• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.18.2005.tde-21042006-222231
Document
Auteur
Nom complet
Anderson Rodrigo dos Santos
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2005
Directeur
Jury
Gonzaga, Adilson (Président)
Cesar Junior, Roberto Marcondes
Silva, Ivan Nunes da
Titre en portugais
Identificação de faces humanas através de PCA-LDA e redes neurais SOM
Mots-clés en portugais
Análise de componentes principais (PCA)
Análise discriminante linear (LDA)
Autofaces
Reconhecimento de faces
Rede neural de Kohonen
Rede neural PCA adaptativo
Rede neural SOM
Subespaço LDA
Resumé en portugais
O uso de dados biométricos da face para verificação automática de identidade é um dos maiores desafios em sistemas de controle de acesso seguro. O processo é extremamente complexo e influenciado por muitos fatores relacionados à forma, posição, iluminação, rotação, translação, disfarce e oclusão de características faciais. Hoje existem muitas técnicas para se reconhecer uma face. Esse trabalho apresenta uma investigação buscando identificar uma face no banco de dados ORL com diferentes grupos de treinamento. É proposto um algoritmo para o reconhecimento de faces baseado na técnica de subespaço LDA (PCA + LDA) utilizando uma rede neural SOM para representar cada classe (face) na etapa de classificação/identificação. Aplicando o método do subespaço LDA busca-se extrair as características mais importantes na identificação das faces previamente conhecidas e presentes no banco de dados, criando um espaço dimensional menor e discriminante com relação ao espaço original. As redes SOM são responsáveis pela memorização das características de cada classe. O algoritmo oferece maior desempenho (taxas de reconhecimento entre 97% e 98%) com relação às adversidades e fontes de erros que prejudicam os métodos de reconhecimento de faces tradicionais.
Titre en anglais
Identification of human faces based on PCA - LDA and SOM neural networks
Mots-clés en anglais
Eigenface
Face recognition
Kohonen neural networks
LDA sub-space
Linear discriminant analysis (LDA)
PCA neural networks
Principal component analysis (PCA)
SOM neural networks
Resumé en anglais
The use of biometric technique for automatic personal identification is one of the biggest challenges in the security field. The process is complex because it is influenced by many factors related to the form, position, illumination, rotation, translation, disguise and occlusion of face characteristics. Now a days, there are many face recognition techniques. This work presents a methodology for searching a face in the ORL database with some different training sets. The algorithm for face recognition was based on sub-space LDA (PCA + LDA) technique using a SOM neural net to represent each class (face) in the stage of classification/identification. By applying the sub-space LDA method, we extract the most important characteristics in the identification of previously known faces that belong to the database, creating a reduced and more discriminated dimensional space than the original space. The SOM nets are responsible for the memorization of each class characteristic. The algorithm offers great performance (recognition rates between 97% and 98%) considering the adversities and sources of errors inherent to the traditional methods of face recognition.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Anderson_Santos.pdf (6.10 Mbytes)
Date de Publication
2007-03-28
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.