 

investigated in silico strain design using E. coli metabolic reconstructions to overproduce desired products. 

(B) Recent studies utilizing the reconstruction in a prospective manner have aimed to use the current 

biochemical and genetic information included in the metabolic network along with additional data types to 

drive biological discovery, such as predicting genes encoding for orphan reactions. (C) Utilizing the 

reconstruction in phenotypic studies, computational analyses have examined gene, metabolite, and reaction 

essentiality along with considering thermodynamics to make better predictions about the physiological state 

(i.e., the active pathways) of the cell for a given environmental condition. (D) The E. coli reconstructions 

have been used to analyze and interpret the intrinsic properties of biological networks. One example being 

finding coupled reaction activities (as shown in the drawing) across different growth conditions. (E) Using 

the network reconstruction, evolutionary studies have examined the cellular network in the context of 

adaptive evolution events, horizontal gene transfer and minimal metabolic network evolution (as shown in 

the drawing). Retrieved from (Feist and Palsson, 2008) 

 

4.4.2 Metabolic modelling for unravelling communities 

Metabolic interactions are an emergent property of microbial communities (Morris et al., 2013; 

Chiu, Levy and Borenstein, 2014). Even the simplest life forms can only be understood in terms 

of biological consortia characterized by shared metabolic pathways and distributed biosynthetic 

capacities (Klitgord and Segrè, 2010; McCutcheon and Moran, 2011; Husnik et al., 2013). For 

example, glucose catabolism to carbon dioxide or methane is a multi-step process often 

involving several organisms that indirectly exchange intermediate products through their 

environment (Stams, 1994). Microbial communities are thus complex systems comprising 

several interacting components that cannot be fully understood in isolation. In fact, metabolic 

interdependencies between organisms are at least partially responsible for our current inability 
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to culture the great majority of prokaryotes. Understanding the emergent dynamics of microbial 

communities is crucial to harnessing these multicomponent assemblages and using synthetic 

ecology for medical, environmental and industrial purposes (Brenner, You and Arnold, 2008). 

Genome sequencing has enabled the reconstruction of full-scale cell-metabolic networks 

(Henry et al., 2010), which have provided a firm basis for understanding individual cell 

metabolism (Varma and Palsson, 1994; Duarte, 2004; Klitgord and Segrè, 2010). Recent work 

indicates that multiple cell models can be combined to understand microbial community 

metabolism and population dynamics (Stolyar et al., 2007; Klitgord and Segrè, 2010; Zengler 

and Palsson, 2012; Chiu, Levy and Borenstein, 2014; Harcombe et al., 2014) (Figure 12). 

These approaches assume knowledge of all model parameters such as stoichiometric 

coefficients, maintenance energy requirements or extracellular transport kinetics, a requirement 

that is rarely met in practice (Feist and Palsson, 2008; Harcombe et al., 2014). 

 

Figure 12. Metabolic modelling for understanding community interactions. (A) Conceptual 

framework. Cells (colored shapes) optimize their metabolism for maximal growth and influence their 

environment via metabolite exchange (small colored arrows). Additional external fluxes can also affect the 

environment (large grey arrows). The environment, in turn, influences each cell's metabolism. (B) 

Computational framework. Each iteration consists of four steps: flux balance analysis (FBA) is used to 

translate cell-metabolic potentials and environmental conditions (1) into a linear optimization problem for 

the growth rate of each cell species (2). The set of possible reaction rates corresponds to a polytope in high-

dimensional space. Solving the optimization problems (3) yields predictions on microbial metabolite 

exchange rates (4). Metabolic fluxes and cell growth rates are used to predict metabolite and cell 

concentrations in the next iteration (1). Retrieved from (Louca and Doebeli, 2015).
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General objective:  

 

To explore the different aspects of bacterial transcriptional systems in an integrated 

manner. 

 

Specific objectives: 

 

1. To understand the basic rules underlying the generation of transcriptional logic and 

emergent behaviours in complex bacterial promoters by combinatorial design and 

in vivo testing of synthetic promoters with Fis and IHF transcription factor binding 

sites in E. coli. 

2. To use in silico approaches to explore how innovation rises in transcriptional 

systems and how evolution navigates in the sequence space of bacterial transcription 

factor binding sites, using as a case of study E. coli sequences bound by the global 

regulators CRP, Fis and IHF.  

3. To explore and characterize the natural diversity of regulatory elements in 

environmental samples using functional metagenomics approaches. 

4. To establish a computational pipeline for de novo generation of bacterial metabolic 

networks as an initial step for data integration in biological informational processing 

systems
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Chapter I 

 

 

 

A Synthetic Biology approach to engineer and decipher underlying 

logic rules in complex bacterial promoters 
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 Specific Background 

  

The Synthetic Biology framework usually conceptualises gene regulatory interactions as 

Boolean networks in order to simplify the modelling of cellular behaviours. Boolean networks 

consist of a set of nodes whose state is binary and determined by other nodes present in the 

network, through Boolean functions (Wang, Saadatpour and Albert, 2012). Although these 

networks were originally used in electronic circuits and computer sciences, in the form of digital 

logic gates, in recent years, their application has extended to several areas of cellular biology, 

especially in the study of gene regulation (Alon, 2007; Lim, 2010; Morris et al., 2010). The 

generation of these models depends on multiple approaches (e.g. experimental, mathematical 

and computational), since only after the experimental elucidation of the individual components 

and their interactions, a system can be represented in the form of a coherent Boolean network 

(Wang et al., 2011). Such a representation, although coarse-grained in terms of mathematical 

models, is very powerful and allows to describe/predict the temporal and qualitative behaviours 

of the system, as well as its changes through different perturbations (Wang, Saadatpour and 

Albert, 2012). 

 

Prokaryotic transcriptional networks have a large number of regulatory modules that formally 

behave like many of the logic gates typical of digital Boolean circuits. The participation of one 

or more TFs in the regulation of a particular promoter confers the ability to integrate different 

input signals in a manner, which is not far from those described by Boolean logic gates. An 

archetypal example in this context is the operon lac of E. coli (Jacob and Monod, 1961; Wilson 

et al., 2007) that had its behaviour described and modelled as an intermediate between AND-

OR logical gates (Setty et al., 2003). More complex systems have also been studied from 

Boolean formalisms and represented as logicomes, such as the TOL system of degradation of 

toluene and m-xylene in Pseudomonas putida, depicted in Figure 13 (Silva-Rocha et al., 2011; 

Silva-Rocha and de Lorenzo, 2013). These logicomes represent the set of logical operators that 

compute all information within the TOL pathway, modulating the system response. 
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Figure 13. Formalization of the TOL network as a logic circuit. The complete set of logic gates that 

make up the TOL regulatory network (left) and their interactions with host factors (right) are represented. 

The logic gates used to create the circuit and their respective truth tables are represented at the bottom. 

Modified from (Silva-Rocha and de Lorenzo, 2013) 

 

Synthetic Biology tries to use the previously presented concepts to integrate molecular elements 

as components of a complex biological circuit (De Silva and Uchiyama, 2007; Greber and 

Fussenegger, 2007) with the construction and / or modification of several genetic logic gates, 

including those performing AND and NOT functions (Buchler, Gerland and Hwa, 2003; 

Yashin, Rudchenko and Stojanovic, 2007; Friedland et al., 2009; Dari et al., 2011; Sayut, Niu 

and Sun, 2011; Siuti, Yazbek and Lu, 2013; Boer et al., 2018). This process has great potential 

in the elucidation of biological systems and the generation of novel reliable/predictive 

behaviours in genetically modified organisms (Wang et al., 2015).  

 

Although the current methodologies to (re)engineer these biological systems usually vary 

depending on the desired goal, they can be roughly divided into two general frameworks: 
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(i) Those that use pre-existing regulatory elements - promoters and TFs, rewiring them 

according to a rational design to obtain any desired functions (Silva-Rocha and De 

Lorenzo, 2011; Tamsir, Tabor and Voigt, 2011). 

(ii) Those that create synthetic regulatory elements in order to study the emerging 

behaviours in the system. This process has presented important results through 

modifications in sequences of regulatory regions, in TFs and in the architecture of 

promoters with respect to their number of operators (Gertz, Siggia and Cohen, 2009; 

Hunziker et al., 2010; Silva-Rocha and De Lorenzo, 2012; Monteiro, Arruda and 

Silva-Rocha, 2017; Boer et al., 2018). 

 

However, it is important to notice that, within the context of Synthetic Biology, natural 

regulatory elements often appear to be highly-compressed and under a strong effect of the DNA 

regulatory architecture, leading to stochastic variations, continuous, non-binary responses, and 

molecular noise effects (Arkin and Ross, 1994; Elowitz et al., 2007). These are important 

bottlenecks in the development of a reliable/precise engineering of biological transcriptional 

systems and in order to overcome them, it is necessary to:  

 

(i) further explore the transcriptional elements within single and multiple species 

genomes; 

(ii) study and improve the  orthogonalization and disambiguation of natural regulatory 

modules 

(iii) understand the basic rules underlying the generation of novel behaviours in the 

interactions between biological components in natural and synthetic systems. 

 

Within the presented panorama, this project seeks to use Synthetic Biology tools to aid in the 

understanding of the logic - natural and Boolean - present in the transcriptional regulation in 

complex bacterial promoters. For this, the interactions between two global nucleotide 

regulators: Fis and IHF - essential in bacterial metabolism and highly associated in the genome 

will be studied. This study has a great scientific and biotechnological potential, allowing a better 

elucidation of the molecular system in question, as well as the generation of new tools and 

design principles in Synthetic Biology (for example, the description of new logic gates and their 

behaviour, with extrapolation for different biotechnological functions). 
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 Objectives 

 

General objective: 

 

To use Synthetic Biology approaches to decipher the logic of signal integration in complex 

promoters. In this way, we focus on characterizing and understanding the relationship between 

the architecture of complex promoters and the logic of gene regulation dependent on global 

regulators in bacteria. 

 

Specific objectives: 

 

1. To construct and characterize a library of synthetic bacterial promoters in which Fis and 

IHF TFBSs can be combined in different configurations by both random and directed 

ligation of the two sequences in the promoter scaffold. 

 

2. Characterization of the behaviour of selected promoters in bacterial populations through 

time-lapse and fluorescence analysis and analysis of emergent behaviours in order to 

decipher the combinatorial expression logic of Fis and IHF. 
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 Materials and Methods 

 

The methodology used in this project was previously established in our laboratory through the 

generation of promoters libraries containing the following sequences: Neg (inert sequence in 

the context of TF recognition), CRP and IHF (Monteiro, Arruda and Silva-Rocha, 2017). 

 

Bacterial Strains , Plasmids, Primers, and Growth Conditions 

The plasmids, bacterial strains, and primers used in this study are listed in Table 1. For cloning 

procedures, the bacterial strain used was E. coli DH5α. E. coli BW25113 was used as the wild-

type strain (WT) whereas E. coli JW1702−1 was used as the mutant for IHF transcription factor, 

and both were obtained from the Keio collection.(Baba et al., 2006) E. coli strains were grown 

at 37 °C in LB media with chloramphenicol at 34 μg mL−1 or in M9 minimal media (6.4 g L−1 

Na2HPO4·7H2O, 1.5 g L−1 KH2PO4, 0.25 g L−1 NaCl, 0.5 g L−1 NH4Cl) supplemented with 

chloramphenicol at 17 μg mL−1, 2 mM MgSO4, 0.1 mM casamino acids, and 1% glycerol as 

the sole carbon source. 

 

Table 1. Bacterial Strains , Plasmids and Primers used in this study 

Strain Description Source 

E. coli DH10B F– endA1 deoR+ recA1 galE15 galK16 nupG rpsL Δ(lac)X74 φ80lacZΔM15 ar

aD139 Δ(ara,leu)7697 mcrA Δ(mrr-hsdRMS-mcrBC) StrR λ– 

(Casadaban 

and Cohen, 

1980; Grant et 

al., 1990) 

E. coli DH5α F- endA1 gln V44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15 

Δ(lacZYA-argF)U169, hsdR17(rK- mK+), λ− 

(Grant et al., 

1990) 

E. coli BW25113 Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), λ-, rph-1, Δ(rhaD-rhaB)568, 

hsdR514. 

(Datsenko and 

Wanner, 

2000) 

E. coli JW3229 E. coli BW25113 with Δfis mutation (Baba et al., 

2006) 

E. coli JW1702 E. coli BW25113 with Δihf mutation (Baba et al., 

2006) 

   

Plasmid Description Source 

pMR1 CmR, orip15a; GFPlva promoter probe vector (Guazzaroni 

and Silva-

Rocha, 2014) 

pMR1- NNNN CmR, orip15a; pMR1- NNNN -GFPlva transcriptional fusion This study 

pMR1- NNNF CmR, orip15a; pMR1- NNNF -GFPlva transcriptional fusion This study 

pMR1- NNFN CmR, orip15a; pMR1- NNFN -GFPlva transcriptional fusion This study 

pMR1- NNFF CmR, orip15a; pMR1- NNFF -GFPlva transcriptional fusion This study 

pMR1- NFNN CmR, orip15a; pMR1- NFNN -GFPlva transcriptional fusion This study 

pMR1- NFNF CmR, orip15a; pMR1- NFNF -GFPlva transcriptional fusion This study 

pMR1- NFFN CmR, orip15a; pMR1- NFFN -GFPlva transcriptional fusion This study 
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pMR1- NFFF CmR, orip15a; pMR1- NFFF -GFPlva transcriptional fusion This study 

pMR1- FNNN CmR, orip15a; pMR1- FNNN -GFPlva transcriptional fusion This study 

pMR1- FNNF CmR, orip15a; pMR1- FNNF -GFPlva transcriptional fusion This study 

pMR1- FNFN CmR, orip15a; pMR1- FNFN -GFPlva transcriptional fusion This study 

pMR1- FFNN CmR, orip15a; pMR1- FFNN -GFPlva transcriptional fusion This study 

pMR1- FFNF CmR, orip15a; pMR1- FFNF -GFPlva transcriptional fusion This study 

pMR1- FFFN CmR, orip15a; pMR1- FFFN -GFPlva transcriptional fusion This study 

pMR1- FFFF CmR, orip15a; pMR1- FFFF -GFPlva transcriptional fusion This study 

pMR1- FNFF CmR, orip15a; pMR1- FNFF -GFPlva transcriptional fusion This study 

pMR1- FFNI CmR, orip15a; pMR1- FFNI -GFPlva transcriptional fusion This study 

pMR1- NFNI CmR, orip15a; pMR1- NFNI -GFPlva transcriptional fusion This study 

pMR1- NNFI CmR, orip15a; pMR1- NNFI -GFPlva transcriptional fusion This study 

pMR1- NFFI CmR, orip15a; pMR1- NFFI -GFPlva transcriptional fusion This study 

pMR1- FNNI CmR, orip15a; pMR1- FNNI -GFPlva transcriptional fusion This study 

   

Primer Sequence (3’-5’) Source 

pMR1-F CTCGCCCTTGCTCACC This study 

pMR1-R ACAAGAATTGGGACAACTCC This study 

CoreP-5 CTTGAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTT

GTGTGGAG 

This study 

CoreP-3 GATCCTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCC

TGGGGTGCCT 

This study 

P1−I5 AATTCCAATTTATTGATTTTA This study 

P1−I3 CGCCTAAAATCAATAAATTGG This study 

P2−I5 GGCGCAATTTATTGATTTTA This study 

P2−I3 GCGGTAAAATCAATAAATTG This study 

P3−I5 CCGCCAATTTATTGATTTTA This study 

P3−I3 CCAATAAAATCAATAAATTG This study 

P4−I5 TTGGCAATTTATTGATTTTA This study 

P4−I3 CAAGTAAAATCAATAAATTG This study 

P1−N5 AATTCTCGCCTGCTTGTAGTA This study 

P1−N3 CGCCTACTACAAGCAGGCGAG This study 

P2−N5 GGCGTCGCCTGCTTGTAGTA This study 

P2−N3 GCGGTACTACAAGCAGGCGA This study 

P3−N5 CCGCTCGCCTGCTTGTAGTA This study 

P4−N5 TTGGTCGCCTGCTTGTAGTA This study 

P4−N3 CAAGTACTACAAGCAGGCGA This study 

P1−F5 AATTCTGCTCAAAAATTAAGC This study 

P1−F3 CGCCGCTTAATTTTTGAGCAG This study 

P2−F5 GGCGTGCTCAAAAATTAAGC This study 

P2−F3 GCGGGCTTAATTTTTGAGCA This study 

P3−F5 CCGCTGCTCAAAAATTAAGC This study 

P3−F3 CCAAGCTTAATTTTTGAGCA This study 

P4−F5 TTGGTGCTCAAAAATTAAGC This study 

P4−F3 CAAGGCTTAATTTTTGAGCA This study 

 

Design of the Minimal Promoter Scaffold and Ligation Reactions 

Promoters were constructed by ligation of 5′end phosphorylated oligonucleotides (Cox, Surette 

and Elowitz, 2007; Kinkhabwala and Guet, 2008) acquired from Sigma-Aldrich (Table 1). All 

single strand nucleotides were designed to carry a discrete 16 bp sequence (Little et al., 1980) 

containing a Fis binding site (F), IHF binding site (I), one Neutral (Neg) motif with no 

transcription factor binding, and a core promoter based on the lac promoter (boxes -10 / -35) 
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(Table 1), which is a weak promoter and therefore requires activation. All these 

oligonucleotides were designed to carry three base pair overhangs corresponding to their 

corrected insertion region on the promoter (Figure 14A). The sense and antisense strands 

corresponding to each position were mixed at equimolar concentrations and annealed by heating 

at 95 °C followed by gradual cooling to room temperature. External overhangs of the fourth 

cis-element position and the core promoters reassembled on the EcoRI and BamHI digested 

sites, allowing ligation to a previously digested EcoRI/BamHI pMR1 18 plasmid. The chosen 

vector, pMR1 (Guazzaroni and Silva-Rocha, 2014), medium copy number based on the p15a 

origin of replication has a resistance to chloramphenicol and two divergent reporter genes, one 

mCherry and one GFPlva. Thus, the vector allows the cloning of promoters by controlling the 

expression of the GFPlva gene, while allowing to investigate if the junction of the cis-regulatory 

elements could cause the appearance of a divergent promoter in the system. All five fragments 

(four cis-elements positions plus core promoter) were mixed at equimolar concentrations in a 

pool with the final concentration of 5′ phosphate termini fixed at 15 μM. For the ligase reaction, 

1 μL of the pooled fragments was added to 50 ng EcoRI/BamHI pMR1 digested plasmid in the 

presence of ligase buffer and ligase enzyme to a final volume of 10 μL. After 1 h at 16 °C, the 

ligase reaction was inactivated for 15 min at 65 °C and one aliquot of 2 μL was then 

electroporated into 50 μL of E. coli DH10B competent cells. After 1 h of regenerating in 1 mL 

LB media, the total volume was plated onto LB solid dishes supplemented with 

chloramphenicol at 34 μg mL−1. Clones were confirmed by colony PCR using primers pMR1-

F and pMR1-R (Table 1) using the pMR1 empty plasmid PCR reaction as a further length 

reference upon agarose gel electrophoresis. Clones with the potential correct length were 

submitted to Sanger DNA sequencing for confirming the correct promoter assembly. 

 

Fluorescence assay (GFP) and data processing 

To measure promoter activity, the library of 21 promoters was analyzed in different genetic 

backgrounds. For each experiment, a plasmid harbouring the promoter of interest was used to 

transform E. coli wild-type or E. coli Δfis or E. coli Δihf mutant cells. Freshly plated single 

colonies were grown overnight in LB media, centrifuged, and resuspended in fresh M9 media. 

The culture (10 μL) was then assayed in 96-well microplates in biological triplicates with 170 

μL of M9 media or M9 media supplemented with 0.4% glucose whenever required. Cell growth 

and GFPlva fluorescence were quantified using a Victor X3 plate reader (PerkinElmer). GFPlva 

is a GFP with a degradation tag. This degradation tag allows us to evaluate the expression over 
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time in an efficient and robust way. Promoter response was calculated as arbitrary units by 

dividing the fluorescence levels by the optical density at 600 nm (reported as GFP/OD600) after 

background correction. The same strain harbouring the pMR1 empty plasmid was used as the 

threshold background signal during calculations. Fluorescence and absorbance measurements 

were taken at 30 min intervals over 8 h. Technical triplicates and biological triplicates were 

included in all experiments. Raw data were processed using ad-hoc R script (https://www.r-

project.org/) and plots were constructed using R or MeV (www.tm4.org/mev.html). 

  

http://www.tm4.org/mev.html
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  Results 

4.1  Library generation and screening for positives 

The results described below encompass the main objectives of the initial proposal focusing on 

the analysis of gene expression in bacterial populations using a commercial plate reader device. 

Firstly, the construction of a promoter library containing cis-regulatory elements controlled 

only by the Fis regulator was performed - since the library relating to the IHF regulator was 

previously constructed and validated experimentally in a previous work (Monteiro, Arruda and 

Silva-Rocha, 2017) -, using a fragment of DNA which is not recognized by any of the regulators 

of interest (NNNN sequence) as a negative control. The key elements of the construction can 

be found in Figure 14. For the construction of the initial library, the previously described 

protocol established in the laboratory was used so that the total volume of each ligation reaction 

yielded a set of more than 9x103 clones. The assembly of the fragments was based on the 

complementarity of single-stranded DNA fragments (oligonucleotides) with the same size, 

allowing the formation of double-stranded DNA fragments when subjected to the hybridization 

reaction under equimolarity. Each complete fragment has a consensus promoter element 

(promoter core) containing the -10 and -35 boxes based on the lac promoter of E. coli, and 4 

upstream positions which randomly contain sites for Fis, IHF or negative/inert sequences 

(Figure 14). 

 

 

 

Figure 14. Construction of the complex promoter library. (A) Schematic representation of the promoter 

library, showing the positions −121, −101, −81, and −61 (white circles) at which cis-elements were inserted. 

The −35 and −10 boxes (grey rectangles) correspond to the core promoter. (B) Simplified scaffold scheme 

for the minimal synthetic promoter library. Motifs positions are identified as 4, 3, 2, and 1 respective to the 

core promoter, and colored lines represent the cohesive sequences for DNA ligation. (C) Nucleotide 

sequences for Neutral/Negative (N), Fis (F) and IHF (I) cis-elements. 

 

Once the libraries were obtained, the colonies that had different levels of fluorescence were 

isolated by manual screening under a Safe Imager 2.0 (Life Technologies) blue light 
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transilluminator. The identified colonies were isolated and analyzed for the presence of inserts 

by PCR (i.e. for identification of correctly assembled promoters). In this context, a protocol for 

colony checking in the library was standardized through the combination of colony PCR 

technique and the analysis of fragments sizes by electrophoretic run on agarose gel (Figure 15). 

As a positive control, a "full" sequence with 4-position fragments was used and as a negative 

control, the pMR1 plasmid without any fragments was used. Only the fragments aligned with 

the central region of the positive control were selected for sequencing (red horizontal line in the 

gel on Figure 15). 

 

 

Figure 15. Confirmation of positive sequences by colony-PCR followed by agarose gel 

electrophoresis. The red dotted line represents the center of the positive control band. Clones with 

fragments aligned to the positive control were selected for sequencing. (+) positive control; (-) negative 

control; (green line) clones with GFP expression. DNA ladder (O’GeneRuler 1 kb Plus - Thermo Fischer 

Scientific) in the first column of the left with arrows indicating the relevant sizes relevant to this analysis. 

