0093 99

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE HIDRÁULICA E SANEAMENTO

CARACTERIZAÇÃO DO MATERIAL SUPORTE E

ESTUDO DA PARTIDA DE UM REATOR ANAERÓBIO

DE LEITO EXPANDIDO UTILIZADO NO TRATAMENTO

DE ESGOTO SANITÁRIO

Neyson Martins Mendonça

Biblinter

Dissertação apresentada à Escola de Engenharia de São Carlos, da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Mestre em Hidráulica e Saneamento.

Orientador: Prof. Titular Dr. José Roberto Campos

São Carlos 1999

Class. TESE - EESC 3596 Gutt. Tombo_0093/99

UNIVERSIDADE DE SÃO PAULO ECCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE HIDRÁULICA E SAMEAMENTO 2250000116

51/5 1031221

CARACTERIZAÇÃO DO MATERIAL SUPORTE E

ESTUDO DA PARTIDA DE UM REATOR AMAEROBIC

DE LEITO EXPANDIDO UTILIZADO NO TEATAMENTO

Ficha catalográfica preparada pela Seção de Tratamento da Informação do Serviço de Biblioteca – EESC/USP

М539с	Mendonça, Neyson Martins Caracterização do material suporte e estudo da partida de um reator anaeróbio de leito expandido utilizado no tratamento de esgoto sanitário / Neyson Martins Mendonça São Carlos, 1999.
	Dissertação (Mestrado) Escola de Engenharia de São Carlos-Universidade de São Paulo, 1999. Área: Hidráulica e Saneamento. Orientador: Prof. Dr. José Roberto Campos.
	 Material suporte. 2. Leito expandido. Partida. 4. Tratamento anaeróbio. 5.Esgoto sanitário. 6. Equilíbrio dinâmico aparente. Título.

FOLHA DE APROVAÇÃO

Candidato: Engenheiro NEYSON MARTINS MENDONÇA

Dissertação defendida e aprovada em 08-02-1999 pela Comissão Julgadora:

Prof. Titular JOSÉ ROBERTO CAMPOS (Orientador) (Escola de Engenharia de São Carlos - Universidade de São Paulo)

Nam A.P. R_

Prof. Doutor MARCO ANTONIO PENALVA REALI (Escola de Engenharia de São Carlos - Universidade de São Paulo)

Echen Anneuet Abel Man Prof. Doutor)EDSON APARECIDO ABDUL NOUR

(Universidade Estadual de Campinas - UNICAMP)

Prof. Titular FAZAL HUSSAIN CHAUDHRY Coordenador da Área de Hidráulica e Saneamento

JOSÉ CARLOS A ČINTRA Presidente da Comissão de Pós-Graduação da EESC

DEDICATÓRIA

"Dai-nos hoje o pão de cada dia..a corrente eterna de Substância Eletrônica, que sustenta o nosso próprio Ser, e da qual vem toda perfeição para criar."

Livro dos Decretos.

Aos meus pais Ney e Nazaré, meus primeiros mestres na arte de ensinar, e aos meus irmãos Ney Junior e Neyler, pela amizade eterna.

AGRADECIMENTOS

Ao Professor Titular Dr. José Roberto Campos pela amizade, atenção e orientação permanente durante a realização deste trabalho;

Aos Prof. Dr. Luís Antônio Daniel e Prof. Dr. Marco A. Penalva Reali pelo apoio e sugestões durante o exame de qualificação;

À Prof^a.Dr.^{a.} Rosana Filomena Vazoller e a Dra. Maria Bernadete Varesche e Silvana pelo auxilio na determinação de proteína total;

À jovem Dra. Eloisa Pozzi Gianotti pela boa vontade e prontidão em realizar exames de microscópia eletrônica de varredura;

Ao Prof. Dr. José Augusto Aguineli do Departamento de Materiais da Universidade Federal de São Carlos, pelo fornecimento dos materiais suportes utilizados neste trabalho;

Ao Prof.Dr. José Renato Cury, Sérgio e Wiclef do Departamento de Engenharia Química da Universidade Federal de São Carlos, por ter me permitido utilizar o equipamento de análise de imagens;

Ao Prof. Dr. Glaucius Oliva e a Vanda técnica do Laboratório de Bioquímica do Instituto de Física de São Carlos pela utilização do equipamento de sonicação empregado para desprendimento do biofilme anaeróbio;

Ao Prof. Dr. Luiz Di Bernardo pela utilização da instalação piloto de expansão e fluidificação;

Ao Doutorando Prof. José Almir R. Pereira, pelas valiosas contribuições e confiança, e ao Cristiano e Marcos pela companhia e revezamento durante a operação do reator;

À amiga Química Maria Aparecida Peres Viúdes, pela colaboração e super-apoio nas atividades de laboratório;

Aos amigos Químicos Paulo Fragiácomo e Júlio Cesar Trofini, Eliana por todo o apoio e atenção dispensado durante a parte experimental desta pesquisa;

Ao Francisco Bergamin e Martinho Fernadi Junior pela amizade e apoio durante a operação do reator;

À Pavi, Sá, Márcia, Valderez, Cecília, Rose, Roberto e Flávia, pela ajuda e informações durante o mestrado;

Aos diretores da Comasa(Comércio de Reservatório Ltda.) Anselmo Domingos Bianche e Sérgio Antônio Mattos Faceiro, pelas sugestões durante a construção do sistema de tratamento de esgoto implantado na EESC-USP e apoio constante;

Aos Mestres da UFPA, Profs. Paulo Norat, Rui Macedo, Valdívia, Vera, Lúcia, Alberto C. Amaral, Humberto Beltrão, Alcionides e Dantas;

Aos amigos de República Ricardo, Adelino, Geraldo e Celso pela companhia durante esses anos;

À André Campos e Luciana Mendonça pela companhia de laboratório e horas de estudos;

Aos amigos de mestrado Rogério, Artur, Marilu, Leila, Luciane, Paulo Tadeu, Lília, Arnaldo, Luci, Kelly, Claudinha, Herlane, Sissy, Suzy e Seusy, pela grande amizade; Aos dinossauros Eraldo, Simone, Deísa, Cláudia Povinelli, Werner, Lorena, Marcelo Zaiat, Allan, Nilsa, Juan Carlos, Patrícia, Deize, Ângela e Valter pelas trocas de informações e bate-papo no R.U. e Esscobar;

Ao Sr.José, Sra. Lucinda, Luciana e Gisela pela amizade e recepção em São Carlos;

Aos técnicos da Geotécnia, Oscar e José pelo acompanhamento na caracterização do material suporte;

Aos paraenses em São Carlos;

Aos Funcionários da Seção de Transporte da EESC pela amizade durante a parte experimental deste trabalho;

Ao Departamento de Hidráulica e Saneamento, pela oportunidade que me foi outorgada;

Ao Conselho Nacional de Pesquisa (CNPq) pela bolsa de estudo concedida durante 6 meses;

À Universidade Federal do Pará(UFPA) e a Coordenadoria de Pessoal do Nível Superior(CAPES) pela concessão da bolsa de estudos para recém-graduados na categoria PICDT concedida até o final do curso de mestrado;

Ao Finep pelo auxílio financeiro ao Projeto Nacional de Pesquisas em Saneamento Básico(PROSAB);

À Fundação de Amparo à Pesquisa do Estado de São Paulo(Fapesp), pela verba concedida através do processo número 1996/6155-9, para montagem e operação do sistema piloto e à Prefeitura do Campus da USP-São Carlos pelo espaço cedido e apoio, e ao Serviço Autônomo de Água e Esgoto(SAAE) de São Carlos, pelo apoio e infra-estrutura;

À todos que direta ou indiretamente contribuíram para a realização deste trabalho.

SUMÁRIO

	-		•		
	-	\sim	-	3	-
~	~	()			-
_	4	~	_	+ +	-
_	_	_	_		
		-			

LISTA DE FIGURASi	ii
LISTA DE TABELAS	ix
LISTA DE ABREVIATURAS E SIGLAS	ii
LISTA DE SÍMBOLOSxi	ii
RESUMO	xv
ABSTRACT	
	V 1
1. INTRODUÇÃO	. 1
2.0BJETIVOS	. 4
3 PEVISÃO RIPLIOCRÁFICA	-
S.REVIDAO BIBLIOGRAFICA	. 5
3.1. GENERALIDADES	. 5
3.2. MATERIAIS SUPORTE EM REATORES DE LEITO EXPANDIDO	. 6
3.2.1.Expansão e Fluidificação do Leito	10
3.2.2.Características de Materiais Suporte	15
3.2.3.Aderência de Microrganismos nos Materiais Suporte	21
3.2.4. Propriedades do biofilme, Atividade e Tipos de bactérias	
anaeróbias	25
3.3. PARTIDA DE REATORES ANAERÓBIOS DE LEITO EXPANDIDO/FLUIDIFICADO	26
3.3.1.Problemas Operacionais na Partida de Reatores Anaeróbios	28
3.4. PRINCIPAIS FATORES QUE AFETAM A PARTIDA DE REATORES ANAERÓBIOS DE LEITO	
EXPANDIDO/FLUIDIFICADO	33
3.4.1. Temperatura	33
3.4.2. Aspectos Nutricionais	34
3.4.3. Taxa de Carregamento Orgânico	36
3.4.4. Tempo de Retenção Celular	38
3.4.5. Inoculação de Reatores Anaeroplos	39
4. MATERIAIS E MÉTODOS	41
4.1. GENERALIDADES	41
4.2. LOCALIZAÇÃO DO SISTEMA DE TRATAMENTO DE ESCOTO SANITÁRIO.	42
4.3. DESCRIÇÃO DAS UNIDADES DO SISTEMA DE TRATAMENTO	43
4.4. DESCRIÇÃO DO REATOR ANAERÓBIO DE LEITO EXPANDIDO	44
4.5. Caracterização de Materiais Suporte	46
4.5.1.Preparação de Amostras	46
4.5.2.Ensaios Granulométricos	47
4.5.3.Índices Físicos	48
4.5.4.Determinações de Análise de Imagens	51
4.5.5.Ensaios da Expansão/Fluidificação	51
4.5.6.Presença de Microrganismos nas Partículas Suporte	53
4.6.Caracterização do Esgoto Sanitário	55
4.7.Estratégia de Partida do RALE _x	56

4.8. Controle e Operação do Sistema de Tratamento de Esgoto Sanitário 62
4.8.1.Descrição do Funcionamento do Sistema de Tratamento 62
4.8.2. Manutenção do Sistema de Tratamento de Esgoto Sanitário 63
4.9.Estudo do Biofilme Anaeróbio (Exames e Análises)
4.10. PROCEDIMENTO DE COLETA, ANÁLISES E EXAMES DAS AMOSTRAS
4.10.1.Coleta de Amostras 67
4.10.2.Parâmetros de Estudo
5.RESULTADOS E DISCUSSÃO
5.1. Caracterização do Material Suporte
5.1.1.Ensaios Granulométricos
5.1.2.Índices Físicos
5.1.3.Determinações de Análise de Imagens 76
5.1.4.Ensaio de Expansão/Fluidificação
5.1.5. Presenca de Microrganismos nos Materiais Suporte
5.1.6. Seleção do Material Suporte do Reator Anaeróbio de Leito Expandido 92
5.2. CARACTERIZAÇÃO DO ESGOTO SANITÁRIO DURANTE 24 HORAS.
5.3.Estratégia de Partida do RALEy
5.3.1. Operação do Reator de Leito Expandido
5.3.2. Variações dos Parâmetros no RALE _v
5.3.3.Parâmetros de Estabilidade do Processo
5.3.4.Desempenho na Remocão de Matéria Orgânica
5.3.5.Desempenho na Remoção dos Sólidos
5.3.6.Nitrogênio e Fósforo no Reator Anaeróbio de Leito Expandido 123
5.3.7.Caracterização ao longo da altura do RALE,
5.4. Estudo do Biofilme Anaeróbio
5.4.1.Exames microscópicos e quantificação da biomassa aderida 138
~ ~
6. CONCLUSOES E RECOMENDAÇÕES 145
7. REFERÊNCIAS BIBLIOGRÁFICAS 150
APÊNDICE A
APÊNDICE B
APÊNDICE C
APÊNDICE D

LISTA DE FIGURAS

Configuração do Reator Anaeróbio de Leito Figura 3.1 Expandido..... 06 Figura 3.2 Curva de distribuição granulométrica de material granular..... 07 Figura 3.3 Comportamento do leito com as mudanças de velocidade ascensional..... 11 Figura 3.4 Següência de etapas da colonização de microrganismos na interface sólidolíquido..... 23 Figura 3.5 Evolução do desenvolvimento do biofilme .. 24 Figura 3.6 que influenciam a partida de Fatores reator anaeróbio..... 27 Localização do sistema de tratamento de Figura 4.1 esgoto sanitário no Campus da USP, em São Carlos..... 42 Figura 4.2 Sistema de tratamento de Esqoto Sanitário..... 43 Figura 4.3 do Reator Anaeróbio de Leito Corte 45 Expandido..... Fotografia do Reator Anaeróbio de Leito Figura 4.4 Expandido implantado no Campus da EESC-USP..... 45 Figura 4.5 Sistema de medicão da vazão do biogás..... 45 Figura 4.6 Esquema do guarteamento de amostra..... 47 Figura 4.7 instalação piloto Esquema da de 52 fluidificação..... para estudo Figura 4.8 Esquema do sistema da presença de microrganismos..... 53 Figura 4.9 do sistema utilizado Esquema para introdução do material suporte no 57 RALE_x.....

Página

Figura 4.	10 Fluxograma	do procedimento de partida do	
	reator		58
Figura 4.	11 Ponto de Co	oleta de biopartículas	64
Figura 4.	12 Fotografia	do aparelho sonicador	
	utilizado g	para desprendimento da biomassa	
	do suporte.		66
Figura 4.	13 Fotografia	de amostra de biopartículas	
	submetidas	ao sonicador	66
Figura 5.	1 Curva de	distribuição granulométrica da	
	poliamida.		71
Figura 5.	2 Curva de	distribuição granulométrica do	
	PBT		71
Figura 5.	3 Curva de	distribuição granulométrica do	· .
	CAG-01		72
Figura 5.	4 Curva de	distribuição granulométrica do	
	CAG-02		72
Figura 5.	5 Amostragem	com 80 partículas de	
	poliamida.		76
Figura 5.	6 Amostragem	com 86 partículas de	
	PBT		76
Figura 5.	7 Amostragem	com 221 partículas de CAG-01	
			76
Figura 5.	8 Amostragem	com 143 partículas de CAG-02	
			76
Figura 5.	9 Histograma	de distribuição do comprimento	
	das partícu	ulas de poliamida	77
Figura 5.	10 Histograma	de distribuição da largura das	
	partículas	de poliamida	77
Figura 5.	11 Histograma	de distribuição do comprimento	
	das partícu	ulas de PBT	78
Figura 5.	12 Histograma	de distribuição da largura	
	das partícu	ulas de PBT	79
Figura 5.	13 Histograma	de distribuição do diâmetro	

,

iv

	das partículas de CAG-01	80
Figura 5.14	Histograma de distribuição do diâmetro	
	das partículas CAG-02	80
Figura 5.15	Curva de expansão/fluidificação do leito	
	de partículas de poliamida	83
Figura 5.16	Curva de expansão/fluidificação do leito	
	de partículas de PBT	83
Figura 5.17	Curva de expansão/fluidificação do leito	
	de partículas de CAG	84
Figura 5.18	MEV da superfície externa da poliamida	
	amostrada no 1ºdia	87
Figura 5.19	MEV da superfície externa da poliamida	
	amostrada no 7ºdia	87
Figura 5.20	MEV da superfície externa da poliamida	
2	amostrada no 14ºdia	87
Figura 5.21	MEV da superfície externa da poliamida	
-	amostrada no 21ºdia	87
Figura 5.22	MEV da superfície externa do PBT	
andra of Producer Englished and a set	amostrada no 1ºdia	88
Figura 5.23	MEV da superfície externa do PBT	
	amostrada no 7°_{-} dia	88
Figura 5.24	MEV da superfície externa do PBT	
rigara 0.21	amostrada no 14° dia	88
Figura 5 25	MEV da superfície externa do PBT	00
rigura 3.20	amostrada no 21° dia	88
Figura 5 26	MEV da superfície externa do CAG	00
rigula J.20	amostrada no 1ºdia	80
Figura 5 27	MEN da superfício externa de CAG	00
FIGULA J.27	MEV da Superficie externa do CAG	00
Figure F 20	AMOSTIANA IN /-OIA	09
Figura 5.28	MEV da superiicie externa do CAG	09
	amostrada no 14-dla	
Figura 5.29	MEV da superficie externa do CAG	~ ~
	amostrada no 21 ² dia,	89
Figura 5.30	EDX realizado em partícula do CAG(7 ^y dia)	91

V

Figura	5.31	Partícula Suporte de poliamida	92
Figura	5.32	Partícula Suporte de PBT	92
Figura	5.33	Partícula Suporte de CAG	92
Figura	5.34	Variação do pH esgoto bruto durante	
		24 h	94
Figura	5.35	Variação da alcalinidade parcial e	
		intermediária esgoto bruto durante 24 h	94
Figura	5.36	Variação dos ácidos voláteis do esgoto	
		bruto durante 24 h	95
Figura	5.37	Variação da DQO _B do esgoto bruto durante	
		24 h	95
Figura	5.38	Variação da DQOF do esgoto bruto durante	
		24 h	96
Figura	5.39	Variação dos SST do esgoto bruto durante	
		24 h	96
Figura	5.40	Variação de fósforo total do esgoto bruto	
		durante 24 h	97
Figura	5.41	Valores da vazão de alimentação e de	
		recirculação durante o período de	
		operação	109
Figura	5.42	Valores da velocidade ascensional e do	
		tempo de detenção hidráulico durante o	
		período de operação	109
Figura	5.43	Variação do pH do afluente efluente do	
		RALE _x	112
Figura	5.44	Variação da alcalinidade total do	
		afluente e do efluente do $\mathtt{RALE}_{\texttt{X}},\ldots,\ldots$	113
Figura	5.45	Variação da alcalinidade intermediária e	
		parcial do afluente e do efluente do	
		RALE _x	114
Figura	5.46	Variação da relação AI/AP para o afluente	
		e efluente do $\texttt{RALE}_{\texttt{X}},\ldots,\ldots,\ldots,\ldots$	114
Figura	5.47	Variação dos ácidos voláteis do afluente	
		efluente do $\texttt{RALE}_{\texttt{X}},\ldots,\ldots,\ldots,\ldots$	114

Figura 5.48	Variação da eficiência e DQO _B do afluente	
	e efluente do $\texttt{RALE}_X,\ldots,\ldots,\ldots,\ldots,\ldots$	116
Figura 5.49	Variação da eficiência e DQO _F do afluente	
	e efluente do $\texttt{RALE}_{X},\ldots,\ldots,\ldots,\ldots$	117
Figura 5.50	Variação da eficiência e DBO _B do afluente	
	e efluente do $\texttt{RALE}_{X},\ldots,\ldots,\ldots,\ldots$	117
Figura 5.51	Variação da eficiência e ST do afluente e	
	efluente do $RALE_x$	119
Figura 5.52	Variação da eficiência e STV do afluente	
	e efluente do $\texttt{RALE}_{X},\ldots,\ldots,\ldots,\ldots$	119
Figura 5.53	Variação da eficiência e SST do afluente	
	e efluente do $\texttt{RALE}_{X}.\dots$	122
Figura 5.54	Variação da eficiência e SSV do afluente	
	e efluente do $\texttt{RALE}_{X}.\dots$	122
Figura 5.55	Variação da eficiência e SS do afluente e	
	efluente do $\texttt{RALE}_{\texttt{X}}.\dots$	123
Figura 5.56	Variação do NTK do afluente e do	
	efluente do $RALE_X$	125
Figura 5.57	Variação do N-amoniacal do afluente e do	
	efluente do RALE _x	125
Figura 5.58	Variação do N-orgânico do afluente e do efluente	126
	do RALE _x	
Figura 5.59	Variação do fósforo total do afluente e	
	do efluente do $\mathtt{RALE}_X,\ldots,\ldots,\ldots,\ldots$	127
Figura 5.60	Composição do efluente gasoso do $\text{RALE}_{\text{x}},\ldots$	129
Figura 5.61	Valores de pH ao longo da altura do RAL E_x .	133
Figura 5.62	Valores médios de alcalinidade total ao	
	longo da altura do RALE _x	134
Figura 5.63	valores medios de alcalinidade	
	altura do RALE.	135
Figura 5.64	Valores médios de ácidos voláteis ao	
	longo da altura do RALE _x	136
Figura 5.65	Valores médios de SSV ao longo da altura	
	do RALE _x	137

Figura 5.66	Valores médios de SS ao longo da altura do BALEz	137
Figura 5.67	MEV da superfície do CAG no 16° dia	139
Figura 5.68	MEV da superfície do CAG no 16° dia	139
Figura 5.69	MEV da superfície do CAG no 37°_{dia}	140
Figura 5.70	MEV da superfície do CAG no 37°_{dia}	140
Figura 5.71	MEV da superfície do CAG no 141° dia	140
Figura 5.72	MEV da superfície do CAG no	140
Figura 5.73	Microscopia de contraste de fase do material	140
	100; ocular10; zoom de 1,25 ampliação	
Figura 5.74	Iotografica) Microscopia de contraste do material biológico após rompimento celular químico(objetiva 100;	141
Figura 5.75	ocular10; zoom de 1,25 ampliação fotográfica) Microscopia de contraste de fase de bacilos	141
	delgados e longos(objetiva 100; ocular10; zoom de 1,25 ampliação fotográfica)	141
Figura 5.76	Microscopia de fluorescência de bacilos florescentes(objetiva 100; ocular10; zoom de	
Figura 5.77	1,25 ampliação fotográfica) Microscopia de contraste de fase de bacilos	141
	semelhantes a <i>methanosaeta</i> (objetiva 100; ocular 10; zoom de 1,25 ampliação fotográfica)	142
Figura 5.78	Microscopia de contraste de fase de protozoário(objetiva 100; ocular10; zoom de	142
Figura 5.79	1,25 ampliação fotográfica) Concentração de proteína total	143

viii

LISTA DE TABELAS

		LISTA DE TABELAS Pá	gina
Tabela	3.1	Propriedades de alguns materiais	
		granulares	09
Tabela	3.2	Diâmetro virtuais de partículas	10
Tabela	3.3	Problemas conseqüentes da escolha	
		incorreta do material suporte	17
Tabela	3.4	Materiais Suportes Estudados por KURODA et	
		al (1988)	18
Tabela	3.5	Suportes pesquisados por YEE et al	
		(1992)	19
Tabela	3.6	Características do material suporte	
		utilizados em reatores de leito expandido.	20
Tabela	3.7	Espécies de bactérias metanogênicas mais	
		encontradas em reatores anaeróbios	26
Tabela	3.8	Parâmetros a serem monitorados na operação	
		de reatores anaeróbios	30
Tabela	3.9	Condições para iniciar a partida de	
		reatores de filme fixo	31
Tabela	3.10	Estudo da partida de reatores anaeróbios,	
		destacando, os principais parâmetros,	
		características dos reatores e dos	
		resíduos tratados	32
Tabela	3.11	Efeito da amônia livre em processos	
		anaeróbios	35
Tabela	4.1	Condições e dias de operação do RALE $_{\rm X}$ para	
		as Fases 1, 2 e 3	61
Tabela	4.2	Localização dos pontos de	
		amostragens	67
Tabela	4.3	Parâmetros laboratoriais, freqüência e	
		método de monitoramento da partida do	
		RALE _x	69
Tabela	5.1	Resultados dos ensaios granulométricos	73
Tabela	5.2	Diâmetro volumétrico da Poliamida	74
Tabela	5.3	Diâmetro volumétrico do PBT	74

ix

Tabela 5.4	Diâmetro volumétrico da CAG-01	74
Tabela 5.5	Índices físicos da partícula de poliamida	75
Tabela 5.6	Índices físicos da partícula de PBT	75
Tabela 5.7	Índices físicos da partícula de CAG-01	75
Tabela 5.8	Índices físicos da partícula de CAG-02	75
Tabela 5.9	Comprimento(C) e largura(L) das partículas	
	da poliamida e PBT, e diâmetro(\varnothing) das	
	amostras de CAG-01 e CAG-02, determinados	
	mediante análise de imagens	81
Tabela 5.10	Velocidade mínima de fluidificação do	
	leito para as partículas de poliamida PBT	
	e CAG	86
Tabela 5.11	Composição do esgoto sanitário ao longo de	
•	24 h	99
Tabela 5.12	Composição típica de esgoto	
	sanitário	99
Tabela 5.13	Número de amostragens, valores máximos,	
	médios, mínimos, desvio padrão e	
	coeficiente de variação para o afluente e	
	efluente do RALE _x	101
Tabela 5.14	Número de amostragens, valores máximos,	
	médios, mínimos, desvio padrão e	
	coeficiente de variação para o afluente e	
	efluente do RALE _x	102
Tabela 5.15	Número de amostragens, valores máximos,	
	médios, mínimos, desvio padrão e	
	coeficiente de variação para o afluente e	
	efluente do $RALE_X$	103
Tabela 5.16	Número de amostragens, valores máximos,	
	médios, mínimos, desvio padrão e	
	coeficiente de variação para o afluente e	
	efluente do RALE _x	104

х

Tabela 5.17	Número de amostragens, valores máximos,	
	médios, mínimos, desvio padrão e	
	coeficiente de variação para o afluente e	
	efluente do $RALE_X$	105
Tabela 5.18	Número de amostragens, valores máximos,	
	médios, mínimos, desvio padrão e	
	coeficiente de variação para o afluente e	
	efluente do $RALE_X$	106
Tabela 5.19	Valores máximos, médios e mínimos dos	
	parâmetros operacionais e da carga	
	orgânica volumétrica aplicada ao reator	
	anaeróbio de leito expandido	107
Tabela 5.20	Composição percentual do biogás produzido	
	no RALE _x	128
Tabela 5.21	Número de amostragens, valores máximos,	
	médios, mínimos, desvio padrão e	
	coeficiente de variação para o afluente e	
	efluente do $RALE_X$	130
Tabela 5.22	Número de amostragens, valores máximos,	
	médios, mínimos, desvio padrão e	
	coeficiente de variação para o afluente e	
	efluente do $RALE_X$	131
Tabela 5.23	Número de amostragens, valores máximos,	
	médios, mínimos, desvio padrão e	
	coeficiente de variação para o afluente e	
	efluente do $RALE_X$	132
Tabela 5.24	Morfologias de Microrganismos encontrados	
	no RALE _x	144
Tabela 5.25	Quantificação de proteína total	142

xi

LISTA DE ABREVIATURAS E SIGLAS

Vasc.	Velocidade ascensional		
$\Delta { m H}$	Perda de carga		
V_{mf}	Velocidade mínima de fluidificação		
COT	Carbono orgânico total		
$RALE_{\rm X}$	Reator anaeróbio de leito expandido		
CMB_1	Conjunto Moto-Bomba 1		
CMB_2	Conjunto Moto-Bomba 2		
PBT	Polibutireno teretraftalato		
CAG	Carvão ativado granular		
MEV	Microscopia eletrônica de varredura		
EDX	Energy Dispersive x-ray spectroscopy		
DBO_{B}	DBO bruta $(mgO_2.L^{-1})$		
DQOB	DQO bruta $(mgO_2.L^{-1})$		
DQO_F	DQO filtrada($mgO_2.L^{-1}$)		
Ap	Alcalinidade parcial($mgCaCO_3.L^{-1}$)		
Aı	Alcalinidade intermediária(mgCaCO ₃ .L ⁻¹)		
AV	Ácidos voláteis(mgCaCO3.L ⁻¹)		
ST	Sólidos totais $(mg.L^{-1})$		
STV	Sólidos totais voláteis $(mg.L^{-1})$		
SST	Sólidos suspensos totais(mg.L ⁻¹)		
SSV	Sólidos suspensos voláteis(mg.L ⁻¹)		
ТО	Tempo de operação(dias)		
QA	Vazão afluente(m ³ .h ⁻¹)		
Q_{R}	Vazão de recirculação(m ³ .h ⁻¹)		
Q_R/Q_A	Razão de recirculação		
SAB	Soro albumina bovina		
COV	Carga orgânica volumétrica		
TE	Tamanho Efetivo(mm)		
CD	Coeficiente de desuniformidade		
NTK	Nitrogênio total kjeldahl(mg.L ⁻¹)		
máx	Valor máximo		
mín	Valor mínimo		

LISTA DE SÍMBOLOS

d ₆₀	Tamanho equivalente a 60% em peso do material		
	que passa no peneiramento(mm)		
d ₁₀	Tamanho equivalente a 10% em peso do material		
	que passa no peneiramento(tamanho efetivo)(mm)		
Deq.	Diâmetro Equivalente(mm)		
Xi	Fração do material presente entre duas peneiras		
	consecutivas da série granulométrica		
Di	diâmetro médio de duas peneiras consecutivas da		
	série granulométrica(mm)		
Ψ	Coeficiente de esfericidade		
d	Diâmetro da esfera que tem o mesmo volume da		
	partícula(m)		
Vp	Volume da partícula(m ³)		
Ap	Área da partícula(m ²)		
Sv	Superfície específica(m ² .m ⁻³)		
dv	Diâmetro volumétrico médio(m)		
ψ_{sub}	Coeficiente de esfericidade correspondente a		
	cada subcamada		
$\psi_{ extsf{med}}$	Coeficiente de esfericidade médio correspondente		
	ao meio granular não uniforme		
H_{o}	Perda de carga no meio granular fixo(m)		
Lo	Altura inicial do meio granular(m)		
K_0	Constante de Kozeny		
V	Velocidade de aproximação do líquido(m/s)		
εο	Porosidade inicial do meio granular fixo		
g	Aceleração da gravidade (m/s ²)		
μ	Viscosidade absoluta da água (N s/m²)		
ρ_{a}	Massa específica da água (kg/m ³)		
Ga	Número de Galileu		
Re_{mf}	Número de Reynolds correspondente a velocidade		
-	mínima de fluidificação		
E(%)	Expansão do meio granular		

8 _{ex}	Porosidade do material granular expandido	
L _{ex}	Altura do material granular expandido(m)	
$\theta_{\rm H}$	Tempo de detenção hidráulico(h)	
$\theta_{\rm C}$	Tempo de retenção celular	
d90%	Tamanho equivalente a 90% em peso do material	
	que passa no peneiramento	
M_{g}	Massa de partículas correspondente a cada faixa	
	granulométrica(g)	
ρ	Massa específica do material (gcm ⁻³)	
Ng:	Número de partículas	
W	Teor de umidade do material(%)	
Po	Massa da amostra antes do aquecimento(g)	
P ₁	Massa da amostra depois do aquecimento(g)	
M_S	Massa de sólidos determinada no final do	
	ensaio(g)	
M_1	Massa(água+picnômetro+sólidos)para temperatura de T ⁰ C(g)	
M_2	Massa(água+picnômetro)obtida através da curva de	
	calibração do picnômetro(g)	
ρ_s	Massa específica seca do material(g.cm ⁻³)	
е	índice de vazios	
С	Comprimento Médio(mm)	
L	Largura Média(mm)	
Ø	Diâmetro médio(mm)	
Х	Valor médio	
σ	Desvio padrão	
σ/X	Coeficiente de variação	

RESUMO

MENDONÇA, N.M. (1999) Caracterização do Material Suporte e Estudo da Partida de um Reator Anaeróbio de Leito Expandido Utilizado no Tratamento de Esgoto Sanitário. São Carlos, 191 pp. Dissertação (Mestrado), Escola de Engenharia de São Carlos, Universidade de São Paulo.

presente trabalho, foram estudadas No a caracterização do material suporte e a partida de um reator anaeróbio de leito expandido de 32 m³, tratando esgoto sanitário. Para a caracterização do material foram estudadas partículas de poliamida, suporte, polibutireno teretraftalato e carvão ativado granular. Os ensaios realizados, durante a caracterização do suporte, demonstraram, que entre os três tipos de partículas, o carvão ativado granular foi o material mais adequado para compor o leito do reator, por ter apresentado melhor capacidade para aderência dos microrganismos, bem como menor possibilidade de arraste quando do emprego de velocidades ascensionais elevadas. A partida do reator foi realizada durante 240 dias, sendo efetuada sem a adição de qualquer tipo de inóculo, e tendo como estratégia o estudo do eventual incremento da carga orgânica e diminuição do tempo de detenção hidráulico. A partida do reator se completou entre o 139° e 148° dia de operação, pois nesse período os valores de percentagens de remoção DQO situaram-se na faixa de 67% e 71%, para taxa de carregamento orgânica acima de 5,50 kgDQOm³d⁻¹, bem como a composição do biogás manteve-se próxima a 60% em termos de metano. No entanto, o regime de equilíbrio dinâmico aparente, no tocante à qualidade do efluente produzido pelo reator, aconteceu a partir do 202ºdia de operação, quando então o efluente passou a apresentar valores, médios, de 207 $mgO_2.L^{-1}$ de DQO e 28 $mg.L^{-1}$ de SST, os quais foram julgados satisfatórios nesse estudo.

Palavras-Chave: material suporte, leito partida, tratamento anaeróbio, esgoto sanitário, equilíbrio dinâmico aparente.

expandido,

ABSTRACT

MENDONÇA, N.M. (1999) Characterization of the Support Material and Study of the Start-up of an Expanded Bed Anaerobic Reactor used in the Treatment of Domestic Sewage. São Carlos, 191p. Dissertation(Master), School of Engineering of São Carlos, University of São Paulo.

This work studied the characterization of the support material and the start-up of an expanded bed anaerobic reactor of 32 m³, treating domestic sewage. The first objective, particles of polyamide, polybutylene terephthalate and granular activated carbon were studied. The tests performed in this study demonstrated that among the three types of particles, the granular activated carbon adequate to compose the bed of the reactor, which presented better capacity to imobilize microorganismos, and less propensity to being dragged due to high upflow velocities. The start-up of the reactor was studied during 240 days, being effected without the addition of any type of sludge seeding, and having as strategy the study of an occasional increase of the organic load and reduction of the hydraulic detention time. The start-up of reactor was complete between the 139th and the 148th day of operation, given that in this period the removal of DQO was in the range of 67% and 71% for affluent organic load rate above 5,50 kgDQOm³d⁻¹. The composition of biogas remained near 60% in terms of methane. However, the steady state in terms of quality of effluent produced by the reactor, occured 202 nd day of operation, when the effluent passed to values, on the average, 207 $mgO_2.L^{-1}$ of and 28 $mg.L^{-1}$ of SST, which were considered DOO satisfactory in this study.

Keywords: support material, expanded bed, start-up anaerobic treatment, domestic sewage, steady state.

1.INTRODUÇÃO

Nos últimos anos, as crescentes exigências dos órgãos ambientais têm provocado verdadeira revolução na concepção de novos sistemas de tratamento de águas residuárias, de maneira que, nos projetos de estações de tratamento de águas residuárias, devem ser considerados aspectos sociais, econômicos, técnicos e ambientais.

Dentre as alternativas para o tratamento de esgotos sanitários, os processos biológicos oferecem custos relativamente baixos quando comparados com os processos físico-químicos(METCALF & EDDY, 1991).

Entre os processos biológicos de tratamento de esgotos sanitários, os processos anaeróbios apresentam muitos aspectos positivos, quando comparados com os processos aeróbios, como menor consumo de energia, menor produção de lodo, além de requererem menor área de implantação e por apresentarem potencialidade de utilização do gás metano como combustível(FORESTI,1996; SPEECE,1996 e COLLINS et al,1998).

Entre os progressos científicos e tecnológicos que mais contribuíram para o desenvolvimento do tratamento anaeróbio de águas residuárias, destaca-se a notável evolução dos conhecimentos sobre os aspectos microbiológicos do processo, interagindo com os avanços obtidos pala engenharia de processos, através da concepção de novos reatores (ARÁUJO, 1995). Os novos reatores anaeróbios denominados, de não convencionais, permitem a imobilização e retenção das bactérias na forma de grânulos, flocos e sistemas de biofilmes aderidos a suportes inertes (CAMPOS,1989 e HENZE et al,1997).

Dentre as configurações de sistemas de biofilme, o reator anaeróbio de leito expandido tem atraído grande interesse entre os pesquisadores, pois possibilita a retenção de elevada concentração de microrganismos, o que permite a obtenção de elevadas taxas de remoção de substrato, baixo tempo de detenção hidráulico e boa estabilidade de operação.

No entanto, a operação destes depende inicialmente de sua partida, a qual pode ser efetuada por meio da inoculação do reator, com lodo anaeróbio adaptado ou não ao esgoto a ser tratado, ou sem a inoculação do reator(POL,1994).

A opção pela inoculação de reatores anaeróbios é realizada com intuito de reduzir-se o tempo de partida. Contudo, a estratégia de partida sem inoculação, sobretudo no caso de estações de tratamento de esgotos grande ou muito distantes dos grandes centros, pode fornecer grande economia nos custos de implantação do sistema, pois nem sempre é possível obter-se lodo anaeróbio granular e de boa atividade metanogênica para a partida do reator.

Além disso, aspectos como flutuações na eficiência, arraste de lodo de baixa densidade, diminuição na degradação da matéria orgânica e etc., durante o período de partida, devem ser acompanhados por meio de análises freqüentes dos parâmetros mais importantes, no sentido de se efetuar um controle criterioso do processo, bem como serem pré-estimados os efeitos deletérios sobre a má qualidade do efluente final no meio ambiente. A Escola de Engenharia de São Carlos da Universidade de São Paulo, através do Departamento de Hidráulica e Saneamento, vem desenvolvendo, na linha de pesquisa empregando reatores de leito expandido, vários aspectos que influenciam a concepção, controle, monitoramento e a partida desses reatores (CAMPOS, 1989; THEREZO, 1993; SILVA, 1995; CUBA TERÁN, 1995; ARAÚJO, 1995).

Entretanto, em decorrência dos bons resultados obtidos por esses pesquisadores, programou-se um estudo integrado envolvendo um doutorado e um mestrado no sentido de observar-se o efeito da escala desses reatores, pois todos os trabalhos realizados anteriormente ocorreram em escala de bancada.

A parte que cabe a este estudo é concernente com a caracterização do material suporte e partida do reator até este alcançar o equilíbrio dinâmico aparente.

A escolha do tema levou em consideração a estratégia de partida a ser empregada em reatores anaeróbios, pois a entrada em operação desses reatores, tem sido encarada pelos técnicos da área como uma barreira, possivelmente devido a experiências mal sucedidas, quando não se observam os cuidados de projeto e operação.

O reator experimental de tratamento de esgoto sanitário estudado possui volume total de 32 m³, e portanto, pode ser considerado como instalação em escala natural e seus resultados podem ser interessantes para a concepção e operação de novos reatores desse tipo. Dessa maneira, o presente trabalho busca ser uma contribuição concreta, viável e confiável para a solução de problemas mais imediatos no tratamento de esgotos sanitários. 2.OBJETIVOS

A presente pesquisa teve por objetivo: a seleção do material suporte para a constituição do leito de um reator anaeróbio de leito expandido e o estudo da partida desse reator alimentado com esgoto sanitário.

3. REVISÃO BIBLIOGRÁFICA

3.1. Generalidades

A compreensão do conceito do tempo de retenção celular dos microrganismos conduziu ao desenvolvimento de reatores biológicos (anaeróbios, aeróbios e anóxicos) capazes de reter os microrganismos participantes da degradação de substâncias orgânica e inorgânica, sem envolver diretamente o tempo de detenção hidráulico (SPEECE, 1996).

No tratamento de esgotos sanitários e de efluentes industriais, os reatores não convencionais mais utilizados são: o digestor anaeróbio de contato, o filtro anaeróbio ou aeróbio, o reator anaeróbio de fluxo ascendente com manta de lodo (UASB) e os reatores de leito expandido e fluidificado(anaeróbio, aeróbio e anóxico)(CAMPOS,1994).

Dentre estes, o reator de leito expandido representa uma das mais recentes configurações concebidas no âmbito reatores não convencionais. Esse dos reator foi desenvolvido nos anos 70, por JEWELL e colaboradores, com o objetivo de conceber um reator biológico que pudesse acumular quantidade grande de biomassa, ter potencialidade de tratar efluentes com sólidos suspensos sem problemas de colmatação e, ao mesmo tempo, demandando menores área e volume (VELAZQUEZ, 1990).

Segundo TYAGI & VEMBU(1990) e THEREZO(1993), os reatores anaeróbios de leito expandido empregam leito de material granular, cujos grãos são envolvidos por filme biológico, sendo então a biopartícula (suporte+biofilme) expandida/fluidificada pelo esgoto que escoa no sentido ascensional, através desse leito.

De acordo HENZE et al(1997), nota-se, nesses reatores, a existência de duas regiões distintas. A primeira de reação (Região 1), onde ocorre a degradação do material orgânico, a formação do biofilme e a produção de biogás; e a segunda (Região 2), de sedimentação, sendo responsável pela separação das biopartículas e decantação do efluente na parte superior do reator. A Figura 3.1 apresenta a configuração típica desses reatores.

