• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.18.2006.tde-10072006-002119
Document
Author
Full name
Marcelo Franceschi de Bianchi
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2006
Supervisor
Committee
Gonzaga, Adilson (President)
Marana, Aparecido Nilceu
Rodrigues, Evandro Luis Linhari
Title in Portuguese
Extração de características de imagens de faces humanas através de wavelets, PCA e IMPCA
Keywords in Portuguese
extração de características
IMPCA (Image Principal Component Analysis)
PCA (Principal Component Analysis)
reconhecimento de faces humanas
wavelets
Abstract in Portuguese
Reconhecimento de padrões em imagens é uma área de grande interesse no mundo científico. Os chamados métodos de extração de características, possuem as habilidades de extrair características das imagens e também de reduzir a dimensionalidade dos dados gerando assim o chamado vetor de características. Considerando uma imagem de consulta, o foco de um sistema de reconhecimento de imagens de faces humanas é pesquisar em um banco de imagens, a imagem mais similar à imagem de consulta, de acordo com um critério dado. Este trabalho de pesquisa foi direcionado para a geração de vetores de características para um sistema de reconhecimento de imagens, considerando bancos de imagens de faces humanas, para propiciar tal tipo de consulta. Um vetor de características é uma representação numérica de uma imagem ou parte dela, descrevendo seus detalhes mais representativos. O vetor de características é um vetor n-dimensional contendo esses valores. Essa nova representação da imagem propicia vantagens ao processo de reconhecimento de imagens, pela redução da dimensionalidade dos dados. Uma abordagem alternativa para caracterizar imagens para um sistema de reconhecimento de imagens de faces humanas é a transformação do domínio. A principal vantagem de uma transformação é a sua efetiva caracterização das propriedades locais da imagem. As wavelets diferenciam-se das tradicionais técnicas de Fourier pela forma de localizar a informação no plano tempo-freqüência; basicamente, têm a capacidade de mudar de uma resolução para outra, o que as fazem especialmente adequadas para análise, representando o sinal em diferentes bandas de freqüências, cada uma com resoluções distintas correspondentes a cada escala. As wavelets foram aplicadas com sucesso na compressão, melhoria, análise, classificação, caracterização e recuperação de imagens. Uma das áreas beneficiadas onde essas propriedades tem encontrado grande relevância é a área de visão computacional, através da representação e descrição de imagens. Este trabalho descreve uma abordagem para o reconhecimento de imagens de faces humanas com a extração de características baseado na decomposição multiresolução de wavelets utilizando os filtros de Haar, Daubechies, Biorthogonal, Reverse Biorthogonal, Symlet, e Coiflet. Foram testadas em conjunto as técnicas PCA (Principal Component Analysis) e IMPCA (Image Principal Component Analysis), sendo que os melhores resultados foram obtidos utilizando a wavelet Biorthogonal com a técnica IMPCA
Title in English
Features extraction of human faces images through wavelets, PCA and IMPCA
Keywords in English
features extraction
human face recognition
IMPCA (Image Principal Component Analysis)
PCA (Principal Component Analysis)
wavelets
Abstract in English
Image pattern recognition is an interesting area in the scientific world. The features extraction method refers to the ability to extract features from images, reduce the dimensionality and generates the features vector. Given a query image, the goal of a features extraction system is to search the database and return the most similar to the query image according to a given criteria. Our research addresses the generation of features vectors of a recognition image system for human faces databases. A feature vector is a numeric representation of an image or part of it over its representative aspects. The feature vector is a n-dimensional vector organizing such values. This new image representation can be stored into a database and allow a fast image retrieval. An alternative for image characterization for a human face recognition system is the domain transform. The principal advantage of a transform is its effective characterization for their local image properties. In the past few years researches in applied mathematics and signal processing have developed practical wavelet methods for the multi scale representation and analysis of signals. These new tools differ from the traditional Fourier techniques by the way in which they localize the information in the time-frequency plane; in particular, they are capable of trading on type of resolution for the other, which makes them especially suitable for the analysis of non-stationary signals. The wavelet transform is a set basis function that represents signals in different frequency bands, each one with a resolution matching its scale. They have been successfully applied to image compression, enhancement, analysis, classification, characterization and retrieval. One privileged area of application where these properties have been found to be relevant is computer vision, especially human faces imaging. In this work we describe an approach to image recognition for human face databases focused on feature extraction based on multiresolution wavelets decomposition, taking advantage of Biorthogonal, Reverse Biorthogonal, Symlet, Coiflet, Daubechies and Haar. They were tried in joint the techniques together the PCA (Principal Component Analysis) and IMPCA (Image Principal Component Analysis)
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Apendice_A_mestrado.pdf (589.29 Kbytes)
Capa_mestrado.pdf (228.67 Kbytes)
Capitulo_2_mestrado.pdf (339.17 Kbytes)
Capitulo_3_mestrado.pdf (199.90 Kbytes)
Capitulo_4_mestrado.pdf (156.91 Kbytes)
Capitulo_5_mestrado.pdf (110.96 Kbytes)
Capitulo_6_mestrado.pdf (977.40 Kbytes)
Publishing Date
2006-08-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.