RELAÇÃO ENTRE O COEFICIENTE DE ABSORÇÃO DE MASSA K_L E PARÂMETROS DE TURBULÊNCIA SUPERFICIAL. OBTIDOS POR MÉTODO ÓPTICO

MANDEL FRANCISCO CARREIRA

Orientador:

Prof. Dr. WOODROW NELSON LOPES ROMA

	T GCCC
Class.	Tese-6622
Cutt.	1795
•	
	Aular
Tomt	047195

Hidráulica

50,

\$ 741526

RELAÇÃO ENTRE O COEFICIENTE DE ABSORÇÃO DE MASSA K_L E PARÂMETROS DE TURBULÊNCIA SUPERFICIAL. OBTIDOS POR MÉTODO ÓPTICO

MANDEL FRANCISCO CARREIRA

Orientador:

Prof. Dr. WOODROW NELSON LOPES ROMA

Dissertação apresentada à Escola de Engenharia de São Carlos, da Universidade de São Paulo, para obtenção do título de Mestre em Hidráulica e Saneamento.

São Carlos Estado de São Paulo Janeiro, 1993

FOLHA DE APROVAÇÃO

Dissertação defendida e aprovada em 06/1/1995 pela Comissão Julgadora:

uc WOODROW NELSON LOPES ROMA (Orientador) Prof.Dr. (Escola de Engenharia de São Carlos - USP un JOSE TEIXEIRA FREIRE Prof.Dr. (Universidade Federal de São Carlos)

Prof.Dr. MARCIUS FANTOZZI GIORGETTI (Escola de Engenharia de São Carlos - USP)

Prof.Dr. JURANDYR POVINELLI Presidente da CPG

Prof.Dr. JURANDYR POVINELLI Coordenador da årea – Hidråulica e Saneamento

HOMENAGEM

IN MEMORIUN

À mãe querida

ANA MOTTA CARRESRA

N - 21.01.1921 F - 20.04.1993

Deus na sua infinita sabedoria, nos reserva as surpresas, o desconhecer do amanhã. Esta para mim foi a tua partida. Jamais esperava que fosse neste momento. Acreditava eu poder compartilhar ainda mais do teu amor e carinho. Tu, que sempre lutaste comigo, que me apoiaste, incentivaste, que sempre esperaste por mim. agora partiste. Gostaria que aqui, para estivesses mais esta etapa transposta, nesta caminhada que tu me ensinaste, para poder colocar teu nome na dedicatória deste trabalho.

Tenho certeza que a morte não existe, que continuamos inseparáveis pelo amor que nos une, e assim minha querida mãe, minha conquista é tua conquista.

111

DEDICATÓRIAS

A Suely e Matheus.

"Su" sem a sua compreensão, apoio, incentivo, companheirismo e amor, não teria realizado este trabalho. Como foi importante você estar ao meu lado nesta jornada, nos momentos de desânimo e dificuldades a sua presença foi o meu alento, assim você também me ajudou na realização deste trabalho, esta conquista dedico a você, e ao nosso buguelinho, com todo o meu carinho e amor.

Muito Obrigado.

Ao meu querido Pai

Ao meu maior amigo, que de forma simples, e sempre presente, esteve junto a mim em todos os momentos, dedico também a minha conquista, porque sem você, que me ensinou a trabalhar, a lutar e a conquistar o que desejava, não teria sido possível.

Obrigado.

"A dona Marina"

À minha segunda mãezinha, o meu carinho especial pelo sincero apoio e incentivo, minha eterna gratidão.

AGRADECIMENTO ESPECIAL

"Ao Mestre e Orientador"

Prof. Dr. Woodrow N. L. Roma, pela pessoa, que antes de orientador, se posicionou como um companheiro de trabalho e amigo, o qual teve paciência e compreensão com nossas deficiências, nos incentivou nos momentos de desafio, e quando das difículdades nos orientou.

"Não podeis ensinar coisa alguma a um homem; podeis apenas ajudá-lo a encontrá-la dentro de si mesmo "... (Galileu).

"Ao homem de Cisncia"

Prof. Dr. Marcius Fantozzi Giorgetti, homem de ciência, que avista o futuro, que demonstra profissionalismo, o nosso agradecimento especial a sua colaboração e sugestões ao nosso trabalho.

AGRADECIMENTOS

O autor agradece a todos que contribuiram para a realização deste trabalho, em especial:

Aos amigos de pós-graduação Alan C. Cunha e Orlene Silva da Costa, engenheiros químicos, os quais com profissionalismo compartilharam suas experiências, conhecimentos e problemas do dia a dia, no desenvolvimento de seus trabalhos, os quais estavam relacionados ao nosso.

Aos meus irmãos, Maria Isabel, Waldemar, Rosa e Ana, pelo incentivo constante e a torcida, meu eterno obrigado.

Aos colegas Luciano Cleto, Ericson Dias Melo e Paulo Silveira, pelos ensinamentos, incentivo e espirito de equipe.

Aos companheiros do dia-a-dia, Marcio (Marilia), Hidalio (Panamá), Lunalva (Bahia), Heraldo (Alagoas), Deise (Gaucha), José Carlos e a todos os anonimos, pelo convívio e companheirismo.

Aos técnicos do Laboratório de Fenômeno de Transportes Wagner Lamon, Luis Muzzeti e Roberto Bergamo, pela ajuda indispensável quando da montagem do experimento, e na confecção de alguns equipamentos elétrico e eletrônicos, o nosso muito obrigado.

Ao professor Geraldo Lombardi do Laboratório de Metrologia USP - São Carlos, pela permissão para a realização das leituras de pressão barométrica.

Ao Professor Dr. Harry Schulz do Departamento de Hidráulica e Saneamento USP - São Carlos, pelas correções, sugestões e críticas construtivas a este trabalho, o nosso sincero agradecimento.

Ao CNPq, pela Bolsa de Mestrado concedida para a execução deste trabalho.

νı

PENSAMENTO

· .

" Tenho certeza que tua mãe está contigo. A morte não é apenas uma conseqüência, mas é necessidade da vida. Representa uma evolução e não um fim."

Harry Schulz

SUMÁRIO

Figuras	
Quadros	
Tabelas	

CAPÍTULO I - INTRODUÇÃO, OBJETIVOS E REVISÃO BIBLIOGRÁFICA.

1.0	INTRO	DUCX0	02
2.0	OBJET	IVOS	04
3.0	REVIS	XO BIBLIOGRAFICA	06
	3.1-	MODELOS DE REAERAÇÃO	06
		3.1.1- Histórico dos principais modelos de transfe-	
		rência de massa através de interface	07
		3.1.2- Conclusão sobre os modelos de reaeração	09
		3.1.3- Coeficientes de transferência de massa	11
		3.1.4- Influência da temperatura, da umidade rela-	
		tiva do ar sobre o coeficiente de reaeração.	13
	3.2-	PARAMETROS TURBULENTOS	14
		3.2.1- Teoria da turbulência proposta por Reynolds.	14
		3.2.2- Teoria estatística da turbulência	17
		3.2.2.1- Intensidade de turbulência	19
		3.2.2.2- Ergodicidade	20
		3.2.2.3- Funções de correlação	21
	3.3-	DESENVOLVIMENTO DO METODO OPTICO SENSOR FOTO-RECEP-	
		TOR	24
		3.3.1- Estimativa da área turbulenta pelo método	
		óptico do sensor foto-receptor	28
		3.3.2- Semicondutores	29
		3.3.3- Sensor óptico - Foto-receptor	31

CAPÍTULO II - DESCRIÇÃO DO EXPERIMENTO.

4.0	METOD	OLOGIA DO DESENVOLVIMENTO DO EXPERIMENTO	33
	4.1-	SEQUENCIA EXPERIMENTAL E MATERIAIS UTILIZADOS	33
		4.1.1- Descrição do Experimento	33
		4.1.1.1- Sistema de Geração de Turbulência	35
		4.1.1.2- Sistema de Deaeração Meio Líquido.	36
		4.1.1.3- Sistema de Controle de Temperatura	39
		4.1.1.4- Sistema de Medidas	40
	-	4.1.1.5- Métodos de Calibração ou Ajustes	
		dos Equipamentos	43
		4.1.1.6- Mecanismos de Obtenção de Dados por	
		Microcomputador	48
	4.2-	METODO PARA DETERMINAÇÃO COEFICIENTE DE REAERAÇÃO	53
	4.3-	CALCULO DA ESTIMATIVA DA AREA SUPERFICIAL TURBU-	
		LENTA	55
	4.4-	INCERTEZAS DAS MEDIDAS	56

CAPÍTULO III - RESULTADOS E DISCUSSÕES.

5.0	RESUL	TADOS E DISCUSSÃO	59
	5.1-	COEFICIENTE DE REOXIGENAÇÃO K	59
	5.2-	RESULTADOS DO VALOR RMS DOS ENSAIOS	65
	5.3-	FUNÇÃO DE AUTOCORRELAÇÃO	69
	5.4-	ESTIMATIVA DA AREA SUPERFICIAL TURBULENTA	73
	5.5-	CALCULO DO COEFICIENTE DE TRANSFERENCIA DE MASSA K	75
	5.6-	RELAÇÃO ENTRE O COEFICIENTE K, E A MACROESCALA DE	
		TURBULENCIA	78

IX

CAPÍTULO IV - CONCLUSÕES, RECOMENDAÇÕES E REFERÊNCIAS BIBLIOGRÁ-FICAS

6.0	CONCLUSÕES E RECOMENDAÇÕES	83
	6.1- CONCLUSTES - EM RELAÇÃO AOS OBJETIVOS	.86
	6.2- CONCLUSTES GLOBAIS	87
	6.3- RECOMENDAÇõES	89
7.0	REFERENCIAS BIBLIOGRAFIAS	90
	ANEXO - A. (Programas em linguagem Pascal)	95
	ANKXO - B. (Sub-rotinas utilizadas nos programas)	117
	APENDICE - A. (Dados de Oxigênio dissolvido e K_2)	140
	APENDICE - B. (Dados de parâmetros turbulentos)	166

FIGURAS

Figura 3.01-	Velocidade ao longo do tempo - Em um movimen-	
	to turbulento	15
Figura 3.02-	Exemplificação gráfica do valor Rms	19
Figura 3.03-	Gráfico da função de autocorrelação (sensor óp- tico - Ensaio realizado em 78 rpm - coleta nr. 01 - cálculo realizado para 100 correlações	23
Figura 3.04-	Gráfico da função de autocorrelação (sensor óp- tico - Ensaio realizado em 358 rpm - coleta nr. 02 - cálculo realizado para 100 correlações	23
Figura 3.05-	Superfície hipotética (senoidal) entre fase ga- sosa e líquida	25
Figura 3.06-	Comportamento da variável tensão elétrica. Comparação com a superfície hipotética. Amostragem de 200 pontos por segundo. Ensaio realizado em 60 rpm	26
Figura 3.07-	Circuito elétrico de um fototransistor PNP	30
Figura 3.08-	Desenho do Sistema de coleta de dados de turbu- lência pelo sensor foto-receptor	31
Figura 4.01	Tangue hidrodinâmico com sistema de acionamento	35
Figura 4.02	Diagrama do Sistema de Desoxigenação	38
Figura 4.03	Esquema Eletrônico da Sonda óptica	43
Figura 4.04	Reta de Calibração do Medidor de Oxigênio AM221 Método de Winkler como referência	44
Figura 4.05	Reta de Calibração da Placa Analógica Digital com relação ao Medidor de Oxigênio eletrolítico	46

Figura	4.06	Estrutura Global do Experimento	52
Figura	5.01	Curva de determinação do coeficiente K ₂ pelo método dos mínimos quadrados linear - Ensaio realizado em 78 rpm	60
Figura	5.02	Curva do Coeficiente de Reoxigenação versus ro- tação do impulsor (comportamento exponencial)	61
Figura	5.03	Gráfico do coeficiente de reoxigenação versus a potência dissipada em cada ensaio	62
Figura	5.04	Gráfico de tensão versus número de pontos cole- tados na freqüência de coleta - 200 pontos por segundos, ensaio em 78 rpm	65
Figura	5.05	Gráfico de tensão versus número de pontos cole- tados na freqüência de coleta - 300 pontos por segundos, ensaio em 450 rpm	66
Figura	5.06	Curva do valor Rms versus rotação do impulsor .	67
Figura	5.07	Dois gráficos da função de Autocorrelação do mesmos ensaio - Ensaio realizado em 60 rpm	69
Figura	5.08	Dois gráficos da função de Autocorrelação do mesmos ensaio - Ensaio realizado em 358 rpm	69
Figura	5.09	Curva da macroescala de turbulência (Lm) versus rotação do impulsor em rpm	71
Figura	5.10	Comparação dos resultados da macroescala de turbulência com relação a faixa de integração	72
Figura	5.11	Gráfico da relação de área turbulenta/repouso versus rotação do impulsor (rpm)	74
Figura	5.12	Gráfico do coeficiente de transferência de mas- sa K _{LR} versus Rotação do impulsor (rpm)	76

.

XII

Figura 5.13	Gráfico do Coeficiente de transferência de mas- sa K _{LT} (área-turbulenta) versus rotação (rpm)	77
Figura 5.14	Gráfico do coeficiente de resistência global versus rotação do impulsor (rpm)	79
Figura 5.15	Comparação entre a função da resistência global e a macroescala de turbulência versus rotação	80
Figura 5.16	Gráfico do coeficiente de resistência global versus a macroescala de turbulência	81

FIGURAS DO APENDICE A

Figura A.01	Curva de determinação do coeficiente K ₂ pelo ajuste dos mínimos quadrados linear, - Ensaio realizado em 60 rpm	143
Figura A.02	Curva de determinação do coeficiente K ₂ pelo ajuste dos mínimos quadrados linear, - Ensaio realizado em 78 rpm	143
Figura A.03	Curva de determinação do coeficiente K ₂ pelo ajuste dos mínimos quadrados linear, - Ensaio realizado em 98 rpm	148
Figura A.04	Curva de determinação do coeficiente K ₂ pelo ajuste dos mínimos quadrados linear, - Ensaio realizado em 108 rpm	148
Figura A.05	Curva de determinação do coeficiente K ₂ pelo ajuste dos mínimos quadrados linear, - Ensaio realizado em 145 rpm	152

XIII

FIGURAS DO APÉNDICE B

XIV

Figura	B.02	Gráfico da macro-escala de turbulência - Ensaio realizado em 78 rpm (coleta nr. 02)
Figura	B.03	Gráfico da macro-escala de turbulência - Ensaio realizado em 98 rpm (coleta nr. 05)
Figura	B.04	Gráfico da macro-escala de turbulência - Ensaio realizado em 108 rpm (coleta nr. 05)
Figura	B.05	Gráfico da macro-escala de turbulência - Ensaio realizado em 145 rpm (coleta nr. 02)
Figura	B.04	Gráfico da macro-escala de turbulência - Ensaio realizado em 155 rpm (coleta nr. 01)
Figura	B.07	Gráfico da macro-escala de turbulência - Ensaio realizado em 208 rpm (coleta nr. 01)
Figura	B.08	Gráfico da macro-escala de turbulência - Ensaio realizado em 253 rpm (coleta nr. 02)
Figura	B.09	Gráfico da macro-escala de turbulência - Ensaio realizado em 276 rpm (coleta nr. 01)
Figura	B.10	Gráfico da macro-escala de turbulência - Ensaio realizado em 358 rpm (coleta nr. 02)
Figura	B.11	Gráfico da macro-escala de turbulência - Ensaio realizado em 385 rpm (coleta nr. 01)
Figura	B.12	Gráfico da macro-escala de turbulência - Ensaio realizado em 450 rpm (coleta nr. 02)

xv

TABELAS

Tabela 4.01	Características do Tanque de Agitação Hidro- dinâmico	36
Tabela 4.02	Dados Característicos do Sistema de Desoxi- genação	37
Tabela 4.03	Dados de Calibração do Medidor de O ₂ versus Método de Winkler na temperatura 25º C	44
Tabela 4.04	Dados de Calibração do Medidor de O ₂ versus Placa Analógica/Digital na temperatura 25º C.	45
Tabela 5.01	Coeficiente de Reaeração de cada ensaio	60
Tabela 5.02	Relação entre a energia dissipada e o coefi- ciente de reoxigenação K	63
Tabela 5.03	Comparação dos Coeficiente de Reoxigenação no tanque hidrodinámico	64
Tabela 5.04	Dados de valor Rms dos ensaios	67
Tabela 5.05	Comparação dos valores Rms com trabalho de Roma	68
Tabela 5.06	Dados de Comparação da Integração de Autocor- relação	71
Tabela 5.07	Relação da Area Turbulenta com em Repouso	73
Tabela 5.08	Coeficiente de Transferência de Massa K	76

xvi

TABELAS DO APENDICE - A.