Figura 3.1.Configuração do Reator de Leito Expandido. Fonte: Adaptado de CAMPOS(1994).

3.2. Materiais Suporte em Reatores de Leito Expandido

3.2.1.Tamanho e Forma das partículas de materiais suporte

O tamanho e a forma dos materiais suporte empregados em reatores de leito expandido são de fundamental importância, tendo em vista que esses fatores influenciam na determinação da velocidade ascensional, na perda de carga, no regime de escoamento dos reatores, etc (COOPER & ATKINSON, 1981).

б

Segundo HOWARD(1989), a distribuição do tamanho das partículas pode ser obtida por meio de ensaios granulométricos, nos quais são determinados o tamanho da maior e menor partícula, tamanho efetivo e coeficiente de desuniformidade.

De acordo com DROSTE (1997) o tamanho efetivo corresponde ao tamanho equivalente a 10%, em peso, do material que passa no peneiramento, enquanto 0 coeficiente de desuniformidade é dado pela relação entre o tamanho equivalente a 60% em peso do material que passa no peneiramento(d₆₀), dividido pelo tamanho equivalente a 10% da mesma amostra que passa no peneiramento (d_{10}) .

Na Figura 3.2, pode-se observar uma curva de distribuição granulométrica típica de um material granular obtida por meio de ensaio granulométrico.

Figura 3.2.Curva de distribuição granulométrica de material granular. Fonte: DI BERNARDO(1993).

Segundo KUNII & LEVENSPIEL(1969), quando a partícula tem formato esférico, o tamanho da partícula é claramente caracterizado pelo seu diâmetro. Entretanto, quando a partícula apresenta formado irregular, utilizam-se parâmetros como: diâmetro equivalente e esfericidade, para caracterizá-la.

7

O diâmetro equivalente pode ser calculado, conforme sugerido por(ALLEN,1994):

$$D_{eq} = \frac{1}{\sum_{i=1}^{n} \frac{X_i}{D_i}}$$
(3.1)

em que:

De acordo com HOWARD(1989) e DROSTE(1997), a esfericidade(ψ)é definida como:

 ψ = $\frac{\text{área superficial de uma esfera de mesmo volume da partícula}}{\text{área superficial da partícula}}$

$$\psi = \frac{\frac{6\pi d^2}{\pi d^3}}{\frac{V_p}{A_p}} = \frac{6\pi d^2}{\pi d^3} \frac{A_p}{V_p}$$

(3.2)

em que:

d:diâmetro da esfera que tem o mesmo volume as partícula(m) V_P :volume da partícula(m³) A_P :área da partícula(m²)

Segundo DROSTE(1997), muitos autores definem a relação A_P/V_P , como a superfície específica da partícula, sendo geralmente representada por S_v . Dessa maneira, para partículas esféricas, a superfície específica é dada por:

$$S_{\nu} = \frac{6}{d_{\nu}}$$
(3.3)
em que:
 S_{ν} : superfície específica dos grãos (m²/m³)

d_v : diâmetro volumétrico médio (m)

8

Enquanto que para partículas não esféricas, a superfície específica pode ser calculada por(WIECHETECK, 1996):

para materiais granulares praticamente uniformes:

$$S_v = \frac{6}{\psi_{sub}d_v} \tag{3.4}$$

em que: $\psi_{\text{sub}} \text{ : esfericidade correspondente a cada subcamada}$

para materiais granulares não uniformes:

$$S_v = \frac{6}{\psi_{méd} D_{eq}} \tag{3.5}$$

em que:

 $\psi_{\text{méd}}$: coeficiente de esfericidade médio correspondente ao meio granular não uniforme

Na Tabela 3.1, são apresentados algumas propriedades de materiais granulares.

Tabela 3.1. Propriedades de alguns materiais granulares.

Partícula	Forma	Esfericidade	Densidade	Tamanho	
	da partícula		(g/cm ³)	Efetivo	
Areia	Arredondado	0,82	2,65	0,4-1,0	
Areia	Angular	0,73	2,65	0,4-1,0	
Areia*	Esférico	0,95	2,65	0,4-1,0	
Carvão ativado					
granular	Irregular	0,75	0,92 a 2,0	0,8-1,4	
Antracito	Angular	0,72	1,5 a 1,75	0,4-1,4	
*Areia com for	nato esférico	encontrada na	cidade de C	ttawa no	

Canadá.

Fonte: CLEASBY(1990), CLARK & JR. LYKINS(1991) e DROSTE(1997).

Segundo WIECHETECK(1996), no caso de partículas não esféricas não é possível definir a sua geometria com uma única dimensão. Uma alternativa é considerar que esta partícula possua um diâmetro, denominado de virtual, o qual esta relacionado com alguma característica da partícula. Na Tabela 3.2, são apresentados valores de alguns diâmetros virtuais.

STRONACH et al(1986) comentam que o diâmetro das partículas utilizadas em reatores anaeróbios de leito expandido geralmente situa-se na faixa de 0,3 a 3,00 mm.

Símbolo	Nome	Definição
d _v	diâmetro volumétrico médio	diâmetro da esfera de mesmo volume
d _s	diâmetro superficial	diâmetro da esfera de mesma área superficial
d _{sv}	diâmetro do volume superficial	diâmetro da esfera que possui mesma razão área externa e volume superficial
d _d	diâmetro de arraste	diâmetro da esfera que tem a mesma resistência a movimentação que a partícula no fluido de mesma viscosidade e mesma velocidade
d _{st}	diâmetro de Stokes	diâmetro da esfera de mesma velocidade de sedimentação em regime laminar
d _a	diâmetro da área projetada	diâmetro do circulo com área projetada em posição estável
d _A	diâmetro da peneira	largura da mínima abertura quadrada por meio do qual a partícula não é retida

Tabela 3.2. Diâmetros virtuais de partículas.

Fonte: ALLEN(1994).

3.2.1. Expansão e Fluidificação do Leito

Em áreas que abrangem desde o tratamento de águas residuárias à engenharia química, é comum os projetistas defrontarem-se com operações que envolvem a interação entre as fases sólida, líquida e gasosa. A exemplo destas operações, destacam-se a expansão e a fluidificação(CUBA TERAN, 1995). De acordo com D'AVILA & SAMPAIO FILHO(1980), a fluidificação pode ser classificada como agregativa, para o caso de sistemas sólido-gás, e particulada, para o caso de sistemas sólido-líquido. Na revisão da literatura será enfocada apenas a fluidificação particulada, pois nos processos anaeróbios a fase gasosa não contribui de forma efetiva na expansão do leito. Isso se deve a vazão do biogás ser desprezível em relação a vazão da fase líquida (COOPER & ATKINSON,1981; BLANCO et al,1995).

Segundo JEWELL(1981), os termos "expandido" e "fluidificado" referem-se a diferentes níveis de expansão do leito. O primeiro termo é aplicado aos reatores nos quais os leitos sofrem incremento na altura(em relação ao leito estático) da ordem de 10% a 25%, e o segundo, caracteriza a situação em que ocorre expansão do leito superior a 100%.

No entanto, KUNII & LEVENSPIEL(1969), CLEASBY & FAN(1981), DI BERNARDO (1993), SILVA(1995), DROSTE (1997) consideram que o fenômeno de fludificação de um meio granular ocorre quando a perda de carga(Δ H) no leito granular permanece praticamente constante, independente do aumento da velocidade ascensional(V_{asc}.), sendo tal comportamento observado a partir do ponto de fluidificação incipiente como se pode observar na Figura 3.3.

Comportamento do Leito: a-Expandido b-Ponto de Fluidificação Incipiente c-Turbulento d-"Slugging" e-Arraste

Fig. 3.3.Comportamento do Leito com as mudanças da velocidade ascensional. Fonte: Adaptado de HOWARD (1989). Esses pesquisadores comentam que a velocidade requerida para iniciar a fluidificação de um meio granular é a velocidade mínima de fluidificação (V_{mf}) . Tal situação é ilustrada na Figura 3.3. Dessa maneira, os reatores que operam com velocidades inferiores a V_{mf} são ditos de expandidos (TYAGY & VEMBU,1990).

Segundo WIECHETECK(1996) e DROSTE(1997), o cálculo da V_{mf} pode ser feito baseando-se no fato de que a perda de carga no meio granular fixo é igual à perda de carga constante no meio granular fluidificado, no ponto de fluidificação incipiente.

YATES(1983) considera que a equação de Carman-Kozeny pode ser empregada para calcular a V_{mf} , uma vez que a força exercida pelo líquido que escoa em sentido ascensional, é igual a força gravitacional que atua sobre as partículas.

A Equação 3.6 mostra a expressão de Carman-Kozeny, utilizada para se calcular a perda carga em um leito de partículas de altura L_0 .

$$\frac{H_0}{L_0} = \frac{K_0 \mu V \left(1 - \varepsilon_0\right)^2 S_v^2}{\rho_a g \varepsilon_0^3}$$
(3.6)

em que:

 $\begin{aligned} &H_{o}: \text{ perda de carga no meio granular fixo(m)} \\ &L_{o}: \text{ altura inicial do meio granular(m)} \\ &K_{0}: \text{ constante de Kozeny (≅5)} \\ &V: \text{ velocidade de aproximação do líquido (m/s)} \\ &\varepsilon_{o}: \text{ porosidade inicial do meio granular fixo} \\ &S_{v}: \text{ superfície específica dos grãos (m²/m³)} \\ &g: \text{ aceleração da gravidade (m/s²)} \\ &\mu: \text{ viscosidade absoluta da água (N s/m²)} \\ &\rho_{a}: \text{ massa específica da água (kg/m³)} \end{aligned}$

Para meio granular composto por partículas não esféricas, deve-se introduzir o ψ . Assim combinando as Equações 3.5 e 3.6 obtêm-se:

 $\frac{H_0}{L_0} = \frac{180\mu V (1 - \epsilon_0)^2}{g \rho_a \epsilon_0^3 \psi^2 D_{eq}^2}$

(3.7)

É importante ressaltar que a equação de Carman-Kozeny é válida somente para regime laminar, com número de Reynolds menor que 6 (DROSTE,1997).

Dessa forma, em virtude das limitações da equação de Carman-Kozeny para se calcular a V_{mf}, KUNII 3 LEVENSPIEL(1969), DI BERNARDO(1993) е DROSTE (1997) recomendam o emprego da equação de Ergun para se determinar a V_{mf}, pois esta equação pode ser utilizada em qualquer regime de escoamento, desde que o número de Reynolds esteja compreendido entre 1 e 2000. A Equação 3.8. apresenta a expressão proposta por Ergun para o cálculo da Vmf.

$$\frac{H_0}{L_0} = \frac{150\mu V (1 - \varepsilon_0)^2}{g \rho_s \varepsilon_0^3} \left(\frac{S_v}{6}\right)^2 + \frac{1.75(1 - \varepsilon_0)V^2}{\varepsilon_0^3 g} \left(\frac{S_v}{6}\right)$$
(3.8)

em que:

 $\frac{1}{\psi \varepsilon_0^3} = 14$

 $\begin{array}{l} H_{\circ} \text{: perda de carga no meio granular (m)} \\ L_{\circ} \text{: altura inicial do meio granular (m)} \\ \mu \text{: viscosidade absoluta da água (N s/m²)} \\ \text{V} \text{: velocidade de ascensional do líquido(m.s⁻¹)} \\ S_{v} \text{: superfície específica do material granular (m².m⁻³)} \\ \epsilon_{\circ} \text{: porosidade inicial do meio granular fixo} \\ g \text{: aceleração da gravidade(m/s²)} \\ \rho_{a} \text{: massa específica da água(kg.m⁻³)} \end{array}$

De acordo com YATES(1983), um dos problemas em se aplicar tanto a equação de Carman-Kozeny ou Ergun, decorre do fato de não se conhecer a porosidade mínima de fluidificação. Entretanto, CLEASBY & FAN(1981) citam que WEN & YU¹(1966) propuseram duas expressões empíricas que relacionam a porosidade do meio granular com o coeficiente de esfericidade. As Equações 3.9 e 3.10 mostram essas expressões.

 $\frac{(1-\varepsilon_0)}{\psi^2 \varepsilon_0^2} = 11 \tag{3.9}$

ical Engineering Progess Sumposi

(3.10)

¹WEN,C.Y. & YU,Y.H.(1966)"Mechanics of Fluidization"Chemical Engineering Progess Symposium Series 62,Amer.Inst of Chem.Engres.,Vol.62,New YorK apud CLEASBY,J.(1990) Filtration Cap.8,455-560p In:Water Quality and treatment: a handbook of community water supplies. 4.ed., McGraw-Hill.
em que: ϵ_{\circ} :porosidade do meio granular ψ :esfericidade do meio granular

Dessa forma, combinando as Equações 3.9 e 3.10 com a equação de Ergun, obtém-se, teoricamente, a condição de fluidificação incipiente, correspondendo V_{mf} , dada por:

$$V_{mf} = \frac{\mu}{\rho_{\rm a} d_{\rm v}} \left(33,7^2 + 0,0408 \,\,{\rm Ga} \right)^{1/2} - \frac{33,7 \,\,\mu}{\rho_{\rm a} \,\,{\rm d}_{\rm v}} \tag{3.11}$$

em que: Ga- Número de Galileu

$$G_{a} = \frac{d_{v}^{2} \rho_{a}(\rho - \rho_{a})g}{\mu^{2}}$$
(3.12)

Segundo KUNII & LEVENSPIEL(1969), o número de Reynolds correspondente à V_{mf} , pode ser determinado de acordo com a Equação 3.13.

$$\operatorname{Re}_{mf} = \frac{d_{v}V_{mf}\rho_{a}}{\mu}$$
 3.13)

Substituindo a Equação 3.13 na Equação 3.11, têm-se:

$$Re_{mf} = (33,7^{2} + 0,0408 \text{ Ga})^{1/2} - 33,7$$
 (3.14)

Segundo CLEASBY & FAN(1981), quando o meio granular encontra-se fluidificado, a perda de carga no mesmo é igual ao peso flutuante do material, e pode ser calculada pela Equação 3.15.

$$H_{f} = \frac{\left(\rho - \rho_{a}\right)\left(1 - \varepsilon_{ex}\right)L_{ex}}{\rho_{a}}$$
(3.15)

em que: H_f: perda de carga no meio granular expandido(m) L_{ex}: altura do leito granular expandido(m) ϵ_{ex} : porosidade do meio granular expandido ρ : massa específica do material granular(kg.m⁻³) ρ_a : massa específica da água(kg.m⁻³) Estudos realizados por DHARMARAJAH & CLEASBY²(1986) apud CLEASBY(1990), com diversos materiais de diferentes valores de coeficiente de esfericidade e massa específica, resultaram na Equação 3.16, a qual relaciona o número de Reynolds como o de Galileu para diferentes graus de expansão:

$$\frac{\log \epsilon_{ex}^{3} \rho_{a}(\rho_{g} - \rho_{a})g}{(1 - \epsilon_{ex})^{2} S_{v} \mu^{2}} = 0.56543 + 1.0934 \left\{ \log \frac{V_{a} \rho_{a}}{S_{v} (1 - \epsilon_{ex}) \mu} \right\} + 0.1797 \left\{ \log \frac{V_{a} \rho_{a}}{S_{v} (1 - \epsilon_{ex}) \mu} \right\}^{2} - 0.00392 \left\{ \log \frac{V_{a} \rho_{a}}{S_{v} (1 - \epsilon_{EX}) \mu} \right\}^{2} - 1.5 (\log \psi)^{2}$$
(3.16)

A expansão promovida em um meio granular, segundo DI BERNARDO(1993), pode ser calculada em função da porosidade ou da altura do meio granular expandido. As Equações 3.17. e 3.18. apresentam as expressões que permitam calcular a expansão do meio granular.

$$E(\%) = \left(\frac{\varepsilon_{ex}}{\varepsilon_0}\right) \times 100$$
(3.17)

$$E(\%) = \left(\frac{L_{ex} - L_0}{L_0}\right) \times 100$$
(3.18)

em que:

E:expansão do meio filtrate(%) ϵ_{ex} :porosidade do material granular expandido ϵ_{0} :porosidade inicial do material granular fixo L_{ex} :altura do material granular expandido(m) L_{0} :altura inicial do material granular fixo(m)

3.2.2.Características de Materiais Suporte

Uma das características essenciais dos reatores de filme fixo são as altas concentrações de biomassa no seu interior, bem como, o aumento substancial da área disponível para crescimento microbiano(ROBINSON et al,1984, STRONACH et al,1987 e COLLINS et al,1998).

²DHARMARAJAH,A.H. & CLEASBY,J.(1986) Predicting the Expansion Behavior of Filter Media Journal of American Water Works Association. V.78,n12,66-76p apud CLEASBY,J.(1990) Filtration Cap.8,455-560p In:Water Quality and treatment: a handbook of community water supplies. 4.ed., McGraw-Hill.

O aumento da área superficial do material suporte nesses reatores é obtido pela utilização de materiais, tais como: areia, carvão, carvão ativado granular, carvão antracitoso, espumas de poliuretano, terra diatomácea, pérolas de vidro, cerâmica, zeolite, polímeros, etc(COOPER & ATKINSON, 1981 e SANCHEZ et al, 1994).

De acordo com WIEILAND & ROZZI(1991) e SPEECE(1996), o material suporte deve possuir as seguintes propriedades: deve apresentar altos valores da razão entre área e volume; deve se caracterizar por superfície essencialmente rugosa e porosa, de maneira a permitir a aderência das bactérias; deve ser biologicamente inerte; deve apresentar boa resistência mecânica; deve possuir distribuição uniforme, para evitar problemas de segregação com a expansão do leito e deve ter baixo custo por unidade de volume.

TAVARES & SANT'ANNA JUNIOR(1992)citam que, em 1985, a companhia francesa "Lyonnaise des Eaux", em um dos seus relatórios divulgou as características exigidas para o material suporte de reatores de leito fluidificado. Estas características foram as seguintes:

- tamanho efetivo da ordem de 0,1 a 0,4 mm, para permitir maior superfície de troca por unidade de volume de reator;
- > densidade real do material suporte maior que um, de modo que o material recoberto com biomassa sedimente naturalmente;
- > porosidade não há um valor definido;
- > partículas resistentes ao atrito;
- composição química o material não deve ser solúvel no líquido a ser tratado; o valor de teste "perda em ácido" deve ser inferior a 2%.

CAMPOS(1989) cita que ANDREWS & TRAPASSO(1985) durante o desenvolvimento de modelos visando a otimização do projeto de reatores de leito fluidificado, observaram alguns problemas decorrentes da escolha incorreta do material suporte. Tais considerações são apresentadas na Tabela 3.3.

Tabela 3.3.Problemas decorrentes da escolha incorreta do material suporte.

Discriminação	Muito Grande	Muito Pequeno
Tamanho	1-Velocidade de sedimentação grande exigem leitos espessos para permitir tempo de contato adequado, resultando no aumento das forças de cisalhamento:	1-Reistência na transferência de massa do líquido se Re<1;
	2-A redução do valor da relação área biofilme/volume de reator resulta em valores pequenos de carga orgânica;	2-Manuseio difícil;
Densidade	Idem anterior Estratificação reversa como a velocidade de sedimentação decresce com a relação volume do biofilme/volume de partícula suporte, os biofilmes mais espessos se movem para a parte superior do leito, onde existe menor carga orrânica volumétrica	Idem anterior
Coeficiente de Desuniformidade	A estratificação baseada no tamanho das partículas causa 1-aumento significativo da porosidade nas partes superiores do leito; 2-curto circuito, se durante a operação houver retirada de partículas do leito para remoção do biofilme	1-Há estimulo para haver mistura de sólidos, que por sua vez tende a distribuir uniformemente a espessura do biofilme igualmente, em todo volume do reator

Fonte: ANDREWS & TRAPASSO(1985).

A seguir far-se-á breve exposição de algumas pesquisas a respeito dos materiais suporte utilizados em reatores anaeróbios.

Com o objetivo de avaliar o efeito das propriedades dos materiais suporte na aderência e colonização de bactérias, KURODA e colaboradores(1988), durante 50 dias, operaram três reatores anaeróbios em escala piloto, de 20 L, sob tempo de detenção hidráulico de 20 dias e temperatura de $37\pm1^{\circ}$ C. Os materiais suportes estudados foram: vidro, aço inoxidável, plástico, carvão, cerâmica, resina, zeolite, terra diatomacea e material fibroso de alumínio plastificado. Todos os materiais suportes tinham tamanho de aproximadamente 8 x 2 x 30 mm³. A Tabela 3.4 apresenta maiores detalhes sobre as características desses suportes.

Tabela	3.4.Materiais	suporte	estudados	por	KURODA	et	al	(1988)	
--------	---------------	---------	-----------	-----	--------	----	----	--------	--

Características do Material Suporte	Diâmetro do
	poro*(µm)
1-Plástico com terra diatomacea aderida a superfície	300-400
2-Carvão com superfície rugosa	150-300
3-Carvão com pequenos poros na superfície	10-30
4-Carvão com superfície lisa	
5-Plástico	-
6-Cerâmica	100-150
7-Aço Inoxidável	_
8-Plástico com Zeolite aderido a superfície	-
(*) Provável diâmetro do poro na superfície do sólido.	

KURODA et al(1988) constataram que a quantidade de biomassa aderida, em cada material suporte, varia com as propriedades químicas e físicas do material, e com as características das bactérias. Além disso, esses pesquisadores observaram que os suportes porosos e de superfície rugosa foram os que apresentaram as maiores quantidades de biomassa aderida. No entanto, KURODA et al(1988) comentam que a quantidade de biomassa aderida varia também com a rugosidade da superfície, tendo em vista que entre os suportes de carvão, o carvão(3), com diâmetro de poro com alguns décimos de micrômetros, foi o que teve a maior quantidade de biomassa aderida durante todo e experimento.

YEE et al(1992) pesquisaram o efeito do tamanho do poro do material suporte no desempenho de reator anaeróbio de leito fluidificado. Para realizar essa pesquisa, YEE e colaboradores(1992) utilizaram quatro reatores de acrílico com diâmetro interno de 7,5 cm, altura efetiva de 30 cm, e três tipos de terra diatomácea

e areia, como suporte desses reatores. Na Tabela 3.5. são mostradas algumas das características dos suportes utilizados nesse experimento.

Tabela 3.5. Suportes pesquisados por YEE et al(1992).

Características do	Reator 1	Reator 2	Reator 3	Reator 4
Suporte	Terra	Terra	Terra	Areia*
	diatomácea	diatomácea	diatomácea	
Densidade (g/ml)	0,44	0,31	0,46	1,53
Área superficial(m²/g)	46	1,3	0,2	0,004
Volume do poro(ml/g)	1,19	1,47	0,66	-
Diâmetro médio do poro(µm)	0,14	6,5	30,9	-

*Areia com formato esférico encontrada na cidade de Ottawa no Canadá.

Esses pesquisadores observaram que os reatores com leito suporte de terra diatomácea, operados sob taxa de carregamento de 6 gCOT.L.d⁻¹, com concentração afluente de 5000 mgCOT.L⁻¹, levam 28 a 40 dias para realizar remoção de 99% (em termos de COT), enquanto que o reator com areia, sob as mesmas condições de operação necessita de 80 dias para alcançar o mesmo nível de eficiência. De acordo com YEE et al(1992), a diferença nesses períodos se deve à alta capacidade de aderência dos suportes de terra diatomácea, a qual chegou a ser cerca de três vezes maior que a areia.

FOX et al(1990), realizaram estudo comparativo entre diferentes meios suporte, durante o período de partida de reatores anaeróbios de leito expandido. Os reatores foram operados em temperatura de aproximadamente 35°C, tempo de detenção hidráulica de 12 h e foi utilizado acetato como substrato. Os meios suporte utilizados, assim como as características de operação dos reatores, são apresentadas na Tabela 3.6.

Características	Reator A	Reator B	Reator C	Reator D
Tipo do Meio	Areia	CAG	Antracito	Areia
Tamanho da Partícula (mm)	0,7	0,7	0,7	0,35
Peso Seco do meio no reator(kg)	6,1	1,5	2,8	5,8
Densidade Úmida (g/cm³)	2,65	1,37	1,41	2,65
Velocidade de Sedimentação (cm/s)	11,4	4,0	5,4	5,4
Volume de leito expandido (L)	5	5	5	5
Percentual da expansão do leito	50	50	50	50
Tempo de detenção hidráulico sem	12	12	12	12
o leito (h)	Last St.			
Desta: DOX at al (1000)				

Tabela 3.6.Características do material suporte utilizados em reatores anaeróbios de leito expandido.

Fonte: FOX et al (1990).

Os autores notaram que os grãos de areia tinham a forma mais esférica e a superfície relativamente lisa, com poucas fissuras profundas, portanto o escoamento do líquido em volta da partícula de areia seria uniforme e com áreas de baixa turbulência. Para o antracito, devido a sua forma angular e superfície com fissuras profundas, escoamento do líquido ao redor desse, seria mais 0 irregular com áreas de baixa turbulência próximas as fissuras. No caso do carvão ativado granular, devido às partículas não serem tão esféricas como os grãos de areia e não tão angulares como o antracito, e por terem uma superfície rugosa completamente coberta com fissuras e cavas, o regime de escoamento do líquido em volta das partículas de carvão ativado apresentou comportamento intermediário entre as partículas de antracito e areia.

Com isso, FOX et al(1990) observaram que a superfície rugosa foi crítica para o desenvolvimento do biofilme, pois nos reatores de areia e antracito, o biofilme desenvolveu-se apenas dentro das fissuras, carvão ativado o biofilme cobriu enquanto no sua superfície. Além completamente a disso, esses pesquisadores notaram que os reatores com carvão ativado granular foram capazes de reter cerca de 3,75 a 10 vezes mais biomassa, que os reatores com antracito e areia, o que ocasionou um período de partida mais rápido nos reatores de carvão ativado granular.

Nos estudos realizados por CUBA TERAN(1995) e ARAÚJO(1995) com reator anaeróbio de leito fluidificado, empregando a areia quartzosa como meio suporte, de tamanho entre 0,21 a 0,074 mm e massa específica de 2,64 g.cm⁻³, a eficiência de remoção de DQO foi aproximadamente 92% para esgoto sanitário sintético, para tempo de detenção hidráulica de 6,5 h.

SANCHEZ et al(1994) estudaram diferentes materiais suporte visando avaliar a colonização de bactérias metanogênicas. Os suportes estudados foram: poliuretano, terra diatomácea, "sepiolite", PVC, bentonita e "diabase". Esses suportes foram todos incubados e inoculados com lodo de esgoto sanitário proveniente de digestor anaeróbio durante 480 h, e, sendo então monitorado o percentual de gás metano.

Após 8 h de incubação, SANCHEZ et al(1994) notaram que entre todos os suportes o sepiolite e o diabase foram os que apresentaram os maiores níveis de produção de metano. Segundo esses pesquisadores, tal fato se deve ao aumento da formação de consórcios bacterianos nesses suportes.

3.2.3.Aderência de Microrganismos nos Materiais Suporte

CAMPOS(1989) comenta que talvez a maior contribuição à evolução da aplicação dos processos biológicos para tratamento de águas residuárias seja devida ao aprendizado crescente de técnicas de imobilização e de retenção de bactérias, quer na forma de grânulos, flocos, agregados ou de biofilme aderido a suportes inertes.

O biofilme é definido como um conjunto de microrganismos e polímeros extra-celulares aderidos a uma superfície sólida(orgânica e inorgânica). Portanto qualquer interface que exibe atividade microbiana pode ser denominada de biofilme (CAMPOS,1989; TIAGI & VEMBU,1990 e VAN LOOSDRECHT et al,1995). A aderência de microrganismos na superfície de partículas depende do balanço das forças de atração (Van der Waal's), forças de repulsão (eletrostáticas), e da presença de polímeros extra-celulares que ajudam a aderência por inclusão física(SALKINOJA et al,1983 e TIAGI & VEMBU,1990 e VAN LOOSDRECHT et al,1995).

Segundo VAN LOOSDRECHT et al(1990), a colonização de uma interface sólido-líquido ocorre na seguinte seqüência: transporte(por difusão molecular, por convecção e transporte ativo), aderência inicial, fixação e colonização.

No transporte por difusão molecular, as bactérias exibem movimento browniano, o qual é responsável pelo contato, ao acaso, das bactérias com a interface e, mesmo em condições quiescentes (de repouso) este é o responsável pela transposição de qualquer camada difusa, através da qual não ocorre convecção. Este mecanismo de transporte, de acordo com esses autores, é mais lento que o transporte por convecção e o transporte ativo. Estes pesquisadores comentam que a sedimentação bacteriana é outra maneira da bactéria entrar em contato com a superfície sólida, tendo contribuição significativa no transporte bacteriano.

O transporte convectivo das bactérias se dá em virtude do fluxo líquido, e pode ser mais rápido em várias ordens de grandeza em relação ao transporte difusivo, porém podem existir situações nas quais a parte final do caminho até a superfície(passagem pela camada difusa) seja controlada pela difusão. No transporte ativo, as bactérias móveis vizinhas a superfície podem encontrá-la ao acaso, ou serem submetidas a ação atrativa de qualquer gradiente de concentração que possa existir na região interfacial.

Após a fase de transporte, têm-se a fase de aderência inicial, que pode ser reversível ou irreversível. No caso da aderência reversível, os

microrganismos exibem movimento browniano contínuo, podendo ser prontamente removidos da superfície pelo próprio movimento bacteriano ou por forças suaves. Na aderência irreversível, ao contrário da reversível, as bactérias não exibem movimento browniano, e não podem ser removidas, a menos que atuem forças de cisalhamento intensas na superfície sólida.

A fase seguinte à aderência inicial, têm-se a aderência firme(fixação), em que as bactérias após estarem devidamente depositadas na superfície sólida, utilizam polímeros extracelulares para se protegem das forças de cisalhamento, bem como, realizar a captura da matéria orgânica presente na fase líquida.

A última fase da aderência bacteriana é a colonização da superfície, na qual as bactérias começam a desenvolver-se, e intensificam o seu metabolismo para a partir daí, formarem microcolônias ou biofilmes.

A Figura 3.4 mostra a seqüência de colonização de em interface sólido-líquido.

Fig. 3.4.Sequência de etapas da colonização de microrganismos na interface sólido-líquido.
Fonte: VAN LOOSDRECHT et al(1990).

A Figura 3.5 mostra a formação do biofilme em reator anaeróbio de leito expandido. Nessa figura a linha 1 representa a camada líquida laminar hipotética, em quanto a linha 2 representa a superfície do suporte e as áreas em preto representam o crescimento do biofilme sobre a superfície do suporte. Na situação (A), observa-se que o crescimento do biofilme se inicia nas camadas profundas do suporte, na qual os microrganismos tem a proteção das forças de cisalhamento; em seguida(B), o biofilme começa a ocupar a camada externa, ficando exposto a forças de cisalhamento maiores; posteriormente (C), o biofilme enche os poros do suporte e se junta com as camadas vizinhas finalmente no estágio de maturidade do е cobre completamente a biofilme(D), esse superfície um completo desenvolvimento da camada rugosa, COM laminar.

Figura 3.5. Evolução do desenvolvimento do biofilme. Fonte: Adaptado de FOX et al (1990).

3.2.4.Propriedades do biofilme, Atividade e Tipos de bactérias anaeróbias

VAN LOOSDRECHT et al(1995) comentam que embora o desenvolvimento de reatores com biofilme esteja bastante documentado, são ainda limitados os conhecimentos a respeito da estrutura e propriedade do biofilme formado nesses reatores.

ARAKI & HARADA (1994) avaliaram o efeito da velocidade ascensional sobre a espessura e densidade do biofilme formado em quatro reatores anaeróbios de leito fluidificado, durante o período de partida. Cada reator tinha volume de 13 L, dos quais 8 L, correspondiam a zona de digestão e utilizaram como material suporte, carvão ativado granular de diâmetro médio de 0,48 mm e densidade de 1,42 gcm⁻³.

Nesse estudo, os reatores foram operados em temperatura de $30\pm1^{\circ}$ C, tendo sido empregadas velocidades ascensionais de 4, 7, 14 e 25 mh⁻¹. Esses pesquisadores notaram que, para as velocidades de 14 e 25 mh⁻¹, a espessura do biofilme desenvolveu-se até 200 µm, tendo posteriormente decrescido lentamente para 100 µm com o passar do tempo. E que, para velocidades ascensionais de 4 e 7 mh⁻¹, a espessura do biofilme observada foi de aproximadamente 50 µm.

Em relação à densidade do biofilme, ARAKI & HARADA(1994) observaram aumento da densidade com o decréscimo da velocidade ascensional imposta, tendo esta atingido valores de 14,4; 10,2 e 4,4 mgSSVcm⁻³, quando a taxa de carregamento orgânica nos reatores atingiu valores de 5 gDQO.L⁻¹.d⁻¹.

A avaliação da atividade e da população microbiológica do biofilme se constituem em ferramentas importantes para o monitoramento dos reatores de filme fixo, tendo em vista que a formação do biofilme é um processo dinâmico, o qual é influenciado por diversos fatores entre os quais destacam-se: a taxa de carregamento do substrato na superfície do biofilme; as condições hidrodinâmicas do reator e o tipo de organismos envolvido na degradação da matéria orgânica(VAN LOOSDRECHT et al,1995).

ARAÚJO(1995), avaliou a atividade metanogênica do biofilme proveniente de reator anaeróbio de leito fluidificado(altura de 1,65 m; diâmetro de 0,08 m; volume de 20 L; e leito constituído por areia de 0,2 mm de diâmetro). Durante a pesquisa, pode ser observado o aumento da atividade metanogênica específica de 0,031 para 0,12 gCH₄-DQO/gSSV, quando a carga orgânica aplicada foi elevada de 5 kgDQO.m⁻³d⁻¹ para 35 kgDQO.m⁻³d⁻¹.

Na Tabela 3.7, são apresentadas as espécies de bactérias metanogênicas mais comumente encontradas em reatores de filme fixo.

Tabela 3.7.Espécies de bactérias metanogênicas mais encontradas em reatores anaeróbios.

Espécies	Tipo Resíduo	Fonte
Methanotrix spp; Methanospirillum spp;		
Methanosarcinasp; Methanococus mazei	Esgoto	ROBSOSN et al
Methanococus vannielli; Methanogenium	Sintético	(1984)
Methanotrix; Methanospirillum; Methanosarcina	Esgoto	CAMPOS
	Sintético	(1989)
Methanotrix spp	Esgoto	FANG & CHUI
	Sintético	(1994)
Methanotrix, Methanobrevibacter Methanosarcina,	Esgoto	ARAÚJO
Desulfovibrio	Sintético	(1995)

3.3.Partida de Reatores Anaeróbios de Leito Expandido/Fluidificado

De acordo com TYAGI & VEMBU(1990), a partida de um reator anaeróbio é descrita como o período de tempo necessário para este conseguir o seu desempenho máximo de remoção de matéria orgânica prevista no projeto, sem que se ocorra a inibição das bactérias metanogênicas.

Para VAN HANNDEL & LETTINGA(1994) o período de partida é definido como o tempo necessário para se obter uma qualidade do efluente essencialmente constante e uma massa de lodo que não varia nem qualitativamente nem quantitativamente com o tempo.

No entanto CHERNICHARO(1997) prefere definir partida como o período transiente inicial, marcado por instabilidades operacionais.

Essas divergências, quanto ao período de partida de reatores anaeróbios, evidenciam as dificultadas em se caracterizar esse período. Entretanto, esses autores são unanimes em afirmar que o reator anaeróbio deve apresentar alta capacidade de retenção dos microrganismos no seu interior, de maneira a obter-se uma população estável de bactérias metanogênicas ao longo do tempo.

WIEILAND & ROZZI (1991) consideram que a duração da partida de um reator anaeróbio é influenciada por diversos aspectos, entre os quais destacam-se: característica da água residuária; tipo de inóculo; fatores operacionais e ambientais e, por último; porém de não menor importância, configuração do reator. A Figura 3.6. apresenta os fatores que influenciam a partida de reatores anaeróbios.

Figura 3.6. Fatores que influenciam a partida de reator anaeróbio. Fonte: Adaptado de (WIEILAND & ROZZI,1991). De acordo com POL(1994), a partida de reatores anaeróbios pode ser conseguida por meio de inoculação do reator com lodo adaptado ao esgoto a ser tratado, neste caso, a partida do reator ocorre de forma rápida e satisfatória, não havendo necessidade de adaptação do lodo. Outra maneira de partir o reator é inoculando este com lodo não adaptado ao esgoto a ser tratado; nesse caso, o reator passa por um período de adaptação, na qual se têm a fase de seleção microbiana. E finalmente pode-se partir o reator sem inoculação, nesse caso a inoculação do reator é efetuada com os próprios microrganismos contidos no esgoto afluente.

HENZE et al(1997) comentam que a partida de estações de tratamento de esgotos por processos anaeróbios, normalmente é realizada em duas fases. Na primeira fase, tem-se a inoculação, seguida da recirculação de água na estação, por aproximadamente uma semana, sem que ocorra nesse período adição do esgoto a ser tratado. Após esse período, partindo-se geralmente com aproximadamente 10% da carga máxima, efetuam-se aumentos graduais na carga orgânica, assim que os ácidos voláteis no efluente, estiverem na faixa de 200 a 400 gHac.m⁻³, a carga pode ser elevada para um percentual de 50 a 100%.

3.3.1.Problemas Operacionais na Partida de Reatores Anaeróbios

O período relativo à partida é, sem dúvida, aquele que demanda os maiores cuidados operacionais durante toda a vida útil de uma estação de tratamento de esgoto sanitário(ETE). Do ponto de vista operacional da ETE, este período é crítico quando estão envolvidas etapas de tratamento biológico, sensivelmente influenciadas a posteriori pelas estratégias adotadas durante a partida (GONÇALVES & ARAÚJO, 1997).

HENZE et al(1997) mencionam que os problemas operacionais relativos à partida da ETE podem ser divididos em três tipos, a saber:

Distúrbios no processo anaeróbio;

Arraste das bactérias;

➢ Inibição da biomassa.

O distúrbio no processo anaeróbio se deve ao desbalanceamento entre as fases de hidrólise, produção de ácido e produção de metano, haja visto que as fases de hidrólise e produção de metano ocorrem mais lentamente, que a fase intermediária (produção de ácido) (SPEECE, 1996).

Segundo HENZE et al(1997), os reatores anaeróbios estão mais sujeitos ao distúrbio, quando a matéria orgânica se encontra dissolvida, pois nesta forma, a matéria orgânica é rapidamente convertida em ácidos voláteis, o que pode facilmente causar problemas de inibição das bactérias metanogênicas. No entanto, quando a matéria orgânica está suspensa, esta pode ser melhor aplicada sob cargas variadas nos reatores anaeróbios, sem que se tenha a ocorrência de distúrbio no processo anaeróbio, como o que ocorre no processo de estabilização tradicional de lodo anaeróbio.

O arraste de bactérias pode ocorrer quando o tempo de retenção celular é extremamente pequeno em decorrência do valor elevado da velocidade ascensional. Tal fato segundo HENZE et al(1997), está ligado a má retenção da biomassa no interior do reator, o qual não suporta as variações de carga hidráulica ou orgânica, que no caso de reatores de filme fixo, o desprendimento da biomassa (biofilme) é ocasionado pelo aumento das forças de cisalhamento.

De acordo com STRONACH et al(1986), a inibição da biomassa ocorre por meio da inibição internamente

produzida devida a mudanças de pH, aumentos de ácidos voláteis e nitrogênio amoniacal, ou pelo fornecimento de substâncias do ambiente externo, tais como: sulfato, metais, materia orgânica específica (carboidratos proteínas e lípidios) e nitrogênio amoniacal.

De maneira geral, a inibição da biomassa devida aos fatores interno ou externo, afeta principalmente a metanogênese, pois pode se ter mudanças nas vias metabólicas do processo, ocasionando por exemplo, o aumento da produção de ácidos sem que se tenha o consumo à mesma taxa, ou ainda pode se ter o retardamento da fase de produção de ácidos (FORESTI, 1996).

Na Tabela 3.8, são apresentados alguns dos parâmetros que devem ser quantificados, bem como, a sua importância e a faixa desejável e de variação, durante a operação de reatores anaeróbios.

Tabela 3.8.Principais parâmetros a serem monitorados na operação de reatores anaeróbios.

Parâmetro	Propósito	Desejável/Faixa de Variação
Temperatura	Manter constante, de maneira a se evitar o desequilíbrio entre as fases	±10 ⁰ /dia
рН	Controle da instabilidade	6-7, com variação de ±0,5/dia
Ácidos Voláteis	Detecção de instabilidade no processo	Total:200-500 gHac.m ⁻³ Hac ₁ :200-500 gHac.m ⁻³ HPr ₂ :50-100 gHac.m ⁻³
Carga com Matéria Orgânica	Prevenção contra sobrecarga	+50% DQO dissolvida por dia +100% DQO suspensa por dia
Produção do Biogás	Controle das Bactérias Metanogênicas	±20%/dia(em função da carga afluente da matéria orgânica)
Qualidade do Biogás	Controle da quantidade das Bactérias Metanogênicas	±20%/dia, quantidade de Metano de 60 a 75%
Qualidade do Lodo(%de Sólidos Voláteis)	Controle da Estabilização do Lodo	60 a 70% normal, variação de ±5%

Fonte: HENZE et al(1997).