 

After sequencing a large number of promoters from the random library containing a 

combination of only Fis and Neg sequences, 16 variants were obtained. To allow the 

construction of complex promoters simultaneously containing Fis, IHF and Neg binding sites, 

a protocol for the direct construction of promoters was employed. It is important to emphasize 

that previous results from our group with synthetic promoters containing binding sites for CRP 

and IHF (Monteiro, Arruda and Silva-Rocha, 2017), provided a basis for generating 

biologically relevant hypotheses in the current work. It has allowed the rational design of 

specific complex promoters, avoiding the exhaustive strategy of promoter generation by high-

throughput methods without defined biological questions. The list of obtained constructs is 

shown in Table 2. After these constructions were obtained, each of them was transferred to the 
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wild-type E. coli (WT) or mutants for the ihf (Δihf) or the fis (Δfis) genes for the experimental 

validation. 

 

Table 2. Subset of complex promoters constructed and tested in this work 

Nº IHF/Neg* Nº Fis/Neg Nº Fis/IHF/Neg** 

1 NNNN 1 NNNN 1 FFNI 

2 NNNI 2 NNNF 2 NFNI 

3 NNIN 3 NNFN 3 NNFI 

4 NNII 4 NNFF 4 NFFI 

5 NINN 5 NFNN 5 FNNI 

6 NINI 6 NFNF 

7 NIIN 7 NFFN 

8 NIII 8 NFFF 

9 INNN 9 FNNN 

10 INNI 10 FNNF 

11 ININ 11 FNFN 

12 IINN 12 FFNN 

13 IINI 13 FFNF 

14 IIIN 14 FFFN 

15 IIII 15 FFFF  

16 INII 16 FNFF  

* The IHF/Neg library was previously built and is published as (Monteiro, Arruda and Silva-Rocha, 2017) 

** The five constructions were based in previous results for IHF and CRP (Monteiro, Arruda and Silva-

Rocha, 2017) 
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4.2 Characterization of synthetic promoters 

For characterizing the activity of the constructed promoters, the resulting plasmids were 

transformed into E. coli strain BW25113 (wild-type) or E. coli Δihf (mutant for the ihfA gene) 

or E. coli Δfis (mutant for the fis gene). For the experiments, colonies grown on plates were 

pre-grown overnight at 37 ° C with shaking in LB medium supplemented with chloramphenicol. 

After pre-growth, the lines were centrifuged and washed with M9 medium supplemented with 

1% glycerol as the sole carbon source. Preliminary results of the libraries were plotted in the 

form of line graphs through ad-hoc scripts of the R software as shown in Figure 16. To facilitate 

the visualization of the fluorescence analyses, the data was plotted as color heatmaps maps - 

with the use of the MeV software. 

 

 

Figure 16. Analysis of Fis vs. Neg and Fis vs. IHF promoters in WT and Δfis E. coli strains. Promoter 

activities are represented as the ratio of the GFP signal divided by the optical density at 600nm of the sample 

(GFP / OD600). 

 

First, libraries containing only sequences for IHF and Neg (a subset with 16 promoters) were 

generated. The library was sequenced and transformed into wild and mutant strains for the fis 

gene of E. coli BW25113. After the plate reader experiment with both strains, one can observe 

the comparison of the expression profiles and identify the effects of IHF for each promoter 

(Figure 17). 
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Figure 17. Analysis of Fis vs. Neg promoters in both WT and Δfis E. coli strains. Promoter activities 

were measured over 8 hours, plotted as horizontal heatmaps of the GFP signal ratio divided by the optical 

density at 600nm of the sample (GFP / OD600), normalized by the negative control and transformed to 

log2 scale in order to facilitate the visualisation of subtle activities. The positions of Fis binding sequences 

(red circles) and inert sequences (white circles) in the synthetic promoters are represented in the right-hand 

corner of their respective expression profiles. 

 

As can be seen, virtually no construct other than FNFF has GFP expression in the wild-type 

lineage. However, in the Δfis strain, when the cis-regulatory element for Fis is located at 

positions 3 (NFNN), 4 (FNNN), 4,3,1 (FFNF) and 4,1 (FNNF), there is an increase in gene 

expression. For other architectures, the results are equal to the negative control (NNNN), with 

no observed gene expression. The analysis of the architectures that showed activity in the 

mutant for fis indicated the four promoters presented the 2-position free and at least one site 

occupied in the 1, 3 and 4 positions. Similarly, 8 of the 10 promoters that did not show 

significant activity even in the mutant have a cis element for Fis at position 2. These results 

closely resemble those found for the library of promoters containing IHF sites (Monteiro, 

Arruda and Silva-Rocha, 2017). The reason why the promoters containing the free 2-position 

have not shown activity yet is not understood and will be investigated in more detail in the 
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future. These results indicate that, following the strategy adopted in this project, the only 

functional promoters in this subset are the ones which are active in the wild-type or Δfis strains, 

with Fis acting in a repressive manner when the same sequence shows an increase in the Δfis 

strain expression in comparison with the wild-type strain. 

 

Once the positional effect of the cis-regulatory elements for Fis was observed, the next step was 

to examine whether the IHF protein would have the same preference in modulating the promoter 

activity. For this, the subset of IHF vs. Neg previously analyzed in wild-type E. coli and Δihf 

strains (Monteiro, Arruda and Silva-Rocha, 2017) (Figure 18) was compared with that obtained 

for Fis vs. Neg (Figure 17). 

 

 

Figure 18. IHF motif enhanced promoter activity in E. coli Δihf strain. A subset of shuffled IHF and 

Neutral motif promoters were assayed in the wild-type and Δihf mutant strains and grouped according to 

their relative activity. Circles in beige represent the positions of IHF sites. (A) IHF vs Neutral motifs 

assayed in the wild-type strain. Synthetic promoters that showed higher promoter activities are clustered in 

group I, group II is formed of promoters with low activity, whereas group III is formed of promoters with 

intermediate promoter activity. (B) The same set of promoters were assayed in the E. coli Δihf mutant 

strain, highlighting that in the absence of IHF transcription factor, promoter activity was generally improved 

for the groups I and III. Relative promoter activity was measured for 8 h, calculated based on the Neutral 

full promoter, and displayed on an intensity scale from 0.0 to 15.0. Plots were calculated based on the 

average of three independent experiments. Retrieved from (Monteiro, Arruda and Silva-Rocha, 2017) 

 

As can be seen in Figure 18, when the cis-regulatory element for IHF is located at positions 4 

(INNN) and 4,1 (INNI), in the wild-type strain, an increase in gene expression occurs. However, 

for other architectures, the results are equal to the negative control (NNNN), with no increase 

of the gene expression. On the other hand, in the Δfis strain the highest levels of expression 



RESULTS 

51 

 

occur when the cis-regulatory element for IHF is located at positions 4,3 (IINN), 4 (INNN), 4,1 

(INNI), 1 (NNNI), 3 (NIN ), 3,1 (NINI) and 2,1 (NNII). The IHF repressive action on gene 

expression can be observed when the same sequence shows increased gene expression in the 

Δihf strain compared to the wild strain. It is important to highlight that some of the architectures 

that resulted in increased levels of GFP expression in Δfis and Δihf strains have similarities in 

the position of their regulatory sites, as shown in Figure 19. This fact can be explained by the 

similar mechanism of action of these proteins that are functionally categorized as NAPS 

(Nucleoid-Associated-Proteins) (Dillon and Dorman, 2010; Dorman, 2013). In general, they 

act by modifying the DNA structure, generating folds and kinks that physically modulate RNA 

polymerase access to the promoter regions regulated by these proteins (Dillon and Dorman, 

2010; Dorman, 2013). 

 

 

Figure 19. Comparison of similar promoter architectures for Fis and IHF in E. coli Δfis and Δihf 

strains. Promoter activities were measured over 8 hours, plotted as horizontal heatmaps of the GFP signal 

ratio divided by the optical density at 600nm of the sample (GFP / OD600), normalized by the negative 

control and transformed to log2 scale in order to facilitate the visualisation of subtle activities. The positions 

of IHF or Fis binding sequences are indicated by red and beige circles, respectively and inert sequences 

(Neg) are indicated as white circles. (A) Expression profiles for Fis vs. Neg in Δfis. (B) Expression profiles 

for IHF vs. Neg. in Δihf.  

 

Taking into account the results for the individual regulators and the previous results for CRP 

and IHF libraries (Monteiro, Arruda and Silva-Rocha, 2017), five promoters with targeted 

topology, containing sequences for both IHF and Fis were investigated. It was observed in 

previous libraries containing CRP and IHF sequences that the synthetic promoters were only 

functional when they contained sequences for CRP at position 1 (the closest position to the 

promoter core) and that the addition of IHF sequences resulted in only two non-functional 

promoters (INNN and INNI). However, the effect of adding secondary CRP sequences to 
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functional IHF promoters generated unexpected behaviours in the expression dynamics of these 

promoters (Monteiro, Arruda and Silva-Rocha, 2017). Thus, 5 synthetic promoters were 

designed and generated in which IHF had a fixed position at 1 while the position and abundance 

of sites for Fis were shifted (Figure 20). As shown in Figure 20, the combination of sites in 

the promoters allowed the observation of different behaviours in GFP expression between the 

wild-type, Δfis and Δihf strains. Surprisingly, although regulators maintained their original 

repressor function in the synthetic promoters, there was a delay in the expression response of 

Δihf strain in comparison to the Δfis lineage. As shown in Figure 20, while none of the 

promoters tested showed significant activity in the wild-type strain, the five promoters showed 

detectable activity in the fis mutant mostly during the first 4 hours of growth. On the other hand, 

the same promoters showed an even greater activity in the mutant for ihf mostly at the later 

hours of growth. These results are in agreement with the mechanism of action of these 

regulators, since Fis is known to act mainly in the transition from lag phase to exponential while 

IHF coordinates the gene expression from exponential to stationary phase transcription (Azam 

et al., 1999; Ishihama, 2010). In Figure 21, retrieved from (Dorman, 2013), it can be observed 

that the Fis protein is more active during the exponential phase of growth while IHF becomes 

more important late. These behaviours can be observed in Figure 20. 

 

 

Figure 20. Analysis of IHF vs. Fis promoters in WT, Δfis and Δihf E. coli strains. Promoter activities 

were measured over 8 hours, plotted as horizontal heatmaps of the GFP signal ratio divided by the optical 

density at 600nm of the sample (GFP / OD600), normalized by the negative control and transformed to 

log2 scale in order to facilitate the visualisation of subtle activities. The positions of IHF (beige circles), 

Fis binding (red circles) and inert (white circles) binding sequences in the synthetic promoters are 

represented in the left-hand corner of their respective expression profiles. 
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Figure 21. Activity pattern of the major regulators of E. coli functionally characterized as NAPS 

throughout the bacterial growth phases. It is important to highlight the higher Fis activity in the Lag 

phase and the higher IHF performance during the stationary phase. Such behaviours can also be observed 

in the synthetic promoters of Figure 7. Retrieved from (Dorman, 2013). 

 

 

 Discussion  

Regulation of gene expression at the level of RNAP recruitment to target promoters is known 

to be a combinatorial mechanism where multiple transcriptional factors binding to target cis-

regulatory elements and their interplay defines the timing and intensity of gene expression. This 

combinatorial control has been extensively described in bacteria and in single-celled and 

multicellular eukaryotes, and the so-called regulatory code is known to play a major role in the 

way living organisms develop and interact with the environment (Kinkhabwala and Guet, 2008; 

Raveh-Sadka et al., 2012; Gama-Castro et al., 2016). However, while classical approaches to 

understand this code are based on a case-by-case dissection of the cis-regulatory elements of 

particular genes, several studies have now described the systematic investigation of 

combinatorial promoters through the construction and evaluation of synthetic promoters built 

from cis-regulatory elements. 

 

 In this sense, Cox III and colleagues (III, 2008) constructed a library of synthetic promoters 

for two local activators (AraC and LuxR) and two local repressors (LacI and TetR) at three 

different promoter positions (upstream, downstream, or overlapping the core −35/−10 box). 

From this work, the authors described a number of rules for engineering combinatorial 

promoters for synthetic biology; for instance, activators were only efficient upstream of the core 
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whereas efficacy of repression was higher at the core and then at the downstream region, with 

only minor effects at the upstream position (Cox, Surette and Elowitz, 2007). However, this 

work only used local TFs, which are limited to a few natural targets and, thus, are not found in 

naturally complex promoter architectures as global regulators are. Moreover, the work by Cox 

III only explored a single binding site at the upstream promoter regions, which does not allow 

the investigation of combinatorial effects generated by cis-element arrangements and identities 

in this region.  

 

Therefore, our work addresses a more realistic combinatorial situation by mimicking the 

manner in which promoters are organized naturally, and indeed, our result of cis-element 

mediated repression of gene expression has not been reported previously. The effect of 

promoter architecture in gene regulation has also been extensively investigated in single-celled 

eukaryotes such as yeast, with special interest in the work of Sharon and co-workers (Sharon et 

al., 2014). In this study, the authors synthesized and analyzed using a high-throughput 

approach, thousands of different promoters for several TFs of Saccharomyces cerevisiae 

(Sharon et al., 2014), thus allowing them to investigate the effect of number, position, and 

affinity of binding sites on gene expression. However, the fundamental difference between 

transcription initiation in prokaryotes and eukaryotes, due to the sophisticated process of 

chromatin remodelling required in the latter, makes it impossible to extrapolate the conclusions 

drawn by Sharon et al. to a bacterial organism. However, the approach used in this study was 

analogous to the approach used by Sharon et al., since we could inspect the effect of binding 

site multiplicity, location, and identity.  

 

This result appeared in several promoter architectures tested here and would indicate that the 

DNA sequence itself was modulating gene expression. It has now been widely demonstrated 

that DNA can display an allosteric effect on TFs, where the binding of a protein to DNA 

changes the way this protein interacts with other TFs (Lefstin and Yamamoto, 1998; Chaires, 

2008; Kim et al., 2013) Moreover, another type of DNA-based allosteric event has been 

described where the binding of a protein to DNA can influence the binding of a second protein 

to an adjacent site independently of protein−protein interaction, and that this influence is 

transmitted through the DNA molecule (Lefstin and Yamamoto, 1998; Chaires, 2008). 
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Recently, an increasing number of reports have demonstrated that flanking DNA sequences can 

strongly affect the binding affinity of eukaryotic TFs for identical binding sites (Khoueiry et 

al., 2010; Gordân et al., 2013), thus explaining why in vitro and in vivo binding assays do not 

always correlate. In this process, these flanking sequences generate distortions in the local DNA 

shape that influences the way the TFs interacts with DNA, by altering the groove width and 

helical parameters of DNA (Gordân et al., 2013). Though we could not find any report of this 

process influencing bacterial TFs, our results on synthetic complex promoters suggest that a 

similar process could influence the activity of bacterial promoters, thus explaining the intrinsic 

repressive activity of the CRP cis-element (independently of the presence of CRP protein) at 

some positions in promoters containing cis-elements for IHF (Monteiro, Arruda and Silva-

Rocha, 2017). Our findings could thus be extended to naturally complex promoters and indicate 

that in those systems, not only would the nature of the TF recruited to the target promoter be 

imperative for gene expression, but also the cis-element itself could have a regulatory role in 

proximal sites. This evidence an unanticipated intrinsic complexity of natural bacterial 

promoters that should be considered both for synthetic biology projects as well as to understand 

the regulatory behavior of natural strains. Taken together, our results highlight the appearance 

of emergent properties in combinatorial control in bacteria, thus opening new venues for 

understanding combinatorial regulation in bacterial genes and open new venues that could be 

investigated in future studies. 

 

It is important to highlight that some of the architectures that resulted in increased levels of 

GFP expression in Δfis and Δihf strains have similarities in the position of their regulatory sites, 

as shown before in Figure 19. This fact can be explained by the similar mechanism of action 

of these proteins that are functionally categorized as NAPS (Nucleoid-Associated-Proteins) 

(Dillon and Dorman, 2010; Dorman, 2013). In general, they act by modifying the DNA 

structure, generating folds and loops that physically modulate RNA polymerase access to the 

promoter regions regulated by these proteins (Dillon and Dorman, 2010; Dorman, 2013). 

 

Surprisingly, although regulators maintained their original repressor function in the synthetic 

promoters, there was a delay in the expression response of Δihf strain in comparison to the Δfis 

lineage. In this context, the search for basements in the literature on these behaviours revealed 

that the synthetic promoters follow the performance profiles of the Fis and IHF proteins during 

the stages of E. coli growth. In Figure 21, retrieved from (Dorman, 2013), it can be observed 
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that the Fis protein is more active during the exponential phase of growth while IHF becomes 

more important late. These behaviours can be observed in Figure 20. 

  



RESULTS 

57 

 

 Conclusions 

By constructing and analyzing 21 synthetic promoters with the sequences for Fis and IHF and 

comparing them with others previously constructed in our laboratory, it was possible to observe 

that: 

 

i) in synthetic promoters with only one type of transcription factor binding sites - Fis 

vs. Neg or IHF vs. Neg -, the regulatory architectures leading to increased expression 

in their respective mutants are similar. This fact could be explained by the shared 

function and mechanism of action between these proteins - NAPS (Dillon and 

Dorman, 2010; Dorman, 2013) - that act normally as repressors of the transcription 

through the generation of conformational changes in the DNA; 

 

ii) although the functional architectures for the libraries mentioned above are similar, 

it is possible to notice that there are particular behaviours in each of them that 

depend on the intrinsic qualities of each regulator involved; 

 

iii) the patterns observed for the individual sequence libraries are not able to explain the 

expression patterns obtained by combining both the Fis and IHF sequences in 

complex synthetic promoters. This epistatic phenomenon, in which emergent and 

unpredictable behaviours arise from the combination of biological parts with known 

behaviours, appears to be widely distributed in molecular systems and with an 

important evolutionary role, especially in regulatory systems (Loewe, 2009; Lagator 

et al., 2016; Aguilar-Rodríguez, Payne and Wagner, 2017; Monteiro, Arruda and 

Silva-Rocha, 2017). 

 

iv) the study of new architectures of complex promoters allows the generation of 

information essential to the understanding of the emergent phenomena mentioned 

above, making the engineering process of regulatory elements more rational and 

predictable. 
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Chapter II 

 

 

 

Using in silico approaches for understanding the evolution of 

transcription factor binding sites in Escherichia coli 
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 Specific Background 

1.1 A method for studying the evolution of TFBSs in bacterial systems  

In the current chapter, we aim to explore the question of how TFBSs might evolve in bacteria 

and which mechanisms could underlie both regulatory innovation and TFBS diversity. For this 

purpose, we have assumed five general evolution models based on literature regarding TFBS 

loss, gain, shift, overlap and promiscuity (see Figure 22) (Babu, Balaji and Aravind, 2007; 

Wolf, 2014; Payne and Wagner, 2015; Friedlander et al., 2016, 2017). Here, we have selected 

the overlap and promiscuity models as novel frameworks for regulatory evolution (Friedlander 

et al., 2016, 2017; Rowland et al., 2017). Although these two models have been poorly explored 

in the literature, preliminary results from our group have shown that using a rather simple 

genetic algorithm, it was possible to computationally generate TFBSs sequences which could 

be recognized by up to three TFs simultaneously in vivo (Guazzaroni and Silva-Rocha, 2014). 

Thus, this result has lead us to hypothesize TFBSs promiscuity might be a rather common 

feature in regulatory systems and could provide a new conceptual framework for understanding 

and engineering transcriptional behaviours.  

 

Figure 22. A general complex prokaryotic promoter and the proposed evolution models for cis-

regulatory elements. (A) A general model of prokaryotic complex promoter with three TFBSs for specific 

TFs, UP element and core promoter region recognized by the sigma/RNAPol holoenzyme. (B) Five models 

for the evolution of TFBSs. (1) loss of TFBs by random mutations; (2) gain of a novel TFBS by 

accumulation of mutations; (3) TFBS shift due to DNA translocations or mutations; (4 and 5) TFBSs 

overlap and promiscuity, in which a single regulatory region has enough information for being recognized 

by multiple TFs.  
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Thus, we have adopted an in silico approach for analysing the evolution of E. coli TFBSs related 

to global transcriptional regulators. We have used experimentally validated datasets from 

prokaryotic databases (Gama-Castro et al., 2016; Ishihama, Shimada and Yamazaki, 2016) to 

generate both mutational networks and adaptive landscapes for the TFBSs genotypes related to 

CRP, the most connected TF in E. coli. Every node in the network (TFBS sequence) is 

connected by a vertex to another node by a small number of mutations and each mutation may 

elicit a change in the binding affinity of the studied TF, which will be considered as the fitness 

function in this model. We have used the Position Weight Matrices (PWMs) (Stormo and 

Hartzell, 1989; Stormo, 2000) scores based on CRP, Fis and IHF sites as proxies for predicting 

the binding affinities of each TFBS genotype for each of the three TFs. Depending on the 

environmental conditions, natural selection may act favouring a specific binding affinity, and 

it might be reflected in the regulated gene expression behaviour. In this context, we might 

consider two general models for the evolution of a single TFBS (see Figure 23): an independent 

model and a connected model. In the independent model, the genotype spaces for the evolution 

of a single TFBS do not overlap, posing more boundaries for the rise of innovations – it is more 

difficult for a sequence initially recognized by a specific TF to become recognized by another 

TF after a few mutational steps -. Furthermore, this model allows higher rates of transcriptional 

function loss (mutations that disrupt functional TFBSs), reducing the system’s robustness – its 

ability to keep his regulatory functions in face of random mutations. On the other hand, in the 

connected model, the genotype spaces of TFBS overlap and a single sequence could be 

potentially recognized by more than one global TF. The ultimate consequence of this model is 

the higher rates for the rise of transcriptional innovations.  
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Figure 23. Two models for the evolution of TFBSs proposed in this work. (A) In the independent model, 

a single genotype, represented by a single node, can mutate to another genotype (dashed arrow) in a non-

overlapped space of TFBSs classes, with higher chances for losing its regulatory function by falling into a 

“transcriptional dead-end”. (B) On the other hand, the connected model considers that the genotype spaces 

for TFBSs of different classes are overlapped, leading to the simultaneous walk of a single sequence 

between all overlapped spaces. In this model, innovation may rise more rapidly than in the former.  