Tabela A.01	Dados para determinação do Coeficiente K ₂ em	
	ensaio realizado em 60 rpm	141
Tabela A.02	Dados para determinação do Coeficiente K ₂ em	
	ensaio realizado em 78 rpm	144
Tabela A.03	Dados para determinação do Coeficiente K ₂ em	
	ensaio realizado em 98 rpm	146
Tabela A.04	Dados para determinação do Coeficiente K ₂ em	
	ensaio realizado em 108 rpm	149
Tabela A.05	Dados para determinação do Coeficiente K ₂ em	
	ensaio realizado em 145 rpm	151
Tabela A.06	Dados para determinação do Coeficiente K ₂ em	
	ensaio realizado em 155 rpm	153
Tabela A.07	Dados para determinação do Coeficiente K em	454
	Phano realizado em 208 rpm	154
Tabela A.08	Dados para determinação do Coeficiente K em	156
		190
Tabela A.09	Dados para determinação do Coeficiente K em	167
		101
Tabela A.10	Dados para determinação do Coeficiente K em 2	160
		100
LADELA A.11	Dados para determinação do Coeficiente K em	160
	ensalo realizado em 303 rpm	102

TABELAS DO APENDICE - B.

÷

Relação de da	ados turbulentos do ensaio em 145 rpm	167
Tabela B.01	Parâmetros obtidos dos dados de turbulência Ensaio realizado em 60 rpm	177
Tabela B.02	Parâmetros obtidos dos dados de turbulência Ensaio realizado em 78 rpm	178
Tabela B.03	Parâmetros obtidos dos dados de turbulência Ensaio realizado em 98 rpm	179
Tabe'a B.04	Parâmetros obtidos dos dados de turbulência Ensaio realizado em 108 rpm	180
Tabela B.05	Parâmetros obtidos dos dados de turbulência Ensaio realizado em 145 rpm	181
Tabela B.06	Parâmetros obtidos dos dados de turbulência Ensaio realizado em 155 rpm	182
Tabela B.07	Parametros obtidos dos dados de turbulência Ensaio realizado em 208 rpm	183
Tabela B.08	Parametros obtidos dos dados de turbulência Ensaio realizado em 253 rpm	184
Tabela B.09	Parâmetros obtidos dos dados de turbulência Ensaio realizado em 276 rpm	185

xvIII

Tabela B.10 Parametros obtidos dos dados de turbulência Ensaio realizado em 358 rpm.... 186 Tabela B.11 Parâmetros obtidos dos dados de turbulência Ensaio realizado em 385 rpm..... 187 Tabela B.12 Parâmetros obtidos dos dados de turbulência Ensaio realizado em 450 rpm..... 188

ST MBOLOS

Abreviações:

Adimens. = Variável Adimensional

Depend. = Variável genérica que depende da substituição

sí mbolo Nome

Ζ Amplitude da lamina de líguido máximo ou mínimo acima do nível de repouso..... L Z^{\prime} Amplitude da lamina d'água com referência ao nível d'água da superfície repouso..... L Coeficiente Angular da Reta de Calibração do Meα didor de Oxigênio Dissolvido versus Placa A/D... Adimens. Coeficiente angular da reta de calibração da meξ dida de temperatura através da Placa A/D..... Adimens. LT⁻¹ K, Coeficiente de Transferência de Massa..... Coeficiente de Transferência de Massa conside-K rando a área em repouso..... LT⁻¹ Coeficiente de Transferência de Massa conside-K LT⁻¹ rando a área em turbulência..... k* Coeficiente de Transferência de Massa genérico.. LT⁻¹

XIX

Dimensão

k_	Coeficiente de Transferência de Massa na fase	
_	líquida	LT ⁻¹
k	Coeficiente de Transferência de Massa na fase	
0	gasosa	LT ⁻¹
K	Coeficiente global de transferência de massa	LT ⁻¹
K	Coeficiente de Reoxigenação ou de Reaeração	T^{-1}
K_(T)	Coeficiente de Reoxigenação na temperatura esti-	
2	mada	T^{-1}
$K_{2}(Tr)$	Coeficiente de Reoxigenação na temperatura de	
L	referência	T^{-1}
ß	Coeficiente Linear da Reta de Calibração do Me-	
	didor de Oxigênio Dissolvido versus Placa A/D	Adimens.
Ð	Coeficiente de temperatura	Adimens.
Ra	Coeficiente global de resistência à transferên-	
	cia de massa	TL ⁻¹
ro	Coeficiente global de resistência à transferên-	
	cia de massa da fase gasosa	TL ⁻¹
rl	Coeficiente global de resistência à transferên-	
	cia de massa da fase líguida	TL ⁻¹
R(t)	Coeficiente de autocorrelação	Adimens.
, *	Composição de fese sesose em equilibrio com p	
y	liquide	M %
C	Concentração de Origânio Dissolvido no instanto	11 - 78
0	de tempo t	мт −э
0	Concentração de ovigênio dissolvido de messe $11 -$	1.117
ິ2	auida Corrigido pela Reta de Calibração	мт. ^{-Э}
G	Concentração de oxi $génio$ dissolvido em t= 0	нц. ^{-э}
_*		
C w	Concentração de saturação de oxigênio dissolvi-	-9
	do no equilibrio	ML_2
ai	Constante de equilibrio de Henry	Adimens.
Ca	Constante de proporcionalidade de diferenciação.	Adimens.
Ca	Constante de proporcionalidade de diferenciação.	Adimens.
Ji	Dados aleatórios de uma amostra j	Depend.
D L →	Difusividade do gás no meio líquido	LTT
r	Distância de um ponto origem a fonte	L

÷.,

xx

ω	Expoente da potência dissipada	Adimens.
Fmax	Freqüência da Placa A/D	т
f	Freqüência da oscilação senoidal	Т
x	Fração molar no meio da fase líquida	M - %
x,	Fração molar no líquido, na interface	M - %
у V	Fração molar no meio da fase gasosa	M - %
ע,	Fração molar no gás, na interface	M - %
m	Inclinação da reta da curva de equilibrio líqui-	
	do-gasoso	Adimens.
Δt	Intervalo de Tempo entre duas Coletas	т
т	Intervalo entre dois pontos e também o número de	
	correlações da função de autocorrelação	Adimens.
Lm	Macro-escala de turbulência	Т
N	Número de rotações da pá rotativa	T -1
n	Número de dados coletados em uma amostra	Adimens.
Ψ	Número de Bits da Placa A/D	Adimens.
S	Número de termos possíveis (p/ autocorrelação)	Adimens.
OD	Oxigênio dissolvido no Líquido obtido pelo medi-	
	dor de OD	ML ⁻³
u'	Parcela da velocidade que representa o desvio	
	médio instantâneo	LT ⁻¹
R	Período de oscilação em relação distância r	T ⁻¹
P	Período de oscilação senoidal	T ⁻¹
Pd	Poténcia dissipada	MLT
I	Radiação luminosa no ponto r(t)	ML ⁻¹
Rms	Raiz média quadrática	LT-1
Re	Resolução da Placa A/D de 12 Bits	т
Тр	Temperatura medida na massa líquida	θ
Т	Tempo da amostragem	Т
Tcc	Tempo de coleta confiável para modelos de K ex-	
	ponenciais	Т
Tev	Tempo de Conversão da C.P.U. (micro)	T
t.	Tempo transcorrido a partir de t=0	Ţ
te	Tempo de exposição dos elementos na superfície	т
Va	Tensão Renistrada na Placa A/D	E

xxi

XX11

Tensão Medida pela Placa A/D - saída do medidor	
de oxigênio dissolvido	E
Tensão Medida na Placa A/D na saída do medidor	
de temperatura FAC 211	E
Valor de uma variável qualquer	Adimens.
Valor médio de uma amostra discretizada	Depend.
Valor médio de dados analógicos	Depend.
Variável que representa os dados obtidos pelo	
sensor foto-receptor (sonda óptica)	M_ ⁻¹
Velocidade Molar de Difusão/unidade de Area	ML ⁻¹
Velocidade instantanea em fluxo turbulento em	
em estado estacionário	LT-1
Velocidade média em fluxo turbulento em estacio-	
nario	LT-1
	Tensão Medida pela Placa A/D - saída do medidor de oxigênio dissolvido Tensão Medida na Placa A/D na saída do medidor de temperatura FAC 211 Valor de uma variável qualquer Valor médio de uma amostra discretizada Valor médio de dados analógicos Valor médio de dados analógicos Variável que representa os dados obtidos pelo sensor foto-receptor (sonda óptica) Velocidade Molar de Difusão/unidade de área Velocidade instantânea em fluxo turbulento em em estado estacionário Velocidade média em fluxo turbulento em estacio- nário

RESUMO

Durante testes de reoxigenação de um meio líquido, em tanque cilíndrico, agitado por impulsor de pás rotativas, efetuouse a aquisição de dados de turbulência captados em sensor foto-receptor, equipamento que detecta a oscilação na incidência de luz, abaixo da superfície líquida, causada pela refração óptica dos meios.

Buscou-se a obtenção de correlações entre os sinais captados e os coeficientes de transferência de massa K_L, de forma a viabilizar o uso de um equipamento prático e resistente e de um método rápido para a estimativa do coeficiente de transferência de massa K_L.

Os resultados obtidos demonstram que os dados coletados apresentam repetibilidade e estabilidade. As correlações obtidas demonstram uma forte relação entre o coeficiente de transferência de massa K_L e a Macroescala de Turbulência, obtida dos dados coletados pelo sensor foto-receptor.

XXIII

ABSTRACT

During the reoxygenation tests in a liquid environment, inside a cylindrical tank with rotating blade impulser, tests have been proceeded to compile data about turbulence generated in a photo-receiver sensor, this equipment detects the sway into the ligth incidence caused by the optical refraction.

By means of data processing obtain the correlation with K_L , the mass transfer coefficient, and thus having a practical and resistant equipment and a quick method to estimate the coefficient of K_L , the mass transfer coefficient, in the frame of a reoxygenation process.

The results show that the collected data feature repetition, stability and correlation ensuring the conditions to perform a method for estimating the coefficient of transfer and the macroscale of the turbulence, through the data compiled by the photo-receiver sensor.

XXIV

CAPÍTULO I

INTRODUÇÃO.

OBJETIVOS

Ε

REVISÃO BIBLIOGRÁFICA

= - INTRODUÇÃO:

A consciencia pelo homem da importância do meio ambiente no seu desenvolvimento global, fomenta a procura de parâmetros que possam qualificar e quantificar a situação em que se encontra o meio ambiente. Este pode ser afetado em quaisquer de suas formas (meio sólido, gasoso e líquido).

A abordagem deste trabalho é com enfase ao meio líquido, especialmente o comportamento dos cursos de águas naturais, que são as grandes vítimas da ação do homem, usados como corpos receptores de efluentes de despejos industriais e sanitários.

O meio hídrico é habitado por um universo de seres aquáticos. Para que este universo sobreviva é necessária a manutenção de certas condições essênciais, entre elas o teor de oxigênio dissolvido na água (OD). Este teor está inter-relacionado com a qualidade das águas naturais, mais especificamente com a manutenção da vida dos seres aeróbios do meio aquático, os quais executam o trabalho de digestão da poluição existente.

O oxigênio dissolvido no meio líquido tem concentração máxima para cada valor de temperatura, chamada de concentração de saturação com referência a esta temperatura. O oxigênio dissolvido quando consumido pelos seres aeróbios causa uma diminuição da concentração máxima, que é proporcional à quantidade de matéria orgânica biodegradável existente. Produz-se então um déficit de oxigênio em relação à concentração de saturação, que pode ser suprimido pelo processo de reaeração ou reoxigenação da massa de líquido. Esta reoxigenação pode ocorrer por meio da fotosaíntese, realizada pelos seres clorofilados presentes no meio aquático ou pelo processo de absorção de ar na interface Gás-Líquido.

Para representar o fenômeno de transferência de massa no processo de reaeração ou reoxigenação, a maioria dos modelos procura evidenciar a interface Gás-Líguido, a gual está relacionada com a renovação superficial da área da interface.

Roma [28](1988), desenvolveu um método de medida de turbulência em superfícies líquidas, utilizando-se da teoria óptica da refração da luz em meios refringentes de diferentes densidades, e obteve um certo grau de correlação entre os pseudos dados de turbulência e o coeficiente de transferência de massa K_L de cada um dos ensaios.

O presente trabalho dá continuidade à linha de pesquisa dos sensores ópticos foto-receptores, estudando os parâmetros de turbulência superficial, obtidos por este método e que apresentem correlações com o coeficiente de transferência de massa K_L . O experimento foi realizado em tanque cilíndrico com turbulência gerada por pás rotativas, cuja estrutura turbulenta é diferente da utilizada por Roma op. cit. em seu experimento (tanque quadrado e com agitação por grades oscilantes).

3

2. - OBJETIVOS:

O objetivo principal do presente estudo é dar continuidade ao desenvolvimento da linha de pesquisa de medição de parâmetros associados à turbulência superficial em meios líquidos, através do método óptico que se utiliza de sensores foto-receptores.

Objetivos específicos:

- 1) Obter dados de turbulência superficial pelo método óptico, em tanque cilíndrico com turbulência gerada por pás rotativas e com freqüência de turbulência superficial diferente daquelas que Roma [28] (1988) utilizou em tanque quadrado com grade oscilante.
- 2) Verificar a reprodutibilidade dos dados e dos resultados dos parâmetros de turbulência superficial obtidos pelo sensor foto-receptor, em um mesmo ensaio.
- 3) Avaliar os parâmetros, obtidos pelo método óptico, envolvidos com a turbulência superficial, identi-

ficando os que apresentam correlação consistente com o coeficiente de transferência de massa $K_{_{\rm L}}$.

4) - Verificar a existência de alguma correlação entre os dados obtidos pelo método óptico gerados no tanque cilíndrico com pás rotativas, com os do tanque com grade oscilante, obtidos por Roma op. cit..

3. - REVISÃO BIBLIOGRÁFICA:

O estudo da inter-relação entre o coeficiente de absorção de massa K_L e os parâmetros de turbulência superficial obtidos pelo método óptico, desenvolvido por Roma [28](1988) requer que tenhamos, a priori, a compreensão dos fundamentos de transferência de massa em meios líquidos e de alguns parâmetros de turbulência superficial.

O método óptico proposto por Roma op. cit. fundamenta-se nos dados obtidos da sonda óptica, desta forma é importante também o conhecimento dos mecanismos de obtenção dos dados ópticos. Assim, é necessário os conceitos de circuitos eletrônicos para se compreender o significado dos dados medidos.

3.1 - MODELOS DE REAERAÇÃO:

A ação crescente do homem sobre o meio ambiente e a busca do conhecimento, foram intensificadas na tentativa de desvendar a reação do meio ambiente à ação do homem. Uma forma de representar esta reação do meio ambiente é através de modelos matemáticos. Bennett e Rathbun [05](1972), analisaram diversos modelos de transferência de massa (com interface ar-água), que apresentaram grande dispersão de resultados, em muitos casos até para uma mesma aituação física. Assim, apresenta-se um resumo dos principais modelos, em relação aos parâmetros de difusividade molecular e de turbulência.