Particularmente, nos reatores de leito expandido, as principais dificuldades durante a partida e a operação destes se deve à expansão inicial do material suporte, arraste de biomassa, interação das partículas a baixas taxas de formação de gás, seleção de microrganismos sensíveis, etc (STRONACH et al, 1986; WIEILAND & ROZZI, 1991).

Na Tabela 3.9, são apresentadas algumas recomendações de parâmetros operacionais para se iniciar a partida de reatores de filme fixo, estas informações foram compiladas por SALKINOJA et al(1983).

Na Tabela 3.10, são apresentados dados como a temperatura, tempo de detenção hidráulica $(\theta_{\rm H})$, período de partida, tipo de inóculo utilizado para à partida do reator, afluente(água residuária a ser tratada) e tipo de reator anaeróbio. Todos esses dados se referem a partida de reatores anaeróbios realizadas no Brasil e em outros países e estes dados foram elaborados de acordo com a revisão de literatura realizada pelo autor deste texto.

Tabela 3.9.Condições para iniciar a partida de reatores de filme fixo.

Parâmetro	Recomendações					
Quantidade de Inóculo	Inocular com 10% do volume do reator					
Qualidade do Inóculo	Tão alta quanto possível, se					
	possível proveniente de processos					
	similares					
Material Suporte	Atrativo aos microrganismos, com					
	superfície porosa e rugosa.					
Qualidade da Água Residuária	Deve ser rica em macro e micro					
	nutrientes					
Carga Orgânica	Baixa, com tempo de detenção					
	hidráulico maior que 1d para evitar					
	o araste de biomassa					
Recirculação	2 a 20 vezes a velocidade de					
	alimentação					
pH e Temperatura	Evitar flutuações, e manter o pH					
	próximo ao neutro e Temperatura					
	maior que 35°C.					
Fonte: Adaptado de SALKINOJA et	al(1983).					

	reatores e c	los residuos t	ratados.					ALCO TRANSFER PROV
Local	Temperatura (°C)	θ _н	Período de Partida (semanas)	Inóculo	Afluente	Tipo de Reator	Observações	Fonte
São Carlos (Brasil)	13,5 a 35	1,5 h (vazão afluente 4,4 l/h)		lodo de UASB de Ind. de Alimentos	Esgoto Sintético	Reator Anaeróbio de Leito Fluidificado (9,5 L)	Remoção 10% a 52% de DQO _B	VIEIRA (1989)
São Carlos (Brasil)	11,5 a 29,5	1,5 a 5,2 h		lodo UASB de Ind. conservas vegetais	Esgoto Sanitário Sintético	Reator Anaqróbio de Leito Fluidificado (10,9 L)	Remoção de DQO de 75 a 80 %	CAMPOS (1989)
Campina Grande (Brasil)	22 a 25	17h-(vazão de projeto 222m3/d)	12 a 20	sem inóculo	Esgoto Sanitário	ŲASB 160 m ³	Remoção de DQO de 75% a 91%	VAN HANNDEL & LETTINGA (1994)
Bucaramanga (Colômþia)		5,2h-(vazão disponível de esgoto)	16	sem inóculo	Esgoto Sanitário	UASB 3000 m ³	vazamento de gás, turbulência, perda excessiva de lodo	VAN HANNDEL & LETTINGA (1994)
São Carlos (Brasil)	23 a 27	12 horas		sem inóculo	Esgoto Sanitário	Reator de Chicanas (11 m ³)	Remoção 75% de DBO e 50% de DQO	POVINELLI (1994)
São Carlos (Brasil)	4 a 30	6,5 h	22	lodo UASB de Ind. Papel	Esgoto Sanitário Sintético	Reator Anaeróbio de Leito Fluidificado (20 L)	Remoção 91,5% de DQO	CUBA TERÁN (1996)
São Carlos (Brasil)	22 a 25	16-12-8 horas	17 para partida	sem inóculo	Esgoto Sanitário	UASB (18 m ³)	Remoção de 72% a 81%	HERRERA VALLEJOS (1997)
Estados Unidos	20	10 horas	8	lodo de UASB	Esgoto Sanitário Sintético	Reator Anaeróbio de Leito Expandido(5 L)	Remoção 78% de DQO	COLLINS et al (1998)

Tabela 3.10.Estudo da partida de reatores anaeróbios, destacando, os principais parâmetros, característica dos reatores e dos resíduos tratados.

3.4.Principais Fatores que Afetam a Partida de Reatores Anaeróbios de Leito Expandido/Fluidificado

3.4.1. Temperatura

A temperatura é um dos fatores ambientais mais importantes e mais extensivamente estudados na digestão anaeróbia, devido esta afetar a velocidade das reações química e bioquímicas (FORESTI, 1996).

POVINELLI(1994) comenta que durante a partida de reatores anaeróbios é necessário o monitoramento da temperatura, já que nos períodos de inverno, esta pode cair, prejudicando a eficiência do processo.

SANZI & FDZ-POLANCO(1990) são alguns pesquisadores que estudaram o efeito da diminuição da temperatura sobre o desempenho de reatores anaeróbios de leito fluidificado já estabilizados no tratamento de esgoto sanitário.

Foram usados quatro reatores, em escala de bancada, que continham como meio suporte partículas de arlita (silicato de ferro e alumínio) e tijolo moído.

Estes pesquisadores notaram que o decréscimo gradual de temperatura de 20°C para 5°C, permitiu aos microrganismos adaptarem-se à nova temperatura mais baixa, e que isso não causou maiores efeitos na qualidade do efluente. Visto que os valores de DQO e DBO efluentes apesar de apresentaram tendência de aumento, estes retornaram gradualmente aos valores originais após alguns dias.

Ao final do período experimental os reatores operando com tempo de detenção hidráulica de 2,7 h(taxa de carregamento de 4,5 kgDQ0.m³.d⁻¹) atingiram remoção superior a 75%, para uma DQ0 média afluente de 475 $mgO_2.L^{-1}$. BORJA & BRANKS (1995), também estudaram o efeito da redução da temperatura no desempenho de reatores anaeróbios de leito fluidificado, tratando água residuária de indústria de sorvete.

Para verificar a influência deste parâmetro, esses pesquisadores utilizaram reatores de acrílico com volume útil de 1 litro, com tempo de detenção hidráulico de 8 horas, operados a $35\pm1^{\circ}$ C durante dois meses, em equilíbrio dinâmico aparente. Finalizado, esse período de operação dos reatores, a temperatura foi reduzida inicialmente para 10° C e depois elevada a 20° C, observando a resposta do reator, com $\theta_{\rm H}$ de 6 e 12 horas, para ambas temperaturas.

Para a temperatura de 10°C, o período de recuperação dos reatores foi de 7 h, para ambos $\theta_{\rm H}$ empregados. Nesse período os reatores apresentaram valores máximos de DQO no efluente de 389 mgO₂.L⁻¹ para $\theta_{\rm H}$ de 6 h e de 394 mgO₂.L⁻¹ para $\theta_{\rm H}$ de 12 h. Quando a temperatura foi elevada para 20°C, o período de recuperação do reator com θ H de 6 h foi de 9 h, apresentando valor máximo de DQO efluente de 431 mgO₂.L⁻¹, e para $\theta_{\rm H}$ de 12 h, a recuperação do reator ocorreu em 16 h, tendo o efluente apresentando valor máximo de DQO de 620 mgO₂.L⁻¹.

3.4.2. Aspectos Nutricionais

A quantidade e o equilíbrio de nutrientes num reator anaeróbio podem ser fatores relevantes no início do funcionamento do mesmo, por estimular o crescimento de microrganismos. Assim, pode-se dizer que não há um nutriente mais importante que outro, isto depende do processo, mas na falta de algum que seja estimulante ao crescimento das bactérias, ele deve ser adicionado ao sistema (POVINELLI,1994).

Segundo TYAGI & VEMBU(1990) os principais nutrientes de interesse no tratamento de esgoto doméstico são o nitrogênio e fósforo. As relações nutricionais entre carbono, nitrogênio e fósforo não se encontram definitivamente estabelecida em processo anaeróbio, porém alguns autores consideram suficiente a relação 500:5:1 para DQO:N:P (FORESTI, 1996).

De acordo com FIELD(1994), a amônia e o nitrogênio orgânico liberados durante a degradação são as principais fontes de nitrogênio utilizadas pelos microrganismos em condições anaeróbias. No entanto, o nitrogênio amoniacal além de ser utilizado como nutriente para crescimento dos microrganismos, também pode contribuir na neutralização dos ácidos voláteis, mas em concentrações elevadas pode torna-se tóxico às bactérias metanogênicas, levando o sistema ao colapso (SPEECE,1996). Na Tabela 3.11. são apresentados as concentrações de nitrogênio e o efeito em processos anaeróbios.

Tabela	3.11.Efeito	da	amônia	livre	em	processos	anaeróbios.
--------	-------------	----	--------	-------	----	-----------	-------------

Concentração*	Efeito
50 a 200	Benéfico
200 a 1000	Não tem efeito adverso
1500 a 3000	Inibidor para pH>7,4-7,6
acima de 3000	Tóxico

(*) Como N(mg.L⁻¹)

Fonte:McCarty²(1964) apud CHERNICHARO(1997).

CUBA TERAN (1995) com o objetivo de monitorar a presenças de fósforo para que este não torna-se nutriente limitante ao crescimento bacteriano, durante a operação de reator anaeróbio de leito fluidificado, alimentado com esgoto sanitário sintético, pode constatar que os valores

³MCCARTY, P.L.(1964) Anaerobic waste treatment fundamentals. Public Works-Part 1, 2, 3 and 4. 95, N.9, 107-112; N.10, 123-126pp; N.11,91-94; N.12,95-99.

da concentração de fosfato (PO_4^{-3}) do afluente foram geralmente superiores aos do efluente do reator, evidenciando a possível incorporação do mesmo no tecido celular da biomassa ou eventual adsorsão na matriz polimétrica do biofilme.

SPEECE(1996) e DROSTE (1997), mencionam que existem um número de elementos traço requeridos para o sucesso da digestão anaeróbia, entre estes elementos destacam-se o ferro, níquel, cobalto e o sulfeto.

FOX et al(1990) foram alguns dos pesquisadores que observaram o efeito de elementos traço, particularmente do níquel, durante o período de partida de reatores de leito expandido. Nesse estudo, os reatores foram alimentados com acetato, sendo operados sob temperatura de 35ºC e tempo de detenção hidráulico de 12 horas.

Esses pesquisadores, notaram que durante o período de partida, seus reatores apresentavam remoção de acetato de 64% para uma concentração afluente de acetato de 1320 $mg.L^{-1}$ e que quando eles adicionaram o níquel (Ni) no septuagésimo terceiro dia, a conversão de acetato aumentou para 90%, mantendo-se assim até o final da operação dos reatores.

3.4.3. Taxa de Carregamento Orgânico

Segundo KATO et al(1994) a taxa de carregamento orgânico acima de certo valor, torna-se o maior fator que teve receber atenção no controle do desempenho do reator.

HSU & SHIEH (1993), testaram duas estratégias de partida em reator anaeróbio de leito fluidificado, com o objetivo de avaliar a sua influência. A primeira, foi baseada na utilização máxima e estável do substrato, e a segunda, no aumento da taxa de carregamento máximo de substrato controlado por meio do pH do reator. Os

reatores anaeróbios de leito fluidificado tinham volume de 3 L e o substrato utilizado foi o ácido acético.

Para a primeira estratégia, os autores verificaram que o reator alcançou remoção de carbono orgânico total (COT) maior que 99%, mantendo concentrações de COT do efluente abaixo de 10 mg.L⁻¹, depois de 40 dias, na fase de partida. Na segunda estratégia, o desempenho do reator não foi prejudicado pelo rápido aumento na taxa de carregamento orgânico, visto que a remoção de COT foi maior que 97% para taxas de carregamento orgânico maiores que 30 gCOT.L⁻¹.d⁻¹.

No entanto, o aumento na taxa de carregamento orgânico, na segunda estratégia, teve que ser finalizado em 60 dias, em virtude da possibilidade de perda excessiva de biomassa e de material suporte(esferas de celite R-633) causada pela produção de biogás de 47L.d⁻¹, sendo necessário diminuir a taxa de carregamento orgânico para 6 gCOT.L.d⁻¹, para se contornar o problema.

Estudos realizados por SHIEH & HSU (1996), com reatores anaeróbios de leito fluidificado, operados a temperatura de (35±1)°C e alimentados com ácido acético, puderam notar a presença de pequenas bolhas de gás, quando a taxa de carregamento orgânico atingiu valores maiores que 15 gCOT.L⁻¹.d⁻¹, e bolhas de gás maiores, começaram a se formar dentro do meio de leito expandido, quando a taxa de carregamento orgânico excedeu a 25 gCOT.L⁻¹.d⁻¹, tendo a fluidificação das partículas freqüentemente rompida. Muitas partículas foram então arrastadas para fora do leito do meio expandido pela grandes subida das bolhas de gás, tendo sido interceptadas por uma fina malha de plástico colocada no interior do reator próximo as linhas de coletas do efluente e gás.

THEREZO(1993) avaliou o desempenho de reator anaeróbio de leito expandido sob condições desfavoráveis de operação, tais como: transientes de carregamento hidráulico e orgânico, variações de temperatura ambiente e, sobretudo a falta de controle da espessura do biofilme agregado às partículas de areia.

O reator foi alimentado continuamente com esgoto sintético, operado com vazões médias que variaram entre 2,1 e 7 L.h⁻¹, correspondendo a tempos médios de detenção hidráulico entre 5,2 e 1,4 h, respectivamente. Durante as diversas fases de operação, foram aplicadas ao reator taxas de carregamento orgânica que variaram entre 5,5 e 40 kgDQO.m³.d⁻¹, tendo-se observado eficiência média de remoção de DQO em torno de 74% para taxa de carregamento orgânica de 12,8 kgDQO.m³.d⁻¹. Ao final do experimento, quando o reator foi submetido a condições mais severas do carregamento orgânico(até 40 kgDQO.m³.d⁻¹) o processo apresentou sinais de instabilidade, com teores de metano no gás em torno de 30% e aumento de ácidos voláteis no efluente de até 500% em relação ao afluente.

3.4.4. Tempo de Retenção Celular

O tempo de retenção celular é um dos parâmetros de projeto mais importantes para o dimensionamento dos sistemas de tratamento de efluentes líquidos, além de ser utilizado para controle e monitoramento desses sistemas.

SHIEH & HSU (1996) são alguns dos pesquisadores que determinaram a influência dos efeitos combinados de crescimento imobilizado, desprendimento bacteriano e perda de biomassa, durante a partida de reatores anaeróbios de leito fluidificado, em função do tempo de retenção celular médio (θ_c) , taxa de utilização de

substrato e taxa de produção de biogás. Os reatores foram alimentados com ácido acético e o material suporte era celite R-633.

Esses pesquisadores observaram que o θ_c , estabelecido em aproximadamente 32 dias para o estágio inicial de partida, mantinha uma utilização de carbono orgânico total maior que 96%, quando o carregamento volumétrico sofreu um aumento de 400%, isto é, aumentou de 7,5 gCOT.L⁻¹.d⁻¹ para 32 gCOT.L⁻¹.d⁻¹.

3.4.5. Inoculação de Reatores Anaeróbios

A inoculação de reatores anaeróbios é uma operação normalmente realizada com o intuito de se reduzir o tempo de partida e de ser alcançar o equilíbrio dinâmico aparente, o mais rápido possível.

De acordo com POL (1994), inicialmente não são necessárias condições estritamente de anaerobiose para se realizar a partida do reator. Caso a água residuária, não estiver em condições anaeróbias, estas serão alcançadas ao primeiro dia, devido o consumo de oxigênio pelas bactérias presentes no inóculo.

Este afirma também, que o inóculo selecionado para se efetuar a partida do reator anaeróbio, deve ter uma boa atividade metanogênica. Pois, quanto maior for esta, menor será o período de partida, e caso não se disponha de inóculo com boas características anaeróbias, para se realizar a partida do reator, esta dever ocorrer com bastante cuidado. Pois as velocidades ascensional ou descendente da água residuária, podem provocar o arraste das bactérias presentes no reator, retardando ou até mesmo inibindo a partida.

Com objetivo de comparar a partida de reatores de leito fluidificado, SANZI & FDZ-POLANCO(1990) utilizaram dois reatores anaeróbios de leito fluidificado, tratando esgoto sanitário sob temperatura de 15ºC. Um dos reatores foi operado sem inóculo, ao passo que o outro foi inoculado com lodo proveniente de reator UASB que tratava despejo industrial. Ambos reatores, tiveram 0 $\theta_{\rm H}$ diminuindo de 15 h para 2,5 h, condição que proporcionou remoção de 75% de DQO no reator inoculado, e 76% no reator não inoculado. Dessa forma, esses pesquisadores verificaram que é possível realizar a partida destes reatores sem inóculo, sob temperatura de 15°C, embora seja requerido um período de 4 meses para se conseguir um efluente de boa qualidade nos reatores sem inoculação.

4. MATERIAIS E MÉTODOS

4.1.Generalidades

Neste capítulo descrevem-se os materiais e métodos utilizados para atingir com os objetivos deste trabalho.

O delineamento do presente trabalho foi dividido em duas etapas principais. A primeira etapa engloba a caracterização do material suporte para compor o leito do reator anaeróbio de leito expandido(RALE_x), e a segunda etapa envolve a estratégia de partida do RALE_x até este atingir o equilíbrio dinâmico aparente.

Na etapa de caracterização do material suporte foram realizadas as seguintes sub-etapas: preparação de amostras, ensaios granulométricos, determinações de índices físicos, determinações das dimensões do material suporte por meio de análise de imagens, estudo da presença de microrganismos em suportes e ensaios da expansão/fluidificação.

Ao término da etapa de caracterização do material suporte foi iniciada a estratégia de partida do RALE_x, seguida da caracterização do esgoto sanitário e estudo do biofilme anaeróbio.

Para facilitar a compreensão deste trabalho, nos itens a seguir serão descritas: a localização do sistema de tratamento, das unidades do sistema de tratamento, o reator anaeróbio de leito expandido, a caracterização do material suporte, a caracterização do esgoto sanitário, a estratégia de partida do RALE_x e finalmente o estudo do biofilme anaeróbio. 4.2.Localização do Sistema de Tratamento de Esgoto Sanitário

O sistema de tratamento de esgoto sanitário objeto deste estudo localiza-se na área nordeste do Campus da Escola de Engenharia de São Carlos(EESC)- Universidade de São Paulo(USP), São Carlos(SP)-Brasil, conforme se observa na Figura 4.1.

Figura 4.1.Localização do Sistema de Tratamento de Esgoto Sanitário no Campus da USP, em São Carlos.

4.3.Descrição das Unidades do Sistema de Tratamento

Na Figura 4.2 é apresentado o esquema do sistema de tratamento de esgoto sanitário implantado no Campus da ESSC-USP.

Legenda:

01	Caixa coletora de 2,57 m ³ em concreto armado;
02	Grade de ferro com espaçamento entre as barras de 2,5 cm;
03	Unidade de desarenação(1,90 m ³);
04	Painel eletrônico, com indicadores de pressão digitais na faixa de 0/32 mca, indicadores de operação (horas de funcionamento das bombas, rotação dos motores, voltagem e amperagem);
05	Poço de esgoto bruto(gradeado na fase 1 e 2; e desarenado na fase 3) com 5,70 m ³ em concreto armado;
06	Conjunto moto-bomba(CMB ₁)-(com motor tipo elétrico, marca WEG IV pólos, potência de 5 CV e freqüência de 60Hz-bomba helicoidal, marca GEREMIA, modelo HF-60L com pressão máxima de 6 kgf/cm ² com sucção máxima de 8mca;
07	Reator anaeróbio de leito expandido de 32 m ³ ;
08	Medidor de volume de gás TECNOBRAS, modelo Gallus 2000-G4;
09	Tanque de peneiramento, em concreto armado, com peneira em aço inoxidável de 1,44 m ² de área com uma abertura de 1 mm;
10	Poço de recirculação do efluente do reator de 3,78 m ³ em concreto armado;
11	Conjunto moto-bomba(CMB ₂)-(com motor tipo elétrico, marca WEG IV pólos, potência de 7,5 CV e freqüência de 60Hz-bomba helicoidal, marca GEREMIA, modelo HF-70L com pressão máxima de 6 kgf/cm ² com sucção máxima de 8 mca.

4.4.Descrição do Reator Anaeróbio de Leito Expandido

O reator anaeróbio de leito expandido foi construído em aço carbono zincado à quente, com 14,9 m de altura total e volume útil de 32 m³. O reator é composto por duas partes, uma de reação e outra de sedimentação. A câmara de reação apresenta formato cilíndrico e tem 12,0 m de altura e 1,5 m de diâmetro, enquanto a câmara de sedimentação tem 2,9m de altura, 1,5 m de diâmetro menor e 2,5 m de diâmetro maior.

O reator apresenta no seu interior dispositivo interno perfurado, com 400 mm de diâmetro e 7,0 m de altura. Esse dispositivo foi colocado, de maneira a se ter uma boa mistura da massa líquida, coleta do biogás resultante da degradação do substrato e separação do material sólido de densidade maior que a da massa líquida(número da patente requerida).

Ao longo da altura da câmara de reação do reator existem vinte e quatro pontos de coleta de amostras, sendo vinte e um, com diâmetro de 25,4 mm e, quatro com diâmetro de 75 mm.

As primeiras foram utilizadas para controle da altura do leito. As quatro últimas localizadas a 3,0 m, 6,0 m, 8,5 m e 11,0 m, acima do fundo do reator, eram utilizadas para coleta amostras para o monitoramento do desempenho do sistema.

O biogás coletado pelo dispositivo interno era conduzido, por meio de mangueira conectada à extremidade superior do reator, até o dispositivo de medição de vazão de gás.

As Figuras 4.3 e 4.4 mostram respectivamente, o corte do $RALE_x$ e o aspecto externo deste. Na Figura 4.5 apresenta-se a fotografia do sistema de medição de vazão de gás utilizado nesta pesquisa.

Figura 4.4.

Figura 4.3.Corte do Reator Anaeróbio de Leito Expandido.

Figura 4.4.Fotografia do Reator Anaeróbio de Leito Expandido implantado no Campus da EESC-USP.

Figura 4.5. Sistema de medição de vazão do biogás.

4.5.Caracterização de Materiais Suporte

A caracterização do material suporte utilizado no RALE_x foi realizada mediante ensaios granulométricos, determinações de índices físicos, estimativas das dimensões do material suporte empregando sistema computadorizado de análise de imagens, ensaios de expansão/fluidificação, finalmente, e, exames microscópicos da presença de microrganismos.

Para esta etapa, foram estudadas partículas de poliamida, polibutireno tetraftalato(PBT) e carvão ativado granular (CAG).

4.5.1. Preparação de Amostras

O quarteamento foi o procedimento utilizado para se obter amostra representativa, necessária a realização dos ensaios granulométricos, dimensões do material suporte por meio de análise de imagens e índices físicos.

A preparação da amostra representativa foi realizada em duas fases, que se iniciou com amostra de massa(M) de aproximadamente 2000 g. Na fase (1) se efetuou o primeiro quarteamento da amostra inicial, sendo que, duas delas (2 e 3) foram descartadas e as duas restantes (1 e 4), com massa(M/2) de aproximadamente 1000g, foram posteriormente utilizadas na fase (2) do quarteamento.

Na fase (2) foi efetuado o segundo quarteamento da amostra, em que agora as partes 2 e 3, com massa (M/4) de aproximadamente 250 g resultou na amostra representativa para os ensaios.

Na Figura 4.6 está esquematizado o procedimento de quarteamento empregado para obtenção da amostra representativa.

Figura.4.6.Esquema do quarteamento de amostra.

O procedimento de quarteamento foi realizado apenas uma única vez para as partículas de poliamida e PBT, e duas vezes para a partículas de CAG, em virtude de as partículas deste material apresentar formato bastante irregular. Dessa maneira, as amostragens para as partículas de CAG foram divididas em CAG-01 e CAG-02.

O quarteamento das partículas foi realizado no Laboratório de Geotecnia da EESC-USP.

4.5.2. Ensaios Granulométricos

Nos ensaios granulométricos foi possível realizar a avaliação do diâmetro equivalente(Deq.), tamanho efetivo(TE) da partícula, coeficiente de desuniformidade (CD). Além disso, determinaram-se o $d_{90\%}$ e o diâmetro volumétrico(d_v). O $d_{90\%}$ corresponde ao tamanho equivalente a 90\% em peso do material que passa no peneiramento.

A técnica da contagem e pesagem do número de partículas, conhecendo-se a massa específica do material foi o método aplicado para a determinação do d_V das partículas. Para se obter o d_V de cada faixa granulométrica utilizou-se a Equação 4.1 descrita por ALLEN(1994).

$$d_v = \sqrt[3]{\frac{6.M_g}{\pi.\rho.N_g}}$$

(4.1)

em que:

d_v:diâmetro volumétrico(cm)
M_g:massa de partículas correspondente a cada faixa
granulométrica(g)
p:massa específica do material(gcm⁻³)
N_g:número de partículas

Para a determinação do d_V seguiram-se as recomendações de CLEASBY & FAN(1981): mais de 200 partículas, para as partículas de tamanho menor que 1,00 mm, e mais de 150 partículas, para as maiores que 1,00 mm.

O procedimento efetuado nos ensaios granulométricos, envolveu a seleção e montagem de peneiras no agitador, obedecendo a seguinte ordem da série de peneiras, do fundo para o topo: fundo; peneiras 35(0,42 mm); 30(0,59 mm); 25(0,71 mm); 20(0,84 mm); 18(1,0 mm); 16(1,19 mm); 14(1,41 mm); 12(1,68 mm); 10(2,00 mm); 8(2,36 mm); 7(2,83 mm) e 6(3,36 mm). Após isso peneiravam-se quantidades de aproximadamente 150 g, por período de 5 minutos, para que, em seguida, fossem pesadas as amostras retidas em cada peneira (calculadas as porcentagens retidas e acumuladas para cada partícula) de modo a se obter a curva de distribuição granulométrica da amostra.

Os ensaios granulométricos foram realizados no Laboratório de Geotecnia da EESC-USP.

4.5.3.Índices Físicos

Nesta sub-etapa, a partir das amostras representativas da poliamida, PBT, CAG-01 e CAG-02, foram determinados: o teor de umidade(W) e a massa específica de cada material(ρ).

A determinação do teor de umidade das partículas de poliamida, PBT, CAG-01 e CAG-02, segue o procedimento descrito por NOGUEIRA(1995):

• As amostras dos materiais suporte eram pesadas em balança, com precisão de 0,1 mg, e colocadas dentro de cápsulas previamente secas;

• Em seguida, as cápsulas eram colocadas com as tampas abertas na estufa à temperatura de aproximadamente 105°C a 110°C durante 24 h;

 Posteriormente esse período as cápsulas eram retiradas da estufa, tampadas e levadas para o dessecador para resfriamento;

• Depois de resfriadas, as cápsulas eram pesadas novamente, e então determinava-se o teor de umidade de acordo com a Equação 4.2.

 $W = \left| \left(\frac{P_0 - P_1}{P_0} \right) \right| x 100$

(4.2)

em que:

W:teor de umidade do material(%) P₀:massa da amostra antes do aquecimento(g) P₁:massa da amostra depois do aquecimento(g)

A massa específica das partículas de cada material foi determinada mediante o emprego da técnica do picnômetro, utilizada em mecânica dos solos e descrita na Norma NBR-6508.

Para os três tipos de partículas, foi utilizada massa de aproximadamente 60 g da amostra representativa, massa essa recomendada por NOGUEIRA(1995), para solos granulares.

Nas amostras de CAG, devido a alta porosidade interna, foi necessário submetê-las à ação do calor e vácuo intensivo para se conseguir a retirada do ar presente no picnômetro, e, posteriormente, prosseguir com o procedimento normal desse ensaio referido inicialmente. O cálculo da massa específica de cada material foi, então, determinado utilizando-se a Equação 4.3.
$$\rho = \frac{M_s}{M_s - M_1 + M_2} \rho_a \tag{4.3}$$

em que:

p:massa específica do material(g.cm⁻³)

M_s:massa de sólidos determinada no final do ensaio(g)
M₁:massa(água+picnômetro+sólidos)para temperatura de T⁰C(g)
M₂:massa(água+picnômetro)obtida através da curva de calibração do picnômetro(g)

 $\rho_a:massa específica da água(g.cm⁻³)$

De posse dos valores do teor de umidade e massa específica dos materiais suporte, foram calculados a massa específica seca (ρ_s) e o índice de vazio(e) de acordo com as Equações 4.4 e 4.5, respectivamente. A determinação dos índices físicos foi realizada no Laboratório de Geotecnia da EESC-USP.

$$\rho_{\varepsilon} = \frac{\rho}{1 + W} \tag{4.4}$$

em que:

ps:massa específica seca(g.cm⁻³)
p: massa específica do material(g.cm⁻³)
W:teor de umidade do material(%)

$$=\frac{\rho}{\rho_{\rm s}}-1\tag{4.5}$$

em que:

e

e:índice de vazios
p: massa específica do material(g.cm⁻³)
p_s:massa específica seca(g.cm⁻³)

4.5.4.Determinações de Análise de Imagens

As determinações realizadas no sistema computadorizado de análise de imagens permitiram a estimativa das dimensões das partículas estudadas. Para as partículas de poliamida e PBT foi possível conhecer o comprimento médio(C) e largura média(L), e, para o CAG obteve-se o diâmetro médio(\emptyset).

As determinações, mediante sistema computadorizado de análise de imagens, utilizado neste estudo foram realizadas no Laboratório de Controle Ambiental do departamento de Engenharia Química da Universidade Federal de São Carlos(UFSCar).

4.5.5.Ensaios da Expansão/Fluidificação

Nesta etapa, foi realizado estudo da expansão/ fluidificação para os diferentes materiais suporte, e foram elaborados gráficos, relacionando as velocidades ascensionais, perdas de cargas e expansão do leito.

Durante esse estudo, determinou-se a velocidade mínima de fluidificação (V_{mf}) utilizando-se método empregado por WIECHETECK(1996), proposto por CLEASBY & FAN(1981). Tal método, consiste na determinação da perda de carga para o meio granular fixo, e, depois, em estado fluidificado, variando-se a velocidade de escoamento ascendente da água. Neste estudo, foi apenas determinada a perda de carga no sentido ascendente.

Os ensaios de expansão/fluidificação das partículas de poliamida, PBT e CAG, foram realizados em instalação piloto de fluidificação, utilizada na dissertação de mestrado de WIECHETECK(1996), cedida pelo Prof. Dr. Luiz Di Bernardo. A Figura 4.7 apresenta um esquema da instalação piloto de fluidificação utilizada nesta pesquisa.

Figura.4.7.Esquema da instalação piloto de fluidificação. Fonte: Adaptado de WIECHETECK(1996).

Os ensaios de expansão/fluidificação foram executados, em coluna de acrílico, com 9,4 cm de diâmetro interno e altura útil de 1,3 m, preenchida com leito de partículas a ser testadas, até altura inicial (L_o) de 0,25m. Posteriormente, eram realizados ensaios com doze diferentes velocidades ascensionais, utilizando água proveniente da rede pública como fluido ascendente.

Uma resistência elétrica de 3000 w mantinha a temperatura da água em $25\pm1^{\circ}$ C, a qual era armazenada em caixa de fibrocimento com volume de 1000 L. Antes do ponto de entrada na coluna havia um rotâmetro (0 a 600 L.h⁻¹) para permitir o monitoramento da vazão recalcada pela bomba centrífuga.

A perda de carga no leito era então monitorada por meio de quadro piezométrico, enquanto a movimentação do leito era acompanhada visualmente e registrada com a utilização de uma régua milimetrada existente ao longo da altura da coluna de acrílico. 4.5.6.Presença de Microrganismos nas Partículas Suporte

Com o propósito de verificar-se a capacidade dos três tipos de materiais suportes em reter microrganismos, foi montado sistema de bancada composto por doze reatores biológicos de 50mL de volume, cada um preenchido com 8,0mL de partículas suporte e, três recipientes de 1L, responsáveis pela alimentação contínua dos reatores biológicos, com esgoto sanitário filtrado em sentido ascensional. O acompanhamento do ensaio da presença de microrganismos foi feito por meio de microscópia eletrônica de varredura (MEV), durante vinte e um dias.

Na Figura 4.8 apresenta-se o esquema de um módulo do sistema de bancada utilizado para o estudo da presença de microrganismos nas superfícies do material suporte.

Figura.4.8.Esquema do sistema para estudo da presença de microrganismos.

Durante esse ensaio, duas vezes por dia, o esgoto sanitário filtrado era renovado, nos três recipientes de 1L, que alimentavam, por gravidade, os doze reatores biológicos. Nos intervalos de 1; 7; 14 e 21 dias, foram coletadas amostras dos materiais suporte, para serem observadas no microscópio eletrônico de varredura marca-ZEISS, modelo DSM960 de 10 a 20Kev, do Laboratório de Microscopia e Análise do Instituto de Física da USP em São Carlos. Essas amostras eram preparadas e tratadas anteriormente às observações microscópicas. No tratamento das partículas foi utilizado o método de secagem por hexametildisilazano(HMDS) descrito por Nation(1983) e modificado por ARAÚJO(1995). A seguir é descrita a técnica de preparo das biopartículas com HMDS, modificado por ARAÚJO (1995).

As biopartículas retiradas eram colocadas em tubos de ensaio pequenos e recebiam o tratamento que consistia na fixação, desidratação e secagem das células.

As biopartículas de poliamida, PBT e CAG eram fixadas em glutaraldeído 2,5% em solução tampão de fosfato 0,1M em pH=7,3, por período de 12 horas, à temperatura de aproximadamente 4ºC. Seguiu-se a lavagem dos materiais em solução tampão de fosfato(gelado) 0,1M, em pH=7,3; por 3 vezes, durante 10 minutos cada. Depois, os materiais eram desidratados com solução de etanol com concentração gradativamente aumentada (50%, 60%, 70%, 80%, 90%, 95% e 100%), ficando aproximadamente 10 minutos em cada uma das soluções. A desidratação em etanol foi repetida mais duas vezes, após o que era iniciado o processo de secagem com HMDS. Para tanto, era adicionado o HMDS aos materiais por duas vezes, durante 30 segundos e após a retirada rápida do HMDS, as amostras eram deixadas secar ao ar, por 10 minutos. Depois, as biopartículas eram fixadas com cola de prata (Prata Condutora 200-B, DEGUSSA, S.A) em suportes adequados para o uso no MEV. Após isto, o material era encaminhado para secagem em estufa, com temperatura de aproximadamente 50°C. O tempo de permanência na estufa é aleatório(de 1 a 10 horas, por exemplo). O importante é que a amostra não apresentar umidade fique bem seca de modo a excessiva, no momento em que receber a cobertura de ouro. foram as amostras Após serem retiradas da estufa, recobertas com ouro(99,99%) num metalizador(SDC-050

54

Balzers), ficando assim, preparadas para o exame no MEV e fotografias.

Durante este ensaio era utilizada lâmina para cortar, a cada amostragem, 3 (três) partículas de cada material em 2 partes aproximadamente, iguais, para possibilitar a observação da parte interna das partículas. O registro fotográfico das superfícies externa e interna das partículas, foi realizado com a finalidade de se acompanhar a evolução da colonização e os diferentes tipos morfológicos das bactérias presentes nas partículas estudadas.

A realização do corte das partículas apresentou grandes dificuldades, não tendo sido, na maioria das vezes, atingido o resultado esperado. O corte ocorreu somente para as partículas de CAG, pois para as partículas de poliamida e PBT esta operação apresentou grande dificuldade, pois estas são bastantes compactas e rígidas.

Além disso, foram também realizados ensaios de EDX(energy dispersive x-ray spectroscopy) para determinação dos elementos inorgânicos presentes nas superfícies internas e externas das partículas estudas.

4.6.Caracterização do Esgoto Sanitário

Esta fase do trabalho foi realizada em conjunto com os engenheiros José Almir Rodrigues Pereira e Rogério Gomes Penetra, alunos do Programa de Doutorado do Departamento de Hidráulica e Saneamento da EESC-USP. Nesse período foi realizado um monitoramento, durante 24 h, para caracterização do esgoto sanitário, de maneira a se conhecer a composição quantitativa do esgoto sanitário ao longo desse período.

Durante a realização do perfil de 24 h, as amostras eram coletadas a cada uma hora de intervalo e encaminhadas imediatamente ao Laboratório de Saneamento da EESC-USP. A realização da coleta de amostras foi efetuada em duas etapas, a saber:

- > Caracterização noturna efetuada das 18h do dia 30 de setembro às 6h do dia 1º de outubro de 1997;
- > Caracterização diurna, realizada das 6h às 18h do dia 6 de outubro de 1997.

Os seguintes parâmetros foram determinados durante o perfil 24h: pH; DQO bruta (DQO_B) e filtrada (DQO_F) ; temperatura; alcalinidade total; alcalinidade parcial (A_F) ; alcalinidade intermediária (A_I) ; ácidos voláteis(AV); sólidos totais(ST); sólidos totais voláteis (STV); sólidos suspensos totais(SST); sólidos suspensos voláteis(SSV) e fósforo total.

Todos os parâmetros obedeceram aos procedimentos descritos no *Standard Methodos for Examination of Water* and *Wastewater*(APHA,1992), exceto a A_P , A_I e os ácidos voláteis cujo procedimento está descrito no item 4.10.2.

4.7.Estratégia de Partida do RALE_x

A estratégia aplicada para a partida do $RALE_x$ e operação do sistema de tratamento de esgoto sanitário, obedeceu o seguinte procedimento:

Inicialmente foi realizada a inspeção física do RALE_x, das unidades, dispositivos e equipamentos instalados no sistema de tratamento. Posteriormente, as unidades do sistema de tratamento e o reator(sem material suporte) foram enchidos completamente com água, a fim de se verificar a eventual existência de vazamentos, promover a regulagem dos conjuntos moto-bombas e o funcionamento dos equipamentos instalados. Finalizado os ensaios preliminares com água, foi efetuada a correção dos vazamentos existentes e introduzido o material suporte selecionado(1.500 kg de CAG).

De modo, a não alterar a granulometria do material suporte(CAG), inicialmente foram colocados 4 m³ de água na câmara de reação do reator. Após isso, se iniciou a colocação dos 1.500 kg de CAG, utilizando um recipiente, no qual o carvão era colocado em contato com a água e, então, por gravidade, se descarregava a suspensão (água + CAG) por meio de mangueira plástica (\emptyset =2^{1/2}") conectada no fundo do recipiente e no ponto de coleta de amostra a 3,0 m da base do reator. A Figura 4.9 apresenta o sistema montado para introdução do material suporte.

Figura.4.9.Fotografia do sistema utilizado para introdução do material suporte no RALE_x.

Terminada a colocação do material suporte no RALE_x, foram novamente realizados ensaios com água no sistema de tratamento e no reator, para se definir as condições de operação e retirada de eventuais vazamentos. Após isso, utilizando as tomadas de controle da altura do leito foi medida a altura do leito no RALE_x, em condições estáticas, a qual foi de aproximadamente 2,15 m.

A seguir, foi iniciada a partida do reator, sem a prévia inoculação, empregando alimentação por pulso, a qual foi controlada, por meio do fornecimento (recalque) e interrupção (paralisação do recalque) do esgoto sanitário afluente ao reator.

Após esses procedimentos, a estratégia de partida do reator, previa o eventual incremento da carga orgânica, aumento da velocidade ascensional e diminuição do tempo de detenção hidráulico, durante a operação do reator.

A Figura 4.10 apresenta o fluxograma do procedimento de partida do reator anaeróbio de leito expandido.

Figura 4.10.Fluxograma do procedimento de partida do RALEx.

4.7.1.Fases de Operação

A operação do $RALE_x$ e do sistema de tratamento, por si só evidencia a ocorrência natural de uma série de imprevistos, independentes do controle e dos recursos disponíveis.

A operação do reator no que diz respeito à variação dos diversos parâmetros, foi dividida em três fases de operação. Os parâmetros utilizados no controle da operação do reator foram: o tempo de detenção hidráulico e a velocidade ascensional.

A fase 1, com duração de 148 dias ocorreu no período de 15 de abril até 10 setembro de 1997. Essa fase foi finalizada quando a evolução, no tempo, da eficiência em termos de DQO, sólidos suspensos e sedimentáveis, atingiram certa estabilidade dentro de valores normalmente aceitos como boa eficiência(70% ou mais), bem como a composição do biogás manteve-se próxima a 60% em termos de metano. Nessa fase, do $1^{\underline{0}}$ ao $14^{\underline{0}}$ dias de operação, o θ_{H} do reator foi mantido em aproximadamente 3,85 h, e durante o 15° ao 17° dias de operação, interrompeu-se a alimentação do RALE_x com esgoto sanitário, mantendo o reator operando em ciclo fechado com vazão de recirculação de 12,10 m³.h⁻¹ e velocidade ascensional de 6,85 m.h⁻¹.