 

1.2 The paradox of global TFBSs diversity in E. coli 

When considering random mutational networks (the whole set of possible a variants of a DNA 

sequence), one might expect that a substantial fraction of the artificially generated genotypes 

for TFBSs would be found in a prokaryotic genome. However, by exploring a large amount of 

data deposited on prokaryotic databases (e.g. RegulonDB (Gama-Castro et al., 2016), DOOR 

(Mao et al., 2014), PRODORIC (Münch et al., 2003) etc.) it was possible to conclude this is 

not the case. On the contrary, just a very small fraction of the whole set of possible genotypes 

is present in nature – Table 3. One explanation for this observation could be that the artificial 

mutational network of TF binding sites has many genotypes with very low PWM scores, 

whereas natural networks usually have a well-established cut-off value for binding affinities 

(i.e. for CRP, in E. coli, none of the reported TFs binding sites presented a binding affinity 

lower than 40% of the maximum PWM score). However, despite the exclusion of sites with 

low scores from the analysis, a substantial amount of artificial genotypes absent in natural 

systems remains. Even though those artificial sites might be redundant regarding their PWM 

scores (many genotypes with the same scores), not all of them are present in bacterial genomes 

and there seem to be a selection for specific genotypes among all the redundant possibilities 

(see Table 3). 
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Table 3. The three most Global TFs of E. coli and their respective natural and potential 

number of TFBSs sequences: 

 

 

 

 

 

1.3 A single TFBS can be designed in silico to be recognized by three TFs in vivo  

Recognition of cis-regulatory elements by transcription factors at target promoters is crucial to 

gene regulation in bacteria. In this process, binding of TFs to their cognate sequences depends 

on a set of physical interactions between these proteins and specific nucleotides in the operator 

region. Previously, it has been shown that in silico optimization algorithms are able to generate 

short sequences that are recognized by two different TFs of E. coli, namely, CRP and IHF, thus 

generating an AND logic gate (Guazzaroni and Silva-Rocha, 2014). In a subsequent work 

(Amores, Guazzaroni and Silva-Rocha, 2015), this approach was expanded in order to engineer 

DNA sequences that can be simultaneously recognized by three unrelated TFs (CRP, IHF, and 

Fis) (Figure 24). The results demonstrated the potential of in silico strategies in bacterial 

synthetic promoter engineering and how small modifications in cis-regulatory elements can 

drastically affect the final logic of the resulting promoter. Thus, we have extrapolated this 

conceptual background to the current work with the following assumption: if it is possible to 

design single TFBSs for many TFs in a straightforward manner, we might assume the same 

process could have happened in natural living systems along billions of years of evolutionary 

processes. 

 

Global Regulators TF Binding Sites (% of the genomic 

total) (Gama-Castro et al., 2016) 

Potential Diversity 

(Combinatorics) 

CRP 280 (12,1%) 419 

FIS 228 (9,9%) 416 

IHF 102 (4,4%) 415 
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Figure 24. Expanding the optimization algorithm to construct synthetic cis-elements and the resulting 

logic of the system. Starting from a natural system controlled by a single input, the optimization algorithm 

was able to generate only short sequences efficiently recognized by two TFs (either CRP and IHF, or Fis 

and IHF). This ensures an AND gate behaviour since the location of the binding sites relative to the - 35/-

10 boxes is preserved. In order to generate functional promoters regulated by three TFs, the algorithm needs 

to consider longer sequences (in this case, 20 and 22 bp) to efficiently accommodate the three binding sites. 

However, in this case, this seems to generate binding sites placed distantly from optimal activation 

positions, generating repressive interactions at the resulting promoter. Retrieved from (Amores, Guazzaroni 

and Silva-Rocha, 2015). 

 

1.4 Synthetic bacterial complex promoters generate novel regulatory outputs 

Previous experimental results from our group have highlighted novel principles of design for 

promoter engineering. Combining TFBSs for Fis and IHF (this work) or CRP and IHF 

(Monteiro, Arruda and Silva-Rocha, 2017) in synthetic regulatory elements, we were able to 

describe emergent expression profiles by modulating promoter architecture - shifts in the 

TFBSs position and frequency in complex promoters (Figure 20 and Figure 25). In this 

context, we wanted to explore how complexity in natural promoters might evolve in the context 

of multiple TFBSs. Rydenfelt et al., 2014, (Rydenfelt et al., 2014) have provided an extensive 

analysis on the architecture of E. coli promoters based on information gathered from the 

RegulonDB database and tried to couple this information to gene expression patterns. 

Combining all the background information provided above, we are focused on understanding 

the evolution of transcriptional logic under the perspective of single TFBSs, which factors 

constraint their natural diversity and how evolution “walks” on their sequence landscapes.  
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Figure 25. A heatmap representation of GFP expression profiles for different architectures of a 

complex promoter during 8 hours. White circles represent negative sequences (inert sequences), purple 

circles represent putative TFBSs for CRP and dark-yellow circles represent putative sites for IHF. Changing 

the promoter architecture (position of the TFBSs) lead to the rise of emergent expression profiles. The 

heatmap ranges from blue to red in a crescent scale. Retrieved from (Monteiro, Arruda and Silva-Rocha, 

2017) 
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 Objectives 

 

General Objective: 

 

To develop a general model of how regulatory innovations might rise in bacterial promoters by 

evaluating the evolutionary constraints that rule TFBSs diversity in E. coli through the 

combination of in silico and in vivo approaches. The model should be able to provide 

resourceful information regarding both transcriptional evolution and principles of design for 

promoter engineering. 

 

Specific Objectives: 

 

1. To study the natural mutational networks of TFBSs for the three most global TFs in E. 

coli – CRP, Fis and IHF 

2. To apply the Position-Weight-Matrix method to access whether TFBS sequences can 

be recognized by more than its cognate TF 

3.  To study the navigability of evolution into natural and artificial mutational networks as 

fitness landscapes in order to explore what kind of constraints would be ruling the 

TFBSs diversity in E. coli 
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 Materials and Methods 

 

Below, we will briefly describe the overall computational methods selected for data collection, 

filtering and analysis in this chapter: 

 

Extraction of TFBSs sequences from the RegulonDB online platform:  

Extraction of experimentally validated TFBSs datasets from online databases (such as 

RegulonDB) (Gama-Castro et al., 2016) for the three E. coli global regulators (Fis, CRP and 

IHF). A total of 370 sequences were extracted for CRP, 267 sequences for Fis and 119 

sequences for IHF. 

 

Application of the PWM method for addressing scores for CRP, Fis and IHF for each 

TFBS sequence:  

Position Weight Matrices (PWMs) (Stormo and Hartzell, 1989; Stormo, 2000) were used to 

calculate the multidimensional scores for each TFBS. The PWMs for CRP, Fis and IHF were 

retrieved from Amores et al., 2015 (Amores, Guazzaroni and Silva-Rocha, 2015) and applied 

within ad-hoc Perl and Python scripts for providing scores for each individual sequence. The 

computational strategy was the following: CRP sequences retrieved from the database had a 

fixed length of 22bp, thus the CRP PWM (19bp) was used to find the best score in each 

sequence (the best one considering both forward and reverse strands for each sequence). The 

region of the original sequence where the best CRP score was found was then fixed and selected 

for further analysis by the Fis (16 bp) and IHF (15bp) PWMs, allowing all scores to be within 

the CRP best score (Figure 26). We have also generated random artificial networks as control 

groups, representing a large fraction of the possible mutational variants of a single sequence of 

n-length (length will be the same as the PWM length) for establishing biologically relevant cut-

offs for each PWM. 
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Figure 26. Analysis of TFBSs sequences through multiple PWMs. (A) A single TFBS sequence 

experimentally validated as belonging to the CRP regulon (right side) is subjected to three PWMs 

represented as WebLogos (Schneider and Stephens, 1990; Crooks et al., 2004) (left side), one for CRP 

(top), one for Fis (Middle) and one for IHF (bottom). The crucial step in this analysis is that the best score 

for CRP should be calculated first as it has the largest consensus sequence (19bp). Once the best score for 

CRP is found (top-right, in brown), the respective sequence is used for finding the best scores for Fis 

(middle-right, in green) and IHF (bottom-right, in blue). (B) All sequences are then comprised within the 

best CRP score sequence and can be potentially recognized by the three TFs.  

 

Generation of natural mutational networks with TFBSs from CRP:  

We have used the experimentally validated datasets with previously calculated PWM scores to 

generate both mutational networks and adaptive landscapes for the TFBSs genotypes related to 

CRP, Fis and IHF the most connected TFs in E. coli. Here, we will use CRP TFBSs as a case 

of study. As sequences had a fixed size of 22 bp, they could be directly compared through an 

ad-hoc algorithm in Perl for calculating the Hamming distance between all sequences. Every 

node in the network is the representation of a single TFBS sequence which is connected by a 

vertex to another node by a small number of mutations and each mutation may elicit a change 

in the binding affinity of the studied TF. Here, binding affinities will be considered as the fitness 

function in this model. As explained before, we have used the Position Weight Matrices 

(PWMs) (Stormo and Hartzell, 1989; Stormo, 2000) scores based on CRP, Fis and IHF sites as 

proxies for predicting the binding affinities of each TFBS genotype for each of the three TFs 

(see Figure 27). All mutational networks were built and visualised using the Gephi and 

Cytoscape software (Shannon, 2003; Bastian, Heymann and Jacomy, 2009). 
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Figure 27. A workflow for generating multidimensional mutational networks. A single set of TFBSs 

related to a specific TF – genotype space represented as circles - is extracted from online databases and 

evaluated simultaneously for three different position-weight matrices, which will result in three different 

scores for every single TFBs, analysed – colour coded. Then, the TFBSs genotypes are organized in 

mutational networks depending on their mutational distances – the number of differences represented by 

vertex thickness. Lastly, the resulting network will be analysed as the representation of a multidimensional 

landscape in which each node has three different scores. 

 

Generation of artificial mutational networks with TFBSs from CRP:  

Analysis of navigability inside the natural mutational networks was achieved by the generation 

of artificial networks between selected nodes (for example, the generation of all possible 

variants between a peak node with a high score and a bottom node with a low score). Two 

sequences with contrasting scores for CRP were chosen and their Hamming distance was 

calculated. Ad-hoc scripts in Perl and Python were generated in order to create all possible 

variants between these two sequences (n4 possibilities, being n the Hamming distance value), 

considering only the mutated positions between them. The shortest path algorithm was then 

applied using the Cytoscape software (Shannon, 2003) for finding the shortest paths between 

the two natural nodes in the artificial network. A general scheme of the adopted strategy can be 

seen in Figure 28. 
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Figure 28. From natural to artificial networks. After generating the natural mutational networks for CRP 

sequences, the next step was to evaluate the number of potential innovative paths evolution could 

“navigate” in the sequence space from a natural sequence with low PWM score to a natural sequence with 

high PWM score. As seen in the illustrative figure A, from left to right: first the two sequences were selected 

from analysed data, then the number of mutations between then was used to generate an artificial network 

with all the possible variants that could appear in the evolutionary trajectory between the two sequences. 

Lastly, scores for CRP, Fis and IHF were calculated for all these sequences and the shortest paths were 

obtained for further analysis.  
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 Results 

 

In this chapter, it was possible to explore the working hypothesis of TFBS promiscuity or 

regulatory crosstalk by in silico analysis of sequence datasets for Fis, CRP and IHF retrieved 

from the RegulonDB database. The first part of our results is focused on establishing statistical 

information regarding the distribution of scores while the second part is more focused on 

understanding evolution’s navigability over the natural and artificial adaptive landscapes of 

these sequences. 

4.1 Statistics of natural sequences 

Firstly, we have analyzed the distribution of scores for sequences from the CRP (370 

sequences), Fis (267 sequences) and IHF (119 sequences) subsets. We have analysed all the 

756 sequences comprised by the three groups and plotted them in a 3D dot plot for observing 

the distribution of each sequence in a 3-dimensional space represented by CRP, Fis and IHF 

scores (Figure 29). In addition, we have found that when subjected to each of the three different 

PWMs, the mean and the median of the scores for the total set was around 0.6-0.65 regardless 

the PWM chosen, with the distribution of scores for CRP being more homogeneous than that 

observed for Fis and IHF scores (Figure 30). 

 

 

Figure 29. Distribution of CRP, Fis and IHF scores for all the sequence sets extracted from 

RegulonDB. The 3D dot plot simultaneously shows scores for CRP (x-axis), Fis (y-axis) and IHF (z-axis) 

for each analysed sequence (n = 756). The data points are coloured according to their original datasets (grey 
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dots are sequences from the RegulonDB associated with CRP, yellow dots are associated with Fis and blue 

dots with IHF). 

 

Figure 30. Distribution of scores for all TFBSs. The histograms represent the distribution of scores for 

all sequences (n=756) when individually subjected to (A) CRP PWM, (B) Fis PWM and (C) IHF PWM. 

Mean and median are represented by green and red dashed lines, respectively.  

 

Then, we have focused on the CRP subset of TFBSs (370 sequences), analyzing the distribution 

of CRP, Fis and IHF scores in this subset. We have found that, as expected, this subset presented 

a higher mean and median for scores related to the CRP PWM than for the other position-

weight-matrices (Figure 31). The same has happened to the other subsets and their respective 

PWM scores (for example, sequences from the Fis subset were enriched for higher Fis scores 

rather than for scores related to CRP and IHF PWMs)  
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Figure 31. Distribution of Scores in the CRP TFBS subset. The histograms show the distribution of 

scores for the subset of sequences addressed to CRP in the RegulonDB (n = 370). These sequences were 

subjected to PWM analysis for (A) CRP, (B) Fis and (C) IHF. Mean and median are represented by green 

and red dashed lines, respectively.  

 

In order to establish the biologically relevant scores for our analysis, it was important to 

compare the scores generated for the experimentally validated dataset from RegulonDB to a 

randomly generated dataset of 100,000 sequences. This comparison has allowed us to set cutoff 

values for scores from the PWMs which will help us to discriminate between potential 

biologically relevant and irrelevant score values. In this context, we have created a random 

dataset and calculated scores for CRP, Fis and IHF PWMs. The distribution of scores was 

directly compared to the distribution of natural scores for the TFBSs subsets (Figure 31). For 

example, the distribution of scores calculated for CRP in the random dataset was directly 

compared to the distribution obtained from the natural CRP dataset (370 sequences), showing 

an overlap of scores from 0.4 to 0.8. Here, we can see that sequences with CRP scores ranging 

from 0.6-1.0 should be positives with some margin for false-positives around the value of 0.6 

(Figure 32 A).  
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Figure 32. Cut-off values for all three PWM used in this work. In order to evaluate the cut-offs which 

would separate random values from biologically relevant ones, we have generated a dataset of 100,000 

random sequences which were subjected to PWM analysis for CRP, Fis and IHF. In each graphic, the blue 

bars represent densities of the random dataset while the red bars represent densities for the RegulonDB 

dataset. The intersection between both datasets is represented as dark-pink bars and they depict the cut-off 

values for our analysis. Mean and median are represented by green and red dashed lines, respectively. (A) 

Sequences subjected to CRP PWM analysis. Left: random sequences, Middle: intersection, Right: sequence 

set associated with CRP in Regulon DB, (B) Sequences subjected to Fis PWM analysis. Left: random 

sequences, Middle: intersection, Right: sequence set associated with Fis in Regulon DB and (C) Sequences 

subjected to IHF PWM analysis. Left: random sequences, Middle: intersection, Right: sequence set  

associated with IHF in Regulon DB 

 

After establishing the cutoff values, we have also checked if there were any correlations 

between the scores for our sequences. We wanted to check, for example, if variations between 

scores from a specific PWM would be correlated to variations in scores for a different PWM. 

Thus, we have analysed all sequences in 2D dot plots in which dimensions were scores for 
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different PWMs (CRP, Fis and IHF). The coefficient of determination (R2) calculated for each 

pair of variables has shown no correlation between scores (Figure 33). 

 

 

Figure 33. Testing the correlation between scores in the CRP subset. In order to evaluate if there were 

any correlations between scores for CRP, Fis and IHF in the sequence set belonging to CRP, we have 

calculated the coefficient of determination (the square of the Pearson correlation coefficient) for each pair 

of variables. (A) CRP Vs Fis scores, (B) CRP Vs IHF scores, (C) Fis Vs IHF scores. 

 

4.2 Analysing natural and artificial mutational networks for CRP TFBSs 

 

After analysing the statistics for the selected sequences and PWMs, we have focused on 

establishing a method for understanding how evolution would navigate inside the mutational 

networks obtained (see Figure 34). The generation of a natural mutational network from the 

CRP dataset, consisting of 269 nodes interconnected as the giant component was subjected to 

further analysis. Each node in the natural network was connected by an average of 4 mutations. 

In this scenario, it was impossible to provide a landscape with a reasonable size for 

understanding general properties such as global and local peaks, valleys and ruggedness, which 

ultimately comprise the adaptive landscape where evolution would navigate and explore 

innovation.  
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Figure 34. The natural mutational network of TFBSs genotypes experimentally associated to CRP in 

E. coli. Each node represents a genotype and each vertex represents the mutational distance between nodes 

– the number of differences. All figures represent the same mutational network. Top figures (A, B and C) 

are organized in an x-y plan in which the x-axis represents crescent CRP scores and the y-axis represents 

crescent Fis scores (e.g. nodes in the top-right of each network would represent genotypes which have high 

scores for both Fis and CRP). Although all figures represent the same network, each one is coloured 

differently, as a function of each of the three different PWM tested – for CRP, Fis and IHF. Light colours 

represent low scores while dark colours represent high scores. (A and D) Networks are coloured for CRP 

scores. (B and E) Networks are coloured for Fis scores. (C and F) Networks are coloured for IHF scores. 

The bottom figures (D, E and F) represent the same mutational networks as the ones directly above them 

in a spherical view, in which the highest connected nodes are in the centre of the circle and the lowest 

connected ones are peripheral.  

 

Thus, as the generation of a full-sized artificial network would be unfeasible (419 variants for 

CRP), we have decided to explore artificial networks locally. In this sense, our approach can be 

observed in Figure 35. Two sequences with contrasting scores (very low and very high) for 

CRP were selected from the natural mutational network and the distance between them was 

calculated as N= 4 (4 mutations). However, as the intermediate variants between these two 

sequences were absent in the natural sequences, we have generated all the possible variants (44 

= 256 sequences) and calculated scores for CRP, Fis and IHF for all of them (Figure 36).   
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Figure 35. The use of artificial networks in order to examine the possible evolutionary paths between 

two sequences. After generating the natural mutational networks for CRP sequences, the next step was to 

evaluate the number of potential innovative paths evolution could “navigate” in the sequence space from a 

natural sequence with low PWM score to a natural sequence with high PWM score. From left to right: first 

the two sequences were selected from analysed data, then the number of mutations between then (N= 4) 

was used to generate an artificial network with all the possible variants that could appear in the evolutionary 

trajectory between the two sequences (44 possibilities = 256 nodes). Lastly, scores for CRP, Fis and IHF 

were calculated for all these sequences and the shortest paths were obtained for further analysis.  

 

 

Figure 36. Generation of artificial networks. The artificial network between the two selected CRP 

sequences (indicated by black arrows) was generated (44 nodes) and plotted as a 3D landscape with CRP 

scores in the z-axis. The network nodes were ranked by heatmap colouring based on the selected PWM 

scores for (A) CRP, (B) Fis and (C) IHF.  
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The generation of the artificial networks has allowed the exploration of all the different paths 

from which a single natural sequence could have become another. In order to simplify the 

analysis, we have adopted a shortest-path algorithm which has reduced the artificial network to 

all the shortest trajectories between the two selected nodes (Figure 37). This network 

comprising the shortest paths between the two sequences has been further explored in terms of 

the scores for each PWM that each intermediate node would have. Thus, it is possible to observe 

that if a sequence was to evolve from a low-score one to a high-score one (for CRP) it could 

have evolved through a series of intermediates that would not only monotonically increase the 

score for CRP, but also simultaneously change its scores for Fis and IHF as well.  

 

 

 

Figure 37. Shortest Paths in artificial networks. The same network is represented three times with a 

different color mapping in each version representing a different score. The network is topologically 

organized in a 2D-axis. The x-axis represents nodes with increasing values for CRP scores while the y-axis 

represents nodes with increasing values for Fis Scores. By calculating the shortest paths between the two 

natural CRP sequences (indicated by black arrows), it was possible to plot only the minimal set of 

evolutionary trajectories which would be required for one sequence to evolve into the other. The nodes in 

this graph were ranked by heatmap colouring based on the selected PWM scores for (A) CRP, (B) Fis and 

(C) IHF. 
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 Discussion and Conclusions 

How would evolution navigate through the sequence space of TFBSs? Would it take into 

account not only the score for a single TF, but also the multidimensional set of scores for 

different TFs which would potentially bind to this site? The answer is still unclear, however, 

the analysis presented here has provided us with some directions in this matter. 

Computationally, our data suggests data evolution might face a multi-dimensional dilemma 

when walking through the peaks and valleys of TFBSs sequences: mutations in a single might 

simultaneously affect affinity for multiple TFBSs and evolution might select these mutations 

according to the expression profiles they generate under specific selection pressures (Figure 

38). If it really happens, would we be able to show it in vivo? The last analysis we have shown 

were able to provide us with shortest-paths between two sequences. We can now select nodes 

from these potential evolutionary pathways and clone them as transcriptional fusions to a core 

promoter followed by a GFP gene. These constructions can then be transformed in WT and 

mutant strains for CRP, Fis and IHF, revealing the biological impact of these sequences and 

how far (or close) they are from the computationally predicted behaviours. 

Furthermore, very recent literature with both Eukaryotes and Prokaryotes has shown that TFs 

are able to share TFBSs although its implications are still unknown (Friedlander et al., 2016, 

2017; Rowland et al., 2017). Here, we propose that this intrinsic property of regulatory 

sequences plays an important role in determining the transcriptional logic of complex bacterial 

promoters, influencing not only in the expression levels, but also in its dynamics and intrinsic 

noise levels. Further analysis such as “deep scanning” strategies, in which large artificial 

networks are overlapped with natural networks, would deeply benefit our understanding of the 

adaptive landscape for TFBSs. Combining this approach with experimental validations shall be 

the next step in our approach. This multi-scale framework will help us to elucidate the 

underlying properties of regulatory networks and how evolution might explore them for the rise 

of regulatory innovation. 
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Figure 38. A framework for explaining the evolution of TFBSs in bacteria. A DNA sequence (top left) 

has a multidimensional space of scores associated with it (middle). In this case, a single sequence has three 

scores associated with it. Each score is just a single point in its own fitness landscape (here, we have three 

overlaid fitness landscapes, one for each TF that can bind the sequence). Every time a mutation occurs (top 

left), changing the sequence space, the scores for each TF will also change, leading to different expression 

profiles (top right). The selection of specific sequences and their associated expression profiles will depend 

on the environmental context and the nature of the regulated gene in the organismal context.  
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Chapter III 

 

 

 

Mining novel constitutive promoter elements in soil metagenomic 

libraries in Escherichia coli 
 

 

This chapter was published as: 

Westmann, C. A., Alves, L. D. F., Silva-Rocha, R., & Guazzaroni, M. E. (2018). Mining 

novel constitutive promoter elements in soil metagenomic libraries in Escherichia coli. 

Frontiers in Microbiology, 9, 1344. 
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 Specific Background 

Although functional metagenomics has been widely employed for the discovery of genes 

relevant to biotechnology and biomedicine, its potential for assessing the diversity of 

transcriptional regulatory elements of microbial communities has remained poorly explored. In 

this context, the most common strategy for prospecting promoters is the usage of trap-vectors, 

which consist of transcriptional fusions between DNA fragments and a reporter gene. This 

method has been widely employed for assessing promoters in genomic DNA (Kubota, 

Yamazaki and Ishihama, 1991; Dunn and Handelsman, 1999; Lu, Bentley and Rao, 2004; Chen 

et al., 2007), however its application in metagenomic DNA fragments has remained poorly 

explored (Uchiyama et al., 2005; Han et al., 2008). Furthermore, most adopted promoter trap-

systems are unidirectional, while bacterial genomes present a large variation in the percentage 

of their leading-strand genes, ranging from ∼45% to ∼90% (Mao et al., 2012, 2015), suggesting 

that a bi-directional promoter reporter system would be preferable. Therefore, in the present 

chapter, we merge this strategy into an integrative approach for exploring bacterial communities 

through the lens of their regulatory dynamics, focusing on the study of bacterial promoter 

elements from environmental soil samples. 

