• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.18.1998.tde-25112015-111953
Document
Auteur
Nom complet
Guilherme de Alencar Barreto
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 1998
Directeur
Jury
Araújo, Aluizio Fausto Ribeiro (Président)
Braga, Antônio de Pádua
Piqueira, José Roberto Castilho
Titre en portugais
Redes neurais não-supervisionadas para processamento de sequências temporais
Mots-clés en portugais
Aprendizagem competitiva
Aprendizagem hebbiana temporal
Contexto
Mecanismo de exclusão
Redes não-supervisionadas
Redundância
Reprodução de trajetórias
Seqüências temporais
Tolerância a falhas
Resumé en portugais
Em muitos domínios de aplicação, a variável tempo é uma dimensão essencial. Este é o caso da robótica, na qual trajetórias de robôs podem ser interpretadas como seqüências temporais cuja ordem de ocorrência de suas componentes precisa ser considerada. Nesta dissertação, desenvolve-se um modelo de rede neural não-supervisionada para aprendizagem e reprodução de trajetórias do Robô PUMA 560. Estas trajetórias podem ter estados em comum, o que torna o processo de reprodução susceptível a ambigüidades. O modelo proposto consiste em uma rede competitiva composta por dois conjuntos de pesos sinápticos; pesos intercamadas e pesos intracamada. Pesos intercamadas conectam as unidades na camada de entrada com os neurônios da camada de saída e codificam a informação espacial contida no estímulo de entrada atual. Os pesos intracamada conectam os neurônios da camada de saída entre si, sendo divididos em dois grupos: autoconexões e conexões laterais. A função destes é codificar a ordem temporal dos estados da trajetória, estabelecendo associações entre estados consecutivos através de uma regra hebbiana. Três mecanismos adicionais são propostos de forma a tornar a aprendizagem e reprodução das trajetórias mais confiável: unidades de contexto, exclusão de neurônios e redundância na representação dos estados. A rede funciona indicando na sua saída o estado atual e o próximo estado da trajetória. As simulações com o modelo proposto ilustram a habilidade do modelo em aprender e reproduzir múltiplas trajetórias com precisão e sem ambiguidades. A rede também é capaz de reproduzir trajetórias mesmo diante de perdas de neurônios e de generalizar diante da presença de ruído nos estímulos de entrada da rede.
Titre en anglais
Unsupervised neural networks for temporal sequence processing
Mots-clés en anglais
Competitive learning
Context
Exclusion mechanism
Fault tolerance
Redundancy
Temporal Hebbian learning
Temporal sequences
Trajectories reproduction
Unsupervised neural networks
Resumé en anglais
In many application domains, the variable time is an essential dimension. This is the case of Robotics, where robot trajectories can be interpreted as temporal sequences in which the order of occurrence of each component needs to be considered. In this dissertation, an unsupervised neural network model is developed for learning and reproducing trajectories of a Robot PUMA 560. These trajectories can have states in common, making the process of reproduction susceptible to ambiguities. The proposed model consists of a competitive network with two groups of synaptic connections: interlayer anel intralayer ones. The interlayer weights connect units in the input layer with neurons in the output layer and they encode the spatial information contained in the current input stimulus. The intralayer weights connect the neurons of the output Iayer to each other, being divided in two groups: self-connections and lateral connections. The function of these links is to encode the temporal order of the trajectory states, establishing associations among consecutive states through a Hebbian rule. Three additional mechanisms are proposed in order to make trajectory Iearning and reproduction more reliable: context units, exclusion of neurons and redundancy in the representation of the states. The model outputs the current state and the next state of the trajectory. The simulations with the proposed model illustrate the ability of the network in learning and reproducing muItiple trajectories accurateIy and without arnbiguities. In addition, the proposed neural network model is able to reproduce trajectories even when neuron failures occur and can generalize well in the presence of noise in the input stimulus.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2015-11-25
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.