ANÁLISE DA APLICAÇÃO DO SISTEMA DE POSICIONAMENTO GLOBAL (GPS) EM LEVANTAMENTO TOPOGRÁFICO DE VIAS URBANAS

Rosane Maciel de Araújo Vargas

Orientador: Prof. Dr.: Ricardo Ernesto Schaal
ANÁLISE DA APLICAÇÃO DO SISTEMA DE POSICIONAMENTO GLOBAL (GPS) EM LEVANTAMENTO TOPOGRÁFICO DE VIAS URBANAS

Rosane Maciel de Araújo Vargas

Dissertação apresentada à Escola de Engenharia de São Carlos da Universidade de São Paulo, como parte dos requisitos para a obtenção do título de Mestre em Engenharia Civil, área de concentração Transportes.

ORIENTADOR: Prof. Dr. Ricardo Ernesto Schaal

São Carlos
2001
Vargas, Rosane Maciel de Araújo

Análise da aplicação do sistema de posicionamento global (GPS) em levantamento topográfico de vias urbanas / Rosane Maciel de Araújo Vargas. -- São Carlos, 2001.

Dissertação (Mestrado) -- Escola de Engenharia de São Carlos-Universidade de São Paulo, 2001.
Área: Transportes.
Orientador: Prof. Dr. Ricardo Ernesto Schaal.

FOLHA DE APROVAÇÃO

Candidata: Engenheira ROSANE MACIEL DE ARAÚJO VARGAS

Dissertação defendida e aprovada em 26-03-2001
pela Comissão Julgadora:

Prof. Doutor RICARDO ERNESTO SCHAAAL (Orientador)
(Escola de Engenharia de São Carlos - Universidade de São Paulo)

Prof. Doutor PAULO CESAR LIMA SEGANTINE
(Escola de Engenharia de São Carlos - Universidade de São Paulo)

Prof. Doutor MARCOS ANTONIO GARCIA FERREIRA
(Universidade Federal de São Carlos - UFSCar)

Prof. Dr. EDSON MARTINS DE AGUIAR
Coordenador do Programa de Pós-Graduação em Engenharia de Transportes

JOSÉ CARLOS A. CINTRA
Presidente da Comissão de Pós-Graduação da EESC
SUMÁRIO

LISTA DE FIGURAS ... i
LISTA DE TABELAS ... iii
LISTA DE ABBREVIATURAS E SIGLAS ... iv
LISTA DE SÍMBOLOS .. vi
RESUMO .. ix
ABSTRACT ... x
INTRODUÇÃO ... 1
 1.1 Generalidades ... 1
 1.2 Justificativa ... 2
 1.3 Finalidade e Objetivos ... 5
 1.4 Organização do trabalho ... 6
2. CONCEITOS CARTOGRÁFICOS ... 7
 2.1 A Cartografia e seus produtos ... 7
 2.2 Superfícies de Referência ... 8
 2.3 As distâncias na Mensuração ... 10
 2.3.1 A distância inclinada e a distância horizontal 10
 2.3.2 A distância esférica ... 11
 2.3.3 A distância plana ... 13
 2.4 Sistemas de Coordenadas ... 13
 2.4.1 Sistema de Coordenadas Geográficas Astronômicas e Geodésicas .. 13
 2.4.2 Sistema de Coordenadas Geográficas Cartesianas 14
 2.4.3 Sistema de Coordenadas Plano-Retangulares 15
 2.4.4 Sistema de Coordenadas Topográficas Local 15
 2.5 Sistema de Projeção UTM .. 17
 2.5.1 O fator de escala K .. 19
 2.5.2 A convergência Meridiana ... 21
 2.5.3 A redução angular .. 22
 2.6 Sistema Terrestre de Referência (ECEF) 22
 2.7 Sistema Geodésico Brasileiro (SGB) .. 24
3. O SISTEMA DE POSICIONAMENTO GLOBAL (GPS) 27
 3.1 Breve histórico dos sistemas de navegação 27
 3.2 Princípio de Funcionamento do GPS 28
 3.3 Dados observados com GPS ... 30
 3.3.1 Posicionamento usando o código 30
 3.3.2 Posicionamento usando a fase da portadora 32
3.4 Aspectos gerais do multicaminhamento dos sinais de GPS ... 32
3.5 A perda de ciclos (“cycle slips”) ... 34
3.6 Levantamentos com GPS .. 35
 3.6.1 Planejamento do trabalho ... 35
 3.6.2 O ponto de referência para o levantamento .. 36
 3.6.3 Método de levantamento estático .. 37
 3.6.4 Método de levantamento cinemático .. 38

4. A ESTAÇÃO TOTAL ... 39
 4.1 Introdução .. 39
 4.2 Características básicas das Estações Totais .. 40
 4.3 Medição eletrônica de distância ... 41
 4.3.1 Princípio básico da Medicação eletrônica de distância .. 42
 4.3.2 Precisão da distância eletrônica em equipamentos de uso topográfico 44
 4.4 Medicação de ângulo ... 44

5. PROJETO DE VIAS .. 47
 5.1 Introdução .. 47
 5.2 Aspectos gerais dos levantamentos em vias urbanas .. 48
 5.3 Levantamento planimétrico convencional de poligonais topográficas 49
 5.4 Nivelamento de poligonais topográficas .. 51
 5.4.1 Generalidades .. 51
 5.4.2 Nivelamento com Estação Total .. 52
 5.4.3 Efeitos da curvatura terrestre e da refração atmosférica nas observações 53

6. INTEGRAÇÃO: LEVANTAMENTOS CONVENCIONAIS E GPS .. 54
 6.1 Introdução .. 54
 6.2 Aspectos gerais ... 55
 6.3 Integração por coordenadas ... 56
 6.4 Integração pelas observações de campo .. 57
 6.4.1 Medicões angulares .. 57
 6.4.2 Medicões lineares .. 58
 6.5 Integração por transformações de sistemas ... 58
 6.5.1 Transformação de coordenadas no plano .. 59
 6.5.1.1 Transformação de corpo rígido .. 60
 6.5.1.2 Transformação de Similaridade, Isogonal ou Conforme de Helmert 60
 6.5.1.3 Transformação ortogonal .. 63
 6.5.1.4 Transformação afim ... 63
 6.6 Exemplos de integração ... 64
 6.7 Estudos com GPS em levantamentos topográficos ... 65

7. LEVANTAMENTOS TOPOGRÁFICOS .. 67
 7.1 A área de trabalho ... 67
 7.2 Metodologia ... 70
 7.3 Levantamento com GPS .. 75
 7.3.1 Implantação das Bases ... 75
 7.3.2 Levantamento de pontos complementares ... 79
 7.3.3 Resultados ... 81
 7.4 Levantamento com a Estação Total .. 82
DEDICATÓRIA

Dedico esta dissertação ao meu marido, José Luís e aos meus filhos, Luís Cláudio e Amanda Vargas.
AGRADECIMENTOS

À Deus, por ter me concedido a vida...

Aos meus pais pela educação e saber que me proporcionaram ao longo dos anos...

Ao orientador e amigo Ricardo Ernesto Schaal, pela orientação, paciência e dedicação fornecidas durante a elaboração deste trabalho.

Ao meu marido, José Luís Vargas, por ter me encorajado e auxiliado a realizar o Mestrado, sendo pai e mãe de nossos filhos nestes últimos dois anos, e pela sua participação ativa nos trabalhos de campo.

Aos meus filhos, Luís Cláudio e Amanda, por serem compreensivos com a ausência do colo materno em muitos momentos dedicados à realização deste trabalho.

A Universidade do Amazonas por me liberar das atividades docentes para cursar o Mestrado.

A CAPES pela bolsa de estudos concedida para realização deste Mestrado.

Ao Serviço Autônomo de Água e Esgoto (SAAE) da cidade de São Carlos (SP) pela base de dados cedida, contribuindo significativamente para a realização do trabalho de pesquisa desenvolvido.

À todos os colegas, especialmente, aos amigos da Mensuração, Genival, Uchôa, Tule, Simone, Ana Paula, Mário, Marisa, Rodrigo, professores e funcionários do Departamento de Transportes da EESC/USP pela colaboração.
LISTA DE FIGURAS

Figura 2.1: Superfície de referência e alturas associadas...9
Figura 2.2: Distância inclinada e distância horizontal...10
Figura 2.3: Superfícies de nível esféricas e concêntricas...11
Figura 2.4: Sistema de Projeção UTM..17
Figura 2.5: Origem do fuso no sistema UTM...18
Figura 2.6: Coeficiente de deformação K. Adaptado de chaves (1998).....................20
Figura 2.7: A convergência Meridiana..21
Figura 3.1: Levantamento GPS com o método absoluto ..30
Figura 3.2: Multicaminhamento de sinais..33
Figura 4.1: Estações Totais..40
Figura 4.2: Esquema geral da medição eletrônica da distância, por caminho duplo......42
Figura 4.3: Princípio da medição eletrônica de distância, por caminho duplo, método da diferença de fase...43
Figura 4.4: Modelo simplificado do sistema de codificação incremental....................45
Figura 4.5: Sistema de codificação absoluta...46
Figura 5.1: Representação de uma poligonal tipo 3..49
Figura 5.2: Levantamento de poligonais a partir de ângulos e distâncias.....................50
Figura 5.3: Nivelamento com Estação Total..52
Figura 6.1: Representação gráfica de dois sistemas e os elementos de transformação de coordenadas...80
Figura 6.2: Transformação de coordenadas planas...61
Figura 6.3: Transformação afim...63
Figura 7.1: Área de trabalho e Trechos utilizados...68
Figura 7.2: Trecho 1 – Chácara da Vila Max...69
Figura 7.3: Trecho 2 – Áreas bosqueadas..69
Figura 7.4: Trecho 3 – Rotatória Celeste Zanon...70
Figura 7.5: Imagem da área do trabalho...71
Figura 7.6: Planta SAAE da Área do Trabalho..71
Figura 7.7: Traçado projetado e caminho alternativo para a passagem da via..........73
Figura 7.8: Localização das Bases, Poligonais e Pontos isolados..........................74
Figura 7.9: Vetores das observações para implantação das Bases 1 e 2..................76
Figura 7.10: Vetores das observações para implantação das Bases 3 e 4...............77
Figura 7.11: Vetores observados entre as Bases 1 e 2......................................78
Figura 7.12: Observação dos vetores da rede R1...79
Figura 7.13: Seções transversais com GPS...81
Figura 7.14: Poligonais I e II do levantamento com Estação Total.........................82
Figura 8.1: Vetor das observações com GPS entre os pontos AB4 e AB6.............93
LISTA DE TABELAS

Tabela 2.1: Elementos definidores dos elipsóides de referência utilizados..23
Tabela 7.1: Bases implantadas com GPS..75
Tabela 7.2: Erros do levantamento planimétrico das Poligonais..85
Tabela 7.3: Tolerância dos erros (NBR 13133)..85
Tabela 7.4: Tempo aproximado despendido para os levantamentos com GPS.................................87
Tabela 7.5: Tempo aproximado despendido para os levantamentos das Poligonais I e II com a Estação Total..88
Tabela 8.1: Coordenadas topográficas dos pontos das Bases obtidas da irradiiação e do ajustamento e respectivas diferenças...89
Tabela 8.2: Diferenças nos resultados da Poligonal I modificada em 2’ angularmente....................91
Tabela 8.3: Diferenças nos resultados da Poligonal II modificada em 1°26” angularmente.................91
Tabela 8.4: Coordenadas dos pontos AB4 e AB6..93
Tabela 8.5: Diferenças obtidas nas distâncias topográficas dos levantamentos com Estação Total e GPS...95
Tabela 8.6: Diferenças obtidas entre coordenadas topográficas ajustadas dos levantamentos com Estação Total (E.T) e com o GPS...95
Tabela 8.7: Produtividade obtida com a Estação Total e com o GPS...96
LISTA DE ABREVIATURAS E SIGLAS

<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Explicação</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway And Transportation Officials</td>
</tr>
<tr>
<td>BIH</td>
<td>Bureau International de L'Heure</td>
</tr>
<tr>
<td>C/A</td>
<td>Coarse Aquisition</td>
</tr>
<tr>
<td>CBD</td>
<td>Central Business District</td>
</tr>
<tr>
<td>CTRS</td>
<td>Sistema de Referência Convencional Terrestre</td>
</tr>
<tr>
<td>CTS</td>
<td>Sistema Terrestre Fixo e Centrado na Terra</td>
</tr>
<tr>
<td>DATUM</td>
<td>Sistema de Referência</td>
</tr>
<tr>
<td>DoD</td>
<td>Departamento de Defesa dos Estados Unidos</td>
</tr>
<tr>
<td>ECEF</td>
<td>Earth Centered Earth Fixed</td>
</tr>
<tr>
<td>EDM</td>
<td>Medidor Eletrônico de Distância</td>
</tr>
<tr>
<td>EESC</td>
<td>Escola de Engenharia de São Carlos</td>
</tr>
<tr>
<td>GDOP</td>
<td>Geometric Dilution of Precision</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>IBGE</td>
<td>Instituto Brasileiro de Geografia e Estatística</td>
</tr>
<tr>
<td>ICA</td>
<td>Associação Cartográfica Internacional</td>
</tr>
<tr>
<td>ITRF</td>
<td>International Terrestrial Reference Frame</td>
</tr>
<tr>
<td>L1 e L2</td>
<td>Portadora de fase dos sinais emitidos</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Diode</td>
</tr>
<tr>
<td>MC</td>
<td>Meridiano Central</td>
</tr>
<tr>
<td>MDT</td>
<td>Modelagem Digital do Terreno</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology's</td>
</tr>
<tr>
<td>NAVSTAR</td>
<td>NAVigation System using Time and Ranging</td>
</tr>
<tr>
<td>NBR13133</td>
<td>Norma Brasileira 13133</td>
</tr>
<tr>
<td>NBR14166</td>
<td>Norma Brasileira 14166</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>NG</td>
<td>Norte Geográfico</td>
</tr>
<tr>
<td>NNR</td>
<td>No-Net-Rotation</td>
</tr>
<tr>
<td>NNSS</td>
<td>Navy Navigation Satellite System</td>
</tr>
<tr>
<td>NQ</td>
<td>Norte de Quadrícula</td>
</tr>
<tr>
<td>OTF</td>
<td>On the Fly</td>
</tr>
<tr>
<td>P</td>
<td>precision ou protect-mode</td>
</tr>
<tr>
<td>PRN</td>
<td>Pseudorandom Noise</td>
</tr>
<tr>
<td>RBMC</td>
<td>Rede Brasileira de Monitoramento Contínuo</td>
</tr>
<tr>
<td>RTK</td>
<td>Real Time Kinematic</td>
</tr>
<tr>
<td>SAD-69</td>
<td>South American Datum de 1969</td>
</tr>
<tr>
<td>SE</td>
<td>Superfície Elipsoidal</td>
</tr>
<tr>
<td>SF</td>
<td>Superfície Física ou Real</td>
</tr>
<tr>
<td>SG</td>
<td>Superfície Geoidal</td>
</tr>
<tr>
<td>SGB</td>
<td>Sistema Geodésico Brasileiro</td>
</tr>
<tr>
<td>SIG</td>
<td>Sistema de Informações Geográficas</td>
</tr>
<tr>
<td>STL</td>
<td>Sistema Topográfico Local</td>
</tr>
<tr>
<td>STT</td>
<td>Departamento de Transportes da EESC/USP</td>
</tr>
<tr>
<td>USP</td>
<td>Universidade de São Paulo</td>
</tr>
<tr>
<td>UTM</td>
<td>Sistema de Projeção Universal Transverso de Mercator</td>
</tr>
<tr>
<td>WGS-72</td>
<td>World Geodetic System de 1972</td>
</tr>
<tr>
<td>WGS-84</td>
<td>World Geodetic System de 1984</td>
</tr>
</tbody>
</table>
LISTA DE SÍMBOLOS

a semi-eixo maior do elipsóide
a₀ parâmetro de translação de origem na direção X
Az azimute de um ponto
bo parâmetro de translação de origem na direção Y
CM convergência meridiana
DH distância horizontal
DI distância inclinada
DV distância vertical no plano local
dX,dY,dZ vetores espaciais entre dois pontos no sistema X,Y,Z
E coordenada leste UTM
E' ordenada entre o meridiano central e o ponto considerado
Eₐ erro angular da poligonal
Eᵳ erro longitudinal da poligonal
Eᵳ erro transversal da poligonal
f achatamento do elipsóide
h altura geométrica
hₚ altura do prisma
H altura ortométrica
Hₚ altitude do ponto P
H₉ altitude do ponto Q
i altura do instrumento
k distância da visada
K fator de escala UTM no ponto ou fator de deformação
K₀ fator de escala no meridiano central
l distância considerada no terreno
<table>
<thead>
<tr>
<th>Variável</th>
<th>Definição</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>coordenada norte UTM</td>
</tr>
<tr>
<td>N</td>
<td>número inteiro de ciclos</td>
</tr>
<tr>
<td>N</td>
<td>ondulação ou afastamento geoidal</td>
</tr>
<tr>
<td>Red</td>
<td>fator de redução ao nível do geóide;</td>
</tr>
<tr>
<td>Ro</td>
<td>raio médio de curvatura terrestre</td>
</tr>
<tr>
<td>s</td>
<td>distância esférica na altitude do ponto em questão</td>
</tr>
<tr>
<td>S</td>
<td>fator de escala</td>
</tr>
<tr>
<td>sH</td>
<td>distância esférica ao nível do ponto em questão</td>
</tr>
<tr>
<td>s0</td>
<td>distância esférica ao nível do geóide</td>
</tr>
<tr>
<td>sP</td>
<td>distância esférica ao nível de P</td>
</tr>
<tr>
<td>sQ</td>
<td>distância esférica ao nível de Q</td>
</tr>
<tr>
<td>Sx</td>
<td>parâmetro de mudança de escala no eixo X</td>
</tr>
<tr>
<td>Sy</td>
<td>parâmetro de mudança de escala no eixo Y</td>
</tr>
<tr>
<td>T</td>
<td>erro máximo tolerável ou tolerância</td>
</tr>
<tr>
<td>Ti</td>
<td>tolerância para o erro de fechamento longitudinal</td>
</tr>
<tr>
<td>Tp</td>
<td>tolerância para o erro de fechamento linear</td>
</tr>
<tr>
<td>Tx e Ty</td>
<td>fatores de translação nos eixos x e y, respectivamente</td>
</tr>
<tr>
<td>x, y</td>
<td>eixos coordenados rotacionados aos eixos X e Y, respectivamente</td>
</tr>
<tr>
<td>X,Y</td>
<td>coordenadas plano-retangulares</td>
</tr>
<tr>
<td>X,Y,Z</td>
<td>coordenadas cartesionas</td>
</tr>
<tr>
<td>X' e Y'</td>
<td>eixos coordenados paralelos ao eixos E e N, respectivamente, do sistema</td>
</tr>
<tr>
<td>de projeção UTM</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>ângulo zenital</td>
</tr>
<tr>
<td>α</td>
<td>ângulo de rotação de eixos entre sistemas de coordenadas</td>
</tr>
<tr>
<td>αi</td>
<td>ângulo de inclinação</td>
</tr>
<tr>
<td>αh</td>
<td>ângulo horizontal entre alinhamentos</td>
</tr>
<tr>
<td>γ</td>
<td>ângulo central da Terra</td>
</tr>
<tr>
<td>Δh</td>
<td>deformação altimétrica devida à curvatura da Terra</td>
</tr>
<tr>
<td>Δh, ΔH</td>
<td>diferença de altura</td>
</tr>
<tr>
<td>Δh'</td>
<td>deformação altimétrica devida ao efeito conjunto da curvatura da Terra e da</td>
</tr>
<tr>
<td></td>
<td>refração atmosférica</td>
</tr>
<tr>
<td>Δl</td>
<td>deformação planimétrica devida à curvatura da Terra</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>(\Delta \lambda)</td>
<td>diferença de longitude entre o ponto considerado e o meridiano central</td>
</tr>
<tr>
<td>(\delta)</td>
<td>ângulo de redução angular</td>
</tr>
<tr>
<td>(\delta h)</td>
<td>correção da curvatura terrestre</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>parâmetro de não ortogonalidade entre os eixos de um dos sistemas de coordenadas</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>longitude de um ponto referente ao elipsóide</td>
</tr>
<tr>
<td>(\lambda_0)</td>
<td>comprimento de onda</td>
</tr>
<tr>
<td>(\phi)</td>
<td>fração de ciclos ou ângulo de fase</td>
</tr>
<tr>
<td>(\phi)</td>
<td>latitude do ponto</td>
</tr>
<tr>
<td>(\phi)</td>
<td>fração de onda</td>
</tr>
</tbody>
</table>
RESUMO

Os levantamentos topográficos para implantação de vias urbanas são usualmente realizados utilizando instrumentos e processos clássicos da Topografia. A presença de obstáculos (casas, prédios) ao longo do percurso, reduz a produtividade do trabalho além de contribuir para a imprecisão dos resultados. Este trabalho analisa a metodologia de utilização de receptores do sistema GPS (Global Positioning System) para o georreferenciamento, implantação de bases de apoio e complementação ao levantamento convencional com Estação Total. No desenvolvimento do projeto de uma via, é de esperar que desvios centimétricos na determinação das coordenadas dos pontos das bases de referência pouco afetam os resultados finais. Procurando verificar a contribuição destes desvios, foram realizados vários levantamentos convencionais e com o GPS ao longo do eixo de uma via projetada na cidade de São Carlos. No final do trabalho são analisados aspectos referentes a execução destes levantamentos, concluindo sobre as vantagens e desvantagens de cada método e da integração GPS e Estação Total.

Palavras-chaves: levantamento topográfico, vias urbanas, projetos básicos, GPS, Estação Total.
ABSTRACT

The surveying for development of urban roads are usually accomplished by using instruments and processes of classic Topography. The presence of obstacles (houses, buildings) along the course it reduces the productivity of the work besides contributing for the imprecision of the results. This work analyzes the methodology of use of receivers of the GPS (Global Positioning System) for georeferencing, implant of support bases and complementation to the surveying with Total Station. In the development of the project of a road, it is expected that centimetric deviations in the determination of the points coordinates of the reference bases cause small effects in the final results. Trying to verify the contribution of these deviations, several surveys were accomplished with the Total Station and GPS along the axis of a road projected in the city of São Carlos. In the end of the work several aspects are analyzed about the execution of these surveys, concluding on the advantages and disadvantages of each method and of the integration GPS and Total Station.

Keywords: Topography surveying, urban roads, projects basics, GPS, Total Station.
1. INTRODUÇÃO

1.1 Generalidades

Em muitas cidades brasileiras, as vias são construídas ou melhoradas depois que novos aglomerados humanos vão sendo formados. Muitas vezes, novos bairros vão surgindo em conseqüência de invasões de terras, o que implica em elevados custos para toda a sociedade. A ausência de planejamento do sistema viário\(^1\) representa para a cidade obras mais complexas, improvisadas, caras e aumento do custo final dos serviços públicos de transporte.

Outras vezes, devido a elevada concentração de comércios e serviços em áreas centrais das cidades (*Central Business District – CBD*), torna-se necessário construir vias que permitam a circulação entre bairros sem que seja necessário cruzar essas áreas, os chamados anéis viários, permitindo a criação de linhas circulares para o transporte público municipal. Em áreas residenciais, normalmente, as ruas foram construídas de acordo com a disposição das casas já existentes, sendo algumas vezes adaptadas de acordo com os melhoramentos que vão sendo incrementados ao sistema viário.

O ideal é que a construção das vias antecede a criação dos bairros e que fossem planejadas com antecedência (enquanto a cidade dispõem de áreas desabitadas) soluções alternativas para um problema comum a todas as cidades de médio e grande porte: o estrangulamento do trânsito nos centros comerciais.

De acordo com FERRAZ (1999), o planejamento do sistema viário de uma cidade deve ser parte presente no plano diretor de desenvolvimento urbano, uma vez que

\(^1\) Sistema viário é o conjunto de vias e obras de arte (viadutos, pontes, túneis, trevos, rotatórias etc.) destinadas ao fluxo de veículos e/ou pedestres (FERRAZ, 1999).
transporte e ocupação e uso do solo são atividades intimamente relacionadas. O ideal é que no plano de crescimento da cidade já estejam bem definidas as diretrizes do sistema viário principal: as vias expressas\(^2\) e arteriais e as principais obras de arte. A reserva de espaço para o sistema viário é fundamental para se evitar o elevado custo das desapropriações.

No entanto, ocorre que em muitas cidades do País, este plano diretor começa a ser implementado depois que grande parte da cidade já está habitada e o sistema viário estabelecido conforme as necessidades surgidas com o aparecimento dos bairros. Nestes casos, a construção de vias, em especial aquelas mais largas e que ligam vários locais da cidade, como as vias de trânsito rápido, com trechos que se desenvolverá sobre áreas densamente ocupada, representa para a Engenharia dificuldades que vão desde a definição do traçado, levantamentos de campo, locação e construção da via.

De modo geral, o projeto do alinhamento horizontal (definição do traçado) de vias em áreas urbanas é muito mais complexo que em áreas rurais. Isto porque nas regiões urbanas, além das áreas de terra necessárias à implantação das vias serem mais valorizadas, o alinhamento horizontal interfere com a otimização do melhor aproveitamento das áreas lindeiras e com uma série de outros fatores como construções, rede aérea de energia elétrica, de telefone, de galerias de água, de esgotos, compatibilização com a malha viária existente etc. (FERRAZ, 1999).

1.2 Justificativa

Do exposto observa-se que a implantação de vias, em especial vias largas formadas por várias faixas de rolamento e com dezenas de quilômetros de extensão, em cidades que já apresentam um elevado grau de ocupação urbana, é um trabalho complexo que exige estudos multidisciplinares para a sua execução. Na medida que as cidades vão crescendo, estas vias são necessárias para a boa fluidez do tráfego e promoção do desenvolvimento igualitário dos diversos bairros da cidade. Cabe as

\(^2\) Via de trânsito rápido com controle parcial de seus acessos (AASHTO, 1994).
diversas áreas da Engenharia encontrar as melhores soluções para o desenvolvimento dos projetos necessários.

Um aspecto a ser considerado na construção de vias urbanas diz respeito à obstrução dos locais das obras. Isto porque as vias, como facilitadoras do tráfego, constituem um equilibrado sistema, sendo assim, alterações no fluxo de veículos de uma ou mais vias provocam modificações no fluxo de outras. Algumas vezes, ruas estreitas destinadas ao tráfego de veículos de passeio passam a ser utilizadas, temporariamente, por caminhões e ônibus, trazendo insegurança nas circulações e manobras dos veículos. Pedestres são afetados por estas mudanças, passando a enfrentar dificuldades nas travessias.

No entanto, as obstruções no sistema viário são necessárias para a manutenção dos serviços públicos e para a realização de obras. Os transtornos temporários à motoristas e pedestres, em geral, é recompensado com melhorias à grande parcela da sociedade. Observa-se, portanto, que o desejável é que as interrupções das vias ocorressem por um período mínimo possível.

Sendo o levantamento topográfico, um dos trabalhos necessários a realização de obras de engenharia e que está presente no planejamento, execução e locação final de vias, a redução do tempo despendido para realização de medições representará uma parcela significativa de redução do tempo total das obras.

Entretanto, em áreas urbanas, este levantamento é conduzido com maior dificuldade que em campos abertos. Isto porque a visibilidade entre pontos a medir é dificultada pela existência de obstáculos (casas, prédios, veículos estacionados etc.) ao longo da direção a ser tomada. Neste caso, normalmente, as medições passam a ser feitas segundo outras direções intervisíveis para posteriormente retornarem a direção inicial.

 Nas últimas décadas, a comunidade envolvida com a Mensuração passou a utilizar mais intensivamente as coordenadas de pontos obtidas a partir de receptores do NAVigation System using Time and Ranging (NAVSTAR) & Global Positioning System (GPS)³ para formar linhas de apoio à poligonais de levantamentos convencionais. Este sistema se baseia no princípio da trilateração espacial, sendo obtidas as coordenadas espaciais de um ponto da superfície terrestre ou próxima a ela.
a partir do conhecimento da posição de um conjunto de satélites artificiais situados a aproximadamente 20.000 km de altitude. A partir dos sinais emitidos pelas antenas dos satélites e recebidos por antenas receptoras instaladas sobre pontos (um de referência e outros desconhecidos) obtém-se as observações diferenciais que permitem o cálculo das coordenadas precisas dos pontos a serem determinados.

As antenas receptoras dos sistema GPS podem receber os sinais vindos dos satélites a qualquer instante e em condições meteorológicas adversas, o que pode representar maior produtividade aos trabalhos de campo quando comparado com os levantamentos convencionais que são realizados exclusivamente durante o dia e com equipamentos, geralmente, não resistentes a água.

Outra vantagem oferecida pelo sistema GPS é a obtenção das coordenadas de pontos sem necessidade de visibilidade entre eles, isto porque este sistema trabalha com cada ponto isoladamente, ou seja, um receptor “não tem conhecimento” da existência de outros receptores posicionados em outros pontos. As coordenadas do ponto desconhecido são determinadas matematicamente a partir de dados coletados no par de receptores. Para este sistema a “visibilidade” necessária é entre a antena receptora de sinais e os satélites, ou seja, é necessário somente que os sinais vindos dos satélites de GPS alcancem as antenas receptoras situadas sobre os pontos que se deseja obter as coordenadas.

No entanto, a vantagem do uso do GPS sobre os levantamentos convencionais em áreas urbanas não é tão explícita quanto em campos abertos. Isto porque os dados coletados poderão estar contaminados de erros devido à existência de superfícies refletoras próximas as antenas receptoras de sinais ou devido à existência de obstáculos que impedem que os sinais vindos dos satélites alcancem as antenas.

Do exposto, observa-se que cada tipo de levantamento apresenta certas vantagens e desvantagens, cabendo a aplicação de um ou outro tipo conforme as condições do trecho de terreno em que se está trabalhando. Em áreas urbanas, pontos sem intervisibilidade poderão ter suas coordenadas obtidas a partir do sistema GPS, desde que haja horizonte desobstruído para recepção dos sinais vindos dos satélites. Em caso contrário, os trabalhos poderão ser conduzidos utilizando-se os

3 Por simplicidade, será adotado neste trabalho o termo GPS (Global Positioning System) para designar o Sistema de Posicionamento Global.
procedimentos clássicos da topografia através de Estações Totais⁴. Estes instrumentos apresentam inúmeras vantagens sobre outros equipamentos tradicionais, tais como: economia de tempo e custo, facilidade de operação, precisão e confiabilidade (MAIA, 1999).

A utilização integrada destes levantamentos implica em uma diversidade de procedimentos e conceitos que devem ser considerados adequadamente para que os resultados sejam satisfatórios e atendam as tolerâncias das normas de levantamento.

1.3 Finalidade e Objetivos

O objetivo principal deste trabalho é analisar os procedimentos e resultados de levantamentos topográficos de faixas de terreno destinados a implantação de vias urbanas através da utilização de receptores de GPS para obter as coordenadas de pontos estratégicos da área objetivando aumentar a produtividade dos trabalhos. São objetivos secundários:

1. Apresentar uma revisão bibliográfica de pesquisas realizadas envolvendo o GPS em levantamentos topográficos, os principais conceitos relativos ao tema do trabalho e a integração de levantamentos topográficos com Estação Total e GPS.
2. Realizar um levantamento utilizando GPS e Estação Total com objetivo de obter dados espaciais necessários para a elaboração do projeto básico de uma via em uma área que apresente dificuldades inerentes aos dois tipos de levantamento.
3. Analisar os resultados obtidos para as coordenadas dos pontos utilizando os diferentes métodos, após uniformização das superfícies de referência, e quando foram integrados os tipos de levantamento.
4. Verificar as precisões alcançadas nos levantamentos comparando-as com as estabelecidas pela norma brasileira NBR13133;
5. Verificar a implicação nos resultados em se utilizar coordenadas não ajustadas para apoiar as poligonais do levantamento convencional;
6. Concluir sobre diretrizes que possam orientar a escolha do método ou composição de métodos mais adequados conforme o caso.