Although both constitutive and inducible promoters can be potentially detectable by the bi-

directional method, we have focused exclusively on the study of the former, as a proof of 

concept, avoiding substrate-based induction assays (Uchiyama et al., 2005; Williamson et al., 

2005; Uchiyama and Miyazaki, 2010; Guazzaroni et al., 2013). We have collected soil samples 

from two differentially biomass-enriched sites of a Secondary Atlantic Forest in South-eastern 

Brazil and generated metagenomic libraries in a bi-directional probe vector for primary 

screenings. We have characterised the expression behaviours of a large set of GFPlva 

expressing clones from both libraries and narrowed down our selection to 10 clones for an in-

depth analysis regarding potential ORFs and endogenous promoters. By cross-validating in 

silico analyses and experimental data of predicted constitutive promoters, we have located and 

profiled the expression of 33 endogenous promoters within the selected clones, providing 

resourceful information concerning the architecture and transcriptional dynamics of promoters 

from metagenomic fragments. Thought the identification of novel constitutive, natural 

promoters, our work contributes to the expansion of the toolbox of synthetic biology, which, in 

turn, can be used for genetic modification of microorganisms relevant in Biotechnology. 
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 Objectives 

  

General Objective 

 

To explore and characterize cis-regulatory elements in environmental samples for assessing 

the hidden regulatory diversity of uncultured bacteria  

 

Specific Objectives 

 

1. To develop a novel strategy for prospecting and characterizing promoters from 

metagenomics libraries 

 

2. To analyse the expression profiles of metagenomic libraries 

 

 

3. To quantify the promoter accessibility of soil metagenomic libraries using E. coli as a 

host 
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 Materials and Methods  

Bacterial strains, primers, plasmids and general growth conditions 

The plasmids, bacterial strains, and primers used in this study are listed in Table 4. E. coli 

DH10B (Invitrogen) cells were used for cloning and experimental procedures. E. coli strains 

were routinely grown at 37ºC in Luria-Broth medium or M9 minimal medium (Sambrook, J.; 

Fritsch, E. F.; Maniatis, 1989) (6.4 g/L Na2HPO4·7H2O, 1.5 g/L KH2PO4, 0.25 g/L NaCl, and 

0.5 g/L NH4Cl) supplemented with 2 mM MgSO4, 0.1 mM casamino acid, and 1% glycerol as 

the sole carbon source. When required, chloramphenicol (Cm) (34 µg/mL) was added to the 

medium to ensure plasmid retention. When cells were grown in minimal medium, antibiotics 

were used at half concentrations. Transformed bacteria were recovered on LB (Luria–Bertani) 

liquid medium for 1 hour at 37°C and 180 r.p.m, followed by plating on LB-agar plates at 37°C 

for at least 18 hours. All constructions were cloned into the pMR1 bi-directional-reporter vector 

(Guazzaroni and Silva-Rocha, 2014), which carries mCherry and GFPlva, a short-lived variant 

of GFP (Figure 39).  

 
Figure 39. General scheme of the pMR1 vector (Guazzaroni and Silva-Rocha, 2014). The plasmid 

includes a resistance marker to the antibiotic Chloramphenicol (CmR), a low-medium copy replication 

origin (ori-p15a) and a multiple cloning site flanked by the mCherry and GFPlva reporter genes, into which 

fragments of metagenomic DNA. Transcription terminators T1 and T0 are also shown. 
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Table 4. Bacterial Strains, Plasmids and Primers used in this study 

Strain Description Source 

E. coli DH10B F– endA1 deoR+ recA1 galE15 galK16 nupG rpsL Δ(lac)X74 φ80lacZΔM15 ar

aD139 Δ(ara,leu)7697 mcrA Δ(mrr-hsdRMS-mcrBC) StrR λ– 

(Casadaban 

and Cohen, 

1980; Grant et 

al., 1990) 

   

Plasmid  Description Source 

pMR1 CmR, ori p15A; dual mCherry GFPlva promoter probe vector. (pRV2 

derivative, (Silva-Rocha and De Lorenzo, 2011)) 

 

(Guazzaroni 

and Silva-

Rocha, 2014) 

pMR1-pCAW1 CmR, orip15a; pMR1-pCAW1-GFPlva transcriptional fusion This study 

pMR1-pCAW2 CmR, orip15a; pMR1-pCAW2-GFPlva transcriptional fusion This study 

pMR1-pCAW3 CmR, orip15a; pMR1-pCAW3-GFPlva transcriptional fusion This study 

pMR1-pCAW4 CmR, orip15a; pMR1-pCAW4-GFPlva transcriptional fusion This study 

pMR1-pCAW5 CmR, orip15a; pMR1-pCAW5-GFPlva transcriptional fusion This study 

pMR1-pCAW6 CmR, orip15a; pMR1-pCAW6-GFPlva transcriptional fusion This study 

pMR1-pCAW7 CmR, orip15a; pMR1-pCAW7-GFPlva transcriptional fusion This study 

pMR1-pCAW8 CmR, orip15a; pMR1-pCAW8-GFPlva transcriptional fusion This study 

pMR1-pCAW9 CmR, orip15a; pMR1-pCAW9-GFPlva transcriptional fusion This study 

pMR1-pCAW10 CmR, orip15a; pMR1-pCAW10-GFPlva transcriptional fusion This study 

pMR1-pCAW1-p1 CmR, orip15a; pMR1-pCAW1-p1-GFPlva transcriptional fusion This study 

pMR1-pCAW1-p2 CmR, orip15a; pMR1-pCAW1-p2-GFPlva transcriptional fusion This study 

pMR1-pCAW1-p3 CmR, orip15a; pMR1-pCAW1-p3-GFPlva transcriptional fusion This study 

pMR1-pCAW1-p4 CmR, orip15a; pMR1-pCAW1-p4-GFPlva transcriptional fusion This study 

pMR1-pCAW2-p1 CmR, orip15a; pMR1-pCAW2-p1-GFPlva transcriptional fusion This study 

pMR1-pCAW2-p2 CmR, orip15a; pMR1-pCAW2-p2-GFPlva transcriptional fusion This study 

pMR1-pCAW3-p1 CmR, orip15a; pMR1-pCAW3-p1-GFPlva transcriptional fusion This study 

pMR1-pCAW3-p2 CmR, orip15a; pMR1-pCAW3-p2-GFPlva transcriptional fusion This study 

pMR1-pCAW3-p3 CmR, orip15a; pMR1-pCAW3-p3-GFPlva transcriptional fusion This study 

pMR1-pCAW3-p4 CmR, orip15a; pMR1-pCAW3-p4-GFPlva transcriptional fusion This study 

pMR1-pCAW3-p5 CmR, orip15a; pMR1-pCAW3-p5-GFPlva transcriptional fusion This study 

pMR1-pCAW3-p6 CmR, orip15a; pMR1-pCAW3-p6-GFPlva transcriptional fusion This study 

pMR1-pCAW4-p1 CmR, orip15a; pMR1-pCAW4-p1-GFPlva transcriptional fusion This study 

pMR1-pCAW4-p2 CmR, orip15a; pMR1-pCAW4-p2-GFPlva transcriptional fusion This study 

pMR1-pCAW4-p3 CmR, orip15a; pMR4-pCAW3-p3-GFPlva transcriptional fusion This study 

pMR1-pCAW4-p4 CmR, orip15a; pMR1-pCAW4-p4-GFPlva transcriptional fusion This study 

pMR1-pCAW5-p1 CmR, orip15a; pMR1-pCAW5-p1-GFPlva transcriptional fusion This study 

pMR1-pCAW5-p2 CmR, orip15a; pMR1-pCAW5-p2-GFPlva transcriptional fusion This study 

pMR1-pCAW5-p3 CmR, orip15a; pMR1-pCAW5-p3-GFPlva transcriptional fusion This study 

pMR1-pCAW5-p4 CmR, orip15a; pMR1-pCAW5-p4-GFPlva transcriptional fusion This study 

pMR1-pCAW5-p5 CmR, orip15a; pMR1-pCAW5-p5-GFPlva transcriptional fusion This study 

pMR1-pCAW6-p1 CmR, orip15a; pMR1-pCAW6-p1-GFPlva transcriptional fusion This study 

pMR1-pCAW6-p2 CmR, orip15a; pMR1-pCAW6-p2-GFPlva transcriptional fusion This study 

pMR1-pCAW7-p1 CmR, orip15a; pMR1-pCAW7-p1-GFPlva transcriptional fusion This study 

pMR1-pCAW7-p2 CmR, orip15a; pMR1-pCAW7-p2-GFPlva transcriptional fusion This study 

pMR1-pCAW8-p1 CmR, orip15a; pMR1-pCAW8-p1-GFPlva transcriptional fusion This study 

pMR1-pCAW8-p2 CmR, orip15a; pMR1-pCAW8-p2-GFPlva transcriptional fusion This study 

pMR1-pCAW8-p3 CmR, orip15a; pMR1-pCAW8-p3-GFPlva transcriptional fusion This study 

pMR1-pCAW8-p4 CmR, orip15a; pMR1-pCAW8-p4-GFPlva transcriptional fusion This study 

pMR1-pCAW9-p1 CmR, orip15a; pMR1-pCAW9-p1-GFPlva transcriptional fusion This study 

pMR1-pCAW9-p2 CmR, orip15a; pMR1-pCAW9-p2-GFPlva transcriptional fusion This study 

pMR1-pCAW10-p1 CmR, orip15a; pMR1-pCAW10-p1-GFPlva transcriptional fusion This study 

pMR1-pCAW10-p2 CmR, orip15a; pMR1-pCAW10-p2-GFPlva transcriptional fusion This study 

   

Primer Sequence (3’-5’) Source 
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pMR1-F CTCGCCCTTGCTCACC This study 

pMR1-R ACAAGAATTGGGACAACTCC This study 

 

Study Site, Soil Sampling and DNA extraction  

Soil samples were obtained from a parcel of southeast region of Brazil (South America), from 

a Secondary Atlantic Forest at the University of Sao Paulo (Ribeirão Preto, São Paulo, Brazil; 

21º09´58.4´´S, 47º51´20.1´´W, at an altitude of 540 m). The soil from those parcels are 

geologically considered Oxisols (Schaefer, Fabris and Ker, 2008) – clay soil always presenting 

a red or yellowish color, due to the high concentration of iron (III) and aluminium oxides and 

hydroxides -. The topsoil from two sections of the parcel (herein referred to as USP1 and USP3) 

were sampled at a depth of 0–15 cm on July 2015 (soil temperature 23 ºC). Three replicates 

(0.2 kg each) were collected within a 1m distance, and the samples were stored at −20°C until 

DNA was extracted. Each sample was differentially enriched regarding tree species abundance 

on plant-litter composition: (i) enriched in leaves from Phytolacca dioica and (ii) from 

Anadenanthera spp. DNA was extracted from soil samples using the UltraClean™ Soil DNA 

isolation Kit (Mo Bio Laboratories, Solana Beach, CA, USA). DNA was visualized by using 

0.7% (w/v) agarose gel electrophoresis and quantified spectrophotometrically (260 nm). 

Metagenomic libraries construction and screening for fluorescent clones  

For the construction of the libraries, metagenomic DNA was partially digested using Sau3AI, 

and fragments from 1.5 kb to 7 kb were extracted from an agarose gel for ligation into the 

dephosphorylated and BamHI-digested pMR1 vector. Ligation mixtures were transformed by 

electroporation into E. coli DH10B cells. To amplify the libraries, they were grown on LB agar 

plates containing Cm and incubated for 18 h at 37°C. Both green and red clones were manually 

isolated from LB-agar plates exposed to a blue light wavelength (at approximately 470 nm) by 

a transilluminator (Safe Imager™ 2.0 Blue Light Transilluminator). Ten fluorescent and twenty 

non-fluorescent clones were randomly picked from each library and had their plasmids 

extracted, following digestion with EcoRI and SmaI enzymes for checking presence/absence of 

inserts and their sizes. Cells from the same library were collected and pooled together in LB 

supplemented with 10% (wt/vol) glycerol for storing at -80°C. The plasmids from the 10 

selected clones were isolated from individual clones and transformed into new E. coli DH10B 

cells to reconfirm expression patterns.  
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Nucleic acid techniques  

DNA preparation, digestion with restriction enzymes, analysis by agarose gel electrophoresis, 

isolation of DNA fragments, ligations, and transformations were done by standard procedures 

(Sambrook, J.; Fritsch, E. F.; Maniatis, 1989). Plasmid DNA was sequenced on both strands by 

primer walking using the ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction kit 

(PerkinElmer) and an ABI PRISM 377 sequencer (Perkin-Elmer) according to the 

manufacturer’s instructions. 

GFP fluorescence assay and data processing  

To measure promoter activity, freshly plated single colonies were grown overnight in M9 

medium supplemented with required antibiotics. Samples were diluted 1:20 (v/v) in M9 

medium for a final volume of 200 µL in 96-well microplates. Cell growth and GFP fluorescence 

were quantified using a Victor X3 plate reader (PerkinElmer, Waltham, MA, USA). Promoter 

activities were expressed as the emission of fluorescence at 535 nm upon excitation with 485 

nm light and then normalised with the optical density at each point (reported as 

fluorescence/OD600) after background correction. Background signal was evaluated with non-

inoculated M9 medium and used as a blank for adjusting the baseline of measurements. E. coli 

DH10B harbouring the pMR1 empty plasmid was used as a negative control. Three different 

positive controls were used, consisting in E. coli DH10B harbouring pMR1 plasmid with one 

of the following synthetic constitutive promoters from the iGEM BBa_J23104 Anderson’s 

catalogue (http://parts.igem.org/Promoters/Catalog/Anderson) (Kelly et al. 2009) upstream a 

GFPlva reporter: J23100, J23106 and J23114 (referred here as p100, p106 and p114, 

respectively (Sanches-Medeiros, Monteiro and Silva-Rocha, 2018). Unless otherwise indicated, 

measurements were taken at 30 min intervals over 8 h. All experiments were performed with 

both technical and biological replicates, being biological triplicates evaluated as independent 

measurements on different dates. Raw data were processed and plots were constructed using 

Microsoft Excel. All data was normalised by background values and transformed to a log2 scale 

for better data visualisation. Heatmap dendrograms with expression profiles were generated by 

using MeV2 (http://mev.tm4.org/) software.  

Small-DNA inserts libraries generation and screening 
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In order to experimentally find and validate the promoter regions from each of the ten selected 

metagenomic clones, an experimental technique was developed based on the previously 

described methodology of metagenomic library construction. All selected clones had their 

plasmids extracted and pooled together in an equimolar ratio. The pooled sample was amplified 

through a single PCR reaction using high-fidelity polymerase enzyme (Phusion) and previously 

described primers flanking the MCS region (Multiple Cloning Site) of the pMR1 vector, into 

which the metagenomic inserts were cloned. The resulting amplicons were first submitted to an 

analytical digestion followed by electrophoretic analysis for finding the optimal concentration 

of Sau3AI enzyme for obtaining fragments size ranging from 0.1 kb to 0.5 kb. Then, the purified 

pooled samples were fragmented by Sau3AI in preparative digestion and thereafter punctured 

from a 1% agarose gel in the region between 0.1 kb and 0.5 kb. These small DNA fragments, 

in turn, were ligated to pMR1 vector. Aliquots of electrocompetent E. coli DH10B cells were 

transformed with ligated DNA. A total of 100 fluorescent clones (80 expressing GFP and 20 

expressing mCherry) were isolated under blue light excitation screening and had their plasmids 

extracted for sequencing reactions. Fluorescent clones were stored at -80°C in LB medium 

supplemented with required antibiotics and 10% glycerol (v/v). 

In silico analysis of ORFs and promoter regions 

The inserts of selected clones were sequenced on both strands as previously described. 

Sequences were manually assembled for the generation of 10 contigs. All sequences were 

analysed for taxonomic origins by using the PhylopythiaS Web Server (Patil, Roune and 

McHardy, 2012) (http://phylopythias.bifo.helmholtz-hzi.de/index.php?phase=wait), a 

sequence composition-based classifier that utilizes the hierarchical relationships between 

clades.  Putative ORFs were identified and analysed using the online ORF Finder platform, 

available at the NCBI website (http://www.ncbi.nlm.nih.gov/gorf/gorf. html). Comparisons of 

nucleotide and transcribed amino acid sequences were performed against public databases 

(NCBI) using BlastN, BlastX and BlastP (BLAST, basic local alignment search tool) at the 

NCBI on-line server. For translation to protein sequences, the bacterial code was selected, 

allowing ATG, GTG, and TTG as alternative start codons. All the predicted ORFs longer than 

270 bp were translated and used as queries in BlastP. Sequences with significant matches were 

further analysed with PSI-BLAST, and their putative function was annotated based on their 

similarities to sequences in the COG (Clusters of Orthologous Groups) and Pfam (Protein 

Families) databases. Predicted general cellular functions were annotated only for known ORFs 
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based on the MultiFun classification (Serres and Riley, 2000). All sequences with an E-value 

higher than 0.001 in the BlastP searches and longer than 300 bp were considered to be unknown. 

Transmembrane helices were predicted with TMprep (http://www.ch. 

embnet.org/software/TMPRED_form.html) and signal peptides with Signal P3.0 server 

(http://www.cbs. dtu.dk/services/SignalP/). A complete table can be found at Supplementary 

Table S1. Promoter prediction was based on the analysis of the ten contigs by using both 

BPROM 

(http://www.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb) 

and bTSSfinder (http://www.cbrc.kaust.edu.sa/btssfinder/) web-based platforms. Both methods 

searched for rpoD-related sequences and we have only considered as valid predictions the ones 

matched on both approaches. Those filtered sequences were used to cross-validate 23 out of 33 

experimentally defined regulatory regions by comparing the positions between predicted and 

experimental sequences in metagenomic fragments. The positions of the 33 small DNA 

fragments were obtained by a multiple alignment of the original contigs (queries) against those 

selected sequences, which has also allowed the validation of the promoter’s directionality – 

forward or reverse - by observing the matched strands (Plus/Plus or Plus/Minus). The consensus 

Logo sequence was based on the alignment of the 33 experimentally validated promoters, using 

the WebLogo platform (http://weblogo.berkeley.edu/logo.cgi) (Schneider and Stephens, 1990; 

Crooks et al., 2004). 

Criteria for the choice of sample sizes 

The sample sizes chosen in this work were based on a seminal study regarding the 

characterization of random promoter libraries (Cox, Surette and Elowitz, 2007) in which ~1% 

(288) of the total set of promoters (22,000) was selected for further analysis. In our study, we 

have selected a much higher fraction of the population for sampling (~25% of 1,100 screened 

clones). Furthermore, using classical statistics for determining optimal sample sizes and 

reducing the uncertainty caused by sampling error (Nakagawa and Cuthill, 2007), we have 

found that sampling 260 clones from a total of 1,100 clones would result in the confidence level 

of 99% with a confidence interval of 0.07. Each selected clone was manually streaked in LB-

agar and microbiologically purified two times for further validation in plate reader assays – 

which was done with biological and technical triplicates. Regarding the 10 selected clones at 

the in-depth analysis, we have adopted the same sample fraction from the study of Cox et al., 

2007, (1% of the total number of positive clones – 10 in 1,100 clones). In this context, from 

http://weblogo.berkeley.edu/logo.cgi
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each of the 10 analyzed clones containing metagenomic fragments we have obtained at least 

three promoters, which were individually characterized in plate reader assays. The choice of 

100 clones from the small-fragment library was based on the following rationale: (i) the 

combined size of the 10 selected clones in this analysis was 30 kb, (ii) each small fragment had 

an average of 0,4 kb, thus, (iii) 100 fluorescent clones from the small-insert library would 

represent ~40 kb, providing enough coverage for all 10 original clones. Furthermore, as each 

fluorescent clone would represent a single promoter sequence at a specific region in the original 

clones, it was highly improbable that the 100 selected clones would cover the 10 original clones. 

Thus, our intention in choosing a sample size of 100 clones was to enrich the single promoters. 

This assumption was further supported by the discovery of only 33 promoters among those 100 

sequences (promoter sequences were overrepresented). 
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 Results 

4.1 Generating metagenomic libraries and screening for fluorescent clones 

We have constructed and assessed two metagenomic libraries hosted in E. coli DH10B strain 

for the analysis of bacterial promoters in environmental samples (Figure 40). The libraries were 

generated from soil microbial communities of two sites bearing differential tree litter 

composition (Anadenanthera spp. and Phytolacca dioica) within a Secondary semi-deciduous 

Atlantic Forest zone at the University of Sao Paulo, Ribeirão Preto, Brazil – see Experimental 

Procedures for further details. Both metagenomic DNA were cloned into the pMR1 

(Guazzaroni and Silva-Rocha, 2014) bi-directional reporter vector – which has a GFPlva and a 

mCherry reporter gene in opposite directions, flanking a multiple cloning site; chloramphenicol 

resistance marker and a p15a origin of replication for low/medium copy number. Each 

metagenomic library presented about 250 Mb of environmental DNA distributed into 

approximately 60.000 clones harbouring insert fragments size ranging from 1.5 kb to 7 kb, with 

an average size of 4.1 kb (Table 5). We have chosen fragments of 1.5-7 kb in order to validate 

our strategy on standard-sized functional metagenomic libraries based on plasmid vectors 

(Gabor, Alkema and Janssen, 2004; Uchiyama et al., 2005; Pushpam, Rajesh and Gunasekaran, 

2011; Jiménez et al., 2012; Guazzaroni et al., 2013). In total, 1,100 fluorescent clones, resulting 

in a rate of approximately one fluorescent clone every one hundred fifty clones (USP1) or every 

ninety clones screened (USP3), were manually selected under blue light exposition. Then, these 

fluorescent clones were directly recovered from LB agar plates supplemented with 

chloramphenicol. The direct screening was preferred over the use of metagenomic clone pools 

from stocks as it reduces the chances of both biased clone enrichment (e.g. clones with higher 

growth rates, usually clones bearing small inserts or without insert) and dilution of positive 

clones with impaired growth (e.g. clones with high expression of GFP and/or other exogenous 

genes), avoiding thus clonal amplification.  
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Table 5. Features of the generated metagenomic libraries. 

Metagenomic Library USP 1 USP 3 

Total number of clones 100,000 90,000 

Percentage of clones with insert 60% 70% 

Number of clones with insert 60,000 63,000 

Total number and rate* of fluorescent clones 400 (1:150) 700 (1:90) 

Total number and rate* of green clones 270 (1:220) 400 (1:157) 

Total number and rate* of red clones 130 (1:460) 300 (1:210) 

Average insert size 4,5 kb 3,7 kb 

Total Metagenomic Library Size 270 Mb 233 Mb 

Estimated number of genomes** 60 52 

* Rate represented by the number of fluorescent clones divided by the total number of clones 

with inserts. 

** Assuming 4.5 Mb per genome (Raes et al. 2007). 

 

 

Figure 40. Schematic representation of the workflow for finding, characterising and cross-validating 

novel bacterial cis-regulatory elements in environmental samples. From left to right: firstly, we have 

generated metagenomic libraries from soil samples in E. coli DH10B. The DNA fragments were cloned 

into a bi-directional reporter trap-vector (bearing mCherry and GFPlva fluorescent reporters), pMR1, which 

allowed for the screening of promoters in both DNA strands. Secondly, we have manually screened all 

visible fluorescent clones from our metagenomic libraries and analysed the expression patterns of all green 

fluorescent clones on a microplate reader during 8 hours. Lastly, we have selected ten clones based on their 

GFPlva expression patterns for an in-depth analysis combining experimental (small DNA insert library 
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generation) and in silico promoter prediction. This integrated strategy has allowed us to identify, validate 

and estimate the accessibility of novel promoter regions from metagenomic libraries. 