3.1.1 - HISTORICO DOS PRINCIPAIS MODELOS DE TRANSFERENCIA DE MASSA ATRAVES DE UMA INTERFACE GAS-LIQUIDO:

Ao longo dos anos, foram apresentados vários mecanismos de transferência de massa para representar o fenômeno de transferência que ocorre em uma interface gás-líquido. Whitman [34](1923) e posteriormente Lewis e Whitman [22](1924) foram os primeiros pesquisadores a apresentarem um modelo conceitual consistente, denominado de Teoria dos Dois Filmes. Sugeriram eles que se poderia considerar a resistência à transferência de massa em cada fase como se localidas em filmes finos junto a interface. A base da teoria é a hipótese de que a zona na qual reside a resistência à transferência de massa, pode ser trocada por duas camadas hipotéticas, uma de cada lado da interface, onde o processo de transferência de massa ocorre por difusão molecular.

Higbie [16](1935) propôs que o processo de transporte de massa fosse atribuído à movimentação de porções de fluido (turbilhões) do interior até à interface do fluido, onde permanecem expostas por um pequeno intervalo médio de tempo, durante o qual se processa a transferência de massa por difusão molecular em regime não estacionário, sendo em seguida levadas para o interior da massa fluida e substituídos por outros turbilhões subseqüentes com baixa concentração de soluto. Tal mecanismo constitui-se na Teoria da Penetração.

Posteriormente, Danckwerts [11](1951) dando continuidade ao desenvolvimento da Teoria da Penetração, propôs modificações quanto ao tempo de exposição dos elementos com baixa concentração de oxigênio na interface gás-líquido. Considerou que o tempo de exposição não era constante em torno de uma média, desta forma, os

7

elementos com baixa concentração permaneciam na região da interface por diferentes tempos. A essa representação física de transferência foi atribuido o nome de Teoria da Renovação Superficial.

Kishinevsky [19](1955), propôs um modelo de transporte de massa na interface gás-líquido aplicado a sistemas com forte turbulência (altas agitações), onde o transporte de massa é realizado totalmente independente da difusão molecular. O modelo admite a renovação superficial e descarta o mecanismo de penetração por difusão molecular e os efeitos da difusividade.

Toor e Marchello [33](1958), consideraram uma composição entre a teoria dos Dois Filmes e a teoria da Penetração-Renovação Superficial. Foi chamada de Teoria da Penetração dos Filmes, tendo como princípio que a totalidade da resistência à transferência de massa é concentrada num filme laminar na inferface Gás-Líquido, como proposto na teoria dos dois filmes. Porém, a transferência de massa entre a interface é transiente, e o turbilhonamento produz a ação de renovação da superfície. Assim, a transferência de massa se processa como na teoria da Penetração-Renovação Superficial.

Fortescue e Pearson [13](1967), propuseram o modelo dos Grandes Turbilhões. É, basicamente, semi-empirico tendo como referência fundamental a teoria da Penetração. Nela, o parâmetro tempo médio de exposição dos elementos não saturados, é substituido pelos parâmetros de turbulência que envolvem o tamanho médio dos turbilhões e sua intensidade, que são representados pela macroescala de turbulência e pelo valor Rms.

Schulz [30](1990) e Schulz e Giorgetti [29] (1986) apresentaram um modelo que utiliza a teoria estatística da turbuléncia, relacionando as características hidráulicas com os modelos para misturadores isotrópicos propostos por Corsin (1964). Neste modelo, Schulz [30] (1990) relaciona o coeficiente K₂ com a difusividade, em diferentes graus de agitação: para baixa agitação, o coeficiente K₂ é proporcional a difusividade elevada ao expoente 1 (um); para média agitação, o coeficiente K₂ é proporcional a difusividade elevada ao expoente 0,5 (raiz quadrada); para alta agitação, o coeficiente K₂ é proporcional a difusividade elevada ao expoente 0 (zero), o que demonstra que neste caso (alta agitação) a difusividade é desprezível.

8

Além destes modelos, sucintamente relacionados, existem vários outros de importância relevante. Entre eles está o da teoria Cinética, proposta por Miyamoto (1932) e citado por Coulson e Richarson [09](1974). Este modelo considera o meio gasoso como o principal campo de estudo para a teoria de transferência de massa na interface gás líquido, em função do mesmo ser a fonte de gás que é transferido para o meio líquido, diferenciando-se das outras teorias existentes, as quais consideram o meio líquido como o campo de estudo.

As teorias em que a fase controladora do processo de transferência de massa na interface é a gasosa, tiveram pouca aceitação entre os pesquisadores. Teorias que recentemente chamam a atenção, são as da Camada Limite Superficial, exemplificada por Hanratty [15](1991) com equacionamento voltado para as equações da mecânica dos fluidos.

3.1.2 - CONCLUSÃO SOBRE OS MODELOS DE REAERAÇÃO:

Dos principais modelos comentados no item anterior, destacamos a seguir a relação que apresentam com o processo de difusão molecular e com os parâmetros que caracterizam a turbulência (ex. tempo médio de exposição dos elementos não saturados (to) na Teoria da Penetração, taxa de renovação superficial na Teoria da Renovação Superficial, macro-escala de turbulência na Teoria do Modelo dos Grandes Turbilhões e outros).

* Com relação a difusividade molecular:

- 1 Teoria dos Dois Filmes (1924)
- 2 Teoria da Penetração (1935)
- 3 Teoria da Penetetração-Renovação Superficial (1951) K α D^{1/2}

4 - Teoria da Penetração dos Filmes (1958)

9

 $\begin{array}{ccc} \mathbf{K}_{2} & \boldsymbol{\alpha} & \mathbf{D}_{L} \\ \mathbf{K}_{2} & \boldsymbol{\alpha} & \mathbf{D}_{L}^{1/2} \end{array}$

 $\begin{bmatrix} K_2 & \alpha & D_L^1 \\ K_2 & \alpha & D_L^{1/2} \end{bmatrix}$

5 - Teoria dos Grandes Turbilhões (1967)

6 - Teoria da Alta Agitação (Kishinevsky) (1955)

7 - Modelo proposto por Schulz (1991)

* Com relação ao parâmetro de turbulência:

1 - Teoria dos Dois Filmes:

A espessura do filme, na interface.

2 - Teoria da Penetração:

Considera o tempo médio de exposição do elemento de fluido

- 3 Teoria da Penetração-Renovação Superficial:
 Taxa de renovação superficial
- 4 Teoria da Penetetração dos Filmes:
 As mesmas das teorias relacionadas no itens 1, 2 e 3.
- 5 Teoria dos Grandes Turbilhões: Considera a macro-escala de turbulência e o valor Rms.
- 6 Teoria das Altas Agitações: Considera a difusão turbilhonar

 7 - Modelo proposto por Schulz:
 Considera Ls que é a escala de segregação e e que é a taxa de dissipação turbulenta de energia específica.

Assim, as teorias mais aceitas atualmente estão subdivididas por grau de agitação do sistema. A primeira faixa é para agitações baixas ou moderadas e que devem ser baseadas na Teoria da Penetração-Renovação Superficial, em que a difusividade está elevada ao expoente 0,5 quando associado à parâmetro de turbulência. A segunda faixa, submetida a altas agitações em que a difusividade é desprezada, dando énfase aos parâmetros de turbulência. A terceira que são alguns modelos como o de Schulz [30] (1990) que procuram abranger uma faixa de turbulência maior, com diversas considerações quanto à difusividade.

 $D_{L}^{1/2}$

Kja

 $\begin{bmatrix} K_{2} & \alpha & D_{L}^{1} \\ K_{2} & \alpha & D_{L}^{1/2} \\ K_{2} & \alpha & D_{L}^{0} \\ K_{3} & \alpha & D_{L}^{0} \end{bmatrix}$

 $K_2 \alpha D_L^o$
3.1.3 - COEFICIENTES DE TRANSFERENCIA DE MASSA:

A velocidade de transferência de massa quando da auséncia de escoamento é diretamente proporcional à diferença de concentração molar, desta forma temos:

$$N_{A} = k^{*} (C_{i} - C_{j})$$
(3.01)

Onde:

N = Velocidade molar de difusão por unidade de área. C = Concentração de equilibrio na interface.

C = Concentração no meio da fase (meio líquido).

k[#] é um coeficiente de transfêrencia de massa global, que para cada um dos modelo citados anteriormente, é definido de forma distinta.

Na teoria dos Dois Filmes, k^* é diretamente proporcional à difusividade e inversamente proporcional à espessura do filme. Na Teoria da Penetração, é proporcional à raiz quadrada da difusidade. Quando todos os elementos são expostos durante um mesmo tempo, k^* é inversamente proporcional à raiz quadrada do tempo de exposição para a Teoria da Penetração-Renovação Superficial.

Na transferência de massa através de interface, cada uma das fases tem o mesmo tipo de tratamento teórico, apesar de não poder-se concluir que seria a melhor alternativa para ambas as fases. A velocidade de transferência de massa é a mesma de ambos os lados da interface, dado que não há acumulo de substância. Assim, para as duas fases temos:

$$N_{x} = k_{y}(x - x_{y}) = k_{y}(y - y_{y})$$
(3.02)

Onde:

 $k_{L} = Coeficiente de transferência de massa na fase líquida.$ $<math>k_{\sigma} = Coeficiente de transferência de massa na fase gasosa.$ <math>x = Fração molar no meio da fase líquida.x = Fração molar no líquido, na interface. y = Fração molar no meio da fase gasosa. y_i = Fração molar no gás, na interface.

Da equação (3.02) obtém-se a seguinte relação:

$$\frac{y_i - y}{x - x_i} = \frac{k_L}{k_a}$$
(3.03)

A equação (3.03) pode ser resolvida através da curva de equilibrio (gasoso-líquido). Quando a relação de equilibrio é definida da seguinte forma:

$$y_{i} = \alpha_{i}(x_{i}) \tag{3.04}$$

Onde α_i é a constante de equilibrio. Sendo a equação (3.04) uma reta, que não passa necessariamente pela origem. A taxa de transferência é proporcional à diferença entre a concentração no meio de uma fase e a concentração na interface, correspondente ao equilibrio com y, e com $x - x_i$. Assim temos:

$$N_{A} = k_{g}(y_{i}-y) = k_{L}(x - x_{i}) = K_{g}(y^{*} - y)$$
(3.05)

Onde:

 K_{σ} = Coeficiente global de transferência de massa.

y" = Composição da fase gasosa em equilibrio com a fase líquida.

$$\frac{1}{K_{a}} = \frac{1}{k_{a}} \frac{(y^{*} - y)}{(y_{i} - y)} = \frac{1}{k_{a}} + \frac{1}{k_{a}} \frac{(y^{*} - y_{i})}{(y_{i} - y)}$$
(3.06)

Dá onde temos:

$$\frac{1}{K_{g}} = \frac{1}{k_{g}} + \frac{1}{k_{L}} \frac{(y^{*} - y_{i})}{(x - x_{i})}$$
(3.07)

Caso a curva de equilibrio seja uma reta, a equação acima será representada da seguinte forma:

$$\frac{1}{K_{\sigma}} = \frac{1}{k_{\sigma}} + \frac{m}{k_{L}}$$
(3.08)

Onde, m é a inclinação da reta da curva de equilibrio Líquido-gasoso.

A relação produzida pela equação (3.08) é válida desde que a velocidade de transferência esteja vinculada de modo linear com uma força motora (diferença de concentração) e que o diagrama de equilibrio seja uma linha reta. São aplicáveis à Teoria dos Dois Filmes, Teoria da Penetração, Teoria da Penetração e Renovação-Superficial e da Penetração dos Filmes, para um determinado instante. Em geral a aplicação de coeficientes médios, não é permissível, porque as condições na interface dependerão do tempo, a menos que toda a resistência resida em uma das fases.

3.1.4 - INFLUENCIA DA TEMPERATURA, DA UMIDADE RELATIVA DO AR SOBRE O COEFICIENTE DE REAERAÇÃO Ka

O modelo de Streeter (1926) e Streeter et. al. (1936) citado por Kramer [20](1974) relaciona o coeficiente de reaeração K_2 com a temperatura, conforme a equação a seguir:

$$K_{2}(T) = K_{2}(Tr) \cdot e^{(T-Tr)}$$
 (3.09)

Onde:

 $K_2(T) = Coeficiente de reaeração - temperatura estimada.$ $<math>K_2(Tr) = Coeficiente de reaeração na temperatura de$ referência.

= Coeficiente de temperatura.

A equação (3.09) demonstra que K_2 é função da temperatura, representada numa forma exponencial e que a mesma é crescente com o aumento da temperatura. Esta equação foi deduzida da equação de Van't Hoff-Arrhenius, que considera o processo de absorção de gás em meio líquido comandado pela energia cinética.

Diversos trabalhos confirmaram, ao longo dos anos, o modelo de Street op. cit, entre eles Elmore e West [12](1961), Churchill e Elmore [10](1962), Krenkel e Orlob [21](1963), Kramel

op. cit., e outros, que apenas discordaram em relação ao valor de (Θ) , o qual apresentou variações entre 1,008 e 1,047. Em geral o valor adotado é de 1,024 obtido por Churchill e Elmore op. cit. em função de ser um valor próximo da média em relação aos valores limites encontrados.

Metzger [26](1967), investigou a variação de o com diferentes níveis de turbulência, e concluiu que o decresce com o incremento da intensidade da turbulência.

Com relação à umidade relativa do ar, Costa [08](1992), investigou sua influência na medida do coeficiente de reoxigenação, e constatou uma influência significativa da umidade sobre o coeficiente de reoxigeção K₂, que em alguns casos para uma variação de 20 a 30 % na umidade, houve uma variação de 30 a 50 % no parâmetro K₂.

3.2 - PARAMETROS TURBULENTOS:

A turbulência é uma área de interesse interdisciplinar, com muitas aplicações, na física, química, hidráulica, nas engenharias, no saneamento, etc. Neste trabalho, a turbulência está relacionada com o processo de transferência de massa entre duas fases (gás-líquido), onde a absorção do gás oxigênio pela água é estudada com o objetivo de se obter uma correlação matemática, entre o coeficiente de transferência de massa K_L e os parâmetros turbulentos, contribuindo assim para um melhor entendimento do método óptico.

3.2.1 - TEORIA DA TURBULENCIA PROPOSTA POR REYNOLDS:

Reynolds em 1895, citado em Tennekes e Lumley [23](1977), para minimizar as dificuldades análiticas da resolução da equação de Navier-Stokes, considerou que as variáveis que apresentam valores flutuantes deveriam ser representadas por um valor médio mais

um termo que seria composto pelos desvios em torno da média.

Para escoamentos turbulentos no estado estacionário, a velocidade e a direção de um ponto sofrem flutuações, mas para um determinado intervalo de tempo os valores médios permanecem constantes. Assim, a velocidade em qualquer posição do espaço, pode ser constituida por duas parcelas distintas: a velocidade média e e o desvio instantâneo em relação a média. Tal situação física pode ser melhor compreendida através do gráfico da figura 3.01.

A velocidade instantânea é definida matematicamente pela seguinte expressão:

$$\mathbf{u} = \overline{\mathbf{u}} + \mathbf{u}^{\prime} \tag{3.10}$$

Onde:

 (u) = Velocidade instantanea em escoamento turbulento em estado estacionário.

- (u) = Velocidade média em escoamento turbulento em estado estacionário.
- (u') = Parcela da velocidade que representa o desvio médio instantâneo.

Para a decomposição de Reynolds, um ponto no espaço possui posição específica nos eixos x, y e z.