⁴ Estação Total (Total Station): instrumento eletrônico de medição de ângulos e distâncias
1.4 Organização do trabalho

O trabalho foi organizado em 9 capítulos, iniciando com uma explanação sobre a necessidade de construção de vias urbanas mais largas, tais como as de trânsito rápido, em cidades de médio e grande porte. Aborda-se também a problemática existente em levantamentos topográficos realizados em áreas urbanas, os aspectos gerais relacionados a implantação de vias nestas áreas, a justificativa e os objetivos da realização do trabalho.

Tradicionalmente os projetos de vias são realizados em cima de cartas obtidas por levantamentos topográficos convencionais. Procurando uma maior abrangência, é apresentado no capítulo 2 uma revisão dos conceitos cartográficos. Nos capítulos 3 e 4 são apresentados os princípios de funcionamento dos instrumentos. Uma breve explanação referente a projetos de vias é feito no capítulo 5. No capítulo 6 apresentam-se tipos de integração entre levantamentos convencionais e GPS e alguns trabalhos realizados no País referentes ao assunto.

Os levantamentos topográficos realizados são apresentados e detalhados no capítulo 7. No capítulo 8 apresentam-se as discussões dos resultados. No capítulo 9, "Conclusões e Sugestões", são feitas as considerações finais sobre o trabalho e apresentadas sugestões para continuidade da pesquisa.
2. CONCEITOS CARTOGRÁFICOS

2.1 A Cartografia e seus produtos

Segundo a Associação Cartográfica Internacional (ICA, 1973), "Cartografia é o conjunto de operações científicas, artísticas e técnicas que, tendo por base os resultados das observações obtidas pelos métodos e processos diretos, indiretos ou subsidiários de levantamento ou exploração de documentos existentes, destinam-se à elaboração e à preparação de mapas e outras formas de expressão, assim como a sua utilização".

Para BAKKER (1965) apud CHAVES (1998), "Cartografia é a ciência e a arte de expressar graficamente, por meio de mapas e cartas, o conhecimento humano da superfície da Terra". Considerando os avanços tecnológicos e científicos na produção de mapas, cartas, entre outros produtos cartográficos, uma definição mais atualizada, "Cartografia é a organização, apresentação, comunicação e utilização de geoinformação nas formas visual, digital ou táctil, que inclui todos os processos e estudo de todo e qualquer tipo de mapa" (ICA/Budapeste/Hungria (1989) apud Chaves (1998)).

Para representar a superfície da Terra diversas formas podem ser utilizadas: mapas, cartas, plantas, modelos reduzidos, modelos numéricos, globos e outros. Dentre estas, mapas, cartas e plantas são as formas mais utilizadas para representação das informações espaciais da superfície terrestre.

Para a NBR13133, carta e mapa são sinônimos, sendo definidos como: "Representação gráfica sobre uma superfície plana, dos detalhes físicos, naturais e artificiais, de parte ou de toda a superfície terrestre - mediante símbolos ou convenções".
e meios de orientação indicados, que permitem avaliação das distâncias, a orientação das direções e a localização geográfica de pontos, áreas e detalhes – podendo ser subdividida em folhas, de forma sistemática, obedecida um plano nacional ou internacional." Segundo esta norma, planta é uma representação gráfica de uma parte limitada da superfície terrestre, sobre um plano horizontal local, em escalas maiores que 1:10.000, para fins específicos, na qual não se considera a curvatura da Terra.

A passagem da forma irregular para a forma plana implica várias dificuldades. Uma delas é a definição exata da superfície da Terra, que é objeto de estudo da Geodésia. Uma outra dificuldade consiste em transferir para o plano a superfície medida, que é objeto de estudo dos sistemas de projeção.

De acordo com ROCHA (1998), a representação de mapas, cartas e plantas sobre uma superfície plana é a mais utilizada por apresentar praticidade satisfatória aos usuários que necessitam manipular informações cartográficas.

2.2 Superfícies de Referência

Segundo BLITZKOW (1992), são três os tipos de superfícies que rotineiramente envolvem geodesistas ou quem necessite de posicionamento. A primeira é a "superfície física (SF)", limitante do relevo topográfico. A segunda é a "superfície elipsoidal (SE)", limitante de um elipsóide de revolução, figura matemática gerada pela rotação de uma elipse entorno do eixo menor. A terceira é a "superfície geoidal (SG)", que limita um modelo denominado Geóide.

TORGE (1991) conceitua o Geóide como uma superfície equipotencial, que em qualquer lugar é perpendicular à vertical dada por um fio de prumo e que coincide com o nível médio não perturbado dos mares.

Devido à complexidade de desenvolvimento do modelo matemático do Geóide, adota-se para a sua representação o elipsóide de revolução. Apesar da superfície elipsoidal ser um conceito e não uma superfície real, ela é utilizada para permitir que sejam calculadas distâncias, azimutes e coordenadas elipsoidais (SCHOFIELD, 1993).
A superfície elipsoidal é muito importante para o GPS, uma vez que a componente de altura fornecida por este sistema (altura geométrica) é relativa à altura do ponto medido sobre a normal em relação ao elipsóide (SEGANTINE, 1999).

Estas superfícies de referência (geóide, elipsóide e superfície física ou topográfica) estão separadas entre si pelas seguintes alturas (SCHOFIELD, 1993):

- altitude ortométrica (H): distância entre a superfície física e a superfície geoidal tomada ao longo da vertical. É obtida através de nivelamento associado à gravimetria;
- altura geométrica (h): distância entre a superfície elipsoidal e a superfície física tomada ao longo da normal;
- ondulação ou afastamento geoidal (N): distância entre a superfície elipsoidal e a geoidal ao longo da normal.

Apresenta-se, na Figura 2.1, uma simplificação das superfícies de referência e alturas associadas, considerando o ângulo entre a normal ao elipsóide e a vertical ao geóide igual a zero.

Figura 2.1: Superfícies de referência e alturas associadas

Entre estas alturas, na Mensuração, a altitude ortométrica (H) é a mais usada. A obtenção desta altura a partir da tecnologia GPS (onde é fornecida a altura geométrica), está condicionada ao conhecimento do valor da ondulação geoidal (N).

A transformação das alturas elipsoidais (h), obtidas por GPS, em altitudes ortométricas (H), referenciadas ao geóide, é dada pela seguinte fórmula aproximada (quando o desvio da vertical e curvatura da linha de força são negligenciados), a qual
relaciona essas quantidades com a ondulação geoidal (N) (GEMAEL, 1981 apud VERONEZ, 1998):

\[H = h \pm N \] \hspace{1cm} (2.1)

2.3 As distâncias na Mensuração

As distâncias juntamente com os ângulos são as medições executadas nos levantamentos topográficos e geodésicos convencionais. Além da distância obtida no campo (distância inclinada), outras distâncias são consideradas na Mensuração para que sejam alcançados os objetivos da Cartografia.

2.3.1 A distância inclinada e a distância horizontal

A distância horizontal é dada pela projeção da distância inclinada sobre a linha de visada horizontal que passa pelo ponto onde está estacionado o aparelho de medida (figura 2.2).

Figura 2.2: Distâncias horizontal e inclinada
Onde:

DH \quad \text{distância horizontal;}

DI \quad \text{distância inclinada;}

\alpha \quad \text{ângulo de inclinação;}

Z \quad \text{ângulo zenital.}

Da figura 2.2 têm-se:

\begin{align*}
DH &= DI \cdot \cos \alpha \\
DH &= DI \cdot \sin Z
\end{align*}

(2.2)

(2.3)

2.3.2 A distância esférica

Para a extensão do plano topográfico, as diferentes superfícies de referência de nível são consideradas esféricas, existindo para cada ponto um arco de circunferência concêntrico passando por ele (figura 2.3).

Figura 2.3: Superfícies de nível esféricas e concêntricas
As distâncias situadas sobre estas superfícies são chamadas de esféricas. Do esquema apresentado na figura 2.3 pode-se obter as seguintes relações:

\[
\frac{s_0}{R_o} = \frac{s_p}{(R_o + H_p)} = \frac{s_q}{(R_o + H_q)}
\]

(2.4)

onde:

- \(s_0\): distância esférica ao nível do geóide;
- \(s_p\): distância esférica ao nível de P;
- \(s_q\): distância esférica ao nível de Q;
- \(R_o\): raio médio da esfera terrestre;
- \(H_p\): altitude do ponto P;
- \(H_Q\): altitude do ponto Q.

A generalização da distância esférica ao nível de um ponto P é dada pela seguinte equação:

\[
s_H = \left(1 + \frac{H_p}{R_o}\right) \cdot s_0
\]

(2.5)

Segundo SILVA et al (1999), para os cálculos práticos pode-se operar com valores de Red em ppm (parte por milhão), utilizando o valor da altitude ortométrica média da região. Tem-se, assim, que a redução ao nível do mar pode ser dada por:

\[
Red = -\frac{H}{R_o + H_p} \cdot 10^6
\]

(2.6)
onde,
\[R_{\text{e}} \] raio médio da esfera terrestre;
\[H \] altitude do ponto em que se tem a distância esférica.

2.3.3 A distância plana

De acordo com SILVA et al (1999) a distância plana é uma distância deformada que varia de acordo com o tipo de relação do sistema de projeção adotado. O Brasil utiliza o sistema de projeção UTM (Universal Transverso de Mercator) para a representação cartográfica de suas cartas. Este sistema será detalhado no item 2.5.

2.4 Sistemas de Coordenadas

2.4.1 Sistema de Coordenadas Geográficas Astronômicas e Geodésicas

A posição de um ponto na superfície terrestre é definida por coordenadas geográficas. Estas coordenadas, latitude e longitude, são definidas em função da medida do ângulo a partir do centro de massa da Terra [SEGANTINE, 1999].
Para PACILÉO NETO, 1997 apud FRANÇOSO, 1999 a localização de um ponto da superfície terrestre pode ser definida por um sistema de coordenadas naturais (astronômicas) ou por um sistema de coordenadas geométricas (geodésico). As coordenadas naturais são a latitude astronômica, a longitude astronômica e a altura ortométrica (H). O sistema geodésico de coordenadas é constituído pela latitude geodésica, pela longitude geodésica e pela altura geométrica (h) referentes a um elipsóide de revolução que geometricamente mais se aproxima da forma da Terra.

Enquanto as coordenadas geográficas astronômicas são referenciadas a direção vertical do lugar que passa pelo ponto analisado (direção associado ao geóide), as coordenadas geográficas geodésicas são referenciadas a direção normal (direção associada ao elipsóide) [SCHOFIELD, 1993].

2.4.2 Sistema de Coordenadas Geográficas Cartesianas

Com a utilização da superfície elipsoidal para representação da superfície terrestre deu-se a necessidade de estabelecimento de um sistema de referência para as coordenadas. O sistema estabelecido é conhecido como "sistema cartesiano". A origem deste sistema de eixos é no centro de massa da Terra. O eixo “Z” coincide com o eixo médio de rotação terrestre, os eixos “X” e “Y” estão contidos no plano do equador terrestre, sendo o eixo “X” tomado na direção do semi-eixo maior do elipsóide.

Segundo SCHOFIELD (1993), o sistema de coordenadas cartesianas não é um sistema conveniente em termos de altura. Como a ordenada Z está vertical ao plano equatorial horizontal e alturas elipsoidais (h) estão na direção normal a superfície do elipsóide, um crescimento em h não produz igual crescimento em Z (exceto nos pólos).

Através do Sistema de Posicionamento Global (GPS) se determina matematicamente as coordenadas cartesianas de um ponto (WELLS, 1986). Esses valores não são usualmente utilizados pela comunidade portanto, são transformadas em coordenadas geográficas geodésicas: latitude e longitude e altura elipsoidal (h).
2.4.3 Sistema de Coordenadas Plano-Retangulares

Segundo a NBR 14166, as coordenadas plano-retangulares são: "coordenadas cartesianas definidoras da localização planimétrica dos pontos medidos no terreno e representados, no plano do sistema topográfico local, por intermédio de um sistema cartesiano ortogonal, cuja origem está no ponto de tangência deste plano com a superfície de referência adotada pelo Sistema Geodésico Brasileiro – SGB"

A origem do sistema de coordenadas plano-retangulares coincide com a do sistema topográfico local. A orientação deste sistema é dada pelo eixo das ordenadas (Y). Este eixo é coincidente com a linha meridiana, sendo positivo em sentido ao norte geográfico. O eixo das abscissas (X) é positivo em sentido ao leste. As coordenadas plano-retangulares são elevadas a um plano topográfico de projeção ao nível médio da área do sistema topográfico, o que caracteriza o plano topográfico local.

2.4.4 Sistema de Coordenadas Topográficas Local

Em muitos casos, ao invés de trabalhar com as coordenadas planas de um determinado sistema de projeção, pode ser interessante trabalhar com coordenadas plano-retangulares do sistema topográfico local, ou seja, sobre um sistema plano de coordenadas localizado ao nível da superfície topográfica.

A NBR14166 assim define o sistema topográfico local: "Sistema de representação, em planta, das posições dos pontos de um levantamento topográfico em relação a uma origem de coordenadas geodésicas conhecidas. Neste sistema, todos os ângulos e distâncias das operações topográficas da determinação dos pontos do levantamento topográfico, são pressupostos como projetados em verdadeira grandeza sobre o plano tangente à superfície de referência (elipsóide de referência) do sistema geodésico adotado, na origem, cujas coordenadas geodésicas são conhecidas."

As características do sistema topográfico local definidas na NBR13133 são:

a) as projetantes são ortogonais à superfície de projeção;
b) a superfície de projeção é um plano normal à vertical do lugar no ponto da superfície terrestre considerado como origem do levantamento, sendo seu referencial altimétrico referido ao datum vertical brasileiro;

c) as deformações máximas inerentes à desconsideração da curvatura terrestre e à refração atmosférica têm as seguintes expressões aproximadas:

\[\Delta l (mm) = -0,004 \cdot l^3 (km) \]
\[\Delta h (mm) = +78,5 \cdot l^2 (km) \]
\[\Delta h' (mm) = +67 \cdot l^2 (km) \]

onde:
\[\Delta l \] deformação planimétrica devida à curvatura da Terra, em mm;
\[\Delta h \] deformação altimétrica devida à curvatura da Terra, em mm;
\[\Delta h' \] deformação altimétrica devida ao efeito conjunto da curvatura da Terra e da refração atmosférica, em mm;
\[l \] distância considerada no terreno, em km.

d) o plano de projeção tem sua dimensão máxima limitada a 80 km, a partir da origem, de maneira que o erro relativo, decorrente da desconsideração da curvatura terrestre, não ultrapasse 1/35.000 nesta dimensão e 1/15.000 nas imediações da extremidade desta dimensão;

e) a localização planimétrica dos pontos, medidos no terreno e projetados no plano de projeção se dá por intermédio de um sistema de coordenadas cartesianas, cuja origem coincide com a do levantamento topográfico;

f) o eixo das ordenadas é a referência azimutal, que, dependendo das peculiaridades do levantamento, pode estar orientado para o norte geográfico, para o norte magnético ou para uma direção notável do terreno, julgada importante.
O plano topográfico local é definido como um plano elevado ao nível médio do terreno na área de abrangência do sistema topográfico local, segundo a normal à superfície de referência no ponto de origem do sistema (ponto de tangência do plano topográfico de projeção no elipsóide de referência) (NBR14166).

2.5 Sistema de Projeção UTM

As projeções cartográficas são ferramentas utilizadas na cartografia para representar a superfície curva sobre o plano, com um mínimo de distorção (ROCHA, 1998). Dentre os sistemas de projeção cartográfica, o sistema UTM (Universal Transversa de Mercator) se destaca por sua praticidade para permitir representar áreas da superfície terrestre sobre um plano com poucas deformações.

O sistema UTM foi desenvolvido em 1569 pelo belga Gerard Kremer (Mercator), a partir de modificações efetuadas na projeção conforme de Gauss (uma rotação de 90º do eixo do cilindro no plano do Equador) [CHAVES, 1998]. São utilizadas como superfícies de projeção, 60 cilindros transversos e secantes a superfície de referência (elipsóide). Cada cilindro é responsável pela representação de um fuso de 6º de amplitude em longitude, contados a partir do antemeridiano de Greenwich (figura 2.4).

Figura 2.4: Sistema de Projeção UTM
Os fusos são numerados de 1 a 60, possuindo cada um deles um Meridiano Central (MC). Para representar cada fuso é usada a sua numeração ou a longitude do seu meridiano central.

A origem de um fuso é dada pela interseção de duas linhas retas correspondentes ao meridiano central do fuso e ao equador terrestre. Todos os demais meridianos sobre o fuso são representados por linhas côncavas em relação ao meridiano central e todos os demais paralelos são representados por linhas côncavas em relação ao pólo mais próximo (figura 2.5).

Figura 2.5: Origem do fuso no sistema UTM

As principais características da projeção UTM são (NBR13133):

a) projeção conforme, cilíndrica e transversa;

b) decomposição em sistemas parciais, correspondentes aos fusos de 6º de amplitude, limitados pelos meridianos múltiplos deste valor, havendo coincidência com os fusos da Carta Internacional ao Milionésimo (escala 1: 1.000.000)

c) para o Brasil, foi adotado o Elipsóide Internacional de 1967, cujos parâmetros são:

- a (semi-eixo maior do elipsóide) = 6.378.160.000 m;

- f (achatamento do elipsóide) = 1/ 298,25 ;
d) coeficiente de redução de escala $k_0 = 0.9996$ no meridiano central de cada fuso (sistema parcial);

e) origem das coordenadas planas, em cada sistema parcial, no cruzamento do equador com o meridiano central;

f) as coordenadas planas, abscissa e ordenada, são acrescidas, respectivamente, as constantes $10.000.000$ m no Hemisfério Sul e 500.000 para leste;

g) para indicações destas coordenadas planas, são acrescentadas as letras N e E ao valor numérico, sem sinal, significando, respectivamente, para norte e para leste;

h) numeração dos fusos, que segue o critério adotado pela Carta Internacional ao Milionésimo, ou seja, de 1 a 60, a contar do antemeridiano de Greenwich para leste.

Dentro de um mesmo fuso as coordenadas leste UTM podem variar de aproximadamente 166,7 km a 666,7 km. Quando são obtidos valores de coordenadas externos a esses limites tem-se então que calcular o novo valor da coordenada no fuso no qual o ponto se encontra. Por exemplo, obtendo-se o valor de 150 km para a coordenada leste de um dado ponto no fuso de número 23, o valor desta coordenada será de 650 km no fuso de número 22.

Projetos efetuados sobre cartas produzidas no sistema UTM requerem muita atenção e detalhes que são apresentados no capítulo 6.

2.5.1 O fator de escala K

Para um determinado fuso, com exceção das linhas do elipsóide interceptadas pelo cilindro, todas as demais distâncias apresentam-se alteradas por um fator de deformação (K) . Este fator expressa, em termos de comprimento, a deformação ocorrida nas distâncias curvas devido à sua planificação sobre um cilindro, produzindo valores maiores ou menores que os originais (distâncias curvas).

Para diminuir o valor absoluto das deformações tomou-se o coeficiente de deformação K_0 igual a 0,9996 para o Meridiano Central do fuso. Desta forma, passam
a existir áreas do fuso com deformações positivas (ampliações) e áreas com deformações negativas (reduções) (Figura 2.6).

![Diagrama de coeficiente de deformação K](image)

As fórmulas utilizadas para o cálculo do fator de escala podem ser encontradas em literatura específica. SILVA et al (1999) apresenta para o cálculo simplificado do fator de escala, a seguinte equação:

\[
k = k_0 \cdot \left(1 + \frac{E'^2}{2 \cdot R_o^2}\right)
\]

onde,

- \(k\) fator de escala;
- \(k_0\) fator de escala no meridiano central igual a 0,9996;
- \(E'\) ordenada entre o meridiano central e o ponto considerado;
- \(R_o\) raio médio de curvatura terrestre.

Sendo o fator de escala um valor pontual, os pontos inicial e final correspondentes a uma determinada distância apresentam diferente fator \(k\). Para distâncias inferiores a 15 km, pode-se trabalhar com o valor médio dos fatores \(k\) de cada ponto (SILVA et al, 1999).
2.5.2 A convergência Meridiana

As quadrículas da projeção UTM formam um sistema de coordenadas retangulares, com a direção Norte-Sul sendo representada pelo eixo Y. Sendo assim, a direção Norte é uma linha reta orientada e é conhecida como Norte de Quadrículas (NQ). Por outro lado, a direção Norte Geográfica (NG) é representada na projeção UTM por uma linha curva, côncava em relação ao meridiano central. Entre as duas direções citadas é formado um ângulo denominado de convergência meridiana (C). Este ângulo é variável a cada ponto e possui sinais convencionais segundo a posição das direções norte envolvidas (figura 2.7).

![Figura 2.7: Convergência Meridiana](image)

As fórmulas utilizadas para o cálculo da convergência meridiana podem ser encontradas em literatura específica, sendo apresentados cálculos em função das
coordenadas geodésicas e em função das coordenadas UTM. Segundo SILVA et al (1999), o valor aproximado da convergência meridiana pode ser calculado pela seguinte fórmula:

\[C = \Delta \lambda \cdot \text{sen} \varphi \]

onde,

- \(C \) convergência meridiana;
- \(\Delta \lambda \) diferença de longitude entre o ponto considerado e a longitude do meridiano central;
- \(\varphi \) latitude do ponto considerado.

2.5.3 A redução angular

Uma linha que une dois pontos da superfície de referência elipsoidal ou esférica é representada em uma superfície plana (projeção) por uma corda, enquanto na superfície elipsoidal esta linha é um comprimento de arco sendo, portanto, curva. Este ângulo formado entre a corda e a tangente à curva é denominado de ângulo de redução angular, e é representado por \(\delta \).

Segundo SILVA et al (1999), para as dimensões dos trabalhos topográficos, este ângulo é muito pequeno e pode ser desconsiderado. Na distância de 10 km a diferença entre a corda e o arco é da ordem de 6 mm.

2.6 Sistema Terrestre de Referência (ECEF\(^5\))

Em todas as áreas que trabalham e necessitam de posicionamento, torna-se necessária a caracterização de um sistema de referência. Assim, posições de pontos na superfície física da Terra devem estar atreladas a um referencial.

\(^5\) A sigla ECEF advém de Earth Centered Earth Fixed System. O sistema ECEF é também conhecido pela sigla CTS "Conventional Terrestrial System".
O Sistema Terrestre de Referência tem sido utilizado para o posicionamento de pontos a partir de estações de observações e para a descrição de resultados da Geodésia por satélites (SEGANTINE, 1999).

Segundo MCCARTHY (1992) apud SEGANTINE (1999) um Sistema de Referência Convencional Terrestre (CTRS) é definido por:

- sistema geocêntrico com centro de massa definido para a Terra, incluindo oceanos e atmosfera;
- escala de um sistema terrestre local, dentro do significado da teoria gravitacional relativística;
- orientação em obediência a do BIH (Bureau International de L’Heure) para a época de 1984;
- evolução temporal da orientação não deve permitir rotação global residual com respeito a crosta, o que se convencionou denominar NNR (no-net-rotation).

Utilizando-se o sistema GPS, no método diferencial, se determina matematicamente as componentes cartesionas, dX, dY e dZ no ECEF, do vetor definido pelas antenas dos equipamentos. Com estas componentes e escolhendo-se um elipsóide de revolução, pode-se calcular as coordenadas geodésicas de um ponto em relação a outro, tomado como referência.

A tabela 2.1 apresenta alguns elipsóides utilizados como referência seguidos de alguns de seus parâmetros definidores.

TABELA 2.1: Elementos definidores dos elipsóides de referência utilizados

<table>
<thead>
<tr>
<th>Elipsóide</th>
<th>Semi-eixo maior (a)</th>
<th>Achatamento (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESSEL (1841)</td>
<td>6 377 397,155</td>
<td>1/299,1528128</td>
</tr>
<tr>
<td>HAYFORD (1909)</td>
<td>6 378 398</td>
<td>1/297</td>
</tr>
<tr>
<td>SAD-69</td>
<td>6 378 160</td>
<td>1/298,25</td>
</tr>
<tr>
<td>WGS-72</td>
<td>6 378 135</td>
<td>1/298,26</td>
</tr>
<tr>
<td>WGS-84</td>
<td>6 378 137</td>
<td>1/298,257223563</td>
</tr>
</tbody>
</table>
Segundo SEEBER (1993) quando se adota o sistema WGS-84 como referência existe um erro de posicionamento da ordem de ± 1 a 2 m. A tendência atual é a utilização de um sistema mais preciso, o ITRF⁶ que leva a uma precisão da ordem de 0,1 m. Maiores detalhes sobre o sistema ITRF ver SEGANTINE, 1999.

No Brasil, para fins de mapeamento, existem três sistemas de referência de coordenadas para levantamentos a partir de observações por satélites. A Geodésia e a Cartografia usam o SAD-69 (South American Datum - 69), com exceção da marinha e aeronáutica que usam o WGS-84 por força de acordos internacionais. Parte da produção cartográfica do País está referenciada ao Elipsóide Internacional de Hayford de 1924, na representação denominada "CÓRREGO ALEGRE", precursor do SAD-69 (SANTOS, 1999).

A existência de distintos sistemas de referência na Geodésia apresenta grandes inconvenientes. A diferença entre estes três sistemas é da ordem de dezenas de metros, isto é, um mesmo ponto sobre a superfície da Terra pode ter coordenadas com valores numéricos que diferem em dezenas de metros se determinadas em cada um deles. No Brasil, os parâmetros de transformação entre estes sistemas de coordenadas são fornecidos pelo IBGE (Órgão nacional responsável pela Rede Geodésica de Apoio fundamental do Brasil).

2.7 Sistema Geodésico Brasileiro (SGB)

A NBR13133 assim define o Sistema Geodésico Brasileiro (SGB): "conjunto de pontos geodésicos descritores da superfície física da Terra, implantados e materializados na porção da superfície terrestre delimitada pelas fronteiras do país, com vistas às finalidades de sua utilização, que vão desde o atendimento a projetos internacionais de cunho científico, passando pelas amarrações e controles de trabalhos geodésicos e cartográficos, até o apoio aos levantamentos no horizonte topográfico, onde prevalecem os critérios de exatidão sobre as simplificações para a figura da Terra".

⁶ A sigla ITRF advém de International Terrestrial Reference Frame.
O IBGE, por vários anos, adotou para o Brasil o Elipsóide Internacional de Hayford de 1924, na representação que se denomina "CÓRREGO ALEGRE". Este datum possuía como ponto de partida um vértice da triangulação, localizado próximo a cidade de Uberaba (MG) e que constituía a sua origem. Os elementos de fixação e orientação deste elipsóide são os seguintes:

- \(\phi_0 \) (latitude) = 19°45'15,14" S
- \(\lambda_0 \) (longitude) = 48°57'42,75" W
- \(Az_0 \) (Azimute _geodésico) = 128°12'48,96" da direção Córrego Alegre-Chapada das Areias;
- \(N_0 \) (afastamento _geoidal) = 0,0m
- \(\xi, \eta \) (componentes _da _vertical) = 0,0m

A partir de 1977 o SGB passou a adotar a imagem geométrica da Terra como sendo a definida pelo Elipsóide de Referência Internacional de 1967, aceito pela Assembléia Geral da Associação Geodésica Internacional que teve lugar em Lucerne, no ano de 1967. O datum planimétrico mudou de Córrego Alegre (MG) para Chuá (MG). O referencial altimétrico atual coincide com a superfície equipotencial que contém o nível médio do mar, definido pelas observações mareográficas tomadas na baía de IMBITUBA, no litoral sul do Estado de Santa Catarina.

O Sistema Geodésico Brasileiro integra o sul-americano de 1969 (SAD-69), definido a partir dos parâmetros:

a) Figura geométrica para a Terra
 Elipsóide Internacional de 1967:
 a (semi-eixo maior) = 6 378 160,000 m
 f (achatamento) = 1/298,25

b) Orientação
Geocêntrica: Eixo de rotação paralelo ao eixo de rotação da Terra; plano meridiano origem paralelo ao plano meridiano de GREENWICH, como definido pelo BIH;

Topocêntrica: No vértice CHUÁ da cadeia de triangulação do paralelo 20° S:

- $\phi_{ch}(latitude) = -19°45'41,6527" S$;
- $\lambda_{ch}(longitude) = -48°06'04,0639" W$;
- $Az_{ch}(azimute _geodésico) = 271°30'04,05" da direção vértice CHUÁ - Uberaba$;
- $N_{ch}(afastamento _geoidal) = 0,0m$
- $\xi_{ch}(componente _meridiana) = -0,31"$
- $\eta_{ch}(componente _1" meridiana) = 3,59"$

Muitas regiões e estados brasileiros possuem cartas e mapas referenciados ao datum de Córrego Alegre. Portanto, é importante verificar cuidadosamente a base cartográfica utilizada na confecção da carta ou mapa em questão.
3. O SISTEMA DE POSICIONAMENTO GLOBAL (GPS)

3.1 Breve histórico dos sistemas de navegação

Desde o início da história da humanidade o homem tem procurado corpos celestes para a navegação. Alguns destes homens tornaram-se estudiosos dos astros e desenvolveram formas de conduzirem suas vidas baseados nas posições dos corpos celestes. Impulsionados, principalmente, pelo espírito conquistador passaram a percorrer distâncias cada vez maiores. Tornaram-se, então, necessárias as viagens além-mar, o que somente foi possível graças a navegação orientada pelos astros.

A orientação pelos astros celestes foi por muito tempo a única forma encontrada pelo homem para navegar. No entanto, este tipo de orientação depende da visibilidade aos astros, o que a torna imprópria para a navegação ao longo das 24 horas do dia.

Como resultado prático do desenvolvimento teórico do efeito Doppler, a marinha americana partiu para o desenvolvimento de um sistema de navegação a partir de satélites artificiais. Em 1964 tornou-se operacional o precursor dos sistemas

Devido a duas grandes falhas do sistema TRANSIT, foi desenvolvido o Sistema de Posicionamento Global (GPS) para substituí-lo. O principal problema do sistema TRANSIT é o grande intervalo de tempo sem cobertura de um número de satélites suficientes para o posicionamento de pontos. O segundo problema é a baixa precisão de navegação deste sistema (HOFMANN–WELLENHOF et al, 1997).

3.2 Princípio de Funcionamento do GPS

O sistema GPS foi desenvolvido em 1973 pelo Departamento de Defesa dos EUA – DoD para atender simultaneamente a marinha e a força aérea e teve como meta fornecer, em tempo real, a posição, velocidade, rumo e hora certa para um veículo, independente de sua atitude e localização na Terra, isto é, desde um navio até um avião supersônico em qualquer ponto na Terra (PARKINSON, 1983).