Do $18^{\underline{0}}$ e $22^{\underline{0}}$ dias de operação, o reator teve seu θ_{H} aumentado para 6 h. E, posteriormente, esse foi aumentado para 6,96 h do $23^{\underline{0}}$ ao $29^{\underline{0}}$ dias de operação.

O procedimento operacional realizado nesse primeiro mês, visava submeter o reator a condições instáveis de carregamento hidráulico e orgânico. De maneira a se obter a adsorsão da matéria orgânica na superfície do CAG e, com isso, induzir o movimento e a fixação de microrganismos no material suporte para a formação do biofilme anaeróbio.

Do 30° até o 76° dias de operação, o $\theta_{\rm H}$ do reator foi reduzido de 6,96 h para 4,85 h, dando início a segunda etapa da estratégia de partida do RALE_x. Ao final desse período o reator teve novamente o $\theta_{\rm H}$ reduzido para 3,56 h, permanecendo sob está condição até o 85° dia de operação.

Durante o 86° até 102° dias de operação houve problemas sucessivos e intermitentes no sistema de tratamento de esgoto sanitário, entre estes destaca-se a "queima" do motor do CMB₁, o que ocasionou a interrupção da alimentação do reator com esgoto sanitário. Em virtude desse fato, aproveitou-se o período para a manutenção do sistema de tratamento, e remoção da camada de escuma presente, na superfície da câmara de sedimentação do reator. Nesse período o reator operou com vazão de recirculação de 12,50 m³.h⁻¹ e velocidade ascensional. de 7,07 m.h⁻¹.

A retomada da alimentação do reator com esgoto sanitário somente ocorreu no 103° dia, quando então se reduziu o $\theta_{\rm H}$ para 3,2 h e manteve-se vazão afluente de aproximadamente 10 m³.h⁻¹ e velocidade ascensional superior a 10 m.h⁻¹.

No decorrer da fase 1 houve entupimento dos registros(\emptyset =25,4 mm) utilizados para controle da altura do leito, o que inviabilizou o controle da altura do leito durante todo o período de monitoramento do reator.

Durante a fase 1 foram realizados exames e análises dos parâmetros indicativos da remoção de matéria orgânica e produção de gás. Além disso, é importante destacar que o monitoramento do efluente gasoso do reator foi somente iniciado no $22^{\frac{0}{2}}$ dia de operação, mediante a instalação do sistema de medição de gás. A fase 2, iniciada em 11.09.97 e finalizada no dia 20.10.97, com duração de 40 dias, foram mantidas as condições de operação do final da fase 1. Essa fase foi encerrada no 188° dia de operação quando, então, se iniciou a construção da unidade de desarenação do sistema de tratamento.

Durante o 189° até 199° dias de operação, a alimentação do RALE_x com esgoto sanitário foi interrompida e manteve-se o RALE_x funcionado com vazão de recirculação de 8,5 m³.h⁻¹ e velocidade ascensional de 4,81 m.h⁻¹.

Terminada a construção da unidade de desarenação foi dado inicio a fase 3, a qual teve duração de 41 dias. Nesta fase foram mantidas as condições de operação da fase 2, bem com, o monitoramento do RALE_x.

Na Tabela 4.1 são apresentados os detalhes das condições de operação empregadas nas fases 1, 2 e 3.

Tabela 4.1.Condições e dias de operação do RALE_x para as fases 1, 2 e 3.

			PARÂMETRO	OS OPERACION	IAIS	
FASES	TO(dia)	$Q_{\lambda}(m^3.h^{-1})$	$Q_R(m^3,h^{-1})$	Q _R /Q _A	θ _H (h)	V_{ASC} . (m.h ⁻¹)
	0-14	8,31	12,5 a 21,20	1,50 a 2,55	3,85	4,70 a 16,70
	15-17		12,10			6,85
	18-22	5,30	12,10	2,28	6,04	9,85
	23-29	4,60	12,10	2,63	6,96	9,45
	30-38	6,60	14,50	2,20	4,85	11,94
	39-45		14,50	_		8,21
Fase 1	46-58	6,60	14,50	2,20	4,85	11,94
	59-67		14,50	_		8,21
	68-76	6,60	12,50	1,89	4,85	10,81
	77-85	9,00	12,50	1,39	3,56	12,17
	86-102		12,50	_		7,07
	103-119	10,00	25,00	2,5	3,2	19,81
	120-134	10,00	15,00	1,5	-3,2	14,50
	135-148	10,00	8,50	0,85	3,2	10,47
Fase 2	149-192	10,00	8,50	0,85	3,2	10,47
	193-199	-	8,50	_	—	4,81
Fase 3	200-240	10,00	8,50	0,85	3,2	10,47

Onde:

TO:tempo de operação; Q_A:vazão de afluente; Q_R:vazão de recirculação; Q_R/Q_A:razão de recirculação.

4.8.Controle e Operação do Sistema de Tratamento de Esgoto Sanitário

4.8.1.Descrição do Funcionamento do Sistema de Tratamento

O esgoto sanitário produzido na bacia do córrego Tijuco Preto da cidade de São Carlos(SP), chega ao Campus da EESC-USP, por meio de interceptor de concreto armado de Ø=800mm. Parte do esgoto é desviada do interceptor para a caixa coletora de esgoto bruto, onde este é previamente gradeado, de maneira que são removidos os sólidos grosseiros e inertes. A partir da terceira fase, o esgoto sanitário passou a ser desarenado.

Posteriormente, o esgoto gradeado(desarenado, à partir da fase 3) era transportado por uma tubulação de PVC-JE DN150 mm até um poço de sucção. Um conjunto motobomba (CMB₁), instalado sobre o poço de sucção, recalcava o esgoto sanitário, para o interior da câmara de reação do RALE_x, promovendo a expansão do leito de CAG e a formação de consórcios bacterianos responsáveis pela degradação da matéria orgânica.

O efluente do $RALE_x$ era coletado por meio de quatro tubos perfurados e afogados de diâmetro de 1["], instalados na parte superior da câmara de sedimentação do reator, e descarregado no poço de recirculação. Um conjunto motobomba(CMB₂) recirculava parcela do efluente do reator para a tubulação de entrada, enquanto outra parcela era lançada como efluente final, por gravidade, para uma rede de diâmetro de 150 mm, para então retornar ao interceptor.

O biogás produzido pela degradação do matéria orgânica era coletado por um separador de fases GLS (gáslíquido-sólido), e encaminhado para o sistema de aferição (medição) do volume de biogás produzido por dia pelo reator, sendo posteriormente liberado para a atmosfera. 4.8.2. Manutenção do Sistema de Tratamento de Esgoto Sanitário

Durante o funcionamento do sistema experimental, alguns procedimentos de manutenção tiveram que ser programados. A seguir, são listadas as atividades de rotina realizadas durante o período de partida do RALE_x:

- > Limpeza da grade de barras;
- > Anotação das horas de funcionamento dos conjuntos motor-bomba;
- > Anotação da vazão afluente e de recirculação;
- > Anotação da pressão na base do RALE_x e a 11,0 m de altura do reator ;
- > Anotação do volume de biogás;
- > Inspeção visual do efluente.

4.9.Estudo do Biofilme Anaeróbio (Exames e Análises)

O estudo do biofilme anaeróbio formado na câmara de reação do RALE_x, visou somente a quantificar a biomassa aderida ao CAG. Pois, na literatura consultada os procedimentos empregados com esta finalidade não são bem descritos.

Para se estimar a quantidade de microrganismos aderidos ao CAG, determinou-se a concentração de proteína total na biomassa desprendida do CAG, empregando o método de LOWRY(1951), modificado por PETERSON(1977).

A coleta de amostras de biopartículas(CAG+biofilme) foi efetuada a 2,15 m acima da base do RALE_x. A Figura 4.11 ilustra o ponto de coleta das biopartículas.

Figura.4.11.Ponto de coleta de biopartículas.

Para quantificar a biomassa aderida ao suporte de CAG, foi necessário realizar o desprendimento dos microrganismos fixados ao material suporte, para então se prosseguir com a determinação da concentração de proteína total na biomassa desprendida do material suporte.

Na literatura consultada o procedimento mais utilizado para desprendimento da biomassa aderida ao CAG é o emprego de ultra-som, conforme KURODA et al(1988), FOX et al(1990) e ARAKI & HARADA(1994).

o desprendimento dos trabalho No presente microrganismos fixados ao CAG, consistia em pesar em um béquer de 50 mL, previamente tarado aproximadamente 5 g de biopartículas úmidas (CAG+biofilme). Após isso, acrescentava-se 30 mL de solução de cloreto de sódio(NaCl) a 0,9%, ao béquer contento as biopartículas, as guais eram então, submetidas a sonicação durante 20 minutos, em banho de gelo. Em seguida, o sobrenadante era de 100 mL, recipiente para descartado um para químico posteriormente se dar início ao método de rompimento das células com acetona e SDS(dodecil sulfato de sódio) empregado por VARESCHE(1997) e descrito por BHADURI & DEMCHICK(1983).

A metodologia de rompimento celular consistia inicialmente em homogeneizar a amostra de 100 mL com agitador de tubos(Marca Pachane, Modelo PA-162) durante um minuto. Posteriormente, com auxílio de uma pipeta volumétrica, se transferia uma alicota de 10 mL da amostra homogeneizada para os "pellets" de centrifugação de 30 mL.

Em seguida, a amostra era centrifugada (Centrifuga Marca FANEM, Modelo 215) a 5000 rpm, durante 15 minutos posterior descarte do sobrenadante. A biomassa COM sedimentada era então ressuspendida com 10 mL de solução tampão salino-fosfato sem Mg²⁺ e Ca²⁺, e agitada em por 15 minutos. Novamente centrifugava-se nas vórtex, anteriores, COM 0 descarte do condições mesmas sobrenadante. A operação com lavagem de solução tampão salino-fosfato era repetida mais uma vez.

Posteriormente, acrescentava-se 10 mL de acetona nos "pellets", e promovia-se a ressuspensão com acetona por meio de agitação em vórtex. A amostra era deixada em repouso por 10 minutos em banho de gelo, em abrigo da luz. Após esse tempo, centrifugava-se por 10 minutos a amostra contento acetona nas mesmas condições anteriores e o sobrenadante era desprezado com auxílio de seringa esteril. Para remover a acetona residual da amostra fluxionava nitrogênio (N_2) .

Novamente a amostra era ressuspendida no vórtex com 5mL de SDS a 1%, após isso adicionavam-se 5 mL de NaOH 2N e ressuspendida no vórtex e, a seguir amostra era deixada em repouso por 30 minutos, ao abrigo da luz, e, depois, centrifugada por 5 minutos, nas mesmas condições anteriores e o sobrenadante era utilizado para a dosagem de proteínas pelo método de LOWRY(1951) modificado por PETERSON(1977).

O método de LOWRY(1951) modificado por PETERSON(1977) consiste em adicionar 5,0 mL de solução de

tartarato de sódio e potássio (reagente D), em tubo de ensaio, depois acrescentar 0,5 mL de amostra resultante da extração de proteína e agitar por 10 segundos. Após 20 minutos adicionava-se 0,5 mL do reativo de Folin Ciocalteau e agitava-se novamente. A amostra era deixada em repouso por 30 minutos e depois efetuava-se a leitura em espectrofotômetro(DR4000,Marca HACH) em absorbância a 750 nm.

Como padrão branco era substituída a amostra por solução de NaOH(1N). Para esta determinação foi utilizado como padrão soro de albumina bovina(SAB), obtendo-se a curva de calibração expressa em mg.SAB.L⁻¹.

As Figuras 4.12 e 4.13 mostram respectivamente, o aparelho utilizado para desprendimento da biomassa do carvão e a fotografia de amostra de biopartículas submetidas ao sonicador.

Figura 4.12. Fotografia do aparelho sonicador utilizado para desprendimento da biomassa do suporte.

Figura 4.13. Fotografia de amostra de biopartículas submetidas ao sonicador.

Neste estudo foram também realizado exames de microscópia eletrônica de varredura nas biopartículas antes do desprendimento da biomassa, para o acompanhamento do desenvolvimento do biofilme, bem como, foram efetuadas observações de microscópia de contraste de fase e fluorescência nas amostras desprendidas do CAG e amostras preparadas sem e com o rompimento químico das células.

A concentração de proteína total e os exames microscópicos foram determinados no Laboratório de Microbiologia de Processos Anaeróbios da EESC-USP, enquanto o desprendimento da biomassa foi realizado no Laboratório de Bioquímica do Instituto de Física da USP em São Carlos.

4.10. Procedimento de Coleta, Análises e Exames das Amostras

4.10.1.Coleta de Amostras

De maneira a cumprir com os objetivos propostos nessa pesquisa foram coletadas amostras da fase líquida, sólida e gasosa do reator, para serem analisadas e examinadas no Laboratório de Saneamento e Laboratório de Processos Anaeróbios do Departamento de Hidráulica e Saneamento da EESC-USP.

As amostragens foram realizadas duas fezes por semana, geralmente segunda e quartas-feiras, das 8 h ás 9 h. Esse procedimento foi adotado em virtude do estudo realizado por HERRERA VALLEJOS(1997), demostrar ser possível avaliar o desempenho de reator anaeróbio por meio de amostragem pontual e pela autora ter utilizado a mesma água residuária da presente pesquisa.

Os pontos de coleta de amostras e a sua localização são apresentados na Tabela 4.2, e indicados na Figura 4.2.

67

Pontos de Amostragem	Localização
Ponto 1	afluente
Ponto 2	3,0 m acima da base do reator
Ponto 3	6,0 m acima da base do reator
Ponto 4	8,5 m acima da base do reator
Ponto 5	11,0 m acima da base do reator
Ponto 6	efluente líquido
Ponto 7	efluente gasoso

Tabela 4.2.Localização dos pontos de amostragens.

4.10.2.Parâmetros de Estudo

No presente estudo foram determinados parâmetros físicos, químicos e biológicos. A freqüência e método de monitoramento das análises laboratoriais obedeceram os procedimentos do *Standard Methodos for Examination of Water and Wastewater* 18° edição(APHA,1992). No entanto, faz-se necessário apresentar algumas considerações a respeito da determinação de certos parâmetros.

Para as determinações de pH, alcalinidade e ácidos voláteis, as amostras eram centrifugadas a 2500 rpm, durante 15 minutos para se remover os sólidos presentes nas amostras.

A determinação dos ácidos voláteis era efetuada empregando-se o método de titulação direta proposto por DILALLO & ALBERTSON(1961).

A análise do biogás produzido no $RALE_x$ foi resumida à determinação da composição do gás, em termos de porcentagem de CO_2 e CH_4 . Para realizar essas determinações, amostras do efluente gasoso foram coletadas do ponto 7, utilizando uma ampola cheia com água. Posteriormente, se acoplava a mangueira da ampola ao registro de saída do biogás, abria-se primeiramente o registro do biogás e em seguida era aberto o registro da ampola, a pressão do biogás empurrava a massa de água presente na ampola e o biogás era então aprisionado.

A amostra gasosa aprisionada na ampola era coletada por meio de seringa esteril, a qual era imediatamente injetada em cromatógrafo a gás, marca GOW MAC, com detetor de condutividade térmica, coluna "Porapak Q"(80-10 mesh) com 2 m de comprimento e 1/4 de polegada de diâmetro interno, temperatura constante do forno a 50° C e H₂ como gás de araste a aproximadamente 1 mL.s⁻¹.

Os cromatogramas de saída fornecidos pelo integrador, permitiram obter valores percentuais da composição do gás em função da área de picos representativos da cada composto gasoso.

A Tabela 4.3 apresenta a programação geral dos parâmetros realizados durante o estudo da partida do reator anaeróbio de leito expandido.

Tabela 4.3.Parâmetros laboratoriais, freqüência e método de ^r monitoramento da partida do RALE_x.

Parâmetro	Freqüência	Método	Observações
Temperatura	2 vezes/semana	Termômetro de	
1		mercúrio	
рН	2 vezes/semana	Potenciométrico	
Série de sólidos *	2 vezes/semana	Gravimétrico	
DQO bruta e filtrada	2 vezes/semana	Refluxo fechado	Todos
Alcalinidade	2 vezes/semana	Titulométrico	os
Ácidos voláteis	2 vezes/semana	Titulométrico	pontos
Composição do biogás	2 vezes/semana	Cromatografia	
(%CO2 e %CH4)	×	gasosa	
DBO bruta e filtrada	2 vezes/semana	Oxímetro	Ponto 1 e 6
Nitrogênio total	1 vez/semana	Macro Kjeldahal	Ponto 1 e 6
Nitrogênio amoniacal	1 vez/semana	Nesslerização	Ponto 1 e 6
		direta	
Fósforo Total	1 vez/semana	Colorimértrico	Ponto 1 e 6

*NOTA: A série de sólidos é composta por: Sólidos Totais (Fixos e Voláteis), Sólidos Suspensos(Fixos e Voláteis) e Sólidos Sedimentáveis.

5.RESULTADOS e DISCUSSÃO

Neste capítulo são apresentados os resultados decorrente da caracterização e seleção material suporte do RALEs e estratégia de partida do RALEs até este atingir o equilíbrio dinâmico aparente.

As informações levantadas durante a execução dos vários exames e análises laboratoriais são apresentadas sob forma de gráficos e tabelas.

A elaboração dos gráficos e tabelas, bem como, os cálculos realizados nesse trabalho e o tratamento estatístico dos dados foi realizado por meio do "software" Excel versão 7.0 "for windows" 95, tendo como ferramentas as referências LAPPONI(1997) e BARROS NETO et al(1996).

5.1.Caracterização do Material Suporte

5.1.1.Ensaios Granulométricos

Os resultados obtidos durante os ensaios granulométricos são apresentados sob a forma de curvas de distribuição granulométrica, conforme discriminado nas Figuras 5.1 a 5.4.

Figura 5.1.Curva de distribuição granulométrica da Poliamida.

Figura 5.2.Curva de distribuição granulométrica do PBT.

Figura 5.3.Curva de distribuição granulométrica do CAG-01.

Figura 5.4.Curva de distribuição granulométrica do CAG-02.

Com base nas Figuras 5.1, 5.2, 5.3 e 5.4 pode-se obter as características apresentadas na Tabela 5.1.

Ensaio		Material Su	porte	
Granulone chilos	Poliamida	PBT	CAG-01	CAG-02
TE (mm) d _{90%} (mm) Deq. (mm) CD	2,02 2,62 1,91 1,10	1,70 2,10 1,87 1,12	1,80 2,30 2,09 1,22	1,82 2,34 2,11 1,21

Tabela 5.1. Resultado dos ensaios granulométricos.

De acordo nos dados da Tabela 5.1 nota-se que entre os três tipos de partículas, a partícula de poliamida é a que apresenta os maiores valores TE e $d_{90\%}$. No entanto, para o Deq. e CD percebe-se que a partícula de CAG (CAG-01 e CAG-02) é a que apresenta os maiores valores em relação as demais.

Ordenando os parâmetros da Tabela 5.1 no sentido crescente, tem-se:

TE: Poliamida>CAG-02>GAG-01>PBT d_{90%}: Poliamida>CAG-02>GAG-01>PBT Deq.: GAG-01>CAG-02>Poliamida>PBT CD: CAG-01>GAG-02>PBT>Poliamida

DI BERNADO(1993) e DROSTE(1997) relatam que quanto maior o CD, menos uniforme é o meio; sendo assim, pode-se notar que entre as partículas estudadas, as partículas de CAG(CAG-01 e GAG-02) são as que apresentam distribuição menos uniforme.

Os resultados de TE para as amostras de CAG-01 e CAG-02 são superiores ao reportado por CLARK & BENJAMIN (1989), cuja faixa vai desde 0,8 a 1,5 mm. Entretanto, o CD para ambas amostras está de acordo com o descrito por esses pesquisadores(CD varia de 0,8 a 1,9).

Nas Tabelas 5.2, 5.3 e 5.4 são apresentados os valores de diâmetro volumétrico encontrados para as partículas de poliamida, PBT e CAG-01.

Faixa Granulométrica (mm)	Número de Grãos	Massa de Grãos (g)	Massa Unitária (g)	dv (mm)
3,36-2,83	315	4,9562	0,0157	2,98
2,83-2,36	215	2,5798	0,0120	2,72
2,36-2,00	190	1,3843	0,0073	2,30
2,00-1,68	154	0,6564	0,0090	1,93

Tabela 5.2. Diâmetro volumétrico da poliamida.

Tabela 5.3. Diâmetro volumétrico do PBT.

Faixa	Número	Massa de	Massa	dv
Granulométrica (mm)	de Grãos	Grãos (g)	Unitária (g)	(mm)
3,36-2,83	215	3,8239	0,0178	2,87
2,83-2,36	302	4,7111	0,0156	2,74
2,36-2,00	270	2,5410	0,0094	2,32
2,00-1,68	196	1,1045	0,0056	1,95

Tabela 5.4. Diâmetro volumétrico do CAG-01.

Faixa Granulométrica (mm)	Número de Grãos	Massa de Grãos (g)	Massa Unitária (g)	d., (mm)
3,36-2,83	300	6,7943	0,0227	2,89
2,83-2,36	200	2,9887	0,0149	2,51
2,36-2,00	193	1,6796	0,0087	2,10
2,00-1,68	393	2,3043	0,0057	1,84
1,68-1,41	213	0,8909	0,0042	1,64

Os valores dos d_v obtidos para os três tipos de partículas encontram-se dentro da faixa granulométrica correspondente, bem como observa-se o aumento crescente do d_v da menor para a maior faixa granulométrica.

5.1.2.Índices Físicos

Os resultados correspondentes a determinação dos índices físicos do teor de umidade(W), massa específica do material(ρ), bem como, massa específica seca(ρ_s) e índice de vazios(e) podem ser observados nas Tabelas 5.5, 5.6, 5.7 e 5.8. Nessas tabelas também são apresentados os valores máximo, médio e mínimo dos índices físicos, obtidos para as partículas de poliamida, PBT e CAG-01 e CAG-02.

Índices	Unidades	Poliamida			
Físicos		Máximo	Médio	Mínimo	
W		0,51	0,47	0,45	
0-	$(q.cm^3)$	0,784	0,774	0,757	
Ps	(q, cm^3)	1,142	1,140	1,137	
p		0,508	0,471	0,450	

Tabela.5.5.Índices físicos da partícula de Poliamida.

Tabela.5.6.Índices físicos da partícula de PBT.

Índices	Unidades	PBT			
Físicos		Máximo	Médio	Mínimo	
W		3,46	3,37	3,25	
	$(a.cm^{-3})$	0,336	0,328	0,324	
Ρs	(q, cm^{-3})	1,450	1,443	1,436	
ρ	(g. o)	3,413	3.373	3,247	

Tabela.5.7.Índices físicos da partícula de CAG-01.

Índices	Unidades	CAG-01				
Físicos		Máximo	Médio	Mínimo		
W		6,878	6,67	6,250		
	$(a.cm^{-3})$	0,247	0,234	0,228		
Ρs	(q, cm^{-3})	1.797	1,795	1,793		
ρ e	(g.o)	6,880	6,669	6,250		

Tabela.5.8.Índices físicos da partícula de CAG-02.

Índices	Unidades	CAG-02				
Físicos		Máximo	Médio	Mínimo		
W		7,36	7,10	6,86		
0-	$(q.cm^{-3})$	0,229	0,223	0,217		
Ps	(q, cm^{-3})	1,816	1,810	1,799		
P		7,359	7,101	6,858		

Com base nos dados das Tabelas 5.5, 5.6, 5.7 e 5.8 observa-se que entre as partículas pesquisadas, as partículas de CAG-01 e CAG-02 são as que apresentam os maiores valores de W e p, e e. Para a ρ_s o maior valor encontrado foi o da partícula de poliamida, vindo a seguir as partículas de PBT e CAG-01 e CAG-02.

Os valores de ρ , apresentados nas Tabelas 5.5, 5.6, 5.7 e 5.8, são semelhantes aos encontrados por BRANDUP & IMMERGUT(1989) cuja faixa de variação para a poliamida vai de 0,840 a 1,156 g.cm⁻³, PBT de 1,335 a 1,515 g.cm⁻³ e para o CAG vai de 0,92 a 2,0 g.cm⁻³ (CLARK & BENJAMIN,1989). Contudo, os valores ρ_s das amostras CAG-01 e CAG-02 são inferiores aos apresentados por CLARK & BENJAMIN(1989), cujo parâmetro apresenta variações entre 0,43 a 0,48 g.cm⁻³, a diferença entre os valores de ρ_s obtido e o encontrado na literatura pode ser atribuído ao processo de fabricação da partícula de CAG.

5.1.3.Determinações de Análise de Imagens

Nas Figuras 5.5, 5.6, 5.7 e 5.8 apresentam-se as amostragens realizadas para a poliamida, PBT, CAG-01 e GAG-02. Os resultados correspondentes a cada amostragem foram tratados sob forma de histogramas: que são apresentados nas Figuras 5.9; 5,10; 5.11; 5.12; 5.13 e 5.14. Nas Tabelas 5.9. é apresentado o resumo estatístico das dimensões das partículas de poliamida, PBT, CAG-01 e GAG-02, mediante a utilização do sistema computadorizado de análise de imagens.

Figura 5.5. Amostragem com 80 partículas de Poliamida.

Figura 5.7.Amostragem com 221 partículas de CAG-01.

Figura 5.6. Amostragem com 86 partículas de PBT.

Figura 5.8. Amostragem com 143 partículas de CAG-02.

Nas Figuras 5.9 e 5.10 são apresentados os histogramas do comprimento e da largura para o suporte de polimida.

Figura 5.9.Histograma de distribuição do comprimento das partículas de poliamida.

Figura 5.10.Histograma de distribuição da largura das partículas de poliamida.

De acordo com o histograma da Figura 5.9, pode-se observar que a distribuição do comprimento das partículas de poliamida tem aparência assimétrica, próxima a um retângulo, e que, em 87,50% das partículas amostradas têm comprimento igual ou menor que 3,81 mm.

E com relação a Figura 5.10, o histograma de distribuição da largura da partícula de poliamida permite observar uma distribuição bastante simétrica, semelhante a distribuição normal, e que, em 96,25% das partículas amostradas, a largura foi igual o menor que 3,33 mm.

Nas Figuras 5.11 e 5.12 são mostradas as curvas de distribuição do comprimento e da largura correspondentes ao suporte de PBT.

Figura 5.11.Histograma de distribuição do Comprimento das partículas de PBT.

Figura 5.12.Histograma de distribuição da largura das partículas de PBT.

Com base nos dados da Figura 5.11, nota-se que a distribuição do comprimento do PBT foi assimétrica, apresentando formato retangular, e que das 86 partículas amostradas, 76 partículas tinham comprimento igual ou inferior a 3,75 mm, o que corresponde a 88,37% partículas.

No histograma da Figura 5.12, verifica-se que a largura das partículas de PBT apresenta distribuição bastante simétrica, tendo comportamento próximo à distribuição normal. Além disso, pode-se observar que, das 86 partículas amostradas, 70 partículas tinham largura igual ou menor que 2,89 mm, o que corresponde a 81,40%.

Nas Figuras 5.13 e 5.14 são apresentados, respectivamente, as curvas de distribuição do diâmetro referente as amostras de CAG-01 e CAG-02.

Figura 5.13. Histograma de distribuição do diâmetro das partículas de CAG-01.

Como pode-se notar na Figura 5.13 para amostra de CAG-01, a distribuição do diâmetro não apresenta comportamento simétrico. Verifica-se ainda que, em 46,2% das partículas, 102 têm diâmetro menor o igual a 3,54 mm e que 27,6% têm diâmetro entre 4,01 e 5,39 mm. Na Figura 5.14, para amostra de CAG-02, a distribuição do diâmetro também não apresenta comportamento simétrico, e que, das 143 partículas amostradas, 79 partículas, o que corresponde a 55,24% têm diâmetro menor ou igual a 3,69 mm, e que 13,98% têm diâmetro entre 4,17 e 5,12 mm.

Na Tabela 5.9 estão apresentados os valores mínimo, máximo, médio e desvio padrão, bem como, a faixa de variação do comprimento(C) e largura(L) para as partículas de poliamida e PBT e diâmetro(\emptyset) para as amostras de CAG-01 e CAG-02.

Tabela 5.9.Comprimento(C) e largura(L) das partículas de Poliamida e PBT, e diâmetro(\emptyset), para as amostras de CAG-01 e CAG-02, determinados mediante análise de imagens.

Resumo	Material Suporte						
Estatístico	Poliamida		PBT		CAG-01	CAG-02	
Dimensões (mm)	C	L	C	L	Ø	Ø	
Mínimo	2,45	2,13	2,83	2,00	2,09	2,43	
Máximo	4,00	3,50	4,49	4,00	5,60	6,78	
Faixa	1,55	1,37	1,66	2,00	3,51	4,35	
Média	3,36	2,77	3,41	2,62	3,62	3,85	
Desvio Padrão	0,35	0,26	0,35	0,38	0,64	0,89	
Amostragem	80	80	86	86	221	143	

A partir dos dados apresentados na Tabela 5.9 observa-se que as partículas de poliamida têm valores médios de C e L de 3,36 mm e 2,77 mm, respectivamente, enquanto que para o PBT observa-se um C de 3,41 mm e L de 2,62 mm. A faixa de variação do C e L para a poliamida foram de 1,55 mm e 1,37 mm e no PBT observa-se uma variação de C de 1,66 mm e L de 2,00 mm. Nota-se que a menor variação de C e L ocorreu para as partículas de poliamida. Além disso, é possível verificar acentuado desvio padrão(σ) nas amostras de CAG-01 e CAG-02; isto se deve a irregularidade dessa partícula quando ao seu tamanho e formato. Com relação as amostras de CAG observa-se uma média de \emptyset , de 3,62 mm para a CAG-01 e de 3,85 mm para CAG-02, tais valores segundo a literatura consultada (STRONACH et al,1986) se encontram fora da faixa aplicada a reatores de leito expandido.

De maneira análoga, tal como nos ensaios granulométricos, nas determinações de análise de imagens pode-se notar que entre as três partículas estudadas, a poliamida é a que apresenta menor variação quando ao formato e tamanho de suas partículas, seguidas posteriormente pelas partículas de PBT e por último estão as amostras de CAG-01 e CAG-02.

5.1.4.Ensaio de Expansão/Fluidificação

Nesta etapa, são apresentados nas Figuras 5.15, 5.16 e 5.17 os gráficos, relacionando as velocidades ascensionais empregadas, perdas de carga e a expansão para cada leito de partículas.

No estudo da expansão/fluidificação do leito para os diferentes tipos de partículas para se obter os valores de velocidade mínima de fluidificação e perda de carga no meio granular no estado fluidificado utilizou-se a técnica descrita por HOWARD(1989), em que são traçadas duas retas, uma engloba o trecho cuja variação da perda de carga no leito de partículas é linear, em função da velocidade ascensional da água; e outra que engloba o trecho de variação de perda de carga constante e independente do valor da velocidade ascensional da água. O ponto de cruzamento entre as duas retas define o valor da V_{mf} no eixo das abcissas, e o valor da perda de carga no leito granular fluidificado no eixo das ordenadas. Com base nos valores de perda de carga no leito fluidificado foram calculados os valores de porosidade no meio granular utilizando-se a Equação 3.14.

Figura 5.15.Curva de expansão/fluidificação do leito de partículas de poliamida.

De acordo com a Figura 5.15 pode-se observar que no ponto de fluidificação incipiente os valores de $\Delta_{\rm H}$, $V_{\rm mf}$ e expansão(%) foram de aproximadamente 0,011 m, 24,4 m.h⁻¹ e 14%, para o leito de poliamida.

Figura 5.16.Curva de expansão/fluidificação do leito de partículas de PBT.

Com base na Figura 5.16 pode-se verificar que o leito de PBT apresentou comportamento bastante uniforme da perda de carga após o ponto de fluidificação incipiente. Os valores de $\Delta_{\rm H}$, V_{mf} e expansão(%) para o leito PBT no ponto de fluidificação incipiente foram de aproximadamente 0,034 m, 43 m.h⁻¹ e 9%.

Figura 5.17.Curva de expansão/fluidificação do leito de partículas de CAG.

Na Figura 5.17 pode-se observar a existência de dois picos de instabilidade, o primeiro para a velocidade de 27,2 m.h⁻¹ e o segundo em 55 m.h⁻¹, sendo que, a partir do segundo pico, a perda de carga passou a apresentar maior uniformidade. A observação única e exclusiva do gráfico poderia levar a determinação da velocidade mínima de fluidificação no primeiro pico. Contudo, a repetição dos ensaios e a verificação visual permitiu estimar que a fluidificação incipiente do leito ocorre a partir da velocidade de 55 m.h⁻¹.

De acordo com a Figura 5.17 verifica-se que o leito de CAG no ponto de fluidificação incipiente apresenta valores de aproximadamente 0,026 m para $\Delta_{\rm H}$, 55 m.h⁻¹ para V_{mf} e expansão de 20%.

Conforme os resultados apresentados nas Figuras 5.15, 5.16 e 5.17, observa-se que as curvas do estudo da expansão/fluidificação dos materiais suportes apresentam comportamento semelhante àquelas encontradas na literatura(KUNII & LEVENSPIEL,1969), (CLEASBY & FAN, 1981), (SILVA,1995) e (WIECHETECK,1996).

Nota-se ainda uma grande diferença entre a $V_{mf.}$ das partículas ensaiadas, tal fato, segundo CLEASBY & FAN(1981) e DROSTE (1997) se deve as características do material granular(\emptyset , ρ , φ , ε_0 e etc...). Além disso, foi possível verificar que entre os três tipos de partículas, o leito de CAG é o que apresenta o maior valor de $V_{mf.}$, no ponto de fluidificação incipiente, vindo a seguir os leitos de PBT e a poliamida.

Com base nos dados das Figuras 5.15, 5.16 e 5.17 é possível observar que o leito de poliamida foi o que apresentou maior percentual de expansão em relação ao leito estático (cerca de 120%), o que pode ser explicado pela menor densidade de suas partículas. Contudo, esse fato não se aplica ao leito de PBT, o qual apresentou densidade menor do que a densidade das partículas de CAG, porém teve menor aumento da altura do leito. Nos leitos de PBT e CAG o aumento em relação a altura inicial foi de aproximadamente 34% e 54% respectivamente.

De acordo com a Equação 3.15 a porosidade foi estimada em 0,71 para a poliamida, 0,72 para o PBT e 0,89 para o CAG, tendo este último apresentado o maior de valor porosidade. Os valores próximos de porosidade para as partículas de poliamida e PBT podem ser atribuídos a uniformidade do tamanho e formato dessas partículas, enquanto que a diferença de ε para o leito de CAG pode ser explicada, pelo formato irregular das partículas e pela compactação insuficiente do leito.

85
Na Tabela 5.10 são apresentados os valores de V_{mf} obtidos experimentalmente e os valores de velocidade mínima de fluidificação calculados($V_{mfCALC.}$), a partir da Equação 3.11, para os três tipos de partículas estudadas. É importante ressaltar que na Equação 3.11, o diâmetro utilizado para a determinação da V_{mfCALC} foi o d_{90%}, pois essa é a recomendação de CLEASBY & FAN(1981) quando as partículas não são esféricas e deseja-se fluidificação total do meio granular.

Tabela.5.10.Velocida mínima de fluidificação do leito para as partículas de Poliamida, PBT e CAG.

Partícula	Unidades	V _{mfEXP} .	V _{mfCALC} .
Poliamida	(m.h ⁻¹)	24	19
PBT	$(m.h^{-1})$	43	35
CAG	$(m.h^{-1})$	55	63

Comparando-se os valores da V_{mfEXP} . com os da V_{mfCALC} . apresentados na Tabela 5.10, observa-se que nas partículas de poliamida e PBT, a velocidade teórica é inferior a obtida experimentalmente, enquanto que na partícula de CAG pode-se notar que velocidade teórica é superior ao valor obtido experimentalmente no ensaio de expansão/fluidificação. Não foi encontrada explicação para essa diferença entre as V_{mfEXP} . e V_{mfCALC} . Ao que tudo indica, as simplificações assumidas, ao se considerar (1- ϵ_{o})/ $\psi^{2}\epsilon_{o}^{3}$ =11 e 1/ $\psi\epsilon_{o}^{3}$ =14, efetuadas na Equação 3.11, podem conduzir a resultados teóricos diferentes daqueles observados na prática.

5.1.5. Presença de Microrganismos nos Materiais Suporte

Nas Figuras 5.18, 5.19, 5.20 e 5.21 apresentam-se as micrografias eletrônicas de varredura das partículas de poliamida coletadas e tratadas com HMDS durante 1; 7; 14 e 21 dias.

Na Figura 5.18, a fotografia obtida de microscopia eletrônica de varredura da superfície externa poliamida

realizada no 1ºdia, com aumento de 3000 vezes, mostra distribuição aleatória dos microrganismos na superfície externa dessa partícula.

Nas Figuras 5.18 e 5.19 observa-se também, na superfície poliamida, a presença de microrganismos com morfologia semelhante a espiroquetas e espirilos respectivamente.

Figura 5.18. MEV da superfície Figura 5.19. MEV da superfície externa da poliamida amostrada no externa da poliamida amostrada no $1^{\underline{0}}$ dia. $7^{\underline{0}}$ dia.

Figura 5.20. MEV da superfície Figura 5.21. MEV da superfície externa da poliamida amostrada no externa da poliamida amostrada no $14^{\underline{0}}$ dia.

Nas Figuras 5.20 e 5.21, os microrganismos presentes na superfície da poliamida, apresentam-se distribuídos ao acaso, ou seja, de forma individual, não sendo verificada a formação de agrupamentos.

Nas fotografias de microscopia eletrônica de varredura da superfície externa da poliamida amostradas

nos $14^{\underline{0}}$ dia e no $21^{\underline{0}}$ dia, observa-se a presença de microrganismos semelhantes a pequenos cocos e estreptococos.

Nas Figuras 5.22, 5.23, 5.24 e 5.25 é mostrada a evolução da colonização dos microrganismos na partícula de PBT durante os períodos de 1; 7; 14 e 21 dias.

Figura 5.22. MEV da superfície Figura 5.23. MEV da superfície externa da PBT amostrada no 1° dia. externa da PBT amostrada no 7° dia.

Figura 5.24. MEV da superfície Figura 5.25. MEV da superfície externa da PBT amostrada no 14° externa da PBT amostrada no 21° dia.

A exemplo da poliamida, a colonização dos microrganismos na partícula de PBT, durante os 21 dias, ocorreu de forma distribuída e isolada, não sendo verificada, também, a formação de agrupamentos(Figuras 5.22, 5.23, 5.24 e 5.25).

Nas fotografias obtidas na microscopia eletrônica de varredura da superfície do PBT, amostradas no 1° dia e no 7° dia, nota-se a presença de microrganismos semelhantes

a pequenos cocos e estreptococos, e nas amostras dos dias 14° e 21° foram observados microrganismos semelhantes a cocos, bacilos e espirilos.

Nas Figuras 5.26, 5.27, 5.28 e 5.29, são apresentadas as fotografias da partícula de CAG.

Figura 5'.26. MEV da superfície Figura 5.27. MEV da superfície externa da CAG amostrada no $1^{\underline{0}}$ dia. externa da CAG amostrada no $7^{\underline{0}}$ dia.

Figura 5.28. MEV da superfície Figura 5.29. MEV da superfície externa da CAG amostrada no $14^{\underline{0}}$ externa da CAG amostrada no $21^{\underline{0}}$ dia.

Na Figura 5.26 apresenta-se a fotografia da superfície interna do CAG obtida no 1º dia. Neste período não foram observados microrganismos presentes na superfície interna e externa dessa partícula. No entanto, a partir do 7º dia foi observada a formação de agregados na superfície externa do CAG, tendo predominado a morfologia de microrganismos semelhantes a de bacilos, conforme se mostra na Figura 5.27. Essa colonização não foi alterada nas amostras seguintes, isto é, nas observadas nos 14° e 21° dia. As Figuras 5.28 e 5.29 mostram os microrganismos presentes na superfície do CAG durante esses períodos.

Durante do período deste ensaio foi possível verificar que a distribuição dos microrganismos na superfície externa do CAG não foi homogênea, existindo regiões com grande aglomerados de bactérias (Figura 5.27) e regiões sem nenhum microrganismo (Figura 5.26).

Além disso, a colonização dos microrganismos no CAG ocorreu mais efetivamente próxima aos poros e cavidades(Figura 5.28 e Figura 5.29).

Os resultados obtidos durante o ensaio da presença de microrganismos nos materiais suporte estudados devem ser considerados como preliminares, em virtude de que, com os procedimentos empregados, não foi possível conhecer aspectos fisiológicos das bactérias aderidas às partículas e nem quantificá-las. Entretanto, tais resultados permitiram indicar em qual dessas partículas, para um período finito de tempo (21dias), ocorreu maior colonização com microrganismos.