> Assim temos: $u = u_x i + u_y j + u_z k$ (3.11) E em relação aos valores médios temos: $\bar{u} = \bar{u}_x i + \bar{u}_y j + \bar{u}_z k$ (3.12) E em relação aos valores do desvio instantâneo temos: $u' = u_x' i + u_y' j + u_z' k$ (3.13)

A velocidade média em um ponto é dada pela seguinte equação:

$$\frac{1}{u(x,y,z,t)} = \lim_{T \to \infty} \frac{1}{T} \int_0^T u(x,y,z,t) dt \qquad (3.14)$$

As mesmas condições são válidas para u' (desvio instantâneo), mas torna-se evidente que:

$$\overline{u'(x,y,z,t)} = \lim_{T \to \infty} -\frac{1}{T} \int_{0}^{T} u'(x,y,z,t) dt = 0$$
(3.15)

A equação (3.15) tende para O (zero) quanto $T \rightarrow \infty$, porque a média dos valores positivos é igual à média dos valores negativos ao longo do tempo, o que próduz a nulidade da equação.

Assim, a teoria de Reynolds, para dados de turbulência, estabelece certas propriedades para o cálculo da média de valores com distribuição aleatória, que são as seguintes:

1 -	X + Y	=	X + Y	
2 -	CX	=	с * Х	Onde C = Constante
3 -	C	=	с	Onde C = Constante

4 - X * Y = X * Y $5 - \overline{X} = \overline{X}$ $6 - \overline{\partial x / \partial y} = \overline{\partial x} / \partial y$ $7 - \overline{X} * \overline{Y} = X * \overline{Y}$

A determinação do valor médio de uma amostra discretizada é feita pela equação (3.16).

$$J = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} j_i$$
 (3.16)

Onde:

J = Valor médio de uma amostra discretizada.
 ji = Dados discretizados de uma amostra.
 n = Número de dados coletados.

Quando as medidas são analógicas e obtidas continuamente ao longo de um determinado tempo, o valor médio pode ser calculado usando se uma integral no lugar do somatório da equação (3.16) em relação ao intervalo de tempo das medidas realizadas.

$$\overline{J} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} j_{i} dt \qquad (3.17)$$

Onde:

J = Valor médio de dados analógicos.

T = Tempo do registro contínuo.

Pelo valor médio, e o valor instantâneo da variável aleatória em um escoamento turbulento, se determina a flutuação da variável, pela seguinte equação:

 $\mathbf{u'} = \mathbf{u} - \overline{\mathbf{u}} \tag{3.18}$

3.2.2 - TEORIA ESTATISTICA DA TURBULENCIA

Através da estatística aplicada à turbulência, è possivel relacionar os resultados obtidos com comportamento dos escoamentos. As correlações e autocorrelações podem evidenciar a existência ou o grau de relação entres os dados, individualmente ou conjuntamente.

Na análise estatística, a compreensão da turbulência é feita através da análise da distribuição das oscilações do valor de uma variável em relação à média, em um dado ponto.

Na descrição da turbulência pela estatística, são utilizados alguns parâmetros como: densidade probabilística, função característica da transformada de Fourier, espectro de energia e as funções de correlação e autocorrelação, com as quais são possíveis estabelecerem algumas relações entre os parâmetros hidráulicos e os de transferência de massa.

Taylor em 1935, citado por Karman e Leslie [18](1937), inconformado com as teorias do Comprimento de Mistura, propôs a teoria estatística da turbulência, introduzindo o conceito de turbulência isotrópica, e estabelecendo as relações entre as componentes da váriavel velocidade medida em dois pontos que geram os coeficientes de correlação. Foram estabelecidas algumas condições simplificadoras, entre as quais, que a turbulência tem caracteristicas homogêneas ou isotrópicas, ou em alguns casos as duas ao mesmo tempo.

Os coeficientes de correlação estatística, podem ser usados como parâmetros que qualificam e quantificam a estrutura turbulenta facilitando assim, a análise e a compreensão do fenômeno.

Qualquer parâmetro que tenha significado para o processo turbulento, pode ser considerado como uma escala de turbulência, em especial os que se relacionam com o tamanho dos turbilhões. A existência de diversas escalas de turbulência, deve-se ao fato de até o presente momento, os escoamentos turbulentos não terem um modelo definitivo que possibilitem a adequação dos diferentes níveis de turbulência a que os meios são submetidos.

3.2.2.1 - INTENSIDADE DE TURBULENCIA:

O escoamento turbulento pode ser representado em termos da intensidade. O valor Rms (raiz média quadrática) é uma intensidade de turbulência, que relaciona o valor flutuante com o valor médio do parâmetro em estudo. A intensidade de turbulência representa o grau de oscilação ou flutuação da variável em questão, no caso específico da dinâmica dos fluidos, representa o grau de agitação a que o fluido está submetido.

Para o presente trabalho, a variável em estudo é a flutuação da superfície e quantificada em tensão elétrica (em Volts) medida pela célula do sensor foto-receptor. Variável esta que apresenta um comportamento flutuante em função da turbulência presente na superfície da fase líquida onde encontra-se o sensor.

O valor Rms, encontra-se exemplificado através da figura 3.02, e é definido pela seguinte equação:

$$\operatorname{Rms} = \left[\left(\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} (\bar{u} - u)^{2} dt \right)^{1/2} = \sqrt{(\bar{u} - u)^{2}} \quad (3.19)$$

A intensidade da turbulência, definida como o valor Rms, não é suficiente para que se tenha uma descrição satisfatória da turbulência, é necessário a determinação das escalas de turbulência para que associadas ao valor Rms, e a outros parâmetros hidráulicos, tenha-se uma estimativa melhor do grau e da estrutura da turbulência do sistema.

3.2.2.2 - ERGODICIDADE:

O teoria da ergodicidade está baseada no teorema de Birkhoff. A explanação detalhada dos conceitos matemáticos do teorema Birkhoff excede os objetivos deste estudo. Excelente exposição desta questão podem ser encontradas em Ramirez [27](1979) e Piersol e Bendat [04](1980).

Em conceitos gerais a ergodicidade considera a existência de uma relação entre a descrição espacial e a descrição temporal de um fenômeno físico. Relacionada com a estabilidade probabilística a ergodicidade considera que os cálculos estatísticos são equivalentes para as duas descrições, ou seja, para as descrições temporal e espacial.

O conceito de ergodicidade será utilizados no sentido de compatibilizar os dados de uma descrição temporal para uma espacial.

A função de autocorrelação para a turbulência é dada pela seguinte expressão:

$$R(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \frac{\chi(t) \cdot \chi(t+\tau)}{\chi(t)^{2}} dt \qquad (3.20)$$

Onde:

R(τ) = Coeficiente de autocorrelação para uma determinada correlação τ (τ é número da correlação).
 χ(t) = Valor de uma variável qualquer (em análise).
 T = Tempo de amostragem.

A equação (3.20) será comentada posteriormente, quando discorrermos sobre funções de correlação. A priori apenas o conhecimento de que $R(\tau)$ indica o grau de correlação entre dois pontos separados por $\tau \in o$ suficiente. Assim, quanto mais aumentarmos o valor de τ , menor será o valor de $R(\tau)$, até tender para zero, de maneira inversa diminuindo-se o valor de τ até atingir zero, o valor de $R(\tau)$ tende para 1 (um).

Podemos dizer que a função $\chi(t)$, da qual se calculou a autocorrelação R(τ), pode ser um função ergódica, porque satisfaz o teorema geral da ergodicidade, que é o seguinte:

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T R(\mathbf{r}) d\mathbf{t} \Rightarrow 0$$
 (3.21)

Resumindo, assumindo a condição de ergodicidade, o intervalo de tempo dt pode ser representado pelo deslocamento dx, sem perda da consistência dos dados nos cálculos estatísticos.

3.2.2.3 - FUNÇÕES DE CORRELAÇÃO:

A escala de turbulência, denominada de macro-escala, está relacionada com a função de autocorrelação de dados aleatórios. A autocorrelação relaciona a velocidade coletada em um ponto do escoamento com a velocidade do mesmo ponto coletada posteriormente e separados por um intervalo de tempo r. A autocorrelação terá valor diferente de zero se as medidas são tomadas em intervalo de tempo pequeno, tal que as medidas façam parte do mesmo turbilhão, e terá valor nulo caso as medidas sejam efetuadas em instantes suficientemente afastados, que possa se dizer, não fazem parte do mesmo turbilhão. A autocorrelação é normalizada na faixa de 1 a 0, diminuindo conforme as medidas perdem a correlação umas com as outras.

As partículas dos fluidos tendem a se mover juntas formando turbilhões de vários tamánhos, dado aos diferentes graus de turbulência existente no fluxo. Fisicamente não se pode imaginar

que possa haver fronteiras entre os turbilhões, mas procura-se visualizar a delimitação do turbilhão a partir do momento em que o primeiro ponto perde a relação com o enésimo ponto.

Uma estimativa do intervalo de tempo em que este fato ocorre e possível de ser cálculado, através da integral da função de autocorrelação, o que possibilita ter-se uma percepção do tamanho do turbilhão, em função do intervalo de tempo para a perda da correlação. Quanto maior a turbulência menor o turbilhão, conseqüentemente menor o intervalo de tempo para a perda de correlação.

Pela ergodicidade é possível utilizar dados coletados na forma temporal (um só ponto fixo em função do tempo) para estudar o comportamento dos dados na forma espacial (variação no espaço).

São usados os coeficientes de autocorrelação R(r), definido pela seguinte equação:

$$R(\tau) = \overline{u_{i}^{\prime}u_{i+\tau}^{\prime}} / (\overline{u_{i}^{\prime 2}}, \overline{u_{i+\tau}^{\prime 2}})^{1/2}$$
(3.22)

Onde o termo (u_i^{2}) é definido na equação (3.19) como o valor Rms, que transforma a equação (3.22) em :

$$R(\tau) = \overline{u_t'u_{t+\tau}'}/(Rms(u))^2$$
(3.23)

A variável que representa os dados obtidos pelo sensor óptico denominaremos de λ . Desta forma para o caso específico do estudo dos dados do sensor temos:

$$R(\tau) = \overline{\lambda_{t}^{\prime} \lambda_{t+\tau}^{\prime}} / (Rms(\lambda))^{2}$$
(3.24)

Sendo a variável λ um vetor com 4096 termos, para cada valor de τ existirá um coeficiente de correlação, calculado como a média dos pontos que distancia-se τ no vetor λ . Assim:

$$R(\mathbf{r}) = \frac{1}{S} \sum_{\mathbf{r}}^{\mathbf{S}} \frac{(\lambda(t_{\mathbf{r}}-\overline{\lambda})(\lambda(t+\mathbf{r})-\overline{\lambda}))}{Rms(\lambda)^{2}}$$
(3.25)

Onde S é o número de termos possíveis para um determinado τ guando ι e ι + τ variam de 1 a 4096.

$$S = 4096 - (\tau \ge \Delta t)$$
 (3.26)

O comportamento da função de autocorrelação é mostrado através das figuras 3.03 e 3.04 para dois experimentos levados a efeito nas rotações de 78 e 358 rpm respectivamente.

A macro-escala de turbulência, é definida por Taylor [32] (1935), na teoria estatística da turbulência, como o parámetro que representa o tamanho médio do turbilhão, obtido pela integração da função de autocorrelação. Como mostra a equação (3.27) a seguir:

$$Lm = \int_{0}^{\infty} R(\tau) dt \qquad (3.27)$$

Onde:

Lm = Macro-escala de turbulência (tamanho do turbilhão) $R(\tau)$ = Função de autocorrelação.

A função de autocorrelação é adimensional e quando integrada em relação ao tempo como na equação (3.27), fornece o parâmetro macro-escala de turbulência com dimensão de tempo.

3.3 - DESENVOLVIMENTO DO METODO OPTICO SENSOR FOTO-RECEPTOR:

Os fundamentos teóricos do método óptico do sensor fotoreceptor existentes, são os propostos por Roma op. cit. e são baseados na teoria de óptica geométrica, em conceitos de dispositivos eletrônicos e alguns parâmetros de turbulência.

O método consiste em quantificar as perturbações, que a superfície líquida está sujeita quando sob agitação, através do seguinte aparato: uma lâmpada incandescente de corrente contínua emite raios luminosos em direção ao sensor foto-receptor que se encontra abaixo da superfície líquida; o sensor capta a variação do fluxo luminoso causado pela refração do raio luminoso ao penetrar no meio líquido.

O principio básico, está na forma que o raio luminoso penetra no meio líquido e atinge o sensor foto-receptor, a "resistência" à passagem do raio luminoso provoca maior ou menor incidência de luz sobre o sensor, causado por diferentes tipos de interferência, que podem ser: o ângulo de incidência da luz, velocidade da luz no meio, turbidez quando se refere a outros ensaios, a soma total destas interferências são a causa da variação do fluxo luminoso total. Roma op. cit., para explicar a forma de quantificação de movimentos ondulatórios senoidais permanentes, onde o valor acima do nível de repouso é uma função representada pela figura 3.05, e descrita pela seguinte equação:

> $Z'(x(t)) = Z \operatorname{sen} \frac{2\pi}{p} \cdot t = Z \operatorname{sen} f \cdot t \quad (3.28)$ Onde:

- Z' = Amplitude da lâmina de água com referência ao nível da superfície em repouso.
- Z = Amplitude da lámina de líquido máxima ou mínima acima do nível de repouso.
- P = Período de oscilação senoidal em relação ao tempo.
- f = Freqüência da oscilação senoidal.
- t = Tempo transcorrido a partir de t=0.

A figura 3.06, foi construida com dados reais do presente trabalho, demonstrando assim, que a consideração feita por Roma op. cit. que a superfície líquida pode ser representada por uma função senoidal é aceitável.

O parâmetro Z' é função do espaço, que por sua vez é função do tempo, assim a variação senoidal está relacionada com espaço e o tempo como uma função composta, sendo possível representar a função Z' no tempo como uma distância deslocada no intervalo de tempo, então temos:

$$Z'(r)$$
 = Z sen $\frac{2\pi}{R}$ r = Z sen f r (3.29)

Onde:

r = Distância de um ponto origem a fonte.

R = Período de oscilação em relação a distância r.

Considerando que para cada instante de tempo, a tensão registrada no sensor óptico varia com a intensidade luminosa proporcionalmente a inclinação da linha de água. Assim, definiu-se a variação de intensidade luminosa pela seguinte equação.

$$dI = C_4 \cdot \frac{dZ'}{dr}$$
(3.30)

Onde:

I = Radiação luminosa no ponto r(t).

Ca = Constante de proporcionalidade da diferenciação.

Substituïndo a eq. (3.30) na (3.31) tem-se que:

$$dI = C_{i} d \frac{(Z \text{ sen } \underline{2\pi}, r)}{\frac{R}{dr}}$$
(3.31)

Derivando o lado direito da eq. (3.31) tem-se:

$$dI = C_2 \underline{2\pi} . Z \cos \underline{2\pi} . r \qquad (3.32)$$

Onde:

Cz = Constante de proporcionalidade da diferenciação.

Utilizando a hipótese da ergodicidade, onde a descrição temporal pode ser equivalente a uma descrição espacial, temos para uma iluminação do ponto sob o nível da água a seguinte equação:

$$dI = C_2 d \frac{\begin{pmatrix} Z \text{ sen } \underline{2\pi}, t \end{pmatrix}}{dt}$$
(3.33)

Substituindo a equação (3.29) na (3.33) temos:

$$dI = C_2 \frac{dZ}{dt}$$
(3.34)

Por analogia, Roma op. cit. relacionou a intensidade de radiação luminosa com a tensão elétrica medida no sensor óptico. Pela equação (3.34), a intensidade de radiação luminosa ou a tensão elétrica é diretamente proporcional à variação da lâmina de água com referência ao nível no estado de repouso, em relação ao tempo.

Roma op. cit., baseado nesta analogia, supós que a variação da intensidade luminosa registrada no sensor, poderia ser associada com a componente vertical da velocidade dos fluxos de escoamentos existentes na interface ar-água, e gerar dados para a formação de resultados de parâmetros turbulentos e correlacionálos com o coeficiente de transferência de massa K.