Para alcançar estas metas, o sistema não poderia estar baseado em algumas estações terrestres, no efeito Doppler e na fase da onda transmitida. Dessa forma o sistema partiu para o princípio da medição da distância do veículo para pontos de posição conhecida. A solução foi encontrada com uma constelação de 24 satélites, distribuídos em 6 planos orbitais inclinados de 55° em relação ao Equador e uma altura aproximada de 20 000 km. Os satélites, dotados de padrões atômicos de freqüência e tempo, transmitem sinais horários de alta precisão na faixa de 1500 MHz. Esta faixa foi escolhida devido a sua baixa susceptibilidade das interferências da ionosfera, atmosfera neutra e condições climatológicas. A determinação da posição espacial instantânea do veículo, em um sistema cartesiano geocêntrico, X, Y e Z, é obtida pela solução de um sistema de equações envolvendo um mínimo de 3 distâncias medidas a 3 satélites “visíveis” simultaneamente por uma antena receptora de sinais de GPS.
Dentro de um receptor de GPS, as distâncias são determinadas pelo tempo de propagação dos sinais horários, corrigidas dos efeitos da ionosfera e da atmosfera neutra. A posição instantânea dos satélites são calculadas a partir dos sinais horários e informações, transmitidas na forma de tabelas digitais, dos parâmetros orbitais Keplerianos.

Os satélites transmitem os sinais em duas frequências, denominadas de L1 em 1500 MHz e L2 em 1200 MHz, e dois sinais horários, C/A (Coarse Acquisition) necessário para a inicialização do receptor, com resolução temporal de 1 microsegundo e o sinal P, com resolução de 0,1 microsegundo.

Lembrando que na velocidade da luz 1 microsegundo representa 300 metros, os sinais horários permitem determinar diretamente a distância ao satélite respectivamente, com resolução de 300 metros e 30 metros. Mediante técnicas de eletrônica é possível realizar interpolações e obter resoluções de 20 e 3 metros. Logo, no início do desenvolvimento do sistema, o DoD decidiu degradar e encriptar os sinais horários para não entregar à sociedade civil um sistema tão sofisticado. Atualmente o sinal C/A não se encontra mais degradado. Com a desativação do efeito S/A (selective availability), ocorrida em 1º de maio de 2000, que afetava o posicionamento absoluto, aquele em que se emprega somente um equipamento para observação dos sinais de código C/A emitidos pelos satélites, as coordenadas absolutas passaram a apresentar maior acurácia. De acordo com BUENO (2000), mesmo sem a influência do efeito S/A as posições determinadas no método absoluto ainda podem apresentar discrepâncias acima de dezenas de metros.

Para um levantamento expedito de uma gleba, um único receptor portátil de GPS se tornou uma ferramenta eficiente mas não adequada para um levantamento topográfico. A Figura 3.1 apresenta um levantamento realizado com um receptor portátil adaptado em um veículo percorrendo a cidade de São Carlos.
A diferença entre a via e a linha de percurso obtida com GPS em modo absoluto foi da ordem de 5 metros. No entanto, podem ocorrer diferenças maiores como pode ser visto na rotatória (vista ampliada na figura 3.1) comprovando a pouca precisão deste método.

3.3 Dados observados com GPS

Conceitualmente, as observações GPS são distâncias obtidas através da medida do tempo ou através das diferenças de fase baseadas na comparação entre os sinais recebidos e os sinais gerados pelo receptor (HOFMANN –WELLENHOF et al, 1997). Assim sendo existem dois tipos de dados observados com GPS: código (pseudodistância) e fase da portadora.

3.3.1 Posicionamento usando o código

LEICK(1995) define a pseudodistância como uma medida de distância entre o satélite e a antena receptora, com referência às épocas de emissão e recepção dos códigos.
WELLS et al. (1986) definem a observação da pseudodistância, como sendo “a diferença entre o tempo de transmissão (na escala de tempo do satélite) e o tempo de chegada (na escala de tempo do receptor) de um particular sinal transmitido pelo satélite, multiplicado pela velocidade da luz”.

O tempo exato de transmissão do sinal é medido pela correlação de iguais códigos PRN (“pseudorandom noise”) gerados pelos satélites com aqueles gerados internamente pelo receptor. Erro de relógio do receptor e/ou dos satélites causará medida de pseudodistância diferente da distância geométrica correspondente as épocas de emissão e recepção dos sinais (LEICK, 1995).

A observação da pseudodistância pode ser feita tanto no código P quanto no código C/A. Como o código C/A se repete a cada milisegundo, que corresponde a uma distância de 300km percorrida pelo sinal, e como os satélites estão a uma distância de aproximadamente 20000km da Terra, as pseudodistâncias são ambíguas. No entanto, esta ambigüidade pode ser resolvida pela introdução aproximada (com algumas poucas centenas de quilômetros) das coordenadas do ponto correspondente a antena receptora (LACHAPELLE, 1991 apud HOFMANN–WELLENHOF et al., 1997).

O método da pseudodistância destaca-se por sua aplicabilidade e simplicidade para o processamento dos dados. Este método apresenta como grande vantagem a possibilidade de obtenção das coordenadas iniciais para os demais pontos além de gerar correções precisas para o relógio do receptor. Devido ao alto ruído existente nas observações a partir deste método não é garantido uma precisão geodésica (SEGANTINE, 1999).

A precisão da pseudodistância derivada de medidas do código tem sido, tradicionalmente, da ordem de 1% do comprimento de onda, ou seja, 3m para pseudodistâncias a partir do código C/A e 30 cm para aquelas a partir do código P. No entanto, devido ao avanços alcançados na eletrônica, precisão da ordem de 0,1% do comprimento de onda é possível de ser alcançada (HOFMANN–WELLENHOF et al., 1997).
3.3.2 Posicionamento usando a fase da portadora

Na década de 70 um grupo de pesquisadores do Massachusetts Institute of Technology's (MIT) demonstraram a viabilidade do uso do Sistema de Posicionamento Global NAVSTASR/GPS para a determinação de coordenadas com precisão centimétrica utilizando, pela primeira vez, a fase da portadora no processamento das observações coletadas (HOFMANN –WELLENHOF et al, 1997).

Com as observações da fase da portadora a distância entre o satélite e a antena é, conceitualmente, obtida mediante o número inteiro de ciclos (N) mais a fração de ciclos (\(q>\)), existentes ao longo da trajetória do sinal vindo do satélite até alcançar a antena receptora, multiplicados pelo comprimento de onda da portadora (L1=19,05cm; L2=24,45cm). No entanto, com um único receptor de GPS não é possível se conhecer N (também denominado de ambigüidade inicial de ciclos). Esta ambigüidade pode ser determinada com técnicas matemáticas de dupla-diferença de fase, onde são utilizados dois receptores GPS.

Assim como nas observações do código, as observações da fase da portadora são ambíguas. Na portadora L1 se tem uma ambigüidade a cada 19,05cm, enquanto que na portadora L2 esta ambigüidade ocorre a cada 24,45cm. Observa-se, portanto, a importância da perfeita determinação do valor de N nas observações da fase.

3.4 Aspectos gerais do multicaminhamento dos sinais de GPS

Segundo LEICK (1995) o multicaminhamento é uma das maiores fontes de erro no posicionamento de pontos com GPS. Os sinais vindos dos satélites podem alcançar a antena receptora por múltiplos caminhos devido à reflexão dos sinais. Este efeito, que afeta tanto as observações do código (C/A e P) como as observações da fase da portadora, geralmente, ocorre por reflexões causadas por superfícies localizadas
próximas ao receptor, podendo ser superfícies horizontais, verticais ou inclinadas (figura 3.2).

Figura 3.2: Multicaminhamento de sinais. Adaptado de HOFMANN WELLENHOF et al. (1997).

Não existe um modelo geral, representativo do efeito do multicaminhamento, devido ao fato do fenômeno ocorrer em situações geométricas arbitrariamente diferentes que afetam ambas as observações, do código e da portadora. O efeito do multicaminhamento causado sobre observações do código é duas vezes maior do que sobre as das fase da portadora, onde é da ordem de milímetros, no entanto, em casos extremos, podem ocorrer valores da ordem de 4 a 5 centímetros (SEGANTINE, 1999).

HOFMANN – WELLENHOF et al. (1997) cita algumas alternativas para reduzir os efeitos do multicaminhamento:

- Colocar a antena diretamente sobre o terreno, sem o tripé, a fim de eliminar caminhos indiretos. Mesmo assim podem ocorrer reflexões verticais. Recomenda-se evitar possíveis superfícies reflectoras próximas dos receptores;
- Seleccionar antenas que usem polarização de sinais. Os sinais GPS são polarizados circularmente, à direita ou à esquerda, enquanto que os sinais refletidos são polarizados com sentido oposto ao original;
- Usar filtros digitais, antenas de banda larga e planos terrestres de rádio frequência, que reduzem a interferência dos sinais dos satélites nas condições de pequenos ângulos de elevação;
• Omitir, se possível, os satélites de baixa elevação, pois os efeitos do multicaminhamento são mais acentuados em satélites de pequena elevação.

3.5 A perda de ciclos ("cycle slips")

De acordo com LEICK (1995), a perda de ciclos é um súbito salto de um número inteiro de ciclos que ocorre nas observações da fase da portadora. A parte fracionária da fase não é afetada por esta descontinuidade na sequência da observação.

Os motivos para a perda de ciclos podem ser (SEEBER, 1993):

b) Dependentes da observação:

• Obstruções do sinal devido à presença de árvores, edifícios, pontes, caminhões etc.;
• Ruído no sinal causado por multicaminhamento e cintilações (variações na amplitude e fase do sinal) ionosféricas;
• Satélites de baixa elevação, representando sinais mais fracos devido a maior distância percorrida por estes sinais;
• Funcionamento ruim dos osciladores dos satélites;

b) Dependentes do receptor:

• Sinais fracos, particularmente causados por interferência no sinal;
• Inclinação da antena em aplicações cinemáticas;
• Falha no programa do receptor etc.

É possível detectar e corrigir as perda de ciclos. Receptores mais modernos possuem algoritmos que permitem que todas ou a maioria das perdas de ciclos sejam identificadas (SEEBER, 1993). As correções da perda de ciclos são feitas para todas as observações subsequentes da fase, para o satélite em questão e a portadora é fixada do valor encontrado (HOFMANN –WELLENHOF et al., 1997)
3.6 Levantamentos com GPS

Desde o advento do sistema GPS e início de sua utilização pela comunidade civil, muitos levantamentos de poligonais terrestres são executados com base nesse sistema. No entanto, os métodos de levantamento GPS são muito diferentes dos métodos usados na Topografia convencional. Essas diferenças vão desde fundamentos teóricos envolvidos até aspectos de ordem prática, como por exemplo operações e instrumentos necessários para obtenção dos resultados.

3.6.1 Planejamento do trabalho

Em levantamentos com GPS, o planejamento das operações e a seleção dos pontos são mais críticos que em trabalhos convencionais. Segundo SEGANTINE (1999), para posicionamento de pontos com GPS deve-se fazer um planejamento cuidadoso da campanha que envolva:

- Tipo de trabalho, número de pontos e precisão necessária;
- Conexão com pontos de controle existentes;
- Transformação para um sistema de coordenadas local;
- Melhor maneira para observar e processar os dados;
- Manutenção de alta precisão mantendo as linhas bases tão pequenas quanto sejam possíveis;
- Uso de estações de referência temporárias;
- Verificação da necessidade de linhas bases independentes;
- Uso de duas estações de referência;
- Uso de boas janelas de observação (período com elevada quantidade de satélites observáveis simultaneamente);
- Observações noturnas para linhas bases longas;
• Em trabalhos de alta precisão, o rastreio de poucos pontos para uma mesma janela de observação.

Segundo SEEBER (1993) e HOFMANN -WELLENHOF et al, (1997), a escolha dos pontos a serem posicionados com GPS deve considerar:

• Visão desobstruída do horizonte para ângulos superiores a 10° de elevação para as antenas da estação base e 15° para as antenas remotas;
• Localização da antena receptora, que não deve estar posicionada próxima a objetos que causem reflexão dos sinais emitidos pelos satélites;
• Fácil acesso (preferencialmente que permita a passagem de veículos para agilizar o trabalho de campo);
• Localização dos marcos em locais protegidos de vandalismos e localização distante de instalações elétricas, para evitar perturbações nos sinais vindos dos satélites.

3.6.2 O ponto de referência para o levantamento

Em levantamentos com GPS, as coordenadas de um ponto são obtidas a partir de observações diferenciais feitas sobre um ponto de referência e o ponto que está sendo posicionado.

A escolha adequada do ponto de referência é importante para a qualidade dos resultados (coordenadas) do levantamento. Isto porque a precisão dos resultados das coordenadas de todos os pontos medidos dependerá dos dados coletados pelo ponto de referência.

Para evitar que os resultados sejam influenciados por erros sistemáticos, as coordenadas do ponto de referência devem apresentar precisão da ordem de 10m no sistema de coordenadas WGS-84. A não observância desta precisão para o ponto de referência, introduzirá um erro escalar da ordem de 1 ppm nos resultados. A inexistência de ponto com coordenadas conhecidas no sistema WGS-84 ou dele derivada torna necessário realizar o processamento de um ponto simples ("single point") para ser tomado como referência. O tempo mínimo de observação sobre este
ponto é de 2 a 3 horas considerando 4 ou mais satélites e GDOP (*Geometric Dilution of Precision*) menor ou igual a 6 (SEGANTINE,1999).

3.6.3 Método de levantamento estático

O tempo das observações varia consideravelmente, dependendo (LEICK,1995):

- da capacidade do receptor (simples frequência, dupla frequência, código C/A, código P);
- das características do programa usado no pós-processamento;
- do comprimento da linha base.

Segundo HOFMANN–WELLENHOF et al (1997), em aplicações práticas de levantamentos diferenciais estáticos pode-se alcançar a precisão de ± 1 ppm para as linhas bases.

Levantamentos estáticos também incluem períodos curtos de observações (por exemplo 10 minutos), utilizando a técnica a banda larga ("wide lane") ou métodos rápido-estáticos, que são baseados na rápida resolução da ambigüidade (SEGANTINE, 1999).

De acordo com LEICK (1995), a ambigüidade é rotineiramente determinada para linhas bases curtas (menores que 50km). Para linhas bases longas a resolução da ambigüidade deve ser acompanhada por observações em novas estações para reduzir o comprimento dos vetores.

Para linhas bases da ordem de 10km, a precisão de ± (5mm + 1 ppm) pode ser alcançada utilizando métodos rápido-estáticos (HOFMANN–WELLENHOF et al, 1997).
REMONDI (1988) apud HOFMANN –WELLENHOF et al (1997) propôs um método variante do método estático, chamado de estático intermitente ou estático instantâneo ou reocupação. Neste método, um par de receptores ocupa um par de pontos por dois breves intervalos de tempo (por exemplo de 2 a 5 minutos), que são intercalados por um tempo de 50 a 120 minutos. A precisão alcançada com este método é comparável à obtida com o método estático.

3.6.4 Método de levantamento cinemático

É aquele em que, inicialmente, um dos receptores é colocado sobre um ponto com coordenadas conhecidas e o outro sobre o ponto a posicionar, coletando dados de quatro ou mais satélites por alguns minutos com o objetivo de resolver as ambigüidades. A partir deste momento, a antena localizada sobre o ponto desconhecido, chamada antena móvel, pode ser deslocada para o percurso planejado. O resultado do levantamento cinemático é a trajetória da antena móvel com relação a antena fixa no ponto estacionário. (SEGANTINE, 1999).

A resolução das ambigüidades em um levantamento cinemático pode ser feita (LEICK, 1995):
1. por ocupação de um par de estações conhecidas e realizando a troca de antenas dos receptores;
2. por um levantamento estático ou por um rápido-estático;
3. enquanto a antena móvel está em movimento.

De acordo com a técnica utilizada para resolver as ambigüidades, o método cinemático recebe diferentes denominações. É chamado de cinemático puro "On the Fly" (OTF), quando as ambigüidades são resolvidas com uma das antenas em movimento; quando as ambigüidades são resolvidas após um período em que as antenas permanecem estáticas sobre os pontos, denomina-se de semi-cinemático ou "Stop-and-Go" (LEICK, 1995).
4. A ESTAÇÃO TOTAL

4.1 Introdução

Nas últimas décadas, os levantamentos topográficos de poligonais terrestres passaram a ter como opção o uso de instrumentos eletrônicos denominados de Estações Totais. No mercado brasileiro desde o início dos anos 90, as Estações Totais já estão em empresas de engenharia e topografia, universidades, órgãos públicos e escritórios de autônomos7.

A Estação Total é um instrumento completamente integrado, que captura dados espaciais necessários à determinação de coordenadas tridimensionais. Os ângulos e distâncias são mostrados através de um sistema digital e podem ser armazenados. Sensores dentro do instrumento monitoram as medidas dos eixos, calculando os erros e aplicando correções às observações (SCHOFIELD, 1993).

Apesar de haverem sido criadas a poucas dezenas de anos, o mercado de equipamentos topográficos já dispõe de Estações Totais que incorporam grandes avanços em relação ao primeiros modelos. A grande inovação foi a possibilidade de medições de distâncias sem o uso de refletores (prismas); as medições tornaram-se mais rápidas e contam com maior precisão e maior alcance com número reduzido de prismas (RIBEIRO, 1999).

4.2 Características básicas das Estações Totais

As Estações Totais (figura 4.1) combinam três componentes básicos – um medidor eletrônico de distância (EDM), um teodolito eletrônico digital e um microprocessador em uma unidade integrada. Estes dispositivos possibilitam a medição de ângulos horizontais e verticais e a medição de distâncias inclinadas. A partir destes dados podem ser calculadas as componentes horizontal e vertical da distância, as elevações e as coordenadas dos pontos visados. Estes instrumentos podem armazenar dados internamente ou em coletores externos permitindo que estes dados sejam posteriormente transferidos à computadores.

Figura 4.1: Estações Totais

Alguns modelos de Estações Totais permitem a escolha das unidades dos ângulos e das distâncias. Também é possível escolher o tipo de ângulo (zenital, nadiral e vertical) que será usado nas medições. Para facilitar o manuseio do instrumento nas posições direta e inversa da luneta, alguns modelos possuem visor em ambos os lados do instrumento.
O tempo necessário para medir uma distância com a precisão nominal, denominado de modo normal, varia de 3 a 7 segundos conforme o instrumento e menos que 0,5 segundo com menos precisão no modo denominado rastreio (tracking) usado para se efetuar uma locação (BRINKER et al., 1993).

4.3 Medicação eletrônica de distância

Sendo as Estações Totais uma associação de um teodolito eletrônico com um medidor eletrônico de distância (EDM), o princípio utilizado para a medição de distâncias com estes equipamentos é igual ao utilizados pelos EDM.

Um grande salto em direção a facilidade e qualidade das medições de distâncias ocorreu com o desenvolvimento de equipamentos capazes de executar essas medições eletronicamente. O primeiro distanciômetro eletrônico foi introduzido em 1948 pelo Físico sueco Erick Bergstrand, após inúmeras tentativas de aprimorar os métodos de medição da velocidade da luz. Este instrumento, denominado de "geodimeter", transmitia uma luz visível e era capaz de medir distâncias de aproximadamente 40 km durante a noite.

Em 1957, foi introduzido o segundo EDM denominado de telurômetro. Projetado por T. L. Wadley na África do Sul, este instrumento transmitia sinais de rádio na faixa de microondas e era capaz de medir distâncias da ordem de 80 km ou mais, durante o dia ou a noite (BRINKER et al, 1993).

O potencial dos EDMs foi rapidamente reconhecido pela comunidade envolvida com a Mensuração. No entanto, a utilização dos EDMs somente se consagrou quando estes instrumentos tomaram-se compactos e quando a obtenção das distâncias reduzidas tornou-se imediata, não necessitando de longos cálculos matemáticos. Hoje, os EDMs são capazes de obter medições precisas de distâncias com facilidade e rapidez (BRINKER et al, 1993).
4.3.1 Princípio básico da Medicação eletrônica de distância

A medição eletrônica de uma distância é baseada na medida do tempo gasto por uma onda eletromagnética, de velocidade conhecida, para ir e voltar de um ponto a outro. Entretanto, por ser a velocidade de propagação de uma onda eletromagnética aproximadamente igual a 300.000 km/s, um erro de apenas ± 1 nanosegundo (10^{-9} s) sobre o tempo de propagação produz um erro de 15 cm na medida da distância. Portanto, esse princípio de medição não pode ser aplicado na Mensuração.

O método utilizado para medir distâncias eletronicamente com EDMs é o de comparações de fase ou medida da defasagem entre a onda emitida e a onda de retorno. Uma onda eletromagnética de alta frequência, denominada onda portadora, é modulada em amplitude com um sinal de comprimento de onda maior e emitida de maneira contínua. De uma estação "A", onde se encontra instalado o EDM, a onda portadora de sinal da energia eletromagnética é transmitida para um prisma refletor sobre uma estação "B" (figura 4.2).

![Figura 4.2: Esquema geral da medição eletrônica da distância, por caminho duplo. Adaptado de BRINKER et al (1993).](image)

O sinal parte de A vai a B e retoma para o receptor em A. O caminho percorrido por este sinal é, portanto, duas vezes a distância inclinada entre as estações A e B. O
valor dobrado da distância entre as estações é obtida pela multiplicação da quantidade de comprimentos de onda inteiros, existentes no trajeto (ida e volta) entre as estações, pelo comprimento de onda. O valor obtido é, então, dividido por dois, obtendo-se a distância inclinada entre A e B.

No entanto, nem sempre a quantidade de comprimento de ondas (N) é um número inteiro. É comum a ocorrência de valores fracionários do número de comprimento de ondas, que é determinado pelos EDMs pela medição do ângulo de fase do sinal que retorna (figura 4.3).

![Diagrama](image)

Os EDMs não podem determinar o número inteiro de comprimento de ondas existente em uma distância desconhecida. Isto porque existe uma ambigüidade gerada pelo tamanho do comprimento de onda utilizado. Para resolver este problema os EDMs transmitem sinais adicionais com comprimentos de onda maiores, sendo utilizada a diferença de fase desta onda em relação aquela inicialmente utilizada para calcular o número de comprimentos de ondas existentes na distância a ser determinada.
4.3.2 Precisão da distância eletrônica em equipamentos de uso topográfico

Para RUEGER (1980) apud CINTRA (1993) o mercado de medidores eletrônicos de distâncias da ordem de 5 a 50 km (uso geodésico) encontra-se saturado. Isto porque o número de usuários deste tipo de equipamento é pequeno, não se lançam novos modelos tecnológicos por parte dos fabricantes com muita frequência e os custos destes instrumentos são muito elevados. Além disso, o uso dos receptores GPS tem possibilitado obter distâncias com precisão e custos compatíveis com os trabalhos geodésicos.

Medidores eletrônicos de distâncias com precisão de até 1 mm ± 1 ppm/km também podem ser encontrados. Entretanto, na grande maioria dos levantamentos topográficos, o uso destes EDMs não se justifica economicamente. EDMs com esta precisão destinam-se a trabalhos como por exemplo: locação precisa de obras de maior responsabilidade (metrô, túneis, barragens); controle de deformações em obras dessa natureza; aferição de bases para calibração de outros EDMs menos precisos.

Segundo CINTRA (1993), para atender às necessidades da Topografia básica, os valores de precisão mais comuns encontrados nos EDMs são suficientes e permitem obter poligonais com erro de fechamento menor que 1:20.000. No entanto, considerando que, de modo geral, estes instrumentos são usados ao longo de um ano inteiro, deve-se verificar o alcance do equipamento em condições médias e ruins da atmosfera.

4.4 Medição de ângulo

Da mesma forma que em um teodolito ótico-mecânico clássico, a medida dos ângulos com Estações Totais ou com teodolitos eletrônicos é obtida a partir de um círculo em vidro com diferentes tipos de graduações. A principal diferença existente é que os equipamentos modernos utilizam um dispositivo de leitura eletrônico para a medição de ângulos.
Os principais componentes físicos de um sistema de medição eletrônica são (CINTRA, 1993):

1) um círculo de cristal com regiões claras e escuras (transparentes e opacas) codificadas através de um processo de fotolitografia;

2) fotodiodos detetores da luz que atravessa esse círculo graduado.

Os princípios de codificação e medição são basicamente dois: o absoluto, que fornece um valor angular para cada posição do círculo, e o incremental que fornece o valor com relação a uma origem.

No modelo incremental é utilizado um círculo de vidro com uma série de traços opacos igualmente espaçados e com espessura igual a este espaçamento (figura 4.4). O número de pulsos (“claro-escuro”) que ocorrem quando o instrumento é girado de uma posição a outra para medir um ângulo, é “contado” a partir de um fotodetector colocado de um lado do círculo que foi iluminado em seu outro lado. Convertendo-se então esse número de pulsos para a forma digital, o valor do ângulo é mostrado no visor do equipamento.

Segundo SILVA et al, (1999), através desse processo de medição, obtém-se as medidas inteiras e medidas finas, com uma precisão da ordem de 1".

Figura 4.4: Modelo simplificado do sistema de codificação incremental (CINTRA, 1993).
No modelo absoluto, a medição do ângulo é dada a partir de trilhas opacas dispostas concentricamente e não mais na posição radial (figura 4.5). O limite do número de trilhas é dado pelo raio do círculo. Associando o valor 0 (zero) quando a luz não passa e 1 (um) quando isto ocorre, e disposto uma série de diodos de forma radial, cada posição do círculo pode ser associada a um código binário de números zeros e uns, numa determinada sequência.

Figura 4.5: Sistema de codificação absoluta (CINTRA, 1993)
5. PROJETO DE VIAS

5.1 Introdução

As vias de transportes, urbanas ou rurais, tem sido por muitos anos construídas utilizando basicamente os mesmos procedimentos. Em resumo, a partir de informações técnicas obtidas no campo, em uma fase conhecida como anteprojeto, são elaborados os projetos finais, conhecidos como projetos executivos, que são utilizados para a locação da via. Distinguem-se, portanto, duas fases necessárias à execução de projetos: a de campo (obtenção dos dados) e a de escritório (tratamento dos dados e apresentação dos resultados).

Na etapa de campo, são realizados os levantamentos destinados a obtenção das coordenadas espaciais de pontos da área que permitam a representação gráfica da faixa de terreno onde a via será construída, em especial, que permitam a determinação do relevo do terreno. Em projetos de engenharia, usualmente as medições são obtidas a partir de levantamentos topográficos, através de instrumentos como teodolitos eletrônicos, níveis digitais, Estações Totais etc.

Atualmente, as operações de campo já podem ser realizadas a partir de sistemas automatizados que utilizam equipamentos de medição juntamente com computadores portáteis. Segundo VEIGA (2000), os primeiros sistemas voltados para este tipo de aplicação têm suas origens no início da década de 90. Atualmente o desenvolvimento e aperfeiçoamento destes sistemas têm sido uma das estratégias de grandes empresas ligadas à área de levantamentos.

Os trabalhos de escritório, que compreendem a realização de numerosos cálculos e desenhos a partir das medições obtidas no campo, com o avanço da
informática, passaram a ser realizados utilizando programas aplicativos computacionais. O computador passou a ser usado não somente como ferramenta de cálculo e de desenho, mas também passou a auxiliar na elaboração de projetos e tomada de decisões, através, por exemplo, de módulos de modelagem digital de terrenos, que a partir dos pontos coletados e processados permitem criar uma representação digital do terreno que será utilizada como ferramenta para a elaboração automática de curvas de nível, cálculo de volumes de corte e atermo, traçado de perfis e seções transversais de vias, por exemplo.

5.2 Aspectos gerais dos levantamentos em vias urbanas

De modo geral, os trabalhos necessários para a formação de projetos de vias urbanas são os mesmos dos projetos de estradas. No entanto, para as vias urbanas, os procedimentos não são tão regulares. Como exemplo, pode-se citar a etapa realizada para obtenção das informações preliminares da área (fase de reconhecimento). Em área urbanas, muitas vezes, esta etapa é suprimida por existirem projetos anteriores como de melhoramentos de vias, locação de propriedades, entre outros, que poderão ser utilizados para este fim. Em áreas rurais dificilmente isto ocorre, sendo, neste caso, procedido ao levantamento das informações no próprio campo ou através de fotografias aéreas.

Em áreas urbanas, quando não existem projetos anteriores ou quando estes existem mas, não apresentam precisão e atualizações suficientes para a elaboração de novos projetos, são necessários levantamentos mais cuidadosos que aqueles realizados em áreas rurais, tais como levantamentos de instalações subterrâneas de água, eletricidade, gás, telefone etc.

Segundo HICKS (1981), a Fotogrametria\(^6\) é particularmente indicada para projetos de vias em áreas urbanas, por serem os levantamentos e inspeções terrestres muito mais difíceis que em áreas rurais. Para projetos de vias urbanas, a escala da

\(^6\) Fotogrametria é a arte, ciência e tecnologia de se obter informações confiáveis de objetos físicos e do meio ambiente, utilizando processos de captação, medições e interpretações de imagens fotográficas e padrões de energia eletromagnética radiantes e outros fenômenos (MANUAL OF PHOTOGRAMMETRY, 1980).
fotografias aéreas é, geralmente, o dobro da escala utilizada em projetos de estradas por ser necessário maior detalhamento.

Os levantamentos terrestres em áreas urbanas, são conduzidos da mesma forma como em áreas rurais, ou seja, através de métodos tradicionais que consistem em lançar uma linha poligonal de referência no campo, realizar as medições angulares e lineares correspondentes aos lados da poligonal e obter as alturas de pontos sobre essa linha e sobre seções transversais. A diferença existente está na dificuldade em se conseguir lançar essa linha, devido a existência de um grande número de obstáculos (casas, prédios, muros, veículos estacionados etc.) nas áreas urbanas.

5.3 Levantamento planimétrico convencional de poligonais topográficas

Para que a poligonal lançada no campo esteja mais próxima possível do futuro eixo da via, é conveniente que antes do seu lançamento sejam verificadas condições geométricas importantes que determinam basicamente o desenvolvimento da via. De acordo com o tipo de via que será construída, existem valores estabelecidos para rampas, raios de curvatura e extensão das tangentes (trechos retos), entre outros, que quando considerados antes do lançamento da poligonal podem evitar grandes modificações do anteprojeto (AASHTO, 1994).

Em projetos viários, a NBR 13133/94 recomenda a utilização de poligonais tipo 3 (figura 5.1), que são poligonais apoiadas e fechadas em direções e pontos distintos com desenvolvimento retílineo, para permitir que sejam verificados os erros angulares e lineares do levantamento.

Figura 5.1: Representação de uma poligonal tipo 3
Os alinhamentos de início e fim formados por pontos com coordenadas conhecidas formam as bases de apoio as medições da poligonal. Os pontos que formam as bases precisam ser intervisíveis, porque as medições angulares deverão ser conduzidas também sobre esses alinhamentos.

De acordo com SCHOFIELD (1993), desde o advento dos medidores eletrônicos de distância (EDM), a realização de medições segundo linhas poligonais tem se popularizado, não somente em levantamentos topográficos mas também em trabalhos geodésicos. Com as poligonais, a posição relativa \((x,y)\) de pontos é obtida a partir da medida do ângulo horizontal \(\alpha\) formado entre estações adjacentes e pela distância horizontal \(D\) entre os pares de estações. A figura 4.1 apresenta uma poligonal formada pelos vértices A, B, C, D, os ângulos entre alinhamentos consecutivos e as distâncias correspondentes aos comprimentos destes alinhamentos.

![Figura 5.2: Levantamento de poligonais a partir de ângulos e distâncias](image)

Uma condição básica para que sejam realizadas as medições é a existência de visibilidade entre pontos adjacentes. Por esta razão, antes de se iniciar um levantamento deve-se escolher adequadamente os locais dos pontos e, quando necessário, fazer abertura de picadas no local.