Pode-se verificar que a colonização dos microrganismos nas partículas de poliamida, PBT e CAG, ocorreu preferencialmente próxima a poros e cavidades da superfície externa dessas partículas, comprovando o citado por KURODA et al(1988) e SPEECE(1996), de que a existência de poros e cavidades aumenta as zonas de fixação e colonização dos microrganismos.

Possivelmente a pequena porosidade das partículas de poliamida e PBT tenha dificultado a formação de agregados de microrganismos, o que somente poderia ser verificado com o aumento dos dias de investigação.

O maior número de microrganismos presentes na superfície externa das partículas de CAG pode ser atribuído a estrutura porosa e rugosa dessa partícula, bem como, a habilidade do CAG em adsorver substâncias orgânicas e inorgânicas.

A utilização da microscopia eletrônica de varredura permitiu verificar que a colonização dos microrganismo nos materiais suporte estudados se ordenou decrescentemente no sentido da poliamida <PBT <CAG.

Entretanto, a diversidade de morfologias bacterianas foi menor no CAG do que nas partículas de poliamida e PBT. Além disso, notou-se que nas partículas de CAG os microrganismos primeiramente ocuparam os poros e cavidades, para, então, atingirem a superfície externa desse suporte, conforme o comentado por FOX et al (1990).

Foram realizados, no Instituto de Física da USP em São Carlos, ensaios de EDX para avaliação da presença de elementos inorgânicos na superfície externa de todas as partículas amostradas. A Figura 5.30 mostra alguns dos elementos inorgânicos(Al, Si, P, S e Ca) detectados nos ensaios de EDX realizados na amostra de carvão ativado no 7º dia.

Figura 5.30. EDX realizado em partícula de carvão ativado $(7^{\underline{\vee}} dia)$.

A presença de sílica, alumínio e o fósforo pode ser explicada pela utilização da água de abastecimento, pela população que foi convertida em água residuária. Os demais elementos podem ser decorrentes da decomposição de substâncias presentes no esgoto sanitário.

5.1.6.Seleção do Material Suporte do Reator Anaeróbio de Leito Expandido

As Figuras 5.31; 5.32 e 5.33 permitem visualizar os aspectos geométricos e físicos dos três tipos de partículas.

Poliamida - Propriedades -Formato Cilindro $-TE=2,02 \text{ mm e } D_{90\$}=2,62 \text{ mm}$ -Deq.=1,91 mm e CD=1,10 -dv=1,97 a 2,98 mm -C=3,36 mm e L=2,77 mm $-\rho=1,140 \text{ g.cm}^{-3}$ $-V_{mf}=24m.h^{-1};\Delta H_{f}=1,10cm;L_{f}=55m$ -Evolução da colonização de microrganismos isolada e sem agrupamento durante 21 dias.

Figura 5.31. Partícula Suporte de Poliamida.

Figura 5.32. Partícula Suporte de PBT.

PBT - Propriedades
-Formato Cilindro -TE=1,70 mm e $D_{90}=1,87$ mm -Deq.=1,87 mm e CD=1,12 -dv=1,92 a 2,55 mm -C=3,41 mm e L=2,62 mm -p=1,443 g.cm ⁻³ -V _{mf} =43m.h ⁻¹ ; Δ H _f =3,40cm;L _f =33m
 -Evolução da colonização de microrganismos isolada e sem agrupamento durante 21dias.

CAG-01 - Propriedades -Formato Irregular -TE=1,80 mm e $D_{90\%}=2,30$ mm -Deq.=2,09 mm e CD=1,22 -dv=1,64 a 2,89 mm - \emptyset =3,62 mm - ρ =1,795 g.cm-³ - V_{mf} =55m.h⁻¹; Δ H_f=2,60cm;L_f=39m -Evolução da colonização de microrganismos não homogênea e com agrupamento entre 7 e 14 dias.

Figura 5.33.Partícula Suporte de CAG.

Os ensaios realizados durante a caracterização dos suporte, considerando material três tipos de principalmente os aspectos de expansão e presença de microrganismos, demonstraram que a partícula de carvão ativado granular é a que apresenta as melhores propriedades para compor o leito do reator anaeróbio de leito expandido. Pois, essas apresentaram alta capacidade de imobilização de microrganismos durante os ensaios de presença de microrganismo, bem como, nos ensaios de demostraram ter expansão/fluidificação, menor possibilidade de arrastas quando do emprego de velocidades ascensionais necessárias a condição incipiente.

5.2. Caracterização do Esgoto Sanitário durante 24 horas

Conforme mencionado no item 4.6, durante o período experimental desse trabalho foi realizada, a caracterização do esgoto sanitário durante 24 h. A seguir são mostrados os resultados obtidos ao longo desse período, sob a forma de curvas de variação dos parâmetros, conforme discriminado a seguir:

- > Figura 5.34.Variação do pH do esgoto bruto durante 24 h;
- > Figura 5.35.Variação da alcalinidade parcial e intermediária do esgoto bruto durante 24 h;
- > Figura 5.36.Variação dos ácidos voláteis do esgoto bruto durante 24 h;
- > Figura 5.37.Variação da DQO_B do esgoto bruto durante 24 h;
 > Figura 5.38.Variação da DQO_F do esgoto bruto durante 24 h;
 > Figura 5.39.Variação dos SST do esgoto bruto durante 24 h;
 > Figura 5.40.Variação do fósforo total do esgoto bruto durante 24 h.

Figura 5.34.Variação do pH do esgoto bruto durante 24 h.

Figura 5.35.Variação da alcalinidade parcial e intermediária do esgoto bruto durante 24horas.

Figura 5.36.Variação dos ácidos voláteis do esgoto bruto durante 24 h.

Figura 5.37.Variação da DQO_B do esgoto bruto durante 24 h.

Figura 5.38. Variação da
 ${\rm DQO}_{\rm F}$ do esgoto bruto durante 24 h.

Com base na Figura 5.34, nota-se que os valores de pH do esgoto sanitário durante o período noturno, tiveram valores máximos e mínimos, respectivamente, de 7,40 e 6,80(das 18 h às 11 h) e 7,15 e 7(das 0 h às 6 h), enquanto no período diurno(06.10.97)observa-se valor máximo de 7,40 e mínimo de 6,00.

Com relação a alcalinidade parcial e intermediária no esgoto sanitário, ao longo de 24 h, verifica-se (Figura5.35)que a alcalinidade devida a bicarbonato teve concentrações superiores à alcalinidade devida aos ácidos voláteis. Além disso, nota-se que as variações mais significativas de alcalinidade ocorreram durante o período diurno.

A exemplo da alcalinidade, observa-se(Figura 5.36) que os ácidos voláteis também tiveram oscilações mais significativas durante o período diurno, tendo apresentado nesse período valores máximos e mínimos, respectivamente, de 75 mgCaCO₃.L⁻¹ e 14 mgCaCO₃.L⁻¹, enquanto que no período noturno os valores de ácidos voláteis variaram de 61 mgCaCO₃.L⁻¹ a 24 mgCaCO₃.L⁻¹. A observação das Figuras 5.37 e 5.38, indicam que a DQO_B e DQO_F, tiveram comportamento decrescente do dia 30.09.97 ao 01.10.97, sendo possível notar valores de 58 a 562 mgO₂.L⁻¹, para a DQO_B, e de 25 a 225 mgO₂.L⁻¹, para a DQO_F. No período diurno, observa-se fortes variações das concentrações de DQO_B e DQO_F. Além disso, verifica-se que das 7 h ás 16 h, do dia 06.10.97, a DQO_B do esgoto sanitário manteve-se acima de 1000 mgO₂.L⁻¹, atingindo valor máximo de 1724 mgO₂.L⁻¹ ás 8 h, e que das 6h ás 12h a DQO_F, apresentou valores entre 133 e 359 mgO₂.L⁻¹, e a partir das 13 h às 18 h, os valores de DQO_F estiveram acima de 500 mgO₂.L⁻¹, tendo atingindo valor

De acordo com a Figura 5.39, nota-se que no período noturno(das 18 h do dia 30.09.97 às 5 h do dia 01.10.97.) os SST do esgoto sanitário decresceram gradativamente. Além disso, observa-se nessa figura, no período diurno, a existência de dois picos de oscilações. O primeiro pico pode ser visualizado entre 6 h e 11 h, nesse período os SST atingiram valores máximos e mínimos, respectivamente de 48 e 368 mg.L⁻¹, tendo este último ocorrido às 9 h. O segundo pico, começa a partir das 12 h e atingi valor máximo por volta das 15 h, quando então volta a declinar.

Durante o período noturno, das 18 h até às 4 h, o esgoto sanitário apresenta decréscimo nos valores de fosfato total(Figura 5.40), tendo sido observadas nesse período concentrações de fosfato total abaixo de 12 $mgPO_4^{-3}L^{-1}$.

No período compreendido entre as 6 h e às18 h do dia 06.10.97, foram observadas concentrações de fosfato total acima de 15 $mgPO_4^{-3}L^{-1}$ em todas as amostras de esgoto sanitário coletadas. Os maiores teores de fosfato foram verificados às 9 h(31,44 $mgPO_4^{-3}L^{-1}$) e às 12 h(30,73 $mgPO_4^{-3}L^{-1}$).

Na Tabela 5.11 estão apresentados os resultados dos valores máximo, médio e mínimo obtidos durante a caracterização do esgoto sanitário. Enquanto na Tabela 5.12 são mostrados os valores típicos de alguns parâmetros em esgoto sanitário.

Apesar de somente ter-se realizado um perfil diário da composição do esgoto sanitário, ao compararmos os resultados da Tabela 5.11 com os dados da Tabela 5.12, pode-se concluir que o esgoto sanitário em questão, tem composição que varia entre médio e forte, tal fato decorre provavelmente de a rede coletora receber contribuições industrias e comerciais (postos de gasolina, restaurante, industria de tapete, etc...). Os resultados mostram claramente que o esgoto sanitário apresenta composição bastante variável ao longo de dia.

Tabela 5.11.Composição do esgoto sanitário ao longo de 24 h.

		Esgo	oto Sanitá	rio
Parâmetros	Unidade	Máximo	Médio	Mínimo
рH	-	7	-	6
Temperatura	D ₀ C	28	26	24
Alcalinidade Total	$(mgCaCO_3.L^{-1})$	185	111	50
Alcalinidade Parcial	$(mgCaCO_3.L^{-1})$	115	74	25
Alcalinidade Intermediária	$(mgCaCO_3.L^{-1})$	75	40	5
Ácidos Voláteis	$(mgCaCO_3.L^{-1})$	75	49	14
DQO Bruta	$(mgO_2.L^{-1})$	1724	749	5.8
DQO Filtrada	$(mgO_2.L^{-1})$	877	294	25
Sól. Totais	$(mg.L^{-1})$	829	416	• 71
Sól. Totais Fixos	(mg.L ⁻¹)	246	122	18
Sólidos Totais Voláteis	$(mg_{-}L^{-1})$	723	293	35
Sól. Suspensos Totais	(mg.L ⁻¹)	368	152	26
Sól. Suspensos Fixos	(mg.L ⁻¹)	81	23	3
Sól. Suspensos Voláteis	$(mg.L^{-1})$	316	130	21
Fósforo Total	$(mgPO_4^{-3}L^{-1})$	31	15	4

Tabela 5.12.Composição típica de esgoto sanitário.

		Esgoto Sanitário					
Parâmetros	Unidade	Fraco	Médio	Forte			
DQO	$(mgO_2.L^{-1})$	250	500	1000			
Sól. Totais	$(mg.L^{-1})$	350	720	1200			
Sól. Suspensos Totais	$(mg.L^{-1})$	100	220	350			
Sól. Sedimentáveis	$(mg.L^{-1})$	5	10	20			
Alcalinidade	$(mgCaCO_3.L^{-1})$	50	100	200			
Fósforo Total	$(mgPO_4^-L^{-1})$	4	8	15			

Fonte: METCALF & EDDY(1991).

5.3.Estratégia de Partida do RALEx

Nesta etapa são apresentados os resultados dos parâmetros obtidos durante o período experimental. Os dados coletados nas fases 1, 2 e 3 são mostrados sob a forma de curvas de variação dos parâmetros com o tempo de operação(TO) do reator.

Na construção dos gráficos foram unidos os pontos referentes aos resultados obtidos durante as fases de monitoramento do RALE_x. Esse procedimento, foi realizado para facilitar a observação geral da evolução dos parâmetros. No entanto, os pontos unidos entre às datas imediatamente anterior e posterior as fases(1; 2 e 3) necessariamente não significam qualquer tendência evolutiva desse parâmetro nesse intervalo.

Além disso, as Tabelas 5.13, 5.14., 5.15, 5.16, 5.17. e 5.18 mostram os valores máximo(máx), médio(x), mínimo(mín), desvio padrão(σ) e coeficiente de variação (x/ σ) das análises e determinações realizadas durante esta pesquisa.

E na Tabela 5.19 são mostrados os resultados referentes aos parâmetros: tempo de detenção hidráulica, horas de funcionamento dos conjuntos moto bombas, razão de recirculação, carga orgânica volumétrica aplicada, em cada fase do experimento.

		FASES DE OPERAÇÃO									
PARÂMETROS		1 Afluente	Efluente	2 Afluente	Efluente	3 Afluente	Efluente				
	n	26	26	10	10	11	11				
	máx	25	25	27	26	30	29				
Temperatura	x	22	21	24	23	28	27				
(^U C)	mín	20	19	22	22	26	26				
	G	1,4	1,6	1,5	1,5	1,1	1,1				
	G/X(%)	6	8	6	7	4	4				
••••••	n	26	26	10	10	11	11				
рН	máx	7,90	7,70	7,50	7,20	7,30	7,20				
4	mín	6,90	6,60	7,10	6,80	6,95	6,90				
	n	26	26	10	10	11	11				
Alcalinidade	máx	458	371	465	220	242	211				
Total	ж	220	173	233	174	200	150				
$(mg CaCO_3.L^{-1})$	mín	66	59	180	130	170	108				
	σ	79	63	84	29	20	31				
	σ/x(%)	36	36	36	17	10	21				
	n	26	26	10	10	11	11				
Alcalinidade	máx	361	231	335	130	185	134				
Parcial	х	152	114	156	112	136	104				
$(mg CaCO_3.L^{-1})$	mín	41	48	105	95	113	82				
	σ	58	38	67	12	21	18				
	σ/x(%)	38	34	43	11	16	17				
	n	26	25	10	10	11	11				
Alcalinidade	máx	149	149	130	90	82	77				
Intermediária	ж	70	63	77	62	64	46				
(mg CaCO ₃ . L^{-1})	mín	17	8	55	30	46	26				
 Antonio de l'Anglanda de la constitución de la constenee de la constitución de la constitución de la constitución	σ	27	30	20	18	11	17				
	$\sigma/x(8)$	38	48	26	29	18	38				

Tabela 5.13. Número de amostragens, valores máximos, médios, mínimos, desvio padrão, e coeficiente de variação para o afluente e efluente do RALE_x.

	17 1 1 1 1 2 2	FASES DE OPERAÇÃO										
Parâmetros		1			2		3					
		Afluente	Efluente	Afluente	Efluente	Afluente	Efluente					
	n	26	25	10	10	11	11					
	máx	0,89	1,06	0,71	0,69	0,73	0,75					
AI/AP	ж	0,47	0,58	0,52	0,54	0,48	0,44					
	mín	0,16	0,05	0,35	0,30	0,29	0,24					
	σ	0,15	0,20	0,13	0,12	0,12	0,14					
	$\sigma/x(8)$	32	35	24	22	26	31					
	n	26	26	10	10	11	11					
Ácidos	máx	106	72	95	83	112	81					
Voláteis	ж	73	55	69	57	88	46					
$(mg CaCO_3 \cdot L^{-1})$	mín	43	35	54	31	58	29					
	G	17	11	16	18	17	16					
	$\sigma/x(s)$	23	20	23	31	19	34					
	n	26	26	10	10	11	11					
DOO	máx	1442	838	1724	657	881	311					
Bruta	х	966	400	1233	411	738	207					
$(mq O_2, L^{-1})$	mín	425	218	785	252	466	118					
(ing ozi =)	~	236	144	313	134	146	58					
	G/Y(2)	24	36	25	33	20	28					
	n		26		10		11					
Eficiência	máx		79		82		81					
DOO	х		57		66	= = =	71					
Bruta	mín		2		58		49					
	G		18		7		10					
	G/V(8)		31		10		14					
	n	2.6	26	10	10	11	11					
DOO	máx	865	388	824	302	314	221					
Filtrada	х	368	234	449	215	271	112					
$(mq \ O_2 \ L^{-1})$	mín	198	97	314	138	237	81					
,	6	132	75	159	50	27	39					
	$\sigma/v(s)$	36	32	35	24	10	35					

Tabela	5.14.	Número	de	amostragens,	valores	máximos,	médios,	mínimos,	desvio	padrão,	е	coeficiente
	Ċ	le varia	ção	para o aflue	nte e ef	luente do	$RALE_X$.					

				FASES DE	OPERAÇÃO		
PARÂMETROS		1		2			3
		Afluente	Efluente	Afluente	Efluente	Afluente	Efluente
	n		26		10		11
Eficiência	máx		62		77		12
DQO	ж		35		49		58
Filtrada	mín		2		35		25
	σ		16	,	13		14
	$\sigma/x(8)$		44		26		24
	n	6	6	6	6	6	6
DBO	máx	620	242	882	302	532	163
Bruta	ж	395	161	576	210	447	109
$(mg O_2 \cdot L^{-1})$	mín	165	94	357	142	353	56
	σ	160	61	173	63	61,19	35
	$\sigma/x(8)$	40	38	30	30	14	32
	n		6		6		6
	máx		82		80		86
Eficiência	ж	540	55		61		76
DBO	mín		33		41		64
Bruta	σ		18		14		7
	$\sigma/x(8)$		33		24		10
	n	25	26	10	10	11	11
Sólidos	máx	932	726	860	518	720	377
Totais	ж	701	418	694	346	621	289
$(mg.L^{-1})$	mín	410	208	601	163	452	183
	σ	142	137	80	124	101	53
	σ/x(%)	20	33	11	36	16	18
	n		25		10		11
	máx		73		73		74
Eficiência	ж		40		50		52
Sólidos	mín		11		25		27
Totais	σ		15		17		12
	$\sigma/x(8)$		37		35		23

Tabela 5.15.Número de amostragens, valores máximos, médios, mínimos, desvio padrão, e coeficiente de variação para o afluente e efluente do RALEx.

				FASES	DE OPERAÇÃ	0	the Angel States
PARÂMETROS		1		2		3	
		Afluente	Efluente	Afluente	Efluente	Afluente	Efluente
	n	23	20	10	10	11	11
Sólidos	máx	837	451	638	366	577	246
Totais	ж	524	245	503	231	432	162
Voláteis	mín	257	101	324	77	271	65
$(mg.L^{-1})$	σ	135	91	97	122	85	59
	$\sigma/x(8)$	26	37	19	53	20	36
	n		23		10		11
Eficiência	máx		100		88		89
Sólidos	ж		57		53		60
Totais	mín		2		8		25
Voláteis	σ		24		26		18
	σ/x(%)		43		48		29
	n	24	26	10	10	11	11
Sólidos	máx	639	451	586	132	524	124
Suspensos	ж	362	190	358	75	301	66
Totais	mín	163	40	240	31	152	28
$(mg.L^{-1})$	σ	114	111	108	34	97	36
	$\sigma/x(8)$	31	58	30	46	32	55
	n		24		10		11
Eficiência	máx		91		91		92
Sólidos	ж		58		77		75
Suspensos	mín		13		48		18
Totais	σ		24		14		21
	$\sigma/x(8)$		41		18		28
	n	20	20	10	10	11	11
Sólidos	máx	551	320	516	125	428	107
Suspensos	ж	296	115	310	62	257	52
Voláteis	mín	150	24	212	31	130	22
$(mg.L^{-1})$	σ	97	79	95	29	87	32
	$\sigma/x(8)$	33	68	31	47	34	62

Tabela 5.16.Número de amostragens, valores máximos, médios, mínimos, desvio padrão, e coeficiente de variação para o afluente e efluente do RALE_x.

104

Capítulo 5. Resultados e Discussão

		FASES DE OPERAÇÃO									
PARÂMETROS		1		2			3				
		Afluente	Efluente	Afluente	Efluente	Afluente	Efluente				
	n		20		10		11				
Eficiência	máx		86		91		93				
Sólidos	х		61		78		76				
Suspensos	mín		11		46		18				
Voláteis	σ		24		14	3	22				
	$\sigma/x(8)$		39		18		29				
	n	26	18	11	11	10	10				
Sólidos	máx	16	6	10	2	10	0				
Sedimentáveis	х	8	2	7	0,4	6	0,5				
$(ml.L^{-1})$	mín	2	0,1	4,0	0,1	3	0,1				
	σ	2,82	2,05	1,47	0,48	1,66	0,39				
		36	116	20	107	30	00				
	n		18		11		10				
Eficiência	máx		99		99		99				
Sólidos	х		75		94,2		92,0				
Sedimentáveis	min		14,3		01,1		7				
(%)	σ		27		5		7				
	σ/x.(%)		36		5	6					
	n	6	6	0	48	87	36				
Nitrogenio	max	111	10	23	40	69	30				
	x	82	40	66	21	55	26				
Kjeljdaki	. min	39	9	16	6	11	4				
(mg.L)	σ	30	17	19	14	15	13				
		50			6		6				
Ffigiôngia	II máy		51		64		62				
Nitrogânio	IIId A		42		49		57				
Total	ж mín		13		37		51				
Kielidakl	mirin		15		10		4				
NJETJUAKT	$\sigma (x(s))$		35		21		6				

Tabela 5.17. Número de amostragens, valores máximos, médios, mínimos, desvio padrão, e coeficiente de variação para o afluente e efluente do RALE_x.

				FASES	FASES DE OPERACÃO					
PARÂMETROS		Afluente	1 Efluente	Afluente	2 Efluente	Afluente	3 Efluente			
Nitrogênio Amoniacal (mg.L ⁻¹)	n máx x mín σ σ/x(%)	6 64 53 28 14 26	6 39 35 27 4 12	6 50 47 45 2 5	6 40 36 29 4 11	6 47 43 38 3 7	6 29 24 21 3 12			
Eficiência do Nitrogênio Amoniacal	n máx x mín σ		6 43 31 2,5 15 49		6 42 24 11 10 44		6 53 44 31 8 19			
Nitrogênio Orgânico (mg.L ⁻⁺)	n máx \mathbf{x} mín σ $\sigma/x(%)$	6 47 30 11 15 49	6 31 12 4 10 84	6 66 36 19 16 45	6 8 6 2 2 39	6 40 26 17 8 32	6 14 6 3 4 70			
Eficiência do Nitrogênio Orgânico	n máx x mín σ σ/x(%)		6 85 59 34 20 33		6 94 82 74 8 10		6 90 78 65 9 11			
Fósforo Total (mqPO4 ⁻³ .L ⁻¹)	n máx \mathbf{x} mín σ $\sigma/x(\mathfrak{L})$	6 24 21 18 2 9	6 20 18 14 2 13	6 24 21 17 3 13	6 18 16 11 3 16	6 21 18 13 3 15	6 16 11 6 3 29			
Eficiência Fósforo Total	n máx x mín σ/x(%)		6 38 16 0,33 13 86		6 35 23 9 11 47		6 53 39 24 9 24			

Tabela 5.18.Número de amostragens, valores máximos, médios, mínimos, desvio padrão, e coeficiente de variação para o afluente e efluente do RALE_x.

Tabela	5.19.Valores	máximos,	médios	е	mínimos	dos	parâmetros	operacionais	е	da	carga	orgânica	
	volumétri	ca aplica	da ao re	ato	or anaeró	bio c	le leito expa	andido.					

	been deel forde	FASES DE OPERAÇÃO		
PARÂMETROS		1	2	3
	máx	6-96	3,20	3.20
Tempo de detenção	ж	4.12	3,20	3,20
hidráulico(h)	mín	3,20	3,20	3,20
	máx	10	10	10
Vazão Afluente(Qa)	ж	8,24	10	10
$(m^3 \cdot h^{-1})$	mín	4,6	10	10
	máx	25	8,5	8,5
Vazão de Recirculação(Qr)	ж	14,7	8,5	8,5
$(m^3 \cdot h^{-1})$	mín	8,5	8,5	β,5
Razão	máx	2,63	0,85	9,85
de Recirculação	ж	1,90	0,85	0,85
(Qa/Qr)	mín	0,85	0,85	0,85
Horas de Funcionamento	máx	24,00	23,50	24,00
do	ж	17,08	21,29	24,00
CMB_1 (horas/dia)	mín	1,00	19,80	24,00
Horas de Funcionamento	máx	24,00	24,00	24,00
do	ж	21,19	24,00	24,00
CMB_2 (horas/dia)	mín	3,55	24,00	24,00
COV	máx	9,37	11,31	10,74
aplicada	ж	5,01	7,69	5,96
$(kgDQO.m^{-3}d^{-1})$	mín	1,81	4,86	3,50

5.3.1. Operação do Reator de Leito Expandido

De acordo com a Tabela 5.19, em que estão mostrados os resultados dos parâmetros de operação, a vazão média afluente do reator anaeróbio de leito expandido, durante a fase 1 foi de $8,24 \text{ m}^3.\text{h}^{-1}$, tendo-se registrado vazão mínima de $4,60 \text{ m}^3.\text{h}^{-1}$ e máxima de 10 $\text{m}^3.\text{h}^{-1}$. Nesse período o reator também foi submetido a diferentes valores de tempo de detenção hidráulico entre 3,2 h e 6,96 h, esses valores foram baseados na razão da vazão afluente pelo volume útil do reator.

A razão de recirculação durante a fase 1 foi variada entre valores de 2,63 a 0,85.

Na segunda e terceira fase da pesquisa o reator anaeróbio foi operado com vazão de alimentação e de recirculação de 10 $m^3.h^{-1}$ e 8,5 $m^3.h^{-1}$, respectivamente, o que resultou numa razão de recirculação de 0,85.

Os valores da vazão de alimentação e de recirculação do reator mantidos durante as fases 1, 2 e 3, podem ser observados nas Figura 5.41, ao passo que a velocidade ascensional e o tempo de detenção hidráulico são mostrados na Figura 5.42.

A velocidade ascensional média observada durante a primeira fase foi de 11 m.h⁻¹, tendo alcançado valor máximo e mínimo de 19,81 e 4,70 m.h⁻¹, respectivamente. E nas fases 2 e 3, verifica-se valor médio de 10,5 m.h⁻¹, conforme pode-se observar na Figura 5.42.

Cabe aqui salientar que durante a fase 1, 2 e 3, o CMB_1 funcionou em média, 17; 21 e 24 horas por dia respectivamente, enquanto o CMB_2 funcionou em média 21 h na fase 1, e 24 h por dia nas fase 2 e 3.

Figura 5.41.Valores da vazão de alimentação e de recirculação durante o período de operação.

Figura 5.42.Valores da velocidade ascensional e do tempo de detenção hidráulico durante o período de operação.

5.3.2. Variações dos Parâmetros no RALE_X

Diante do volume de informações obtidas durante o período experimental, procurou-se apresentar os parâmetros julgados mais importantes com relação ao estudo da partida do RALE_x.

Para se analisar os dados experimentais do presente trabalho dividiu-se a variação dos parâmetros conforme discriminação a seguir.

- > 5.3.3.Parâmetros de estabilidade do processo;
- > 5.3.3.Desempenho na remoção de matéria orgânica;
- > 5.3.4.Desempenho na remoção dos sólidos;
- > 5.3.5.Nitrogênio e fósforo no reator anaeróbio de leito expandido;
- > 5.3.6.Composição do biogás;
- > 5.3.7.Caracterização ao longo da altura do reator anaeróbio de leito expandido.

5.3.3.Parâmetros de Estabilidade do Processo

A instabilidade do processo de digestão anaeróbia, pode ocorrer, por exemplo, quando há a predominância de fermentação ácida sobre a fermentação metanogênica, e reflete-se em variações de parâmetros como pH, alcalinidade e ácidos voláteis.

Como pode-se observar na Figura 5.43. e na Tabela 5.13, na fase 1 o pH do afluente, variou desde 6,90 até 7,90; na fase 2 este oscilou entre 7,10 e 7,50, e na fase 3 nota-se valores entre 6,95 e 7,30. No efluente pode-se notar valores de 6,60 a 7,70, na fase 1; 6,80 a 7,20, na fase 2 e 6,90 a 7,20 na fase 3.

Nos primeiros 30 dias de operação do RALE_x, o pH apresentou variação significativa no afluente e efluente. Contudo, durante toda a etapa experimental, este se manteve dentro da faixa adequada para o desenvolvimento das bactérias metanogênicas, a qual varia de 6,5 a 8,2, segundo SPECE(1996), demostrando que o reator foi operado numa faixa ideal para crescimento dos microrganismos.

A variação da alcalinidade total do afluente e efluente, durante os meses de pesquisa, é apresenta na Figura 5.44. Com base na Figura 5.44 e nos resultados da Tabela 5.13, se observa que a alcalinidade total afluente e efluente, foi semelhante a faixa encontrada na literatura(COLLINS et al,1998). A partir do 112° dia até 148° dia de operação, se verifica uma predominância da alcalinidade afluente sobre a efluente.

Como se sabe, a alcalinidade total presente em reatores anaeróbios pode ser parcelada em alcalinidade bicarbonato, conhecida como de alcalinidade parcial(AP), e alcalinidade de ácidos voláteis, denominada de alcalinidade intermediária(AI) (RIPLEY et al,1986).

A Figura 5.45 mostra a variação da AP e AI para o afluente e efluente do reator. Nota-se que durante as fases 1, 2 e 3 a alcalinidade AP foi sempre superior a AI, tanto para o afluente como para o efluente, corroborando que a fermentação ácida não prevaleceu sobre a metanogênica durante todo o período de operação do reator.

O comportamento dos valores da relação AI/AP para o afluente e efluente são apresentados na Figura 5.46. Verifica-se que os valores médios de AI/AP, situaram-se entre 0,40 e 0,60, tanto para o afluente como efluente do reator. RIPLEY et al(1986) monitorando digestor anaeróbio alimentado com estervo de aves, verificou que AI/AP>0,3 é um bom indicador das condições de estresse processo. E NOUR(1996), durante a operação de reator anaeróbio compartimentado tratando esgoto sanitário, observou valores médios de AI/AP de 0,60 e 0,73 para o afluente e efluente. Fazendo relação desses valores com os valores encontrados nesse estudo, nota-se nítidas diferenças ocasionadas devido as características do resíduo(teor de sólidos) e procedimento analíticos empregados.

Nota-se ainda que os valores de AI/AP(Tabela 5.14) em média no efluente tiveram diminuição na relação AI/AP da fase 1 até a 3, isso possivelmente denota a conversão dos ácidos orgânicos em compostos que formam os substratos para produção de metano.

Com relação as concentrações de ácidos voláteis no afluente e efluente, observa-se na Figura 5.46, que durante todo o período experimental, estas se mantiveram próximas aos valores observados por outros autores(VAN HANDEEL & LETTINGA,1994; POVINELLI,1994) durante o período de partida. Quantitativamente, pode-se verificar, na Figura 5.47 e na Tabela 5.14, que a concentração dos ácidos voláteis diminui de um valor médio de 73 mgCaCO₃.L⁻¹ no afluente para 46 mgCaCO₃.L⁻¹ no efluente, indicando que o reator estava assimilando os ácidos voláteis produzidos durante a degradação da matéria orgânica.

Figura 5.43. Variação do pH do afluente e efluente do RALE_X.

Figura 5.44. Variação da alcalinidade total do afluente e efluente do $$\rm RALE_{\rm X}$.$

Figura 5.45. Variação da alcalinidade intermediária e parcial do afluente e efluente do $RALE_X$.

Figura 5.46. Variação da relação AI/AP para o afluente
e efluente do ${\rm RALE}_{\rm X}.$

Figura 5.47. Variação dos ácidos voláteis do afluente
e efluente do $$\rm RALE_{\rm X}$.}$

5.3.4. Desempenho na Remoção de Matéria Orgânica

A carga orgânica volumétrica(COV) aplicada no início da operação(primeira fase) do $RALE_X$ variou entre 1,81 e 9,37 kgDQ0.m⁻³d⁻¹. O efluente produzido até o 132° dia de operação apresentava consideráveis variações com relação a DQO_B, DBO_F e DBO_B conforme pode-se verificar observando o coeficiente de variação apresentado nas Tabelas 5.14 e 5.15.

Seguramente, o período de 132° dias de operação do RALE_x é considerado insuficiente para se obter regime de equilíbrio dinâmico aparente. Este fato pode ser atribuído a vários fatores, entre esses destaca-se como principal: a baixa taxa de crescimento das bactérias metanogênicas, as quais iram desenvolver-se no RALE_x, durante o decorrer do tempo devido a partida ter sido realizada sem inoculação do reator(SPEECE,1996).

No entanto observando as Figuras 5.48, 5.49 e 5.50, o período compreendido entre 139° e 148° dia de operação, verifica-se que o reator apresentou uma seqüência no aumento de remoção de matéria orgânica(em termos de DQO_B) atingindo valores de cerca de 67 e 71%, para COV desde 5,72 até 6,60 kgDQ0.m⁻³d⁻¹.

Durante a fase 2, a COV aplicada variou entre 4,86 a 11,31 kgDQO.m⁻³d⁻¹, mantendo-se em média 7,69 kgDQO.m⁻³d⁻¹, como pode ser observado na Tabela 5.19. Nesse período, verifica-se que o reator RALE_X apresentou pouca variação no desempenho em termos de DQO_B, DQO_F e DBO_B. A eficiência de remoção média da DQO_B, DQO_F e DBO_B de acordo com as Tabelas 5.14 e 5.15 foi cerca de 66%, 49% e 61%, respectivamente.

Na Fase 3, a COV apresentou valores desde 3,50 até $10,74 \text{ kgDQO.m}^{-3}\text{d}^{-1}$. E conforme pode-se verificar nas Tabelas 5.14 e 5.15, bem como nas Figuras 5.48, 5.49 e 5.50, as eficiências de remoções médias foram de 71% DQO_B , 76% DBO_B e 58% DQO_F .

Observa-se ainda que na presente fase, a COV imposta ao reator teve pequena redução, ocasionada pela implantação da unidade de desarenação ao sistema de tratamento, a qual retinha areia e detritos orgânicos (tais como: grãos de milho, feijão e arroz, gordura, óleos, plásticos, papeis e etc...).

Esse fato ocasionou a melhora da qualidade do efluente produzido pelo reator. Tendo em vista que a participação dos sólidos em suspensão na DQO_B que representavam, em média, 48% na fase 2, foi reduzida para aproximadamente 46% na fase 3.

Figura 5.48. Variação da eficiência e
 DQO_{B} do afluente e do efluente do RALE_X.

Figura 5.49. Variação da eficiência e
 DQO_{F} do afluente e do efluente do $\text{RALE}_{\text{X}}.$

Figura 5.50. Variação da eficiência e DBO_{B} do afluente e do efluente do $\text{RALE}_{\text{X}}.$

5.3.5.Desempenho na Remoção dos Sólidos

A evolução dos sólidos totais(ST) e dos sólidos totais voláteis(STV) no afluente e no efluente do reator, é mostrada nas Figuras 5.51 e 5.52.

Os sólidos totais do afluente, no início da operação (primeira fase) do reator, de acordo com a Figura 5.51 e a Tabela 5.15, variaram entre 932 e 410 mg.L⁻¹ com coeficiente de variação de 20%. Na fase 2, nota-se valores de 860 a 601 mg.L⁻¹, com coeficiente de variação de 11% e na fase 3, para o coeficiente de variação de 16% observam-se valores de 720 a 452 mg.L⁻¹.

No efluente podem-se notar valores de 726 a 208 mg.L⁻¹, na fase 1; 518 a 163 mg.L⁻¹, na fase 2 e de 377 a 183 mg.L⁻¹ na fase 3.

De acordo com a Figura 5.52 pode-se notar que os STV no afluente na fase 1, apresentaram valores bastantes oscilantes, variando desde 837 até 257 mg.L⁻¹. Nesse mesmo período, verifica-se comportamento semelhante do STV efluente do reator, o qual variou de 451 até 101 mg.L⁻¹. É possível ainda observar na Figura 5.52 que o STV afluente na fase 2 e 3 apresentou, respectivamente, valores de 638 a 324 mg.L⁻¹ e 577 e 271 mg.L⁻¹. No efluente, a Tabela 5.16 reporta valores de 451 a 101 mg.L⁻¹, para a fase 2, e de 246 até 65 mg.L⁻¹, na fase 3.

A média de remoção de ST durante a fase 1, 2 e 3, foi, respectivamente, de 40%, 50% e 52%. No caso dos STV observam-se remoções de 57% na fase 1; 53% na fase 2 e 60% na fase 3.

Figura 5.51. Variação da eficiência e ST do afluente e do efluente do ${\rm RALE}_{\rm X}.$

Figura 5.52. Variação da eficiência e STV afluente
e do efluente do $$\rm RALE_{\rm X}$.}$

Nas Figuras 5.53 e 5.54 são apresentadas, respectivamente, a variação dos sólidos suspensos totais e dos sólidos suspensos voláteis. Nessas duas figuras também pode ser observada a eficiência de remoção em relação a esses parâmetros.

Observando as Figuras 5.53 e 5.54 verifica-se que o comportamento da curva de eficiência de remoção em ambas figuras tem comportamento bastante similares. Além disso, nota-se que a qualidade do efluente produzido, com relação a presença de SST e SSV, variou com o tempo de operação, tendo apresentado grande variação durante a fase 1, conforme mostra o coeficiente de variação apresentado na Tabela 5.16.

Cabe aqui salientar que STRONACH et al(1987) avaliando a partida de reator de leito fluidizado, alimentado com substrato sintético, puderam constatar arraste de SST no efluente de 200 a 300 mg.L⁻¹. Ao correlacionar estes valores com os da Tabela 5.16 percebe-se que o RALE_x durante a fase 1 apresentou valores bastantes superiores aos encontrados por STRONACH et al(1987), contudo as fases 2 e 3 apresentam valores de SST efluentes similares ao verificado por esses autores.

Com base na Figura 5.54, é importante mencionar que a concentração de SSV no efluente diminuiu drasticamente da primeira para a segunda fase de operação, mais precisamente no 134° dia de operação do RALE_x, quando parece que o reator estabilizou-se em termos de SSV, isto pode denotar a possível aderência dos microrganismos ao suporte de carvão ativado granular.

A remoção de SST durante as fases 1, 2 e 3, foi respectivamente, em média de 58%; 77% e 75%. Enquanto os SSV atingiram em média remoções de 61% na fase 1, 78% na fase 2, e, 76% na fase 3. O aumento quantitativo nas eficiências médias de SST e SSV observado nas Tabelas 5.16 e 5.17 da pesquisa em questão apresentou tendência

crescente, que é o mesmo comportamento reportado por VAN HANNDEL & LETTINGA(1994) durante a partida de reator UASB, alimentado com esgoto sanitário, sem o uso de inóculo.

A Figura 5.55 mostra o comportamento dos sólidos sedimentáveis do afluente e do efluente do RALE_x. Com base na Figura 5.55 pode-se notar que as oscilações de sólidos sedimentáveis são bastantes significativas no afluente, pois no efluente do RALE_x estes sólidos a partir do 134° dia de operação mantêm-se inferior a $2ml.L^{-1}$, isto significa que o reator estava retendo satisfatoriamente os sólidos sedimentáveis.

A variação dos sólidos sedimentáveis no efluente do RALE_x, teve comportamento diferenciado do verificado por POVINELLI(1994), em reator compartimentado, e VAN HANNDEL & LETTINGA(1994), em reator UASB. Segundo comentam esses pesquisadores, no período inicial de partida, seus reatores funcionavam como decantador e só começaram a aparecer sólidos sedimentáveis no efluente a medida que a manta de lodo foi aumentado no reator. E no caso do RALE_x, os sólidos sedimentáveis no efluente apareceram logo no início da operação, tendo decrescido ao longo do período experimental.

Uma possível explicação para esse fato decorre da estratégia de partida adotada e diferenças nas configurações entre os reatores. A faixa de remoção de SS durante as fases 1, 2 e 3, foram respectivamente, em média, de 75,1%; 94,2% e 92%.

Figura 5.53.Variação da eficiência e SST do afluente e do efluente do RALE_x.

Figura 5.54.Variação da eficiência e SSV do afluente e do efluente do RALE_x.

Figura 5.55. Variação da eficiência e dos SS do afluente e do efluente do RALEx.

5.3.6.Nitrogênio e Fósforo no Reator Anaeróbio de Leito Expandido

A Figura 5.56 apresenta os resultados das amostras do afluente e do efluente do reator com relação ao nitrogênio total kjeldahl(NTK).