3.3.1 - ESTIMATIVA DA AREA TURBULENTA PELO METODO OPTICO DO SENSOR FOTO-RECEPTOR:

O efeito da turbulência sobre a superfície líquida produz um aumento na área de contato entre as fases líquida e gasosa, para estimar este aumento Roma [28](1988) fez uso da ergodicidade e enunciou o procedimento da seguinte forma:

> " A voltagem medida representa a velocidade vertical do ponto, que multiplicada pelo intervalo de tempo fornece a distância vertical percorrida. Pela ergodicidade dofenômeno o intervalo de tempo dt representa uma distância dx (ou dy), portanto a soma vetorial dessas variações vai representar o comprimento da envoltória, isto é, uma distância ao longo da superfície, ds. A soma de todas as distâncias ds, durante o tempo T de aquisição, vai representar o comprimento aumentado Lr, enquanto T representa o comprimento normal, a relação entre a somatória das ds e o tempo T, elevada ao quadrado, é a relação entre a área aumentada e a área do tanque AT/A".

3.3.2 - SEMICONDUTORES:

Para entendermos o mecanismo utilizado por Roma [28] (1988) para a construção do sensor foto-receptor, o qual fornece os dados de quantificação e qualificação da turbulência, necessitamos de alguns conceitos de eletrônica.

Os elementos semicondutores (ex: silício, germánio e outros) diferem dos metais com relação à condução de corrente elétrica. Os semicondutores se encontram em uma faixa intermediária entre os materiais condutores e o isolante, daí o nome semicondutores.

Nos semicondutores os fluxos de carga são dois, o gerado pelo fluxo de eletrons é chamado de negativo, ou banda de condução que caracteriza um fluxo idéntico ao que ocorre nos metais, e o fluxo que está associado aos elétrons de valência, que permanecem presos nas ligações covalentes presentes na estrutura cristalina dos atomos, região esta chamada de lacuna ou banda de valência.

Os semicondutores, conduzem corrente elétrica em consequência do movimento independente das duas classes portadoras de cargas, de sinais contrários: as vacância e os elétrons.

Se, contiver quantidades expressivas de impurezas doadoras, terá mais elétrons livres que vacâncias, neste caso é conhecido como um condutor do tipo n por ser portador de cargas predominantemente negativas, se a quantidade expressiva for de impurezas aceitadoras, existirá uma quantidade maior de vacância que de elétrons livres, neste caso é conhecido como um condutor do tipo ρ por ser portador de cargas predominantemente positivas.

Os dispositivos ativos semicondutores contém uma ou mais junções pn, as junções pn sempre ocorrem quando a concentração de impurezas muda de uma predominância de doadora para uma receptora ao longo de uma distância suficientemente curta.

O diodo é um dispositivo semicondutor de forma que a junção *pn* polarizada, resultado da ligação com uma fonte de d.d.p. (bateria) permita ou não a passagem de corrente elétrica pela junção. A polarização inversa é a ligação do terminal positivo da bateria ao lado n da junção e o terminal negativo da bateria ao lado p da junção. A ligação da polarização direta é realizada no sentido contrário ao da ligação da polarização inversa. A polarização direta produz uma diminuição no potencial de junção, permitindo a passagem de corrente.

O dispositivo semicondutor utilizado para a montagem do sensor é um fototransistor, classificado como uma célula fotocondutiva. O mecanismo de quantificação baseia-se no fato de que quando um fluxo luminoso incide sobre o material semicondutor, os fótons fornecem aos elétrons energia suficiente para produzir a ruptura de ligações covalentes. Assim, o elétron abandona a ligação covalente deixando uma vacância no seu lugar, a ação dos fótons produz pares de elétrons livres e vacância, aumentando a condutividade do material semicondutor.

Resumindo, o fototransistor comporta-se como uma válvula que controla a passagem de corrente elétrica entre a junção.

3.3.3 - SENSOR FOTO-RECEPTOR:

O sensor foto-receptor é um instrumento que quantifica na forma de um sinal elétrico, dentro de uma faixa de tensão, a incidência de um raio luminoso sobre o elemento semicondutor que, basicamente, constitue o sensor.

Para realizar as medidas, o sensor é posicionado a 3 cm sob a interface ar-água. O raio luminoso produzido por uma lâmpada incandescente de corrente contínua, está posicionada diretamente sobre sensor, a 15 cm acima da superfície líquida.

A superfície na interface ar-água sofre flutuações desde ondas perfeitas de baixa freqüência até ao momento em que a superfície é "quebrada" em função da rotação do impulsor. Os efeitos da turbulência na interface, provocam a refração do raio luminoso quando este atravessa a superfície no meio líquido, o grau de deflexão depende do ângulo de incidência do raio luminoso sobre a superfície da água, e da refringência dos dois meios que compõem a interface. A figura 3.08 apresenta um esquema elucidativo do funcionamento do sensor foto-receptor.

CAPÍTULO II

DESCRIÇÃO DO EXPERIMENTO

4. - METODOLOGIA DO DESENVOLVIMENTO DO EXPERIMENTO:

4.1. - SEQUENCIA EXPERIMENTAL E MATERIAIS UTILIZADOS:

4.1.1. - DESCRIÇÃO DO EXPERIMENTO:

O experimento constitui-se da reoxigenação de uma massa de água, quando sob a ação de agitação turbulenta. Durante o monitoramento do processo, as medidas da concentração de oxigênio dissolvido, temperatura e tempo são obtidas para a avaliação do coeficiente de reoxigenação K_2 , juntamente com os dados de turbulência obtidos pelo sensor foto-receptor, em função da ondulação da superfície líquida, e que serão estudados para estabelecer correlações matemáticas entre eles.

Para o desenvolvimento do experimento foi necessário um um conjunto de elementos associados que são os seguintes:

- Sistema de geração de turbulência para o processo de reoxigenação da massa de água.
- 2 Sistema de desoxigenação da massa de água, como condição necessária para a realização do processo de reoxigenação pelo método da Perturbação do Equilibrio, proposto por Gameson et al. [14](1955).

- 3 Sistema de controle de temperatura do ambiente, conjuntamente com a umidificação com vapor de água para estabilização da umidade relativa do ar, no ambiente da realização dos ensaios.
- 4 Sistemas de medidas:
 - * Medidas da concentração de oxigênio dissolvido.
 - * Medidas da temperatura da massa de água.
 - * Medidas do tempo ao longo do ensaio.
 - * Medidas de umidade relativa do ar.
 - * Medidas de turbulência, sensor foto-receptor.
- 5 Métodos de calibração ou ajustes dos seguintes equipamentos:
 - * Medidor de oxigênio dissolvido.
 - * Medidor de temperatura.
 - * Sensor óptico foto-receptor.

6 - Mecanismos de obtenção de dados por microcomputador.

O experimento foi ensaiado através de um sistema de geração de turbulência, que constitui-se em um tanque cilíndrico dotado de um sistema de agitação da água por pás rotativas. A reoxigenação da massa de água foi produzida na faixa de rotações de 60 a 450 rpm que produzem desde baixa agitação, até a quebra da superfície líquida (alta agitação).

Através de combinações de polias no eixo impulsor e no eixo de saida do redutor do motor, estabelece-se 12 diferentes rotações, que são as seguintes: 60, 78, 98, 108, 145, 155, 208, 253, 276, 358, 385 e 450 rpm. Assim, doze ensaios de reoxigenação foram executados para a avalição do método proposto por Roma op. cit. com diferentes graus de turbulência.

4.1.1.1 - SISTEMA DE GERAÇÃO DE TURBULENCIA:

O tanque de agitação hidrodinâmica com impulsor de pás rotativas é composto de um recipiente cilíndrico de aço inoxidável com uma capacidade útil de 100 litros; um impulsor tipo pás rotativas, possível de ser operado com doze diferentes freqüências de rotação em função das polias disponíveis, e um conjunto de estatores para evitar a formação de vórtice.

O impulsor é do tipo hélice, com quatro pás com inclinação em 45 graus em relação plano horizontal e igualmente espaçadas. O eixo do impulsor é acionado, através de um sistema de polias, por um motor elétrico trifásico com potência nominal de 0,25 kW, e um redutor de velocidade com relação de 10:1.

Os estatores, dispositivos utilizados para evitar a formação do vórtice principal, constituiem-se de seis lâminas também de aço inoxidável, posicionadas verticalmente no interior do tanque, de duas em duas, em três planos radiais. Tal dispositivo evita a formação de caminhos preferenciais no escoamento circular, induzidos pelo impulsor rotativo.

O equipamento descrito acima foi idealizado por Barbosa [03](1989) em trabalho sobre a técnica de traçadores gasosos na avaliação do coeficiente de reaeração.

Formato	Cilíndrico		
Altura	41.0 cm		
Diâmetro	61.0 cm		
Capacidade Máxima	120 litros		
Nível da água	35.0 cm		
Detalhe	fundo levemente abaulado para permitir completo esgotamento		
Material	aço inox 304		
Material CARACTERISTICA DO IMPULSO Tipo	aço inox 304 DR Pás rotativas		
Material CARACTERISTICA DO IMPULSO Tipo Inclinação das pás	aço inox 304 DR Pás rotativas 45 ⁰ com horizontal		
Material CARACTERISTICA DO IMPULSO Tipo Inclinação das pás Número de pás	aço inox 304 DR Pás rotativas 45 ⁰ com horizontal 04 (quatro)		
Material CARACTERÍSTICA DO IMPULSO Tipo Inclinação das pás Número de pás Diâmetro	aço inox 304 DR Pás rotativas 45 ^Q com horizontal 04 (quatro) 14.6 cms		
Material CARACTERÍSTICA DO IMPULSO Tipo Inclinação das pás Número de pás Diâmetro Diâmetro do eixo	aço inox 304 DR Pás rotativas 45 ^Q com horizontal 04 (quatro) 14.6 cms 10.5 mm		
Material CARACTERÍSTICA DO IMPULSO Tipo Inclinação das pás Número de pás Diâmetro Diâmetro Diâmetro do eixo Posição	aço inox 304 DR Pás rotativas 45 ^Q com horizontal 04 (quatro) 14.6 cms 10.5 mm fixo a 26.0 cm abaixo o superfície do líquido.		

Tabela 4.01 - Características do Tanque de Agitação Hidrodinâmico

4.1.1.2 - SISTEMA DE DESOXIGENAÇÃO DO MEIO LIQUIDO:

Para se produzir um déficit de oxigênio na água, utilizou-se a desoxigenação mecânica, método proposto por Maxwell e Holley [24](1969), um processo físico de retirada de gases dissolvidos, que evita residuais de produtos, como por exemplo o sulfito, existente nos demais métodos.

O sistema consiste de um bomba de recirculação e canalição com uma placa de oríficio, que foi calculado para produzir uma uma região de alta velocidade e baixa pressão no interior do duto, na região próxima à da sucção da bomba. Com o abaixamento da pressão, e esta atingindo a pressão de vapor da água, provoca o aparecimento de bolhas de vapor, nas quais a pressão parcial dos gases dissolvidos é quase nula, havendo migração para estas devido à diferença de preseão parcial dos gases que se encontravam dissolvidos na água para as bolhas. Assim, as bolhas formadas não devem ter contato prolongado com a massa líquida para evitar novo processo de solubilização dos gases na água (reoxigenação). Desta forma, a massa de água perde os gases dissolvidos até um valor minimo estabelecido pelo processo acima descrito.

Tabela 4.02 -Dados Característicos do Sistema de Desoxigenação

Dados do Sistema de Deaeração	
Bomba Centrí fuga:	Placa de Orifício:
Marca Schneider	Material PVC
Modelo BC-20	Diàmetro do Orif. 7 mm
Potência nominal 1/3 Cv	
Tubulação de Sucção:	Tubulação de Recalque:
Diametro de 3/4	Diametro de 3/4 e 1
Posição da Placa de Orifício:	
Desnível com superfície	do líquido 250 mm

4.1.1.2.1 - DESOXIGENAÇÃO DO MEIO LIQUIDO:

O sistema de desoxigenação descrito no item anterior, tem a capacidade de desaerar um volume de água da ordem de 100 litros no intervalo de tempo de 2 a 3 horas, dependendo do teor de oxigênio dissolvido inicialmente na massa de água.

A água utilizada foi a da rede pública, do sistema de tratamento de Água de São Carlos - SP. O teor de oxigénio dissolvido encontrava-se na faixa de 6 a 7 mg/l, sendo que o dearador reduzia este valor para a faixa de 2,0 a 3,0 mg/l. O ponto final para a desaeração era determinado em função da temperatura do meio líquido, quando esta atingia valores próximos de 25° C e a concentração de oxigênio dissolvido estivesse na faixa entre 2,0 e 3,0 mg/l, o processo de desaeração era então interrompido para dar início ao processo de reoxigenação e determinação do parâmetro K₂.

No processo de desoxigenação a massa de água sofre um aquecimento, produzido pela introdução de potência através da bomba e dos processos mécanicos envolvidos na placa de orifício, onde há variação de pressão; como o experimento deveria ser conduzido na temperatura de 25° C, o aquecimento provocado pelo processo de desoxigenação não poderia produzir temperatura superior a esta. Assim, adotou-se o seguinte procedimento.

- 1 Reduz-se a temperatura do tanque para 18°C, com auxílio de barras de gelo.
- 2 Inicia-se o processo de desoxigenação, que dura de 2 a 3 horas para atingir a faixa de 2,0 a 3,0 mg/l de oxigênio dissolvido na massa de água.
- 3 A temperatura no meio líquido é monitorada para não ultrapassar a 26^Q C, e a massa de água apresentar teor de oxigênio dissolvido na faixa de 2,0 a 3,0 mg/l. Neste momento é interropida a desoxigenação e inicia-se à reoxigenação.

. 38

4.1.1.3 - SISTEMA DE CONTROLE DE TEMPERATURA:

Os ensaios foram realizados com temperatura controlada, de forma que o ambiente (o laboratório) e a massa de água a ser reoxigenada estivessem em temperaturas próximas, com a menor diferença possível entre o meio líquido e o gasoso, porque o processo de transferência de massa na interface está relacionado com a temperatura nesta região. Também, foi saturado o ambiente com vapor de água, utilizando-se de um vaporizador do tipo caseiro, que manteve a umidade relativa do ar na faixa de 65 a 75 % quando da realização dos ensaios.

A temperatura escolhida para a realização do experimento foi de 25° C, para facilitar a obtenção da faixa de umidade relativa de 60 a 80 %.

O tanque hidrodinâmico não possui nenhum tipo de controle específico de temperatura, desta forma para obter-se temperatura constante ou com pequenas variações, procedeu-se da seguinte maneira:

1 - Etapa:

Inicialmente controlou-se temperatura do ambiente (do laboratório), entre 25 e 26° C.

2 - Etapa:

O processo de deaeração era finalizado com a temperatura da massa de água na faixa de 25 a 26° C.

O processo de reoxigenação por meio de produção de turbulência por indutor rotativo no meio líquido não produz aquecimento significativo na massa de água. Assim, o importante é manter a temperatura ambiente em torno do mesmo valor da massa de água, e a temperatura é mantida constante pela ausência de diferencial de temperatura entre o meio líquido e o gasoso.

A temperatura ambiente foi controlada através de um controlador liga-desliga, tendo como elemento de medição um termopar, e como elementos de controle um aquecedor de resistência elétrica com a distribuição do calor gerado por um ventilador, e um aparelho de ar condicionado de 12.000 Btu.

4.1.1.4 - SISTEMA DE MEDIDAS:

4.1.1.4.1 - DETERMINAÇÃO DAS MEDIDAS DE CON-CENTRAÇÃO DE OXIGENIO DISSOLVIDO.

As medidas de concentração de oxigênio dissolvido no meio líquido foram realizadas com ajuda de um medidor de OD (oxigênio Dissolvido) instalado 25 cm abaixo da superfície líquida, junto a parede do tanque hidrodinámico. O medidor é um aparelho analógico que emprega processo eletroquímico para medição do oxigênio dissolvido, construído no "Forschungsinstitut Kurt Schwabe Meinsberg" modelo AM221, de procedência alemã,

O medidor apresenta dados continuos, com um fundo de escala de 15 mg/l. A saída do sinal elétrico pode ser escolhida entre a faixa de O (zero) a 5 (cinco) miliampère ou tensão na faixa de O (zero) a 10 (dez) milivolts. A placa analógica/digital do microcomputador é construída para receber voltagens, assim, foi usada a saída de voltagem do medidor, devidamente amplificada diretamente na placa.

