• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
Document
Author
Full name
Nayara Ragi Baldoni Couto
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Ribeirão Preto, 2018
Supervisor
Committee
Fabbro, Amaury Lelis Dal (President)
Crivellenti, Lívia Castro
Pereira, Leonardo Régis Leira
Ruffino Netto, Antonio
Title in Portuguese
Avaliação da acurácia de medidas antropométricas em relação ao diagnóstico de Síndrome Metabólica de Xavante do Mato Grosso, Brasil
Keywords in Portuguese
Excesso de peso
População indígena
Síndrome metabólica
Abstract in Portuguese
Objetivo: Avaliar a acurácia de medidas antropométricas que melhor identificam a Síndrome Metabólica (SM), bem como, conhecer a prevalência de sobrepeso e obesidade na população indígena adulta no Brasil. Método: Este trabalho foi dividido em duas partes: i) para identificar a melhor medida antropométrica que identifica a SM, analisou-se os seguintes componentes da SM: pressão artéria sistêmica, circunferência da cintura, relação cintura-quadril, glicemia de jejum e índices séricos de HDL-colesterol e triglicerídeos. Para classificação da SM, levaram-se em consideração os pontos de corte estabelecidos pelo National Cholesterol Education Program Adult Treatment Panel III, International Diabetes Federation e pela Organização Mundial da Saúde. Para avaliar o desempenho das medidas antropométricas utilizou-se a curva Receiver Operating Characteristic (ROC). Para as análises estatísticas utilizaram-se os Softwares SAS 9.2 e MedCalc v12; ii) realizou-se revisão sistemática para estimar a prevalência de sobrepeso e obesidade na população indígena adulta no Brasil. A revisão foi realizada baseada nos critérios e recomendações do Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline - PRISMA. Para avaliação de qualidade dos estudos incluídos utilizou-se o score proposto por Downs e Black. Para a metanálise foi utilizado o Software RStudio®. Resultado: Dentre as três medidas antropométricas analisadas (índice de massa corporal, circunferência da cintura e relação cintura/altura) a relação cintura/altura apresentou o melhor desempenho para prever SM. As análises dos estudos sobre prevalência de sobrepeso e obesidade evidenciaram que o sobrepeso é mais prevalente nas etnias Parkatêjê (68%) e Aruák (52%). Enquanto que a prevalência de obesidade foi maior nas etnias Guarani, Kaiowá e Terena (31%). Considerando o efeito combinado global a prevalência de sobrepeso e obesidade foi de 45%. Conclusão: Dentre os indicadores antropométricos utilizados, a relação cintura/altura apresenta um melhor desempenho para prever SM. Aproximadamente metade (45%) dos indígenas adultos brasileiros possui excesso de peso.
Title in English
Evaluation of the accuracy of anthropometric measurements in relation to the diagnosis of the Xavante Metabolic Syndrome from Mato Grosso, Brazil
Keywords in English
Indigenous population
Metabolic syndrome
Overweight
Abstract in English
Aim: To evaluate the accuracy of anthropometric measures that better identify the Metabolic Syndrome (MS), and to know the prevalence of overweight and obesity in the adult indigenous population in Brazil. Method: This work was divided into two parts: i) in order to identify the best anthropometric measure that identifies MS, the following components of MS were analyzed: systemic arterial pressure, waist circumference, waist-hip ratio, fasting glycemia and serum HDL-cholesterol and triglycerides levels. For classifying the MS, we have considered the cutoff established by the National Cholesterol Education Program Adult Treatment Panel III, International Diabetes Federation and World Health Organization. In order to evaluate the performance of the anthropometric measurements, The Receiver Operating Characteristic (ROC) curve was used to evaluate the performance of the anthropometric measures. The statistical analyzes were performed using both the SAS 9.2 and MedCalc v12 software packages; ii) a systematic review was performed to estimate the prevalence of overweight and obesity in the adult indigenous population in Brazil. Such review followed the criteria and recommendations from the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes guideline - PRISMA. We have used the score proposed by Downs and Black for evaluating the quality of the included studies. For the meta-analysis, RStudio® Software package was used. Results: Amidst the three anthropometric measures analyzed (body mass index, waist circumference and waist / height ratio), the waist / height ratio presented the best performance to predict SM. The analyzes of the studies on the prevalence of overweight and obesity showed that overweight is more prevalent in the Parkatêjê (68%) and Aruák (52%) ethnic groups. Furthermore, the prevalence of obesity was higher in the Guarani, Kaiowá and Terena ethnic groups (31%). Considering the overall combined effect the prevalence of overweight and obesity was 45%. Conclusion: The waist / height ratio shows a better performance to predict MS. Approximately half (45%) of indigenous Brazilian adults are overweight.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
NAYARARAGIBALDONI.pdf (3.33 Mbytes)
Publishing Date
2019-08-12
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.