O NTK afluente, como mostra a Figura 5.55 e a Tabela 5.17, durante a fase 1 variou na faixa de 39 até 111 mg.L⁻¹, na fase 1, para a fase 2 observam-se teores de 66 a 111 mg.L⁻¹ e na fase 3 foram encontrados valores de 55 a 87 mg.L⁻¹. No efluente foram observados valores de 34 a 56 mg.L⁻¹, na fase 1; 31 a 48 mg.L⁻¹, na fase 2; de 26 a 36 mg.L⁻¹ na fase 3.

Os valores de NTK encontrados durante todo o período experimental para o afluente são similares aos reportados por HERRERA VALEJOS(1994), os quais variaram entre 43 e 105 mg.L⁻¹. Tal fato segundo HERRERA VALEJOS(1994), provavelmente se deve ao esgoto sanitário receber contribuições de descargas de efluentes industriais. SANZ & POLANCO(1990) reportam valores de 31 e 67 mg.L⁻¹ no efluente de reatores anaeróbios de leito fluidificado no período de partida, esses valores estão dentro da faixa encontra no efluente do $RALE_x$.

Pode-se notar ainda na Figura 5.56 que os teores de NTK no afluente foram bem superiores aos do NTK no efluente em todas as fases de monitoramento do reator. Além disso, é possível observar que o NTK efluente apresentou uma tendência declinante.

Como pode-se observar na Figura 5.57, na fase 1 o nitrogênio amoniacal afluente, variou de 28 a 64 mg.L⁻¹. Na fase 2 este oscilou entre 45 a 50 mg.L⁻¹, e na fase 3 notam-se valores desde 38 até 47 mg.L⁻¹. O efluente do RALE_x durante a fase 1 apresentou concentrações de nitrogênio amoniacal de 27 a 39 mg.L⁻¹, e nas fase 2 e 3 observam-se, respectivamente valores desde 29 a 40 mg.L⁻¹ e 21 a 29 mg.L⁻¹.O nitrogênio amoniacal efluente apresentou comportamento semelhante ao da Figura 5.56.

Na Figura 5.58 nota-se que o nitrogênio orgânico do afluente na fase 1 foi em média de 30 mg.L⁻¹, na fase 2, 36 mg.L⁻¹ e na fase 3, 26 mg.L⁻¹. No efluente obteve-se, em média, na fase 1, 12 mg.L⁻¹; na fase 2, 6 mg.L⁻¹ e na fase 3, 6 mg.L⁻¹. Através das Tabelas 5.17 e 5.18, notase que a eficiência de remoção de NTK, nitrogênio orgânico e amoniacal, respectivamente, foi, em média, 42%; 59% e 31% na fase 1, 49%; 82% e 24% na fase 2, e 57%; 78% e 44% na fase 3.

A observação exclusiva das Figuras 5.56 e 5.58, permitir concluir que o reator é capaz de remover nitrogênio satisfatoriamente. Contudo a Figura 5.57, demostra que o efluente do reator apresenta valores consideráveis da fração de nitrogênio amoniacal, assim pode-se inferir que o reator não se demostra eficiente na remoção de nitrogênio. Possivelmente a remoção elevada de nitrogênio orgânico seja devido a conversão deste em

124

nitrogênio amoniacal, e também uma eventual adsorsão no leito de CAG, e do nitrogênio amoniacal ser utilizado como nutriente para crescimento dos microrganismos (STRONACH et al,1986, FILED,1994).

Figura 5.56. Variação do NTK do afluente e do efluente do RALEX.

efluente do $RALE_x$.

A Figura 5.59 apresenta os valores de fósforo total do afluente e do efluente do reator obtidos nas fase 1, 2 e 3.

Na fase 1 o fósforo total no afluente e no efluente variaram, respectivamente, de 18 a 24 $mgPO_4^{3-}.L^{-1}$ e 14 a 20 $mgPO_4^{3-}.L^{-1}$. Na fase 2 verificou-se valores de 17 até 24 $mgPO_4^{3-}.L^{-1}$, para o afluente e de 21 a 11 $mgPO_4^{3-}.L^{-1}$ no efluente, para a última fase foram observados teores de fósforo total de 13 a 21 $mgPO_4^{3-}.L^{-1}$ no afluente do reator, e de 6 a 16 $mgPO_4^{-3}.L^{-1}$ no efluente.

A eficiência de remoção de fósforo total observada foi, em média, de 16% na fase 1, 23% na fase 2 e 39% na fase 3. A remoção de fósforo pode ser atribuído a incorporação do fósforo no tecido celular da biomassa ou eventual adsorção na matriz polimérica do biofilme conforme comenta CUBA TERAN(1995).

Figura 5.59. Variação do fós
foro total do afluente e do efluente do $$\rm RALE_{\rm X}$.}$

5.4.5.Composição do Biogás

A composição dos gases gerados no $RALE_X$ foi monitorada em termos do percentual do dióxido de carbono (CO₂) e metano (CH₄). Na Figura 5.60 observa-se a variação da composição do biogás durante o período experimental, e na Tabela 5.20, apresentam-se o resumo estatístico durante as fases 1, 2 e 3.

CAMPOS(1989) em estudo da remoção de DQO e de nitrogênio em sistema de composto por três reatores de filme fixo em série, obteve no reator anaeróbio de leito expandido valores de metano e dióxido de carbono, respectivamente, entre 42,7% e 64,15, e 31,9% e 50%. Esses valores, no caso do metano, são bastante similares aos dados da Tabela 5.20, no entanto os valores de dióxido de carbono encontrado no biogás são inferiores ao reportado por CAMPOS(1989).

		間和不同感謝的	FA	SES DE	OPER	AÇAO		
				Market Ba	2	3		
PARÂMETROS		%CH4	%CO2	%CH4	%CO2	%CH4	%CO2	
	n	23	23	10	10	8	8	
	máx	67	36	69	10	60	12	
Percentual	x	52	8	59	7	54	8	
	mín	38	2	53	5	39,0	4,7	
	σ	9,1	8,8	5,8	1,5	7,4	2,7	
	σ/x(%)	17	108	10	21	14	33	

Tabela 5.20.Composição percentual do biogás no RALEx.

Nota-se claramente na Figura 5.60 o aumento do percentual de metano e a estabilização do percentual de dióxido de carbono. O aumento no percentual de gás metano com o tempo de operação do reator constata o desenvolvimento de bactérias metanogênicas.

Pode-se notar na Figura 5.60, que entre o 139° e 148ºdia de operação do reator, ocorreu a estabilização da produção de metano em torno de 60% e aliado a esse fato percebesse o aumento crescente na remoção de matéria orgânica, bem como a melhoria da qualidade do efluente produzido pelo reator, com base nisso pode-se inferir que o período de partida do reator foi finalizado. No entanto, o regime equilíbrio dinâmico aparente no tocante à qualidade do efluente, aconteceu à partir do 202ºdia de operação, pois observam-se valores, médios, de 207mgO₂.L⁻¹ de DQO e 28 mg.L⁻¹ de SST para o efluente do reator, valores esses julgados satisfatórios nesse estudo.

Na segunda fase de operação do reator, precisamente a partir do 174° dia de operação, nota-se significativos aumentos no percentual, os quais chegaram a valores de cerca de 69,4% de metano.

Cabe salientar que na Figura 5.60, durante a fase 3, observa-se uma queda no percentual de gás metano em relação a fase 2, tal fato se deve provavelmente a presença de lodo flotando no dispositivo de separação de fases sólido-líquido-gás, esse fato é bastante relatado na literatura (HERRERA VALEJOS, 1997; POVINELLI, 1994; e VAN HANDEEL & LETTINGA, 1994).

Figura 5.60.Composiçãodo efluente gasoso do RALE_X(%CO₂ e %CH₄).

5.3.7. Caracterização ao longo da altura do RALE_{X}

Nas Tabelas 5.21, 5.22 e 5.23 são apresentados os resultados de análises e determinações relativas ao perfil de amostras coletadas a 3,0 m; 6,0 m; 8,5 m e 11,0 m acima da base do reator anaeróbio de leito expandido.

De maneira a facilitar a apresentação e discussão dos resultados referentes ao perfil de amostras coletadas ao longo da altura do reator, preferiu-se convencionar estas como: $P_{3,0}$, $P_{6,0}$, $P_{8,5}$ e $P_{11,0}$.

Cabe mencionar que os perfis de concentração, ao longo do reator, referem-se a parte líquida, tendo sido realizados no sentido de se observar a evolução destes parâmetros ao longo da altura do RALE_x.

		FASES DE OPERAÇÃO											
PARÂMETROS		1						2		3			
		P ₃	P ₆	P _{8,5}	P ₁₁	P ₃	P ₆	P _{8,5}	P ₁₁	P ₃	P ₆	P _{8,5}	P ₁₁
	n	26	26	26	26	10	10	10	10	11	11	11	11
	máx	25	25	25	25	26	26	27	26	29	30	29	29
Temperatura	х	21	21	21	21	24	24	24	23	28	28	28	27
(⁰ C)	mín	18	19	19	19	22	22	22	22	26	26	26	26
	σ	1,81	1,63	1,63	1,62	1,42	1,58	1,66	1,52	0,97	1,14	0,97	1,09
	$\sigma/x(8)$	9	8	8	8	6	7	7	6	4	4	4	4
	n	19	19	19	19	9	9	9	9	11	11	11	11
На	máx	7,40	7,35	7,45	7,30	7,15	7,60	7,05	7,25	7,10	7,00	7,00	7,20
	mín	6,70	6,80	6,75	6,65	6,80	6,80	6,75	6,70	6,80	6,70	6,70	6,70
	n	18	18	18	18	9	9	9	9	11	11	11	11
Alcalinidade	máx	252	268	263	263	440	510	225	215	453	525	196	196
Total	ж	196	189	183	185	227	223	184	185	196	198	162	161
(mg CaCO ₃ . L^{-1})	mín	67	63	63	60	150	135	130	135	144	139	118	129
	σ	47	50	44	45	89	112	30	27	88	110	22	23
	σ/x(%)	24	26	24	24	39	50	16	15	45	56	14	15
	n	18	18	18	18	9	9	9	9	11	11	11	11
Alcalinidade	máx	175	180	175	155	275	375	129	125	283	386	118	129
Parcial	ж	119	111	105	106	138	135	105	104	131	125	100	103
$(mq C_2CO_1 I^{-1})$	mín	35	34	32	29	80	80	75	70	98	88	82	82
	G	36	37	33	30	56	91	16	19	53	88	10	16
	σ/x(%)	30	33	31	29	41	68	16	19	41	70	10	16

Tabelas 5.21, Número de amostragens, valores máximos, médios e mínimos, desvio padrão e coeficiente de variação dos pontos de coleta de amostra ao longo da altura do RALE_x.

130

			Ţ.		Alabant Ne		FASES	DE O	PERAÇÃO	(G. 1997)			
PARÂMETROS		Marsh 1999		1		100 2		2				3	中的人物的
		P ₃	P ₆	P _{8,5}	P ₁₁	P ₃	P ₆	P8,5	P ₁₁	P ₃	P ₆	P8,5	P ₁₁
	n	18	18	18	18	9	9	9	9	11	11	11	11
Alcalinidade	máx	100	103	98	103	211	135	100	95	453	139	88	88
Intermediária	х	73	74	74	75	103	88	79	81	196	73	62	58
$(mg CaCO_3, L^{-1})$	mín	28	28	24	31	40	55	55	65	144	46	21	15
	σ	18	20	20	19	56	25	16	12	88	26	19	20
	σ/x(%)	25	27	28	26	54	28	21	15	45	35	31	34
	n	19	19	19	19	9	9	9	9	11	11	11	11
Ácidos	máx	95	83	98	98	95	106	98	89	112	112	86	112
Voláteis	х	71	71	71	69	74	70	74	70	73	71	65	65
$(mg CaCO_3, L^{-1})$	mín	43	52	43	46	54	47	52	54	35	46	49	40
	σ	10,90	9,49	13,61	12,04	16,96	17,25	14,06	11,54	20,38	19,51	13,75	20,66
	σ/x(%)	15	13	19	17	23	25	19	17	28	28	21	32
	n	18	18	18	17	10	10	10	10	11	11	11	11
	máx	13240	10000	14160	12780	20875	16600	18340	17520	10200	11440	13920	11200
DQO	х	6843	6888	8643	7462	12651	9949	12648	11336	6682	6913	7508	6599
Bruta	mín	2720	3620	3180	3230	5100	3960	4180	4240	2640	5140	2450	1850
$(mg O_2.L^{-1})$	σ	2846	1937	3149	2883	4627	4377	4887	4741	2152	1934	3085	2622
	σ/x(%)	42	28	36	39	37	44	39	42	32	28	41	40
	n	18	18	18	18	10	10	10	10	11	11	11	11
DQO	máx	1280	760	1030	760	791	659	661	733	286	250	228	229
Filtrada	х	291	268	312	260	377	346	351	337	169	158	154	135
$(mg O_2.L^{-1})$	mín	80	70	134	106	234	211	204	215	74	66	63	21
	σ	262	146	236	134	199	149	149	151	67	51	54	69
	$\sigma/x(8)$	90	55	76	51	53	43	43	45	40	32	35	52

Tabelas 5.22. Número de amostragens, valores máximos, médios e mínimos, desvio padrão e coeficiente de variação dos pontos de coleta de amostra ao longo da altura do RALE_x.

131

			1		in the	<u> </u>	FASES	DE O	PERAÇÃO				
PARÂMETROS				1			1999. a Gillion	2	i han in the second			3	N
		P ₃	P ₆	P _{8,5}	P ₁₁	P ₃	P ₆	Pa,5	P ₁₁	P3	P ₆	P _{8,5}	P ₁₁
	'n	20	20	20	20	9	9	9	9	9	9	9	9
Sólidos	máx	6467	6417	7243	7085	6970	7752	8779	8141	9948	5975	7275	6468
Totais	ж	4253	4555	5410	4728	5554	5058	5466	4840	4728	3698	4107	3839
$(mg.L^{-1})$	mín	2407	2782	3317	2597	1679	2580	2335	1512	2675	282	281	258
	σ	1266	1026	1055	1159	1599	2079	2336	2478	2230	1716	1910	1711
	σ/x(%)	30	23	19	25	29	41	43	51	47	46	46	45
	'n	20	20	20	20	9	9	9	9	9	9	9	9
Sólidos	máx	4967	4842	5643	5559	5476	5853	6510	6021	8575	4391	5278	4661
Totais	ж	3240	3438	4113	3593	4167	3760	4137	3647	3514	2659	2970	2758
Voláteis	mín	1905	2117	2634	2013	1318	1980	1709	1193	1951	141	147	112
$(mg.L^{-1})$	σ	963	758	801	872	1177	1536	1772	1823	2028	1287	1420	1274
	σ/x(%)	30	22	19	24	28	41	43	50	58	48	48	46
	'n	19	19	19	19	9	9	9	9	10	10	10	10
Sólidos	máx	6748	7200	8060	7010	6748	7200	8060	7010	5560	5500	6500	6150
Suspensos	ж	4063	4212	4751	4124	5334	4561	5185	4360	3604	3286	3566	3433
Ţotais	mín	2030	2086	407	1059	3110	2714	2332	1059	1508	80	68	92
$(mg.L^{-1})$	σ	1421	1312	1587	1559	1122	1606	1899	2082	1250	1509	1772	1698
	σ/x(%)	35	31	33	38	21	35	37	48	35	46	50	49
	p	19	19	19	19	9	9	9	9	10	10	10	10
Sólidos	máx	5418	5380	6040	5230	5418	5380	6040	5230	3963	4128	4971	4560
Suspensos	ж	3111	3196	3622	3141	4036	3410	3928	3294	2599	2387	2618	2532
Voláteis	mín	1672	1686	347	855	2450	2204	1873	855	1169	56	56	88
$(mg.L^{-1})$	σ	1051	983	1193	1160	879	1148	1377	1533	883	1114	1336	1235
	<u>σ/x(%)</u>	34	31	33	37	22	34	35	47	34	47	51	49
	n	19	19	19	19	10	10	10	9	10	10	10	10
Sólidos	máx	240	210	250	250	220	260	230	240	240	260	250	250
Sedimentáveis	x	142	153	182	163	180	157	161	175	116	110	115	129
(ml.L')	mín	80	100	90	110	150,0	70,0	44,0	20,0	40	1	0	0
	σ	43	37	45	38	24	62	68	89	58	71	58	67
	σ/x(%)	30	24	25	23	13	40	42	51	50	65	51	52

Tabelas 5.23.Número de amostragens, valores máximos, médios e mínimos, desvio padrão e coeficiente de variação dos pontos de coleta de amostra ao longo da altura do RALE_x.

Capítulo

. . A Figura 5.61 mostra os valores máximos e mínimos do pH obtidos ao longo da altura do reator, nas diferentes fases desta pesquisa.

Figura 5.61.Valores de pH ao longo da altura do $RALE_X$.

Observando a Figura 5.61 pode-se notar que os valores mínimos de pH obtidos durante toda a etapa experimental mantiveram-se na faixa de 6,65 a 6,70. Esses valores são semelhantes ao reportado por CAMPOS(1989) o qual pode verificar valores desde 6,60 até 6,90 em reator anaeróbio de leito expandido.

Na Figura 5.61 é possível notar que na fase 1, os valores de pH máximo e mínimo se encontram bastante espaçados, já nas fases 2 e 3 verifica-se gradativa diminuição entre a faixa dos valores máximos e mínimos de pH nos pontos P_3 ; P_6 ; $P_{8,5}$ e P_{11} .

A Figura 5.62 apresenta os valores médios da alcalinidade total, enquanto a Figura 5.63 mostra os valores de alcalinidade parcial e intermediária, respectivamente.

Figura 5.62. Valores médios de alcalinidade total ao longo da altura do $\mbox{RALE}_{\rm X}.$

Com base nos resultados da Tabela 5.21 e na Figura 5.62 observa-se aumento médio da alcalinidade total, nos pontos $P_{3,0}$ e $P_{6,0}$, da fase 1, para a fase 2. Esse aumento de alcalinidade comprova o efeito de "geração" de alcalinidade no reator e conseqüente tamponamento do sistema. Aspecto semelhante foi observado por POVINELLI(1994), em trabalho no qual estudou a hidrodinâmica e partida de reator anaeróbio com chicanas tratando esgoto sanitário, onde esta autora comenta sobre o aumento de alcalinidade entre as câmaras do reator.

No ponto $P_{8,5}$ e $P_{11,0}$ como mostra a Figura 5.62 a alcalinidade total apresentou comportamento semelhante durante todo o período de monitoramento.

Figura 5.63. Valores médios de alcalinidade parcial e intermediária ao longo da altura do $\mbox{RALE}_X.$

A partir dos dados das Tabelas 5.21 e 5.22 e da Figura 5.63 verifica-se que durante toda etapa experimental os valores médios da alcalinidade parcial foram superiores aos de alcalinidade intermediária.

Nota-se também que na Figura 5.63 em todos os pontos ao longo da altura do reator, ocorreu aumento médio na alcalinidade devida a ácidos voláteis, possivelmente os sólidos orgânicos sedimentáveis acumulados no interior do reator começaram a ser solubilizados o que acarreta a liberação de ácidos voláteis dissolvidos para a fase líquida os quais serão posteriormente convertidos em metano e dióxido de carbono.

A Figura 5.64 mostra os valores de médios de ácidos voláteis para os pontos ao longo da altura do reator.

Figura 5.64. Valores médios de ácidos voláteis ao longo da altura do ${\rm RALE}_{\rm X}.$

Os dados da Figura 5.64 confirmam a tendência no aumento médio dos ácidos voláteis da primeira para a segunda fase, como também pode ser observado a diminuição média da fase 2 para fase 3, este fato só vem a corrobora com o exposto anteriormente.

Nas Figuras 5.65 e 5.66 apresentam-se, respectivamente, os dados referentes ao valores médios dos sólidos suspensos voláteis e sólios sedimentáveis ao longo da altura do reator anaeróbio de leito expandido.

De acordo com os dados da Tabela 5.23 e da Figura 5.65 verifica-se que na fase 1 os sólidos suspensos voláteis em todos os pontos ao longo da altura do reator atingiram valores superiores a 3000 mg.L⁻¹, na fase 2 é possível notar nos pontos $P_{3,0}$ e $P_{8,5}$ valores acima de 3500 mg.L⁻¹, enquanto nos pontos $P_{6,0}$ e $P_{11,0}$ é possível observar valores acima de 3000 mg.L⁻¹. Na terceira fase nota-se em todos os pontos valores acima de 2000 mg.L⁻¹.

Figura 5.65.Valores médios de SSV ao longo da altura do $\text{RALE}_{\text{X}}.$

Figura 5.66. Valores médios de SS ao longo da altura do $\text{RALE}_{\text{X}}.$

Capítulo 5. Resultados e Discussão

A observação da Figura 5.66 mostra que os sólidos sedimentáveis em média durante a primeira fase atingiram valores superiores a 140 ml.L⁻¹, tendo o $P_{8,5}$ apresentado o maior de sólidos sedimentáveis aproximadamente 182 ml.L⁻¹.

Na segunda fase o $P_{3,0}$ foi o ponto que reportou o maior valor de sólidos sedimentáveis cerca de 180 ml.L⁻¹, ainda nessa fase é possível perceber um aumento dos valores médios de sólidos sedimentáveis em relação a fase anterior.

A terceira fase de operação do reator é a que apresenta os menores valores de sólidos sedimentáveis durante toda o período experimental. Os valores médios de sólidos sedimentáveis nos pontos $P_{3,0}$; $P_{6,0}$ e $P_{8,5}$ estiveram próximos a 100 ml.L⁻¹, enquanto o $P_{11,0}$ é que teve o maior valor de sólidos sedimentáveis, cerca de 129 ml.L⁻¹.

5.4.Estudo do Biofilme Anaeróbio

5.4.1. Exames microscópicos e quantificação da biomassa aderida

No presente trabalho não se propôs estudo microbiológico detalhado do desenvolvimento do biofilme formado na câmara de reação do reator anaeróbio de leito expandido, contudo através das observações microscópicas, foi possível inferir sobre a morfologia e distribuição das populações bacterianas na superfície e no interior do carvão ativado granular.

Tendo em vista a impossibilidade de apresentar todas as fotos disponíveis, será dada ênfase àquelas fotos que permitam o acompanhamento seqüencial do desenvolvimento biofilme, observado durante o período de operação do reator.

138

Os exames de microscópica eletrônica de varredura permitiram observar a colonização e a distribuição dos microrganismos na superfície do CAG, enquanto a microscópica óptica de contraste de fase e fluorescência permitiram o exame imediato da morfologia dos microrganismos e presença de bactérias anaeróbias após o desprendimento do CAG.

Nas Figuras 5.67 e 5.68, referente a amostra do 16° dia de operação, foi possível observar o início de formação do biofilme. O qual apresentou distribuição pontual e não homogênea, de microrganismos semelhantes a bacilos delgados e cocos próximo aos poros e cavidades da superfície CAG.

Figura 5.67. MEV da superfície Figura 5.68. MEV da superfície do CAG no 16^{0} dia.

A observação das Figuras 5.69 e 5.70, referente ao 37° dia de operação mostra colonização pouco intensa dos microrganismos na superfície do carvão, mas verifica-se a presença de bactérias de diferentes tipos morfológicos. Os principais tipos morfológicos presentes foram: filamentos longos e curtos de bacilos.

Figura 5.69. MEV da superfície Figura 5.70. MEV da superfície do CAG no 37^{0} dia. do CAG no 37^{0} dia.

Nas Figuras 5.71 e 5.72, referente ao 141° dia de operação, pode-se notar até o final do experimento colonização cada vez mais intensa dos microrganismos na superfície do CAG, bem com a predominância de bactérias semelhantes ao gênero *Methanosaeta sp(Methanotrix sp)*.

Esse gênero de bactérias também é reportado por CAMPOS(1989), FANG & CHUI(1994) e ARAUJO(1995) durante a operação de reatores anaeróbios de leito expandido.

Figura 5.71. MEV da superfície do CAG no 141^{0} dia.

Figura 5.72. MEV da superfície do CAG no 141^{0} dia.

Na Figura 5.73 e na Figura 5.74, são apresentadas, respectivamente, as fotomicrografias dos debris celulares do material biológico desprendido e após o rompimento celular químico.

do material de fase biológico desprendido por sonicação (objetiva 100; ocular10; zoom de 1,25 ampliação fotográfica).

Figura 5.73. Microscopia de contraste Figura 5.74. Microscopia de contraste do material biológico após rompimento químico(objetiva 100; celular ocular10; zoom de 1,25 ampliação fotográfica).

Como pode-se observar na Figura 5.73, juntamente com o material de desprendido da biomassa aderida nota-se alguns fragmentos de CAG, e na amostra que recebeu o rompimento celular(Figura 5.74)não é possível morfologia microrganismos identificar qualquer de demonstrando o sucesso deste procedimento para dosagem de proteína total.

As Figuras 5.75 até 5.78 mostram os diferentes tipos de morfologias de microrganismos referente aos exames de microscopia de contraste de fase e fluorescência. E na Tabela 5.24 é apresentada a freqüência com que apareceram os diferentes tipos de morfologias durante o período experimental dessa pesquisa.

Figura 5.75. Microscopia de contraste de Figura 5.76. Microscopia de fluorescência bacilos delgados fase de longos(objetiva 100; ocular10; zoom de ocular10; 1,25 ampliação fotográfica).

e de bacilos florescentes(objetiva 100; zoom de 1,25 ampliação fotográfica).

de fase de bacilos semelhantes a fase de protozoário(objetiva methanosaeta (objetiva 100; ocular 10; ocular10; zoom de 1,25 ampliação fotográfica).

Figura 5.77. Microscopia de contraste Figura 5.78. Microscopia de contraste de 100; zoom de 1,25 ampliação fotográfica).

Tabela	5.24	.Morfologia	de es	pécies	de	bactérias.
--------	------	-------------	-------	--------	----	------------

Morfologia	Freqüência						
Agrupamento de bacilos	bastantes indivíduos, aumentando sua						
delgados e longos	presença ao longo do período						
(Figura 5.75)	experimental.						
Bacilos fluorescentes	poucos indivíduos no início da operação						
(Figura 5.76)	do reator, aumentando sua presença						
	durante período experimental.						
Bacilos semelhantes a	aumentado ao longo do período						
Methanosaeta sp(Figura 5.77)	experimental.						
Protozoário	presença moderada durante todo o						
(Figura 5.78)	período de operação do reator.						

Na quantificação da biomassa aderida ao suporte de CAG do reator anaeróbio de leito expandido, utilizou-se a determinação de proteína total como parâmetro de crescimento celular expresso em miligramas de soro albumina bovina por litro.

Na Tabela 5.25 são apresentadas as fases de operação do reator no período em que se quantificou a biomassa aderida, e na Figura 5.79 são mostrados os dados da concentração de proteína total em realização ao período de operação do reator anaeróbio de leito expandido.

Fase	TO (dia)	Proteína Total (mgSAB.L ⁻¹)	COV (kgDQO.m ³ .d ⁻¹)
	2	55	3,45
	9	22	2,71
1	16	30	-
	23	166	1,81
	37	96	5,08
	114	254	7,79
	134	182	6,32
	153	99	9,06
2	162	200	6,38
	178	218	5,69
	199	178	
	220	152	6,61
3	225	196	5,71
	230	395	6,36
	240	302	6,05

Tabela 5.25. Quantificação de proteína total.

Observando a Figura 5.79, pode-se verificar que até o 16° dia de operação da fase 1, os valores de biomassa aderida foram inferiores a 55 mgSAB.L⁻¹, no entanto do 23° dia ao 134° dia de operação, pode-se notar valores de biomassa aderida acima de 90 mgSAB.L⁻¹, atingindo valor máximo de 254 mgSAB.L⁻¹ no 114° dia de operação quando a COV foi de 7,79 kgDQOm³.d⁻¹. Na fase 2 observa-se a diminuição da concentração de biomassa(99 mgSAB.L⁻¹) quando a COV aplicada ao reator aumentou intensamente(9 kgDQOm³.d⁻¹). Além disso, notarse que no período de 162 à 178ºdia de operação, para cargas volumétricas acima de 5 kgDQOm³.d⁻¹, a concentração de biomassa chegou a valores acima de 200 mgSAB.L⁻¹.

Na terceira fase quando a carga orgânica volumétrica manteve-se próxima a 6 kgDQO.m³.d⁻¹, os valores de biomassa aderida foram superiores a 150 mgSAB.L⁻¹, atingindo no 230° dia de operação o maior valor(395 mgSAB.L⁻¹) durante o período experimental.

JAHN & NIELSAN(1995), em trabalho no qual quantificaram a proteína(método de Lowry) em biofilme proveniente de rede coletora de esgoto sanitário, puderam constatar valores de proteína entre 400 mg.L⁻¹ até 820 mg.L⁻¹, esses valores são bastante superiores ao encontrado nessa pesquisa. A diferença entre os valores de proteína encontrados e o existente na literatura, pode ser devido ao método de amostragem, diferenças no método de extração de proteína e composição do biofilme.

6. CONCLUSÕES E RECOMENDAÇÕES

Com base nos resultados fornecidos por ensaios, análises e determinações realizados ao longo do período experimental deste trabalho foram obtidas as seguintes conclusões:

- Os ensaios granulométricos e a determinação realizada por meio de sistema computadorizado de análise de imagens indicaram que entre as partículas de poliamida, PBT e CAG, estas últimas são as que apresentam maior variação guanto ao formato e tamanho.

- As velocidades mínimas de fluidificação experimental e teórica para as partículas de poliamida, PBT e CAG foram respectivamente, 24 m.h⁻¹; 43 m.h⁻¹ e 55 m.h⁻¹; e 19 m.h⁻¹; 35 m.h⁻¹; e 63 m.h⁻¹. Os resultados entre as velocidades experimental e teórica apresentam grandes diferenças. Isso demonstra que, antes do projeto de reatores de leito fluidificado, é necessário conhecer a velocidade mínima de fluidificação do leito de partículas, pois, caso contrário, erros acentuados poderão ser cometidos, especialmente no momento do dimensionamento dos equipamentos de recalque e na definição da velocidade ascensional da massa líquida.

- Os ensaios de presença de microrganismos realizados durante 21 dias, demonstraram que a evolução dos microrganismos nas partículas de poliamida, PBT e CAG ocorreu preferencialmente próxima a poros e cavidades da superfície externa dessas partículas. Além disso, nos suportes de poliamida e PBT verificou-se colonização de microrganismos de forma isolada e sem agrupamento, enquanto o CAG teve distribuição de microrganismos não homogênea na sua superfície, mas com agrupamentos.

- A caracterização do material suporte a ser empregado no reator anaeróbio de leito expandido, demonstrou que entre os três tipos de partículas, o CAG é o que apresentou melhor capacidade para reter os microrganismos, bem como, dificuldade de ser arrastado quando do emprego de velocidades ascensionais elevadas.

- A estratégia de partida aplicada ao reator anaeróbio de leito expandido, para condições com afluente bastante. variável, demonstrou que é possível realizar a partida desses reatores sem inoculação, apesar do longo período requerido para a sua partida, cerca de 5 meses. Dessa forma, acredita-se que os reatores operados sob condições semelhantes e que não tiveram condições de serem inoculados terão partida garantida.

- O fato de não se realizar inoculação no reator anaeróbio de leito expandido, fez com que somente entre o 139° dia e 148° dia de operação, o reator tivesse atingido aparentemente o regime de equilíbrio dinâmico aparente, pois nesse período a remoção DQO foi cerca de 67% e 71%, para carga orgânica afluente superior a 5,50 kgDQOm³d⁻¹, bem como a composição do efluente gasoso manteve-se próxima a 60% em termos de metano. No entanto, o regime de equilíbrio dinâmico aparente no tocante à qualidade do efluente produzido pelo reator, aconteceu à partir do 202° dia de operação, quando então o efluente passou a apresentar valores, médios, de 207 mgO₂.L⁻¹ de DQO₈ e 28 mg.L⁻¹ de SST, os quais foram julgados satisfatórios nesse estudo. - O desempenho do reator com relação à eficiência de remoção de DQO foi satisfatório, alcançando valor máximo de aproximadamente 82%, no 188° dia de operação, durante a fase 2, com tempo de detenção hidráulico de 3,2 h e taxa de carregamento orgânico cerca de 11 kgDQOm³d⁻¹;

- A remoção de DBO no reator variou entre 33%(mínima) e 86%(máxima), e ocorreram, respectivamente, nas fases 1 e 3;

- O reator demonstrou eficiência significativa na remoção de sólidos suspensos totais apresentando valores que variaram, em média, de 58% a 77%. Esses valores são considerados bons para reatores que tratam esgotos sanitários;

- A partir 134° dia de operação o reator proporcionou, normalmente, efluente com valores de sólidos sedimentáveis inferior a 2 ml.L⁻¹;

- O reator anaeróbio de leito expandido durante o período experimental apresentou eficiência de remoção de NTK, nitrogênio orgânico e amoniacal, respectivamente, em média, de 42%; 59% e 31% na fase 1, 49%; 82% e 24% na fase 2, e 57%; 78% e 44% na fase 3. A pesar dos valores elevados de remoção de NTK e nitrogênio orgânico, o efluente do reator apresenta valores consideráveis da fração de nitrogênio amoniacal(21 a 40 $mg.L^{-1})$, demonstrando que o reator não é capaz de remover satisfatoriamente nitrogênio. Possivelmente a remoção elevada de nitrogênio orgânico seja devido a conversão deste em nitrogênio amoniacal, e também uma eventual adsorsão no leito de CAG, e do nitrogênio amoniacal ser utilizado como nutriente para crescimento dos microrganismos.

- Com relação ao fósforo o reator apresentou eficiência de remoção, em média, de 16% na fase 1, 23% na fase 2 e 39% na fase 3. A remoção de fósforo decorre da possível incorporação do fósforo no tecido celular da biomassa ou eventual adsorsão no leito de carvão.

- O reator se apresentou viável no tratamento de esgotos sanitários, já que o mesmo apresentou boa remoção de matéria orgânica e sólidos, além de se manter em pH próximo do neutro durante todo o período experimental, evitando a acidificação do reator, tal fato se deve a alcalinidade intermediária se manter numa média superior a 100 mgCaCO₃.L⁻¹ e ácidos voláteis entre 65 mgCaCO₃.L⁻¹ e 74 mgCaCO₃.L⁻¹;

- O ensaio proposto neste trabalho, para determinação da biomassa aderida no leito de carvão ativado granular é um recurso adicional que pode facilitar e aprofundar o estudo do desenvolvimento do biofilme em reator anaeróbio de leito expandido que utilizam o carvão como suporte.

Com base na experiência adquirida durante o período de operação do sistema de tratamento e na avaliação os resultados, pode-se recomendar:

- As tomadas utilizadas para o controle da altura do leito do reator devem ser reestudadas com o objetivo de facilitar a verificação do nível do leito. Prever futuramente dispositivo de remoção da camada de escuma formada na câmara de sedimentação de reatores anaeróbios de leito expandido;

 Efetuar estudos com traçadores para se verificar aspectos relacionados a hidrodinâmica de reatores anaeróbios de leito expandido;

- Investigar a influência da utilização de inóculo na partida de reatores anaeróbios de leito expandido;

- Com o procedimento de desprendimento da biomassa do leito de CAG, estudar o fenômeno de estratificação devida as diferenças nas biopartículas ao longo da altura do reator, bem como, realizar-se caracterização mais completa do biofilme formado em reator de leito expandido, de maneira a se ter conhecimento mais aprofundado que possa elucidar os vários aspectos do comportamento e desempenho dessa configuração de reator anaeróbio;

- Seria interessante pesquisar a remoção de nutrientes através da combinação de processos físico-químico ou biológico, e remoção de patogênicos no efluente do reator por meio de sistema de radiação ultra violeta;

- Realizar estudos sobre o tratamento e destino do lodo produzido no reator anaeróbio de leito expandido;

7. REFERÊNCIAS BIBLIOGRÁFICAS

- ALLEN, T. (1994). Particle Size Measurement. 4.ed. New York, Chapmen & Hall., 804p.
- ANDREWS, G. & TRAPASSO, R. (1985) The Optimal Design of Fluidized bed Bioreactors. Journal of Water Pollution Control Federation, v.57, n.2, 143-150p.
- APHA, AWWA and WPCF (1992) Standard Methods for the Examination of Water and Wastewater, 18ª ed., Washington, D.C., Estados Unidos.
- ARAKI,A. & HARADA,H.(1994) Population Dynamics of Methanogenic Biofilm Consortium During a Starting-up Period of Anaerobic Fluidized Bed Reactor. Water Science Technology, Vol. 29, N.10-11, 361-368p
- ARAÚJO, J. C. (1995) Caracterização e evolução do biofilme em Reator Anaeróbio de Leito Fluidificado alimentado com Esgoto Sanitário Sintético. São Carlos, 150 p. Dissertação (Mestrado) Escola de Engenharia de São Carlos, Universidade de São Paulo.
- BARROS NETO, B., SCARMINIO, S.I., BRUNS, E.R.(1996) Planejamento e otimização de experimentos. 2.ed. Campinas, SP, Editora Unicamp, 297p.
- BHADURI,S. & DEMCHICK,P.H.(1983) Simple and Rapid Method For Distruption of Bacteria for Protein Studies. Applied Enviromental Microbiology, 941-943p.

- BORJA, R. & BRANKS, C. J.(1995) Response of an Anaerobic fluidized bed reactor trating ice-cream wastewater to organic, hydraulic, temperature and pH shocks. Journal of Biotecnology, Vol.39 251-259 p.
- BRANDRUP, J. & IMMERGUT, E.H. (1989) *Polymer Hanbook.*, 3.ed. Jonh Wiley & Sons Inc., v101-106p; v109-116p.
- CAMPOS, J. R.(1989) Remoção de DQO e de Nitrogênio em um Sistema de Três Reatores Biológicos de Filme Fixo em Série. São Paulo, Tese (Livre Doc.) Universidade de São Paulo-Escola de Engenharia de São Carlos-Departamento de Hidráulica e Saneamento,295p.
- CAMPOS, J. R.(1994) Alternativas para tratamento de esgotos e pré-tratamento de águas para abastecimento. Ed.Consórcio Intermunicipal das Bacias dos rios Piracicaba e Capivari, Americana-SP, 67p.
- CHERNICHARO, C.A.L. (1997) Princípios do Tratamento Biológico de Águas Residuária - Reatores anaeróbios. Departamento de Engenharia Sanitária e Ambiental, v.5. UFMG, 245p.
- CLARK,R.M. & JR. LYKINS, B.W.(1991). Granular Activated Crabon: design, operation and cost. Michigan, Lewis Publishers, Inc.
- CLEASBY, J.L. & FAN, K.(1981) Predicting Fluidization and Expansion of Filter Media. Journal of the Environmental Engineering Division, 107(6), pp 455-471.
- CLEASBY, J. (1990) Filtration Cap. 8, 455-560p In: Water Quality and treatment: a handbook of community water supplies. 4.ed., McGraw-Hill.

- COOLINS, G.A., THEIS, T.L., KILAMBI, S., HE, L. e. PAVLOSTATHINS, G.S. (1998) Anaerobic Treatment of Low-Strength Domestic Wastewater Using an Anaerobic Expanded Bed Reactor. Journal of Environmental Engineering, V.124, N.7, 652-659p
- COOPER, P.F. & ATKINSON(1981) Biological Fluidised Bed Treatment of Water and Wastewater. New York, Water Research Centre., 410p.
- CUBA TERÁN, F. J.(1995) Tratamento de Sintético Empregando Reator Anaeróbio de Leito Fluidificado: Desempenho do Reator e Estudo do Biofilme.. São Carlos, 234 p. Tese de Doutorado. Escola de Engenharia de São Carlos, Universidade de São Paulo.
- D'AVILA,J.S. & SAMPAIO FILHO, R.(1980) Sistemas Particulados-Tecnologia das operações sólido-fluido. UFS.,508p.
- DI BERNARDO, L.(1993) Métodos e Técnicas de Tratamento de Água. Rio de Janeiro, Ed. ABES, Vol. 2.
- DILALLO,R. & ALBERTSON, O. E. (1961) Volatile Acids by Direct Titration. Journal of Water Pollution Control Federation, Vol.33, N.4, 357-365p.
- DROSTE, R.L.(1997) Theory and Practice of Water and Wastewater Treatment. New York, John Wiley & Sons Inc.,798p.
- FANG,H.P.H. & CHUI,H.K(1994) Comparison of start perfomance of four anaerobic reactos for the treatment of high-strenght Resources, Conservation and Recycling Applied and Environmental Microbiology Vol. 48, N.1, 127-136 p.