4.2 Evaluating the expression dynamics of fluorescent clones 

In order to analyse the expression patterns of the isolated clones, we evaluated the intrinsic 

dynamics of GFPlva and mCherry by randomly selecting 20 clones expressing each reporter 

(as schematically represented in Figure 40). As represented in Figures 2B-C, we found that 

clones expressing mCherry were not suitable for standard microplate 8-hour assays, as the 

fluorescence intensity values differed dramatically between 8 and 24 hours after the beginning 

of the experiment. The slow kinetics of mCherry expression has already been reported as a 

consequence of a two-step oxidation process for protein maturation when compared to the one-

step maturation process found in GFP reporters (Hebisch et al., 2013). We highlight that 

although mCherry clones were not optimized for dynamic profiling, they were essential for 

quantifying the total number of metagenomic fragments harbouring promoters accessible to E. 

coli – the sum of both green and red fluorescent clones in the library. On the other hand, the 

clones expressing GFPlva presented the enhanced intrinsic properties for microplate assays, 

supported by the observation of very similar fluorescence intensities between the two time 

points tested. Furthermore, the GFPlva has an LVA-degradation tag attached to its C-terminal, 

which reduces GFP accumulation and increases protein turnover, generating a more precise 

fluorescence output on analysis of expression patterns (Andersen et al., 1998). 

Thus, 260 clones expressing GFPlva – see Experimental Procedures for further information 

about chosen sample sizes – (160 clones from the USP1 library and 100 from USP3) were 

selected for further analysis of expression patterns on microplate reader assays with biological 

and technical triplicates. The dynamic profiles for each clone were converted into heat maps 

and hierarchically clustered by a Euclidean Distance algorithm into a dendrogram, concisely 

representing the expression patterns of each metagenomic library. In order to assess the 

diversity of promoter strengths among the generated metagenomics libraries, three previously 

characterized constitutive promoters (see Experimental Procedures for further information) 

positioned upstream a GFPlva reporter were used as standards for strong, medium and weak 

expression profiles (referred here as p100, p106 and p114, respectively (Sanches-Medeiros, 

Monteiro and Silva-Rocha, 2018)).  
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Considering both metagenomics libraries, we have found a total of 30 strong promoters showing 

a strength similar to the p100 control, 40 medium strength promoters similar to the p106 control, 

60 weak promoters similar to the p114 control and a wide range of promoters with particular 

expression patterns which did not cluster with any of the previously mentioned positive controls 

(Figure 41D and Supplementary Figure S1). Moreover, the dynamic expression profiles have 

allowed us to observe a few clones that, although constitutively active, had their GFPlva 

expression levels increased during certain time frames (Figure 41D). Concerning the 

hierarchical organization of the expression profiles, the dendrogram of the USP3 library 

(Figure 41D) could be subdivided into at least four well-defined expression clusters 

comprising: (i) high, (ii) medium, (iii) low and (iv) very low expression profiles. A very similar 

pattern was identified in the expression dendrogram independently generated for the USP1 

metagenomic library (see Supplementary Figure S1).  

 

Figure 41. Evaluating the expression dynamics of fluorescent clones. (A) LB-agar plate under blue light 

excitation comprising a subset of metagenomic isolated clones expressing GFPlva (top) and mCherry 

(bottom) fluorescent reporters. A few clones were observed to express both reporters. All isolated clones 

were initially considered to hold at least one endogenous promoter. (B-C) Indirect assessment of maturation 

times from both fluorescent reporters GFPlva (B) and mCherry (C) after 8 hours (light bars) and 24 hours 
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(dark bars) of the beginning of the experiment. Maturation times are substantially lower for mCherry than 

for GFPlva, which excluded the former from further analyses. Positive controls for GFP and mCherry are 

represented by p100 and pRED, respectively. Fluorescence data has been normalised by OD600 values for 

each sample following normalisation by values from the negative control (empty-pMR1). Data was 

transformed to log2 scale to allow better visualisation of fluorescence variation. (D) Hierarchical 

representation of a metaconstitutome (i.e. all expression profiles from a single metagenomic library (USP3) 

in E. coli. Fluorescence time-lapse dynamics were measured during 8 hours for each clone and represented 

as heat maps. Promoter activities (calculated as GFP/OD600) were normalised by the negative control (E. 

coli DH10B harbouring empty pMR1) and transformed to log2 scale in order to facilitate the visualisation 

of subtle activities. Positive controls (p100, p106 and p114 - strong, medium and low expression, 

respectively) and negative control (pMR1) expression profiles are indicated by black arrows at the left side 

of the heatmap. Data are representative of three independent experiments.  

 

4.3 In silico analysis of DNA metagenomic fragments from selected clones 

From the 260 assessed samples, we have selected 10 clones displaying particular profiles (see 

Supplementary Figure S2) – see Experimental Procedures for further information about 

chosen sample sizes - depicting the diversity of expression behaviours found in both libraries. 

The inserts from selected clones were sequenced and analysed for C-G content, taxonomic 

origins, potential ORFs and RpoD-related promoter regions (-10 and -35 conserved regions). 

The relative abundance of the guanine-cytosine content of each insert was assessed (Table 6), 

resulting in a median of 54%, varying from 43% to 61%, indicating their diverse phylogenetic 

affiliation. Using the PhylopythiaS sequence classifier for metagenomic sequences (Koonin, 

2009; Patil, Roune and McHardy, 2012), the DNA fragments were assigned to their closely 

related phylum (Table 6 and Supplementary Figure S3). The most abundant assigned phyla 

were Proteobacteria (46%), followed by Actinobacteria (23%), Verrumicrobia (15%), 

Chloroflexi (8%) and Bacteroidetes (8%) (Supplementary Figure S3).  

In the case of the identification of putative genes, twenty-nine ORFs with significant E-values 

(<0,001) were found (Table 6) unevenly distributed between both DNA strands, in line with a 

lack of strong directional trends regarding bacterial genome organization (Koonin, 2009). The 

ORFs were also classified within a range of functional classes (delineated by MultiFun (Serres 

and Riley 2000)) and taxonomic groups based on closest similar proteins (Table 6). Regarding 

gene function, the most abundant ORFs were related to unknown functions (31%) and 

metabolism (31%), followed by stress adaptation cell processes (17%) (Table 6).  
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Table 6. Description of the ORFs contained in plasmids from the selected clones 

(pCAW1 to pCAW10) and their sequence similarities. 

 

Clone_Sample 

[insert bp] 

 G + 

C % 

GenBank 

accession 

No. 

Phyluma ORFb Strand Length 

(aac) 

Closest similar 

proteind  (Length in 

aa) 

Closest 

Organism / 

Phylume  

Identity 

(% ) 

Putative function 

pCAW1 

(2367bp) 

55% KY939589 Proteobacteria or 

Verrucomicrobia 

1 Minus 131 

hypothetical protein 

(416) 

 Bacteriodetes 

bacterium / 

Proteobacteria 68% Alginate lyase 

2 Plus 271 

hypothetical protein  

(261) 

Acidobacteria 

bacterium  / 

Acidobacteria 73% 

17-B-

hydroxysteroid 

dehydrogenase  

3b Plus 295 beta-glucosidase (777) 

Caulobacter sp. 

OV484 / 

Proteobacteria 66% beta-glucosidase  

                     

pCAW2 

(2069bp) 

52% KY939590 Actinobacteria 

1 Plus 304 Unkonwnc 

 Hyphomicrobiu

m sp. 

NDB2Meth4 / 

Proteobacteria 33% Unknown 

  

2 Plus 249 Unkonwn 

Hungatella 

hathewayi / 

Firmicutes 33% Unknown 

                     

pCAW3 

(4404bp) 

53% KY939591 Proteobacteria 

1 Minus 318 

IS4 family transposase 

(320) 

Escherichia coli 

/ 

Proteobacteria 96% 

IS4 family 

transposase  

2 Minus 1011 

DNA-directed RNA 

polymerase subunit 

beta' (1430)  

 

Sphingobacteri

ales bacterium 

44-61/ 

Bacteroidetes 83% 

RNA polymerase - 

Beta Subunit 

3 Plus 120 

Uncharacterised protein 

(135)  

Bordetella 

pertussis/ 

Proteobacteria 47% Unknown 

4 Plus 151 

Uncharacterised protein 

(130) 

Bordetella 

pertussis/ 

Proteobacteria 37% Unknown 

5 Plus 94 

Uncharacterised protein 

(64) 

Bordetella 

pertussis/ 

Proteobacteria 82% Unknown 

6 Plus 96 

Uncharacterised protein 

(86) 

Vibrio 

cholerae/ 

Proteobacteria 48% Unknown 

7 Plus 173 predicted protein (585) 

Ruminococcus 

sp. CAG:403 / 

Proteobacteria 26% Unknown 

                     

pCAW4 

(4002bp) 

61% KY939592 Proteobacteria 

1 Minus 245 

nosine monophosphate 

cyclohydrolase (246) 

Ktedonobacter 

racemifer/ 

Chloroflexi 63% 

IMP 

cyclohydrolase 

2 Minus 214 

phosphodiesterase  

(498) 

candidate 

division NC10 

bacterium/ 

NC10 40% phosphodiesterase  
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3 Minus 402 

hypothetical protein 

A2Y08_02680 (625) 

 Planctomycetes 

bacterium 

GWA2_40_7/ 

Planctomycetes 43% Unknown 

4b Plus 142 

gentisate 1,2-

dioxygenase  (349) 

Pseudomonas 

sp. 21C1 / 

Proteobacteria 60% 

gentisate 1,2-

dioxygenase  

                     

pCAW5 

(2724bp)  

54% KY939593 Verrucomicrobia 

1b Plus 642 

pyruvate:ferredoxin 

oxidoreductase (1565) 

uncultured 

bacterium 

HF770_11D24] 

/ 

Acidobacterium 80% 

pyruvate:ferredoxi

n oxidoreductase  

                     

pCAW6 

(2125bp) 

57% KY939594 Chloroflexi or 

Proteobacteria 

1 Plus 159 

hypothetical protein 

BGO39_33875 (215) 

Chloroflexi 

bacterium 54-

19 / 

Chloroflexi 65% MerR family 

2 Plus 336 

hypothetical protein 

BGO39_33870 (347) 

Chloroflexi 

bacterium 54-

19/ 

Chloroflexi 78% 

PrsW  

intramembrane 

metalloprotease 

3b Plus 163 

hypothetical protein 

BGO39_33865 (173) 

Chloroflexi 

bacterium 54-

19/ 

Chloroflexi 75% 

chromate 

transporter 

                     

pCAW7 

(2558bp) 

46% KY939595 Actinobacteria 

 

1b Minus 391 

hypothetical protein 

A2X07_06330 (480) 

Flavobacteria 

bacterium 

GWF1_32_7/ 

Bacteroidetes 45% 

Por secretion 

system sorting 

domain 

2 Minus 250 

hypothetical protein 

(586) 

Chitinophagace

ae bacterium 

PMP191F/ 

Bacteroidetes 65% 

Polysaccharide 

Lyase 

                    

pCAW8 

(4480bp) 

57% KY939596 Actinobacteria 

 

1 Plus 508 

hypothetical protein 

AUH20_02325 (597) 

 Rokubacteria 

bacterium/ 

Rokubacteria 76% 

5-oxoprolinase / 

Hydantoinase_B  

2 Minus 348 Oxidoreductase (336) 

 Rokubacteria 

bacterium/ 

Rokubacteria 61% 

Flavin-utilizing 

monoxygenases 

3 Plus 314 

hypothetical protein 

ETSY1_46935 (279) 

Candidatus 

Entotheonella 

sp. TSY1/ 

Tectomicrobia 76% 

Cellulose 

biosynthesis BcsQ  

                    

pCAW9 

(2573bp) 

43% KY939597 Bacteroidetes or 

Proteobacteria 

1b Minus 81 

hypothetical protein  

(129) 

Janthinobacteri

um/ 

Proteobacteria 50% Unknown 

2 Minus 303 

Formylglycine-

generating enzyme 

(379) 

Mucilaginibacte

r sp./ 

Bacteroidetes 65% 

Formylglycine-

generating 

enzyme 

3 Minus 457 

acetylglucosamine-6-

sulfatase (504) 

Flavihumibacte

r solisilvae/ 

Bacteroidetes 67% 

acetylglucosamine

-6-sulfatase  
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pCAW10 

(2076bp) 

56% KY939598 Proteobacteria 

1 Plus 204 

hypothetical protein 

(195) 

Luminiphilus 

syltensis/ 

Proteobacteria 50% Unknown 

aClassification based on PhylopythiaS (Patil, Roune and McHardy, 2012) webserver 
bTruncated proteins. 
caa, amino acids. 
dSequences with an E-value higher than 0.001 in Blastp searches were considered to be unknown proteins. 
eClassification based on Blastp. 
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The in silico promoter prediction has also provided relevant information concerning the 

potential number of regulatory regions on each selected fragment. The BPROM software 

(Solovyev and Salamov, 2011) has been extensively employed in other promoter prediction 

studies and is based on the analysis of the -35 and -10 consensus sequence of RpoD promoters. 

The main sigma subunit, sigma-70 encoded by rpoD, plays a major role in transcription of 

growth-related genes, the so-called housekeeping genes (Lonetto, Gribskov and Gross, 1992; 

Gruber and Gross, 2003; Paget and Helmann, 2003). From the in silico analysis, a total of 140 

promoters were predicted among the 10 selected clones, suggesting an average of 5 RpoD-

related promoters/kb. This led us to question whether most expression profiles previously 

described (Figure 41D and Supplementary Figure S1) were representing the dynamics of a 

single “dominant” promoter or the combined effect of multiple adjacent promoters present in 

the metagenomic fragment. Considering that, we have delineated a strategy to experimentally 

assess the number and location of accessible promoters from our selected clones, contrasting 

experimental results against in silico data. 

 

4.4 Experimental identification, characterisation, and cross-validation of 

promoter regions  

In order to explore the potential set of accessible promoter regions from our metagenomic 

libraries, we developed a small DNA insert library generation approach (Figure 40). Firstly, 

the plasmids from the previously 10 selected clones (original clones) were pooled together for 

insert amplification in a single PCR reaction. The resulting amplicons were fragmented by 

Sau3AI digestion and DNA fragments ranging from 0.1 kb to 0.5 kb were selected for 

subsequent cloning into the pMR1 vector. The generation of this sub-fragment library allowed 

the screening for both red and green fluorescent colonies as they would represent the accessible 

set of promoters among the metagenomic DNA fragments studied. It is important to highlight 

that as the cloning process was not directed, small fragments bearing promoter regions had a 

50% chance of being cloned in any direction, thus clones expressing mCherry were also isolated 

for subsequent sequencing. A total of 100 clones – see Experimental Procedures for further 

information about chosen sample sizes - coming from the small DNA insert library (80 

expressing GFPlva and 20 expressing mCherry) were sequenced and then aligned against the 

original metagenomic fragments. As a result, we have identified at least 33 promoter regions 
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within the initial set of the selected metagenomic clones (Figure 42, Supplementary Figure 

S4 and Supplementary Table S1).  

 

Figure 42. Schematic representation of six metagenomic inserts (contigs) showing predicted ORFs 

and experimentally validated/characterised promoters. Each contig is identified on the far left of each 

subfigure. Promoters are indicated by elbow-shaped arrows and name according to their relative position 

in the contig. Promoter directionality, regarding the leading and lagging strands, is represented by yellow 

and blue colors, respectively. Asterisks over specific promoters indicate regulatory regions which were 

cross-validated by matching in silico predictions. Dark arrows represent predicted ORFs, according to their 

relative positions in each contig (see Table 6 for more information). All genetic features respect their 

original relative sizes, following the 1 kb scale depicted at the bottom of this figure. Beneath each 

metagenomic insert, there is a heat map cluster representing the whole set of promoter activities measured 

during 8-hours fluorescence assays. The first line of each cluster shows the original expression profile 

initially measured for each metagenomic insert. All other lines represent expression activities from de novo 

experimentally validated promoters within each contig (small DNA fragments). The second line of each 

cluster represents the endogenous promoter showing the most similar activity with respect to the original 

expression profile for each contig. All expression profiles are properly identified at the most rightmost side 

of each line, following their respective contig/promoter name. For the supplementary set of analysed 

contigs, see Supplementary Figure S4. 
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Additionally, the current experimental approach allowed us not only to identify novel promoter 

regions but also to determine promoter directionality. The evaluation of promoter localization 

within the 10 selected clones revealed that from the 33 experimentally selected small fragments, 

7 (21%) were considered intragenic promoters while the remaining 79% (26 promoters) were 

considered primary promoters, defined as the furthest upstream promoter in a gene/operon 

(Conway et al., 2014). For the sake of comparison, E. coli K-12 genome presents the following 

proportions: primary (66.3%), secondary (19.6%), intragenic (9.8%), and antisense (4.2%) 

promoters (Cho et al., 2009; Conway et al., 2014).   

Based on the alignment results, we selected a defined set of small fragment clones related to 

each original sequence for dynamic expression profiling on a microplate reader. The results 

showed that for each set of small-fragments belonging to a DNA metagenomic clone, there was 

at least one with an expression pattern corresponding to the original clone previously observed 

(Figure 42 and Supplementary Figure S4). Similarly, we identified other clones bearing 

small-inserts with individual profiles different to the primarily observed, representing 

alternative promoter regions in the original sequence that were not mapped in the initial 

approach (Figure 42). Data has also shown that, in our experimental conditions, it seems that 

in each case a single promoter (usually the closest to the reporter gene) has the major 

contribution for the gene expression pattern observed. This can be concluded since, in each 

case, only one promoter mapped from the small-insert library produced the same expression 

profile observed for the original full-length fragment. 

Regarding in silico cross-validation, from the 33 experimentally validated promoters, 23 RpoD-

related promoters (70%) were supported by the algorithmic analysis as they were aligned to 

their respective original sequences (Figure 42). On the other hand, the remaining 10 sequences 

(30%) were considered as promoters exclusively identified by experimental approaches. This 

could indicate that these promoters that do not match the RpoD consensus are recognized by 

alternative sigma factors. This hypothesis will be investigated in future studies. Finally, 

sequences of the above experimentally validated promoters were characterised accordingly to 

previous studies reported in the literature. For this, we adopted an in silico classification 

proposed by Shimada et al  (2014) (Shimada et al., 2014), in which constitutive promoters 

present a high-level conservation of the consensus sequence for the major sigma factor RpoD, 

that is, the elements TTGACA (-35) and TATAAT (-10) separated by approximately 17 bp 

(Figure 43A and B). Constitutive promoters are defined as promoters active in vivo in all 
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circumstances, and, on the other hand, inducible promoters are switched ON and OFF by 

transcription factors depending on the in vivo conditions (Shimada, et al. 2014). The Logo 

pattern (Schneider and Stephens, 1990; Crooks et al., 2004) generated from the alignment of 

the 33 identified metagenomic promoters (Figure 43C) indicated that positions -35 and -34 (-

35 box) and positions -8, -7 and -3 (-10 box) were highly conserved. Additionally, when the 

promoters were analyzed in sub-groups based on the level of strength (high, medium and low), 

we could notice a variation in the consensus sequence obtained for each group (Supplementary 

Figure S5 online). These variances in the consensus sequences could explain the different 

promoter expression profiles observed experimentally.   

 

Figure 43. The consensus of RpoD-related metagenomic promoters. (A) Known consensus sequences 

of the RpoD-dependent promoter determined in vitro, TTGACA (-35) and TATAAT (-10) separated by 17 

plus/minus 2 bp in E. coli (Shimada, et al. 2014). (B) Known consensus sequences of 582 promoters 

experimentally validated in E. coli  (Shimada et al., 2014; Gama-Castro et al., 2016; Keseler et al., 2017). 

(C) The sequences of the 33 promoters experimentally validated in this study were aligned and subjected 

to Logo analysis (Schneider and Stephens, 1990; Crooks et al., 2004). The consensus from the metagenomic 

set (C) is very similar to the one from the experimentally validated set from E. coli (B). 
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 Discussion 

5.1 Meta-expression profiles for studying microbial communities 

The similar expression clusters found between the two independent metagenomic libraries 

might suggest broader trends of organizational expression patterns in nature. Independent 

studies on microbial communities from aquatic environments have described similar patterns 

by evaluating gene expression through metatranscriptomic analysis (Frias-Lopez et al., 2008; 

Stewart, Ulloa and Delong, 2012; Dupont et al., 2015; Fortunato and Crump, 2015), indicating 

that our observations are not restricted to the assessed soil samples. It has also been 

computationally demonstrated by Fernandez et al. (2014) (Fernandez et al., 2014) that the 

microbial metaregulome – the whole set of regulons of an environmental sample – is shaped by 

the physicochemical conditions of the environment as an adaptive process. Thus, we suggest 

that expression profiling of an environmental sample might bear great potential for revealing 

insightful trends regarding the transcriptional diversity of microbial communities and for aiding 

on the design of efficient microbial communities for therapeutic or ecological needs (Fernandez 

et al., 2014; Fredrickson, 2015; Solé, 2015; Johns et al., 2016).  

Regarding the explanation for the diversity expression profiles found among the metagenomic 

clones, it is important to stress that regulatory patterns have a multifactorial nature, being ruled 

by many different processes. Firstly, the regulatory dynamic is inherently interconnected with 

the function of the original regulated gene (e.g. housekeeping, adaptive etc.) (Wolf, Silander 

and Nimwegen, 2015). Secondly, the transcriptional bias imposed by the E. coli molecular 

machinery might constraint the recognition of promoter elements and/or not necessarily 

reproduce the original behaviours found in natural hosts  (Gabor, Alkema and Janssen, 2004; 

Gabor, de Vries and Janssen, 2004; Liebl et al., 2014; Guazzaroni, Silva-Rocha and Ward, 

2015). Another point to be taken into consideration is that artificial juxtaposition of the 

exogenous promoter to the ribosome-binding site of the fluorescent reporter might increase 

expression as a consequence of the cloning process. Finally, another process that could 

influence the detection of active clones in E. coli is that the expression of many heterologous 

genes are toxic to this host (Kimelman et al., 2012). This would also limit the cloning of some 

fragments in this host for functional metagenomics approaches.  
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Our observations also suggested transcriptional regulation beyond the control of the RpoD 

sigma factor for those clones (i. e. adjacent transcription factors), introducing novel niches for 

the exploration of regulated promoters. Since the discovery of distinct expression behaviours is 

essential for expanding the current set of commercial promoters, the diversity of expression 

profiles highlighted in this study has supported the current framework as a promising strategy 

for finding novel promoters for downstream applications. We also believe the developed 

strategy could greatly benefit from the combination with other high-throughput screening 

methods, such as SIGEX (Uchiyama et al., 2005), providing innovative possibilities for the 

prospection of both inducible and constitutive promoters. Finally, we emphasize our 

observations are always constrained, to a certain extent, by the perspective of the chosen 

microbial host (Guazzaroni, Silva-Rocha and Ward, 2015; Lam et al., 2015; Alves, Silva-Rocha 

and Guazzaroni, 2017) (i.e. the set of constitutive promoters active in E. coli) and might 

represent only a fraction of the effective environmental metaconstitutome. Future studies 

systematically applying our methodology to a range of environmental samples and hosts will 

greatly contribute to understanding this relationship between regulatory diversity and 

environmental adaptation in bacteria.  

