• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.18.2017.tde-02062017-104919
Documento
Autor
Nombre completo
César Henrique de Melo Santaella
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2002
Director
Tribunal
Schiabel, Homero (Presidente)
Mascarenhas, Nelson Delfino d'Ávila
Romero, Roseli Aparecida Francelin
Título en portugués
Classificação de nódulos em imagens mamográficas digitais por Transformada "Wavelet"
Palabras clave en portugués
Classificação de imagens
Mamografia
Transformada Wavelet
Resumen en portugués
O presente trabalho de pesquisa trata da elaboração de um esquema classificador automático para massas nodulares identificadas em imagens mamográficas digitalizadas, com base na técnica da transformada wavelet. Esse classificador é parte integrante de um esquema computadorizado para auxílio ao diagnóstico (CAD, de "computer-aided diagnosis") em mamografia, que utiliza técnicas de processamento de imagens digitais para identificar, realçar e classificar estruturas de interesse clínico. Utilizou-se também um classificador de distâncias mínimas para distribuir as imagens em suas respectivas classes. Os resultados mostraram que o classificador é capaz de diferenciar com mais de 90% de acerto entre nódulos suspeitos e não suspeito.
Título en inglés
not available
Palabras clave en inglés
not available
Resumen en inglés
This work performs an automatic classifier scheme addressed to nodular masses detected in digitalized mammographic images, based on the wavelet transform technique. This classifier is part of a computer-aided diagnosis (CAD) scheme in mammography, wich uses digital image processing techniques in order to detect, enchance and classify structures of clinical interest. Also a minimum distances classifier was used in order to distribute the images to their respective classes. Results show that this classifier is capable of differentiating suspect from non-suspect nodules with more than 90% of accuracy.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2017-06-02
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2019. Todos los derechos reservados.