• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.18.2016.tde-29072016-111821
Documento
Autor
Nome completo
Antônio Marcos Selmini
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2001
Orientador
Banca examinadora
Joaquim, Marcelo Basílio (Presidente)
Pereira, José Carlos
Violaro, Fabio
Título em português
Aplicação de redes neurais artificiais e filtro de Kalman para redução de ruídos em sinais de voz
Palavras-chave em português
Filtro de Kalman
Filtro de Kalman estendido
Redes neurais artificiais
Redes RBF
Resumo em português
A filtragem, na sua forma mais geral, tem estado presente na vida do homem há muito tempo. Com o surgimento de novas tecnologias (surgimento da eletricidade e a sua evolução) e o desenvolvimento da computação, as técnicas de filtragem (separação) de sinais elétricos. Normalmente, os sistemas de comunicação (telefonia móvel e fixa, sinais recebidos de satélites e outros sistemas) contém sinais indesejáveis responsáveis pela degradação do sinal original. Dentro desse contexto, este projeto de pesquisa apresenta um estudo do algoritmo Filtro Duplo de Kalman Estendido, onde um filtro e Kalman e duas redes neurais são empregadas para a redução de ruídos em sinais de voz. O algoritmo estudado foi aplicado ao processamento de um sinal corrompido por dois tipos de ruídos diferentes: ruído branco e ruído gaussiano e ruído branco não estacionário, conseguindo-se bons resultados. Uma melhora sensível do sinal filtrado pode ser conseguida com técnicas de pré-filtragem do sinal. Neste trabalho foi utilizado o filtro de médias para a pré-filtragem, obtendo um sinal filtrado com ruído musical de baixa intensidade.
Título em inglês
Application of artificial neural networks and Kalman filtering for reduction of noise in speech signals
Palavras-chave em inglês
Artificial neural networks
Extended Kalman filter
Kalman filter
Networks RBF
Resumo em inglês
Filtering in it's most general kind has been present in men's life for a long time. With the appearance of new technologies (appearance of electricity and it's evolution) and the deyelopment of the computer science, the filtering techniques started to be widely used in engineering to the filtering (separation) of electric signals. Normally the communication systems (fixed and mobile telephony, signals sent from satellites and other systems) bring undesired results responsible for the degradation of the original signal. Within this context, this research project shows a study of the algorithm Dual Extended Kalman Filtering, in which a Kalman filter and two neural networks are used for the reduction of noise in speech signals. The algorithm studied was applied to the processing of a signal corrupted by two types of different noises: gaussian white noise and non stationary white noise obtaining good results. A significant improvement of the filtered noise can be obtained with techniques of pre-filtering of the signal. In this research the average filter for a pre-filtering was used, obtaining a filtered signal with musical noise oflow intensity.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2016-07-29
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.