As medições angulares são feitas segundo o método das direções dado pela NBR13133, que consiste em se medir ângulos horizontais com visadas das direções determinantes nas posições direta e inversa, a partir de uma direção tomada como origem.
5.4 Nivelamento de poligonais topográficas

5.4.1 Generalidades

Segundo BRINKER et al (1993), o termo “Nivelamento” é aplicado à algum dos diversos processos existentes para determinação das alturas ou diferença entre alturas de pontos sobre a superfície terrestre em relação a uma superfície de referência. Dentre estes processos, pode-se destacar o nivelamento trigonométrico realizado com Estação Total para a determinação de alturas em terrenos onde o relevo representa uma dificuldade a mais para os demais processos.

O nivelamento trata da determinação da terceira componente necessária para determinar um ponto no espaço, a componente relativa a altura do ponto em relação a uma superfície de referência. Para a determinação da altura ortométrica de pontos do terreno é necessário haver um ponto com altura ortométrica conhecida próximo ao local. A não existência deste ponto implica em se realizar o “transporte” da altura de um ponto para o local do trabalho. Este transporte, é um nivelamento segundo poligonais até que se atinja um ponto no local desejado.

A obtenção das diferenças de altura entre os pontos pode ser feita através de diferentes métodos de nivelamento. A NBR 13133 cita os métodos geométrico, taqueométrico e o trigonométrico. A principal diferença entre estes tipos de nivelamento é o tipo de visada utilizada. No nivelamento geométrico as linhas de visada são exclusivamente horizontais, enquanto que nos nivelamentos trigonométrico e taqueométrico essas linhas são normalmente inclinadas de um ângulo de altura.

O nivelamento taqueométrico, de acordo com a NBR13133, é um nivelamento trigonométrico em que as distâncias são obtidas taqueometricamente, utilizando uma mira colocada verticalmente no ponto a determinar. Esta norma estabelece as tolerâncias de fechamento para o nivelamento de linhas poligonais ou circuitos e seções em função da classe de nivelamento na qual o trabalho se enquadra, metodologia e desenvolvimento utilizado.
5.4.2 Nivelamento com Estação Total

Com a grande evolução dos equipamentos clássicos da topografia, ocorrida nas últimas décadas, em especial as Estações Totais, o nivelamento baseado em distâncias obtidas eletronicamente passou a ser utilizado mais intensivamente, apresentando resultados com precisão suficiente para a grande maioria dos projetos de engenharia (MAIA, 1999).

A diferença de altura entre dois pontos A e B é obtida medindo-se a distância inclinada entre eles, altura do prisma, altura do instrumento de medida e o ângulo vertical de um ponto à outro (figura 5.3).

A diferença de altura entre os pontos é dada por:

\[
\Delta h = i + (D \cdot \text{sen}Z) \cdot \cotg Z - s
\]

(5.1)

onde:

- \(i \) altura do instrumento em A;
- \(s \) altura do alvo (prisma) em B;
- \(Z \) ângulo zenital de A para B;
- \(D' \) distância inclinada entre A e B.

Figura 5.3: Nivelamento com Estação Total
5.4.3 Efeitos da curvatura terrestre e da refração atmosférica nas observações

A correção da curvatura terrestre (δh) é dada aproximadamente pela fórmula (BRINKER, 1993):

\[\delta h = 0.0785 k^2 \] \hspace{1cm} (5.2)

onde:

\[k \] \hspace{1cm} distância de visada em km.

No meio urbano, normalmente as visadas não excedem 200 m, o que daria uma correção de 3 mm, totalmente desprezível para as precisões necessárias aos resultados dos levantamentos de vias.

O erro devido a curvatura da visada, causada pela refração em um atmosfera padrão, já é corrigido internamente nas Estações Totais. Em visadas próximas ao solo, a refração do ar é muito sensível às condições de insolação, podendo provocar, em uma visada de 200 m, desvios de até 3 cm (SCHAAL, 1995).

Estas duas correções podem ser desconsideradas em levantamentos topográficos para projetos básicos de vias, isto porque erros de alguns centímetros não provocam diferenças perceptíveis nos projetos.
6. INTEGRAÇÃO: LEVANTAMENTOS CONVENCIONAIS E GPS

6.1. Introdução

Desde o início da década de 90, o Instituto Brasileiro de Geografia e Estatística (IBGE) vem utilizando o sistema GPS para posicionamento de pontos pertencentes às redes que formam o Sistema Geodésico Brasileiro (SGB). A presença destes pontos, espalhados pelo País, tem permitido o posicionamento de novos pontos com GPS que vem servindo de apoio para poligonais terrestres de levantamentos topográficos convencionais.

A utilização de coordenadas obtidas com GPS em levantamentos topográficos, que tem tradicionalmente suas coordenadas expressas no Sistema Topográfico Local (STL), faz com que os produtos destes levantamentos possam ser relacionados ao SGB.

A vinculação de coordenadas ao SGB torna mais fácil a formação de arquivos de dados espaciais de uma determinada localidade do País. Atualmente, com o desenvolvimento de novas tecnologias, entre elas os Sistemas de Informações Geográficas (SIG’s), a criação de um banco de dados espaciais é facilitada quando se tem um único sistema de referência de coordenadas. Em projetos viários, a utilização de coordenadas relacionadas ao SGB permite a união de vários trechos de vias e a sobreposição destes projetos com cartas da região.
6.2 Aspectos gerais

É comum encontrar em literatura específica, textos sobre trabalhos envolvendo a utilização de pontos posicionados com GPS para apoiar poligonais terrestres convencionais.

HOFMANN-WELLENHOF (1997), assim trata a questão: "O posicionamento de pontos com GPS vem servindo de apoio para levantamento de poligonais terrestres. Com um par de receptores localizados dentro da área de projeto, em pontos previamente escolhidos, são realizadas as observações aos satélites, ao mesmo tempo em que são realizados os levantamentos da poligonal com métodos clássicos da Topografia. Terminadas as medições e as observações com GPS, as coordenadas de todos os pontos podem ser determinadas e precisamente relacionadas ao norte verdadeiro".

No entanto, para a combinação dos resultados (coordenadas) obtidos de levantamentos convencionais e posicionamento de pontos com GPS é necessário que sejam considerados alguns aspectos importantes. Medições obtidas em levantamentos convencionais da topografia diferem expressivamente das observações resultantes do posicionamento diferencial de pontos a partir do sistema GPS. Enquanto nos levantamentos convencionais são obtidos ângulos e distâncias entre os pontos observados, no posicionamento relativo com GPS são obtidos vetores dX, dY e dZ formado entre o ponto de referência e o ponto que está sendo posicionado. Em ambos os processos (convencional e com o sistema GPS), as coordenadas dos pontos são obtidas por cálculos matemáticos a partir dos dados coletados em campo.

Nos levantamentos convencionais, as medições (ângulos e distâncias) são pressupostas como projetadas em verdadeira grandeza sobre o plano tangente à superfície de referência (elipsóide de referência) do sistema geodésico adotado, na origem, cujas coordenadas geodésicas são conhecidas (NBR141666). Entretanto, nos levantamentos com GPS, as coordenadas dos pontos são referenciadas ao Sistema Terrestre Fixo e Centrado na Terra (CTS) que adota oficialmente o elipsóide WGS-84 como superfície de referência; as posições dos pontos obtidos podem ser expressas em coordenadas cartesianas tridimensionais (X,Y e Z), em coordenadas geodésicas (ϕ,
λ, h), ou em coordenadas do sistema de projeção UTM (N, E), que é o recomendado pela NBR13133 para a confecção de cartas no Brasil.

Para a integração dos resultados de levantamentos mistos de Estação Total e GPS é necessário que sejam realizados cálculos matemáticos que compatibilizem os processos utilizados. Uma das formas de tratar o assunto, é através da utilização de um único sistema de referência para as coordenadas. Segundo PINTO (2000), na integração GPS e topografia, o mais indicado é transformar as coordenadas obtidas com GPS para o Sistema Topográfico Local.

Além deste tipo de integração (por coordenadas), pode-se converter os resultados do processamento com GPS para os tipos de observações coletadas numa Estação Total (distância, diferença de altura e azimute entre pontos). Entretanto, é necessário que sejam feitas reduções (lineares e angulares) para que sejam uniformizadas as superfícies de referência. Segundo PINTO (2000), através de receptores de dupla freqüência e a técnica do posicionamento cinemático diferencial RTK (Real Time Kinematic), ângulos e distâncias obtidos a partir de coordenadas de pontos posicionados com GPS podem ser integrados com as observáveis de uma Estação Total em um único coletor. Um equipamento que permite esta integração é o SDR33 da Sokkia.

Em levantamentos topográficos já concluídos, o posicionamento de pontos com GPS poderá servir para o georreferenciamento da carta produzida. Neste caso, a integração das coordenadas do levantamento convencional e GPS será feita por transformações de sistemas de coordenadas utilizando os parâmetros que relacionam estes sistemas. Em cartas digitalizadas, o georreferenciamento pode ser rapidamente obtido utilizando um dos vários programas aplicativos existentes no mercado.

6.3 Integração por coordenadas

Trabalhos científicos desenvolvidos utilizando levantamentos topográficos mistos de Estação Total e GPS, tem recomendado, para a integração dos resultados, a transformação das coordenadas obtidas com GPS em coordenadas topográficas. Como exemplo pode-se citar Camargo et al. (1998), com o objetivo de analisar o erro de fechamento em poligonais topográficas apoiadas em pontos do posicionamento.
com GPS. Neste trabalho, os cálculos de poligonais foram feitos no STL e também no sistema UTM. Para os cálculos no STL foram transformadas as coordenadas UTM de pontos GPS para este sistema e os azímites planos em azímites verdadeiros. Quando os cálculos foram desenvolvidos utilizando o sistema UTM, os ângulos e distâncias do levantamento com Estação Total foram transformados para o plano de referência utilizado neste sistema.

A utilização do STL na integração de resultados de levantamentos mistos de Estação Total e GPS, pressupõe a origem deste sistema em um ponto do posicionamento com GPS. Neste caso, o plano topográfico local estará sobre a normal à superfície do elipsóide de referência neste ponto, elevado a altura média do terreno.

6.4 Integração pelas observações de campo

A partir das coordenadas geográficas geodésicas (latitude, longitude) de pontos posicionados com GPS podem ser calculadas distâncias elipsoidais e azímites geográficos entre pontos. No entanto, essas distâncias e ângulos não correspondem àquelas observações obtidas nos levantamentos com Estação Total sobre a superfície física da Terra.

Existem conceitos e processos de cálculo envolvidos para que valores de ângulos e distâncias extraídos de coordenadas latitude e longitude de pontos sejam transformados em observações iguais àsquelas advindas de uma Estação Total. A seguir serão apresentados resumidamente alguns procedimentos a serem utilizados para se obter distâncias e ângulos sobre a superfície física terrestre.

6.4.1 Medidas angulares

Considerando o levantamento com Estação Total no STL, a obtenção de azímite a partir das coordenadas geográficas geodésicas de pontos posicionados com GPS é favorável, uma vez que todo o levantamento passa a ser orientado pelo Norte Geográfico ou Verdadeiro.
Quando se trabalha com cartas no sistema UTM, para a obtenção do azimute geográfico é necessário que seja considerada a convergência meridiana (Capítulo 2, item 2.5.2). Na transformação de um azimute plano em azimute verdadeiro também é necessário fazer a correção angular (Capítulo 2, item 2.5.3). Entretanto, para a precisão da maioria dos trabalhos topográficos e, em especial, para projetos básicos de vias, esta correção poderá ser desprezada.

6.4.2 Medições lineares

Para transformação de uma distância plana em topográfica é necessário inicialmente transformá-la em distância elipsoidal, o que é feito com a aplicação do fator de escala K (Capítulo 2, item 2.5.1) existente entre as duas superfícies, dada a posição em que se encontra esta distância elipsoidal no elipsóide de referência e o elipsóide em relação ao cilindro secante Equatorial do sistema UTM.

Para transformar a distância elipsoidal em topográfica, é necessário que esta distância, localizada ao nível do elipsóide de referência, seja elevada ou reduzida, conforme o caso, ao nível da superfície topográfica, utilizando-se o fator de redução Red (Capítulo 2, item 2.3.2).

6.5 Integração por transformações de sistemas

Uma outra forma de integrar levantamentos convencionais e GPS tem sido realizada quando se tem plantas topográficas com coordenadas expressas no STL ou no sistema de projeção UTM e coordenadas obtidas com GPS de pontos adequadamente distribuídos sobre a área em questão e identificáveis na planta, mediante transformações de sistemas de referência.

As transformações são métodos matemáticos que possibilitam a correspondência de ponto a ponto e expressam a relação entre os sistemas de coordenadas (BUGAYEVSKIY, 1995 apud PINTO, 2000).
Quando as coordenadas de pontos de uma planta topográfica no STL passam a corresponder a coordenadas geográficas, através de transformações entre os sistemas, têm-se então realizado o georeferenciamento desta planta.

Existem vários modelos utilizados para avaliar o relacionamento entre dois sistemas de coordenadas no plano e no espaço por meio de parâmetros de transformação. Por simplicidade, serão apresentados neste trabalho somente alguns modelos mais utilizados de transformação no plano.

6.5.1 Transformação de coordenadas no plano

Segundo GREENFELD (1996) apud CHAVES (1998), a transformação de coordenadas é o processo de converter as coordenadas de um sistema para outro, existindo várias maneiras de fazê-lo. A mais simples é a que permite somente uma translação na origem do sistema de coordenadas ou somente uma rotação de seus eixos. Um processo mais completo permite translações, rotações e mudança de escala e e assume a não perpendicularidade entre os eixos de um dos sistemas. Em geral, existem seis parâmetros distintos entre um sistema de coordenadas e outro. Estes parâmetros são:

1. \(a_o \) - translação de origem na direção X
2. \(b_o \) - translação de origem na direção Y
3. \(\alpha \) - rotação de eixos de um sistema de coordenadas em relação a outro
4. \(S_x \) - mudança de escala no eixo X
5. \(S_y \) - mudança de escala no eixo Y
6. \(\varepsilon \) - não ortogonalidade entre os eixos de um dos sistemas de coordenadas

A figura 6.1 apresenta uma representação gráfica de dois sistema de coordenadas rotacionados por um ângulo \(\alpha \) e transladados por \(a_o \) e \(b_o \) segundo as abscissas e as ordenadas, respectivamente.
6.5.1.1 Transformação de corpo rígido

Quando os sistemas de coordenadas utilizados são bem definidos e possuem a mesma escala, poderá ser utilizada a transformação de corpo rígido (CHAVES, 1998). Esta transformação envolve três parâmetros: \(a_0, b_0\) e \(\alpha\). As fórmulas utilizadas são:

\[
X = a_0 + x \cdot \cos \alpha - y \cdot \sen \alpha \\
Y = b_0 + x \cdot \sen \alpha + y \cdot \cos \alpha
\]

6.5.1.2 Transformação de Similaridade, Isogonal ou Conforme de Helmert

Quando na transformação de sistemas de coordenadas são envolvidas somente coordenadas planas com suas verdadeiras formas mantidas, chama-se então de transformação de coordenadas planas conforme, também conhecida como transformação de Similaridade, Isogonal ou conforme de Helmert (BRINKER, 1993).

A figura 6.2 ilustra a geometria da transformação de coordenadas planas. Os pontos A e B são chamados de pontos de controle.
Na figura, o ângulo de rotação α, entre os sistemas de eixos X-Y e X'-Y' é dado pela diferença entre os ângulos θ e β. Estes ângulos são calculados dos dois conjuntos de coordenadas dos pontos de controle A e B:

$$\theta = \arctg \left[\frac{(X_B - X_A)}{(Y_B - Y_A)} \right]$$ \hspace{1cm} (6.3)

$$\beta = \arctg \left[\frac{(E_B - E_A)}{(N_B - N_A)} \right]$$ \hspace{1cm} (6.4)

O fator de escala (S) que relaciona quaisquer dois sistemas de coordenadas pode ser obtido segundo o comprimento da linha entre os dois pontos de controle:
\[S = \sqrt{(E_B - E_A)^2 + (N_B - N_A)^2} \]
\[\sqrt{(X_B - X_A)^2 + (Y_B - Y_A)^2} \] (6.5)

Conhecidos o ângulo de rotação (\(\alpha\)) e o fator de escala (\(S\)), as coordenadas de qualquer ponto, por exemplo do ponto A, pode ser obtida por:

\[X'_A = S \cdot X_A \cdot \cos \alpha - S \cdot Y_A \cdot \sin \alpha \] (6.6)

\[Y'_A = S \cdot X_A \cdot \sin \alpha + S \cdot Y_A \cdot \cos \alpha \] (6.7)

A translação consiste em se deslocar a origem dos eixos \(X'\)- \(Y'\) para o sistema \(E-N\). Isto é feito adicionando-se os fatores de translação \(a_0\) para \(X'\) e \(b_0\) para \(Y'\), para obtenção das coordenadas \(E\) e \(N\), respectivamente. As coordenadas do ponto A no sistema \(E-N\) é dada por:

\[E_A = X'_A + a_0 \] (6.8)

\[N_A = Y'_A + b_0 \] (6.9)

Com as coordenadas de um dos pontos de controle, por exemplo o ponto A, obtém-se os valores numéricos de \(a_0\) e \(b_0\) por:

\[a_0 = E_A - X'_A \] (6.10)

\[b_0 = N_A - Y'_A \] (6.11)

As coordenadas \(E\) e \(N\) dos pontos não controlados é obtida por:

\[E = S \cdot X \cdot \cos \alpha - S \cdot Y \cdot \sin \alpha + a_0 \] (6.12)

\[N = S \cdot X \cdot \sin \alpha + S \cdot Y \cdot \cos \alpha + b_0 \] (6.13)
6.5.1.3 Transformação ortogonal

É utilizada quando os sistemas apresentam escalas diferentes em \(X \) e \(Y \). Esta transformação é caracterizada por cinco parâmetros: \(a_0, b_0, \alpha, S_x, S_y \). As expressões matemáticas são:

\[
X = S_x \cdot x \cdot \cos \alpha - S_y \cdot y \cdot \sin \alpha + a_0
\]

\[
Y = S_x \cdot x \cdot \sin \alpha + S_y \cdot y \cdot \cos \alpha + b_0
\]

6.5.1.4 Transformação Afim

Nesta transformação acrescenta-se à anterior, a não ortogonalidade dos eixos de um dos sistemas (figura 6.3).

Figura 6.3: Transformação Afim
As expressões matemáticas são:

\[X = S_x \cdot x \cdot \cos \alpha - S_y \cdot y \cdot (\sin \alpha + \varepsilon \cdot \cos \alpha) + a_0 \] \hspace{1cm} (6.16)

\[Y = S_x \cdot x \cdot \sin \alpha + S_y \cdot y \cdot (\cos \alpha - \varepsilon \cdot \sin \alpha) + b_0 \] \hspace{1cm} (6.17)

6.6 Exemplos de integração

A recente privatização de diversos trechos da malha rodoviária brasileira, incrementou a procura por serviços de levantamento topográfico de estradas. As concessionárias das rodovias, interessadas em cumprir cláusulas contratuais e metas de suas concessões, vem impulsionando este mercado.

As empresas de serviços topográficos, para cumprir prazos, necessitam adquirir equipamentos atualizados que otimizem os resultados dos serviços executados dentro do menor tempo possível. Como exemplo, cita-se o caso da empresa TST Topografia, que presta serviço para a Ecovias em São Paulo. Técnicos da empresa estão usando receptores de GPS em tempo real para implantação de apoio à topografia convencional e locação de pontos.\(^9\)

Tal procedimento já vem ocorrendo no Município de Presidente Venceslau/SP, na implantação do cadastro e em trabalhos de levantamentos de estradas para projetos de duplicação e de obras de artes. Isto pode ser muito útil em áreas desprovidas de pontos da Rede do IBGE, circunstâncias em que é possível realizar posicionamento com o GPS utilizando apenas um receptor e processando com os dados da Rede Brasileira de Monitoramento Contínuo (RBMC) (Camargo et al, 1998).

6.7 Estudos com GPS em levantamentos topográficos

No Brasil, as pesquisas com GPS tiveram início em 1985 e foram conduzidas pela Universidade do Paraná (Brasil) em conjunto com a Universidade de Hannover (República Federal da Alemanha). No entanto, somente em 1987 foi realizada uma campanha no sul e nordeste do País, resultado de um convênio firmado entre as Universidades do Paraná (Brasil), Pernambuco (Brasil) e Hannover (República Federal da Alemanha). O principal objetivo desta campanha foi a introdução da tecnologia do GPS no Brasil e realização de pesquisas com GPS nas Universidades do Paraná e Pernambuco (CAMPOS et al. 1989). A partir de então, tiveram início muitas pesquisas no País envolvendo o uso do GPS em levantamentos topográficos. Vários trabalhos têm analisado a aplicação e resultados do posicionamento de pontos via GPS.

De modo geral, tem-se procurado verificar a possibilidade de substituição integral ou parcial de levantamentos clássicos em aplicações específicas. Além da precisão dos resultados, vários fatores tem sido verificados. Condições limitantes da precisão e aplicabilidade deste sistema são analisadas como parâmetros para a avaliação.

SEGANTINE (1995), avaliou os procedimentos para o estabelecimento e ajuste da rede geodésica do estado de São Paulo aplicando a tecnologia Navstar/GPS. O autor efetuou diversos estudos e ajustes dos dados, obtendo resultados satisfatórios para trabalhos de apoio geodésico. As campanhas realizadas para a implantação e observação da rede contaram com o apoio integral do IBGE. Essa rede com as coordenadas de vértices definidos constitui-se num projeto piloto, pioneiro no país.

LOPES (1995) com o objetivo de verificar se os resultados de nivelamento com GPS permitiam a definição de elementos de rampas e curvas verticais de rodovias, executou o nivelamento com nível e com GPS de um trecho de 10 km de extensão. Ele concluiu que o GPS pode ser utilizado para reconstruir a geometria longitudinal de vias de forma rápida e confiável.

LOTTI (1997), com o objetivo de obter a representação gráfica da geometria de uma via na forma em que foi efetivamente construída, realizou levantamento com GPS de um trecho de 30 km da rodovia SP-127 entre Rio Claro e Piracicaba (SP). O método realizado para posicionamento dos pontos ao longo da estrada foi o cinemático e para
posicionamento dos pontos de referência foi realizado levantamento estático. Através do banco de dados resultante do levantamento foi possível desenhar a rodovia em planta e perfil com um nível de precisão suficiente para a construção de uma base geográfica de um SIG.

MARQUES (1997), com o objetivo de localizar os pontos de proibição de ultrapassagem em uma rodovia para conhecer e avaliar de forma prática e precisa os locais das marcações das faixas de sinalização horizontal, realizou e comparou o levantamento com GPS com o levantamento utilizando métodos clássicos da Topografia. Verificou que os resultados gráficos permitiram uma avaliação dos perfis e das marcações, obtendo-se um resultado satisfatório na avaliação do método moderno.

MONICO(1997) apud MAIA(1999) concluiu que levantamentos topográficos convencionais e com GPS podem ser integrados sem maiores problemas. Ressalta-se a necessidade de executar reduções lineares e angulares para a compatibilização com o sistema de referência e de projeção.

MAIA(1999) verificou que a combinação de levantamentos topográficos com Estação total e GPS são possíveis e atendem as tolerâncias da NBR 13133. Tem-se que estar atento ao fato das limitações de cada instrumento ligadas as condições da área a ser levantada.
7 - LEVANTAMENTOS TOPOGRÁFICOS

Neste capítulo são apresentados os trabalhos de campo e de escritório desenvolvidos na realização do levantamento topográfico com Estação Total e GPS para obtenção do projeto básico de uma via.

7.1 A área do trabalho

As observações foram realizadas em uma área da cidade de São Carlos (SP) onde deverá se desenvolver, segundo projeto da Prefeitura Municipal local, uma via de trânsito rápido que complementará um trecho do anel viário da cidade.

A área foi escolhida por apresentar dificuldades inerentes aos dois tipos de levantamento (convencional e GPS) que normalmente são encontradas em projetos viários. Possui relevo acidentado, com rampas que variam da ordem de 5% a 10% de inclinação com locais apresentando características urbanas, onde predominam casas térreas, e rurais com pastagens, incluindo bosques e nascentes de córregos.

Devido a falta de visibilidade entre vários locais, a faixa de terreno destinada a implantação da via projetada teve que ser dividida em três trechos (figura 7.1):

Trecho 1: Área denominada Vila Max. Apresenta desnível próximo de 30 metros ao longo de 300 metros de extensão aproximadamente. Existe nesta área uma nascente de córrego e árvores espaçadas por dezenas de metros;

Trecho 2: A partir da avenida Capitão Luiz Brandão até a rua Sete de Setembro. Apresenta locais com tráfego intenso de veículos e pedestres, prédios residenciais e comerciais, placas suspensas de propagandas e muros altos;
Trecho 3: A partir da rua Sete de Setembro até a rotatória Celeste Zanon (conjunto Castelo Branco). Possui áreas bosqueadas, nascentes de córregos, pastos e aproximadamente 500 metros de via pavimentada, formada por duas pistas e canteiro central, denominada avenida Perimetral. Apresenta locais com desníveis da ordem de 10% de inclinação. Neste intervalo existe uma área de campo aberto e outra bosqueada que segue até a margem da rua José Fortuna.

Figura 7.1: Área do trabalho e Trechos utilizados
Maiores detalhes da ocupação dos locais podem ser vistos nas fotos apresentadas a seguir, obtidas durante os trabalhos de campo.

Figura 7.2: Trecho 1 – Chácara da Vila Max

Figura 7.3: Trecho 2 – Áreas bosqueadas
7.2 Metodologia

Inicialmente, procurava-se manter o eixo da via dado no projeto geométrico da Prefeitura de São Carlos. Este projeto está desenhado em 7 folhas formato A1, em um sistema de coordenadas locais orientado pelo Norte Magnético. Além dos desenhos, não foi fornecido nenhum dado do levantamento topográfico original, isto é, pontos de referência, poligonal de apoio etc. Uma das folhas fornecidas abrangendo parte dos Trechos 1 e 2 da área é apresentada no Anexo I.

A Prefeitura, através do Serviço Autônomo de Água e Esgoto (SAAE), conta atualmente com uma restituição fotogramétrica completa da cidade obtida em um vôo de junho de 1998. Esta restituição, disponível no formato Autocad, extensão dwg, possui coordenadas planas UTM-SAD69 e pontos cotados em altitude ortométrica. A figura 7.5 apresenta a imagem da área de trabalho e a figura 7.6 a restituição fotogramétrica da região de interesse, denominada aqui de Planta SAAE.
Figura 7.5 – Imagem da área do trabalho

Figura 7.6: Planta SAAE da Área do Trabalho
A primeira fase do trabalho foi determinar parâmetros de transformação das coordenadas topográficas originais para coordenadas UTM objetivando uniformizar os sistemas de referência do projeto com o da planta SAAE.

Foram identificadas 5 bases no projeto e na planta SAAE, obtendo-se os respectivos conjuntos de coordenadas. Utilizando o método de transformação de coordenadas no plano Conforme de Helmert (capítulo 6, item 6.5.1.2) foram calculados os parâmetros de conversão (rotação, escala e translação). Deve-se lembrar que pode-se considerar o coeficiente k da planta UTM constante em uma área de poucos quilômetros.

Constatou-se que os parâmetros não são constantes, apresentando uma variação de 7' a 2º no ângulo de rotação e 100 metros na translação. Calculadas as coordenadas UTM de pontos da área, com a média dos valores calculados, obteve-se diferenças da ordem de 5 a 30 metros em relação às coordenadas da planta SAAE.

Verificou-se no projeto a falta de ortogonalidade dos eixos X e Y, recorrendo-se então ao método de transformação afim (capítulo 6, item 6.5.1.4). Entretanto, utilizando os recursos do programa de desenho AutoCad Release versão R-14 verificou-se que o ângulo devido a falta de ortogonalidade variava de alguns graus para diferentes trechos do projeto. Pôde-se então concluir que o problema em questão consiste de erros na elaboração das plantas do projeto da Prefeitura.

Optou-se então por lançar uma poligonal acompanhando o mesmo caminho do eixo da via, sem se preocupar com a coincidência exata com o eixo projetado.

O trabalho de campo, inicialmente, consistia em realizar dois levantamentos planialtimétricos, um com GPS e outro com Estação Total, independentes um do outro. Entretanto, alguns fatores inviabilizaram este procedimento:

- A dificuldade encontrada para permissão da limpeza e roçado dos locais. Isto porque, a maioria dos lotes atravessados pelos levantamentos são propriedades particulares (este foi o caso típico que ocorreu entre os Trechos 2 e 3);

- O tempo necessário para executar o levantamento com Estação Total, devido ao grande número de obstáculos (prédios, muros) a serem desviados, seria longo e incompatível com os objetivos deste trabalho.
- A quantidade de árvores e casas nos locais que ligam os Trechos tornaria difícil ou, até mesmo, impediria o levantamento com GPS.

Optou-se, pela combinação de dois métodos com a implantação de duas poligonais geradas utilizando-se a Estação Total, apoiadas em quatro bases determinadas por GPS.

Com o objetivo de apresentar um percurso alternativo para a passagem da via, reduzindo o número de desapropriações necessárias no Trecho 2 foi feito um levantamento com Estação Total sobre a Avenida Capitão Luiz Brandão (figura 7.7).

![Figura 7.7: Traçado projetado e caminho alternativo para a passagem da via](image)

As bases situadas nos extremos da área (Bases 1 e 2) e as bases situadas no interior da área (Bases 3 e 4) serviram para apoiar as Poligonais I e II desenvolvidas. A Poligonal I foi implantada no Trecho 1 e em parte do percurso alternativo da via, com
início no ponto GEO1 da Base 1 e término em AB4 da Base 3. A Poligonal II foi implantada por toda a extensão do Trecho 3, partindo do ponto GEO4 da Base 2 e terminando no ponto AB6 da Base 4. No Trecho 2, foram somente levantados pontos (B1 e B2) com GPS. Na figura 7.8 apresentam-se as Poligonais, Bases e Pontos citados sobre a planta SAAE.

![Figura 7.8: Localização das Bases, Poligonais e Pontos isolados](image)

O percurso alternativo apresentado foi levantado somente até o ponto B5, devido às péssimas condições de acesso ao local entre este ponto e AB6 (terreno alagado, mato alto, árvores aglomeradas) dificultando os levantamentos com Estação total e com GPS.

Para que fossem comparados os resultados obtidos pelos dois métodos, após uniformização das superfícies de referência, foram levantados com GPS os pontos vértices das Poligonais I e II que apresentam visão desobstruída do horizonte.
7.3 Levantamento com GPS

No levantamento com GPS foram utilizados três receptores LEICA - SR9400 de frequência L1 e código C/A, o programa aplicativo para processamento SKY versão 2.3 da LEICA. As especificações dos equipamentos são apresentadas no Anexo.

Os vértices das Poligonais foram materializados no campo por um corpo de prova de concreto, tendo em sua face superior um parafuso chumbado definindo o local exato do ponto. Foram utilizados piquetes de madeira para materializar os pontos utilizados para obtenção do relevo da faixa de terreno da via.

7.3.1 Implantação das Bases

Em áreas urbanas, é muito difícil conseguir linhas bases com comprimentos de algumas centenas de metros. Este é um problema comum, que pode ser resolvido quando se utilizam pontos localizados sobre telhados de prédios, mediante permissão para o acesso.