O sinal elétrico, descrito acima, pode ser digitalizado e armazenado em arquivos de dados em microcomputadores. O armazenamento é em arquivos texto através do programa gerenciador que controla o ensaio (anexo A * "Programa Gerenciador").

Entre o sinal de saída do medidor e os valores a serem armazenados são necessárias várias operações para compatibilização dos valores e conversão de dados:

- 1 A Saída do medidor (OD) apresenta valores entre 0 (zero) a 10 (dez) milivolts, a entrada da placa A/D aceita valores na faixa de 0 (zero) a 5 (cinco) volts, portanto entre o medidor e placa A/D deve haver um amplificador de sinal.
- 2 O fundo de escala de tensão de entrada na placa A/D
 é de 5 volts, o fundo de escala do medidor de (OD)
 é 15 mg/l, sendo necessário então um fator de conversão da escala de voltagem para a escala de OD.

A conversão pode ser representada pela seguinte equação:

$$OD = \alpha [V] + \beta \tag{4.01}$$

Onde:

[V] = Tensão do medidor de OD na placa A/D.

 α = Coefiente angular da reta.

 β = Coeficiente de interseção da reta.

OD = Concentração do oxigênio dissolvido no medidor

Sendo $\alpha \in \beta$ constantes à determinar por calibração entre os valores registrados analogicamente no medidor (OD) e os obtidos no microcomputador.

4.1.1.4.2 - MEDIDAS DA TEMPERATURA DA ÁGUA:

A temperatura no tanque foi monitorada através de um termômetro eletrônico, marca FAC, com dispositivo de saída de sinal para equipamentos periféricos.

Os dados de temperatura também foram registrados da mesma forma que as medidas de oxigênio dissolvido, que estão descritas no item 4.1.1.5.1. Apenas que, no caso dos dados de temperatura não houve necessidade de calibração muito acurada, entre os valores digitais obtidos pela placa A/D e os valor real da temperatura, em função do pequeno intervalo de variação de temperatura em que o sistema era submetido.

As variações de temperatura média entre os ensaios foram da ordem de $25^{\circ} \pm 1,5^{\circ}$ C e durante o transcurso de cada ensaio a variação máxima ocorrida não ultrapassou a 0,4 $^{\circ}$ C.

4.1.1.4.3 - MEDIDAS DE UMIDADE RELATIVA DO AR:

A umidade relativa do ar durante os ensaios foi mantida na faixa de 65 a 75 %. O objetivo era obter temperaturas uniformes e constantes na interface gás-líquido.

Para manter a umidade relativa do ar na faixa desejada, utilizou-se um vaporizador caseiro, marca Righetto & Cia.

O psicrômetro utilizado foi do tipo Aspiração, cedido pelo departamento de Mecânica da EESC. - USP, a preseão atmosférica era registrada uma vez ao dia, a medida era realizada no laboratório de Metrologia da EESC-USP, utilizando-se de um barômetro da Princo, tipo Fortin, as medidas no psicrômetro eram realizadas de duas em duas horas.

4.1.1.4.4 - MEDIDAS DE TURBULENCIA PELO SEN-SOR FOTO-RECEPTOR:

O sensor é composto por duas partes, uma fonte de luz incandescente alimentada com tensão continua de 6 volts localizada acima da interface, e um fototransistor (elemento básico do sensor) posicionado abaixo da superfície de água. O fototransistor capta as variações de intensidade luminosa provocadas pela refração da luz na superfície líguida.

A aquisição dos dados, gerados através do sensor fotoreceptor, segue o mesmo procedimento dos utilizados para medidor (OD) e temperatura.

O esquema eletrônico do sensor é mostrado na figura 4.03.

4.1.1.5 - METODOS DE CALIBRAÇÃO OU AJUSTES DOS EQUIPA-MENTOS:

4.1.1.5.1 - CALIBRAÇÃO DO MEDIDOR DE OXIGENIO DISSOLVIDO:

A calibração do medidor de (OD) modelo AM221, foi realizada tendo como referência de comparação o método titulométrico de Winkler descrito no Standard Methods edição de [31](1978), utilizado para a determinação de oxigênio dissolvido na água.

O medidor foi ajustado para leitura com compensação de temperatura, conforme procedimento descrito no manual do equipamento [17]. Foi necessário posteriormente uma calibração de ajuste fino, com três ensaios que são apresentados na tabela 4.03 e representado graficamente na figura 4.04.

Número	Oxig. Diss.	Oxig. Diss.	Oxig. Diss.	Oxig. Diss.
da	(mg/l)	(mg/l)	(mg/l)	(mg/l)
amostra	Medidor (OD)	Met. Winkler	Met. Winkler	Met. Winkler
		1 Calibrador	2 Calibrador	3 Calibrador
01	0.0	0.00	- x x -	0.00
02	2.0	- × × -	0.00	_ - x x -
03	2.4	2.02	- x x -	- x x -
04	2.0	- x x -	2. 02	2.62
05	Э.О	- × × -	- x x -	- x x -
00	. 3. 1	3.28	- x x -	- x x -
07	Э.2	- x x -	3.28	3.28
08	3.4	- x x -	- x x -	- x x -
09	Э. б	3.89	- x x -	- x x -
10	3.8	- x x -	- x x -	- x x -
11 .	4 .0	- x x -	Э.8 9	3.89
12	4.2	- x x -	- x x -	- x x -
1 3	4 . B	- x x -	- x x -	- x x -
14	5.2	5.38	- x x -	- x x -
15	5.9	- x x -	- x x -	5.38-
10	5.4	- x x -	- x x -	- x x -
17	5.5	- x x -	5.38	- x x -
18	5.8	- x x -	- x x -	- x x -
19	Ø. D	- x x -	- x x -	- x x -
20	Ø. 2	Ø. 53	- x x -	- x x -
21	o. 4	- x x -	- x x -	- x x -
22	ó. 5	- x x -	<i>6</i> . 53	- x x -
2 3	6. G	- x x -	- x x -	ó. 53

Tabela 4.03 - Dados para calibração do medidor O₂ versus Winkler, na temperatura de 25^{Ω} centigrados.

Figura 4.04 - Reta de calibração do medidor de oxigênio dissolvido usando o método de Winkler como referencia Após a calibração do medidor de OD através do método de Winkler, foi necessário um ajuste por "software" entre o valor apresentado no mostrador analógico do medidor e o valor coletado pelo microcomputador através da placa A/D. Os resultados estão na tabela 4.04 e representados na figura 4.05 pela reta de calibração entre medidor de OD versus Placa A/D.

As medidas de oxigênio dissolvido durante os ensaios eram registradas pelo programa gerenciador em seguida apresentadas na tela do microcomputador.

A equação que converte os valores de tensão em concentração de oxigênio dissolvido foi obtida através de regressão linear dos dados coletados, resultando na equação (4.02).

Número,	Oxig. Diss.	Tensão em	Dados da	Percentagem
da	(mg/l)	(vols)	equação de	de erro
amostra	Medidor (OD)	Placa A/D	correção	%
01	2.4	1.06075	2.379	O. 99
02	2.0	1.17270	2.580	0.77
03	2.8	1.27104	2.756	1.50
04	9.0	1.43558	3.051	1.71
05	9.2	1.50940	3.184	0.50
00	Э.4	1.01318	3. 370	O. 88
07	Э. б	1.79918	3.704,	2.89
08	3.8	1.88274	3.854	1.41
90	4.0	1.97501	4.019	0.48
10	4.2	2.04101	4.138	1.49
1 1	4.4	2.22801	4. 479	1.00
12	4 . O	2.28301	4.572	0.01
13	4.8	2.42003	4.828	0.59
14	5.0	2.52505	5.000	0.12
15	5.2	2. 00200	5.144	1.08
10	5.4	2.72300	5.301	0.72
17	5. <i>6</i>	2.87690	5.637	0.00
18	5.8	2.94300	5,750	0.70
19	Ø. O	3.05099	5. 949	D. 84
20	6.2	9.14880	6.125	1.21
21	Ø. 4	3. 30001	6. 4 07	0.11
22	6. G	3.39405	Ø, 5 8 5	0.53
23	6. B	3.54801	Ø. 941	0.00
24	7.0	3. 04452	7.014	0.20
25	7.2	3.79000	7.275	1.05

Tabela 4.04 - Dados para calibração do medidor O_2 versus Placa A/D na temperatura de 25^{O} centigrados.

$$0_{1} = 1,794 [V] + 0,476$$
 (4.02)

Onde:

- O = Concentração de oxigênio dissolvido na massa de água.
- V = O sinal de tensão da saída do medidor e registrado pela placa A/D.

4.1.1.5.2 - CALIBRAÇÃO DO MEDIDOR DE TEMPERATURA:

A calibração do medidor de temperatura eletrônico, marca FAC, foi realizada por comparação com um termômetro de mercúrio da marca *Incotherm*, com precisão de $0,1^{\circ}$ C. A calibração apresentouse linear, com oscilações na faixa de precisão do termômetro.
A equação utilizada para determinar o valor da temperatura era a seguinte:

$$\Gamma p = \xi [Vt] \tag{4.03}$$

Onde:

Tp = Temperatura da massa líguida.

- ξ = Coeficiente angular da reta de conversão da medida de temperatura. (a reta passa pela origem).
- Vt = Tensão medida no termômetro eletrônico

A obtenção de uma curva de calibração mais ampla de temperatura não se tornou necessária em função da pequena faixa de variação da temperatura durante a realização dos ensaios.

4.1.1.5.3 - AJUSTE DO SENSOR FOTO-RECEPTOR:

O ajuste do sensor foto-receptor é feito de uma forma intuitiva, já que os valores obtidos não tem como que serem comparados. O que se executou foi uma verificação, através de testes em ensaios com baixas rotações (em torno de 60 rpm) e ensaios com altas rotações (em torno de 450 rpm), se as faixas de tensão não extrapolavam os limites inferior e superior da placa A/D, que eram de 0 e 5 volts respectivamente.

Foram feitos diversos ensaios de coleta de dados através do sensor em uma mesma rotação, esperando-se uma repetibilidade dos valores obtidos em relação aos cálculos dos valores de Rms e macro-escala de turbulência. Para diferentes rotações, comparavamse os dados obtidos uns em relação aos outros, com análise quanto a lógica esperada, por exemplo, aumentando-se a rotação esperavase um aumento do valor Rms e uma diminuição do valor da macro-escala de turbulência.

Quando o sensor satisfez estas condições mínimas, consideramos então o mesmo ajustado para a execução do experimento.

4.1.1.6 - MECANISMOS DE OBTENÇÃO DE DADOS POR MICRO-COMPUTADOR:

4.1.1.6.1 - MICROCOMPUTADOR UTILIZADO:

O equipamento utilizado foi um microcomputador Microtec XT - 2002 com velocidade de 4,77 Mhertz, equipado com uma placa A/D de 12 Bits e 16 canais, dos quais foram utilizados apenas três para as medidas de oxigênio dissolvido, temperatura e dados de turbulência.

Neste tipo de equipamento o uso de linguagem de máquina permite obter uma freqüência de amostragem de dezena de milhares de dados por segundo mas em função do sistema de geração de turbulência não gerar freqüência tão altas verificou-se que era suficiente um programa em linguagem Pascal (anexo A * o prog. "Leitura") para controlar a freqüência de amostragem em um padrão compatível com as freqüências geradas em cada ensaio do experimento.

4.1.1.6.2 - FREQUENCIA DE AMOSTRAGEM DE DADOS DE TURBULENCIA:

A freqüência de amostragem deve ser de tal ordem que possa captar todos os sinais elétricos representativos de um turbihão, em uma pequena faixa de intervalo de tempo, de forma a não perder dados significativos.

Para aquisições dos dados através da placa A/D, é necessário dispor de uma subrotina, para obter e armazenar os dados em uma memória previamente definida no programa gerenciador dos ensaios do experimento.

A resolução, consiste no menor valor de tensão que possa provocar uma variação nos valores de tensão registrados. O valor da resolução de uma placa A/D é obtida pela seguinte expressão:

$$Re = \frac{Ve}{2^{\psi}}$$
(4.04)

Onde:

Re = Resolução da placa A/D de 12 Bits. Ve = Tensão de fundo de escala da placa A/D. ψ = Número de bits da placa A/D.

Assim, para as condições existentes, $\psi = 12$, obtivemos a seguinte resolução:

$$Re = \frac{5 \text{ volts}}{2^{12}} = 0,00122 \text{ V} \cong 1,2 \text{ milivolts}$$

A freqüência máxima de operação de um conversor A/D depende do tempo de conversão e é dada pela seguinte expressão:

Fmax =
$$\frac{1}{\pi}$$
. Tev. 2^{ψ} +1 (4.05)

Onde:

Fmax = Freqüência da placa A/D. Tov = Tempo de conversão (freqüência da CPU).

Substituindo os dados do equipamento, na equação (4.05), temos a freqüência máxima de 1829 Hertz.

Para se ter controle do número de pontos coletados por segundo, ou seja a freqüência de amostragem, a subrotina de leitura incluiu o comando "Delay", que produz um intervalo de tempo (Δt) entre cada conversão da coleta de dados. A alteração do valor do "Delay" permite obter o número de pontos por segundo desejado.

Com auxílio de um oscilocópio marca PANTEC mod 1152, um gerador de função marca Labo modelo GF 03 e um programa computacional denominado " freqüência de teste " (anexo A), determina-se a freqüência máxima que o microcomputador consegue acompanhar com o programa em Pascal. A freqüência máxima obtida, utilizado a subrotina de leitura foi de 680 Hertz.

Para determinar a freqüência e o tempo de amostragem para o sensor foto-receptor foram adotados os seguintes critérios:

> 1 - Simulou-se coletas de dados na faixa de freqüência de 30 a 300 Hertz, variando os valores de rotações do impulsor entre 60 a 450 rpm.

- 2 Os resultados obtidos foram analisados com relação ao parâmetro "Macroescala de Turbulência", procurando-se avaliar o grau de precisão e confiabilidade dos resultados obtidos.
 - 2.1 Para valores de rotações entre 60 e 90 rpm e freqüência de amostragem entre 30 e 50 Hertz, as funções de autocorrelação obtidas apresentaram características compatíveis com o fenômeno.
 - 2.2 Para valores de rotações acima de 90 rpm e freqüência de amostragem entre 30 e 50 Hertz, a função de autocorrelação converge muito rapidamente para 0 (zero), tendo o seu resultado pequena precisão.
 - 2.3 Para valores de rotações acima de 90 rpm e freqüências de amostragens entre 150 e 300 Hertz, os resultados obtidos para o valor de macroescala de turbulência apresentaram-se compatível com o fenômeno.
 - 2.4 Após a análise de todos os dados da simulação concluímos que os melhores valores que se enquadram dentro da precisão desejada, são freqüências próximas a 200 Hertz por um tempo de 21 segundos, equivalente a de 4200 dados.

Assim, adotamos a freqüência de coleta de dados do sinal do sensor foto-receptor em 200 Hertz, para os ensaios até 155 rpm. Para rotações a partir 208 rpm adotou-se a freqüência de 300 Hertz.

A distinção de freqüência de amostragem a partir de 155 rpm, é em função do aumento da turbulência que diminui o tamanho dos turbulhões, o aumento da freqüência de amostragem melhora a precisão da curva da função de autocorrelação.