 

5.2 Regulatory architectures and host compatibility for promoter exploration 

Through the generation of a small-DNA insert library combined to in silico platforms we were 

able to analyse taxonomic and architectural features of the metagenomic fragments. We have 

also provided both (i) a consensus of recognizable exogenous constitutive promoters in an E. 

coli host. The analysis of the metagenomic fragments for nucleotide composition were in 

agreement with previous G-C content diversity analyses of soil samples, which ranged from 

50% to 61% (Foerstner et al., 2005; Bohlin et al., 2010; Mann and Chen, 2010) suggesting the 

environmental influence on G-C content and taxonomic predominance of microbiomes. 

Although phylogenetic affiliation based on ORFs at the protein level is not suitable as sequence-

composition based classifiers – as PhylopythiaS - for predicting taxonomic origins, we could 

observe that there was an agreement between both methods in a few samples (e.g. pCAW3, 

pCAW6, pCAW9 and pCAW10). Furthermore, the abundance of bacterial groups and gene 

functions predicted in this work was also similar to previous high-throughput studies in soil 

microbial communities (Janssen, 2006; Fierer, Bradford and Jackson, 2007; Fierer et al., 2012). 
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Considering the above, the proposed experimental methodology has allowed us to directly asses 

the different bacterial groups that had promoters sequence recognizable by the host – as the 

metagenomic fragments from these predicted taxa have allowed GFP expression in E. coli.  

Regarding the in-depth search for promoters in vivo – small-DNA library - and in silico, the 

experimental finding of at least 33 promoter regions within the initial set of the selected 

metagenomic clones suggested the in silico prediction was overestimated (140 RpoD-related 

promoters). The above can be explained since it is not uncommon for prediction algorithms to 

underestimate or overestimate results due to a lack of information regarding diversity and 

variability of natural cis-regulatory sequences (Vanet, Marsan and Sagot, 1999; de Jong et al., 

2012; Shahmuradov et al., 2016). Furthermore, the analysis of the metagenomic promoter 

positions/architectures has slightly diverged from the E. coli K-12 genome, suggesting the 

diversity of genomic architectures in metagenomic libraries and a current underestimation of 

bacterial intragenic promoters that goes far above the E. coli model. 

Regarding the promoter consensus obtained from the small-DNA fragments, we hypothesized 

that these sequences could be either recognized by other sigma factors than RpoD or presented 

unusual consensus sequences for -10 and -35 boxes which have bypassed the algorithmic 

analysis. However, experimental validation in E. coli strains lacking diverse sigma factors 

genes should be necessary for a more accurate conclusion. Although the observed logo pattern 

was distant from the E. coli consensus proposed for the RpoD-dependent constitutive promoters 

identified in vitro (Figure 43A (Shimada et al., 2014)), it was very similar to the previously 

described consensus from experimentally validated promoter (Mitchell, 2003) sets from 

RegulonDB (Gama-Castro et al., 2016) and EcoCyc (Keseler et al., 2017) databases (Figure 

43B), suggesting a certain degree of degeneracy for the recognition of constitutive promoters 

in E.coli. Thus, it has allowed us to identify a consensus for exogenous promoter recognition 

in E. coli, which can be an important resource for defining host-dependent constraints in 

functional metagenomics. Yet, it is possible that promoters that do not match the known 

consensus for RpoD could be recognized by alternative sigma factors, but it should be further 

exploited in the future. 

A seminal study in functional metagenomics provided by Gabor et al (2004) (Gabor, Alkema 

and Janssen, 2004) estimated on a theoretical basis that 40% of the enzymatic activities present 

in a soil metagenomic library could be readily accessed using E. coli as a host in an independent 
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gene expression mode. This prediction implies that at least 40% of the metagenomic promoters 

would also be recognized by E. coli. Contrastingly, recent empirical studies on E. coli and other 

hosts have shown that functional expression faces a myriad of challenges (Bernstein et al., 

2007; Ekkers et al., 2012; Vester, Glaring and Stougaard, 2015), reflecting  significantly lower 

rates than the proposed by Gabor and collaborators (Gabor, Alkema and Janssen, 2004). In 

agreement with those studies, our work stresses the gap between theoretical estimations and 

experimental results, as we have observed only a small portion of the whole set of promoters is 

accessible for E. coli in metagenomics libraries (~1% of the clones assayed displayed detectable 

fluorescence in the plates) - in contrast to the previously predicted enzymatic activities recovery 

rate (~40%) (Gabor, Alkema and Janssen, 2004). Thus, we remark the importance of generation 

predictions on a combination of both experimental and computational data.  

 

5.3 Intrinsic challenges in functional metagenomic studies for promoter 

exploration 

In order to address the constraints underlying our observations and predictions, we have 

selected some caveats raised during this study, which are intrinsic to functional metagenomics 

and regulatory studies. Firstly, functional metagenomics investigates a system – bacterial 

community – based on its genetic parts – metagenomic fragments –, thus it is limited to provide 

blurred (and somewhat biased) depiction of the whole – e.g. some promoters observed as 

constitutive might be repressed by the structural conformation of bacterial chromatin in the 

original organism (Dillon and Dorman, 2010), but not in the plasmidial context in the host. 

Secondly, the metagenomic host will always bias the results as it filters biological information 

according to its own molecular machinery (Guazzaroni, Silva-Rocha and Ward, 2015; Lam et 

al., 2015; Alves, Silva-Rocha and Guazzaroni, 2017) – e.g. a promoter might be considered 

constitutive when its exogenous repressor is not expressed in the host. Another potential 

limitation of the strategy used here, is that the direct cloning of DNA fragments and screening 

for fluorescent clones would be biased toward the identification of promoters located near the 

fluorescent reporter. Yet, since we were able to identify promoters located more than 1kb away 

from the reporter gene, this potential limitation would not be a concerning issue here. Lastly, 

the line between constitutive and regulated promoters has become rather arbitrary among 

studies as it usually relies on the experimental design and concepts adopted by each research 
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group – e.g. some authors consider constitutive bacterial promoters as those that are active in 

vivo in all circumstances, while others define them as the promoters recognized in vitro by RNA 

polymerase RpoD holoenzyme alone in the absence of additional regulatory proteins (Shimada 

et al., 2014). 
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 Conclusions 

In summary, we have focused on integrating experimental and in silico approaches to exploit 

the regulatory diversity from metagenomics DNA fragments by prospecting and characterizing 

novel promoter sequences in E. coli. From this, we were able to identify novel constitutive 

promoters using real-sized metagenomic DNA fragments, and a further dissection of individual 

clones allowed us to demonstrate that a number of internal promoters can be recognized by the 

host to drive gene expression in vivo. Further studies could be applied to exploit which type of 

sigma factors are contributing to the expression of the identifiable active promoter fragments. 

Despite the intrinsic limitations previously described, our strategy can be further optimized by 

high-throughput studies, which will be essential for expanding our current estimations into a 

more holistic landscape. Finally, we highlight that this work should be also suitable for the 

applied sciences, expanding the current biotechnological toolbox through the discovery and 

characterisation of novel regulatory features. 
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Chapter IV 

 

 

 

Development of an open-source pipeline for the automatic 

construction of metabolic models using genomic data 
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 Specific Background 

1.1 Network reconstruction and biological knowledge 

There is a large library of scientific publications that describe different model organisms’ 

specific molecular features. Molecular biology’s focus on knowing much about a limited 

number of molecular events changed once annotated genome sequences became available, 

leading to the emergence of a genome-scale point of view. Now, putting all available knowledge 

about the molecular processes of a target organism in context and linking it to its genome 

sequence has emerged as a grand challenge. Genome-scale network reconstructions were a 

response to this challenge. 

The reconstruction process treats individual reactions as the basic elements of a network. To 

implement the metabolic reconstruction process, a series of questions need to be answered for 

each of the enzymes in a metabolic network. (i) What are the substrates and products? (ii) What 

are the stoichiometric coefficients for each metabolite that participates in the reaction (or 

reactions) catalyzed by an enzyme? (iii) Are these reactions reversible? (iv) In what cellular 

compartment does the reaction occur? (v) What gene(s) encode for the protein (or protein 

complex), and what is (are) their genomic location(s)? Genes are linked to the proteins they 

encode and the reactions they catalyze using the gene-protein-reaction relationship (GPR) 

(Figure 44). All of this information is assembled from a range of sources, including organism-

specific databases, high-throughput data, and primary literature. Establishing a set of the 

biochemical reactions that constitute a reaction network in the target organism culminates in a 

database of chemical equations. Reactions are then organized into pathways, pathways into 

sectors (such as amino acid synthesis), and ultimately into genome-scale networks, akin to reads 

becoming a full DNA sequence. This process has been described in the form of a 96-step 

standard operating procedure (Orth, Thiele and Palsson, 2010). Today, after many years of hard 

work by many researchers, there exist collections of genome-scale reconstructions (sometimes 

called GENREs) for a number of target organisms (Oberhardt, Palsson and Papin, 2009; 

Bordbar et al., 2014), and established protocols for reconstruction exist (Orth, Thiele and 

Palsson, 2010) that can be partially automated (Thiele and Palsson, 2010; Agren et al., 2012; 

Cuevas et al., 2016). 
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Figure 44 An example of GPRs from the E. coli core model. Genes are represented by blue boxes and 

designated by their locus name, translated peptides are represented by purple boxes, functional proteins are 

represented by red ovals, and reactions are labelled with blue boxes. For isozymes, two different proteins 

are connected to the same reaction. For proteins with multiple peptide subunits, the peptides are connected 

with an “&” above the protein. For complexes of multiple functional proteins, the proteins are connected 

with an “&” above the reaction. The genomic context of some of these genes is highlighted. Certain genes 

for the same reaction, e.g., pykF and pykA, are encoded by genes in operons widely separated on the 

genome. Operons are represented by shaded rectangles around one or more genes. Genes are represented 

by rectangles with one side pointed to denote the direction of the sense strand. Other operons contain 

multiple genes that encode protein subunits in a large protein. In this case, the same sdhCDAB-sucABCD 

operon that codes for the SUCDi proteins also codes for two proteins of the 2-oxoglutarate dehydrogenase 

enzyme complex, AKGDH. Genome context figures created by use of the Pathway Tools Genome Browser 

from EcoCyc. Retrieved from (Orth, Palsson and Fleming, 2010). 

 

1.2 From Genome-scale Reconstruction to Computational Models 

Before a reconstruction can be used to compute network properties, a subtle but crucial step 

must be taken in which a network reconstruction is mathematically represented (Figure 45). 

This conversion translates a reconstructed network into a chemically accurate mathematical 
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format that becomes the basis for a genome-scale model. This conversion requires the 

mathematical representation of metabolic reactions. The core feature of this representation is 

tabulation, in the form of a numerical matrix, of the stoichiometric coefficients of each reaction 

(Figure 46). These stoichiometries impose systemic constraints on the possible flow patterns 

(called a flux map, or flux distribution) of metabolites through the network. These concepts are 

detailed below. Imposition of constraints on network functions fundamentally differentiates the 

COBRA approach from models described by biophysical equations, which require many 

difficult-to-measure kinetic parameters. 

Constraints are mathematically represented as equations that represent balances or as 

inequalities that impose bounds (Figure 46). The matrix of stoichiometries imposes flux 

balance constraints on the network, ensuring that the total amount of any compound being 

produced must be equal to the total amount being consumed at steady state. Every reaction can 

also be given upper and lower bounds, which define the maximum and minimum allowable 

fluxes through the reactions that, in turn, are related to the turnover number of the enzyme and 

its abundance. Once imposed on a network reconstruction, these balances and bounds define a 

space of allowable flux distributions in a network—the possible rates at which every metabolite 

is consumed or produced by every reaction in the network. The flux vector, a mathematical 

object, is a list of all such flux values for a single point in the space. The flux vector represents 

a “state” of the network that is directly related to the physiological function that the network 

produces. Many other constraints such as substrate uptake rates, secretion rates, and other limits 

on reaction flux can also be imposed, further restricting the possible state that a reconstructed 

network can take  (Reed, 2012). The computed network states that are consistent with all 

imposed constraints are thus candidate physiological states of the target organisms under the 

conditions considered. The study of the properties of this space thus becomes an important 

subject. 
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Figure 45. The “phylogeny” of constraint-based modelling methods. Over the past years, the constraint-

based modelling community has rapidly expanded. Because of the versatility and scalability of these 

models, more than 100 methods have been developed for their modelling and analysis, all based on the 

analysis of the underlying metabolic network structure (i.e., the stoichiometric matrix). A phylogenetic tree 

is used to depict the similarities between application and use of the methods, and the underlying algorithms 

for many of the methods. Retrieved from (Lewis, Nagarajan and Palsson, 2012) 

 

1.3 Flux balance analysis - FBA  

Flux balance analysis (FBA) is the oldest COBRA method. It is a mathematical approach for 

analyzing the flow of metabolites through a metabolic network (Orth, Thiele and Palsson, 

2010). This approach relies on an assumption of steady-state growth and mass balance (all mass 

that enters the system must leave). The constraints discussed above take the form of equalities 

and inequalities to define a polytope (Figure 46) that represents all possible flux states of the 

network given the constraints imposed. Thus, many network states are possible under the given 

constraints, and multiple solutions exist that satisfy the governing equations. The blue area is 
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therefore often called the “solution space” to denote a mathematical space that is filled with 

candidate solutions to the network equations given the governing constraints. FBA uses the 

stated objective to find the solution(s) that optimize the objective function. The solution is 

found using linear programming, and, as indicated in Figure 46, the optimal solution lies at the 

edges of the solution space impinging up against governing constraints. 

The utility of FBA has been increasingly recognized due to its simplicity and extensibility: it 

requires only the information on metabolic reaction stoichiometry and mass balances around 

the metabolites under pseudo-steady state assumption. It computes how the flux map must 

balance to achieve a particular homeostatic state. However, FBA has limitations. It balances 

fluxes but cannot predict metabolite concentrations. Except in some modified forms, FBA does 

not account for regulatory effects such as activation of enzymes by protein kinases or regulation 

of gene expression.  
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Figure 46. Formulation of an FBA problem. (a) A metabolic network reconstruction consists of a list of 

stoichiometrically balanced biochemical reactions. (b) This reconstruction is converted into a mathematical 

model by forming a matrix (labeled S), in which each row represents a metabolite and each column 

represents a reaction. Growth is incorporated into the reconstruction with a biomass reaction (yellow 

column), which simulates metabolites consumed during biomass production. Exchange reactions (green 

columns) are used to represent the flow of metabolites, such as glucose and oxygen, in and out of the cell. 

(c) At steady state, the flux through each reaction is given by Sv = 0, which defines a system of linear 

equations. As large models contain more reactions than metabolites, there is more than one possible solution 

to these equations. (d) Solving the equations to predict the maximum growth rate requires defining an 

objective function Z = cTv (c is a vector of weights indicating how much each reaction (v) contributes to 

the objective). In practice, when only one reaction, such as biomass production, is desired for maximization 

or minimization, c is a vector of zeros with a value of 1 at the position of the reaction of interest. In the 

growth example, the objective function is Z = vbiomass (that is, c has a value of 1 at the position of the 

biomass reaction). (e) Linear programming is used to identify a flux distribution that maximizes or 

minimizes the objective function within the space of allowable fluxes (blue region) defined by the 

constraints imposed by the mass balance equations and reaction bounds. The thick red arrow indicates the 

direction of increasing Z. As the optimal solution point lies as far in this direction as possible, the thin red 

arrows depict the process of linear programming, which identifies an optimal point at an edge or corner of 

the solution space. Retrieved from (Orth, Thiele and Palsson, 2010) 

 

1.4 The importance of constraints 

One of the most basic constraints imposed on genome-scale models of metabolism is that of 

substrate, or nutrient, availability and its uptake rate. Metabolites enter and leave the systems 

through what are termed “exchange reactions” (i.e., active or passive transport mechanisms) 

(Figure 46 and Figure 47). These reactions define the extracellular nutritional environment 

and are either left “open” (to allow a substrate to enter the system at a specified rate) or “closed” 

(the substrate can only leave the system). Measurements of the rate of exchange with the 

environment are relatively easy to perform, and they prove to be some of the more important 

constraints placed on the possible functions of reaction networks internal to the cell. More 

biological- and data-derived constraints can also be imposed on a model.  

The next step in converting a network reconstruction to a model is to define what biological 

function(s) the network can achieve. Mathematically, such a statement takes the form of an 

“objective function”. For predicting growth, the objective is biomass production — that is, the 

rate at which the network can convert metabolites into all required biomass constituents such 

as nucleic acids, proteins, and lipids needed to produce biomass. The objective of biomass 

production is mathematically represented by a “biomass reaction” that becomes an extra column 

of coefficients in the stoichiometric matrix (Figure 46 and Figure 47). One can formulate a 

biomass objective function at an increasing level of detail: basic, intermediate, and advanced 
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(Feist and Palsson, 2008; Bordbar et al., 2014). The biomass reaction is scaled so that the flux 

through it represents the growth rate (μ) of the target organism. 

It is important to note that the biomass objective function is determined from measurements of 

biomass composition—the uptake and secretion rates from measuring the nutrients in the 

medium—and that the model formulation is built on a knowledge-based network 

reconstruction. Thus, the growth rate optimization problem represents “big data” integrated into 

a structured format and the hypothesis of a biological objective: grow as fast as possible with 

the resources available. This is a well-defined optimization problem. 
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Figure 47. Formulation of a Computational Model (A) After the metabolic network has been assembled, 

it must be converted into a mathematical representation. This conversion is performed using a 

stoichiometric (S) matrix in which the stoichiometry of each metabolite involved in a reaction is 

enumerated. Reactions form the columns of this matrix and metabolites the rows. Each metabolite’s entry 

corresponds to its stoichiometric coefficient in the corresponding reaction. Negative coefficient substrates 

are consumed (reactants), and positive coefficients are produced (products). Converting a metabolic 

network reconstruction to a mathematical formulation can be achieved with several of the toolboxes. (B) 

Constraints can be added to the model, such as: (1) enforcement of mass balance and (2) reaction flux (v) 

bounds. The blue polytope represents different possible fluxes for reactions 5 and 6, consistent with stated 

constraints. Those outside of the polytope violate the imposed constraints and are thus ‘‘infeasible.’’ (C) 

Constraint-based models predict the flow of metabolites through a defined network. The predicted path is 

determined using linear programming solvers and is termed flux balance analysis (FBA). FBA can be used 

to calculate the optimal flow of metabolites from a network input to a network output. The desired output 
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is described by an objective function. If the objective is to optimize flux through reaction 5, the optimal 

flux distribution would correspond to the levels of flux 5 and flux 6 at the blue point circled in the figure. 

The objective function can be a simple value or can draw on a combination of outputs, such as the biomass 

objective shown in (E). It is important to note that alternate optimal flux distributions may exist to reach 

the optimal state (D) Once a network reconstruction is converted to a mathematical format, the inputs to 

the system must be defined by adding consideration of the extracellular environment. Compounds enter 

and exit the extracellular environment via ‘‘exchange’’ reactions. The GEM will not be able to import 

compounds unless a transport reaction from the external environment to the inside of the cell is present. (E) 

In addition to exchange reactions, the biomass objective function acts as a drain on cellular components in 

the same ratios as they are experimentally measured in the biomass. In FBA simulations, the biomass 

function is used to simulate cellular growth. The biomass function is composed of all necessary compounds 

needed to create a new cell, including DNA, amino acids, lipids, and polysaccharides. This is not the only 

physiological objective that can be examined using COBRA tools. Retrieved from (O’Brien, Monk and 

Palsson, 2015) 

 

1.5 The importance of generating accurate and consistent models 

Ensuring the consistency and accuracy of all of the information available for a target organism 

is a grand challenge of genome-scale biology. Since model predictions are based on a network 

reconstruction that represents the totality of what is known about a target organism, such 

predictions are a critical test of our comprehensive understanding of the metabolism for the 

target organism. Incorrect model predictions can be used for biological discovery by classifying 

them and understanding their underlying causes. Performing targeted experiments to 

understand failed predictions is also a proven method for systematic discovery of new 

biochemical knowledge (Orth, Thiele and Palsson, 2010).  
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 Objectives 

 

General objective 

 

The main objective of this project was to provide a quick, consistent and open-source pipeline 

for building, manipulating and visualising metabolic models, which can be further integrated 

into other organizational layers.  

 

Specific objectives 

 

(i) Generation of a quality-check algorithm for filtering and mass-balancing reactions 

from the KEGG database  

(ii) Generation of a Universal Reaction Network (URN), the whole set of pre-checked 

reactions from KEGG 

(iii)  Generation of algorithms for using input data as queries against the KEGG URN 

for the generation of specific metabolic models 

(iv) Generation of algorithms for improving the metabolic model consistency and for 

manipulating its data  

(v) Testing the pipeline with toy-model reactions 

(vi) Testing the pipeline with real genomic data from the NCBI database 
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 Materials and Methods 

 

The present work has been developed in silico, and its scripts have been written in one of the 

following languages: R, MATLAB® or Python. The general workflow is depicted below, in 

Figure 48. 

 

 

Figure 48. The general workflow of this work. The objective of this project was to provide a quick, 

consistent and open-source platform for the generation of GEMs. The user input should work as a query 

against our quality-checked KEGG Universal Reaction Network (URN). The URN should be manipulated 

for the generation of a draft metabolic model based on the user inputs. The resulting draft model should be 

structured for the application of constraint-based metabolic modelling methods such as Flux Balance 

Analysis (FBA) and for generating visual outputs. Additional pruning methods such as gap-filling 

algorithms and Gene-Protein-Reaction Boolean rules should also be available in order to improve the model 

consistency (Orth, Palsson and Fleming, 2010; Thiele and Palsson, 2010; Machado, Herrgård and Rocha, 

2016). Each step in this workflow has used different programming languages represented by their logos (R, 

Python and MATLAB®) 

 

Accessing and manipulating the necessary KEGG files for the generation of a KEGG-

based Universal Reaction Network (URN) 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is one of the oldest and most 

comprehensive collection of databases. Its primary aim has been the digitising of current 

knowledge on genes and molecules and their interactions (Kanehisa, 2000) and it includes 16 

databases and 3 sequence data collections (Kanehisa et al., 2017). At the time of writing, the 

KEGG database lists 10,947 biochemical reactions and 18,354 compounds and the whole 

dataset can be downloaded via (paid) FTP access. This reaction-compound information can be 

represented as a stoichiometric m x n matrix with m-compounds and n-reactions. Thus, each 

reaction (column) will have non-zero values for their respective compounds (rows), 
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representing their mass-balanced stoichiometric coefficients. This bi-dimensional matrix can 

then be represented as a hypergraph, where nodes and edges correspond to compounds and 

biochemical reactions, respectively (McClymont and Soyer, 2013). We can refer to this hyper-

graph arising from the known universe of biochemical reactions as the ‘Universal Reaction 

Network’ (URN). Thus, KEGG “flat files” for KEGG Orthologs (KOs), enzymes, reactions and 

metabolites were downloaded via paid FTP access and further processed for the generation of 

a KEGG-based URN. 

 

 

Figure 49. From KEGG Reactions to a KEGG-Based Universal Reaction Network (URN). KEGG 

“flat files” were downloaded via FTP access and the list of reactions was used to generate a Universal 

Reaction Network, a stoichiometric matrix containing all reactions and compounds from the database, 

which can also be represented as a hypergraph. Modified from (Kanehisa, 2000; McClymont and Soyer, 

2013).  

