• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.18.2014.tde-02042014-150820
Document
Auteur
Nom complet
Ketson Roberto Maximiano dos Santos
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2014
Directeur
Jury
Beck, André Teófilo (Président)
Lopez, Rafael Holdorf
Trindade, Marcelo Areias
Titre en portugais
Técnicas de amostragem inteligente em simulação de Monte Carlo
Mots-clés en portugais
Amostragem inteligente
Confiabilidade de estruturas
Método de Monte Carlo
Resumé en portugais
A confiabilidade de estruturas apresenta sólidos desenvolvimentos teóricos e crescentes aplicações práticas. Durante os últimos anos, avanços significativos foram obtidos em termos dos métodos de transformação (FORM, SORM), bem como em termos das técnicas de simulação de Monte Carlo. Métodos de transformação se mostraram eficientes para problemas de dimensões e não-linearidades moderadas. Já técnicas de simulação sempre permitiram a solução de problemas de grandes dimensões e fortemente não lineares, embora o custo computacional possa ser uma séria limitação. Com o avanço da capacidade de processamento dos computadores e com o desenvolvimento de técnicas de amostragem inteligente, a simulação de Monte Carlo passa a ser cada vez mais viável. Este trabalho tem por objetivo estudar e programar em computador técnicas de amostragem inteligente em simulação de Monte Carlo. O StRAnD é um programa de computador que já possui implementadas as técnicas de simulação de Monte Carlo Bruto e com Amostragem por Importância, ambas utilizando a Amostragem Simples na geração das variáveis básicas. Assim, são adicionadas, ao StRAnD, as técnicas de Amostragem Assintótica, Amostragem Melhorada e Simulação de Subconjuntos. Além disso, são programadas as técnicas de Amostragem por Hipercubo Latino e Amostragem por Variáveis Antitéticas. Nesta dissertação, são analisados seis problemas distintos, de forma que as vantagens e desvantagens de cada técnica sejam avaliadas, em termos da probabilidade de falha, do coeficiente de variação da probabilidade de falha, do erro relativo da probabilidade de falha e do tempo de processamento.
Titre en anglais
Intelligent sampling techniques in Monte Carlo simulation
Mots-clés en anglais
Intelligent sampling
Monte Carlo method
Structural reliability
Resumé en anglais
The structural reliability presents solid theoretical developments and increasing practical applications. During the past few years, significant advances were achieved in terms of transformation methods (FORM and SORM), as well as, in terms of Monte Carlo Simulation. Transformation methods are effective in problems with moderate dimensions and moderate nonlinearities. On the other hand, simulation techniques can be used to solve high-dimensional problems and highly nonlinear problems, although the computational cost could be a serious limitation. With the progress of computer processing capacity and with the development of intelligent sampling techniques, the Monte Carlo Simulation becomes increasingly feasible. This work aims to study and program intelligent sampling techniques in Monte Carlo simulation. The StRAnD (Structural Reliability Analysis and Design) software already has Crude Monte Carlo and Importance Sampling Monte Carlo, both using Simple Sampling as basic samples generator. Thus, the Asymptotic Sampling technique, the Enhanced Sampling technique and the Subset Simulation were added to the software. Moreover, the Latin Hypercube Sampling technique and the Antithetic Variates techniques were also added to the software. Six problems were evaluated in order to evaluate the advantages and disadvantages of each technique, in terms of probability of failure, coefficient of variation of the probability of failure, relative error and processing time.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2014-04-07
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.