50

4.1.1.6.3 - MONITORAMENTO DOS ENSAIOS:

O monitoramento dos ensaios foi realizado através de um microcomputador, com um programa gerenciador, que realizava as seguintes coletas de dados durante um ensaio:

- * Oxigênio dissolvido na massa líquida;
- * Temperatura na massa líquida;
- * Dados do sensor foto-receptor (Tensão elétrica, que é proporcional à incidência de luz sobre o sensor);
- * O instante em que a coleta era realizada;

Nas seguintes freqüências de amostragens:

- Dados de Oxigênio dissolvido:
 - Para ensaios na faixa de 60 a 155 rpm, foram coletados dados a cada 10 minutos, sendo coletados 50 pontos na freqüência de 10 hertz e obtendo-se média os pontos.
- Dados de Temperatura da massa líquida: Para a temperatura foi adotado o mesmo procedimento utilizado na coleta de oxigênio dissolvido, em função da temperatura estar relacionada com oxigênio dissolvido, os dados de temperatura foram coletados em seqüência e com um At inferior a 12 segundos.
- Dados do sensor foto-receptor:

Para ensaios na faixa de 60 a 155 rpm as coletas de dados eram de 1 em 1 hora, na freqüência de 200 hertz, os ensaios na faixa de 208 a 276 rpm, as coletas eram de 30 em 30 minutos, na freqüência de 300 hertz por segundo, para os ensaios em faixa acima de 276 rpm as coletas passam a ser a cada 10 minutos, também na freqüência de 300 hertz.

O programa gerenciador era interrompido quando da saturação do oxigênio dissolvido no meio líquido (ver anexo A). A figura 4.06, representa um esboço global dos ensaios com relação a estrutura física do experimento.

4.2 - METODO PARA DETERMINAÇÃO DO COEFICIENTE DE REAERAÇÃO:

A ASCE (A standard methods for measurement of oxigen transfer in clean water) [01](1984) apresenta metodologia para determinação do coeficiente de reaeração K_2 em escala laboratorial, ou para volume até algumas centenas de litros de água, principalmente para testes de especificações de equipamentos de oxigenação.

Utiliza-se do método da perturbação do equílibrio para produzir um déficit de oxigênio dissolvido na água, a partir daí a reoxigenação é monitorada durante o processo, através de medida de oxigênio dissolvido em relação ao tempo decorrido no processo.

Pelas especificações da ASCE [01](1984) guando o processo possui monitoramento que represente mais de 20 pontos de referência ao longo do tempo para a definição da curva de reoxigenação, os valores podem ser igualmente espaçados sobre uma faixa ampla, do primeiro ao último dado do experimento.

O valor do coeficiente de transferência de oxigênio pode ser estimado pelo ajuste aos dados de concentração de oxigênio dissolvido, versus os dados do tempo da coleta, baseado no desenvolvimento proposto por Brown e Baillod [07](1982) para sistema de reator de mistura completa, da seguinte forma:

$$\frac{dC}{dt} = K_{z} (C_{\infty}^{*} - C(t))$$
(4.06)

Onde:

- $K_2 = Coeficiente de reoxigenação ou de transferência$ de massa volumétrico (T⁻¹).
- C^*_{∞} = Concentração de saturação de oxigênio dissolvido no equilibrio (M/L⁹).
- C = Concentração de oxigênio dissolvido no instante t (M/L^3) .

Integrando a equação (4.06), com a seguinte condição inicial C = Co em t= O e supondo K_2 uniforme através do volume, temos:

$$\ln \left(\left(C_{\infty}^{*} - C \right) / \left(C_{\infty}^{*} - C_{0} \right) \right) = K_{2} t$$
(4.07)

Assim, como método de cálculo adotou-se o do déficit logarítmico, exemplificado por Brown e Baillod [07](1982), o método ajusta a equação (4.07), pelos mínimos quadrados.

O método requer que seja estimado o valor de C_{∞}^{*} , para que seja possível o cálculo pelo método do déficit de oxigênio. A estimativa de C_{∞}^{*} é realizada pelo melhor ajuste da regressão linear na equação (4.07), com o primeiro valor arbitrado para C_{∞}^{*} obtido de tabelas de concentração de saturação de oxigênio dissolvido. A partir daí são feitas simulações até obter o melhor ajuste de regressão linear possível. Este método necessita que haja o truncamento no valor da concentração de oxigênio (C(t)) próximo da saturação, para evitar problemas de déficits negativos.

No presente trabalho, adotou-se a correção do valor do coeficiente K_2 com relação a temperatura padrão de 25° C., utilizando o modelo de Streeter, e adotando e com o valor 1,024. A umidade relativa do ar durante os ensaios não teve variações superiores a 10 %. Em função de não existir um modelo de correção para uma umidade padrão, apenas teremos o cuidado de referenciar à umidade em cada ensaio realizado.

Em resumo, os dados tem validade apenas no intervalo de tempo em que o processo de reaeração tem o comportamento exponencial. Fora deste intervalo o desvio padrão do coeficiente angular da reta torna-se alto. Baillod et. alii [02](1986), realizaram estudos avaliando a precisão e a faixa de confiabilidade dos dados utilizados, para diversos métodos de estimativa de parâmetro K₂. Concluiram que para o método de regressão linear, pelo mínimos quadrados, a estimativa do intervalo de tempo em que os dados são confiáveis tem o comportamento dos modelos exponenciais.

$$Tcc = \frac{1}{K_2}$$

(4.08)

Onde

Tcc = Tempo de coleta confiável, para os modelos exponenciais.

4.3 - CALCULO DA ESTIMATIVA DA AREA SUPERFICIAL TURBULENTA:

No presente trabalho alteramos a forma do cálculo da área superficial turbulenta em relação a proposta de Roma op. cit. A alteração básica refere-se ao parâmetro adotado por analogia como a velocidade vertical, Roma op. cit. adotou a tensão elétrica (λ) medida no sensor, enquanto no presente trabalho adotamos a diferença das tensões elétricas entre dois pontos subseqüentes em valor absoluto como a velocidade vertical.

O cálculo da estimativa da área superficial turbulenta é realizado da seguinte forma:

A diferença das tensões medidas entre dois pontos subseqüentes em valor absoluto é definido por analogia como a velocidade vertical. O intervalo de tempo entre dois pontos é defindo por dt, (pela ergodicidade do fenômeno pode-se considerar que dt ≌ dx ou dy), da soma vetorial com a velocidade vertical obtém-se a distância vertical dz. O somatório de dz para o tempo total de aquisição T, dividido pelo número de pontos coletados menos um (ou o número de intervalos dx) representa o valor médio dzm. O valor dx representa o comprimento do envoltório superficial, enquanto o valor dzm representa o aumento do comprimento do envoltório, assim a soma de dzm mais dx dividido por dx representa a relação do aumento do comprimento do envoltório. Em função do tanque ser cilíndrico a área aumentada é definida como o quadrado de dzm multiplicado pela constante 0,7853 (número Pi dividido por quatro), em seguida os resultados são normalizados em relação ao primeiro ensaio (60 rpm).

4.4 - INCERTEZA DAS MEDIDAS:

Os erros sempre estão presentes nos ensaios experimentais, podendo ser sistemáticos ou causais. Os erros sistemáticos podem ser evitados pelas correções e/ou calibrações corretas dos instrumentos de medidas, enquanto o causal é aleatório e deve ser tratado estatísticamente.

A análise da incerteza das medidas tem com objetivo detectar e estimar o erro causal, considerando que as correções e as calibrações dos equipamentos foram executas corretamente no sentido de evitar os erros sistemáticos. Conhecendo a incerteza das medidas, tem-se o seu valor significativo, sua abrangência e confiabilidade.

Sendo possível a repetição das medidas, pode-se estabelecer a grandeza e a confiabilidade dos dados, através da distribuição normal da freqüência dos valores medidos. No caso de amostragem simples a estimativa da incerteza da medida é função direta do erro causal, que é definido pcomo a metade da menor divisão na escala do instrumento.

Quanto aos limites de confiabilidade de cada medida, é baseada no conceito de desvio padrão, que estabelece as faixas de variações das medidas que sejam aceitáveis.

DADOS DE OXIGENIO DISSOLVIDO:

-	Menor escala do instrumento	= 0,2 mg/l.
-	Fundo de escala do instrumento	= 15 mg/l.
-	Forma de coleta dos dados	= Placa A/D - 12 bits.
-	Freqüência das medidas	= 50 medidas com fregüência de
		10 pontos por segundo.
-	Precieão da Placa A/D	= 0,000121 volts ou 0,003 mg/1
-	Oscilação do sistema analógico	= 0, 1 mg/1.
-	Erro de calibração (Winkler)	= 0,1 mg/l.

Dado a grande precisão da placa A/D, o erro causal é função basicamente da oscilação do ponteiro no sistema analógico, com relação ao erro sistemático este é função apenas do erro de calibração do equipamento. Erro dos dados de oxigênio dissolvido 0,1 mg/l.

DADOS DE TEMPERATURA:
Menor escala do instrumento = 0,01° C.
Fundo de escala do instrumento = 50 ° C.
Forma de coleta dos dados = Placa A/D - 12 bits
Freqüência das medidas = 50 medidas com freqüência de 10 pontos por segundo.
Precisão da Placa A/D = 0,000121 volts ou 0,001 ^Q C.
Oscilação do sistema analógico = 0,2° C.
Erro de calibração (termômetro) = 0,1° C.

Novamente considerando a grande precisão da placa A/D, o fator significativo no erro causal é atribuído a oscilação do instrumento, minimizada pela repetibilidade dos dados, resultando em um erro de 0,1 $^{\Omega}$ C.

DADOS DE TENSÃO - SENSOR FOTO-RECEPTOR:

-	Amplificador e Seguidor de tensão=	Erro Sistemático
-	Fundo de escala do instrumento =	5 volts
-	Forma de coleta dos dados =	Placa A/D - 12 bits
-	Freqüência das medidas =	4096 medidas com freqüência
		200 e 300 pontos por segundo
-	Precisão da Placa A/D =	0,000121 volts

Desta forma, o erro causal é ⁺0,00006 volts. O erro sistemático do sensor não foi possível de ser estimado, em função de não possuir fonte de comparação.

A estimativa da incerteza das medidas é uma somatória do conjunto do erro causal, sistemático e a propagação destes guando aplicados aos métodos de cálculo dos parâmetros desejados.

CAPÍTULO III

RESULTADOS

Ε

DISCUSSõES

5. - RESULTADOS E DISCUSSõES:

5.1 - COEFICIENTE DE REOXIGENAÇÃO K.

A determinação do coeficiente de reoxigenação K_2 de cada ensaio, foi realizada com base na equação (4.07), que apresenta características de comportamento logarítmico, seguindo a metodologia do método do Déficit Logarítmico, comentado e apresentado no item 4.2.

Para exemplificarmos o comportamento das curvas de reoxigenação do experimento, apresentamos a figura 5.01, que mostra o comportamento da curva de reoxigenação do ensaio realizado com o impulsor rotativo a 78 rpm, cujo o comportamento é similar a curva dos demais ensaios realizados.

Os gráficos e as tabelas de cálculo do coeficiente de reoxigenação K, dos demais ensaios são apresentados no apêndice A.

Na tabela 5.01, encontram-se os resultados do coeficiente de reoxigenação K_2 , juntamente com os demais parâmetros de controle (temperatura, umidade relativa do ar e parâmetros estatísticos), obtidos durante o ensaio do experimento.

Frequência do impuisor	Temp Média -	eratura Desvio	Umidad Média	ie do Ar - Desvio	Goefficiente de Reneração - Horasi-				
(rpm)	Cent	Padrão	•	- Padrão	K2 Horas(-1) - Gorrelação -	· Goeficient		
60	25,8	0,32	66.3	2.6	0,123	0,9993	2,8 E-03		
78	26.3	0.13	61.5	2,3	0,166	0,9994	3,6 E-03		
98	23.9	0.45	69.9	1,9	0,192	0,9952	4,5 E-03		
108	26.6	0.17	72.2	2,0	0,199	0,9984	8,2 E-03		
145	25.4	0.15	61.8	3,6	0,831	0,9991	1,5 E-03		
155	25.3	0.08	74.9	2,8	0,369	0,9996	1,3 E-03		
208	26.2	0.07	73.7	1,8	0,583	0,9992	2,4 E-03		
253	26.0	0.09	65.9	1,2	0,711	8666.0	1,0 E-02		
276	26.3	0.08	65.9	1,2	0,769	0,9991	2,5 E-03		
358	20.3	0.07	71.8	1,2	1,477	0,9993	3,9 E-03		
385	26,2	0.06	69.0	1,1	1,677	0,9983	6,4 E-03		
450	26,4	0.06	69.3	0,9	3,382	0,9987	1,4 E-02		

Na figura 5.02, encontra-se resumido graficamente a tabela 5.01, a partir da qual podemos visualizar o comportamento global da curva de reoxigenação em função das rotações do impulsor (pás rotativas) ao longo do experimento. O comportamento da curva pode ser descrito por uma função exponencial com as seguintes características:

$$(0,00789 (rpm))$$

K₂ = 0,090206 exp (5.01)

Coeficiente de ajuste = 0,9895

A equação (5.01), é válida apenas para sistemas hidrodinâmicos de geração de turbulência com as mesmas características do utilizado no presente trabalho.

O comportamento do processo de reoxigenação pode ser avaliado através da figura 5.03, que relaciona o coeficiente de reoxigenação K, com a dissipação de energia no sistema.

Os dados do coeficiente de reoxigenação K_2 do trabalho de Barbosa [03](1989) foram analisados em relação à dissipação de energia por Schulz [30](1990), resultando na seguinte expressão:

 $K_{z} \propto Pd$

(5.02)

Onde:

Pd = Potência dissipada em Watts.

 ω = Expoente de potência dissipada

Pela figura 5.03 vé-se que o coeficiente de reoxigenação K_2 em relação à potência dissipada, tem a mesma forma da expreseão (5.02) obtida por Schulz op. cit..

Rotações menores (faixa)	Expoe	nte d	a (Pd)	Coef. de correlação	
58 a 110 - Barbosa (03)(+)	0,257	İ	0,058	0,951	
60 a 108 - Presente trabalho	0,360	±	0,042	0,979	
Rotações altas (faixa)	Expoente da (Pd)			Coef. de correlação	
35 a 370 - Barbosa [03](•)	0,580	±	0,023	0,948	
45 a 450 - Presente trabalho	0,618	±	0,058	0,974	

Os resultados apresentados na tabela 5.02, referente ao presente trabalho, confirmam a previsão de Schulz op. cit., para o expoente ω da expressão (5.02), que para a faixa de baixas rotações o expoente ω é próximo de 1/3, enquanto que para a faixa de altas rotações o expoente ω é próximo de 1/2.

Na comparação dos resultados do expoente da energia dissipada (ω) entre os dados de Barbosa op. cit. e os do presente trabalho, podemos afirmar que o comportamento do processo de reoxigenação nos dois trabalhos são semelhantes.

Analisando a figura 5.03 vê-se dois comportamentos distintos, o primeiro na faixa do impulsor entre 60 a 145 rpm, em que a inclinação da reta é de 0,360 \pm 0,042, sendo o seu coeficiente de correlação 0,979 e a segunda na faixa do impulsor entre 155 a 450 rpm, que se relaciona linearmente na inclinação de 0,618 \pm 0,058, sendo o seu coeficiente de correlação 0,974. Este comportamento evidencia a existência de um ponto de quebra da superfície líquida na faixa entre 150 a 200 rpm, marcada pela alteração brusca da velocidade de reoxigenação. Tal fato caracteriza o comportamento do coeficiente de reoxigenação K_2 como função da turbulência. A partir da faixa de rotação de 145 a 155 rpm, o coeficiente de difusividade molecular deixa de ser relevante no processo, para dar lugar a difusividade turbulenta.

Lembrando que tais considerações são válidas apenas para este sistema, em função de seu dimensionamento específico.

Os resultados dos coeficientes de reoxigenação K₂ obtidos no presente trabalho, são comparados em valores absolutos com os resultados de Costa [08] (1992) e Barbosa [03](1989) que realizaram seus trabalhos no mesmo sistema hidrodinâmico.