Neste trabalho as Bases implantadas foram extremamente curtas, a fim de verificar os resultados das Poligonais que nelas se apoiaram (tabela 7.1). A influência do erro devido ao comprimento das Bases será verificada no cálculo das Poligonais do levantamento com Estação Total.

<table>
<thead>
<tr>
<th>Base</th>
<th>Pontos</th>
<th>Extensão (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GEO1-GEO2</td>
<td>69,681</td>
</tr>
<tr>
<td>2</td>
<td>GEO3-GEO4</td>
<td>120,378</td>
</tr>
<tr>
<td>3</td>
<td>AB4-B5</td>
<td>129,456</td>
</tr>
<tr>
<td>4</td>
<td>AB6-B3</td>
<td>170,355</td>
</tr>
</tbody>
</table>

As coordenadas dos pontos das Bases foram obtidas com GPS empregando o método estático. O tempo de observação foi de 1 hora para as Bases 1 e 2 e de 20
minutos para as Bases 3 e 4 e a taxa de gravação dos dados observados foi de 10 segundos para todas as Bases. O tempo de 1 hora foi escolhido para garantir os resultados das coordenadas dos pontos de apoio aos levantamentos; O tempo de 20 minutos foi escolhido para os pontos das Bases 3 e 4 para que fossem agilizados os levantamentos e resolução das ambigüidades do sistema GPS.

As coordenadas dos pontos das Bases 1 e 2 foram obtidas por irradiação do ponto STT situado na EESC, cujas coordenadas foram obtidas por irradiação com receptores de freqüência L1/L2 do ponto Pirassununga da Rede Geodésica do Estado de São Paulo. Os 4 vetores formados variaram de 2,6 a 3,7 km de extensão (figura 7.9). A ambigüidade foi resolvida e fixada para todos os pontos.

Figura 7.9: Vetores das observações para implantação das Bases 1 e 2

As coordenadas dos pontos da Base 3 foram obtidas por irradiação do ponto GEO1 da Base 1, enquanto que os pontos da Base 4 tiveram suas coordenadas obtidas por irradiação de GEO4 da Base 2. Desta forma, os vetores formados das observações foram curtos, variando de 500 a 1000 m aproximadamente (figura 7.10).
Figura 7.10: Vetores das observações para implantação das Bases 3 e 4

Este tipo de levantamento é muito usado para georreferenciar pontos em uma região da cidade porém, não garante uma boa amarração angular entre as duas bases. Procurando minimizar os desvios angulares entre as Bases 1 e 2 foram determinados 5 vetores com GPS com sessões de 20 minutos e taxa de gravação dos dados igual a 10 segundo. Estes vetores formaram uma rede denominada R1. A figura 7.11 apresenta os vetores observados entre as Bases 1 e 2.
Na observação dos vetores da Rede R1 foram ocupados, inicialmente, com três receptores, os pontos GEO2, GEO3 e GEO4 formando os vetores independentes 1 e 2. Utilizando somente dois receptores, sobre os pontos GEO1 e GEO3 e, posteriormente um sobre o ponto GEO4 permanecendo o outro em GEO1, foram formados os vetores 3 e 4. Por último, ocupando-se os pontos GEO1 e GEO2 obteve-se o vetor 5. Um esquema da ordem dos pontos observados é apresentado na Figura 7.12.

Optou-se por não formar uma rede envolvendo vetores formados entre os pontos das Bases 3 e 4 o que será discutido no capítulo 8.
7.3.2 Levantamento de pontos complementares

No levantamento com GPS para determinar as coordenadas dos vértices das Poligonais foi utilizado o método estático. O tempo das observações foi de 12 minutos e a taxa de gravação dos dados utilizada foi de 5 segundos. Foram realizadas observações diferenciais sobre 14 pontos. O ponto de referência para as irradiiações foi sempre um ponto da Rede R1 formando, desta maneira, vetores inferiores a 2 km de extensão (maior extensão desta rede).

Ocorreram perda de sinais com os satélites nas observações de pontos situados próximos a plantações de pinheiros. Após o processamento dos dados de campo, verificou-se que para estes pontos não se conseguiu uma solução fixa dos resultados ("fix solution") sendo, então, necessárias novas observações sobre estes pontos. Optou-se por retornar ao campo em um período no qual um grande número de satélites (de 7 a 9) estavam "visíveis" para o local de trabalho.

Os pontos que não obtiveram boa solução na primeira investida e um ponto que não havia sido possível posicionar, devido a perda de sinal com os satélites, foram
então observados e a tarefa foi realizada com sucesso, não ocorrendo perda de sinal com nenhum satélite.

No levantamento dos pontos das seções transversais com GPS foi usado o método semi-cinemático "stop and go". O ponto de referência para as observações da antena móvel foi sempre um dos pontos da rede R1. Para a resolução da ambigüidade inicial foi observado o tempo de 12 minutos sobre um ponto com coordenadas conhecidas, localizado próximo aos locais onde foram realizadas as observações. Este fato facilitou o levantamento e reduziu a perda de sintonia com os satélites. O tempo parado sobre cada ponto foi de 20 segundos e a taxa de gravação dos dados igual a 2 segundos.

A antena que se deslocava, foi inicialmente instalada sobre um bipé para a inicialização do levantamento e, a partir deste ponto, foi utilizado somente um bastão com a antena para facilitar o deslocamento.

O levantamento foi realizado nos Trechos 1 e 3 da área. No Trecho 1, não ocorreu perda de sinal com os satélites, sendo levantados 24 pontos. No Trecho 2 ocorreu perda de sintonia com os satélites na travessia das ruas e avenidas. Para a reinicialização foi posicionada a antena sobre o último ponto posicionado e prosseguiu-se com o trabalho. No entanto, a perda de sintonia com os satélites voltou a ocorrer por mais duas vezes, desistindo-se, então, do levantamento com o método "stop and go".

No Trecho 3, devido as grandes áreas bosqueadas, optou-se por posicionar somente pontos situados em uma local importante para o projeto vertical da via por apresentar rampa da ordem de 10% e ser o prolongamento da avenida já construída. Nesta área, a perda de sintonia com os sinais dos satélites ocorreu uma única vez, sendo levantados 30 pontos neste Trecho.

A figura 7.13 apresenta os pontos levantados com o método "stop and go" sobre a Planta SAAE da área.
7.3.3 Resultados

Conforme tratado no capítulo 5: Integração de levantamentos convencionais e GPS, quando se trabalha com levantamentos topográficos mistos de Estação Total e GPS é necessário que sejam efetuados cálculos matemáticos (transformação de coordenadas, que permitam a compatibilização dos dados coletados no campo.

Procurando a integração dos resultados obtidos neste trabalho, optou-se por transformar as coordenadas do sistema WGS-84 para o Sistema Topográfico Local (STL). Normalmente, nos projetos urbanos as plantas topográficas são desenhadas no STL para evitar as conversões de distâncias e azimutes quando se usa o sistema plano UTM.

As coordenadas obtidas no levantamento com GPS são apresentadas no STL e no sistema UTM, este último por se tratar do sistema de projeção recomendado pela NBR13133 para a planificação das coordenadas de pontos no País. A origem do plano topográfico foi o ponto GEO1, com coordenadas X = 5.000,00m, Y = 20.000,00m e altura de 860,0 m, sendo este valor escolhido por ser a média entre as alturas ortométricas da área. As coordenadas dos pontos são apresentados no Anexo.
Optou-se por tratar do ajustamento das coordenadas dos pontos que formaram a Rede R1 no capítulo 8, tornando mais simples o desenvolvimento do texto, análises e discussões referentes aos procedimentos adotados neste trabalho.

7.4 Levantamento com a Estação Total

7.4.1 Trabalhos de campo

Os levantamentos convencionais foram efetuados com uma Estação Total modelo TC400 da empresa LEICA com precisão linear de 5mm ± 5ppm e precisão angular de 5" e acessórios. As especificações do equipamento utilizado são apresentadas no Anexo.

As Poligonais I e II obtidas pelo levantamento com Estação Total são formadas por pontos iniciados por "A". Pontos destas Poligonais também utilizados pelo levantamento com GPS são iniciados por "AB". A Figura 7.14 apresenta as Poligonais utilizadas e seus respectivos pontos.

Figura 7.14: Poligonais I e II do levantamento com Estação Total
Em observância a NBR13133, as Poligonais desenvolvidas foram do tipo 3. A rede R1 foi enquadrada na classe IVPA indicada para poligonais planimétricas da classe IIP. As Poligonais I e II foram enquadradas na classe IIIP indicada para adensamento do apoio topográfico para projetos básicos e na classe IIIN, aplicada à nivelamento trigonométrico para determinação de altitudes ou cotas em poligonais, levantamentos de perfis para estudos preliminares e/ou de viabilidade em projetos.

O levantamento topográfico planialtimétrico convencional das Poligonais foi feito seguindo visadas a ré e avante dos alinhamentos. Foi realizado mediante leituras simples com apenas uma determinação de ângulo em uma única posição do limbo já que as Estações Totais compensam os erros de eixo, excentricidade e graduação e os seus ângulos são uma média de leituras.

As distâncias foram obtidas introduzindo o valor de correção para a temperatura e para a pressão ambiente. As alturas dos pontos das Poligonais e das seções transversais foram obtidas por nivelamento trigonométrico. A verificação da altura do instrumento foi obtida com trena, medindo-se do ponto instalado até a referência lateral do equipamento.

A Poligonal II foi nivelada em toda a sua extensão, enquanto que para a Poligonal I foram nivelados somente os alinhamentos situados na área da Vila Max por ser o local mais acidentado.

Por não haver sido localizado nenhum ponto com altitude ortométrica conhecida próximo a área de trabalho, utilizou-se a Planta SAAE para obtenção das alturas ortométricas aproximadas dos pontos utilizados para início e término dos nivelamentos. Alguns pontos perfeitamente identificáveis no terreno, como esquinas de ruas, foram utilizados para verificações de erros grosseiros nas diferenças de altura entre os pontos.

O nivelamento da Poligonal I partiu de um ponto situado a margem da rua Monteiro Lobato, denominado "a", com altura ortométrica aproximada de 864,0 m. O ponto final deste nivelamento foi "A3" (esquina da vila Max com a avenida Capitão Luiz Brandão) com altura da ordem de 891,7 m. A Poligonal II utilizou pontos com altura ortométrica aproximadamente igual a 834,4 m e 858,5 m para início e fim do nivelamento, respectivamente.
Optou-se por não realizar o contranívelamento das Poligonais, isto porque os erros obtidos se deveriam exclusivamente ao levantamento com a Estação Total, já que as coordenadas dos pontos das Bases 3 e 4 não foram ajustadas. Sendo a componente altura fornecida pelo sistema GPS menos precisa que as coordenadas latitude e longitude, a utilização destas alturas sem ajustamento para apoiar os níveis com Estação Total não é uma prática recomendável.

O nívelamento das Poligonais foi realizado para verificar o tempo necessário para os trabalhos e obtenção das alturas ortométricas aproximadas dos pontos medidos, fornecendo a representação gráfica aproximada do relevo da área com base nas alturas dadas na Planta SAAE.

Após estaqueados e nivelados os lados das Poligonais procedeu-se as mesmas operações para as seções transversais, que foram lançadas a partir das estacas inteiras (estaca espaçada de 20m), fracionárias e vértices das Poligonais. O espaçamento utilizado entre as estacas foi de 20 metros e a extensão de cada seção foi de 80 metros.

No levantamento das Poligonais com a Estação Total foram utilizadas 16 estações do equipamento e medidos 16 ângulos horizontais formados entre os alinhamentos, sendo cada ângulo medido duas vezes (medida avante e a ré). Foram medidas 14 distâncias entre os pontos de vértices das Poligonais, sendo cada uma obtida duas vezes.

No nívelamento para obtenção do perfil longitudinal da Poligonal I foram obtidas as alturas de 21 pontos localizados na área da Vila Max e 61 pontos para a Poligonal II, ou seja, um total de 82 pontos e, portanto, 82 estações do aparelho para lançamento e nívelamento das seções transversais. De cada estação foram nivelados 4 pontos sobre cada seção, com exceção dos trechos de ruas (onde foram utilizados somente 2 pontos) e alguns locais com acesso dificultado por entrar em propriedades particulares. No total foram nivelados 200 pontos sobre as seções transversais utilizando a Estação Total.

No nívelamento das estacas sobre as Poligonais o número de estações do equipamento é igual ao utilizado no levantamento planimétrico, portanto, 14 estações, isto porque essas estacas vão sendo niveladas ao mesmo tempo em que são
realizados os levantamentos planimétricos das Poligonais. Este procedimento proporcionou uma redução de 30% do tempo necessário ao nivelamento, considerando o tempo de 5 minutos para a instalação do equipamento em cada estação do aparelho.

Os pontos das seções transversais foram medidos com uma única visada a partir de estacas localizadas sobre os alinhamentos que formam as Poligonais.

7.4.2 Trabalhos de escritório

O cálculo e ajustamento das coordenadas topográficas X e Y e o cálculo das alturas dos pontos foram desenvolvidos em planilhas organizadas pelo próprio autor, utilizando o programa Excel 98 da empresa Microsoft (apresentadas no Anexo), sendo inicialmente calculados os erros angular, transversal e longitudinal. Estes erros são apresentados na tabela 7.2. As tolerâncias foram calculadas segundo prescreve a NBR13133 e são apresentadas na tabela 7.3.

Tabela 7.2: Erros do levantamento planimétrico das Poligonais

<table>
<thead>
<tr>
<th>Poligonal</th>
<th>Erros cometidos</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Angular (Ea)</td>
<td>Transversal (Et)</td>
<td>Longitudinal (El)</td>
</tr>
<tr>
<td></td>
<td>(segundos de arco)</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>I</td>
<td>20,8"</td>
<td>0,060</td>
<td>0,309</td>
</tr>
<tr>
<td>II</td>
<td>44,6"</td>
<td>0,100</td>
<td>0,122</td>
</tr>
</tbody>
</table>

Tabela 7.3: Tolerância dos erros (NBR13133)

<table>
<thead>
<tr>
<th>Poligonal</th>
<th>Tolerância</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Angular (T)</td>
<td>Transversal (Tt)</td>
<td>Longitudinal (Tt)</td>
</tr>
<tr>
<td></td>
<td>(segundos de arco)</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>I</td>
<td>40,4"</td>
<td>0,637</td>
<td>0,689</td>
</tr>
<tr>
<td>II</td>
<td>1'04"</td>
<td>0,794</td>
<td>0,736</td>
</tr>
</tbody>
</table>

Analisando as tabelas verifica-se que os erros do levantamento das Poligonais foram sempre abaixo das tolerâncias.
A correção das observações foi realizada de acordo com a NBR13133. Os erros angulares foram distribuídos proporcionalmente ao número de vértices das Poligonais dado pela diferença entre o azimuth final calculado e o azimuth conhecido da base final.

Os erros lineares foram distribuídos proporcionalmente ao comprimento dos lados das Poligonais e foram determinados pela diferença entre a soma das projeções dos alinhamentos em cada eixo e a diferença entre as coordenadas iniciais e finais dos pontos conhecidos dos respectivos eixos.

Para a obtenção das alturas dos pontos foram utilizadas as fórmulas do nívelamento trigonométrico. Os resultados obtidos são cotas referenciadas a superfície de nível situada a 860 m abaixo do ponto GEO1 e aproximações das alturas ortométricas obtidas na Planta SAAE. As coordenadas e alturas dos vértices, estacas inteiras e fracionárias das Poligonais I, II e seções transversais são apresentadas no Anexo.

7.5 Tempo despendido

7.5.1 Levantamento com GPS

No levantamento com GPS foram necessárias aproximadamente 5 horas de trabalho de campo para a implantação das Bases 1 e 2, 2 horas para as Bases 3 e 4. No levantamento de 10 vértices das Poligonais I e II foram despendidas 6 horas devido à dificuldade de acesso em alguns locais da área (pastos cercados) e necessidade de caminhar pela área em trechos sem acesso a veículos. Para o processamento das observações e transformações de coordenadas foi necessária 1 hora para todas as Bases e 2 horas para os demais pontos levantados.

O tempo necessário para as observações dos vetores da Rede R1 foi de 100 minutos, sendo necessárias mais 3 horas para os deslocamentos aos pontos, preparação, montagem e desmontagem do equipamento, retorno ao escritório e descarregamento dos dados. Para o processamento das observações, transformações e ajustamentos foram despendidas aproximadamente 3 horas.
Utilizando o método “stop and go” foram necessárias aproximadamente 2 horas (incluídos os tempos para inicialização, observações da antena móvel, deslocamento entre os pontos, montagem e desmontagem do instrumento) para o levantamento de 54 pontos situados sobre as seções transversais. Para o processamento das observações e transformações de coordenadas foram necessárias 4 horas de trabalho. A tabela 7.4 apresenta as atividades e tempos utilizados.

Tabela 7.4: Tempo aproximado despendido no levantamento com GPS

<table>
<thead>
<tr>
<th>Atividade</th>
<th>Tempo despendido (hora)</th>
<th>Pontos levantados</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Campo</td>
<td>Escritório</td>
</tr>
<tr>
<td>Implantação das Bases</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Formação da Rede R1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Levantamento dos vértices</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Levantamento das seções transversais</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>8</td>
</tr>
</tbody>
</table>

7.5.2 Levantamento com a Estação Total

Considerando a praticidade em se operar com a Estação Total, as medições dos 14 vértices das Poligonais I e II foram realizados em aproximadamente 140 minutos (10 minutos em cada estação). Porém, o tempo total dos trabalhos de campo foi aumentado consideravelmente devido aos deslocamentos entre pontos da área. Neste trabalho, foi necessário avançar sobre terrenos alagados, atravessar cercas de arame farpado, fazer o roçado do mato em muitos trechos do levantamento e caminhar centenas de metros carregando os equipamentos para chegar a alguns pontos sem acesso a veículos. O tempo médio gasto em cada estação para o levantamento planimétrico das poligonais foi de 20 minutos.

No nivelamento dos 82 pontos situados sobre os alinhamentos das Poligonais foram necessárias aproximadamente 3 horas de trabalho e 15 horas para o
nívelamento dos 200 pontos das seções transversais, incluindo o tempo de instalação do equipamento para obtenção da direção da seção transversal.

Para os cálculos e ajustamentos das coordenadas das Poligonais I e II foram necessárias 4 horas de trabalho e 1 hora para a obtenção das alturas dos pontos.

A tabela 7.5 apresenta um resumo das atividades e tempos utilizados.

Tabela 7.5: Tempo aproximado despendido no levantamento das Poligonais I e II com a Estação Total

<table>
<thead>
<tr>
<th>Atividade</th>
<th>Tempo despendido (hora)</th>
<th>Pontos levantados</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Campo</td>
<td>Escritório</td>
</tr>
<tr>
<td>Levantamento Planimétrico</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Nivelamento</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>5</td>
</tr>
</tbody>
</table>
8.- DISCUSSÕES DOS RESULTADOS

8.1 Bases

Objetivando verificar a qualidade das coordenadas dos pontos que compõem as Bases 1 e 2, origem das Poligonais I e II, foi realizado um ajustamento, tomando como junção o ponto GEO1, dos 5 vetores observados entre todos os pontos (Figura 7.6). Foi utilizado o programa TRIMNET 2.3 da Trimble.

A Tabela 8.1 apresenta as coordenadas topográficas dos pontos das duas Bases obtidas da irradiação a partir do ponto STTU e do ajustamento e as respectivas diferenças.

Tabela 8.1: Coordenadas topográficas dos pontos das Bases obtidas da irradiação e do ajustamento e respectivas diferenças

<table>
<thead>
<tr>
<th>Ponto</th>
<th>Coordenadas planas UTM SAD-69 e topográficas</th>
<th>Diferenças (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Irradiação (m)</td>
<td>Ajustamento (m)</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>GEO1</td>
<td>5.000,00</td>
<td>20.000,00</td>
</tr>
<tr>
<td>GEO2</td>
<td>4.942,35</td>
<td>19.960,86</td>
</tr>
<tr>
<td>GEO3</td>
<td>5.332,65</td>
<td>18.298,48</td>
</tr>
<tr>
<td>GEO4</td>
<td>5.432,32</td>
<td>18.230,98</td>
</tr>
</tbody>
</table>
Os valores diferenciaram-se de 1 cm com exceção das coordenadas do ponto GEO3 que havia sido violado por máquinas que iniciaram serviços de terraplanagem na área, o que ocorreu no intervalo entre as irradiações e observação dos vetores das Bases 1 e 2. A partir destas diferenças se pode inferir que para as precisões dos levantamentos topográficos de vias e quando são utilizados vetores curtos (da ordem de 2 km) formados entre o ponto de referência e pontos das bases, as coordenadas ajustadas destes pontos (bases) pouco contribuem para a qualidade dos resultados das poligonais.

O relatório do ajustamento das coordenadas em WGS-84 dos pontos são apresentadas no Anexo.

As coordenadas topográficas ajustadas desses pontos foram utilizadas para o cálculo das Poligonais obtidas do levantamento convencional com Estação Total.

O comprimento reduzido das Bases 1 e 2 (70 e 120 m, respectivamente), utilizadas para apoiar as Poligonais, podem introduzir erros nas coordenadas obtidas para os pontos. Para verificar a influência do comprimento destas Bases nas coordenadas e nas distâncias entre os vértices das Poligonais, foram desenvolvidos os seguintes cálculos:

Sendo os vetores formados entre a referência (STT) e os pontos da Base 1 da ordem de 2,6 km e considerando a precisão de 5mm ± 2 ppm, dada pelo fabricante do equipamento para as coordenadas do processamento com GPS no modo estático, poderá ocorrer um erro no posicionamento dos pontos de 5mm + 2,6 · 2 mm ~ 10 mm. O erro máximo será 20 mm, quando ocorrer o erro de 10 mm em cada um dos pontos e em mesmo sentido. Sendo o comprimento da Base 1 aproximadamente igual a 70 m, o erro no azimute devido a imprecisão do levantamento dos pontos será de 1’ (arc tg 0,020 / 70).

A Base 2, formada pelos pontos GEO2 e GEO3 com vetores da ordem de 3,7 km e com comprimento de aproximadamente 120 m, poderá apresentar erro devido a imprecisão do levantamento dos pontos desta Base igual a 24,8 mm (5mm + 3,7 · 2mm ~ 12 mm x 2 = 24 mm) que poderá resultar em erro da ordem de 43” no azimute.

Introduzindo-se 1’ no azimute de cada uma das Bases utilizadas para apoiar a Poligonal I, em mesmo sentido, ou seja, um erro total de 2’ no cálculo, pôde-se verificar diferenças entre as coordenadas e distâncias dos pontos mostrados na tabela 8.2.
Para o Poligonal II, foi introduzido o erro de 43” no azimute de cada uma das Bases utilizadas; as diferenças entre as coordenadas e distâncias dos pontos são apresentadas na tabela 8.3.

TABELA 8.2: Diferenças nos resultados da Poligonal I modificada em 2’ angularmente

<table>
<thead>
<tr>
<th>Vértice</th>
<th>Diferença na distância horizontal (cm)</th>
<th>Diferença nas coordenadas (cm)</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2,5</td>
<td></td>
<td>1,3</td>
<td>2,0</td>
</tr>
<tr>
<td>AB2</td>
<td>1,0</td>
<td></td>
<td>2,1</td>
<td>1,8</td>
</tr>
<tr>
<td>A3</td>
<td>4,2</td>
<td></td>
<td>3,4</td>
<td>1,5</td>
</tr>
</tbody>
</table>

TABELA 8.3: Diferenças nos resultados da poligonal II modificada em 1’26” angularmente

<table>
<thead>
<tr>
<th>Vértice</th>
<th>Diferença na distância horizontal (cm)</th>
<th>Diferença nas coordenadas (cm)</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB15</td>
<td>1,7</td>
<td></td>
<td>0,7</td>
<td>0,8</td>
</tr>
<tr>
<td>AB14</td>
<td>0,6</td>
<td></td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>AB13</td>
<td>1,0</td>
<td></td>
<td>0,7</td>
<td>0,4</td>
</tr>
<tr>
<td>AB12</td>
<td>2,1</td>
<td></td>
<td>0,6</td>
<td>0,0</td>
</tr>
<tr>
<td>AB11</td>
<td>1,4</td>
<td></td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>AB10</td>
<td>7,6</td>
<td></td>
<td>0,2</td>
<td>0,7</td>
</tr>
<tr>
<td>AB9</td>
<td>4,5</td>
<td></td>
<td>0,6</td>
<td>1,2</td>
</tr>
<tr>
<td>AB8</td>
<td>7,4</td>
<td></td>
<td>1,5</td>
<td>1,6</td>
</tr>
<tr>
<td>AB7</td>
<td>1,0</td>
<td></td>
<td>2,6</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Os resultados mostram que a maior diferença nas coordenadas dos pontos foi de 3,6 cm, enquanto que nas distâncias foi de 7,6 cm. É importante observar que esses valores foram obtidos de alterações no azimute de cada uma das Bases (inicial e final), considerando os máximos erros (situação extremista) decorrentes do comprimento destas linhas, o que nem sempre ocorre em campo.
Os resultados foram obtidos em planilhas de cálculo e ajustamento de poligonais. Por esta razão, os erros introduzidos propositadamente nos azimutes das Bases não foram analisados isoladamente, isto porque os resultados (coordenadas) foram influenciados pelos erros angular e linear decorrentes do levantamento. Para um maior rigor na averiguação da influência do comprimento de bases nas distâncias e coordenadas de pontos recomenda-se a utilização da Teoria dos Erros.

As coordenadas dos pontos das Bases 1 e 2 foram obtidas a partir do procedimento utilizado em levantamentos geodésicos: observação dos vetores formados por todos estes pontos e ajustamento das suas coordenadas. Tendo em vista as pequenas diferenças obtidas entre as coordenadas topográficas resultantes das irradiações e as ajustadas (Tabela 8.1) concluiu-se que para a precisão deste trabalho e quando são utilizados vetores curtos (da ordem de 2 km) entre o ponto de referência e os pontos das bases, a utilização de coordenadas ajustadas para apoiar as poligonais pouco contribuem para a qualidade dos resultados.

Observando-se os resultados obtidos nas análises realizadas para as Bases 1 e 2 que estão separadas aproximadamente por 2 km , é de se esperar que para as Bases 3 e 4 , distanciadas aproximadamente 750 m uma da outra, as diferenças citadas sejam ainda inferiores. É importante lembrar que as coordenadas dos pontos destas Bases (3 e 4) foram obtidos por irradiação de pontos das Bases 1 e 2, que formaram vetores curtos da ordem de 500 a 1 .000 m.

Por esta razão, optou-se por não proceder as observações dos vetores entre pontos das Bases 3 e 4, utilizando-se as coordenadas destes pontos para o cálculo das Poligonais I e II. No entanto, objetivando verificar a validade de se utilizar coordenadas obtidas de irradiações para apoiar as Poligonais desenvolvidas foi realizada uma sessão de observações com GPS sobre os pontos AB4 da Base 3 e AB6 da Base 4, que foram pontos utilizados no cálculo do erro linear das Poligonais (figura 8.1).
A tabela 8.4 apresenta os resultados das coordenadas topográficas destes pontos obtidas de irradiações (figura 7.6) e as calculadas a partir das observações do vetor formado entre estes pontos (figura 8.1), aqui denominadas de "Coordenadas por Vetor".

TABELA 8.4: Coordenadas dos pontos AB4 e AB6

<table>
<thead>
<tr>
<th>Ponto</th>
<th>Coordenadas topográficas</th>
<th>Diferenças (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Irradiação (m)</td>
<td>Por vetor (m)</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>AB4</td>
<td>5.445,50</td>
<td>19.985,35</td>
</tr>
<tr>
<td>AB6</td>
<td>5.620,10</td>
<td>19.247,44</td>
</tr>
</tbody>
</table>
Observa-se na tabela 8.4 que a maior diferença entre as coordenadas e as cotas dos pontos foi de 2 cm. Calculando-se a distância entre estes pontos utilizando as coordenadas da irradiação e, então, a partir das Coordenadas por Vetor obteve-se a variação de 5mm entre as distâncias.

As diferenças obtidas comprovam que para a precisão dos levantamentos topográficos destinados a projetos básicos de vias e quando são utilizados vetores da ordem de 2 km, não se justifica a utilização de coordenadas ajustadas para apoiar os levantamentos convencionais.

8.2 Poligonais

As Poligonais desenvolvidas neste trabalho objetivaram analisar a aplicação do GPS em levantamentos topográficos convencionais, apresentando precisão suficiente para projetos básicos de vias (tabelas 7.2 e 7.3), comprovando, desta forma, a pouca influência dos erros decorrentes das Bases de apoio aos levantamentos discutidas no item 8.1.

8.3 Comparação entre os levantamentos

8.3.1 Coordenadas e distâncias

As coordenadas dos pontos obtidas com a Estação Total e com o GPS foram transformadas em topográficas e calculadas as distâncias e diferenças de nível entre estes pontos. A diferença entre as distâncias horizontais e entre a variação de altura dos pontos são apresentadas na tabela 8.5. As diferenças entre as coordenadas topográficas são apresentadas na tabela 8.6.
TABELA 8.5: Diferenças obtidas nas distâncias topográficas dos levantamentos com Estação Total e GPS

<table>
<thead>
<tr>
<th>Alinhamento</th>
<th>Diferenças obtidas E.T – GPS (cm)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distância horizontal</td>
<td>Variação de altura</td>
<td></td>
</tr>
<tr>
<td>GEO1 – GEO2</td>
<td>0,2</td>
<td>-0,4</td>
<td></td>
</tr>
<tr>
<td>B3 – AB6</td>
<td>2,0</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>AB6 – AB7</td>
<td>1,0</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>AB7 – AB8</td>
<td>-2,0</td>
<td>3,0</td>
<td></td>
</tr>
<tr>
<td>AB8 – AB9</td>
<td>-2,0</td>
<td>-1,0</td>
<td></td>
</tr>
<tr>
<td>AB9 – AB10</td>
<td>1,0</td>
<td>-4,0</td>
<td></td>
</tr>
<tr>
<td>AB10 – AB11</td>
<td>-0,3</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>AB11 – AB12</td>
<td>-2,0</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>AB15 – GEO4</td>
<td>0,1</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>GEO3 – GEO4</td>
<td>-0,2</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>Média</td>
<td>-1,0</td>
<td>1,3</td>
<td></td>
</tr>
</tbody>
</table>

TABELA 8.6: Diferenças obtidas entre as coordenadas topográficas ajustadas dos levantamentos com Estação Total (E.T.) e com o GPS

<table>
<thead>
<tr>
<th>Ponto</th>
<th>Diferenças obtidas E.T. – GPS (cm)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>AB2</td>
<td>5,9</td>
<td>-1,1</td>
<td></td>
</tr>
<tr>
<td>AB7</td>
<td>6,6</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>AB8</td>
<td>5,0</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>AB9</td>
<td>3,5</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>AB10</td>
<td>1,0</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>AB11</td>
<td>-0,2</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>AB12</td>
<td>0,1</td>
<td>2,4</td>
<td></td>
</tr>
<tr>
<td>AB15</td>
<td>-0,3</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>-8,0</td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>-2,9</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>Média</td>
<td>5,3</td>
<td>6,9</td>
<td></td>
</tr>
</tbody>
</table>
Observa-se que as diferenças nas distâncias obtidas entre os dois métodos apresentam uma média de 1 cm tanto na horizontal como na vertical. Este valor irá pouco contribuir nas diferenças de coordenadas. Por outro lado, quando são determinadas coordenadas pelo método clássico e pelo GPS já se verifica uma divergência de vários centímetros. Este fato ocorre porque com o GPS se determina um vetor espacial resultante das diferenças de vetores que unem os pontos aos satélites, sendo este vetor espacial mais sensível às mudanças espaciais na sua posição que no seu comprimento.