- FIELD, J.(1994) Aranque y Operacion de Reactores UASB In: Parametros Operativos del manto de Lodos Anaerobios de Flujo Ascendente. Santiago de Cali. Manual del Curso, Universidade del Valle, Corporacion Autonoma regional del Cauca e Universidade Agricola de Wageningen. B-1-35p.
- FORESTI,E.(1996) Fundamentos do processo de digestão anaeróbia. Notas de aula da disciplina SHS-891. Escola de engenharia de São Carlos-Universidade de São Paulo.
- FOX, P., MAKRAM T.S. e BANDY, T. J.(1990) A comparision of media types in acetate fed expanded-bed anaerobic reactors. Water Research. Vol. 24, N.7, 827-835p.
- GONÇALVES,R.F., & ARAÚJO,M.G.(1997) Entrada em regime permanete de um biofiltro aerado submerso tratando esgoto sanitário da região de Camburi-Vitória(ES) In: 190 Congresso Brasileiro de Engenharia Sanitária e Ambiental- Tema I, I-072, ABES-439-449p Foz do Iguaçu-Paraná.
- HENZE, M., HARREMOES, P., ARVIN, E., JANSEN, J. C. (1997) WASTEWATER TREATMENT: biological and chemical processes. New York, Springer, 383p.
- HERRERA VALLEJOS, M. H. (1997). Operação e Monitoramento do Desempenho de Reator Anaeróbio de Manta de Lodo(UASB), Tratando Esgotos Sanitários. São Carlos, 114 p. Dissertação (Mestrado) Escola de Engenharia de São Carlos, Universidade de São Paulo.
- HOWARD, J.R. (1989) Fluidized Bed Tecnology Principles and Applications. Adam Hilger Bristol- New York, 213p.
- HSU,Y. & SHIEH,W. (1993) Startup of Anaerobic Fluidized Bed Reactors with Acetic acid as the Substrate. Biotecnology and Bioengineering. Vol. 41, 347-353 p.

- JAHN,A. & NIELSEN,P.H.(1995). Extraction of Extracelular Polymeric Substances(EPS) fromo Biofilms using a Cation Exchange. Water Science Technology, Vol. 32, N.8, 157-164p.
- JEWELL, W. J.; SWITZENBAUN, M.S. and MORRIIS, J.W. (1981) Municipal Wastewater Treatment whit the Anaerobic attached Microbiol Film Expanded Bed Process. Journal of Water Pollution Control Federation, v.53, n.4, 482-490p.
- KATO, M. T., FIELD, J. A., VESTEEG, P. e LETTINGA, G.(1994) Feasibility of Expanded Granular Sludge Bed Reactors for the Anaerobic Tratment of Low-Strength⁻ Soluble Wastewaters. Biotecnology and Bioengineering. Vol.44, 469-479 p.
- KUNII, D. & LEVENSPIEL, O.(1969) Engineering Fludization. New York, Jonh Wiley & Sons, Inc., 534p.
- KURODA,M., SAKAKIBARA,Y. e OKAMURA,M.(1988).Methanogenic Bacteria adhered to solid supports. Water Research. Vol. 22, N.5, 653-656p.
- LAPPONI, J.C. (1997) Estatística usando Excel 5 e 7. São Paulo, Lapponi Treinamento e Editora, 420p.
- LOWRY, O. H., ROSERBROUGH, N.J.; FARR, A. L., RANDALL, R.J. (1951) Protein Measurement with the folin Phenol Reagent. The Journal of Biological Chemistry, v.193, 265-275p.
- METCALF & EDDY(1991) WASTEWATER ENGINEERING Treatment, Disposal and Reuse 3.ed., New York, McGraw-Hill, Inc, 1334p.
- NOGUERIRA, J.B. (1995). *Mecânica dos Solos-Ensaios de Laboratório*. São Carlos, EESC, 248p.

- NOUR, E. A. A.(1996) Tratamento de Esgoto Sanitário Empregando Reator Anaeróbio Compartimentado. São Carlos, 148 p. Tese de Doutorado. Escola de Engenharia de São Carlos, Universidade de São Paulo.
- POL, H. L. (1994) Aranque y Operacion de Reactores UASB In: Aranque y Operacion de Sistemas de Flujo Ascendente con Manto de Lodo-UASB. Santiago de Cali. Manual del Curso, Universidade del Valle, Corporacion Autonoma regional del Cauca e Universidade Agricola de Wageningen. E-1-11 p.
- POVINELLI, S. C. (1994) Estudo da Hidrodinâmica e Partida de Reator Anaeróbio com Chincanas Tratando Esgoto Sanitário. São Carlos, 145 p. Dissertação (Mestrado) Escola de Engenharia de São Carlos, Universidade de São Paulo.
- RIPLEY, L.E., BOYLE, W.C. e CONVERSE, J.C. (1986) Improved alkalimetric monitoring for anaerobic digestion of high-strengh wastes. Journal of Water Pollution Control Federation, v.58, n.5, 406-411p.
- ROBINSON, R.AKIN, D., NORDSTEDT, R.A., THOMAS, M.V. e HENRY, C(1984) Light and Electron microscopic Examinations of Methane-Producing Biofilms from Anaerobic Fixed Bed Reactors Applied and Environmental Microbiology Vol.48, N.1, 127-136 p.
- SALKINOJA,M.S., NYNS, E.J., SUTTON, P.M., BERG, L.V.D. e
 WHETHLEY,A.D.(1983). Starting-up of na Anaerobic
 Fixed-Film Reactor. Water Science Tecnology. Vol.
 15,305-308 p.
- SANZ, I. & FDZ-POLANCO, F.(1990). Low Temperature Treatment of Municipal Sewage in Anaerobic Fluidized Bed Reactors. Water Research. Vol. 24, N.4, 463-469 p.

- SHANCHEZ, J.M. ARIJO, S. MUNOZ, M.A. BORREGO, J.J. (1994) Microbioal colonization of diferent support materials used to enhance the methanogenic process. Applied Microbiology Biotecnology. Vol. 41, N.8, 480-486 p.
- SHIEH, W. K. & HSU, Y. H.(1996) Biomass loss from an anaerobic Fluidized bed reactor. Water Science Tecnology. Vol. 30, N.5, 1253-1257 p.
- SILVA, E.L. (1995) Tratamento Aeróbio de Fenol em Reator de Leito Fluidificado Trifásico. São Carlos, 1-248p (v.I) e 249-425p (v.II). Tese de Doutorado. Escola de Engenharia de São Carlos, Universidade de São Paulo.
- SPEECE R.E.(1996). Anaerobic Biotecnology for Industrial Wastewaters. Nashville, Archae Press. 393p.
- STRONACH, S.M., RUDD, T. and LESTER, J.N. (1986). Anaerobic Digeston Processes in Industrial Waste Water Treatment Berlin Heidelberg, Springler Verlag 184p.
- STRONACH, S.M., DIAZ-BAEZ, M.C., RUDD, T. and N., JOHN (1987). Factors Affecting Biomass Attachment during Startup and Operation of Anaerobic Fluidized Beds Biotechnology and Bioengeering Vol. 30, 611-620 p.
- TAVARES, C.R.G. & JUNIOR SANT'ANNA(1992). Tratamento Aeróbio de Efluentes em Bioreator de Leito Fluidizado Trifásico- Influência do Tipo de Suporte In: Anais XX Encontro Sobre Escoamento em Meios Porosos, São Carlos, SP:UFSCAR, v.1. 291-303p.
- THEREZO, P. E. A.(1993) Avaliação do Desempenho de um Reator Anaeróbio de Leito Expandido Operado sob Condições Instáveis de Carregamento Orgânico e Hidráulico. São Carlos, 109 p. Dissertação (Mestrado) Escola de Engenharia de São Carlos, Universidade de São Paulo.

- TYAGI,R.D. & VEMBU,K.(1990) Wastewater Treatment By Immobilized Cells. Boca Raton- Florida, CRC Press, Inc.281p
- VAN HAANDEL, A. C. & LETTINGA, G. (1994) Tratamento Anaeróbio de Esgoto- Um Manual para Regiões de Clima Quente. Campina Grande, Brasil, EPGRAF.
- VAN LOOSDRECHT M.C.M., EIKELBOOM, D., GJALTEMA,A., MULDER,A., TIJHUIS,L., HEIJJNEN,J.J. (1995) Biofilms Structurs. Water Science Technology. Vol. 32, N.8, 35-43 p.
- VAN LOOSDRECHT M.C.M., LYKLEMA, J., NOREDE, W., ZEHNDER, A. J.B.(1990) Influence of Interfaces on Microbial Activity. Microbiological Reviews. Vol. 54, N.1, 75-87p.
- VARESCHE, M.B.A.(1997) Estudo com Bactérias Fototróficas Anoxigênicas:Enriquecimento, Isolamento, Caracterização Nutricional e Cinética de Crescimento . São Carlos, 1-169p(v.I) e 170-363p (v.II). Tese de Doutorado. Escola de Engenharia de São Carlos, Universidade de São Paulo.
- VELAZQUEZ, I. S. (1990) Digeston Anaerobia de àgua Residuales Urbanos: Possibilidade e limitaciones. Seminário Alternatvas de Tratamiento Anaerobio para la Depuracion de àguas Residuales. Universidade de Valle 58-83 pg.
- VIEIRA, M.B.S. (1989) Avaliação do Desempenho de um Reator Anaeróbio de Leito Fluidificado Piloto no Tratamento de Efluentes Líquidos Apresentando Baixa Concentração de DQO. São Carlos, 276 p. Dissertação (Mestrado) Escola de Engenharia de São Carlos, Universidade de São Paulo.
- WIECHETECK,G. K. (1996). Influência do Método de Lavagem nas Características do Carvões Antracitoso e Betuminoso Utilizados em Meio Filtrante. São Carlos,. 167 p. Dissertação (Mestrado) Escola de Engenharia de São Carlos, Universidade de São Paulo.
- WIEILAND, P. & ROZZI, A. (1991) The Start-up, operation and monitoring of high-rate anaerobic treatment systems:Discusser's Report. Water Science Tecnology. Vol. 24, N.8, 257-277 p.
- YATES, J.G. (1983). Fundamentals of fluidized bed chemical processes. London, Thetford Pres. 184p.
- YEE,C.J., HSU,Y. and SHIEH,W.K.(1992) Efects of Microcarrier pore Characterists on Methanogenic fluidized bed performance. Water Research. Vol. 26, N.8, 1119-1125p.

APÊNDICE A

Caracterização do Material Suporte

Apêndice A.1.- Planilha de cálculo utilizada durante a

caracterização do suporte.

Partícula Poliamida

Um	ı	a	a	a	e

Número da Cápsula	P11	P32	P15
Material Granular+Tara+Água(g) Material	6,085 6,071	6,153 6,139	5,986 5,971
Granular+Tara(g) Tara(g) Água(g) Material Graular(g) Teor de Umidade(%)	2,963 0,014 3,108 0,45	3,053 0,014 3,086 0,45	3,018 0,02 2,953 0,51

Massa Específica

-	-	0	2	1
Número de	L	2	3	4
Determinações				
Número do Picnômetro	13	13	13	13
Picnômetro+Material Granular +	683,06	682,61	682,32	682,09
$Agua(g): M_1$	16.00	20.00	23 00	25.00
Temperatura (°C)	10,00	20,00	23,00	23,00
Picnômetro+Água(g):M ₂	675,60	6/5,30	6/4,85	6/4,/5
Material Graular(g)	59,72	59,72	59,72	59,72
Massa Específica da Água(g.cm ⁻³)	0,9990	0,9982	0,9976	0,9971
Massa Específica do Material	1,142	1,137	1,140	1,137
Graular(g.cm ⁻³)				

	Máximo	Médio	Mínimo
Massa Específica Seca do Material Granular(g.cm ⁻³)	0,757	0,774	0,784
Índice de Vazios(e)	0,508	0,471	0,450

Ensaio de Peneiramento

Amostra: Poliamida

M_{si}=150,89 g

M_{st}=150,06g

∆M=0,03g

Faixa Granulométrica	Massa Retida	<pre>% Material</pre>	% Material Retido
(mm)	(g)	Retido	Acumulada
Fundo-0,21	0,00	0,00	0,00
0,21-0,25	0,00	0,00	0,00
0.25-0.30	0,00	0,00	0,00
0,30-0,35	0,00	0,00	0,00
0.35-0.42	0,00	0,00	0,01
0,42-0,59	0,00	0,00	0,03
0,59-0,71	0,00	0,00	0,04
0.71-0.84	0,00	0,00	0,10
0,84-1,00	0,00	0,00	0,21
1.00-1.19	0,00	0,00	0,23
1,19-1,41	0,00	0,00	0,69
1,41-1,68	0,00	0,00	3,39
1.68-2.00	0.51	0,34	20,77
2,00-2,36	113.78	75,82	94,59
2,36-2,83	35.09	23,38	99,67
2,83-3,36	0,68	0,45	100
Soma=	150,06	100	

Apêndice A.2.- Planilha de cálculo utilizada durante a caracterização do suporte.

Partícula PBT			
Umidade			
Número da Cápsula	P244	P17	P25
Material	22,45	21,15	22,3
Granular+Tara+Água(g) Material	22,19	20,88	22,00
Granular+Tara(g) Tara(g)	14,06	11,9	12,42
Agua(g) Material Graular(g) Teor de Umidade(%)	8,13	8,98	9,58

Massa Específica

Massa Específica Seca do Material Gram	ılar	(g.am ⁻³)	Máximo 0,358	Média 0,351	Mínimo 0,345
Massa Específica do Material Granular	(g.cm~)	1,436	1,438	1,447	1,450
Massa Específica da Água(g.cm ⁻³)	3,	0,9990	0,9988	0,9976	0,9971
Material Graular(g)		58,12	58,12	58,12	58,12
Picnômetro+Água(g):M ₂		660,10	659,90	659,50	659,10
Temperatura (°C)		16,00	19,00	23,00	25,00
Granular+Água(g):M ₁					
Picnômetro+Material		677,79	677,66	677,56	677,25
Número do Picnômetro		2	2	2	2
Determinações					
Número de		1	2	3	4

Indice de Vazios(e)				-
Índice de Vazios (e)	3,165	3,112	3,007	
Massa Especifica Seca do Material Chandrada	g ,		and a second second	

Ensaio de Peneiramento

Amostra: PBT

M _{si} =151,35 g	M _{st} =151,26g		ΔM=0,09g
Faixa Granulométrica	Massa Retida	<pre>% Material</pre>	% Material Retido
(mm)	(g)	Retido	Acumulada
Fundo-0,21	0,00	0,00	0,00
0,21-0,25	0,00	0,00	0,00
0,25-0,30	0,00	0,00	0,00
0,30-0,35	0,00	0,00	0,00
0,35-0,42	0,00	0,00	0,01
0,42-0,59	0,00	0,00	0,03
0,59-0,71	0,00	0,00	0,04
0,71-0,84	0,00	0,00	0,10
0,84-1,00	0,00	0,00	0,21
1.00-1.19	0,00	0,00	0,23
1,19-1,41	0,00	0,00	0,69
1,41-1,68	8,57	5,67	3,39
1,68-2,00	122,04	80,68	20,77
2,00-2,36	16,50	10,91	94,59
2.36-2.83	4,15	2,74	99,67
2,83-3,36	0,00	0,00	100
Soma=	151,26	100	

Apêndice A.3.- Planilha de cálculo utilizada durante a caracterização do suporte.

Partícula CAG-01

Umidade

Número da Cápsula	P240	P244	P83
Material Granular+Tara+Água(g)	20,32	18,09	14,63
Material Granular+Tara(q)	20,04	17,83	14,39
Tara(q)	15,97	14,05	10,55
Água (g)	0,28	0,26	0,24
Material Graular(q)	4,07	3,78	3,84
Teor de Umidade (8)	6,880	6,878	6,250

Massa Específica

Número de Determinações		1	2	З	4
Número do Picnômetro		5	5	5	5
Picnômetro+Material		710,49	710,10	710,05	709,66
Granular+Água(g):M ₁					1
Temperatura (°C)		17,00	20,00	22,00	25,00
Picnômetro+Água(g):M ₂		685,90	685,51	685,38	685,00
Material Graular(g)		55,47	55,47	55,47	55,47
Massa Específica da Água(g.cm ⁻³)		0,9988	0,9982	0,9978	0,9971
Massa Específica do Material Granular	(g.cm ⁻³)	1,794	1,793	1,797	1,795

Massa Específica	Seca do Material	Granular (g. cm ⁻³)
Índice de Vazi	.os (e)	

MáximoMédiaMínimo0,2470,2340,2286,8806,6696,250

Ensaio de Peneiramento

Amostra: CAG-01

M _{si} =150 g	M _{st} =149,99 g		∆M=0,01g
Faixa Granulométrica	Massa Retida	<pre>% Material</pre>	% Material Retido
(mm)	(g)	Retido	Acumulada
Fundo-0,21	0,000	0,00	0,00
0,21-0,25	0,000	0,00	0,00
0,25-0,30	0,000	0,00	0,00
0,30-0,35	0,000	0,00	0,00
0,35-0,42	0,020	0,01	0,01
0,42-0,59	0,030	0,02	0,03
0,59-0,71	0,010	0,01	0,04
0,71-0,84	0,090	0,06	0,10
0,84-1,00	0,160	0,11	0,21
1,00-1,19	0,040	0,03	0,23
1,19-1,41	0,680	0,45	0,69
1,41-1,68	4,050	2,70	3,39
1,68-2,00	26,080	17,39	20,77
2,00-2,36	110,720	73,82	94,59
2,36-2,83	7,610	5,07	99,67
2,83-3,36	0,500	0,33	100
Soma=	149,99	100	

Apêndice A.4.- Planilha de cálculo utilizada durante a caracterização do suporte.

Partícula CAG-02

Umidade

Número da Cápsula	P118	P108	P112
Material Granular+Tara+Água(g)	15,96	15,45	15,26
Material Granular+Tara(g)	15,65	15,11	14,9
Tara(g)	11,13	10,49	9,82
Água (g)	0,31	0,34	0,36
Material Graular(g)	4,52	4,62	5,08
Teor de Umidade(%)	6,86	7,36	7,09

Massa Específica

Número de Determinações	1	2	З	4
Número do Picnômetro	17	17	17	17
Picnômetro+Material	699,89	699,67	699,45	698,99
Granular+Água(g):M ₁				
Temperatura([°] C)	18,50	20,00	22,00	24,00
Picnômetro+Água(g):M ₂	674,90	674,70	674,52	674,25
Material Graular(g)	55,51	55,51	55,51	55,51
Massa Específica da Água(g.cm ⁻³)	0,9985	0,9982	0,9978	0,9973
Massa Específica do Material	1,816	1,814	1,811	1,799
Graular(g. ^{cm-3})			3550	

	Máximo	Média	Minimo
Massa Específica Seca do Material Granular(g.cm ⁻³)	0,229	0,223	0,217
Índice de Vazios(e)	7,359	7,101	6,858

Ensaio de Peneiramento

Amostra CAG-02

M _{si} =150 g	M _{st} =149,80g		ΔM=0,2g
Faixa Granulométrica	Massa Retida	<pre>% Material</pre>	<pre>% Material Retido</pre>
(mm)	(g)	Retido	Acumulada
Fundo-0,21	0,00	0,00	0,00
0,21-0,25	0,00	0,00	0,00
0,25-0,30	0,00	0,00	0,00
0,30-0,35	0,00	0,00	0,00
0,35-0,42	0,01	0,01	0,01
0,42-0,59	0,01	0,01	0,03
0,59-0,71	0,01	0,01	0,04
0,71-0,84	0,06	0,04	0,10
0,84-1,00	0,14	0,09	0,21
1,00-1,19	0,10	0,07	0,23
1,19-1,41	0,69	0,46	0,69
1,41-1,68	4,47	2,98	3,39
1,68-2,00	25,72	17,17	20,77
2,00-2,36	111,42	74,38	94,59
2,36-2,83	6,74	4,50	99,67
2,83-3,36	0,43	0,29	100
Soma=	149.80	100	

Apêndice A.5.- Planilha de cálculo da velocidade mínima de fluidificação utilizada durante a caracterização do suporte.

DADOS DE ENTRADA Tipo de Partícula Poliamida D _{90%} (m) = Densidade do Material(kg/m3) = Densidade da Água (kg/m3) = Viscosidade Absoluta da Água(Ns/m2) = Altura da Camada(m)	0,00262 1140 997,81 8,94E-04 0,25	
--	---	--

Dado Experimental

24,4 m.h⁻¹ 0,0068 m.s⁻¹ 0,011 m Velocidade Mínima de Fluidificação= Perda de Carga no Meio fluidificado=

Dado Calculado

Número de Galileu(Ga)= Velocidade Mínima de Fluidificação= Porosidade=

31319 0,0053 m.s⁻¹ 0,71

Vazão do	Velocidade	Hf	L	Expansão
Rotâmetro	Ascensional			
$m^3 \cdot h^{-1}$	m.h ⁻¹	m	CM	Ş
10	1,52	0,003	25,00	0,00
60	9,14	0,05	25,00	0,00
110	16,77	0,07	25,40	1,60
160	24,39	0,011	26,90	7,60
210	32,01	0,013	28,50	14,00
260	39,63	0,011	31,00	24,00
310	47,25	0,011	33,40	33,60
360	54,87	0,012	36,50	46,00
410	62,49	0,012	39,40	57,60
460	70,11	0,012	43,00	72,00
510	77,73	0,015	48,00	92,00
560	85,35	0,012	55,00	120,00

Apêndice A.6.- Planilha de cálculo da velocidade mínima de fluidificação utilizada durante a caracterização do suporte.

DADOS DE ENTRADA Tipo de Partícula PBT $D_{90\%}$ (m) = 0,0021 Densidade do Material(kg/m3) = 1443 Densidade da Água (kg/m3) = 997,81 Viscosidade Absoluta da Água(Ns/m2) = 8,94E-04 Altura da Camada(m) 0,25

Dado Experimental Velocidade Mínima de Fluidificação= Perda de Carga no Meio fluidificado=

41 m.h⁻¹ 0,034 m

0,0114 m.s⁻¹

Dado Calculado

Número de Galileu(Ga)= Velocidade Mínima de Fluidificação= Porosidade= 50495 0,0097 m.s⁻¹ 0,72

Vazão do	Velocidade	Hf	L	Expansão
Rotâmetro	Ascensional			
$m^3 \cdot h^{-1}$	m.h ⁻¹	m	cm	do
10	1,52	0,004	25,00	0,00
60	9,14	0,005	25,00	0,00
110	16,77	0,009	25,00	0,00
160	24,39	0,013	25,00	0,00
210	32,01	0,024	25,00	0,00
260	39,63	0,032	25,80	3,20
310	47,25	0,034	27,30	9,20
360	54,87	0,032	28,30	13,20
410	62,49	0,034	29,60	18,40
460	70,11	0,034	31,40	25,60
510	77,73	0,035	32,80	31,20
560	85,35	0,035	33,40	33,60

Apêndice A.7.- Planilha de cálculo da velocidade mínima de fluidificação utilizada durante a caracterização do suporte.

DADOS DE ENTRADA Tipo de Partícula CAG D _{90%} (m) = Densidade do Material(kg/m3) = Densidade da Água (kg/m3) = Viscosidade Absoluta da Água(N s/m2) = Altura da Camada(m) =	0,00234 1810 997,81 8,94E-04 0,25		
Dado Experimental Velocidade Mínima de Fluidificação= Perda de Carga no Meio fluidificado=		55 m.h ⁻¹ 0,026 m	0,0153 m.s ⁻¹

Dado Calculado

Número de Galileu(Ga)= Velocidade Mínima de Fluidificação= Porosidade=

127452 0,0176 m.s⁻¹ 63 m.h⁻¹ 0,89

Vazão do	Velocidade	Hf	L	Expansão
Rotâmetro	Ascensional			0
$m^3 \cdot h^{-1}$	$m.h^{-1}$	m	cm	*
10	1,52	0,002	25,0	0,0
60	9,14	0,004	25,0	0,0
110	16,77	0,009	25,0	0,0
160	24.39	0,021	25,3	1,2
210	32,01	0,023	25,6	2,4
260	39.63	0,021	26,6	6,4
200	47 25	0.021	28,0	12,0
310	54 87	0.026	30,0	20,0
360	62 5	0.026	31.5	26,0
410	70 1	0.026	33.5	34,0
460		0,027	35.3	41,2
510		0,027	38.5	54.0
560	85,4	0,027	00,0	

APÊNDICE B

Caracterização do Esgoto

Sanitário

Apêndice B.1.-Caracterização do esgoto sanitário ao longo

Data	Hora	Temperatura	pН	AT	AI	AP	Ácidos
Staffing.							Voláteis
		Do		$(mgCaCO_3.L^{-1})$	$(mgCaCO_3.L^{-1})$	$(mgCaCO_3.L^{-1})$	$(mgCaCO_3.L^{-1})$
30.09.97	18:00	27,3	7,40	110	60	50	38
30.09.97	19:00	27,1	6,80	105	40	65	40
30.09.97	20:00	26,9	7,10	115	30	85	33
30.09.97	21:00	26,4	7,05	105	30	75	42
30.09.97	22:00	25,8	7,25	115	30	85	40
30.09.97	23:00	25,2	7,10	135	35	100	40
30.09.97	00:00	24,6	7,10	140	30	110	38
01.10.97	01:00	24,4	7,05	100	20	80	25.000000
01.10.97	02:00	24,1	7,00	110	40	70	28
01.10.97	03:00	23,9	7,15	75	10	65	24
01.10.97	04:00	23,8	7,00	130	40	90	61
01.10.97	05:00	23,6	7,00	60	5	55	31
01.10.97	06:00	23,9	7,10	100	25	75	31
06.10.97	06:00	24,5	6,80	80	15	65	14
06.10.97	07:00	24,7	7,10	160	50	110	54
06.10.97	08:00	25,4	7,20	185	70	115	71
06.10.97	09:00	26,1	7,10	130	50	80	40
06.10.97	10:00	26,9	6,80	150	75	75	66
06.10.97	11:00	27,3	7,40	125	15	110	68.
06.10.97	12:00	27,6	7,00	170	70	100	66
06.10.97	13:00	27,9	6,80	95	55	40	61
06.10.97	14:00	28,2	6,80	100	45	55	52
06.10.97	15:00	28,3	6,0	50	15	35	/5
06.10.97	16:00	28,1	6,3	65	25	40	/5
06.10.97	17:00	27,8	6,3	90	40	50	75
06.10.97	18:00	27,7	6,4	85	35	50	59

de 24 horas.

Apêndice B.2.-Caracterização do esgoto sanitário ao longo de 24 horas.

Data	Hora	DQOB	DQOF	Fósforo Total
		$(mgO_2 \cdot L^{-1})$	$(mgO_2.L^{-1})$	(mg.L ⁻¹)
30.09.97	18:00	559	208	11
30.09.97	19:00	429	99	11,5
30.09.97	20:00	463	180	11,2
30.09.97	21:00	562	178	9,8
30.09.97	22:00	342	139	10,1
30.09.97	23:00	338	155	9,72
30.09.97	00:00	395	225	8,06
01.10.97	01:00	221	78	6,68
01.10.97	02:00	182	65	5,27
01.10.97	03:00	58	25	4,8
01.10.97	04:00	85	36	3,73
01.10.97	05:00	73	33	4,41
01.10.97	06:00	243	62	9,62
06.10.97	06:00	718	133	17,24
06.10.97	07:00	1188	221	19,16
06.10.97	08:00	1724	302	27,16
06.10.97	09:00	1598	292	31,44
06.10.97	10:00	1226	298	29,42
06.10.97	11:00	1542	359	28,56
06.10.97	12:00	1520	194	30,73
06.10.97	13:00	1052	877	23,86
06.10.97	14:00	1070	596	19,65
06.10.97	15:00	1032	730	18,97
06.10.97	16:00	1188	873	16,36
06.10.97	17:00	889	518	16,06
06.10.97	18:00	782	775	15,21

Apêndice B.3.-Caracterização do esgoto sanitário ao longo

de 24 1	horas.
---------	--------

Data	Hora	Sólidos	Sólidos	Sólidos	Sólidos	Sólidos	Sólidos
		Totais	Totais	Totais	Susp.	Susp.	Susp.
			Fixos	Voláteis	Totais	Fixos	Voláteis
		$(mg.L^{-1})$	$(mg.L^{-1})$	$(mg.L^{-1})$	(mg.L ⁻¹)	(mg.L ⁻¹)	$(mg.L^{-1})$
30.09.97	18:00	829	106	723	185	29	156
30.09.97	19:00	489	192	297	246	44	202
30.09.97	20:00	357	130	227	137	18	18
30.09.97	21:00	425	128	297	153	17	136
30.09.97	22:00	329	77	252	94	11	83
30.09.97	23:00	363	144	219	119	14	104
30.09.97	00:00	309	99	210	120	14	106
01.10.97	01:00	217	80	137	46	3	43
01.10.97	02:00	165	76	89	39	5	34
01.10.97	03:00	71	36	35	30	4	26
01.10.97	04:00	131	18	113	32	5	27
01.10.97	05:00	122	56	66	26	4	27
01.10.97	06:00	273	26	247	85	11	74
06.10.97	06:00	174	84	90	48	10	38
06.10.97	07:00	368	199	169	115	16	99
06.10.97	08:00	631	206	425	348	32	316
06.10.97	09:00	679	246	433	368	76	292
06.10.97	10:00	686	220	466	319	81	237
06.10.97	11:00	596	119	477	235	32	203
06.10.97	12:00	349	94	225	109	17	91
06.10.97	13:00	632	227	405	185	28	158
06.10.97	14:00	574	117	457	183	19	164
06.10.97	15:00	683	200	483	227	42	185
06.10.97	16:00	472	82	390	162	14	148
06.10.97	17:00	417	142	275	141	18	123
06.10.97	18:00	426	55	371	214	24	190

APÊNDICE C

Estudo da Partida do Reator Anaeróbio de Leito Expandido

Apêndice C.1.-Valores de determinações de temperatura

realizadas durante o período de operação.

DATA	TO	Temperatura ("C)									
	(dia)	Afluente	P3,0	P6,0	P8,5	P _{11,0}	Efluente				
17.04 22.04 24.04 29.04 08.05 12.05 14.05 20.05 22.05 03.06 03.07 08.07 29.07 31.07 05.08 07.08 12.08 14.08 12.08 14.08 12.08 14.08 12.08 14.08 12.08 14.08 12.08 14.08 12.08 14.08 12.08 14.09 04.09 04.09 08.09	(dia) 2 7 9 14 23 27 29 35 37 49 79 84 105 107 112 114 119 121 125 127 132 134 139 142 146 148	Affluence 21 22 20 22 21 22 20 22 21 21 21 21 21 21 22 20 22 21 21 21 21 21 21 21 21 21	P _{3,0} 20 22 20 21 20 21 20 21 18 20 21 20 21 18 20 21 20 22 23 22 23 22 23 22 24 25 24 25 20 21 20 21 20 22 23 22 23 22 24 25 25 25 25 25 25 25 25 25 25	20 20 23 20 21 20 21 20 21 20 21 20 20 20 21 20 20 21 20 20 21 20 21 20 21 20 22 22 22 22 22 22 22 24 25 24	20 23 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 20 21 20 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	20 23 20 21 20 21 20 21 20 21 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	20 23 20 22 20 21 20 22 19 20 20 21 20 20 21 20 20 21 20 22 19 20 22 19 20 22 19 20 22 23 22 23 22 23 22 23 22 24 25 24				
10.03 15.09 17.09 22.09 24.09 29.09 06.10 10.10 13.10 17.10 20.10 03.11	140 153 155 160 162 167 174 178 181 185 188 202	23 23 22 23 24 26 24 23 25 26,5 27	23 23 22 23 24 26 24 23 25 26 27	22 23 22 24 26 24 26 24 22 25 26 27	22 23 22 24 26 24 22 25 26,5 27	22 23 22 24 25 24 25 24 25 26 26	22 23 22 24 25 24 25 24 22 25 26 26				
05.11 10.11 12.11 21.11 24.11 26.11 01.12 04.12 11.12	204 209 211 218 220 223 225 230 233 240	26 27 28 29 30 28 28 29 27 28	26 27 28 29 28 29 28 29 27 28	26 27 28 30 28 30 28 30 27 28	26 27 28 28 29 28 29 27 28	26 28 28 29 28 29 28 29 27 28	26 26 28 29 28 29 28 29 27 28				

DATA	TO	pH							
Contract and the	(dia)	Afluente	P ₃	P ₆	P _{8,5}	P ₁₁	Efluente		
17.04	2	7,30					7,30		
22.04	7	7,35					6,70		
24.04	9	7,10					7,00		
29.04	14	7,30					6,90		
08.05	23	7,25					6,85		
12.05	27	7,30					6,90		
14.05	29	6,90	10				7,25		
20.05	35	7,10	6,80	6,90	6,75	6,70	6,85		
22.05	37	7,10	7,10	6,80	6,80	6,75	7,00		
03.06	49	7,10	7,00	7,00	6,95	7,10	7,30		
03.07	79	7,40	7,20	7,20	7,20	7,30	7,70		
08.07	84	7,30	7,00	6,80	7,00	6,90	6,80		
29.07	105	6,90	6,70	6,80	6,85	6,65	6,60		
31.07	107	7,40	6,80	6,90	7,00	6,90	7,20		
05.08	112	7,60	7,30	7,35	7,45	7,30	7,40		
07.08	114	7,35	7,40	7,10	7,20	7,15	7,20		
12.08	119	7,90	7,30	7,20	7,00	7,10	7,30		
14.08	121	7,65	7,10	7,20	7,10	7,25	7,15		
18.08	125	7,60	7,20	7,20	7,15	7,10	-7,10		
20.08	127	7,25	7,20	7,20	7,00	7,10	7,40		
25.08	132	7,30	6,95	6,90	6,90	6,90	7,20		
27.08	134	7,30	6,90	6,80	6,80	6,80	7,10		
01.09	139	7,35	6,95	7,00	6,90	7,00	7,20		
04.09	142	7,30	6,95	6,85	6,90	6,90	7,15		
08.09	146	7,30	6,90	6,80	6,85	7,00	7,15		
10.09	148	7,45	7,00	6,95	6,90	6,90	7,25		
15.09	153	7,50	6,90	6,90	6,90	6,90	7,10		
17.09	155	7,30	6,80	6,80	6,80	6,80	6,90		
22.09	160	7,35	6,85	7,10	1,00	1,00	6,95		
24.09	162	7,50	6,90	6,85	6,75	10,70	6,80		
29.09	167	7,10	7,00	7,05	7,00	1,25	7,20		
06.10	174	7,10	6,85	1,05	1,05	/,10	7,00		
10.10	178	7,30		7 60	6 00	7 00	7,00		
13.10	181	7,30	7,15	1,60	6,90	1,00	7,20		
17.10	185	7,10	6,85	6,85	6,80	0,00	7,00		
20.10	.188	7,40	6,80	7,00	7,00	1,10	6,90		
03.11	202	7,30	7,00	6,90	6,00	7 00	7,00		
05.11	204	7,00	7,00	0,90	7 00	7,00	7 10		
10.11	209	1,20 6 0E	6.05	6 00	7 00	7 00	6 95		
12.11	211	6,95	6,95	6,90	6 90	6 90	7 00		
19.11	218	7,00	6 90	6 90	6 80	6 90	7 10		
21.11	220	7,00	7 10	6 05	7 00	7 20	7 20		
24.11	223	7,15	7,10	6 00	6 80	6 80	7 00		
26.11	225	7,00	6.00	6 05	6 20	6 90	7 00		
01.12	230	7,10	6,00	6 70	6 70	6 80	7,00		
04.12	233	7,00	6 80	6 80	6 85	6 70	6,90		
11.14	1 240	1,30	1 0,00	1 0,00	1 0,00	10110			

Data	TO	AP	- -1,	A (mgCaC	I '0 T ⁻¹)	$(mgCaCO_2, L^{-1})$		
		(mgCaCO	з. Ц.)	(Ingcac	Efluorto	A fluente	Efluente	
	(dia)	Afluente	Efluente	Afluente	Elluence	ALLUEIICE	100	
17.04	2	142	160	53	4.0	300	200	
22.04	7	121	78	74	40	195	117	
24.04	9	78	78	17	39	100	121	
29.04	14	176	117	85	43	95	169	
08.05	23	144	89	12	52	201	249	
12.05	27	118	141	32	149	151	237	
14.05	29	196	231	83	36	279	371	
20.05	35	168	105	25	34	66	81	
22.05	37	41	48	25	8	263	59	
03.06	49	165	165	27	134	232	270	
03.07	19	120	100	82	52	211	160	
08.07	105	129	88	52	52	139	139	
29.07	105	144	88	57	57	201	144	
31.07	112	155	108	82	52	237	160	
05.00		149	108	67	49	216	157	
12 08	119	361	139	98	82	458	221	
14 08	121	165	98	62	72	227	170	
18 08	125	242	113	93	57	335	170	
20.08	127	113	108	67	82	180	191	
25.08	132	175	118	82	57	258	175	
27.08	134	129	103	72	77	201	180	
01.09	139	129	113	72	52	201	165	
04.09	142	150	85	65	75	215	160	
08.09	146	155	105	70	65	225	170	
10.09	148	180	90	85	60	265	150	
15.09	153	335	110	130	65	465	1/5	
17.09	155	165	100	70	30	235	175	
22.09	160	155	110	55	65	220	150	
24.09	162	155	100	15	50	195	150	
29.09	167	110	110	75	40	180	150	
06.10	174	105	95	75	70	200	185	
10.10	1/8	125	120	65	75	205	205	
13.10	101	110	130	70	90	180	220	
17.10	100	160	124	70	77	237	201	
20.10	100	120	103	72	77	201	180	
05.11	202	124	82	52	41	175	124	
10 11	204	185	129	57	52	242	180	
12 11	211	144	134	67	77	211	211	
19 11	218	113	118	82	46	196	165	
21.11	220	160	82	46	26	206	108	
24.11	223	113	98	57	46	170	144	
26.11	225	129	108	72	41	201	149	
01.12	230	139	108	77	26	216	134	
04.12	2 233	139	93	62	36	201	129	
11.12	2 240	124	88	57	36	180	124	

