• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.18.2006.tde-27112006-132158
Document
Auteur
Nom complet
Hebert Luchetti Ribeiro
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2006
Directeur
Jury
Gonzaga, Adilson (Président)
Mascarenhas, Nelson Delfino D'Ávila
Rodrigues, Evandro Luis Linhari
Titre en portugais
Reconhecimento de gestos usando segmentação de imagens dinâmicas de mãos baseada no modelo de mistura de gaussianas e cor de pele
Mots-clés en portugais
cor de pele
gestos de mão
interação humano-computador (IHC)
mistura de Gaussianas
momentos invariantes
reconhecimento de gestos
segmentação
visão computacional
Resumé en portugais
O objetivo deste trabalho é criar uma metodologia capaz de reconhecer gestos de mãos, a partir de imagens dinâmicas, para interagir com sistemas. Após a captação da imagem, a segmentação ocorre nos pixels pertencentes às mãos que são separados do fundo pela segmentação pela subtração do fundo e filtragem de cor de pele. O algoritmo de reconhecimento é baseado somente em contornos, possibilitando velocidade para se trabalhar em tempo real. A maior área da imagem segmentada é considerada como região da mão. As regiões detectadas são analisadas para determinar a posição e a orientação da mão. A posição e outros atributos das mãos são rastreados quadro a quadro para distinguir um movimento da mão em relação ao fundo e de outros objetos em movimento, e para extrair a informação do movimento para o reconhecimento de gestos. Baseado na posição coletada, movimento e indícios de postura são calculados para reconhecimento um gesto significativo.
Titre en anglais
Gesture recognizing using segmentation of dynamic hand image based on the mixture of Gaussians model and skin color
Mots-clés en anglais
computer vision
gesture recognition
hand gesture
human computer interaction (HCI)
invariants moments
mixture of Gaussians
segmentation
skin color
Resumé en anglais
The purpose of this paper is to develop a methodology able to recognize hand gestures from dynamic images to interact with systems. After the image capture segmentation takes place where pixels belonging to the hands are separated from the background based on skin-color segmentation and background extraction. The image preprocessing can be applied before the edge detection. The recognition algorithm uses edges only; therefore it is quick enough for real time. The largest blob from the segmented image will be considered as the hand region. The detected regions are analyzed to determine position and orientation of the hand for each frame. The position and other attributes of the hands are tracked per frame to distinguish a movement from the hand in relation to the background and from other objects in movement, and to extract the information of the movement for the recognition of dynamic gestures. Based in the collected position, movement and indications of position are calculated to recognize a significant gesture.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Hebert.pdf (4.51 Mbytes)
Date de Publication
2006-11-28
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.