8.3.2 Produtividade, vantagens e desvantagens

Observando-se os resultados apresentados no capítulo 7, tabelas 7.4 e 7.5, tem-se que a produtividade da Estação Total foi da ordem de 4 vezes superior a do GPS. A tabela 8.7 apresenta a produtividade dos dois métodos utilizados.

Tabela 8.7: Produtividade obtida com a Estação Total e com o GPS

<table>
<thead>
<tr>
<th>Levantamento</th>
<th>Produtividade (pontos/ hora)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convencional</td>
<td>10,5</td>
</tr>
<tr>
<td>GPS</td>
<td>2,7</td>
</tr>
</tbody>
</table>

Nas observações dos vértices das Poligonais, observou-se que o tempo em cada ponto com a Estação Total foi praticamente igual ao tempo das observações dos pontos vértices das poligonais com GPS (12 minutos). A diferença está no tempo despendido para obtenção dos resultados. Enquanto que nas Estações Totais as coordenadas podem ser apresentadas no próprio campo (resultados parciais sem correções e ajustamentos), com o GPS as coordenadas são conhecidas somente após o processamento das observações, normalmente realizado no escritório (excetuando-se quando são utilizadas as chamadas Estações Totais GPS, obtendo-se as coordenadas dos pontos em tempo real).
O levantamento com GPS para formar seções transversais, utilizando o método "stop-and-go" não se mostrou adequado para as áreas urbanas, devido as obstruções aos sinais dos satélites e constante perda de sintonia com a estação de referência. O tempo necessário à nova reinicialização do método, diminui a produtividade do levantamento sendo, portanto, mais rápido e confiável executar as medições das seções transversais com a Estação Total.

Nas observações aos vetores para formação de redes com GPS, outro aspecto envolvido com o tempo do levantamento diz respeito ao acesso aos pontos a serem observados. A proximidade espacial entre eles poderá não significar pequenos e fáceis percursos a serem realizados para se chegar aos pontos, o que pode aumentar muito o tempo de execução dos trabalhos.

A utilização das Bases 3 e 4 contribuíram para a redução do tempo do levantamento. Isto porque a observação de vetores entre pontos das bases a cada vez que seja necessário interromper o levantamento convencional, aumenta o tempo de execução dos trabalhos de campo e interrompe a seqüência das medições que vem sendo feitas pelos alinhamentos da poligonal.

Nos levantamentos convencionais, a experiência do profissional com as medições, permite que erros grosseiros sejam detectados no próprio local, evitando o retorno ao campo para correções, enquanto que, nos levantamentos com GPS, até que as observações sejam processadas não se tem conhecimento algum dos resultados.

Uma grande vantagem dos levantamentos com GPS diz respeito a mão de obra do trabalho. Uma única pessoa pode executar todo o levantamento enquanto que com a Estação Total (não robotizadas) são necessários, no mínimo, duas pessoas.

No levantamento com Estação Total a participação humana é muito mais ativa e, sendo assim, a qualidade dos resultados das medições está diretamente relacionada com o rigor da equipe de trabalho nas operações. No levantamento com GPS, a participação humana é pequena e não influencia nos resultados das observações.

8.3.3 Custo dos equipamentos utilizados

Um fator importante a ser considerado nos levantamentos refere-se ao custo dos equipamentos. Atualmente, as Estações Totais apresentam preços mais
acessíveis que os receptores de GPS utilizados em levantamentos geodésicos e topográficos. No entanto, por ser possível uma única pessoa realizar levantamentos com GPS, o custo elevado inicial deste equipamento poderá ser compensado com a economia em encargos sociais e salários.

O modelo dos equipamentos utilizados neste trabalho foram substituídos por outros, conforme informação fornecida por funcionário de uma empresa que comercializa a marca LEICA no País. Objetivando apresentar os valores dos mesmos o autor consultou preços de Estações Totais e pares de receptores de GPS incluindo programa de processamento, com a mesma marca e características similares aquelas apresentadas pelos equipamentos utilizados. A Estação Total TC 110 custa atualmente R$ 14.500,00, aproximadamente U$ 6.600,00, enquanto o par de receptores de GPS modelo SR 510 com programa de processamento custa R$ 56.000,00, aproximadamente, U$ 25.500,00.

É evidente que o cálculo da hora do equipamento considerando exclusivamente o custo inicial do mesmo conduziria a um valor extremamente elevado para o levantamento com GPS. Outros custos, como os de capital (remuneração, depreciação, etc) devem ser considerados para uma comparação entre custos dos levantamentos.
9 - CONCLUSÕES E SUGESTÕES

Os levantamentos desenvolvidos neste trabalho permitiram avaliar o GPS como instrumento topográfico no meio urbano. A sua primeira vantagem é a implantação de bases georreferenciadas em locais situados a vários quilômetros dos pontos de referência. A segunda vantagem é o levantamento de pontos em um meio urbano, dispensando a intervisibilidade entre os mesmos. Neste caso em particular que trata do levantamento topográfico para o projeto de uma nova via, as vantagens do GPS são ainda mais realçadas por não necessitar precisões geodésicas. Em outras palavras, erros de centímetros não causarão diferenças no projeto. As vantagens mencionadas levam a uma conclusão imediata que o GPS pode substituir a Estação Total. Verificou-se neste trabalho que esta substituição não é sempre vantajosa, nos locais que permitem a intervisibilidade dos pontos a produtividade da Estação Total é incomparável com o GPS. Analisando alguns aspectos particulares deste levantamento pode-se concluir:

- As Bases implantadas por pontos levantados com GPS, apesar de curtas não comprometeram os resultados das Poligonais que nelas se apoiaram, o que indica a pouca importância do comprimento de bases para a precisão do levantamento destinado a projetos básicos de vias e, também, a boa precisão do GPS na obtenção de coordenadas latitude e longitude dos pontos.

- A utilização das Bases não ajustadas para apoiar trechos das Poligonal I e II introduziu erros nos resultados que para as precisões dos levantamentos destinados a projetos básicos de vias poderão ser desprezados. Deve-se, no entanto, observar o comprimento do vetor formado entre a estação de referência e
os pontos das bases. Neste trabalho as análises foram realizadas somente para vetores curtos (valores máximos de 2 km).

- As variações entre as distâncias horizontais e entre as diferenças de altura dos pontos obtidas com a Estação Total e com GPS mostraram que para a precisão deste trabalho pode-se perfeitamente utilizar as observações diferenciais deste sistema para trechos do levantamento que não apresentam intervisibilidade para as medições convencionais.

- Os levantamentos altimétricos em áreas urbanas, em especial, o nivelamento das estacas para formar os perfis longitudinais e transversais, realizados com a Estação Total continuam sendo mais indicados que a utilização de receptores de GPS pela praticidade, rapidez e precisão das medidas obtidas.

- Analisando os levantamentos pelo dois métodos em separados, verificou-se que a produtividade da Estação Total foi da ordem de 4 vezes superior a do GPS, indicando, assim, a utilização destes equipamentos em trabalhos destinados a projetos viários.

Como sugestão para trabalhos futuros recomenda-se verificar a integração entre os levantamentos convencionais e com GPS ajustando trechos de levantamentos com GPS e analisando a integração pelas observáveis para verificação das distorções existentes principalmente nos azimutes obtidos por ambos os levantamentos. Sugere-se também que sejam incluídos os custos associados aos levantamentos integrados comparando-os com os levantamentos convencionais com Estação Total.
REFERÊNCIAS BIBLIOGRÁFICAS

BIBLIOGRAFIA CONSULTADA

ANEXO
I - COORDENADAS DOS PONTOS OBTIDOS COM GPS

I.1 - COORDENADAS DOS PONTOS DAS BASES 1 E 2

<table>
<thead>
<tr>
<th>Ponto</th>
<th>SAD-69</th>
<th>WGS-84</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latitude (φ) (graus)</td>
<td>Longitude (λ) (graus)</td>
</tr>
<tr>
<td>STT</td>
<td>22°00’16,0511" S</td>
<td>47°53’55,3977”W</td>
</tr>
<tr>
<td>GEO1</td>
<td>22°00’35,2913”S</td>
<td>47°52’28,2345”W</td>
</tr>
<tr>
<td>GEO2</td>
<td>22°00’36,5636”S</td>
<td>47°52’30,2442”W</td>
</tr>
<tr>
<td>GEO3</td>
<td>22°01’30,6022”S</td>
<td>47°52’16,6369”W</td>
</tr>
<tr>
<td>GEO4</td>
<td>22°01’32,7963”S</td>
<td>47°52’13,1619”W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ponto</th>
<th>Leste (E) (m)</th>
<th>Norte (N) (m)</th>
<th>X (m)</th>
<th>Y (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO1</td>
<td>203219,871</td>
<td>7563287,943</td>
<td>5000</td>
<td>20000</td>
</tr>
<tr>
<td>GEO2</td>
<td>203162,936</td>
<td>7563247,703</td>
<td>4842,3498</td>
<td>19960,860</td>
</tr>
<tr>
<td>GEO3</td>
<td>203584,688</td>
<td>7561592,052</td>
<td>5332,6513</td>
<td>18298,482</td>
</tr>
<tr>
<td>GEO4</td>
<td>203685,669</td>
<td>7561526,403</td>
<td>5432,3234</td>
<td>18230,981</td>
</tr>
</tbody>
</table>
1.2 - COORDENADAS DOS PONTOS DAS BASES 3 E 4

<table>
<thead>
<tr>
<th>Ponto</th>
<th>Leste (E) (m)</th>
<th>Norte (N) (m)</th>
<th>X (m)</th>
<th>Y (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3</td>
<td>203798,172</td>
<td>7562707,612</td>
<td>5566,972</td>
<td>19409,190</td>
</tr>
<tr>
<td>AB4</td>
<td>203666,424</td>
<td>7563281,712</td>
<td>5446,112</td>
<td>19985,375</td>
</tr>
<tr>
<td>B5</td>
<td>203795,916</td>
<td>7563284,779</td>
<td>5575,567</td>
<td>19986,010</td>
</tr>
<tr>
<td>AB6</td>
<td>203854,382</td>
<td>7562546,786</td>
<td>5620,111</td>
<td>19247,450</td>
</tr>
</tbody>
</table>

1.3 - COORDENADAS PLANAS UTM (SAD-69) – MC45: VÉRTICES DAS POLIGONAIAS

<table>
<thead>
<tr>
<th>PONTO</th>
<th>COORDENADAS PLANAS UTM (SAD-69) – MC45</th>
<th>E (m)</th>
<th>N (m)</th>
<th>h (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB2</td>
<td>203.457,5049</td>
<td>7.563.189,6609</td>
<td>889,1453</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>203.562,6503</td>
<td>7.563.084,4886</td>
<td>894,3743</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>203.692,8197</td>
<td>7.562.934,9620</td>
<td>878,6551</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>203.798,1782</td>
<td>7.562.707,5870</td>
<td>858,8308</td>
<td></td>
</tr>
<tr>
<td>AB6</td>
<td>203.854,9283</td>
<td>7.562.546,8390</td>
<td>855,1378</td>
<td></td>
</tr>
<tr>
<td>AB7</td>
<td>203.787,3855</td>
<td>7.562.441,9793</td>
<td>854,6067</td>
<td></td>
</tr>
<tr>
<td>AB8</td>
<td>203.774,6002</td>
<td>7.562.290,2323</td>
<td>863,7930</td>
<td></td>
</tr>
<tr>
<td>AB9</td>
<td>203.756,5334</td>
<td>7.562.152,0121</td>
<td>869,2957</td>
<td></td>
</tr>
<tr>
<td>AB10</td>
<td>203.725,9376</td>
<td>7.561.920,3664</td>
<td>861,4853</td>
<td></td>
</tr>
<tr>
<td>AB11</td>
<td>203.708,9395</td>
<td>7.561.848,6902</td>
<td>857,8223</td>
<td></td>
</tr>
<tr>
<td>AB12</td>
<td>203.679,6274</td>
<td>7.561.733,2848</td>
<td>842,9876</td>
<td></td>
</tr>
<tr>
<td>AB15</td>
<td>203.626,9997</td>
<td>7.561.564,1950</td>
<td>834,7373</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>203.666,4240</td>
<td>7.563.281,7120</td>
<td>900,634</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>203.795,9163</td>
<td>7.563.284,7790</td>
<td>905,8660</td>
<td></td>
</tr>
</tbody>
</table>
I.4 - COORDENADAS TOPOGRÁFICAS: VÉRTICES DA POLIGONAL

<table>
<thead>
<tr>
<th>PONTO</th>
<th>COORDENADAS TOPOGRÁFICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X (m)</td>
</tr>
<tr>
<td>AB2</td>
<td>5.235,612</td>
</tr>
<tr>
<td>B1</td>
<td>5.338,704</td>
</tr>
<tr>
<td>B2</td>
<td>5.465,967</td>
</tr>
<tr>
<td>B3</td>
<td>5.566,972</td>
</tr>
<tr>
<td>AB6</td>
<td>5.620,658</td>
</tr>
<tr>
<td>AB7</td>
<td>5.551,191</td>
</tr>
<tr>
<td>AB8</td>
<td>5.535,561</td>
</tr>
<tr>
<td>AB9</td>
<td>5.514,907</td>
</tr>
<tr>
<td>AB10</td>
<td>5.479,975</td>
</tr>
<tr>
<td>AB11</td>
<td>5.461,641</td>
</tr>
<tr>
<td>AB12</td>
<td>5.430,179</td>
</tr>
<tr>
<td>AB15</td>
<td>5.374,408</td>
</tr>
<tr>
<td>A4</td>
<td>5.446,111</td>
</tr>
<tr>
<td>A5</td>
<td>5.575,566</td>
</tr>
</tbody>
</table>
1.5 - COORDENADAS PLANAS UTM (SAD-69) – MC45: PONTOS DAS SEÇÃO TRANSVERSAIS / TRECHO 1

<table>
<thead>
<tr>
<th>PONTO</th>
<th>E (m)</th>
<th>N (m)</th>
<th>h (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>203.184,631</td>
<td>7.563.288,900</td>
<td>865,174</td>
</tr>
<tr>
<td>a1</td>
<td>203.168,041</td>
<td>7.563.261,550</td>
<td>865,774</td>
</tr>
<tr>
<td>a2</td>
<td>203.180,180</td>
<td>7.563.282,289</td>
<td>864,885</td>
</tr>
<tr>
<td>a3</td>
<td>203.191,895</td>
<td>7.563.301,999</td>
<td>865,504</td>
</tr>
<tr>
<td>b</td>
<td>203.232,980</td>
<td>7.563.289,760</td>
<td>869,860</td>
</tr>
<tr>
<td>b1</td>
<td>203.236,688</td>
<td>7.563.259,879</td>
<td>870,321</td>
</tr>
<tr>
<td>b2</td>
<td>203.222,727</td>
<td>7.563.277,519</td>
<td>866,264</td>
</tr>
<tr>
<td>c</td>
<td>203.261,094</td>
<td>7.563.276,607</td>
<td>872,884</td>
</tr>
<tr>
<td>c1</td>
<td>203.264,092</td>
<td>7.563.289,800</td>
<td>872,840</td>
</tr>
<tr>
<td>c2</td>
<td>203.260,442</td>
<td>7.563.260,955</td>
<td>872,249</td>
</tr>
<tr>
<td>d</td>
<td>203.294,795</td>
<td>7.563.256,492</td>
<td>875,974</td>
</tr>
<tr>
<td>d1</td>
<td>203.300,032</td>
<td>7.563.282,153</td>
<td>876,757</td>
</tr>
<tr>
<td>d2</td>
<td>203.280,244</td>
<td>7.563.230,103</td>
<td>877,131</td>
</tr>
<tr>
<td>e</td>
<td>203.346,208</td>
<td>7.563.213,609</td>
<td>881,843</td>
</tr>
<tr>
<td>e1</td>
<td>203.329,512</td>
<td>7.563.186,775</td>
<td>882,486</td>
</tr>
<tr>
<td>e2</td>
<td>203.358,197</td>
<td>7.563.256,501</td>
<td>880,370</td>
</tr>
<tr>
<td>f</td>
<td>203.417,426</td>
<td>7.563.232,901</td>
<td>884,642</td>
</tr>
<tr>
<td>f1</td>
<td>203.406,194</td>
<td>7.563.209,280</td>
<td>885,356</td>
</tr>
<tr>
<td>f2</td>
<td>203.394,431</td>
<td>7.563.184,192</td>
<td>886,090</td>
</tr>
<tr>
<td>g</td>
<td>203.457,505</td>
<td>7.563.189,661</td>
<td>889,145</td>
</tr>
<tr>
<td>g1</td>
<td>203.467,278</td>
<td>7.563.204,905</td>
<td>889,063</td>
</tr>
<tr>
<td>g2</td>
<td>203.474,666</td>
<td>7.563.218,998</td>
<td>888,142</td>
</tr>
</tbody>
</table>
1.6 - COORDENADAS TOPOGRÁFICAS: PONTOS DAS SEÇÕES TRANSVERSAIS / TRECHO 1

<table>
<thead>
<tr>
<th>PONTO</th>
<th>COORDENADAS TOPOGRÁFICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X (m)</td>
</tr>
<tr>
<td>a</td>
<td>4.964,803</td>
</tr>
<tr>
<td>a1</td>
<td>4.947,712</td>
</tr>
<tr>
<td>a2</td>
<td>4.960,231</td>
</tr>
<tr>
<td>a3</td>
<td>4.972,309</td>
</tr>
<tr>
<td>b</td>
<td>5.013,133</td>
</tr>
<tr>
<td>b1</td>
<td>5.016,277</td>
</tr>
<tr>
<td>b2</td>
<td>5.002,658</td>
</tr>
<tr>
<td>c</td>
<td>5.040,979</td>
</tr>
<tr>
<td>c1</td>
<td>5.044,224</td>
</tr>
<tr>
<td>c2</td>
<td>5.040,033</td>
</tr>
<tr>
<td>d</td>
<td>5.074,277</td>
</tr>
<tr>
<td>d1</td>
<td>5.079,994</td>
</tr>
<tr>
<td>d2</td>
<td>5.059,241</td>
</tr>
<tr>
<td>e</td>
<td>5.124,847</td>
</tr>
<tr>
<td>e1</td>
<td>5.107,659</td>
</tr>
<tr>
<td>e2</td>
<td>5.137,633</td>
</tr>
<tr>
<td>f</td>
<td>5.196,376</td>
</tr>
<tr>
<td>f1</td>
<td>5.184,707</td>
</tr>
<tr>
<td>f2</td>
<td>5.172,481</td>
</tr>
<tr>
<td>g</td>
<td>5.235,612</td>
</tr>
<tr>
<td>g1</td>
<td>5.245,665</td>
</tr>
<tr>
<td>g2</td>
<td>5.253,313</td>
</tr>
<tr>
<td>h</td>
<td>5.270,684</td>
</tr>
<tr>
<td>j</td>
<td>5.328,460</td>
</tr>
<tr>
<td>k</td>
<td>5.344,279</td>
</tr>
<tr>
<td>l</td>
<td>5.469,828</td>
</tr>
</tbody>
</table>
I.7 - COORDENADAS PLANAS UTM (SAD-69) – MC45: PONTOS DAS SEÇÕES TRANSVERSAIS / TRECHO 3

<table>
<thead>
<tr>
<th>PONTO</th>
<th>COORDENADAS PLANAS UTM (SAD-69) – MC45</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E (m)</td>
</tr>
<tr>
<td>2</td>
<td>203.709,328</td>
</tr>
<tr>
<td>2a</td>
<td>203.627,052</td>
</tr>
<tr>
<td>alt1</td>
<td>203.630,313</td>
</tr>
<tr>
<td>alt2</td>
<td>203.609,685</td>
</tr>
<tr>
<td>alt3</td>
<td>203.588,277</td>
</tr>
<tr>
<td>alt4</td>
<td>203.628,615</td>
</tr>
<tr>
<td>alt5</td>
<td>203.629,258</td>
</tr>
<tr>
<td>Per1</td>
<td>203.717,525</td>
</tr>
<tr>
<td>Per1a</td>
<td>203.731,495</td>
</tr>
<tr>
<td>Per1b</td>
<td>203.753,475</td>
</tr>
<tr>
<td>Per1c</td>
<td>203.776,248</td>
</tr>
<tr>
<td>Per2</td>
<td>203.709,414</td>
</tr>
<tr>
<td>Per2a</td>
<td>203.699,535</td>
</tr>
<tr>
<td>Per2b</td>
<td>203.732,148</td>
</tr>
<tr>
<td>Per2c</td>
<td>203.748,521</td>
</tr>
<tr>
<td>Per2d</td>
<td>203.762,651</td>
</tr>
<tr>
<td>Per3b</td>
<td>203.680,050</td>
</tr>
<tr>
<td>Per3c</td>
<td>203.707,890</td>
</tr>
<tr>
<td>Per3d</td>
<td>203.722,915</td>
</tr>
<tr>
<td>Per4</td>
<td>203.675,020</td>
</tr>
<tr>
<td>Per4a</td>
<td>203.666,842</td>
</tr>
<tr>
<td>Per4b</td>
<td>203.657,611</td>
</tr>
<tr>
<td>Per4c</td>
<td>203.685,993</td>
</tr>
<tr>
<td>Per4d</td>
<td>203.703,816</td>
</tr>
<tr>
<td>Per5</td>
<td>203.660,539</td>
</tr>
<tr>
<td>Per5a</td>
<td>203.630,301</td>
</tr>
<tr>
<td>Per5b</td>
<td>203.645,827</td>
</tr>
<tr>
<td>Per5c</td>
<td>203.682,033</td>
</tr>
<tr>
<td>Per5d</td>
<td>203.702,148</td>
</tr>
<tr>
<td>y</td>
<td>203.690,584</td>
</tr>
</tbody>
</table>
I.8 - COORDENADAS TOPOGRÁFICAS: PONTOS DAS SEÇÕES TRANSVERSAIS / TRECHO 3

<table>
<thead>
<tr>
<th>PONTO</th>
<th>COORDENADAS TOPOGRÁFICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X (m)</td>
</tr>
<tr>
<td>GEO1</td>
<td>5000</td>
</tr>
<tr>
<td>2</td>
<td>5461,9968</td>
</tr>
<tr>
<td>2a</td>
<td>5375,5500</td>
</tr>
<tr>
<td>Alt1</td>
<td>5379,7167</td>
</tr>
<tr>
<td>Alt2</td>
<td>5358,5470</td>
</tr>
<tr>
<td>Alt3</td>
<td>5336,4918</td>
</tr>
<tr>
<td>Alt4</td>
<td>5376,3638</td>
</tr>
<tr>
<td>Alt5</td>
<td>5377,0066</td>
</tr>
<tr>
<td>Per1</td>
<td>5470,7823</td>
</tr>
<tr>
<td>Per1a</td>
<td>5484,6926</td>
</tr>
<tr>
<td>Per1b</td>
<td>5506,5326</td>
</tr>
<tr>
<td>Per1c</td>
<td>5529,2659</td>
</tr>
<tr>
<td>Per2</td>
<td>5462,0817</td>
</tr>
<tr>
<td>Per2a</td>
<td>5452,3423</td>
</tr>
<tr>
<td>Per2b</td>
<td>5484,4802</td>
</tr>
<tr>
<td>Per2c</td>
<td>5500,5992</td>
</tr>
<tr>
<td>Per2d</td>
<td>5514,6890</td>
</tr>
<tr>
<td>Per3b</td>
<td>5432,2460</td>
</tr>
<tr>
<td>Per3c</td>
<td>5459,5708</td>
</tr>
<tr>
<td>Per3d</td>
<td>5474,4827</td>
</tr>
<tr>
<td>Per4</td>
<td>5426,2662</td>
</tr>
<tr>
<td>Per4a</td>
<td>5418,1587</td>
</tr>
<tr>
<td>Per4b</td>
<td>5409,0314</td>
</tr>
<tr>
<td>Per4c</td>
<td>5437,0043</td>
</tr>
<tr>
<td>Per4d</td>
<td>5454,6069</td>
</tr>
<tr>
<td>Per5</td>
<td>5410,9213</td>
</tr>
<tr>
<td>Per5a</td>
<td>5380,8894</td>
</tr>
<tr>
<td>Per5b</td>
<td>5396,2968</td>
</tr>
<tr>
<td>Per5c</td>
<td>5432,2274</td>
</tr>
<tr>
<td>Per5d</td>
<td>5452,1920</td>
</tr>
<tr>
<td>Y</td>
<td>5442,4637</td>
</tr>
</tbody>
</table>
II. RESULTADO DO LEVANTAMENTO COM ESTAÇÃO TOTAL

II.1 PLANILHA DE CÁLCULO DA POLIGONAL I

<table>
<thead>
<tr>
<th>Estaca</th>
<th>Ponto visado</th>
<th>D horiz.</th>
<th>G</th>
<th>M</th>
<th>S</th>
<th>Grau decimal</th>
<th>Az s/corr.</th>
<th>Az s/corr (rad)</th>
<th>G</th>
<th>M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO2</td>
<td>GEO1</td>
<td>69,683</td>
<td>55</td>
<td>49</td>
<td>25,02</td>
<td>55,8236</td>
<td>55,8236</td>
<td>55,8236</td>
<td>55</td>
<td>49</td>
<td>25</td>
</tr>
<tr>
<td>GEO1</td>
<td>A1</td>
<td>82,012</td>
<td>208</td>
<td>57</td>
<td>45</td>
<td>208,983</td>
<td>84,7861</td>
<td>1,4797</td>
<td>208</td>
<td>57</td>
<td>41</td>
</tr>
<tr>
<td>A1</td>
<td>A2</td>
<td>189,301</td>
<td>220</td>
<td>46</td>
<td>58</td>
<td>220,783</td>
<td>125,568</td>
<td>2,1915</td>
<td>220</td>
<td>46</td>
<td>53,2</td>
</tr>
<tr>
<td>A2</td>
<td>A3</td>
<td>57,475</td>
<td>190</td>
<td>31</td>
<td>21</td>
<td>190,523</td>
<td>136,091</td>
<td>2,3752</td>
<td>190</td>
<td>31</td>
<td>17</td>
</tr>
<tr>
<td>A3</td>
<td>AB4</td>
<td>213,950</td>
<td>96</td>
<td>39</td>
<td>12</td>
<td>96,6533</td>
<td>52,7447</td>
<td>0,9205</td>
<td>96</td>
<td>39</td>
<td>8</td>
</tr>
<tr>
<td>AB4</td>
<td>B5</td>
<td>129,456</td>
<td>216</td>
<td>58</td>
<td>56</td>
<td>216,982</td>
<td>89,7269</td>
<td>1,5660</td>
<td>216</td>
<td>58</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>742,110</td>
<td>89</td>
<td>43</td>
<td>16,21</td>
<td>89,7212</td>
<td></td>
<td></td>
<td>89</td>
<td>43</td>
<td>16,21</td>
</tr>
</tbody>
</table>

Grau Az

<table>
<thead>
<tr>
<th></th>
<th>A, grau decimal</th>
<th>Az (rad)</th>
<th>Lx</th>
<th>Ly</th>
<th>Lx cor</th>
<th>Ly cor</th>
<th>Ponto</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>55,8236</td>
<td>55,8236</td>
<td>0,9743</td>
<td>57,650</td>
<td>39,144</td>
<td>57,679</td>
<td>39,135</td>
<td>GEO2</td>
<td>4942,35</td>
<td>19960,86</td>
</tr>
<tr>
<td>208,9613</td>
<td>84,785</td>
<td>1,4797</td>
<td>81,673</td>
<td>7,454</td>
<td>81,707</td>
<td>7,444</td>
<td>GEO1</td>
<td>5000</td>
<td>20000</td>
</tr>
<tr>
<td>220,7814</td>
<td>125,566</td>
<td>2,1915</td>
<td>153,985</td>
<td>-110,106</td>
<td>154,064</td>
<td>-110,131</td>
<td>A1</td>
<td>5081,71</td>
<td>20007,44</td>
</tr>
<tr>
<td>190,5213</td>
<td>136,087</td>
<td>2,3751</td>
<td>39,862</td>
<td>-41,405</td>
<td>39,886</td>
<td>-41,413</td>
<td>A2</td>
<td>5235,77</td>
<td>19897,31</td>
</tr>
<tr>
<td>96,6522</td>
<td>52,7400</td>
<td>0,9204</td>
<td>170,282</td>
<td>129,532</td>
<td>170,372</td>
<td>129,505</td>
<td>A3</td>
<td>5275,66</td>
<td>19855,9</td>
</tr>
<tr>
<td>216,9811</td>
<td>89,7211</td>
<td>1,5659</td>
<td>129,454</td>
<td>0,630</td>
<td>129,509</td>
<td>0,613</td>
<td>AB4</td>
<td>5446,03</td>
<td>19985,41</td>
</tr>
<tr>
<td>89,7211</td>
<td></td>
<td></td>
<td>632,906</td>
<td>25,249</td>
<td>633,216</td>
<td>25,154</td>
<td>B5</td>
<td>5575,54</td>
<td>19986,02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Confere</td>
<td>0,000</td>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ea=20.8" 0,0057 B5= 5575,567; 19988,010
ea/N= 0,0011 GEO2= 4942,350; 19960,856
Ex= 0,310 AB4= 5446,112; 19985,375
Ey = -0,095 GEO1= 5000,000; 20000,000
Ef = 0,324 m Diff.X = 633,2161
M = 1: 2289 DiffY = 25,154
II.2 PLANILHA DE CÁLCULO DA POLIGONAL II