Apêndice C.4.-Valores de determinações de Alcalinidade realizadas durante o período de operação.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			AP			AI				AT				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Data	TO	(:	mg.Ca	CO3.L	¹)	(mc	J.CaC	$O_3 L^{-1}$)	(mg.CaCO ₃ L ⁻)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(dia)	P3	P.6	P ₈	P ₁₁	P3-	Pe	Pe	P ₁₁	P ₃	P ₆	PB	P ₁₁
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17.04	2	nana aran 11 a		In the local sector of the	1012 800 07 000 001								
24.04 9	22.04	7												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24.04	9												
	29.04	14												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	08.05	23												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.05	27												
	14.05	29												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.05	35												
03.06 49 149 155 175 149 28 28 24 31 252 258 263 263 03.07 79 175 180 129 155 77 77 67 77 252 258 196 232 08.07 84 88 82 82 72 67 72 77 160 155 155 144 14	22.05	37	35	34	32	29	32	29	31	31	67	63	63	60
03.07791751801291557777677725225819623208.0784888882827267727716015515515029.07105937782936267625715514414414405.0811217016514413477103778224726822121607.0811417011811810877576267674717518017512.081191471391391009898932472372322422370.061271241181031188277937720619619619655.08132113108103988282828818018518018001.0913911811810311377777787757516016016016010.091461051001001108090808018519018018003.09146105115110110606515013513013513013520.09167150130125120125 <td>03.06</td> <td>49</td> <td>149</td> <td>155</td> <td>175</td> <td>149</td> <td>28</td> <td>28</td> <td>24</td> <td>31</td> <td>252</td> <td>258</td> <td>263</td> <td>263</td>	03.06	49	149	155	175	149	28	28	24	31	252	258	263	263
08.07 84 88 82 82 82 72 67 72 77 160 155 164 144 29.07 105 93 77 82 93 62 67 62 57 155 144 144 31.07 107 118 72 82 77 62 72 62 67 627 180 144 144 05.08 112 170 165 144 134 77 103 77 82 247 258 221 216 07.08 114 170 118 118 100 98 93 247 237 232 222 227 237 232 14.08 125 144 149 149 134 93 82 93 103 237 232 242 237 20.08 127 124 118 103 118 82 77 93 77 206 196 196 27.08 132 113 108 103 98 82 82 88 88 180 185 180 10.09 139 118 1103 113 77 77 88 77 196 196 191 10.09 142 100 100 90 75 80 85 90 175 180 08.09 146 105 100 110 110 100 190 <	03.07	79	175	180	129	155	77	77	67	77	252	258	196	232
29.07 105 93 77 82 93 62 67 62 57 155 144 144 144 05.08 112 170 165 144 134 77 103 77 82 247 268 221 216 07.08 114 170 118 118 108 77 57 62 67 247 175 180 175 12.08 119 147 139 139 100 98 98 93 247 237 232 242 237 14.08 125 144 149 149 93 82 93 103 237 232 242 237 20.08 127 124 118 103 118 82 82 82 82 88 180 185 180 180 01.09 139 118 103 113 77 77 77 88 88 180 180 180 180 180 180 180 <	08.07	84	88	88	82	82	72	67	72	77	160	155	155	160
31.071071187282776272626718014414414405.0811217016514413477103778224726822121607.081141701181181087757626724717518017512.0811914713913913910098989324723723214.08121889388939082938817817518018018.081271241181031188277937720619619619625.08132113108103988282828818018518018001.091391181181031137777887719619619118508.091461051001001108090808018518018018001.091488585857575757516016016016015.091531251051051256060806518513513013522.0916015011511011060859090210200 <td>29.07</td> <td>105</td> <td>93</td> <td>77</td> <td>82</td> <td>93</td> <td>62</td> <td>67</td> <td>62</td> <td>57</td> <td>155</td> <td>144</td> <td>144</td> <td>149</td>	29.07	105	93	77	82	93	62	67	62	57	155	144	144	149
05.0811217016514413477103778224726822121607.08114170118118108775762672717518017512.0811914713913913910098989324723723223214.081218893889390829310323723224223720.081271241181031188277937720619619619625.08132113108103988282828818018518018518527.0813411393939679888818018518018001.091391181181031137777887719619619119104.0914210010090907580859017518017518008.091461051001001108090806518516518519017.0915511080757575757516016016015.0915312515015512012510010095275230<	31.07	107	118	72	82	77	62	72	62	67	180	144	144	144
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05.08	112	170	165	144	134	77	103	77	82	247	268	221	216
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07.08	114	170	118	118	108	77	57	62	67	247	175	180	175
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.08	119	147	139	139	139	100	98	98	93	247	237	237	232
18.0812514414914913493829310323723224223720.081271241181031188277937720619619619625.0813211310810398828282828819619118518527.0813411393936793888818018518018001.0914210010090907580859017518017518006.091461051001001108090808018519018019010.091488585857575757516016016016015.091531251051256060806518518519017.091551108075704055556515013513013522.091671501301251201251001009527523022521506.101748010095958075657516017516517.018513011010011511011010095240220200210 <td>14.08</td> <td>121</td> <td>88</td> <td>93</td> <td>88</td> <td>93</td> <td>90</td> <td>82</td> <td>93</td> <td>88</td> <td>178</td> <td>175</td> <td>180</td> <td>180</td>	14.08	121	88	93	88	93	90	82	93	88	178	175	180	180
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.08	125	144	149	149	134	93	82	93	103	237	232	242	237
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.08	127	124	118	103	118	82	77	93	77	206	196	196	196
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.08	132	113	108	103	98	82	82	82	88	196	191	185	185
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27.08	134	113	93	93	93	67	93	88	88	180	185	180	180
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01.09	139	118	118	103	113	77	77	88	11	196	196	191	191
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	04.09	142	100	100	90	90	75	80	85	90	1/5	180	1/5	100
10.09 148 85 85 85 75 75 75 75 160 160 160 160 160 15.09 153 125 105 105 125 60 60 80 65 185 165 185 190 17.09 155 110 80 75 70 40 55 55 65 135 130 135 22.09 160 150 115 110 110 60 85 90 90 210 200 200 200 24.09 162 100 90 95 85 75 80 70 80 175 170 165 165 29.09 167 150 130 125 120 125 100 100 95 275 230 225 215 06.10 174 80 100 95 95 80 75 65 75 160 175 160 17.10 185 130 110 100 115 110 110 100 95 240 220 200 210 20.10 188 118 108 129 124 93 93 88 88 180 185 180 170 20.10 128 118 108 129 52 72 77 67 207 196 196 17.10 128 118 108 98	08.09	146	105	100	100	110	80	90	80	80	185	190	180	190
15.09 123 125 105 125 60 60 80 65 183 183 183 135 17.09 155 110 80 75 70 40 55 55 65 150 135 130 135 22.09 160 150 115 110 110 60 85 90 90 210 200 200 24.09 162 100 90 95 85 75 80 70 80 175 170 165 165 29.09 167 150 130 125 120 125 100 100 95 275 230 225 215 06.10 174 80 100 95 95 80 75 65 75 160 175 160 170 10.10 178 130 110 90 165 135 65 75 440 510 175 165 17.10 185 130 110 100 115 110 100 95 240 220 200 210 20.10 188 118 108 129 124 93 93 88 88 180 185 180 180 20.10 118 118 108 129 57 73 63 36 145 144 134 03.11 204 124 88 98 92 7	10.09	148	85	85	85	85	75	/5	/5	15	100	100	100	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15.09	153	125	105	105	125	60	60	80	65	1285	1205	120	125
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.09	155	110	80	75	70	40	55	55	60	150	135	130	1200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.09	160	150	115	110	110	60	85	90	90	210	200	200	200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24.09	162	100	90	95	85	/5	80	10	80	11/5	1220	100	215
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29.09	167	150	130	125	120	125	100	100	95	2/5	175	160	170
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	06.10	174	80	100	95	95	80	/5	63	15	1100	11/5	1 1 0 0	11/0
13.10181 275 375 110901631336373 440 51617313017.101851301101001151101101009524022020021020.101881181081291249393888821120121621103.112021139393936793888818018518018005.112041248898982157363614514413413410.112091551241181295272776720719619619612.1121128338611393170139677745352518017019.11218118108981296772725218518017018021.1122011893981135246211517013911812924.112231181081031136267627218017516518526.11225113881031086782725718017017516501.12230981039888575257 <td< td=""><td>10.10</td><td>178</td><td>075</td><td>075</td><td>110</td><td>00</td><td>165</td><td>125</td><td>65</td><td>75</td><td>1110</td><td>510</td><td>175</td><td>165</td></td<>	10.10	178	075	075	110	00	165	125	65	75	1110	510	175	165
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13.10	181	275	3/5	110	90	110	110	100	95	240	220	200	210
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.10	185	110	110	120	124	03	110	200	88	211	201	216	211
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.10	188	110	108	129	124	93	93	99	88	180	185	180	180
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	03.11	202	124	93	93	93	21	57	36	36	145	144	134	134
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 11	204	155	124	119	129	52	72	77	67	207	196	196	196
12.11 211 203 303 113 50 170 100 170 180 170 180 19.11 218 118 108 98 129 67 72 72 52 185 180 170 180 21.11 220 118 93 98 113 52 46 21 15 170 139 118 129 24.11 223 118 108 103 113 62 67 62 72 180 175 165 185 26.11 225 113 88 103 108 67 82 72 57 180 170 175 165 01.12 230 98 103 98 88 57 52 57 62 155 155 149 04.12 233 98 88 82 57 62 72 57 155 149 155 139 11.12 240 98 93 93 88 46 <td>12 11</td> <td>209</td> <td>1200</td> <td>386</td> <td>112</td> <td>1 123</td> <td>170</td> <td>139</td> <td>67</td> <td>77</td> <td>453</td> <td>525</td> <td>180</td> <td>170</td>	12 11	209	1200	386	112	1 123	170	139	67	77	453	525	180	170
21.11 220 118 93 98 113 52 46 21 15 170 139 118 129 24.11 223 118 108 103 113 62 67 62 72 180 175 165 185 26.11 225 113 88 103 108 67 82 72 57 180 170 175 165 185 01.12 230 98 103 98 88 57 52 57 62 155 155 149 04.12 233 98 88 82 82 57 62 72 57 149 155 139 11.12 240 98 93 93 88 46 62 62 52 144 155 155 139	10 11	210	110	108	1 98	1 1 2 9	67	72	72	52	185	180	170	180
24.11 223 118 108 103 113 62 67 62 72 180 175 165 185 26.11 225 113 88 103 108 67 82 72 57 180 170 175 165 185 01.12 230 98 103 98 88 57 52 57 62 155 155 149 04.12 233 98 88 82 82 57 62 72 57 149 155 139 11.12 240 98 93 93 88 46 62 62 52 144 155 155 139	21 11	220	110	93	98	113	52	46	21	15	170	139	118	129
26.11 225 113 88 103 108 67 82 72 57 180 170 175 165 01.12 230 98 103 98 88 57 52 57 62 155 155 149 04.12 233 98 88 82 82 57 62 72 57 155 149 155 139 11.12 240 98 93 93 88 46 62 62 52 144 155 155 139	21.11	222	110	108	103	113	62	67	62	72	180	175	165	185
01.12 230 98 103 98 88 57 52 57 62 155 155 149 04.12 233 98 88 82 82 57 62 72 57 155 149 155 139 11.12 240 98 93 93 88 46 62 62 52 144 155 139	24.11	225	113	88	103	108	67	82	72	57	180	170	175	165
04.12 233 98 88 82 82 57 62 72 57 155 149 155 139 11.12 240 98 93 93 88 46 62 62 52 144 155 155 139	01 12	230	98	103	98	88	57	52	57	62	155	155	155	149
11.12 240 98 93 93 88 46 62 62 52 144 155 155 139	04 12	233	98	88	82	82	57	62	72	57	155	149	155	139
	11.12	240	98	93	93	88	46	62	62	52	144	155	155	139

Apêndice C.5.-Valores de determinações de ácidos voláteis

DATA	TO	Acido	os Vo	Latei	s (m	gCaCO ₃	وترجيع والمناطقة المناطقة
	(dia)	Afluente	P ₃	P ₆	P8,5	P ₁₁	Efluente
17.04	2	104					35
22.04	7	63					66
24.04	9	69					52
29.04	14	69					66
08.05	23	89					37
12.05	27	58					66
14.05	29	69					55
20.05	35	58	75	81	69	78	55
22.05	37	106	72	75	81	78	60
03.06	49	75	72	75	72	69	60
03.07	79	78	95	75	75	72	72
08.07	84	66	75	69	98	78	58
29.07	105	43	58	52	43	46	46
31.07	107	55	43	52	49	52	37
05.08	112	104	55	55	55	58	35
07.08	114	63	63	66	69	60	52
12.08	119	60	69	78	78	69	58
14.08	121	63	83	83	89	98	66
18.08	125	69	72	72	72	66	52
20.08	127	69	75	75	83	72	66
25.08	132	89	69	69	63	66	37
27.08	134	58	75	81	69	78	66
01.09	139	69	75	75	78	78	55
04.09	142	106	72	75	8T	/8	60
08.09	146	75	12	15	59	50	49
10.09	148	63	/8	61	00	59	17
15.09	153	54	61 61	50	61	66	63
17.09	155	63	54	61	62	61	42
22.09	160	54	51	17	52	54	35
24.09	167	50	73	63	71	55	31
29.09	17/	96	92	75	72	86	58
10 10	179	95	52	1 / 0	1		75
13 10	1 1 8 1	78	92	106	81	89	69
17 10	185	58	83	72	86	69	66
20.10	188	89	95	83	98	75	83
03.11	202	72	89	78	86	81	37
05.11	204	72	35	46	49	40	29
10.11	209	109	78	69	72	72	37
12.11	211	98	89	98	72	81	69
19.11	218	112	112	112	83	112	81
21.11	220	75	72	63	49	40	29
24.11	223	98	78	72	60	66	49
26.11	225	92	58	66	75	60	43
01.12	230	86	55	52	49	58	43
04.12	2 233	92	72	69	63	55	46
11.12	240	58	72	55	55	55	46

realizadas durante o período de operação.

Apêndice C.6.-Valores de determinações de sólidos totais

Data	TO	ST (mg	·L ⁻¹)	STF (n	g.L ⁻¹)	STV	(mg.L^)	Eficiência	Eliciencia
	(dia)	Afluente	Efluente	Afluente	Efluente	Afluente	Efluente	ST (%)	SIV(%)
17.04	2	731	645	185		460		11,76	
22.04	7	807	340	142				57,87	
24.04	9	725	357			525		50,76	
29.04	14	812	406	229				50,00	
08.05	23	917	494			688		46,13	
12.05	27		434						
14.05	29	932	700	95	249	837	451	24,89	46,12
20.05	35	675	600	216	249	459	351	11,11	23,53
22.05	37	869	620	305	269	564	351	28,65	31,11
03.06	49	723	399	144	112	579	287	44,81	50,43
03.07	79	917	726	106	538	811	188	20,83	76,82
08.07	84	795	380	192	101	603	279	52,20	53,73
29.07	105	760	208	135	107	625	101	72,63	83,84
31.07	107	560	370	90	127	470	243	33,93	48,30
05.08	112	657	364	92	132	565	232	44,60	58,94
07.08	114	593	435	181	182	412	253	26,64	38,59
12.08	119	835	411	229	196	606	215	50,78	64,52
14.08	121	555	419	175	45	380	374	24,50	1,58
18.08	125	664	433	179	116	485	317	34,79	34,64
20.08	127	669	375	186	166	483	209	43,95	56, /3
25.08	132	572	359	194	139	378	220	37,24	41,80
27.08	134	581	271	176	135	405	136	53,36	66,42
01.09	139	410	246	153	114	257	132	40,00	48,64
04.09	142	555	258	51	129	504	129	53,51	74,40
08.09	146	464	298	46	82	418	216	35,78	48,33
10.09	148	753	332	220	111	533	221	55,91	58,54
15.09	153	641	378	144	56	497	322	41,03	35,21
17.09	155	601	163	88	47	513	116	72,88	77,39
22.09	160	619	256	295	126	324	130	58,64	59,88
24.09	162	860	234	222	157	638	.77	72,79	87,93
29.09	167	692	518	104	196	588	322	25,14	45,24
06.10	174	631	216	206	132	425	84	65,77	80,24
10.10	178	783	344	206	153	577	191	56,07	66,90
13.10	181	694	426	132	60	562	366	38,62	34,88
17.10	185	701	433	307	69	394	364	38,23	7,61
20.10	188	717	496	204	157	513	339	30,82	33,92
03.11	202	452	332	123	86	329	246	26,55	25,23
05.11	204	664	284	193	119	471	165	57,23	64,97
10.11	209	646	278	207	84	439	194	56,97	55,81
12.11	211	660	320	299	235	361	85	51,52	10,45
19.11	218	466	258	195	114	271	144	44,64	40,00
21.11	220	720	337	290	107	430	230	53,19	40,51
24.11	223	708	301	221	106	487	195	57,49	59,96
26.11	225	645	377	164	278	481	99	41,55	/9,42
01.12	230	696	183	119	118	577	65	/3,/1	88,/3
04.12	233	489	234	66	71	423	163	52,15	61,4/
11.12	240	686	280	207	84	479	196	59,18	59,08

realizados durante o período de operação.

Apêndice C.7.-Valores de determinações de sólidos totais realizados durante o período de operação.

Data	TO	ST (mg.L ⁻¹)			4	STF (mg.L ⁻¹)				STV(mg.L ⁻¹)			
	(dia)	P3	P ₆	P8,5	P11	P ₃	P ₆	P8,5	P11	P ₃	P ₆	P8,5	P11
17.04	2												
22.04	7												
29.04	14										1		
08.05	23												
12.05	27												
14.05	29	6000	5040	CCE 1	7005	1050	1200	1202	1526	1939	1610	5268	5559
20.05	35	6090	5940	7243	6101	1444	1285	1600	1458	4570	4300	5643	4643
03.06	49	6467	6417	6067	6432	1500	1575	1480	1613	4967	4842	4587	4819
03.07	79	3962	4283	4936	4440	1062	1257	1360	1204	2900	3026	3576	3236
08.07	84	3197	4150	4608	3754	724	917	974	832	2473	3233	3634	2922
29.07	105	3300	2782	3317	2597	703	665	683	584	2597	2117	2634	2597
31.07	112	2762	3901	3900	3264	754	852	987	918	1960	2519	2839	2407
07.08	114	2407	3375	5500	3425	502	739	1044	650	1905	2636	4456	2775
12.08	119	4802	4549	5376	5429	1107	999	1254	971	3695	3550	4122	4458
14.08	121	3322	3946	5611	4692	716	904	1138	1085	2606	3042	4473	3607
18.08	125	3410	3539	4912	4237	890	906	1113	1001	2520	2633	3818	3645
20.08	132	3005	3962	4931 5150	4720	733	957	1271	1125	2272	3005	3879	3529
27.08	134	4272	4223	5509	4683	955	1141	1458	1107	3317	3082	4051	3576
01.09	139	5600	5811	7064	4899	1225	1325	1645	1138	4375	4486	5419	3761
04.09	142	3958	4467	4953	3973	820	1034	1040	933	3138	3433	3913	3040
08.09	146	5037	5411	5899	5362	1392	1556	1680	1519	3645	3855	4219	4230
15.09	148	5472	5954	6621	5688	1528	1790	1926	1720	3886	4164	4695	3968
17.09	155	6689	7339	8779	8141	1722	1868	2269	2120	4967	5471	6510	6021
22.09	160												
24.09	162	6619	7592	7323	7644	1781	2042	1983	2052	4838	5550	5340	4910
29.09	167	5633	2860	6181 2540	641/ 1512	1413	623	536	319	5476	2237	2004	1193
10.10	178	5371	4330	6900	5210	1222	1266	1243	1095	4149	3064	5657	4115
13.10	181	5000	4500	6271	5786	1114	1071	1434	1337	3886	3429	4837	4449
17.10	185	6371	3129	2770	1831	1919	861	728	487	4452	2268	2042	1344
20.10	188	5650	5440	6098	4762	1450	1450	1637	512	4200	1990	1709	1741
03.11	202	2274	2580	2335	2253	1028	900	858	903	2346	2368	2969	2762
10 11	204	55/4	5200	5027	5005	1020	500		505	2010	2000	2505	
12.11	211	3700	3242	4158	3370	995	938	1318	1056	2705	2304	2840	2314
19.11	218	9948	282	281	258	1373	141	134	146	8575	141	147	112
21.11	220	2675	2629	3137	2814	724	798	898	858	1951	1831	2239	1956
24.11	223	3976	4261	4388	4207	1186	1335	1309	1171	2790	2926	3079	3036
26.11	225	3330	3595	3862	4313	910	1044	1096	1210	2420	2551	2766	3103
01.12	230	5740	5841	5935	5204	1580	1450	1469	1320	4160	4391	4466	3884
04.12	233	3951	4187	4100	4250	1169	1080	1152	1258	2782	3107	2948	2992
11.12	240	5856	5975	7275	6468	1960	1665	1997	1807	3896	4310	5278	4661

Apêndice C.8.-Valores de determinações de sólidos suspensos totais realizados durante o período de operação.

Data	TO	SST (m	g.L ⁻¹)	SSF (n	ng.L ⁻¹)	SSV (mg.L ⁻¹)		Eficiência	Eficiência
	(dia)	Afluente	Efluente	Afluente	Efluente	Afluente	Efluente	SST(%)	SSV(%)
17.04	2	470	330					29,79	
22.04	7		238	220					
24.04	9	504	297					41,07	
29.04	14	358	160					55,31	
08.05	23	321	278					13,40	10
12.05	27		175						
14.05	29	639	340	88	60	551	280	46,79	49,18
20.05	35	480	361	35	249	445	120	24,79	73,03
22.05	37	532	451	173	131	359	320	15,23	10,86
03.06	49	431	222	56	112	375	110	48,49	70,67
03.07	79	417	241	79	182	338	59	42,21	82,54
08.07	84	489	222	74	40	415	121	54,60	70,84
29.07	105	378	176	44	40	334	101	53,44	69,76
31.07	107.	310	143	38	29	272	114	53,87	58,09
05.08	112	261	192	41	40	220	152	26,44	30,91
07.08	114	368	194	120	33	248	161	47,28	35,08
12.08	119	248	102	40	10	208	92	58,87	55,77
14.08	121	314	80	41	5	273	75	74,52	12,53
18.08	125	276	232	44	44	232	188	15,94	18,97
20.08	127	264	60	36	4	228	56	11,21	75,44
25.08	132	268	192	44	32	224	160	28,36	28,57
27.08	134	268	64	36	12	232	52	76,12	11,59
01.09	139	256	47	28	4	228	43	81,64	81,14
04.09	142	163	41	13	17	150	24	74,85	06 21
08.09	146	282	40	19	4	263	36	05,02	86 15
10.09	148	396	56	64		332	45	63,00	66 39
15.09	153	276	101	4/	24	229	32	99 92	90,50
17.09	155	377	38	36	10	341	50	79 37	80,53
22.09	160	356	1 115	53	18	516	77	80 38	85.08
24.09	162	586	122	21	20	233	125	48 03	46.35
29.09	16/	254	132	21	1	316	31	91 09	90.19
06.10	174	340	10	52	2	337	38	90.12	88.72
10.10	1/8	405	71	71	7	396	64	84.80	83.84
13.10	105	240	97	28	14	212	73	63.75	65.57
20 10	100	272	55	52	15	220	40	79,78	81,82
20.10	200	152	124	22	17	130	107	18,42	17,69
05.11	202	524	119	96	21	428	98	77,29	77,10
10 11	204	323	61	54	9	269	26	81,11	90,33
12 11	209	314	50	10	11	304	39	84,08	87,17
19 11	218	343	28	37	6	306	22	91,84	92,81
21 11	220	214	45	44	5	170	40	78,97	76,47
24 11	223	292	92	16	17	276	75	68,49	72,83
26.11	225	268	102	84	18	184	84	61,94	54,35
01.12	230	356	35	49	6	307	29	90,17	90,55
04.12	233	311	28	20	4	291	24	91,00	91,75
11.12	2 240	216	43	56	13	160	30	80,09	81,25

Apêndice C.9.-Valores de determinações de sólidos suspensos totais realizados durante o período de operação.

Data	TO	SST (mg.L ⁻¹)				SSF (mg.L ⁻¹)				SSV (mg.L [^])			
	(dia)	P3	P ₆	Pp.5_	P11	P3	P6	P8,5	P11	P3	P ₆	P8,5	P ₁₁
17.04	2												
22.04	7												
24.04	9												
29.04	14												
08.05	23												
12.05	27												
14.05	29												
20.05	35	4940	5862	6040	5740	1040	1170	1340	1180	3900	4692	4700	4560
22.05	37	4900	5524	6793	5111	1083	1165	1578	1144	3817	4359	5215	3967
03.06	49	5489	6232	5959	6233	1368	1500	1383	1483	4121	4732	4576	4/50
03.07	79	3433	4255	3883	4133	917	1183	1000	1150	2516	3072	2883	2983
08.07	84	2933	4059	3983	3383	583	883	833	750	2350	3176	3150	2633
29.07	105	3181	2450	3250	2463	667	517	683	540	2514	1933	2567	1923
31.07	107	2123	3443	3579	3032	446	771	767	449	1677	2672	2812	2583
05.08	112	2375	3108	3557	2888	512	677	800	650	1863	2431	2757	2238
07.08	114	2255	2719	4120	1819	430	625	739	447	1825	2094	3381	1372
12.08	119	4140	4338	5176	4419	849	892	1108	931	3291	3446	4068	3488
14.08	121	2863	2086	407	1617	625	400	60	283	2238	1686	34/	1334
18.08	125	3262	3123	4588	3912	801	833	1134	940	2461	2290	3454	2972
20.08	127	2720	4070	4770	4420	620	890	1100	1040	2100	3180	3670	3380
25.08	132	2944	3620	4919	4423	685	937	1240	992	2259	2683	3679	3431
27.08	134	3040	3089	3507	3287	546	1031	1287	1065	2494	2058	2221	2222
01.09	139	2030	4825	5867	4711	358	1125	1333	1089	1672	3700	4534	3622
04.09	142	2871	4067	4860	3920	729	822	1018	880	2142	3245	3842	3040
08.09	146	5000	4800	5230	5000	1308	1310	1410	1410	3692	3490	3820	3590
10.09	148	5275	5204	5865	5738	1406	1346	1471	1520	3869	3858	4394	4218
15.09	153	5060	5220	6140	5130	1390	1703	1730	1646	3670	3517	4410	3484
17.09	155	6300	6520	8060	7010	1530	1680	2020	1780	4770	4840	6040	5230
22.09	160												
24.09	162	6260	7200	7060	6640	1560	1820	1820	1720	4700	5380	5240	4920
29.09	167	3110	3700	4667	3083	660	838	1083	683	2450	2862	3584	2400
06.10	174	6748	2714	2332	1059	1330	510	430	204	5418	2204	1902	855
10.10	178	4526	3100	4948	4580	1180	761	908	767	3346	2339	4040	3813
13.10	181	4775	4422	5843	5695	1089	1013	1386	1329	3686	3409	4457	4366
17.10	185	5880	2940	2493	1619	1631	730	620	377	4249	2210	18/3	1242
20.10	188	5344	5235	5124	4420	1313	1309	1320	1080	4031	3926	3804	3340
03.11	202	1508	2297	2186	1676	339	580	520	289	1169	1717	1666	1387
05.11	204	3004	3150	3461	3520	838	861	843	850	2166	2289	2618	2670
10.11	209												0150
12.11	211	3270	3140	3890	2970	980	870	1060	820	2290	2270	2830	2150
19.11	218	4388	80	68	92	1275	24	12	4	3113	56	56	88
21.11	220	2270	2590	2520	2717	570	780	740	775	1700	1810	1/80	1942
24.11	223	3700	3990	4080	4049	1060	1204	1150	1129	2640	2786	2930	2920
26.11	225	3236	3440	3520	4180	904	890	1020	1130	2332	2550	2500	3050
01.12	230	5271	5500	5550	4941	1308	1372	1450	1284	3963	4128	4100	3657
04.12	233	3830	3600	3880	4030	1100	1018	1150	1130	2730	2582	2730	2900
11.12	240	5560	5070	6500	6150	1673	1390	1529	1590	3887	3680	4971	4560

Apêndice C.10.-Valores de determinações de sólidos

sedimentáveis realizados durante o período de operação.

Data	TO	Sé	Eficiência					
	(dia)	Afluente	Paol	P6.0	P8.5	P11.0	Efluente	(8)
17.04	2	7.5					5,5	26,67
22.04	7	9						
24.04	9	16					0,1	99,38
29.04	14	8					3,5	56,25
08.05	23	7						
12.05	27	9						
14.05	29	9						
20.05	35	9	180	170	200	200		
22.05	37	6	150	150	180	170		
03.06	49	16	150	180	195	180		
03.07	79	7	190	195	220	190		
08.07	84	9	150	148	152	152	1	88,89
29.07	105	2,0	100	100	110	110	0,3	85,00
31.07	107	7,0	80	110	90	110	3,0	57,14
05.08	112	5,5	100	100	150	120	1,0	81,82
07.08	114	8,5	86	110	150	120	5,0	41,10 75 71
12.08	119	7,0	150	150	170	170	1,7	/5,/1
14.08	121	6,0	140	150	200	110	1,2	11 29
18.08	125	7,0	120	130	200	140	0,0	14,25
20.08	127	6,5	100	145	140	150	3	53 85
25.08	132	0,5	170	145	240	200	0 1	98 67
27.08	134	7,5	170	200	240	200	0,1	98,57
01.09	140	7,0	120	150	190	150	0,1	98.82
04.09	142	6,5	200	205	240	200	0,1	98,33
10 09	1/8	8.5	240	210	250	250	0,1	98,82
15 09	153	7.0	150	120	130	230	0.5	92,86
17 09	155	9.0	200	210	230	220	0,5	94,44
22 09	160	8.0	220	220	230	240	0,5	93,75
24.09	162	9.5	210	260	230	230	1,8	81,05
29.09	167	4.0	180	180	180	230	0,2	95,00
06.10	174	7.0	170	70	44	20	0,3	95,71
10.10	178	7,0					0,2	97,14
13.10	181	8,0	160	150	200		0,1	98,75
17.10	185	7,0	150	120	130	230	0,1	98,57
20.10	188	6,0	180	76	64	35	0,5	91,67
03.11	202	7,0	180	160	170	140	0,2	97,14
05.11	204	6,5	40	55	45	50	1,0	84,62
10.11	209	8	130	130	150	120	0,2	97,50
12.11	211	7	80	100	120	130	0,5	92,86
19.11	218	7	80	90	140	130	0,4	94,29
21.11	220	2,5	150	0,6	0,3	0,3	0,1	96,00
24.11	223	5	60	40	120	120	0,2	96,00
26.11	225	5	120	120	160	170	1,0	80,00
01.12	230	6	90	120	80	140	1,0	83,33
04.12	233	4	180	240	200	200	0,1	97,50
11.12	240	4,5	230	200	130	230	0,1	91,18

Apêndice C.11.-Valores de determinações de DBO_B realizados durante o período de operação.

DATA	TO	DBO	Eficiência	
	(dia)	Afluente	Efluente	(%)
05.08	112	319	215	32,60
12.08	119	324	120	62,96
18.08	125	440	242	45,00
25.08	132	165	94	43,03
01.09	139	502	183	63,55
08.09	146	620	113	81,77
15.09	153	600	197	67,17
22.09	160	882	177	79,93
29.09	167	520	270	48,08
06.10	174	580	170	70,69
13.10	181	515	302	41,36
20.10	188	357	142	60,22
05.11	204	452	163	63,94
10.11	209	474	106	77,64
19.11	218	353	95	73,09
24.11	223	532	125	76,50
01.12	230	462	106	77,06
11.12	240	406	56	86,21

182

Apêndice C.12.-Valores de determinações de DQO_B realizados durante o período de operação.

DATA	ATA TO DQO _B		OB	Eficiência
(dia)		Afluente	Efluente	8
17.04	2	858	838	2,33
22.04	7	1118	400	66,99
24.04	9	1304	369	60,28
29.04	14	640	518	44,38
08.05	23	1052	356	72,60
12.05	27	989	271	67,23
14.05	29	1120	367	72,85
20.05	35	1440	391	72,99
22.05	37	1092	295	72,99
03.06	49	1195	457	61,76
03.07	79	696	336	51,72
08.07	84	1034	218	78,92
29.07	105	425	295	30,59
31.07	107	725	384	47,03
05.08	112	759	543	28,46
07.08	114	1154	656	43,15
12.08	119	763	348	54,39
14.08	121	896	374	58,26
18.08	125	1442	651	54,85
20.08	127	960	356	62,92
25.08	132	859	505	41,21
27.08	134	936	338	63,89
01.09	139	924	292	68,40
04.09	142	951	310	71 10
10 00	140	040	242	70 58
15 09	153	1348	570	57 72
17.09	155	785	252	67,90
22.09	160	1054	310	70.59
24.09	162	991	369	62,76
29.09	167	1424	548	61,52
06.10	174	1724	657	61,89
10.10	178	867	329	62,05
13.10	181	1212	392	67,66
17.10	185	1286	382	70,30
20.10	188	1636	301	81,60
03.11	202	466	236	49,36
05.11	204	860	193	77,56
10.11	209	856	238	72,20
12.11	211	778	215	12,37
19.11	218	648	120	81,48
21.11	220	881	243	12,42
24.11	223	724	245	50,10
26.11	225	/61	311	39,13
04 12	230	040	204	75,94
04.1Z	233	409		80 55
11.12	240	007	107	00,00

Apêndice C.13.-Valores de determinações de DQO_B

realizados durante o período de operação.

DATA	TO	$DQO_B (mg O_2, L^{-1})$				
Stations.	dia)	P ₃	P ₆	P8,5	P ₁₁	
17.0422.0424.0429.0408.0512.0514.0520.0522.0503.0603.0708.0729.07	2 7 9 14 23 27 29 35 37 49 79 84 105	9160 13240 4840 4380 4740	7840 10000 5020 7050 3680	9800 14160 12360 7520 3640	11960 5600 4690 3240	
31.07	107	3600	4660	3570	3230	
05.08	112	3530	5910	6660	5790	
07.08	114	2720	3620	6350	4540	
12.08	119	7600	7250	7420	6030	
14.08	121	4920	5180	9140	8720	
18.08	125	8640	8860	11620	6800	
20.08	127	6925	8175	8875	9475	
25.08	132	6910	8150	8980	9520	
27.08	134	5560	6250	3180	6100	
01.09	139	9690	9240	11360	9540	
04.09	142	6560	7720	8740	9200	
08.09	146	9820	6160	10180	9640	
10.09	148	10340	9220	12020	12780	
15.09	153	14460	16600	18340	8500	
17.09	155	14640	13700	15780	14600	
22.09	160	10300	14980	16640	13240	
24.09	162	14500	12780	13340	13320	
29.09	167	5100	3960	12900	11900	
06.10	174	7250	5400	4180	5320	
10.10	178	16120	8820	17720	17300	
13.10	181	20875	7625	12800	17520	
17.10	185	13700	5760	6060	4240	
20.10	188	9560	9860	8720	7420	
03.11	202	2640	5580	4120	4440	
05.11	204	5160	5680	6440	4980	
10.11	209	5280	5940	6460	5500	
12.11	211	5960	5380	7100	5660	
21.11	218	7660	6100	2450	1850	
24.11	220	5460	5140	6220	5500	
24.11	223	7120	6900	9460	8480	
26.11	225	6400	7340	7560	7500	
01.12	230	9520	9420	10360	9420	
04.12	233	8100	7120	8500	8060	
11.12	240	10200	11440	13920	11200	

Apêndice C.14.-Valores de determinações de DQO_F realizados durante o período de operação.

DATA	TO	$DQO_F (mg O_2, L^{-1})$		Eficiência
	dia)	Afluente Efluente		8
17.04	2	352	334	5,11
22.04	7	865	388	55,14
24.04	9	385	305	20,78
29.04	14	212	133	37,26
08.05	23	580	303	47,76
12.05	27	271	201	25,83
14.05	29	325	318	2,15
20.05	35	377	302	19,89
22.05	37	278	238	14,39
03.06	49	333	223	35,05
03.07	19	444	160	43,95
08.07	105	270	105	42,05
29.07	107	250	105	62 40
05 00	112	230	179	46 88
03.08	114	338	147	56.51
12 08	119	348	201	42,24
14 08	121	297	263	11,45
18.08	125	457	241	47,26
20.08	127	395	261	33,92
25.08	132	484	340	29,75
27.08	134	400	240	40,00
01.09	139	335	219	34,63
04.09	142	424	289	31,84
08.09	146	299	196	34,45
10.09	148	311	173	44,37
15.09	153	516	288	44,19
17.09	155	314	138	56,05
22.09	160	579	224	01,31
24.09	162	337	209	37,90
29.09	17/	370	207	31 63
10.10	170	402	189	77 06
13 10	1.91	123	216	48.94
17 10	185	322	158	50.93
20 10	188	339	215	36,58
03.11	202	253	86	66,01
05.11	204	245	130	46,94
10.11	209	295	221	25,08
12.11	211	285	112	60,70
19.11	218	237	125	47,26
21.11	220	314	96	69,43
24.11	223	260	102	60,77
26.11	225	301	91	69,77
01.12	230	246	101	58,94
04.12	233	294	81	72,45
11.12	240	255	91	64,31

Apêndice C.15.-Valores de determinações de DQO_F

realizados durante o período de operação.

DATA	TO	DQO _F (mg O ₂		2. L ⁻¹)	
	(dia)	P ₃	Pe	P _{8,5}	P ₁₁
17.04 22.04 24.04 29.04 08.05 12.05	2 7 9 14 23 27			-	
14.05	29 35	520	350	1030	760
22.05 03.06 03.07 08.07 29.07 31.07 05.08 07.08 12.08 14.08 18.08 20.08 25.08 27.08 01.09 04.09 08.09 10.09	37 49 79 84 105 107 112 114 119 121 125 127 132 134 139 142 146 148	230 1280 132 176 80 162 189 205 234 256 277 210 257 278 290 249 221	230 760 156 70 105 408 202 217 259 284 292 218 258 247 299 236 229	260 860 172 232 134 226 209 217 303 269 282 217 250 277 250 277 179 227	270 230 196 185 106 222 206 186 281 295 207 274 291 277 208 224
15.09 17.09 22.09 24.09 29.09 06.10 10.10 13.10 17.10 20.10	153 155 160 162 167 174 178 181 185 188	328 302 241 243 234 696 791 344 257 330	330 298 227 246 211 559 659 349 239 342	335 285 245 204 569 661 323 256 374	347 372 248 215 235 387 733 291 247 295
03.11 05.11 10.11 12.11 19.11 21.11 24.11 26.11 01.12 04.12 11.12	202 204 209 211 218 220 223 225 230 233 240	74 171 258 184 242 286 128 132 144 113 123	66 250 210 121 182 195 131 155 172 139 120	63 209 226 167 148 228 126 183 131 94 118	21 25 229 197 189 214 118 128 131 107 123

Apêndice C.16.-Valores de determinações de fósforo total realizados durante o período de operação.

Data	TO	Fósforo Tot	al (mg $PO_4 L^{-1}$)	Eficiência
	(dia)	Afluente	Efluente	(%)
05.08	112	18	17	3,33
12.08	119	21	19	7,75
18.08	125	22	14	35,15
25.08	132 -	24	21	13,00
01.09	139	21	19	7,81
08.09	146	22	16	26,18
15.09	153	24	19	22,67
22.09	160	22	19	15,64
29.09	167	22	21	5,09
06.10	174	17	13	24,94
13.10	181	24	19	- 20,83
20.10	188	21	20	4,76
05.11	204	21	15	28,19
10.11	209	21	19	11,62
19.11	218	13	7	43,78
24.11	223	18	13	29,11
01.12	230	19	14	26,74
11.12	240	17	11	32,45

Apêndice B.17.-Valores de nitrogênio durante o período de operação.

Data	TO	NTK (mg/1)	Norg	(mg/l)	NH ₃ (mg/l)
ADD	(dia)	Afluente	Efluente	Afluente	Efluente	Afluente	Efluente
05.08	112	39	34	11	7	28	27
12.08	119	111	56	47	31	64	38
18.08	125	84	47	21	8	63	39
25.08	132	87	42	24	7	62	36
01.09	139	76	41	27	4	50	37
08.09	146	96	50	47	17	49	33
15.09	153	76	45	30	7	46	38
22.09	160	87	42	37	5	50	37
29.09	167	111	48	66	8	45	40
06.10	174	85	31	35	2	50	29
13.10	181	66	42	19	5	47	37
20.10	188	73	41	27	7	45	34
05.11	204	87	36	40	14	47	22
10.11	209	73	32	31	3	42	29
19.11	218	66	18	23	5	43	13
24.11	223	55	23	17	0	38	23
01.12	230	68	26	25	5	4.3	21
11.12	240	65	23	20	5	45	18

Apêndice C.18.-Valores da taxa de carregamento orgânico

COV Aplicada QBr Q_{EB} (m³.d⁻¹) Data TO $(m^3.d^{-1})$ $(kgDQO.m^{-3}d^{-1})$ (dia) 3,45 17.04 106 2 129 5,25 7 509 22.04 150 2,71 170 9 24.04 66 4,05 126 29.04 202 14 290 1,81 08.05 23 55 2,56 290 12.05 27 83 3,38 29 97 133 14.05 5,49 348 20.05 35 122 5,08 295 149 22.05 37 327 5,77 49 155 03.06 3,76 79 173 290 03.07 5,07 08.07 84 157 278 2,70 29.07 105 203 600 4,69 600 31.07 107 207 4,65 600 05.08 112 196 7,79 360 216 07.08 114 4,72 198 360 12.08 119 360 6,10 218 14.08 121 9,37 208 360 18.08 125 6,15 205 360 20.08 127 5,21 25.08 132 194 360 6,32 360 27.08 134 216 5,72 204 198 01.09 139 5,88 198 204 04.09 142 204 5,93 08.09 146 226 10.09 6,60 225 204 148 9,06 215 204 15.09 153 4,86 198 204 17.09 155 221 7,28 22.09 160 204 6,38 206 204 24.09 162 9,35 29.09 167 210 204 11,31 210 204 06.10 174 204 5,69 10.10 178 210 7,95 210 204 13.10 181 8,44 17.10 185 210 204 10,74 204 20.10 188 210 204 3,50 03.11 202 240 6,45 240 204 05.11 204 204 6,42 10.11 209 240 5,84 12.11 211 240 204 204 4,86 19.11 218 240 240 204 6,61 21.11 220 5,43 223 240 204 24.11 5,71 26.11 225 240 204 6,36 204 240 01.12 230 3,67 240 204 04.12 233 6,05 240 204 11.12 240

.

durante o período de operação.

Apêndice C.19.-Valores da composição do efluente gasoso durante o período de operação.

Dia	TO	Composição (%)	
	(dia)	CH ₄	CO ₂
07.05 08.05 12.05 14.05 20.05 22.05 03.06 03.07 08.07 29.07 31.07 05.08 07.08 12.08 14.08 12.08 14.08 18.08 20.08 25.08 27.08 01.09 04.09 08.09	(dia) 22 23 27 29 35 37 49 79 84 105 107 112 114 119 121 125 127 132 134 139 142 146	CH4 38,2 47,3 40,1 47,7 40,4 57,1 42,1 59,8 51,3 45,1 51,0 53,4 38,5 61,2 52,7 45,4 62,9 67,0 57,3 62,6 64,2 59,3	CO2 5,6 20,6 22,8 36,1 22,9 6,9 11,2 2,8 2,6 2,6 3,2 2,2 3,5 5,6 2,6 2,5 2,7 3,6 7,0 5,6 7,1 4,0
10.09 15.09 17.09 22.09 24.09 29.09 06.10 10.10 13.10 17.10 20.10 03.11 05.11 10.11 12.11 19.11 01.12 04.12	148 153 155 160 162 167 174 178 181 185 188 202 204 209 211 218 230 232	59,7 62,9 53,7 54,6 61,2 53,6 55,7 61,8 66,2 69,4 53,4 47,2 39,0 59,6 56,4 58,4 60,3 57,8	4,4 5,3 5,1 6,8 8,3 8,0 6,6 10,2 8,4 6,5 7,4 4,7 5,6 5,5 12,1 10,1 8,3 9,3

APÊNDICE D

Estudo do Biofilme Anaeróbio

Apêndice D.1.-Curva Padrão para dosagem de proteína total.

