• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.18.2009.tde-12082009-110152
Document
Author
Full name
Aline Fernanda Bianco
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2009
Supervisor
Committee
Terra, Marco Henrique (President)
Ishihara, João Yoshiyuki
Nascimento, Vitor Heloiz
Palhares, Reinaldo Martinez
Peres, Pedro Luis Dias
Title in Portuguese
Filtros de Kalman robustos para sistemas dinâmicos singulares em tempo discreto
Keywords in Portuguese
Convergência
Estabilidade
Estimativa de estado
Filtragem robusta
Sistemas singulares
Abstract in Portuguese
Esta tese trata do problema de estimativa robusta ótima para sistemas dinâmicos regulares discretos no tempo. Novos algoritmos recursivos são formulados para as estimativas filtradas e preditoras com as correspondentes equações de Riccati. O filtro robusto tipo Kalman e a equação de Riccati correspondente são obtidos numa formulação mais geral, estendendo os resultados apresentados na literatura. O funcional quadrático proposto para deduzir este filtro faz a combinação das técnicas mínimos quadrados regularizados e funções penalidade. O sistema considerado para obtenção de tais estimativas é singular, discreto, variante no tempo, com ruídos correlacionados e todos os parâmetros do modelo linear estão sujeitos a incertezas. As incertezas paramétricas são limitadas por norma. As propriedades de estabilidade e convergência do filtro de Kalman para sistemas nominais e incertos são provadas, mostrando-se que o filtro em estado permanente é estável e a recursão de Riccati associada a ele é uma sequência monótona não decrescente, limitada superiormente pela solução da equação algébrica de Riccati.
Title in English
Robust Kalman filters for discrete-time singular systems
Keywords in English
Convergence
Robust filtering
Singular systems
Stability
State estimation
Abstract in English
This thesis considers the optimal robust estimates problem for discrete-time singular dymanic systems. New recursive algorithms are developed for the Kalman filtered and predicted estimated recursions with the corresponding Riccati equations. The singular robust Kalman type filter and the corresponding recursive Riccati equation arer obtained in their most general formulation, extending the results presented in the literature. The quadratic functional developed to deduce this filter combines regularized least squares and penalty functions approaches. The system considered to obtain the estimates is singular, time varying with correlated noises and all parameter matrices of the underlying linear model are subject to uncertainties. The parametric uncertainty is assumed to be norm bounded. The properties of stability and convergence of the Kalman filter for nominal and uncertain system models are proved, where we show that steady state filter is stable and the Riccati recursion associated with this is a nondecreasing monotone sequence with upper bound.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Aline.pdf (968.42 Kbytes)
Publishing Date
2009-08-24
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.