<table>
<thead>
<tr>
<th>Estaca</th>
<th>Ponto visado</th>
<th>Distância horizontal</th>
<th>G</th>
<th>M</th>
<th>S</th>
<th>Grau decimal</th>
<th>Az s/corr.</th>
<th>Az (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO3</td>
<td>GEO4</td>
<td>120,382</td>
<td>124</td>
<td>7</td>
<td>50</td>
<td>124,131</td>
<td>124,131</td>
<td>2,166</td>
</tr>
<tr>
<td>GEO4</td>
<td>AB15</td>
<td>69,749</td>
<td>359</td>
<td>45</td>
<td>9</td>
<td>359,753</td>
<td>303,883</td>
<td>5,304</td>
</tr>
<tr>
<td>AB15</td>
<td>A14</td>
<td>52,500</td>
<td>244</td>
<td>34</td>
<td>46</td>
<td>244,579</td>
<td>368,463</td>
<td>6,431</td>
</tr>
<tr>
<td>A14</td>
<td>A13</td>
<td>49,830</td>
<td>195</td>
<td>17</td>
<td>55</td>
<td>195,299</td>
<td>383,761</td>
<td>6,698</td>
</tr>
<tr>
<td>A13</td>
<td>A12</td>
<td>75,800</td>
<td>177</td>
<td>54</td>
<td>25</td>
<td>177,907</td>
<td>381,668</td>
<td>6,661</td>
</tr>
<tr>
<td>A12</td>
<td>A11</td>
<td>119,004</td>
<td>173</td>
<td>39</td>
<td>55</td>
<td>173,665</td>
<td>375,333</td>
<td>6,551</td>
</tr>
<tr>
<td>A11</td>
<td>A10</td>
<td>73,623</td>
<td>179</td>
<td>9</td>
<td>5</td>
<td>179,101</td>
<td>374,435</td>
<td>6,535</td>
</tr>
<tr>
<td>A10</td>
<td>A9</td>
<td>233,529</td>
<td>174</td>
<td>10</td>
<td>46</td>
<td>174,179</td>
<td>368,614</td>
<td>6,431</td>
</tr>
<tr>
<td>A9</td>
<td>A8</td>
<td>139,357</td>
<td>180</td>
<td>1</td>
<td>29</td>
<td>180,025</td>
<td>368,639</td>
<td>6,431</td>
</tr>
<tr>
<td>A8</td>
<td>A7</td>
<td>152,175</td>
<td>177</td>
<td>10</td>
<td>30</td>
<td>177,175</td>
<td>365,814</td>
<td>6,385</td>
</tr>
<tr>
<td>A7</td>
<td>AB6</td>
<td>170,355</td>
<td>177</td>
<td>54</td>
<td>25</td>
<td>177,908</td>
<td>381,673</td>
<td>6,661</td>
</tr>
<tr>
<td>AB6</td>
<td>B3</td>
<td>1380,628</td>
<td>179</td>
<td>6</td>
<td>9</td>
<td>179,103</td>
<td>374,442</td>
<td>6,535</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estaca</th>
<th>Az corr. (rad)</th>
<th>G</th>
<th>M</th>
<th>S</th>
<th>Grau (g. dec.)</th>
<th>Az</th>
<th>Az (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO3</td>
<td>2,166</td>
<td>124</td>
<td>7</td>
<td>50</td>
<td>124,131</td>
<td>124,131</td>
<td>2,166</td>
</tr>
<tr>
<td>GEO4</td>
<td>5,304</td>
<td>359</td>
<td>45</td>
<td>9</td>
<td>359,754</td>
<td>303,884</td>
<td>5,303</td>
</tr>
<tr>
<td>AB15</td>
<td>6,431</td>
<td>244</td>
<td>34</td>
<td>46</td>
<td>244,581</td>
<td>368,465</td>
<td>6,430</td>
</tr>
<tr>
<td>A14</td>
<td>6,698</td>
<td>195</td>
<td>17</td>
<td>59</td>
<td>195,300</td>
<td>383,765</td>
<td>6,690</td>
</tr>
<tr>
<td>A13</td>
<td>6,661</td>
<td>177</td>
<td>54</td>
<td>29</td>
<td>177,908</td>
<td>381,673</td>
<td>6,614</td>
</tr>
<tr>
<td>A12</td>
<td>6,551</td>
<td>173</td>
<td>39</td>
<td>59</td>
<td>173,666</td>
<td>375,339</td>
<td>6,559</td>
</tr>
<tr>
<td>A11</td>
<td>6,535</td>
<td>179</td>
<td>6</td>
<td>9</td>
<td>179,103</td>
<td>374,442</td>
<td>6,552</td>
</tr>
<tr>
<td>A10</td>
<td>6,434</td>
<td>174</td>
<td>10</td>
<td>50</td>
<td>174,181</td>
<td>368,622</td>
<td>6,437</td>
</tr>
<tr>
<td>A9</td>
<td>6,434</td>
<td>180</td>
<td>1</td>
<td>33</td>
<td>180,026</td>
<td>368,648</td>
<td>6,434</td>
</tr>
<tr>
<td>A8</td>
<td>6,385</td>
<td>177</td>
<td>10</td>
<td>34</td>
<td>177,176</td>
<td>365,824</td>
<td>6,384</td>
</tr>
<tr>
<td>A7</td>
<td>6,871</td>
<td>207</td>
<td>51</td>
<td>34</td>
<td>207,859</td>
<td>393,672</td>
<td>6,871</td>
</tr>
<tr>
<td>AB6</td>
<td>5,966</td>
<td>128</td>
<td>8</td>
<td>29</td>
<td>128,140</td>
<td>341,813</td>
<td>5,966</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lx</th>
<th>Ly</th>
<th>Lx cor</th>
<th>Ly cor</th>
<th>Ponto</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>99,648</td>
<td>-67,544</td>
<td>99,621</td>
<td>-67,551</td>
<td>GEO3</td>
<td>5332,67</td>
<td>18298,53</td>
</tr>
<tr>
<td>-57,903</td>
<td>38,886</td>
<td>-57,919</td>
<td>38,882</td>
<td>GEO4</td>
<td>5432,32</td>
<td>18230,99</td>
</tr>
<tr>
<td>7,728</td>
<td>51,928</td>
<td>7,717</td>
<td>51,925</td>
<td>AB15</td>
<td>5374,40</td>
<td>18269,87</td>
</tr>
<tr>
<td>20,080</td>
<td>45,605</td>
<td>20,070</td>
<td>45,602</td>
<td>A14</td>
<td>5382,11</td>
<td>18321,80</td>
</tr>
<tr>
<td>27,993</td>
<td>70,442</td>
<td>27,977</td>
<td>70,437</td>
<td>A13</td>
<td>5402,18</td>
<td>18367,41</td>
</tr>
<tr>
<td>31,480</td>
<td>114,765</td>
<td>31,454</td>
<td>114,758</td>
<td>A12</td>
<td>5430,16</td>
<td>18437,85</td>
</tr>
<tr>
<td>18,361</td>
<td>71,297</td>
<td>18,345</td>
<td>71,293</td>
<td>A11</td>
<td>5461,61</td>
<td>18552,61</td>
</tr>
<tr>
<td>35,010</td>
<td>230,890</td>
<td>34,959</td>
<td>230,877</td>
<td>A10</td>
<td>5479,96</td>
<td>18623,91</td>
</tr>
<tr>
<td>20,954</td>
<td>137,773</td>
<td>20,924</td>
<td>137,765</td>
<td>A9</td>
<td>5514,92</td>
<td>18854,80</td>
</tr>
<tr>
<td>15,442</td>
<td>151,390</td>
<td>15,409</td>
<td>151,381</td>
<td>A8</td>
<td>5535,84</td>
<td>18992,57</td>
</tr>
<tr>
<td>68,950</td>
<td>103,450</td>
<td>68,923</td>
<td>103,443</td>
<td>A7</td>
<td>5551,25</td>
<td>19143,96</td>
</tr>
<tr>
<td>-53,138</td>
<td>161,856</td>
<td>-53,175</td>
<td>161,846</td>
<td>AB6</td>
<td>5620,11</td>
<td>19247,45</td>
</tr>
<tr>
<td>234,606</td>
<td>1110,737</td>
<td>234,304</td>
<td>1110,66</td>
<td>B3</td>
<td>5656,97</td>
<td>19409,19</td>
</tr>
<tr>
<td>0,302</td>
<td>0,077</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| ea=44,6° | 0,0124 | 0,0011 | 0,31m | 4439,32 |

| Diff.X= | 234,304 | Ex= | -0,302 | GEO4 | 5432,315 | 18230,98 |
| Diff.Y= | 1110,661 | Ey= | -0,077 | AB6 | 5620,111 | 19247,45 |
II.3 ERROS TRANSVERSAL E LONGITUDINAL DAS POLIGONAIAS I E II

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>lado</th>
<th>Az (grau dec)</th>
<th>Az (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO1</td>
<td>5000,00</td>
<td>20000,00</td>
<td>GEO1-AB4</td>
<td>91,8775</td>
<td>1,6036</td>
</tr>
<tr>
<td>AB4</td>
<td>5446,11</td>
<td>19985,38</td>
<td>AB4-AB4'</td>
<td>282,8446</td>
<td>4,9366</td>
</tr>
<tr>
<td>AB4'</td>
<td>5445,81</td>
<td>19985,45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>diferença de Az=</td>
<td>190,9670</td>
<td>3,3330</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ângulo procurado=</td>
<td>10,9670</td>
<td>0,1914</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>distância AB4-AB4'=</td>
<td>0,315m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E.Transversal (Et) =</td>
<td>0,309m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E.Longitudinal (El) =</td>
<td>0,060m</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>lado</th>
<th>Az (grau dec)</th>
<th>Az (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO3</td>
<td>5332,668</td>
<td>18298,530</td>
<td>GEO3-B3</td>
<td>11,9124</td>
<td>0,2079</td>
</tr>
<tr>
<td>B3</td>
<td>5566,972</td>
<td>19409,191</td>
<td>B3-B3'</td>
<td>51,1702</td>
<td>0,8931</td>
</tr>
<tr>
<td>B3'</td>
<td>5566,94</td>
<td>19409,310</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>diferença de Az=</td>
<td>39,2578</td>
<td>0,6852</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ângulo procurado=</td>
<td>140,7422</td>
<td>2,4564</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>distância AB4-AB4'=</td>
<td>0,158m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E.Transversal (Et) =</td>
<td>-0,122m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E.Longitudinal (El) =</td>
<td>0,100m</td>
<td></td>
</tr>
</tbody>
</table>

II.4 NIVELAMENTO DA POLIGONAL I

<table>
<thead>
<tr>
<th>Estaca</th>
<th>Dv (m)</th>
<th>Altitude (H) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1,29</td>
<td>864,071</td>
</tr>
<tr>
<td>1</td>
<td>-1,908</td>
<td>865,361</td>
</tr>
<tr>
<td>2</td>
<td>-2,254</td>
<td>867,267</td>
</tr>
<tr>
<td>3</td>
<td>-3,269</td>
<td>869,521</td>
</tr>
<tr>
<td>4</td>
<td>-1,33</td>
<td>872,790</td>
</tr>
<tr>
<td>5</td>
<td>-1,294</td>
<td>874,120</td>
</tr>
<tr>
<td>A1</td>
<td>-0,741</td>
<td>875,414</td>
</tr>
<tr>
<td>6+2,88</td>
<td>-0,466</td>
<td>876,155</td>
</tr>
<tr>
<td>7+2,88</td>
<td>-1,202</td>
<td>876,621</td>
</tr>
<tr>
<td>8+2,88</td>
<td>-1,258</td>
<td>877,823</td>
</tr>
<tr>
<td>9+2,88</td>
<td>-1,352</td>
<td>879,081</td>
</tr>
<tr>
<td>10+2,88</td>
<td>-1,597</td>
<td>880,433</td>
</tr>
<tr>
<td>11+2,88</td>
<td>-1,251</td>
<td>882,030</td>
</tr>
<tr>
<td>12+2,88</td>
<td>-1,576</td>
<td>883,281</td>
</tr>
<tr>
<td>13+2,88</td>
<td>-1,236</td>
<td>884,857</td>
</tr>
<tr>
<td>14+2,88</td>
<td>-1,912</td>
<td>886,093</td>
</tr>
<tr>
<td>AB2</td>
<td>-0,75</td>
<td>888,005</td>
</tr>
<tr>
<td>15+19,23</td>
<td>-1,05</td>
<td>888,755</td>
</tr>
<tr>
<td>16+19,23</td>
<td>-1,12</td>
<td>889,805</td>
</tr>
<tr>
<td>17+19,23</td>
<td>-0,705</td>
<td>890,925</td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td>891,63</td>
</tr>
</tbody>
</table>
II.5 NIVELAMENTO DA POLIGONAL II

<table>
<thead>
<tr>
<th>Estaca</th>
<th>Dv (m)</th>
<th>altitude (H) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB15</td>
<td>0,143</td>
<td>834,406</td>
</tr>
<tr>
<td>1+5,89</td>
<td>-2,353</td>
<td>834,263</td>
</tr>
<tr>
<td>A14</td>
<td>-1,896</td>
<td>836,616</td>
</tr>
<tr>
<td>3+17.09</td>
<td>-1,424</td>
<td>838,512</td>
</tr>
<tr>
<td>A13</td>
<td>-1,170</td>
<td>839,936</td>
</tr>
<tr>
<td>6+9.30</td>
<td>-0,997</td>
<td>841,106</td>
</tr>
<tr>
<td>7+10.02</td>
<td>-2,255</td>
<td>842,103</td>
</tr>
<tr>
<td>AB12</td>
<td>-2,510</td>
<td>844,358</td>
</tr>
<tr>
<td>9+18.17</td>
<td>-2,081</td>
<td>846,668</td>
</tr>
<tr>
<td>10+18.17</td>
<td>-2,163</td>
<td>848,949</td>
</tr>
<tr>
<td>11+18.17</td>
<td>-1,992</td>
<td>851,112</td>
</tr>
<tr>
<td>12+18.17</td>
<td>-2,089</td>
<td>853,104</td>
</tr>
<tr>
<td>13+18.17</td>
<td>-2,699</td>
<td>855,193</td>
</tr>
<tr>
<td>AB11</td>
<td>0,000</td>
<td>857,892</td>
</tr>
<tr>
<td>15+17.15</td>
<td>0,000</td>
<td>857,892</td>
</tr>
<tr>
<td>16+17.15</td>
<td>0,000</td>
<td>857,892</td>
</tr>
<tr>
<td>17+17.15</td>
<td>-3,750</td>
<td>857,892</td>
</tr>
<tr>
<td>AB10</td>
<td>-1,470</td>
<td>861,642</td>
</tr>
<tr>
<td>19+10.77</td>
<td>-0,604</td>
<td>863,112</td>
</tr>
<tr>
<td>20+10.77</td>
<td>-1,069</td>
<td>863,716</td>
</tr>
<tr>
<td>21+10.77</td>
<td>-0,826</td>
<td>864,785</td>
</tr>
<tr>
<td>22+10.77</td>
<td>-0,392</td>
<td>865,411</td>
</tr>
<tr>
<td>23+10.77</td>
<td>-0,699</td>
<td>865,803</td>
</tr>
<tr>
<td>24+10.77</td>
<td>-0,738</td>
<td>866,502</td>
</tr>
<tr>
<td>25+10.77</td>
<td>-0,714</td>
<td>867,240</td>
</tr>
<tr>
<td>26+10.77</td>
<td>-0,742</td>
<td>867,954</td>
</tr>
<tr>
<td>27+10.77</td>
<td>-0,899</td>
<td>868,696</td>
</tr>
<tr>
<td>28+10.77</td>
<td>0,527</td>
<td>869,595</td>
</tr>
<tr>
<td>29+10.77</td>
<td>-0,284</td>
<td>869,068</td>
</tr>
<tr>
<td>AB9</td>
<td>0,261</td>
<td>869,352</td>
</tr>
<tr>
<td>31+4.31</td>
<td>0,833</td>
<td>869,091</td>
</tr>
<tr>
<td>32+4.31</td>
<td>0,744</td>
<td>868,258</td>
</tr>
<tr>
<td>33+4.31</td>
<td>1,208</td>
<td>867,514</td>
</tr>
<tr>
<td>34+4.31</td>
<td>0,586</td>
<td>866,306</td>
</tr>
<tr>
<td>35+4.31</td>
<td>0,947</td>
<td>865,720</td>
</tr>
<tr>
<td>36+4.31</td>
<td>0,551</td>
<td>864,773</td>
</tr>
<tr>
<td>AB8</td>
<td>2,637</td>
<td>864,222</td>
</tr>
<tr>
<td>38+3.67</td>
<td>1,358</td>
<td>861,585</td>
</tr>
<tr>
<td>39+3.67</td>
<td>1,325</td>
<td>860,227</td>
</tr>
<tr>
<td>40+3.67</td>
<td>1,199</td>
<td>858,902</td>
</tr>
<tr>
<td>41+3.67</td>
<td>1,402</td>
<td>857,703</td>
</tr>
<tr>
<td>42+3.67</td>
<td>0,882</td>
<td>856,301</td>
</tr>
<tr>
<td>43+3.67</td>
<td>0,497</td>
<td>855,419</td>
</tr>
<tr>
<td>44+3.67</td>
<td>0,280</td>
<td>854,922</td>
</tr>
<tr>
<td>AB7</td>
<td>-0,410</td>
<td>854,642</td>
</tr>
<tr>
<td>45+15.81</td>
<td>0,330</td>
<td>855,052</td>
</tr>
<tr>
<td>46+15.81</td>
<td>0,130</td>
<td>854,722</td>
</tr>
<tr>
<td>47+15.81</td>
<td>0,190</td>
<td>854,592</td>
</tr>
</tbody>
</table>
II.6 COORDENADAS TOPOGRÁFICAS E COTAS: POLIGONAL I E SEÇÕES TRANSVERSAIS

<table>
<thead>
<tr>
<th>Ponto</th>
<th>X</th>
<th>Y</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4956.443</td>
<td>20019.79</td>
<td>866.464</td>
</tr>
<tr>
<td>E1</td>
<td>4940.984</td>
<td>20012.67</td>
<td>864.722</td>
</tr>
<tr>
<td>E2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D1</td>
<td>4968.639</td>
<td>20025.4</td>
<td>866.603</td>
</tr>
<tr>
<td>D2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>4948.082</td>
<td>20037.96</td>
<td>868.374</td>
</tr>
<tr>
<td>E3</td>
<td>4934.259</td>
<td>20031.59</td>
<td>866.492</td>
</tr>
<tr>
<td>E4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D3</td>
<td>4958.399</td>
<td>20042.7</td>
<td>869.083</td>
</tr>
<tr>
<td>D4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>4939.722</td>
<td>20056.12</td>
<td>870.624</td>
</tr>
<tr>
<td>E5</td>
<td>4919.684</td>
<td>20046.9</td>
<td>867.082</td>
</tr>
<tr>
<td>E6</td>
<td>4903.195</td>
<td>20039.32</td>
<td>871.262</td>
</tr>
<tr>
<td>D5</td>
<td>4949.629</td>
<td>20060.68</td>
<td>872.048</td>
</tr>
<tr>
<td>D6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>4931.361</td>
<td>20074.29</td>
<td>873.894</td>
</tr>
<tr>
<td>E7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D7</td>
<td>4949.365</td>
<td>20082.58</td>
<td>874.803</td>
</tr>
<tr>
<td>D8</td>
<td>4968.13</td>
<td>20091.21</td>
<td>874.703</td>
</tr>
<tr>
<td>5</td>
<td>4923</td>
<td>20092.46</td>
<td>875.224</td>
</tr>
<tr>
<td>E9</td>
<td>4904.597</td>
<td>20083.99</td>
<td>876.319</td>
</tr>
</tbody>
</table>
122

Vértice A1	5066.6	19998.98	876.3772
E11	5087.061	19997.2	876.1112
E12	5106.123	19995.53	877.2942
D11	5046.586	20000.73	874.0032
D12	5026.981	20002.43	874.9162

6+2.88 | 5088.337 | 20018.9 | 877.1172 |
E13	5088.516	20017.14	877.0272
E14	5108.187	20015.43	877.6062
D13	5047.958	20020.68	875.3082
D14	5029.015	20022.33	876.1602

7+2.88 | 5070.074 | 20038.83 | 877.5872 |
E15	5090.103	20037.08	877.7752
E16	5110.265	20035.32	878.0132
D15	5050.226	20040.56	877.2552
D16	5030.191	20042.31	878.2492

8+2.88 | 5071.812 | 20058.75 | 878.7872 |
E17	5091.889	20057.02	878.6532
E18	5111.61	20055.27	878.7042
D17	5051.873	20060.49	879.4402
D18	5032.166	20062.21	879.6722

9+2.88 | 5073.549 | 20078.68 | 880.0472 |
E19	5093.728	20076.92	879.7422
E20	5113.347	20075.21	879.4922
D19	5053.416	20080.43	880.7052
D20	5033.614	20075.21	880.7622

10+2.88 | 5075.267 | 20098.6 | 881.3972 |
E21	5095.05	20096.88	880.8762
E22	5115.353	20198.22	880.7092
D21	5055.374	20100.34	882.1052
D22	5035.351	20102.08	882.1302

11+2.88 | 5077.024 | 20118.53 | 882.9972 |
E23	5097.01	20116.78	882.4142
E24	5116.784	20115.06	882.2662
D23	5056.809	20120.29	883.4712
D24	5036.949	20122.02	883.5792

12+2.88 | 5078.762 | 20127.68 | 884.2472 |
| E25 | 5098.8 | 20135.17 | 883.8102 |
| E26 | 5118.861 | 20097.98 | 883.5292 |
123

D25 5058.791 20136.41 884.8492
D26 5038.474 20093.28 884.7542

13+2.88 5080.499 20158.38 885.8172
E27 5100.202 20156.66 885.2052
E28 5120.517 20154.89 885.0172
D27 5060.336 20160.13 885.8532
D28 5040.47 20161.87 886.0702

14+2.88 5082.236 20178.3 887.0572
E29 5102.304 20176.55 886.6332
E30 5122.287 20174.81 886.0452
D29 5082.773 20180 886.9632
D30 - - -

Vértice AB2 5235.612 19897.32 889.145
E31 5216.03 19904.69 889.229
E32 - - -
D31 5254.489 19890.22 888.912
D32 - - -

