• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
Document
Author
Full name
Daniele Melo Santos Paulino
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2019
Supervisor
Committee
Leonel, Edson Denner (President)
Almeida, Valério da Silva
Greco, Marcelo
Title in Portuguese
Otimização topológica de estruturas planas considerando comportamento não linear geométrico
Keywords in Portuguese
ESO
MEF
Não-Linearidade Geométrica
Otimização Topológica
SIMP
Abstract in Portuguese
Este estudo tem como principal objetivo a compreensão de dois dos principais métodos de otimização topológica disponíveis na literatura: o método SIMP e ESO. Estes métodos foram implementados computacionalmente utilizando a linguagem de programação FORTRAN 90. Utiliza-se o Método dos Elementos Finitos (MEF) como parâmetro de solução mecânica neste trabalho, adotando-se a formulação baseada em deslocamentos para elasticidade linear. Ademais, visando avaliar o efeito da não linearidade geométrica na topologia ótima obtida, utiliza-se também o MEF posicional, o qual baseia-se nas posições nodais para solução do sistema não linear. Em conjunto com este método, adota-se a lei constitutiva de Saint-Venant-Kirchhoff, visando considerar os efeitos não lineares. Desta maneira, avalia-se a eficiência dos resultados obtidos por meio da aplicação de exemplos presentes na literatura. Conforme esperado, conclui-se que para exemplos cuja resposta apresenta pequenos deslocamentos, ambas as soluções se sobrepõem. No entanto, em se tratando de problemas em que a não linearidade geométrica tem influência, como estruturas constituídas de baixa densidade, a técnica do MEF posicional apresenta relevância na solução ótima.
Title in English
Topology Optimization of 2D Structures under Geometrically Non Linear Behavior
Keywords in English
ESO
FEM
Geometric Nonlinearity
SIMP
Topology Optimization
Abstract in English
This study has as main objective the understanding of two main topology optimization methods available in the literature: the methods SIMP and ESO. These methods were implemented computationally using the FORTRAN 90 programming language. The finite element method (FEM) is used as the mechanical solution parameter in this work, adopting the displacement-based formulation for linear elasticity. In addition, in order to evaluate the effect of geometric non-linearity in the optimal topology obtained, the FEM positional-based formulation is used, which uses the nodal positions for solution of the non-linear system. In conjunction with this method, the constitutive law adopted is the Saint-Venant-Kirchhoff in order to consider the nonlinearity. Hence, benchmarks presented in the literature are used to evaluate the efficiency of the obtained results. As expected, we conclude that the examples subjected to small displacements have similar solutions for both linear and nonlinear behavior. However, when problems that undergo geometrically nonlinear behavior, such as the ones modelled with soft materials, the FEM positional-based formulation has significant influence in the optimal solution.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-09-11
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.