• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.18.2017.tde-12052017-102827
Document
Author
Full name
Roberto Rodrigues Pereira Junior
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2004
Supervisor
Committee
Marques, Paulo Mazzoncini de Azevedo (President)
Guliato, Denise
Mascarenhas, Nelson Delfino D'Ávila
Slaets, Annie France Frère
Trad, Clóvis Simão
Title in Portuguese
Detecção automática de lesões não palpáveis da mama utilizando atributos de textura
Keywords in Portuguese
Análise de textura
Auxílio computadorizado ao diagnóstico
Processamento de imagens
Reconhecimento de padrões
Abstract in Portuguese
Neste trabalho é proposto um sistema de auxílio ao diagnóstico do câncer de mama para detecção de lesões não palpáveis de mama através da utilização de atributos de textura. O trabalho é composto de 3 etapas: segmentação, caracterização e detecção. Na etapa de segmentação foi realizado a segmentação da região mamária de todo o mamograma utilizando técnicas de morfologia matemática. Na etapa de caracterização foram extraídos 19 medidas de textura, 13 atributos de Haralick e 6 baseados na Transformada Wavelet, calculadas a partir de regiões de interesse contendo lesões mamárias e regiões normais. Foram selecionados os melhores atributos utilizando a distância Jeffries Matusita e classificados utilizando um classificador K-NN. Na etapa de detecção foi aplicado o algoritmo desenvolvido a uma base de imagens de lesões não palpáveis de mama. Por fim, os resultados obtidos são apresentados e discutidos a partir de tabelas e curvas ROC e FROC. Os resultados obtidos na detecção das lesões não palpáveis foram de 80% de sensibilidade e 1.47 FP/imagem utilizando os atributos de Haralick e 70% de sensibilidade e 1.96 FP/imagem utilizando os atributos baseados na Transformada Wavelet.
Title in English
not available
Keywords in English
not available
Abstract in English
In the present work, a computer aided diagnosis system based on texture features has been proposed to aid in the diagnosis of non palpable breast lesions. The work is composed of 3 main stages: segmentation, characterization and detection. In the segmentation stage, the breast region is segmented from the whole mamogram using mathematical morphology techniques. In the characterization stage were extracted 19 textures measures, 13 from Haralick's features and 6 based from Wavelet Transform. These features were calculated from regions of interest containing breast lesions and normal breast regions. Were selected the best features using Jeffries Matusita distance. The images were classiffied using K-NN classifier. In the detection stage the algorithm developed was applied to a image database containing non palpable breast lesions. At the end, the results were presented and discussion was made upon tables and ROC-FROC curves. The results obtained were sensitivity = 80% with 1.47 FP/image with Haralick's features and sensitivity = 70% and 1.96 FP/image with features based on Wavelet Transform.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2017-05-12
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.