 

Generation of ad-hoc scripts in R for filtering and manipulating KEGG files 

One of the most important issues related to the development of GEMs is the quality of the 

database data obtained. Inconsistencies such as mass-balancing errors in reactions, erroneous 

structural information and missing chemical formula for compounds and name inconsistencies 

for both reactions and compounds are quite common in databases and must be flagged and 

corrected before the development of a metabolic model (Schellenberger et al., 2010; Kumar, 

Suthers and Maranas, 2012). Thus, before building a KEGG-based URN, we had to generate 

specific algorithms for checking the quality of KEGG compounds and reactions regarding the 

presence/absence of chemical formulas for KEGG compounds and the presence/absence of 

mass-balanced reactions (Figure 50). 
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Figure 50. Flowchart representing the developed quality-checking algorithm. The quality-check of 

KEGG reactions was the first step in the development of the current pipeline. Firstly, the algorithm would 

search for reactions without compound formulas and remove these reactions; secondly, the algorithm would 

translate all reactions to their compound formula format and execute a mass-balancing function. Reactions 

which were not mass-balanced should be removed unless the mass-balancing issue can be solved by adding 

or removing protons (H+). All the other kinds of mass-imbalanced reactions are removed. In the end, the 

URN will be composed by reactions which are both mass-balanced and with their compound formulas 

accessible. 

 

The algorithm was implemented in R and worked as follow, KEGG compounds that did not 

present a corresponding chemical formula were flagged and all KEGG reactions containing 

these compounds were excluded from the URN generation process. Subsequently, all reactions 

with existing compounds’ formula were subjected to a mass-balance checking (Figure 51). 

Each reaction was subdivided into left (reactants) and right (products) sides. The compound 

identifiers for each metabolite were then translated into their respective chemical formula and 

the subscripts of each atom were stored in a list (when the compound had a stoichiometric 

coefficient other than 1, the subscript was multiplied by it before being stored). Then, the vector 

containing all the subscripts for the atoms within the reactants side was compared to the one for 
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the products side. If each atom had the same value in both vectors the reaction was considered 

balanced (the difference between atoms from both sides should be zero). If not, the reaction 

was flagged. An additional step allowed us to check whether the reaction was imbalanced due 

to a proton imbalance (H+) or not. If that was the case, the proton was added/removed to the 

correct side of the equation in order to mass-balance it. Mass-imbalanced reactions that could 

not be corrected by addition/removal of protons were flagged and excluded from the URN 

generation process as they would affect the process of metabolic modelling simulations (such 

as the linear optimization method adopted in FBA), resulting in inaccurate/faulty predictions 

(Thiele and Palsson, 2010).  

 

Figure 51. Checking for mass-balanced reactions. Each reaction was subdivided into left and right sides. 

The atoms of each side had their subscripts extracted (multiplied by the compound stoichiometric 

coefficient when needed) and compared. If there was any non-zero value in the comparison, the reaction 

was flagged as mass-imbalanced. If the reaction was proton imbalanced, a proton was added/removed 

to/from the correct equation side and the reaction was included into the URN generation process. 

 

Using ad-hoc scripts in MATLAB® for generating of a KEGG-based Universal Reaction 

Network  

As an initial proof of concept and in order to generate an object-structured URN, we have 

modified some COBRA toolbox (Heirendt et al., 2017) functions in MATLAB® to be 

compatible with our quality-checked files for KEGG reactions and compounds. Thus, we have 

used these functions to generate not only the KEGG URN, but also a COBRA-structures 

stoichiometric model based on the previously filtered data (more information in 



RESULTS 

129 

 

https://opencobra.github.io/). This model could be saved as a .mat file and further manipulated 

in other platforms such as the COBRAPy toolbox, an open-source tool based on the Python 

programming language (Ebrahim et al., 2013). 

 

Manipulating the URN Model through ad-hoc python scripts and functions from the 

COBRAPy toolbox  (Ebrahim et al., 2013).  

The core capabilities of COBRApy are enabled by a set of classes (Figure 52) that represent 

organisms (Model), biochemical reactions (Reaction), and biomolecules (Metabolite and 

Gene). The core code is accessible through either Python or Jython (Python for Java). COBRApy 

contains: cobra.io: an input/output package for reading / writing SBML (Hucka et al., 2003) 

models and reading / writing COBRA Toolbox MATLAB® structures; cobra.flux_analysis: a 

package for performing common FBA operations, including gene deletion and flux variability 

analysis (Ebrahim et al., 2013); cobra.topology: a package for performing structural analysis; 

cobra. test: a suite of unit tests and test data; cobra.solvers: interfaces to linear optimization 

packages. And, cobra.mlab: an interface to the COBRA Toolbox for MATLAB®. 

In this work, we have adopted the COBRAPy toolbox for our initial tests as it provided a 

practical framework, although our ultimate goal was to completely detach our framework from  

the object-oriented structures and keep it as simple yet robust as possible. As COBRAPy is an 

open-source toolbox, it has been extensively modified over the years by different users, which 

has led to a large number of deprecated and defective functions. In this work, we have updated 

and modified some of these functions in order to improve the efficiency of our mode generation 

pipeline. First, we have developed new functions for manipulating metabolic models through 

their stoichiometric matrices, using the pandas package (https://pandas.pydata.org/index.html). 

This has allowed us to develop functions for automatically removing (orphan 

compounds/reactions) and adding (artificial reactions such as exchange reactions) features into 

the model. We have also focused on the automatic generation of visual outputs by combining 

COBRAPy and network visualisation scripts provided by both the D3flux Python package 

(https://github.com/pstjohn/d3flux/blob/master/README.md) and the Gephi software  

(Bastian, Heymann and Jacomy, 2009). 

 

https://opencobra.github.io/
https://pandas.pydata.org/index.html
https://github.com/pstjohn/d3flux/blob/master/README.md
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Figure 52 Core classes in COBRA for Python with key attributes and methods listed. The figure 

depicts a set of core classes that represent organisms (Model), biochemical reactions (Reaction), and 

biomolecules (Metabolite and Gene). The Solution class stores the numerical solution for FBA and other 

stoichiometric-based analysis. Retrieved from (Ebrahim et al., 2013) 

 

Testing the model through the adoption of toy reactions  

In order to test our pipeline, we have chosen a set of nine toy reactions (artificial reactions) 

which were added to the original KEGG-based URN: 

a. R2: B <=> 

b. R3: P -> 

c. R4: E-> 

d. R5: A->B 

e. R6: A->C 

f. R7: A->D 

g.  R8: B<=>C 

h. R9: B->P 

i. R10: C + D -> E + P 

 

The model generation is based on the manipulation of the URN based on user inputs (Figure 

53). The inputs (gene names, KOs, E.C. numbers, KEGG reaction names) are used as queries 
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in a relational database for finding all the reaction IDs (reaction names) in the URN related to 

the user input. Then, all reactions and metabolites unrelated to the queries are removed from 

the URN and the resulting stoichiometric matrix is used for further pruning the model (Figure 

53). The next step is to find and remove artefacts such as orphan reactions and compounds. In 

this sense, orphan compounds can be subdivided into top-node, bottom-node and disconnected 

orphans. Top-node compounds are only consumed, but never produced, while bottom-node 

compounds are never consumed. These compounds should be flagged and updated through the 

generation of artificial exchange reactions (EX_reactions) (Figure 53). Artificial reactions have 

an important role in metabolic models as they allow the flow of the metabolites into and from 

the model, directly affecting the results of constraint-based analysis such as FBA. It also raises 

deep implications in the biological relevance of exchange reactions and in the importance of 

manually curating them once the model has been built for obtaining both biologically consistent 

behaviours and reliable predictions. The last class of orphans, the disconnected one, consists of 

compounds which are not connected to any reactions in the metabolic network (Figure 53). 

These metabolites are flagged and the removed from the model in order to avoid numerical 

issues with subsequent simulations. It is important to highlight that in order to test the pipeline 

and the automatic identification of orphans, reaction R1 (an exchange reaction for metabolite 

A) was missing from the previously described set of toy reactions. Without this reaction, the 

model cannot be fully optimized (see Figure 57 in the Results section for more information). 
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Figure 53. Representation of the toy-model generation for testing the developed pipeline. Top, from 

left to right: A set of 3 reactions was added to the original URN. The name (ID) of the added reactions were 

then used as inputs (queries) by the user. All reactions in the URN except for the ones provided by the user 

were deleted. A series of steps for checking and increasing the model’s consistency was then applied: 

Generation of an S matrix, finding and flagging orphan reactions and metabolites (only produced, only 

consumed or disconnected nodes), creation of exchange reactions for connected orphan metabolites (top 

and bottom nodes), removal of unused compounds, linear optimisation and knockout testing followed by 

the generation of visual outputs representing the network and its current fluxes. 

 

Testing the model generation pipeline through the use of real genomic data 

After testing the proof of concept with the toy-reactions network, we have focused on 

developing genome-scale metabolic models using genomic data from NCBI as inputs 

(https://www.ncbi.nlm.nih.gov/genome). We have retrieved the genomes of three bacteria: 

Escherichia coli K-12 

https://www.ncbi.nlm.nih.gov/genome/167?genome_assembly_id=161521 

Bacillus subtilis strain 168 

https://www.ncbi.nlm.nih.gov/genome/665?genome_assembly_id=300274 

Mycoplasma genitalium strain G37 

https://www.ncbi.nlm.nih.gov/genome/474?genome_assembly_id=300158 

https://www.ncbi.nlm.nih.gov/genome
https://www.ncbi.nlm.nih.gov/genome/167?genome_assembly_id=161521
https://www.ncbi.nlm.nih.gov/genome/665?genome_assembly_id=300274
https://www.ncbi.nlm.nih.gov/genome/474?genome_assembly_id=300158
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Using an ad-hoc script written in R, the gene IDs and their aliases were extracted and used as 

queries against our KEGG relational database. This resulted in the extraction of all reactions 

associated to these aliases, as our KEGG “flat files” have allowed us to link NCBI gene IDs to 

KEGG Orthologs, reactions and E.C. numbers. Thus, the same process as previously described 

with the toy-reaction network was adopted for building the metabolic model (Figure 54). All 

reactions and metabolites unrelated to the queries were removed from the KEGG-based URN 

and the resulting stoichiometric matrix was used for further pruning the model. The next step 

was to find and remove artefacts such as orphan reactions and compounds. Exchange reactions 

were created for top-node and bottom-node compounds, while the disconnected compounds 

were removed from the model in order to avoid numerical issues with subsequent simulations.  

An ad-hoc script in Python was created to directly output the genome-scale stoichiometric 

matrix as a bipartite network in two different manners. The first one directly used the D3flux 

Python package (https://github.com/pstjohn/d3flux/blob/master/README.md) and the second 

one generated a .csv table already formatted for being used as an input into the Gephi software  

(Bastian, Heymann and Jacomy, 2009). 

 

 

Figure 54. Workflow for generating genome-scale metabolic models. The pipeline for the automatic 

generation of GEMs from genomic data is represented in 13 steps. Firstly, the desired genomic sequence is 

downloaded from NCBI and its gene IDs/gene aliases are retrieved. These IDs are mapped to KEGG 

orthologs in the KEGG files and then to their respective Reactions and E.C.s in the URN. Everything is 

removed from the URN except the reactions mapped to the genes presented by the user. An S matrix is 

generated from the remaining reactions and compounds and automatically updated for the generation of 

Exchange Reactions (EXs) and removal of disconnected metabolic nodes. The user can then set its own 

objective function for running the FBA method. The user can also generate a bipartite network file that can 

https://github.com/pstjohn/d3flux/blob/master/README.md
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be viewed in network visualization software such as Gephi or Cytoscape. Finally, the generated model can 

be compared to published models for consistency checking.  

 

Comparing generated and published genomic-based metabolic models  

In order to assess the general properties of the generated models and compare them to the 

literature-based data, we have selected published metabolic models for the three bacterial 

species previously described. Our generated E. coli model was compared to one complete 

published model – iAF1260 (Feist et al., 2007), to the E. coli core model (Orth, Palsson and 

Fleming, 2010) and to a Model-SEED reconstruction. Our B. subtilis model was compared to 

two published models, iBsu1103 (Henry et al., 2009) and to iYO844 (Oh et al., 2007). Lastly, 

our M. genitalium model was compared to the iPS189 published model (Suthers et al., 2009) 

and to a Model-SEED reconstructed model.   

Here, it is important to highlight a great challenge faced by GEMs: the comparison between 

models for the same organisms. For example, currently, there are more than ten published 

metabolic reconstructions for E. coli and over 200 peer‐reviewed studies assessing E. coli 

capabilities through model-driven methods (McCloskey, Palsson and Feist, 2013). However, it 

is very difficult to compare these models as different laboratories usually manually curate many 

reactions, creating artificial exchange reactions and adopting different databases for the 

reconstructions with diverging IDs for its reactions and compounds. In this context, we have 

focused on comparing Enzyme Commission numbers between models (Figure 55) - a 

numerical classification scheme for enzymes, based on the chemical reactions they catalyse 

(International Union of Biochemistry and Molecular Biology, 1992). As a system of enzyme 

nomenclature, every E.C. number is associated with a recommended name for the respective 

enzyme. Strictly speaking, E.C. numbers do not specify enzymes, but enzyme-catalyzed 

reactions. If different enzymes (for instance from different organisms) catalyze the same 

reaction, then they receive the same E.C. number. Thus, by comparing E.C.s from different 

models we might obtain a more general view of the enzymatic functions in each reconstruction.   
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Figure 55 A method for comparing metabolic models from different pipelines. As different published 

models might have the same reactions, but with different names and different compound identifiers, it turns 

out to be very difficult to directly compare models generated from different pipelines and laboratories even 

when they represent the same organism. Thus, a potential solution is to compare the set of E.C.s (Enzyme 

Comission numbers (International Union of Biochemistry and Molecular Biology, 1992)) in each model as 

they provide a snapshot of the enzymatic functions present in each model. The analysis of overlapping E.Cs 

between models can be easily done and ultimately plotted as a Venn diagram for a more visual analysis. 
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 Results 

The first approach was to apply the pipeline for filtering the KEGG reaction files as shown in 

Figures 50 and 51. The pipeline has successfully removed reactions without compounds (1,126 

reactions) and the mass-imbalanced ones (only those which could be mass-balanced for H+ were 

fixed). From a total of 10,444 reactions, the dataset has been narrowed down to 8,461 reactions 

(Figure 56). 

 

Figure 56. Building the Universal Reaction Network from KEGG. The first step for building the URN 

was to apply the quality-check algorithm (Figures 50 and 51). As a result, the total number of reactions 

has been narrowed down from 10,444 to 8,461 reactions. 

 

 

The next step was to test the pipeline with a toy model. A set of 9 artificial reactions was added 

to the current URN (see Materials and Methods section). Then, the IDs for the 9 reactions were 

used as inputs into the pipeline as shown in the Materials and Methods section (Figure 53). 

External reactions were automatically generated and disconnected orphan metabolites/reactions 

were excluded from the model. The D3flux package 

(https://github.com/pstjohn/d3flux/blob/master/README.md), a d3.js based visualization tool 

for COBRAPy (Ebrahim et al., 2013) models was integrated into the pipeline, allowing the 

visualisation of the generated metabolic networks and the reaction fluxes (Figure 57A). The 

model was then successfully optimized for Reaction 4 (R4) (Figure 57B) and subsequently 

knocked out for Reaction 8 (R8) (Figure 57C). 

 

https://github.com/pstjohn/d3flux/blob/master/README.md
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Figure 57. Exploring the pipeline through toy metabolic models. A set of 9 reactions was used as queries 

or the pipeline and resulted in a metabolic model with a total of 10 reactions (one exchange reaction was 

automatically added as part of the algorithm testing strategy). Metabolites are represented as blue circles, 

while reactions are represented as yellow circles. The arrows represent the reaction directionality (from 

reagents to products) and the arrows width represent how much flux is been passed through each reaction. 

Dashed arrows represent inactive reactions (distribution of flux is zero) and red dashed arrows represent 

knocked out reactions (flux is changed to zero). (A) Visualisation of the resulting toy model through the 

integration of the D3flux package into our method without any specific analysis/optimisation process. (B)  

Visualisation of the resulting toy model after optimizing the system towards the R4 reaction. (C) 

Visualisation of the resulting toy model after optimizing the system towards the R4 reaction and knocking 

out the R8 reaction. It is important to notice how the distribution of fluxes (arrow width) have changed 

from (B) to (C). 

 

After successfully testing the pipeline with the toy reaction set, we focused on further exploring 

its capabilities by testing it with real genomic data. Thus, we have followed the workflow 

explained in the Materials and Methods (Figure 54) to generate genome-scale metabolic 

models (GEMs) for three widely studied bacterial species: E. coli K-12  strain, Bacillus subtilis 

strain 168 and Mycoplasma genitalium strain G37. The generated models and their properties 

were compared to other published models for these organisms or to models automatically 

generated from the Model-SEED online platform - the most widely used of the existing 

frameworks for automated GEM reconstruction (Feist et al., 2007; Oh et al., 2007; Henry et 

al., 2009; Suthers et al., 2009; Overbeek et al., 2014). Our generated E. coli model (1,272 

reactions) was compared to one complete and manually curated published model – iAF1260 

(Feist et al., 2007) (2,382 reactions), to the E. coli core model (Orth, Palsson and Fleming, 
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2010) (bearing only 95 core metabolic reactions for educational purposes) and to a Model-

SEED reconstruction (1,576 reactions). Our B. subtilis model (1,028 reactions) was compared 

to two published models, iBsu1103 (Henry et al., 2009) (1,437 reactions) and to iYO844 (Oh 

et al., 2007) (1,020 reactions). Lastly, our M. genitalium model (178 reactions) was compared 

to the iPS189 published model (Suthers et al., 2009) (264 reactions) and to a Model-SEED 

reconstructed model (500 reactions). A summary of the comparison between the different 

models can be seen in Table 7. It is important to notice how the different models for the same 

species might differ from each other depending on the pipeline that generated it. Usually, 

published models have more reactions as they have manually curated artificial reactions such 

as exchange, biomass and maintenance reactions. 

 

Table 7. Comparison between reconstructed and published metabolic models 

Models/ 

Properties 

Escherichia coli K-12 Bacillus subtilis 168 Mycoplasma genitalium G37 

iAF1260 Ours SEED Core iYO844  iBsu1103 Ours iPS189 SEED Ours 

E.C.s 

(Enzyme 

Commission 

numbers) 

522 832 721 37 448 740 638 103 89 103 

E.C.s Overlap 

(against our 

model) 

80% - 76% 92% 75% 58% - 50% 77% - 

Reactions 2382 1272 1576 95 1020 1,437 1028 264 499 178 

Metabolites 1039 1669 1629 72 988 1140 1102 274 627 245 

Genes 1260 1016 1017 137 844 1,103  822 189 222 133 

 

The reconstruction of metabolic networks from genomic data has allowed us to compare our 

models to the published ones by two main methods: by the degree of E.C.s overlapping and by 

visually comparing bipartite networks representing both metabolites and reactions in each 
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model. We preferred the former method as it provided a general overview of the enzymatic 

functions in each model, while the latter method did not provide a clear distinction between the 

metabolic networks. 

 The comparison between the E.Cs of E. coli models has shown that our model, although 

presenting many more E.Cs than the published model was not able to encompass all the E.Cs 

found on published models, presenting, in average, 82% of the E.Cs found in published models 

(see Figure 58). Our B. subtilis was able to accommodate an average of 66,5% of the published 

models (Figure 59) while our M. genitalium comprised an average of 63,5% (Figure 60) of the 

published one. It is important to notice that even between published models we could observe 

large discrepancies such as an overlap of 90% between E.Cs from B. subtilis published models, 

being the iBsu1103 model twice the size of the iYO844 model in regard to E.C. numbers (740 

E.C.s Vs 448 E.C.s). 

 

Figure 58. Comparison of E.C.s content between reconstructed and published E. coli K-12 

stoichiometric metabolic models. (A) A reconstructed core model based on our pipeline (KEGG, in blue) 

with 67 E.C.s and the published core model (Core, in orange) with 37 E.C.s. (B) A reconstructed genomic 

model based on our pipeline (KEGG, in blue) with 832 E.C.s and the published iAF1260 model (iAF1260, 

in orange) with 522 E.C.s. (C) A positive control for the analysis, consisting in the URN (URN, in blue) 

with 4,306 E.C.s and the published iAF160 model (iAF1260, in orange) with 522 E.C.s. 
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Figure 59. Comparison of E.C.s content between reconstructed and published Bacillus subtilis models 

(A) A reconstructed model based on our pipeline (KEGG, in blue) with 638 E.C.s and the published 

iBsu1103 model (iBsu1103, in orange) with 740 E.C.s. (B) A reconstructed genomic model based on our 

pipeline (KEGG, in blue) with 638 E.C.s and the published iYO844 model (iYO844, in orange) with 448 

E.C.s. (C) A comparison between both published models. (D) A positive control for the analysis, consisting 

in the URN (URN, in blue) with 4,306 E.C.s and the published iBsu1103 model (iBsu1103, in orange) with 

740 E.C.s. (E) A positive control for the analysis, consisting in the URN (URN, in blue) with 4,306 E.C.s 

and the published iYO844 model (iYO844, in orange) with 448 E.C.s. 
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Figure 60. Comparison of E.C.s content between reconstructed and published Mycoplasma 

genitalium stoichiometric metabolic models. (A) A reconstructed model based on our pipeline (KEGG, 

in blue) with 103 E.C.s and the published iPS189 model (Published, in orange) with 103 E.C.s. (B) A 

positive control for the analysis, consisting in the URN (URN, in blue) with 4,306 E.C.s and the published 

iPS189 model (iPS189, in orange) with 103 E.C.s. 

 

The last step of the analysis was to generate visual outputs for the reconstructed models through 

an automated process (see Materials and Methods section for more information). An ad-hoc 

algorithm for the generation of bipartite networks based on the S matrix data was developed, 

allowing the creation of -.csv files compatible to network visualizer software such as Gephi and 

Cytoscape. A bipartite graph, also called a bigraph, is a set of graph vertices decomposed into 

two disjoint sets such that no two graph vertices within the same set are adjacent (Newman, 

2010). In the context of this project, a bipartite graph is represented by a directed graph with 

nodes for both reactions and metabolites. Metabolites are never connected between themselves, 

but only to reactions (see Figure 53 in the Materials and Methods section). This visualisation 

process was coupled to the model generation pipeline, resulting in metabolic networks for all 

models considered here (see Figures 61 to 64). As a proof of concept, we have generated these 

metabolic networks for our own generated models and for published models of E. coli and M. 

genitalium. They have allowed us to visually compare network properties such as the degree of 

each node - represented as relative node sizes in Figures 61 to 64 - and the network modularity 

– represented as the nodes that are more densely connected together than to the rest of the 

network sharing the same color Figures 62 and 64 - in a straightforward manner. Furthermore, 

other network properties such as size, density, average degree, average path length, diameter of 
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a network, clustering coefficient etc. (Newman, 2010) could be calculated using software such 

as Gephi and Cytoscape. 

By comparing our models with published ones, we could observe that the network structure 

was very similar for both E. coli and M. genitalium in terms of the statistics of the network 

properties, similar to the general patterns observed by (Oltvai et al., 2000; Mahadevan and 

Palsson, 2005) in the study of over 40 metabolic reconstructions representing the three domains 

of Life. In this context, we could also see similarities between our models and the published 

ones in terms of the nodes with higher degrees, usually related to metabolites such as ATP, H+, 

H2O and NADH (bigger nodes in Figures 61-64). The modularity patterns between our models 

and the published ones were also quite similar for both organisms (Figures 62 and 64), 

indicating that the general topology and structure of our works are similar to the published ones 

despite the previously observed variations in the E.C.s content. 

