• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.18.2017.tde-19052017-150435
Document
Auteur
Nom complet
Andréia Vieira do Nascimento
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2005
Directeur
Jury
Gonzaga, Adilson (Président)
França, Celso Aparecido de
Paiva, Maria Stela Veludo de
Titre en portugais
Detecção de faces humanas em imagens digitais: um algoritmo baseado em lógica nebulosa
Mots-clés en portugais
Biometria
Detecção de faces
Lógica "Fuzzy"
Processamento de imagens
Resumé en portugais
Este trabalho tem como objetivo desenvolver uma metodologia baseada em lógica nebulosa, (KLIR ; YUAN, 1995) para detectar faces humanas em imagens digitais. Considerando que pessoas conseguem reconhecer facilmente as faces humanas, este trabalho prevê a pesquisa da informação relativa a esse reconhecimento utilizando os resultados obtidos, em um esquema "fuzzy", para identificação de faces humanas em imagens digitais. É proposto então um algoritmo que classifique automaticamente as regiões de uma imagem em faces humanas ou não. O conhecimento para a construção da base de regras foi obtido através de informações das pessoas por meio de uma pesquisa de campo onde as respostas foram numericamente armazenadas para a geração da classificação nebulosa. Foram gerados desenhos line-draw que de uma maneira global representam as faces humanas. Esses desenhos foram apresentados às pessoas entrevistadas que forneceram subsídios para a montagem das regras "fuzzy". O algoritmo foi capaz de a partir daí, identificar faces humanas em imagens digitalizadas. Imagens simples contendo uma face frontal foram submetidas a um algoritmo e ao passarem por processamento (extração de bordas, erosão, binarização, etc...) perderam características, tornando difícil sua identificação. O algoritmo "fuzzy" foi capaz de atribuir um grau de pertinência à imagem dentro do conjunto de faces humanas frontais. A lógica nebulosa possui história recente, porém, desde cedo, demonstra sua versatilidade, principalmente por traduzir modelos não lineares ou imprecisos, os quais não apresentam convergência através de modelagem matemática convencional.
Titre en anglais
Detection of human faces in digital images: an algorithm based on Fuzzy logic
Mots-clés en anglais
Biometry
Face detection
Fuzzy logic
Image processing
Resumé en anglais
The present master dissertation aims to develop a methodology based on fuzzy pattern (KLIR; YUAN, 1995) to detect human faces in digital images. Considering that people are easily able to recognize human faces, this study foresees the research of the relative information to this recognition using the acquire results, in a "fuzzy" scheme, for the identification of human faces in digital images. It's proposed an algorithm which automatically classifies or not the regions of an image in human faces. It is based on the information acquired from people by means of a field research where the answers are stored numerically for the creation of the fuzzy classification. Drawings line-draw were created to represent human faces and were presented to the people interviewed to furnish information for the creation of the fuzzy rules. After that the algorithm was able to identify human faces in digitalized images. The algorithm utilizes simple images containing a frontal face, which lose their characteristics when they are processed (edges extration, erosion, binary image, etc...) and make their identification difficult. The fuzzy algorithm is also able to classify the images within the set of frontal human faces. The fuzzy logic has a recent history, however, it has always demonstrated its versatility, mainly regarding the translation of non-linear or inexact models which do not present conventional mathematical convergence through modeling.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2017-05-19
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.