II.7 COORDENADAS TOPOGRÁFICAS E COTAS: POLIGONAL II
E SEÇÕES TRANSVERSAIS

<table>
<thead>
<tr>
<th>Ponto</th>
<th>X</th>
<th>Y</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5374.41</td>
<td>18269.87</td>
<td>834.75</td>
</tr>
<tr>
<td>E1</td>
<td>5358.44</td>
<td>18272.24</td>
<td>834.70</td>
</tr>
<tr>
<td>E2</td>
<td>5324.32</td>
<td>18277.29</td>
<td>838.13</td>
</tr>
<tr>
<td>D1</td>
<td>5397.05</td>
<td>18266.52</td>
<td>834.84</td>
</tr>
<tr>
<td>D2</td>
<td>5443.41</td>
<td>18259.66</td>
<td>838.65</td>
</tr>
<tr>
<td>1+5.89</td>
<td>5378.20</td>
<td>18295.48</td>
<td>834.61</td>
</tr>
<tr>
<td>E3</td>
<td>5358.51</td>
<td>18298.40</td>
<td>835.54</td>
</tr>
<tr>
<td>E4</td>
<td>5338.56</td>
<td>18301.35</td>
<td>838.15</td>
</tr>
<tr>
<td>D3</td>
<td>5385.03</td>
<td>18294.47</td>
<td>832.48</td>
</tr>
<tr>
<td>D4</td>
<td>5393.75</td>
<td>18293.18</td>
<td>834.69</td>
</tr>
<tr>
<td>Vértice A14</td>
<td>5382.13</td>
<td>18321.80</td>
<td>836.96</td>
</tr>
<tr>
<td>E4</td>
<td>5363.80</td>
<td>18329.86</td>
<td>839.83</td>
</tr>
<tr>
<td>E5</td>
<td>5345.31</td>
<td>18337.98</td>
<td>841.96</td>
</tr>
<tr>
<td>D4</td>
<td>5396.71</td>
<td>18314.52</td>
<td>834.87</td>
</tr>
<tr>
<td>3+17.09</td>
<td>5392.03</td>
<td>18344.32</td>
<td>838.86</td>
</tr>
<tr>
<td>D6</td>
<td>5412.17</td>
<td>18335.47</td>
<td>834.63</td>
</tr>
<tr>
<td>Vértice A13</td>
<td>5402.21</td>
<td>18387.41</td>
<td>840.28</td>
</tr>
<tr>
<td>E8</td>
<td>5378.57</td>
<td>18376.79</td>
<td>844.12</td>
</tr>
<tr>
<td>Vértice</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>A12</td>
<td>5430.20</td>
<td>18437.85</td>
<td>844.70</td>
</tr>
<tr>
<td>E10</td>
<td>5410.99</td>
<td>18443.11</td>
<td>847.58</td>
</tr>
<tr>
<td>E11</td>
<td>5391.26</td>
<td>18448.51</td>
<td>849.59</td>
</tr>
<tr>
<td>D10</td>
<td>5447.27</td>
<td>18433.18</td>
<td>842.09</td>
</tr>
<tr>
<td>D11</td>
<td>5461.47</td>
<td>18429.30</td>
<td>838.31</td>
</tr>
<tr>
<td>9+18,17</td>
<td>5435.48</td>
<td>18457.14</td>
<td>847.21</td>
</tr>
<tr>
<td>E12</td>
<td>5415.54</td>
<td>18462.60</td>
<td>849.25</td>
</tr>
<tr>
<td>E13</td>
<td>5397.02</td>
<td>18467.67</td>
<td>851.22</td>
</tr>
<tr>
<td>D12</td>
<td>5454.93</td>
<td>18451.82</td>
<td>845.44</td>
</tr>
<tr>
<td>10+18,17</td>
<td>5440.76</td>
<td>18476.43</td>
<td>849.29</td>
</tr>
<tr>
<td>E14</td>
<td>5421.22</td>
<td>18481.78</td>
<td>851.62</td>
</tr>
<tr>
<td>E15</td>
<td>5406.49</td>
<td>18485.81</td>
<td>852.57</td>
</tr>
<tr>
<td>D14</td>
<td>5460.12</td>
<td>18471.13</td>
<td>847.13</td>
</tr>
<tr>
<td>D15</td>
<td>5478.47</td>
<td>18468.11</td>
<td>844.23</td>
</tr>
<tr>
<td>11+18,17</td>
<td>5446.03</td>
<td>18495.72</td>
<td>851.45</td>
</tr>
<tr>
<td>E16</td>
<td>5426.55</td>
<td>18501.06</td>
<td>853.48</td>
</tr>
<tr>
<td>D16</td>
<td>5466.63</td>
<td>18490.09</td>
<td>848.28</td>
</tr>
<tr>
<td>D17</td>
<td>5480.09</td>
<td>18486.41</td>
<td>845.84</td>
</tr>
<tr>
<td>12+18,17</td>
<td>5451.31</td>
<td>18515.02</td>
<td>853.45</td>
</tr>
<tr>
<td>E18</td>
<td>5431.33</td>
<td>18520.48</td>
<td>855.57</td>
</tr>
<tr>
<td>D18</td>
<td>5471.45</td>
<td>18509.50</td>
<td>850.44</td>
</tr>
<tr>
<td>13+18,17</td>
<td>5458.59</td>
<td>18534.31</td>
<td>855.40</td>
</tr>
<tr>
<td>E20</td>
<td>5440.71</td>
<td>18538.65</td>
<td>856.83</td>
</tr>
<tr>
<td>D20</td>
<td>5476.47</td>
<td>18528.87</td>
<td>853.18</td>
</tr>
<tr>
<td>D21</td>
<td>5495.51</td>
<td>18523.66</td>
<td>850.63</td>
</tr>
<tr>
<td>Vértice AB11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D22</td>
<td>5441.88</td>
<td>18557.65</td>
<td>856.18</td>
</tr>
<tr>
<td>D23</td>
<td>5423.07</td>
<td>18562.44</td>
<td>854.08</td>
</tr>
<tr>
<td>15+17,15</td>
<td>5466.35</td>
<td>18571.01</td>
<td>859.62</td>
</tr>
<tr>
<td>D24</td>
<td>5446.73</td>
<td>18576.00</td>
<td>858.03</td>
</tr>
<tr>
<td>D25</td>
<td>5427.73</td>
<td>18580.84</td>
<td>855.98</td>
</tr>
<tr>
<td>16+17,15</td>
<td>5471.53</td>
<td>18591.39</td>
<td>860.58</td>
</tr>
<tr>
<td>D26</td>
<td>5452.89</td>
<td>18596.13</td>
<td>859.23</td>
</tr>
<tr>
<td>D27</td>
<td>5432.37</td>
<td>18601.34</td>
<td>856.92</td>
</tr>
<tr>
<td>17+17,15</td>
<td>5476.46</td>
<td>18610.77</td>
<td>861.46</td>
</tr>
<tr>
<td>D28</td>
<td>5456.52</td>
<td>18615.84</td>
<td>859.53</td>
</tr>
<tr>
<td>D29</td>
<td>5437.47</td>
<td>18620.68</td>
<td>857.39</td>
</tr>
<tr>
<td>Vértice AB10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D30</td>
<td>5499.89</td>
<td>18620.96</td>
<td>859.70</td>
</tr>
<tr>
<td>E30</td>
<td>5467.34</td>
<td>18625.81</td>
<td>862.09</td>
</tr>
<tr>
<td>19+10,77</td>
<td>5482.96</td>
<td>18643.70</td>
<td>863.45</td>
</tr>
<tr>
<td>E32</td>
<td>5469.33</td>
<td>18645.73</td>
<td>863.71</td>
</tr>
<tr>
<td>D32</td>
<td>5497.94</td>
<td>18641.47</td>
<td>862.49</td>
</tr>
<tr>
<td>20+10,77</td>
<td>5485.91</td>
<td>18663.48</td>
<td>864.05</td>
</tr>
<tr>
<td>E34</td>
<td>5472.43</td>
<td>18665.49</td>
<td>864.62</td>
</tr>
<tr>
<td>D34</td>
<td>5501.17</td>
<td>18661.21</td>
<td>863.39</td>
</tr>
<tr>
<td>21+10,77</td>
<td>5488.85</td>
<td>18683.27</td>
<td>865.12</td>
</tr>
<tr>
<td>E36</td>
<td>5475.24</td>
<td>18685.29</td>
<td>865.86</td>
</tr>
<tr>
<td>Vértice</td>
<td>X</td>
<td>Y</td>
<td>Altura</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>D36</td>
<td>5503.84</td>
<td>18681.03</td>
<td>864.41</td>
</tr>
<tr>
<td>22+10,77</td>
<td>5491.80</td>
<td>18703.05</td>
<td>865.75</td>
</tr>
<tr>
<td>E38</td>
<td>5474.21</td>
<td>18705.66</td>
<td>866.89</td>
</tr>
<tr>
<td>D38</td>
<td>5508.11</td>
<td>18700.92</td>
<td>865.34</td>
</tr>
<tr>
<td>23+2+10,77</td>
<td>5494.74</td>
<td>18722.83</td>
<td>866.14</td>
</tr>
<tr>
<td>E40</td>
<td>5482.84</td>
<td>18724.60</td>
<td>866.49</td>
</tr>
<tr>
<td>D40</td>
<td>5507.14</td>
<td>18720.98</td>
<td>865.31</td>
</tr>
<tr>
<td>24+3+10,77</td>
<td>5497.68</td>
<td>18742.61</td>
<td>866.84</td>
</tr>
<tr>
<td>E42</td>
<td>5483.10</td>
<td>18744.78</td>
<td>867.51</td>
</tr>
<tr>
<td>D42</td>
<td>5511.82</td>
<td>18740.51</td>
<td>866.44</td>
</tr>
<tr>
<td>25+4+10,77</td>
<td>5500.63</td>
<td>18762.39</td>
<td>867.58</td>
</tr>
<tr>
<td>E44</td>
<td>5488.67</td>
<td>18764.17</td>
<td>867.86</td>
</tr>
<tr>
<td>D44</td>
<td>5512.74</td>
<td>18760.59</td>
<td>866.99</td>
</tr>
<tr>
<td>26+5+10,77</td>
<td>5503.57</td>
<td>18782.18</td>
<td>868.29</td>
</tr>
<tr>
<td>E46</td>
<td>5491.57</td>
<td>18783.95</td>
<td>868.49</td>
</tr>
<tr>
<td>D46</td>
<td>5515.88</td>
<td>18780.34</td>
<td>867.90</td>
</tr>
<tr>
<td>27+6+10,77</td>
<td>5506.52</td>
<td>18801.96</td>
<td>869.03</td>
</tr>
<tr>
<td>E48</td>
<td>5494.45</td>
<td>18803.75</td>
<td>868.94</td>
</tr>
<tr>
<td>D48</td>
<td>5518.64</td>
<td>18800.15</td>
<td>881.29</td>
</tr>
<tr>
<td>28+10,77</td>
<td>5509.46</td>
<td>18821.74</td>
<td>869.93</td>
</tr>
<tr>
<td>E50</td>
<td>5497.19</td>
<td>18823.57</td>
<td>869.82</td>
</tr>
<tr>
<td>D50</td>
<td>5521.35</td>
<td>18819.97</td>
<td>869.40</td>
</tr>
<tr>
<td>29+10,77</td>
<td>5512.40</td>
<td>18841.52</td>
<td>869.41</td>
</tr>
<tr>
<td>E52</td>
<td>5500.06</td>
<td>18843.36</td>
<td>869.46</td>
</tr>
<tr>
<td>D52</td>
<td>5524.22</td>
<td>18839.76</td>
<td>869.22</td>
</tr>
<tr>
<td>Vértice AB9</td>
<td>5514.99</td>
<td>18854.81</td>
<td>869.69</td>
</tr>
<tr>
<td>E54</td>
<td>5502.59</td>
<td>18856.67</td>
<td>869.52</td>
</tr>
<tr>
<td>D54</td>
<td>5526.40</td>
<td>18853.10</td>
<td>869.55</td>
</tr>
<tr>
<td>31+4,31</td>
<td>5517.96</td>
<td>18874.59</td>
<td>869.43</td>
</tr>
<tr>
<td>E56</td>
<td>5505.47</td>
<td>18876.46</td>
<td>868.97</td>
</tr>
<tr>
<td>D56</td>
<td>5529.63</td>
<td>18872.84</td>
<td>869.44</td>
</tr>
<tr>
<td>32+4,31</td>
<td>5520.92</td>
<td>18894.37</td>
<td>868.60</td>
</tr>
<tr>
<td>E58</td>
<td>5508.21</td>
<td>18896.28</td>
<td>868.16</td>
</tr>
<tr>
<td>D58</td>
<td>5532.64</td>
<td>18892.62</td>
<td>868.80</td>
</tr>
<tr>
<td>33+4,31</td>
<td>5523.89</td>
<td>18914.15</td>
<td>867.86</td>
</tr>
<tr>
<td>E60</td>
<td>5510.27</td>
<td>18916.19</td>
<td>867.88</td>
</tr>
<tr>
<td>D60</td>
<td>5537.25</td>
<td>18912.15</td>
<td>867.13</td>
</tr>
<tr>
<td>34+4,31</td>
<td>5526.85</td>
<td>18933.93</td>
<td>866.65</td>
</tr>
<tr>
<td>E62</td>
<td>5513.04</td>
<td>18936.00</td>
<td>866.04</td>
</tr>
<tr>
<td>D62</td>
<td>5540.38</td>
<td>18931.90</td>
<td>867.03</td>
</tr>
<tr>
<td>35+4,31</td>
<td>5529.82</td>
<td>18953.71</td>
<td>866.06</td>
</tr>
<tr>
<td>E64</td>
<td>5516.27</td>
<td>18955.74</td>
<td>865.27</td>
</tr>
<tr>
<td>D64</td>
<td>5543.40</td>
<td>18951.67</td>
<td>866.59</td>
</tr>
<tr>
<td>36+4,31</td>
<td>5532.78</td>
<td>18973.49</td>
<td>865.11</td>
</tr>
<tr>
<td>E66</td>
<td>5519.17</td>
<td>18975.53</td>
<td>864.68</td>
</tr>
<tr>
<td>D66</td>
<td>5546.09</td>
<td>18971.49</td>
<td>866.09</td>
</tr>
<tr>
<td>Vértice AB8</td>
<td>5535.93</td>
<td>18992.59</td>
<td>864.56</td>
</tr>
<tr>
<td>E68</td>
<td>5522.64</td>
<td>18995.26</td>
<td>863.89</td>
</tr>
<tr>
<td>D68</td>
<td>5548.83</td>
<td>18990.00</td>
<td>865.41</td>
</tr>
<tr>
<td>Vértice</td>
<td>Xn</td>
<td>Yn</td>
<td>Zn</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>38+3.67</td>
<td>5539.86</td>
<td>19012.20</td>
<td>861.92</td>
</tr>
<tr>
<td>E70</td>
<td>5527.39</td>
<td>19014.70</td>
<td>861.32</td>
</tr>
<tr>
<td>D70</td>
<td>5553.83</td>
<td>19009.40</td>
<td>862.96</td>
</tr>
<tr>
<td>39+3.67</td>
<td>5543.80</td>
<td>19031.81</td>
<td>860.57</td>
</tr>
<tr>
<td>E72</td>
<td>5532.73</td>
<td>19034.03</td>
<td>860.02</td>
</tr>
<tr>
<td>D72</td>
<td>5557.61</td>
<td>19029.04</td>
<td>861.64</td>
</tr>
<tr>
<td>40+3.67</td>
<td>5547.73</td>
<td>19051.42</td>
<td>859.24</td>
</tr>
<tr>
<td>E74</td>
<td>5536.89</td>
<td>19053.59</td>
<td>858.58</td>
</tr>
<tr>
<td>D74</td>
<td>5563.00</td>
<td>19048.36</td>
<td>860.44</td>
</tr>
<tr>
<td>41+3.67</td>
<td>5551.67</td>
<td>19071.03</td>
<td>858.04</td>
</tr>
<tr>
<td>E76</td>
<td>5540.03</td>
<td>19073.36</td>
<td>857.41</td>
</tr>
<tr>
<td>D76</td>
<td>5567.25</td>
<td>19067.90</td>
<td>859.48</td>
</tr>
<tr>
<td>42+3.67</td>
<td>5555.60</td>
<td>19090.64</td>
<td>856.64</td>
</tr>
<tr>
<td>E78</td>
<td>5544.52</td>
<td>19092.88</td>
<td>856.63</td>
</tr>
<tr>
<td>D78</td>
<td>5571.11</td>
<td>19087.53</td>
<td>857.95</td>
</tr>
<tr>
<td>43+3.67</td>
<td>5559.53</td>
<td>19110.25</td>
<td>855.76</td>
</tr>
<tr>
<td>E80</td>
<td>5546.57</td>
<td>19112.85</td>
<td>855.31</td>
</tr>
<tr>
<td>D80</td>
<td>5574.84</td>
<td>19107.18</td>
<td>857.28</td>
</tr>
<tr>
<td>44+3.67</td>
<td>5563.47</td>
<td>19129.86</td>
<td>855.26</td>
</tr>
<tr>
<td>E82</td>
<td>5549.79</td>
<td>19132.60</td>
<td>853.85</td>
</tr>
<tr>
<td>D82</td>
<td>5578.99</td>
<td>19126.74</td>
<td>856.33</td>
</tr>
<tr>
<td>Vértice AB7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E84</td>
<td>5539.96</td>
<td>19153.27</td>
<td>853.76</td>
</tr>
<tr>
<td>D84</td>
<td>5566.91</td>
<td>19131.28</td>
<td>856.99</td>
</tr>
<tr>
<td>45+15.81</td>
<td>5563.99</td>
<td>19159.48</td>
<td>855.39</td>
</tr>
<tr>
<td>E29</td>
<td>5548.51</td>
<td>19172.11</td>
<td>853.01</td>
</tr>
<tr>
<td>E30</td>
<td>5532.92</td>
<td>19184.83</td>
<td>849.60</td>
</tr>
<tr>
<td>D29</td>
<td>5579.65</td>
<td>19146.70</td>
<td>857.59</td>
</tr>
<tr>
<td>D30</td>
<td>5594.93</td>
<td>19134.23</td>
<td>859.64</td>
</tr>
<tr>
<td>46+15.81</td>
<td>5576.63</td>
<td>19174.98</td>
<td>855.06</td>
</tr>
<tr>
<td>E31</td>
<td>5560.96</td>
<td>19187.77</td>
<td>852.57</td>
</tr>
<tr>
<td>E32</td>
<td>5549.79</td>
<td>19196.88</td>
<td>849.53</td>
</tr>
<tr>
<td>D31</td>
<td>5592.21</td>
<td>19162.26</td>
<td>857.22</td>
</tr>
<tr>
<td>D32</td>
<td>5607.63</td>
<td>19149.69</td>
<td>859.32</td>
</tr>
<tr>
<td>47+15.81</td>
<td>5589.28</td>
<td>19190.47</td>
<td>854.93</td>
</tr>
<tr>
<td>E33</td>
<td>5573.69</td>
<td>19203.19</td>
<td>852.36</td>
</tr>
<tr>
<td>E34</td>
<td>5564.01</td>
<td>19211.08</td>
<td>850.01</td>
</tr>
<tr>
<td>D33</td>
<td>5604.91</td>
<td>19177.72</td>
<td>856.92</td>
</tr>
<tr>
<td>D34</td>
<td>5620.27</td>
<td>19165.19</td>
<td>859.03</td>
</tr>
<tr>
<td>48+15.81</td>
<td>5601.92</td>
<td>19205.97</td>
<td>854.74</td>
</tr>
<tr>
<td>E35</td>
<td>5586.44</td>
<td>19218.60</td>
<td>852.15</td>
</tr>
<tr>
<td>E36</td>
<td>5577.58</td>
<td>19225.83</td>
<td>849.80</td>
</tr>
<tr>
<td>D35</td>
<td>5617.41</td>
<td>19193.33</td>
<td>856.73</td>
</tr>
<tr>
<td>49+15.81</td>
<td>5614.57</td>
<td>19221.46</td>
<td>854.88</td>
</tr>
<tr>
<td>E37</td>
<td>5599.04</td>
<td>19234.13</td>
<td>851.98</td>
</tr>
<tr>
<td>E38</td>
<td>5582.08</td>
<td>19247.97</td>
<td>848.07</td>
</tr>
<tr>
<td>D37</td>
<td>5630.30</td>
<td>19208.63</td>
<td>856.88</td>
</tr>
<tr>
<td>D38</td>
<td>5645.56</td>
<td>19196.18</td>
<td>858.86</td>
</tr>
<tr>
<td>50+15.81</td>
<td>5627.21</td>
<td>19236.96</td>
<td>854.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>E39</td>
<td>5611.71</td>
<td>19249.60</td>
<td>852.28</td>
</tr>
<tr>
<td>E40</td>
<td>5596.22</td>
<td>19262.25</td>
<td>847.93</td>
</tr>
<tr>
<td>D39</td>
<td>5642.71</td>
<td>19224.32</td>
<td>856.83</td>
</tr>
<tr>
<td>D40</td>
<td>5658.20</td>
<td>19211.67</td>
<td>858.73</td>
</tr>
<tr>
<td>Vértice A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>5620.28</td>
<td>19247.45</td>
<td>855.58</td>
</tr>
<tr>
<td>E41</td>
<td>5600.69</td>
<td>19243.15</td>
<td>853.08</td>
</tr>
<tr>
<td>E42</td>
<td>5582.24</td>
<td>19239.11</td>
<td>848.32</td>
</tr>
<tr>
<td>D41</td>
<td>5639.86</td>
<td>19251.74</td>
<td>857.30</td>
</tr>
<tr>
<td>D42</td>
<td>5659.33</td>
<td>19256.01</td>
<td>859.07</td>
</tr>
<tr>
<td>52+0,14</td>
<td>5615.99</td>
<td>19266.98</td>
<td>852.91</td>
</tr>
<tr>
<td>E42</td>
<td>5596.41</td>
<td>19262.69</td>
<td>851.11</td>
</tr>
<tr>
<td>D42</td>
<td>5635.70</td>
<td>19271.30</td>
<td>854.20</td>
</tr>
<tr>
<td>D43</td>
<td>5655.16</td>
<td>19275.57</td>
<td>855.53</td>
</tr>
<tr>
<td>53+0,14</td>
<td>5611.71</td>
<td>19286.52</td>
<td>849.52</td>
</tr>
<tr>
<td>E44</td>
<td>5592.05</td>
<td>19282.21</td>
<td>848.92</td>
</tr>
<tr>
<td>E45</td>
<td>5572.71</td>
<td>19277.97</td>
<td>850.03</td>
</tr>
<tr>
<td>D44</td>
<td>5631.26</td>
<td>19290.80</td>
<td>850.89</td>
</tr>
<tr>
<td>D45</td>
<td>5650.89</td>
<td>19295.11</td>
<td>852.99</td>
</tr>
<tr>
<td>54+0,14</td>
<td>5607.43</td>
<td>19306.06</td>
<td>850.07</td>
</tr>
<tr>
<td>E46</td>
<td>5587.78</td>
<td>19301.75</td>
<td>851.72</td>
</tr>
<tr>
<td>E47</td>
<td>5568.47</td>
<td>19297.52</td>
<td>853.16</td>
</tr>
<tr>
<td>D46</td>
<td>5627.40</td>
<td>19310.43</td>
<td>851.83</td>
</tr>
<tr>
<td>D47</td>
<td>5647.17</td>
<td>19314.77</td>
<td>852.18</td>
</tr>
<tr>
<td>55+0,14</td>
<td>5603.15</td>
<td>19325.59</td>
<td>851.29</td>
</tr>
<tr>
<td>E48</td>
<td>5587.92</td>
<td>19322.25</td>
<td>853.90</td>
</tr>
<tr>
<td>D48</td>
<td>5622.80</td>
<td>19329.90</td>
<td>852.24</td>
</tr>
<tr>
<td>56+0,14</td>
<td>5598.86</td>
<td>19345.13</td>
<td>851.19</td>
</tr>
<tr>
<td>E50</td>
<td>5578.94</td>
<td>19340.76</td>
<td>851.81</td>
</tr>
<tr>
<td>D50</td>
<td>5618.57</td>
<td>19349.45</td>
<td>848.40</td>
</tr>
<tr>
<td>D51</td>
<td>5637.81</td>
<td>19353.87</td>
<td>848.83</td>
</tr>
<tr>
<td>57+0,14</td>
<td>5594.58</td>
<td>19364.66</td>
<td>857.82</td>
</tr>
<tr>
<td>B52</td>
<td>5611.81</td>
<td>19368.44</td>
<td>853.86</td>
</tr>
<tr>
<td>D52</td>
<td>5604.36</td>
<td>19366.81</td>
<td>857.12</td>
</tr>
<tr>
<td>57</td>
<td>5590.30</td>
<td>19384.20</td>
<td>858.73</td>
</tr>
<tr>
<td>D54</td>
<td>5610.11</td>
<td>19388.54</td>
<td>857.52</td>
</tr>
<tr>
<td>58+0,14</td>
<td>5586.02</td>
<td>19403.74</td>
<td>859.79</td>
</tr>
<tr>
<td>E56</td>
<td>5566.44</td>
<td>19399.45</td>
<td>862.06</td>
</tr>
<tr>
<td>Vértice B3</td>
<td>5566.972</td>
<td>19409.191</td>
<td>860.70</td>
</tr>
</tbody>
</table>
Relatório do Ajustamento das Coordenadas dos Pontos das Bases 1 e 2

ADJUSTMENT ACTIVITY LOG
NETWORK = Rosane
TIME = Sat Dec 16 11:20:24 2000

Adjustment process underway.
Computing closures.
Closures have been computed.
Indexing observation equations and unknowns.
Number of sub-networks = 1.
Number of inner constraints sub-network 1 = 0.

Sub-network 1: Fixed y = 1 Fixed x = 1 Fixed H = 1 Fixed h = 0.
Points included in sub-network 1:
1
2
3
4
cristo

Initializing parameter group 1: GPS Observations.
16 horizontal observations
8 vertical observations
8 observed azimuths
8 observed distances
Located in sub-network 1.
1 fixed latitudes
1 fixed longitudes
1 fixed ellipsoid heights
0 fixed orthometric heights
Y rotation parameter ruled ineligible
X rotation parameter ruled ineligible
Azimuth rotation parameter ruled ineligible
Network scale parameter ruled ineligible
Omitting parameter 5 by user choice
Omitting parameter 6 by user choice
Omitting parameter 7 by user choice

Number of fixed horizontal coordinates = 2.
Number of fixed vertical coordinates = 1.
Number of observation equations = 24.
Number of vertical observation equations = 8.
Number of unknowns = 12.
Number of inner constraint equations = 0.
The following observations are excluded from the adjustment:
none
The following points were excluded from the adjustment:
none

Proceeding with observation equations.
Turning on graphics before going into adjustment iteration.
Beginning adjustment iteration 1.
Forming observation equations.
Performing observation covariance inverses.
Forming constants and normal equations.
Computing normals inverse.
Computing observation residuals.

Solutions from iteration 1:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.044456e-004</td>
<td>1.942449e-005</td>
<td>1.735814e-003</td>
<td>2.045071e-004</td>
<td>1.957419e-005</td>
<td>1.694455e-003</td>
<td>2.045170e-004</td>
<td>1.921728e-005</td>
<td>1.688781e-003</td>
<td>2.047288e-004</td>
<td>1.885922e-005</td>
<td>1.761119e-003</td>
</tr>
</tbody>
</table>

Recomputing closures for check on residuals

Iteration check on residuals (tolerance = 1.0e-005):

eq # obs #
eq 1 1 = +6.276744e-001 - +6.276745e-001 = +1.522587e-007

129
Forming constants and normal equations.
Computing normals inverse.
Computing observation residuals.

Solutions from iteration 2:
1 -2.237610e-010
2 1.523614e-009
3 -1.623714e-024
4 1.460535e-009
5 -5.611239e-009
6 -4.223951e-008
7 1.405165e-009
8 -5.510267e-009
9 -4.570974e-008
10 6.005578e-009
11 7.187192e-008
12 -7.187192e-008

Recomputing closures for check on residuals

Successful adjustment 2 iterations
Beginning adjustment summary in stats.log.
Beginning coordinate adjustment in coords.log.
Coordinate adjustment summary complete.
Beginning plots of error ellipses.
Ellipse plotting complete.
Proceeding with adjustment of observations.
Observation adjustment complete.
Statistics summary complete.
Plot histograms.
Histogram plotting complete.
Computing covariances in azimuth, distance and height.
Covariance processing complete.
Iterations complete, so turning graphics off.
Graphics turned off.
Closing activity log.

COORDINATE ADJUSTMENT SUMMARY

NETWORK = Rosane
TIME = Sat Dec 16 11:20:25 2000

Datum = WGS-84
Coordinate System = Geographic
Zone = Global

Network Adjustment Constraints:
1 fixed coordinates in y
1 fixed coordinates in x
1 fixed coordinates in H

<table>
<thead>
<tr>
<th>POINT</th>
<th>NAME</th>
<th>OLD COORDS</th>
<th>ADJUST</th>
<th>NEW COORDS</th>
<th>1.00a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td></td>
<td>22ø 00' 37.024733" +0.000000"</td>
<td>22ø 00' 37.024733"</td>
<td>FIXED</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>47ø 52' 29.861319" +0.000000"</td>
<td>47ø 52' 29.861319"</td>
<td>FIXED</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>861.2513m +0.0000m</td>
<td>861.2513m</td>
<td>FIXED</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00000m +0.0000m</td>
<td>0.0000m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 2</td>
<td></td>
<td>22ø 00' 38.297384" +0.000205"</td>
<td>22ø 00' 38.297179"</td>
<td>0.003696m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>47ø 52' 31.871037" +0.000019"</td>
<td>47ø 52' 31.871018"</td>
<td>0.003698m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>860.2391m +0.0018m</td>
<td>860.2409m</td>
<td>0.011144m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00000m +0.0000m</td>
<td>0.0000m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 3</td>
<td></td>
<td>22ø 01' 32.334444" +0.000205"</td>
<td>22ø 01' 32.334239"</td>
<td>0.003060m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>47ø 52' 18.263103" +0.000020"</td>
<td>47ø 52' 18.263083"</td>
<td>0.003326m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>831.0892m +0.0017m</td>
<td>831.0909m</td>
<td>0.007561m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00000m +0.0000m</td>
<td>0.0000m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 4</td>
<td></td>
<td>22ø 01' 34.530010" +0.000205"</td>
<td>22ø 01' 34.529805"</td>
<td>0.003085m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>47ø 52' 14.788906" +0.000019"</td>
<td>47ø 52' 14.788887"</td>
<td>0.003336m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>831.3713m +0.0017m</td>
<td>831.3730m</td>
<td>0.007645m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00000m +0.0000m</td>
<td>0.0000m</td>
<td>0.004771m</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY OF COVARIANCES

NETWORK = Rosane
TIME = Sat Dec 16 11:20:27 2000

Definition of precision \((E \times S) \hat{y} = C \hat{y} + P \hat{y}\):

- **Horizontal:**
 - Precision \((P)\) expressed as: ratio
 - Propagated linear error \((E)\): U.S. (standard error of adjusted horizontal distance)
 - Scalar \((S)\) on propagated linear error: 1.0000
 - Constant error term \((C)\): 0.0000

- **3-Dimensional:**
 - Precision \((P)\) expressed as: ratio
 - Propagated linear error \((E)\): U.S. (standard error of adjusted slope distance)
 - Scalar \((S)\) on propagated linear error: 1.0000
 - Constant error term \((C)\): 0.0000

Using orthometric height errors

<table>
<thead>
<tr>
<th>FROM/</th>
<th>AZIMUTH/</th>
<th>1.00Å</th>
<th>DISTANCE/</th>
<th>1.00Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOR PREC/ TO</td>
<td>DELTA H</td>
<td>1.00Å</td>
<td>DELTA h</td>
<td>1.00Å</td>
</tr>
<tr>
<td>3-D PREC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20235</td>
<td>235°49'25"</td>
<td>11.65"</td>
<td>69.674m</td>
</tr>
<tr>
<td>2</td>
<td>0.0104m</td>
<td>0.0111m</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20235</td>
<td>2</td>
<td>562588</td>
<td>168°56'14"</td>
<td>0.39"</td>
</tr>
<tr>
<td>3</td>
<td>-30.1604m</td>
<td>0.0076m</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>562588</td>
<td>3</td>
<td>587569</td>
<td>166°16'02"</td>
<td>0.38"</td>
</tr>
<tr>
<td>4</td>
<td>-29.8783m</td>
<td>0.0076m</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>587569</td>
<td>4</td>
<td>88247</td>
<td>91°52'39"</td>
<td>2.22"</td>
</tr>
<tr>
<td>cristino</td>
<td>88247</td>
<td>+32.1432m</td>
<td>0.0154m</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>448612</td>
<td>166°47'11"</td>
<td>0.43"</td>
<td>1707.304m</td>
</tr>
<tr>
<td>3</td>
<td>-29.1500m</td>
<td>0.0110m</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>448612</td>
<td>3</td>
<td>469048</td>
<td>164°11'10"</td>
<td>0.40"</td>
</tr>
<tr>
<td>4</td>
<td>-28.8679m</td>
<td>0.0110m</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
OBSERVATION ADJUSTMENT SUMMARY

NETWORK = Rosane
TIME = Sat Dec 16 11:20:26 2000

<table>
<thead>
<tr>
<th>OBS#</th>
<th>BLK#/ TYPE</th>
<th>BACKSIGHT/</th>
<th>UDVC/</th>
<th>OBSERVED/</th>
<th>1.00å/</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAU</td>
<td>REF#</td>
<td>INSTRUMENT/</td>
<td>UDPG/</td>
<td>ADJUSTED/</td>
<td>RESIDUAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FORESIGHT</td>
<td>SBNT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.6496"</td>
<td>0.46</td>
<td>-**-</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0.4037"</td>
<td></td>
<td>-**-</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.5089"</td>
<td></td>
<td>-**-</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>0.0177m</td>
<td>0.08</td>
<td>-**-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.0110m</td>
<td></td>
<td>-**-</td>
</tr>
<tr>
<td>0.0138m</td>
<td>2</td>
<td>1</td>
<td>+0.002811m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1797.6733m</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>gpsds</td>
<td>-**-</td>
<td>-**-</td>
<td>1797.6765m</td>
</tr>
<tr>
<td>0.0064m</td>
<td>0.23</td>
<td>1</td>
<td>4</td>
<td>-**-</td>
<td>1797.6765m</td>
</tr>
<tr>
<td>0.0038m</td>
<td>2</td>
<td>1</td>
<td>+0.003206m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0052m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>gpsaz</td>
<td>-**-</td>
<td>-**-</td>
<td>91<52'39.4779"</td>
</tr>
<tr>
<td>2.2156"</td>
<td>OPEN</td>
<td></td>
<td>1</td>
<td>1</td>
<td>-**-</td>
</tr>
<tr>
<td>0.0000"</td>
<td></td>
<td></td>
<td>cristo</td>
<td>1</td>
<td>+0.000000"</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>gpsht</td>
<td>-**-</td>
<td>-**-</td>
<td>+32.1432m</td>
</tr>
<tr>
<td>0.0154m</td>
<td>OPEN</td>
<td></td>
<td>1</td>
<td>1</td>
<td>-**-</td>
</tr>
<tr>
<td>0.0154m</td>
<td></td>
<td></td>
<td>cristo</td>
<td>1</td>
<td>+0.000000m</td>
</tr>
<tr>
<td>0.0000m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>gpsds</td>
<td>-**-</td>
<td>-**-</td>
<td>446.2912m</td>
</tr>
<tr>
<td>0.0051m</td>
<td>OPEN</td>
<td></td>
<td>1</td>
<td>1</td>
<td>-**-</td>
</tr>
<tr>
<td>0.0051m</td>
<td></td>
<td></td>
<td>cristo</td>
<td>1</td>
<td>+0.000000m</td>
</tr>
<tr>
<td>0.0000m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>gpsaz</td>
<td>-**-</td>
<td>-**-</td>
<td>124<07'48.0890"</td>
</tr>
<tr>
<td>5.4043"</td>
<td>0.24</td>
<td>1</td>
<td>3</td>
<td>-**-</td>
<td>124<07'45.7220"</td>
</tr>
<tr>
<td>3.9964"</td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
<td>-2.366977"</td>
</tr>
<tr>
<td>3.6380"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>gpsht</td>
<td>-**-</td>
<td>-**-</td>
<td>+0.2858m</td>
</tr>
<tr>
<td>0.0108m</td>
<td>0.16</td>
<td>1</td>
<td>3</td>
<td>-**-</td>
<td>+0.2821m</td>
</tr>
<tr>
<td>0.0063m</td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
<td>-0.003751m</td>
</tr>
<tr>
<td>0.0087m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>gpsds</td>
<td>-**-</td>
<td>-**-</td>
<td>120.3684m</td>
</tr>
<tr>
<td>0.0039m</td>
<td>0.36</td>
<td>1</td>
<td>3</td>
<td>-**-</td>
<td>120.3655m</td>
</tr>
<tr>
<td>0.0023m</td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
<td>-0.002912m</td>
</tr>
<tr>
<td>0.0031m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>gpsaz</td>
<td>-**-</td>
<td>-**-</td>
<td>166<47'10.9009"</td>
</tr>
<tr>
<td>0.6868"</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station</td>
<td>Type</td>
<td>Observation</td>
<td>Dist.</td>
<td>Ref.</td>
<td>Offset</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>166047'11.0456"</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>+0.144750"</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>-29.1582m</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>-29.1500m</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>+0.008193m</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td>+0.005738m</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td>348056'09.7864"</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td>0.5953"</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td>0.3935"</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td>0.4467"</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td>348056'09.5604"</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td>-0.225983"</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td>+30.1648m</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td>+30.1604m</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td>-0.004426m</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
<td>1733.4585m</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td>1733.4516m</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>19</td>
<td></td>
<td>-0.006880m</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td>346015'56.4219"</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td>346015'55.9003"</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>22</td>
<td></td>
<td>-0.521606"</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td>+29.8698m</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>24</td>
<td></td>
<td>+29.8783m</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td>+0.008523m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>6 gpsds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0045m</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0037m</td>
<td></td>
<td>+0.001430m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0032m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>7 gpsaz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.4810m</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.9964m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.4804m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7 gpsht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0101m</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0063m</td>
<td></td>
<td>+0.009843m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0079m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>7 gpsds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0037m</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0023m</td>
<td></td>
<td>-0.000400m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0028m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>8 gpsaz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.5182m</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.6490m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.7112m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>8 gpsht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0174m</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0111m</td>
<td></td>
<td>-0.003723m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0133m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>8 gpsds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0047m</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0034m</td>
<td></td>
<td>+0.007255m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0031m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ADJUSTMENT STATISTICS SUMMARY

NETWORK = Rosane
TIME = Sat Dec 16 11:20:25 2000

ADJUSTMENT SUMMARY

Network Reference Factor = 5.62
Chi-Square Test (α = 95%) = FAIL
Degrees of Freedom = 12.00

GPS OBSERVATIONS

Reference Factor = 5.62

\[r = 12.00 \]

<table>
<thead>
<tr>
<th>GPS Solution</th>
<th>Reference Factor</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.93</td>
<td>1.87</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>4.02</td>
<td>1.73</td>
</tr>
<tr>
<td>4</td>
<td>4.68</td>
<td>1.90</td>
</tr>
<tr>
<td>5</td>
<td>7.55</td>
<td>1.53</td>
</tr>
<tr>
<td>6</td>
<td>5.18</td>
<td>1.58</td>
</tr>
<tr>
<td>7</td>
<td>4.14</td>
<td>1.91</td>
</tr>
<tr>
<td>8</td>
<td>8.31</td>
<td>1.48</td>
</tr>
</tbody>
</table>

WEIGHTING STRATEGIES:

GPS OBSERVATIONS:

No scalar weighting strategy was used
No summation weighting strategy was used
Station Error Strategy:

H.I. error = 0.0000
Tribrach error = 0.0000
Especificações dos equipamentos

http://www.leica.com/

ESTAÇÃO TOTAL TC 400

Precisão angular: 5°
Leitura angular: 1"
Aumento da objetiva: 28 X
Alcance (1 prisma): 700 m
Precisão linear: 5 mm + 5 ppm
Peso: 4,2 kg
Tempo para medição: da ordem de 4 segundos
Bateria: duração de 10 horas

GPS SYSTEM SR 9400

A unidade de recepção é capaz de rastrear, continuamente, código e fase do sinal L1 em pelo menos 12 canais independentes.

PRECIÃO DE UMA LINHA BASE APÓS O PROCESSAMENTO:

<table>
<thead>
<tr>
<th>Fase diferencial</th>
<th>Modo estático</th>
<th>05 a 10 mm + 2 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modo Stop and Go</td>
<td>10 a 20 mm + 2 ppm</td>
</tr>
<tr>
<td></td>
<td>Modo cinemático</td>
<td>10 a 20 mm + 2 ppm</td>
</tr>
<tr>
<td>Código diferencial</td>
<td>Modo estático</td>
<td>30 cm</td>
</tr>
<tr>
<td></td>
<td>Modo cinemático</td>
<td>50 cm</td>
</tr>
</tbody>
</table>

PRECIÃO DA POSIÇÃO DE UM PONTO ISOLADO APÓS O PROCESSAMENTO:

<table>
<thead>
<tr>
<th>Precisão do vetor espacial</th>
<th>Entre 1 a 5 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precisão em modo rápido estático e cinemático</td>
<td>De 30 a 50 cm</td>
</tr>
</tbody>
</table>
PROJETO GEOMÉTRICO DO ANEL VIÁRIO DE SÃO CARLOS

TRECHO DA RUA MONTEIRO LOBATO A Avenida CAPITÃO LUIZ BRANDÃO
APÊNDICE
NIVELAMENTO DAS POLIGONAIS - PERFIS LONGITUDINAIS

Nivelamento com Estação Total

Nivelamento com GPS

Variação nas alturas (GPS - E. T.)
NIVELAMENTO COM ESTAÇÃO TOTAL

PERFIL LONGITUDINAL DA POLIGONAL II COM PONTOS A CADA 20 METROS

PERFIL LONGITUDINAL