 

Figure 61. Reconstructed bipartite metabolic networks for Escherichia coli K-12. The networks were 

generated for both the (A) iAF1260 model and the (B) K-12 reconstructed model. Node colours represent 

Metabolites or Reactions while node size represents the number of connections of each node. The most 

connected nodes are usually related to metabolites such as ATP, H+, H2O and NADH. 
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Figure 62. Modularity of reconstructed bipartite metabolic networks for Escherichia coli K-12. The 

networks were generated for both the (A) iAF1260 model and the (B) K-12 reconstructed model. Node 

colors represents the network modules (the modularity algorithm implemented in Gephi looks for the nodes 

that are more densely connected together than to the rest of the network - Networks with high modularity 

have dense connections between the nodes within modules but sparse connections between nodes in 

different modules), while node size represents the number of connections of each node. The most connected 

nodes are usually related to metabolites such as ATP, H+, H2O and NADH. 

 

 

Figure 63. Reconstructed bipartite metabolic networks for Mycoplasma genitalium. The networks were 

generated for both the (A) iPS189 model and the (B) M. genitalium G37 reconstructed model. Node colours 

represent Metabolites or Reactions while node size represents the number of connections of each node. The 

most connected nodes are usually related to metabolites such as ATP, H+, H2O and NADH. 
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Figure 64. Modularity of reconstructed bipartite metabolic networks for Mycoplasma genitalium. The 

networks were generated for both the (A) iPS189 model and the (B) M. genitalium G37 reconstructed 

model. Node colors represents the network modules (the modularity algorithm implemented in Gephi looks 

for the nodes that are more densely connected together than to the rest of the network - Networks with high 

modularity have dense connections between the nodes within modules but sparse connections between 

nodes in different modules), while node size represents the number of connections of each node. The most 

connected nodes are usually related to metabolites such as ATP, H+, H2O and NADH. 
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 Discussion and Conclusions 

As briefly discussed before, a key bottleneck in the pace of reconstruction of new high-quality 

metabolic models is our inability to directly make use of metabolite/reaction information from 

biological databases (Reed et al., 2006) (e.g., BRENDA (Schomburg et al., 2002; Placzek et 

al., 2017), KEGG (Kanehisa, 2000; Kanehisa et al., 2017), MetaCyc, EcoCyc, BioCyc (Caspi 

et al., 2014), BKM-react (Lang, Stelzer and Schomburg, 2011), UM-BBD (Gao, Ellis and 

Wackett, 2009), Reactome.org, Rhea, PubChem, ChEBI etc.) or other models due to 

incompatibilities of representation, duplications and errors. In this context, a major impediment 

in the generation of genomic metabolic models is the presence of metabolites with multiple 

names across databases and models, and in some cases within the same resource, which 

significantly slows down the pooling of information from multiple sources. Therefore, the 

almost unavoidable inclusion of multiple replicates of the same metabolite can lead to missed 

opportunities to reveal lethal gene deletions, repair network gaps and quantify metabolic flows.  

Moreover, most data sources inadvertently include some reactions that may be 

stoichiometrically inconsistent (Gevorgyan, Poolman and Fell, 2008) and/or 

elementally/charge unbalanced (Notebaart et al., 2006; Ott and Vriend, 2006), which can 

adversely affect the prediction quality of the resulting models if used directly. Finally, a large 

number of metabolites in reactions are partly specified with respect to structural information 

and may contain generic side groups (e.g., alkyl groups -R), varying degree of a repeat unit 

participation in oligomers, or even just compound class identification such as “an amino acid” 

or “electron acceptor”. Over 3% of all metabolites and 8% of all reactions in the aforementioned 

databases and models exhibit one or more of these problems (Kumar, Suthers and Maranas, 

2012). 

There have already been a number of efforts aimed at addressing some of these limitations. The 

Rhea database, hosted by the European Bioinformatics Institute, aggregates reaction data 

primarily from IntEnz (Fleischmann, 2004) and ENZYME (Bairoch, 2000), whereas 

Reactome.org is a collection of reactions primarily focused on human metabolism (Vastrik et 

al., 2007). Even though they crosslink their data to one or more popular databases such as 

KEGG, ChEBI, NCBI, KEGG, BRENDA, Ensembl, Uniprot, etc., both retain their own 

representation formats. More recently, the BKM-react database is a non-redundant biochemical 

reaction database containing known enzyme-catalyzed reactions compiled from BRENDA, 
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KEGG, and MetaCyc (Lang, Stelzer and Schomburg, 2011). An important step forward for 

models was the BiGG database (Schellenberger et al., 2010), which includes seven genome-

scale models from the Palsson group in a consistent nomenclature and exportable in SBML 

format (Hucka et al., 2003). Another important recent development is the web resource Model 

SEED that can generate draft genome-scale metabolic models drawing from an internal 

database that integrates KEGG with 13 genome-scale models (including six of the models in 

the BiGG database) (Overbeek et al., 2014). All of the reactions in Model SEED and BiGG are 

charge and elementally balanced. In this context, our work has adopted the KEGG database as 

it is one of the most complete databases in terms of interconnected information (Kanehisa et 

al., 2017). 

We have also observed in our work that metabolic networks for E. coli and M. genitalium 

presented similar network properties, raising a question regarding the potential discovery of 

universal traits in metabolic networks. Although we have focused only on two microorganisms 

and their reconstructed metabolic networks in this analysis, we have found that our data was in 

agreement with previous studies exploring this question in a larger scale. Oltvai et al., 2000 

(Oltvai et al., 2000), have analysed 43 metabolic reconstructions from all three domains of Life 

and found that despite significant variation in their individual constituents and pathways, these 

metabolic networks have the same topological scaling properties such as  network diameter - 

defined as the shortest biochemical pathway averaged over all pairs of substrates - and  show 

striking similarities to the inherent organization of complex scale-free networks – networks 

which follow a power-law distribution (Newman, 2010). This may indicate that metabolic 

organization is not only identical for all living organisms, but also complies with the design 

principles of robust and error-tolerant scale-free networks, and may represent a common 

blueprint for the large-scale organization of interactions among all cellular constituents (Oltvai 

et al., 2000). 

As discussed in Oltvai’s study (Oltvai et al., 2000), the apparent conservation of the network 

diameter in all living organisms may represent an additional survival and growth advantage, as 

a larger diameter would attenuate the organism's ability to respond efficiently to external 

changes or internal errors. It has also been found that that connectivity distribution of non-

metabolic pathways in cellular systems may also follow a power-law distribution, indicating 

that cellular networks as a whole are scale-free networks (Oltvai et al., 2000; Barabasi and 
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Oltvai, 2004; Mahadevan and Palsson, 2005). Therefore, the evolutionary selection of a robust 

and error-tolerant architecture may characterize all cellular networks, for which scale-free 

topology with a conserved network diameter appears to provide an optimal structural 

organization (Oltvai et al., 2000; Barabasi and Oltvai, 2004; Mahadevan and Palsson, 2005). 

In conclusion, this chapter has provided a novel computational pipeline for de novo generation 

of genome-scale metabolic models and for the exploration of intrinsic properties of 

stoichiometric metabolic models from (meta)genomic data. This pipeline has been extensively 

tested with both toy models and genomic data, providing an open-source alternative to the 

current metabolic reconstruction methods and highlighting the challenge of data standardization 

between different databases. The implementation of additional tools for improving the 

consistency of this method is still in progress, focusing on the development of a gap-filling 

algorithm that should greatly improve the applicability of this methodology in future studies. 

In a more ambitious step, we would like to combine this approach with other computational 

tools and theoretical frameworks for combining metabolic and transcriptional networks. In this 

manner, we shall move towards a more holistic approach for understanding Life and its 

properties. 
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The results of this dissertation have given rise to the following conclusions: 

 

1. The promoter architecture is essential to its function and the relative distribution and abundance 

of TFBSs are directly related to the modulation of transcriptional outputs in terms of both 

transcriptional logic and emergent behaviours. The study of these new architectures of 

complex promoters also allows the generation of essential information for making the 

engineering process of regulatory elements more rational and predictable. 

 

a. in synthetic promoters with only one type of transcription factor binding sites - 

Fis vs. Neg or IHF vs. Neg -, the regulatory architectures leading to increased 

expression in their respective mutants are similar. This fact could be explained 

by the shared function and mechanism of action between these proteins - NAPS 

(Dillon and Dorman, 2010; Dorman, 2013) - that act normally as repressors of 

the transcription through the generation of conformational changes in the DNA; 

 

b. although the functional architectures for the libraries mentioned above are 

similar, it is possible to notice that there are particular behaviours in each of 

them that depend on the intrinsic qualities of each regulator involved; 

 

c. the patterns observed for the individual sequence libraries are not able to explain 

the expression patterns obtained by combining both the Fis and IHF sequences 

in complex synthetic promoters. This epistatic phenomenon, in which emergent 

and unpredictable behaviours arise from the combination of biological parts with 

known behaviours, appears to be widely distributed in molecular systems and 

with an important evolutionary role, especially in regulatory systems (Loewe, 

2009; Lagator et al., 2016; Aguilar-Rodríguez, Payne and Wagner, 2017; 

Monteiro, Arruda and Silva-Rocha, 2017). 

 

 

2. Evolution on single TFBS sequences has the potential to navigate through a 

multidimensional space of binding affinities for different transcription factors. In 

complex promoters, this might occur in parallel among multiple TFBSs. The co-

evolution of TFBSs complex promoters should shape the promoter architecture and, 
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ultimately, lead to specific regulatory logic responses as observed with synthetic 

promoters in the first chapter of this dissertation.  The fixation of these mutations might 

depend on the function of the regulated gene under the specific select pressure imposed 

by the environment. A few other conclusions might be extrapolated from this model: 

 

a. The rise of innovation is facilitated in the connected model while regulatory 

“dead-ends” are avoided.  

 

b. There is a trade-off between “crosstalk” levels and regulatory robustness that 

should be further explored. 

 

 

c. The diversity of natural TFBSs could be constrained by the multifactorial 

selective pressure for potentially promiscuous binding sites.  

 

d. A promiscuous TFBS might not be bound by a candidate TF due to molecular 

constraints such as genomic context, promoter architecture and TFs 

concentration. 

 

 

3. In order to achieve a better understanding of the most fundamental principles of 

transcriptional systems, we have to go beyond the features of model organism E. coli. 

In this context, we have found here that there is an enormous hidden diversity of cis-

regulatory elements in environmental samples that can only be obtained through for the 

exploration of uncultured bacteria using metagenomic approaches. We have found a 

large number of constitutive promoters in soil samples with distinct expression 

dynamics and strengths, which shall contribute to the understanding of the 

metaregulomes and how different environments might shape them. Other general 

outcomes can be found below: 

 

a. The synergy between Metagenomics and Synthetic Biology is essential for 

understanding Life and for the biotechnological development 
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b. Metaregulomes and dynamic expression profiles provide a new perspective on 

microbial communities 

 

c. Only a small set of regulatory elements is currently accessible for prospection 

through Metagenomics, thus the usage of novel hosts and molecular tools will 

expand the universe of accessible genetic features. 

 

 

4. Transcriptional regulatory layers, as any other kind of biological networks, are not 

isolated. They are deeply intertwined with other organizational layers in the generation 

of the epiphenomena we know as Life. In this context, the study of metabolic networks 

is essential for a more comprehensive understanding of transcriptional systems as they 

regulate themselves in a reciprocal manner. There is an urgent need for the development 

of novel tools for generating automated consistent metabolic networks in a standardised 

fashion as the Systems Biology (Hucka et al., 2003) and Synthetic Biology markup 

languages (Galdzicki et al., 2014). This might not only provide a more comprehensive 

view of biological systems, but also allow the prediction and (re)engineering cellular 

behaviours for specific functions. 

 

Altogether, the current work has provided resourceful information regarding many aspects of 

transcriptional systems in bacteria which, provided the adequate theoretical framework, can be 

extrapolated to more complex systems such as eukaryotes. We believe this multiscale approach 

is fundamental for both understanding the general principles underpinning information 

processing in living systems and (re)engineering them for biotechnological applications. 
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Figure S1. Hierarchical representation of metaconstitutomes for both metagenomic libraries highlighting 

expression trends as clusters. Fluorescence time-lapse dynamics were measured during 8 hours for each clone 

and represented as heat maps. Promoter activities (calculated as GFP/OD600) were normalised by the negative 

control (E. coli DH10B harbouring empty pMR1) and transformed to log2 scale in order to facilitate the 

visualisation of subtle activities. Positive controls (p100, p106 and p114 - strong, medium and low expression, 

respectively) and negative control (pMR1) expression profiles are indicated by black arrows at the left side of the 

heatmap. Data are representative of three independent experiments.  (A) Dendrogram for USP3 metagenomic 

library composed by 100 fluorescent clones. (B) Dendrogram for USP1 metagenomic library composed by 160 

fluorescent clones. 

 

Figure S2. Expression profiles for the ten selected clones (pCAW1-pCAW10). Fluorescence time-lapse 

dynamics were measured during 8 hours for each clone and represented as heat maps. Promoter activities 

(calculated as GFP/OD600) were normalised by negative control (E. coli DH10B harbouring empty pMR1) and 

transformed to log2 scale in order to facilitate the visualisation of subtle activities. Data are representative of three 

independent experiments. Clones p100, p106 and p114 are positive controls for different promoter strengths, 

representing strong, medium and low expression, respectively. Hierarchical clustering of the selected clones 

according to their expression profiles. 
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Figure S3. Abundance of microbial phyla with recognizable regulatory sequences in E. coli DH10B. The ten 

sequenced metagenomic fragments (pCAW1-pCAW10) were submitted to the PhylopythiaS Web Server and the 

assigned taxonomic origins were used for identifying the potential set of phyla recognizable by E. coli regarding 

exogenous promoter sequences. 

 

 

Figure S4. Schematic representation of the supplementary set of sequenced contigs showing predicted ORFs 

and validated/characterised promoters used in this work. Each contig is identified on the far left of each 

subfigure. Promoters are indicated by elbow-shaped arrows and name according to their relative position in the 

contig. Promoter directionality, regarding the leading and lagging strands, is represented by green and red colours, 

respectively. Asterisks over specific promoters indicate regulatory regions which were cross-validated by 

matching in silico predictions. Dark arrows represent predicted ORFs, according to their relative positions in each 



ANNEXES 

183 

 

contig (see Table 5 for more information). Beneath each metagenomic insert, there is a heat map cluster 

representing the whole set of promoter activities measured during 8-hours fluorescence assays. A colour scale for 

all heat maps is provided in the first figure. The first line of each cluster shows the original expression profile 

initially measured for each metagenomic insert. All other lines represent expression activities from de novo 

experimentally validated promoters within each contig. The second line of each cluster represents the endogenous 

promoter showing the most similar activity with respect to the original expression profile for each contig. All 

expression profiles are properly identified at the most rightmost side of each line, following their respective 

contig/promoter name.  

 

 

Figure S5. Consensus sequences for hierarchically clustered sets of experimentally validated promoters. 

Fluorescence time-lapse dynamics were measured during 8 hours for each clone and represented as heat maps. 

Promoter activities (calculated as GFP/OD600) were normalized by negative control (E. coli DH10B harboring 

empty pMR1) and transformed to log2 scale in order to facilitate the visualization of subtle activities. Data are 

representative of three independent experiments. Clones p100, p106 and p114 are positive controls for different 

promoter strengths, representing strong, medium and low expression strengths, respectively. All thirty-three 

experimentally validated promoters were organized by a hierarchical clustering method, revealing three general 

categories: strong (top), medium (middle) and weak (bottom) promoters. For each category, its respective set of 

promoter sequences was aligned using ClustalW (http://www.genome.jp/tools-bin/clustalw) and subjected to the 

WebLogo platform (https://weblogo.berkeley.edu/logo.cgi) for the generation of consensus sequences (right side).   

 

-35 -10
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Table S1: Experimentally validated metagenomic promoters found in this study 

 

 

Clone_

Sample 

Pro

mote

r ID Sequence 

Orien

tation 

In 

silico 

valid

ation 

pCAW

1 

p1 TACCGGTAACGACTTAGATGGGAGGCCGACACTGTACAACGTCGGTGTGTAGTTGG 

Revers
e 

Yes 

p2 
ACGGGATTCTATTGACTGCGGCTGCGGCTGTCAACAGTCAAAATTCGGTAATCGGCG

CCGTGA 

Forwa

rd 

Yes 

p3 
TTGCACTCGTCCGACAAAACTGCACCAACTACCGGCATTGATTAGAGTTTTGAAAATA
GAGTTTAACCACGAT 

Forwa

rd 

No 

p4 
GTTGATCGGTGAGATTGGCCGCATCACCGCGGCTGAGGCGCGCGCGCTTGGCTACAC

GAACGTCTA 

Forwa
rd 

Yes 

pCAW

2 

p1 TTGCTCACCATACCAACCTCCCTTGCGAATTTTAATTAAGGCTGAATTCAAGTGGAT 

Forwa

rd 

Yes 

p2 
AGCGCATTCAATGACCTGTTCAACGATGTCCCGTCCTCTCGAAAAACTTTCGCCGGTC
GGTTCGCGACAATTTCGAAGGCCAGAATGGATATCTAATGACCGT 

Forwa

rd 

Yes 

pCAW

3 

p1 
ATCGTCACCTCCACAAAGAGCGACTCGCTGTATACCGTTGGCATGCTAGCTTTATCTG

T 

Revers
e 

Yes 

p2 
CTAAGCACCTTCGGTAGTTTCCTGGAACGAAGCCGCTGAAATCCAGCTCTGCGTACCC

AGTGAAGCC 

Forwa

rd 

Yes 

p3 
GCGCGCAGGCCAGATCGTTAGCCTGAGGGAAGTGAGAGAAGAAAACTCGATCCTCCG
CAGGAACGATAAGAAAC 

Revers

e 

No 

p4 GGTAAACTTCCTGTATCTCGTTCACAACATATTCCTGAACCGCGAATGGTCCTTTGA 

Forwa
rd 

No 

p5 
CAGATCGGTTGTCCTTTGTCTACCTTCTGACCATCTTTCACCAGCAGTGTAGCTCCGTA

AGGAACGTTGTTGGTGA 

Forwa

rd 

No 

p6 
CGCGTCCAACAGTTGTTTCAATCAGTTTTCTTTTCAACTCACCACCTTCACGCACTATC

GTTTTTACTTTGATGTGTGCGTGCAGGTCAACCTGTG 

Forwa

rd 

Yes 

pCAW

4 

p1 
TTCTGCATTGGCTACAGCAGGAACTGCGCCGCCGCCAGCGCGCTGGCGACGCTGGGA

TGGTACCCTACCCT 

Revers
e 

Yes 

p2 
ACCCGGTCGATCCGGTCTGCACAGACCGCTACACCTATCAGCCAGCCATACCAGCCG

AGGGGTTTGGAGTCGGCCTGACCACGT 

Revers

e 

Yes 

p3 
ATACGTGGTCAGGCCGACTCCAAACCCCTCGGCTGGTATGGCTGGCTGATAGGTGTA

GCGGTCTGTGCAGACCGGATCGACCGGGTTC 

Forwa

rd 

Yes 

p4 
GGCAGCATCCATGCATCATTCCTCGGTAAAAGCCAGCCAGTAGGGGGTATGCCGTCT

TGGAGTTTCACGACGT 

Revers
e 

Yes 

pCAW

5 

p1 
ACCGGGCAGGACCGTCCCAAGCCAAAATATCCCGGCATCCCGGTGACCTGTAACGGC

AATCAACTCGTCGCCCAATACGTTGA 

Forwa

rd 

Yes 

p2 
GAGCATCCCGTCCTGGATATTCATCCCGGGATTGAGGGTGAGCTCGTTGACCTTGCGT

AAAATAATCCCTTGAT 

Revers
e 

No 

p3 
TCCCGGGATGAATATCCAGGACGGGATGCTCACCACCCATTCGGAGCGAACCTACCT

GGCGCCG 

Forwa

rd 

Yes 

p4 
AAGTCAGGATTGGTTCATTGAAATTGTTGCGGCGGGCCACGACGCCGTTCATGTGATG

TTCCTGGTTTTGCACTGGGCCGAGCA 

Revers

e 

No 

p5 
CGCCGCAACAATTTCAATGAACCAATCCTGACTTTCCTAAGCCGCGCCTACGAAGAAT

TCGGAAATCTCACCGGTCGCTATTACGG 

Forwa
rd 

Yes 

pCAW

6 

p1 
CCCGACTCCTTTGAAAGTATTCTTTTCCTGGTTTAGCATTGGCGCTCAATCATTTGGCG

GCGGACCGTCCACCCTGCAACTAATTCAGAAC 

Forwa

rd 

Yes 

p2 
ATCGGCCGGAGCAGAAGAATCGAGCAGGTCAGGGGTTTCCGAGGTCAGTTTAGGTCA

CTCCTTTCGGTG 

Revers

e 

No 
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pCAW

7 

p1 
GTGGATCGTTTGGGTTATATTACCCTCAAAAAGGTTCGCAAACGCCCAATTGCCGTGT

AACACGATATCAGGAGTATT 

Forwa

rd 

Yes 

p2 
ACGATCTACTTCTCGTTTTGCCTTCTTTTGTCGCTACACTCCACAATCGGCTTAAGCCA

GAGCATACCAACAGACCGGGTAGTTAACTGGAAACTA 

Revers
e 

Yes 

pCAW

8 

p1 
CTCTCGTCTTGCTCACCATACCAACCTCCCTTGCGAATTTTAATTAAGGCTGAATTCAA

GTGGATCCCTATGATGGGGGTACAC 

Forwa

rd 

No 

p2 
CCCTCGCACTTGTGCACTGGTGCCGGTGAAATCGAAGATGAGCGACGAGCCCCGGAC

AGTCACGGCGACGGCTAGCTTCACCGGCTGGTCGA 

Revers

e 

Yes 

p3 
ATCTTGTTCGCGGGCTTTTCCATTCGGTGGCTAAGCGCTATAGTTCGGCCCTATAGGA

GAACATGCCA 

Revers
e 

No 

p4 
GCAAATGCTCCTTCTTCAATTCTATCCGCGCCTATGATCCCACCCGACAAATAGAACA

TAGACAAATTCGCGC 

Forwa

rd 

Yes 

pCAW

9 

p1 
CTTAATTTCTCCTCTTTAATTCTAGGTACCCGGGGATCGCGATCGCAAGGATCATCGC

TATGATGCCATGGGCTTCATGAA 

Forwa
rd 

Yes 

p2 
TGGCATCATAGCGATGATCCTTGCGATCGCGATCCCCGGGTACCTAGAATTAAAGAG

GAGA 

Revers

e 

Yes 

pCAW

10 

p1 
CATTTTTCGTTCAGGTTGCGTGCGCTTCGGCAGGCTCAGTGAGAACGAAGGCACCGAT

TGGTATGGA 

Forwa

rd 

Yes 

p2 
GCACGCAAGGTTTCGCTATTGTGTGATTGACGCGGGTTCCGGCTTCGCCGGCCTGTCG

CCTCAACTCAGTCCGACCAGCGACAATGCG 

Revers
e 

No 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


