• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.18.2007.tde-17012011-121459
Documento
Autor
Nome completo
Elizangela Camilo
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2007
Orientador
Banca examinadora
Marques, Flávio Donizeti (Presidente)
Azevedo, João Luiz Filgueiras de
Greco Junior, Paulo Celso
Silva, Roberto Gil Annes da
Souza, Leandro Franco de
Título em português
Aeroelasticidade computacional transônica em aerofólios com modelo estrutural não linear
Palavras-chave em português
Aeroelasticidade não linear
Escoamento transônico
Fronteiras de flutter
LCO
Métodos de CFD
Resumo em português
Aeroelasticidade não linear é uma área multidisciplinar e importante em engenharia aeronáutica e aeroespacial. Aeroelasticidade é o estudo do mecanismo de interação entre os esforços aerodinâmicos e dinâmico-estruturais. Os avanços nas técnicas de CFD se concentram nas aplicações de problemas aerodinâmicos cada vez mais complexos, como os fenômenos associados com a formação e movimento das ondas de choque em escoamentos transônicos e escoamentos separados. Com os desenvolvimentos dos códigos de CFD, o tratamento de problemas aeroelásticos por meio de abordagens computacionais é denominado aeroelasticidade computacional. O objetivo deste trabalho é apresentar uma análise dos efeitos não lineares em aeroelasticidade no domínio do tempo em regime transônico. A metodologia proposta pretende investigar os efeitos não lineares em aerofólios onde são consideradas as não linearidades estruturais e aerodinâmicas. Neste trabalho as não linearidades aerodinâmicas estão associadas à formação e ao passeio das ondas de choque. Nesta situação, verifica-se que a fronteira de ocorrência de flutter é degradada rapidamente na faixa de vôo transônico, onde este fenômeno é denominado de depressão transônica. Dois códigos de CFD foram considerados, ambos baseados na formulação de Euler. Para a solução do sistema aeroelástico no domínio do tempo é aplicado o método Runge-Kutta combinado com o código de CFD. Neste caso, o código de CFD não estacionário é construído em um contexto de malhas não estruturadas. Esta consiste da primeira análise aeroelástica através da metodologia de marcha no tempo utilizando este código de CFD. As respostas aeroelásticas se concentram particularmente para o aerofólio NACA0012 através da história no tempo e retrato de fase para investigar os efeitos típicos não lineares como oscilações em ciclos limite, assim como, são construídas as fronteiras de flutter. Para o cálculo direto da fronteira de flutter é utilizado o código da análise de bifurcação de Hopf, onde o modelo de CFD é baseado no contexto de malhas estruturadas. Em trabalhos anteriores com este código foram obtidas as fronteiras do flutter em perfis e asas simétricos com modelos estruturais lineares. Este trabalho apresenta a primeira análise deste código considerando o modelo estrutural não linear. As não linearidades estruturais concentradas mostraram ter um efeito significativo na resposta aeroelástica podendo ser observadas as oscilações em ciclos limite abaixo da fronteira de flutter. As metodologias de marcha no tempo e análise de bifurcação de Hopf foram comparadas e os resultados apresentaram boa concordância. Isto comprovou a confiabilidade das duas metodologias na análise dos efeitos não lineares em aeroelasticidade. As análises de marcha no tempo com o modelo estrutural não linear também foram realizadas após a ocorrência do flutter e sua influência nas oscilações em ciclos limite foram observadas.
Título em inglês
Transonic computational aeroelasticity on airfoils with nonlinear structural model
Palavras-chave em inglês
CFD methods
Flutter boundary
LCO
Nonlinear aeroelasticity
Transonic flow
Resumo em inglês
Nonlinear aeroelasticity is a multidisciplinary field, that is important in aeronautics and aerospace engineering. Aeroelasticity can be defined as the science which studies the mutual interaction between aerodynamic and dynamic forces. Computational fluid dynamics (CFD) has matured to the point where it is being applied to complex problems in external aerodynamics, particulary for phenomena associated with shock motions or separation. These two observations have motivated the development of CFD-based aeroelastic simulation, a fiel now being called computational aeroelasticity. The nonlinearities in the aeroelastic analysis are divided into aerodynamic and structural ones. The aim of this work is concerned with an application of time domain analysis for aeroelastic problems in a transonic flow. The methodology here proposed is to present an investigation on the effects of nonlinearities on airfoil flutter where both aerodynamic and structural concentrated nonlinearities are considered. In this work the aerodynamic nonlinearity arises from the presence of shock waves in transonic flows. In this situation, the unsteady forces generated by motion of the shock wave have been shown to destabilize single degree-of-freedom airfoil pitching motion and affect the bending-torsional flutter by lowering the flutter speed at the so-called transonic dip phenomenon. Two CFD tools are employed in the present work and they are based on the Euler formulation. To solve the aeroelastic problem the Runge-Kutta method is applied combined with the CFD code. In this case, the unsteady CFD tool solves flows in the an unstructured computational domain discretisation. This CFD tool had never been used for time domain aeroelastic analysis before. The responses concerned particularly the NACA0012 airfoil by investigating flutter boundary and typical LCO nonlinear effects from phase plane. For direct flutter boundary calculation, Hopf bifurcation analysis is employed, where the CFD code is based on structured grids for computation domain discretisation. Previous work has demonstrated the scheme for both symmetric airfoil and wing with linear structural model. The current work presents the first investigations of the structural nonlinearities effects with the method. The concentrated nonlinearities show to have significant effects on the aeroelastic responses and to provide limit cycle oscillation (LCO) below the flutter speed. Time marching analysis is performed and compared with direct calculation of Hopf bifurcation points. The results agree well and these computational tools have shown to be powerful to analyse nonlinear effects in aeroelasticity. Post bifurcation behavior is analysed to show influence of nonlinear structural terms on LCO with the time marching solver.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
tese_Eliz.pdf (9.82 Mbytes)
Data de Publicação
2011-01-18
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.