Autores	Frequência Impulsor rpm	Temperatura Média Grau Centigrado	Umidade do Ar %	Coeficiente de Reaeração min(-1)
Costa	62	25,0	85,2	2,49 E-03
Barbosa	58	22,60	-0-	1,70 E-03
(+)	60	25,0	65,3	2,01 E-03
Barbosa	78	23,23	-0-	2.41 E-03
(+)	78	25,0	81,5	2,52 E-03
Barbosa	98	23,40	-0-	2.85 E-03
(•)	98	25,0	69.9	3.28 E-03
Barbosa	108	19,40	-0-	2.48 E-09
(•)	108	25,0	72.2	3.27 E-03
Barbosa	155	18,50	-0-	3.22 E-03
(•)	155	25,0	74.9	6.10 E-03
Barbosa	195	20,80	-0-	8,17 E-03
(•)	208	25,0	78,7	9,45 E-03
Barbosa	249	20,40	-0-	11.33 E-03
Costa	255	25,0	64.4	9.77 E-03
(•)	253	25,0	65.9	11,58 E-03
Barbosa	285	23,20	-0-	10,96 E-03
(•)	278	25,0	85,9	12,42 E-03
Barbosa	370	22,10	-0-	20.98 E-03
(•)	385	25,0	69,0	27.11 E-09

Os dados da tabela 5.03 quando comparados entre si não apresentam divergências consideráveis. Comparando os dados obtidos neste trabalho com o de Costa [08](1992), nas rotações do impulsor na faixa de 60 a 250 rpm e com as mesmas faixas de umidade

64

relativa do ar, as variações constatadas foram de aproximadamente 19%. No caso dos dados obtidos por Barbosa [03](1989) em comparação com os deste trabalho, divergiram significativamente apenas na faixa de rotação de 150 a 210 rpm.

Os resultados obtidos da comparação realizada, indica a confiabilidade dos dados do coeficiente de reoxigenação K_2 obtido no presente trabalho.

5.2 - RESULTADOS DO VALOR RMS DOS ENSAIOS:

A raiz média quadrática (Rms), definida como uma intensidade de turbulência, foi calculada pela equação (3.19), aplicada ao vetor de 4096 pontos, representada pela tensão registrada pelo sensor foto-receptor (λ_x) na freqüência de 200 a 300 pontos por segundo, dependendo da faixa de rotação do ensaio.

As figuras 5.04 e 5.05 exemplificam os sinais obtidos em função da fregüência de cada ensaio.

O cálculo do valor Rms, é realizado através da equação (3.19), que é desenvolvida em uma "function" computacional, que pode ser encontrada no programa do cálculo da função de autocorrelação e valor Rms, com o nome Vrmsf, no anexo B - (subrotinas cálculo do valor R.m.s).

A tabela 5.04 fornece o valor médio dos dados de Rms de cada ensaio, juntamente com os demais dados estatísticos, e as tabelas com todos os dados de cada ensaio estão no apêndice B.

Os resultados apresentados na tabela 5.04, foram resumidos graficamente na figura 5.06, pela relação do valor do coeficiente Rms versus a frequência do impulsor em rpm.

O Comportamento da curva de Rms versus a freqüência do impulsor (rpm), apresenta três regiões distintas.

Na primeira faixa (60 a 155 rpm) em função da baixa agitação do sistema, os valores de Rms são muito próximos de zero. A partir do limite inferior (60 rpm) os valores dos coeficientes Rms crescem quase que linearmente até o limite superior (155 rpm).

Frequência do	Número de	Valor de Rma	Desvio	Confiabilidade
impulsor (rpm)	Pta de Coleta	metros/segundo	Padrão	*
60	12	0,021	0,003	90
78	07	0,034	0,001	90
98	10	0,059	0,004	90
108	08	0,083	0,006	75
145	09	0,167	0,037	90
155	09	0,228	0,012	90
208	04	0,858	0,021	95
253	07	0,960	0,036	90
278	09	1,009	0,026	90
358	07	1,149	0,027	95
385	04	1,196	0,008	95
450	05	1,209	0,007	90

Tabela 5.04 - Dados de valor Rms dos ensaios

A segunda faixa (155 a 208 rpm) caracteriza-se por uma variação brusca no coeficiente Rms.

Na terceira faixa (208 a 450 rpm) o coeficiente Rms passa a ter um comportamento levemente exponencial com tendência de saturação após o limite superior (450 rpm).

O gráfico da figura 5.06 apresenta duas regiões que merecem destaque: a primeira é a faixa 02, que indica a mudança da estrutura turbulenta pela quebra da superfície líquida. A segunda é a faixa 03, em que o coeficiente Rms apresenta uma tendência de saturação (valor máximo).

A região de saturação ocorre acima de 400 rpm, a partir deste ponto a rotação do impulsor (N) não produz mais efeito sobre o grau de oscilação da superfície líquida. Isto se deve ao fato de que nestas rotações, para este sistema hidrodinâmico, há formação a uma região de cavitação em torno das pás rotativas, que impede transferência de energia à massa líquida, evitando a formação de maiores oscilações na superfície líquida.

A tabela 5.05, relaciona os valores de Rms e o parâmetro K_2 do presente trabalho, com os obtidos por Roma op. cit.. O objetivo da comparação dos resultados é a verificação da existência de alguma relação entre os dados dos dois trabalhos.

(+) Dad	ios do presente trab	atho	Dados do trabalho de Roma (28)(1988)			
Frequência do impulsor (rpm)	Valor do Rms (metros/segundo)	Goeficiente de Rezeração (min(-1))	Frequência de Oscilação	Valor de R ms (metros/segundo)	Coeficiente Reseração (min(-1))	
60	0,0220	2,0 E-03	-0-	-0-	-0-	
108	0,0836	8,2 E-08	Larga 116	0,071	8,7 E-04	
145	0,1679	5,4 E-03	Media 116	0,176	1,0 E-03	
155	0,2268	8,1 E-03	Larga 288	0,189	1,7 E-03	
208	0.8580	9.4 E-03	Fina 160	0,810	2,3 E-03	

Tabela 5.05 - Comparação dos valores Rms com trabalho de Roma

Obe: Para rotações acima 208 rpm, os valores de Rms são maiores que os obtidos por Roma (28)(1988).

68

Não se detectou qualquer relação significativa entre, os dados dos dois trabalhos, atribuindo-se tal fato à diferença entre os sistemas hidrodinâmicos de cada trabalho, em que a forma do tanque de agitação e os agitadores são diferentes, produzindo estruturas turbulentas diferenciadas.

5.3 - FUNÇÃO DE AUTOCORRELAÇÃO:

Os coeficientes da função de autocorrelação são determinados pela equação (3.25), com o auxílio da "Procedure Função ", (subrotina computacional) do programa de cálculo da função de autocorrelação apresentado no anexo A. Os conceitos teoricos da função de autocorrelação foram definidos no item 3.2.3.3.

De cada ensaio foram realizadas diversas coletas, cada uma forneceu uma função de autocorrelação, com um número de 100 inter-relações. Na figura 5.07, são apresentadas duas funções, obtidas durante o mesmo ensaio (60 rpm), e na figura 5.08, também são apresentadas duas funções de autocorrelação obtidas no ensaio de 358 rpm.

Através das figuras 5.07 e 5.08, percebe-se que para um mesmo ensaio, a função de autocorrelação para duas diferentes coletas apresentam comportamentos similares. Demonstrando assim, a sensibilidade do sensor foto-receptor as variações das características turbulentas geradas pelas alterações das freqüências do impulsor nos diferentes ensaios.

A tabela 5.06, apresenta os resultados dos parametros de autocorrelação em dois padrões distintos: sendo o primeiro padrão, a macroescala de turbulência para o cálculo de 100 inter-relações, o segundo padrão, também é a macroescala de turbulência, com a diferença que o cálculo é truncado no ponto em que a função de autocorrelação perde a correlação (valor da função é zero).

A figura 5.09 representa os resultados da tabela 5.06, e mostra o comportamento da macroescala de turbulência (Lm) em relação a freqüência do impulsor em cada um dos ensaios.

Frequência do Impulsor (rpm)	Nrs de pts de Coleta do ensaio.	Macroescala Turbulencia 100 inter- relações.	Desvio Padrão	Macroescaia de Turbulencia relacao ate o atingir zero	Desvio Padrão	Erro Percentua
60	11	0,0585	0,012	0,0631	0,010	11,8
78	06	0,0351	0,010	0,0463	0,010	31,9
88	10	0,0314	0,012	0,0315	0,005	0,3
108	08	0,0259	0,007	0,0303	0,005	16,9
145	09	0,0194	0,005	0,0321	0,029	65,4
155	09	0,0134	0,005	0,0163	0,001	21,4
208	04	0,0098	0,004	0,0010	0,003	2,0
253	08	0,0086	0,002	0,0084	0,001	2,3
278	08	0,0078	0,002	0,0082	0,001	5,1
358	07	0,0062	0,001	0,0058	0,003	6,4 -
385	04	0,0065	0,003	0,0066	0,0002	1,5
450	05	0,0059	0,001	0,0054	0,0009	8,4

O comportamento da função da macro-escala de turbulência pode ser ajustado por uma função hiperbólica com as seguintes características:

$$Lm = 5,83 (rpm)^{-1.161}$$
 (5.03)
Coeficiente de ajuste = 0,975

A relação entre a macroescala de turbulência (Lm) e a rotação do impulsor, apresenta um comportamento condizente com o que se esperava para a macro-escala (Lm). Hipoteticamente representando o tamanho médio dos turbilhões, decresce hiperbolicamente com o aumento da agitação (variação da freqüência do impulsor).

Outra comparação realizada com os resultados da função de autocorrelação, é com respeito ao valor da macro-escala de turbulência (Lm) em relação ao número de inter-relações. Compara-se os valores da macro-escala com integração de 100 inter-relações, com os de integração até o número de inter-relações que o coeficiente da função de autocorrelação seja 0 (zero), o que representa a perda da correlação no processo.

O resultado da comparação está resumido na tabela 5.06, e graficamente na figura 5.10.

Pode-se constatar pela figura 5.10 que o valor da macro-escala de turbulência (Lm) apresenta diferenças significativas na região que consideramos de baixa agitação (60 a 155 rpm), com erros percentuais de até 65 %. Para a região que consideramos de alta agitação (208 a 450 rpm) as diferenças são menores, com erros percentuais não superior a 8 %.

5.4 - ESTIMATIVA DA AREA SUPERFICIAL TURBULENTA:

Conforme teoria já explanada nos itens 3.6.1 e 4.3, os cálculos da estimativa da área superficial turbulenta foram processados na planilha eletrônica.

A tabela 5.07, apresenta os resultados do aumento da área superficial turbulenta em relação à rotação do impulsor.

Para o cálculo da estimativa da área superficial turbulenta, se executou a metodologia descrita no item 4.3.

Co le te	Ensalo 60 rpm	Enecio 78 rpm	Ensalo 98 rpm	Ensalo 108 rpm	Enealo 148 rpm	Enealo 165 rpm	Enesio 208 rpm	Enealo 263 7pm	Ensalo 276 rpm	Enealo 368 rpm	Enealo 386 rpm	Enegic 460 rpm
21	0.084	0.100	0.199	0.328	1.038	1.318	4.740	6.796	6.642	8.920	9.427	9.704
2	0.095	0,104	0.238	0.289	0.831	1.846	4.057	6.616	8.539	9.006	8.8 37	9.238
8	890.0	0.115	0.218	0.806	0.952	1.674	4.459	6.928	8.501	8.492	9.831	8.997
)4	0.106	0.114	0.219	0.290	0.874	1.426	4.545	5.676	6.277	8.685	9.877	9.072
6	0.094	0.097	0.211	0.330	0.882	1.408		6.918	8.509	8.816		9.220
)6	0.102	0.108	0.229	0.279	0.745	1.330		5.849	6.550	8.743		
7	0.100	0.107	0.220	0.326	0.669	1.404		5.927	6.136	9.058		
8	0.099		0.209	0.276	0.746	1.529			6.320			
9	0.100		0.224		0.813	1.838			6.286			
0	0.100		0.233									
11	0.104											
12	890.0											
ed	0.099	0.108	0.220	0.300	0.794	1.441	4.462	6.788	6.405	8.817	9.443	9.248
Itd	0.008	0.008	0.011	0.018	0.132	0.108	0.251	0.129	0.148	0.182	0.140	0.248
rea	0.792	0.793	0.801	0.808	0.847	0.899	1.380	1.591	1.894	2.128	2.248	2.208
r m	/1.000	1.0007	1.011	1.019	1.068	1.184	1.741	2.008	2.187	2.682	2.834	2.786

A normalização das áreas indicou que entre a área do primeiro ensaio (60 rpm) e a do último (450 rpm), teve-se um aumento da área superficial turbulenta de 178 %.

A figura 5.11, mostra o comportamento da estimativa da área turbulenta/repouso (At/A), normalizada em relação ao primeiro ensaio (60 rpm), versus a rotação do impulsor rotativo (rpm).

Comparando a figura 5.06 (pag. 69) com a figura 5.11, percebe-se que o comportamento das duas funções nestas figuras são semelhantes em relação à rotação do impulsor (rpm) em cada ensaio. Dentro desta comparação, devemos destacar, a variação da relação da estimativa da área turbulenta/repouso (At/A) na faixa 02 é menos brusca que na relação com o coeficiente Rms (figura 5.06).

A variação da estimativa da área turbulenta/repouso superficial é função do grau de oscilação da superfície. O coeficiente Rms representa o grau de oscilação da superfície líquida, daí-se justifica o comportamento similar entre o coeficiente Rms e a estimativa da área turbulenta/repouso (At/A) em relação à rotação do impulsor (rpm).

Analisando o comportamento da função da figura 5.11, podemos dividir a função em três faixas distintas e iguais as da figura 5.06 (pag. 69), que relaciona o coeficiente Rms versus a rotação do impulsor (rpm). Na faixa 01 (60 a 155 rpm), a estimativa da área turbulenta/repouso (At/A) apresenta uma pequena variação de 0 a 13 %, na faixa 02 (155 a 208 rpm), há uma variação mais significativa, indicando uma região onde as oscilações na superfície provocam a sua quebra. Na faixa 03 (208 a 450 rpm), a variação da estimativa da área turbulenta/repouso (At/A) é maior que na faixa 01, mas com uma tendência de saturação a partir da rotação de 400 rpm.

A justificativa para o comportamento da estimativa da área turbulenta/repouso (At/A) em relação à rotação do impulsor (rpm), é a mesma atribuida ao coeficiente Rms em relação a rotação do impulsor no item 5.2.

5.5 - CALCULO DO COEFICIENTE DE TRANSFERENCIA DE MASSA K :

O coeficiente de transferência de massa K_L é um parâmetro mais amplo que o coeficiente reoxigenação ou reaeração K₂, em razão do coeficiente K_L envolver o conhencimento da variação da área superficial.

Como o coeficiente K tem como variável envolvida no seu cálculo a área de troca de massa entre a fase líquida e gasosa, surgem os questionamentos, quanto que a área aumentou, qual o efeito da quebra da superfície líquida, dada a ação da turbulência.

Pela estimativa da relação da área turbulenta/repouso (At/A) calculada no item 5.4, é possível estimativa do coeficiente K_L. Desta forma, o coeficiente de transferência de massa passa a ser designido como K_{LT} (quando envolver o aumento da área superficial pela turbulência) e K_{LR} (quando considerarmos a área constante).

Os valores dos coeficientes $K_{LR} = K_{LT}$ encontram-se relacionados na tabela 5.08.

75

rpm	Goef. KLr (Área-Repouso) cm/seg	Relação AT/A Admies.	Umidade do Ar %	Goef. KLt (Área-Turbulenta cm/seg
60	0.00117	1.0000	65.3	0.00117
78	0.00148	1.0007	61.5	0.00146
98	0.00191	1.0117	69.9	0.00189
108	0.00190	1.0196	72.2	0.00187
145	0.003 18	1.0687	61.8	0.00298
155	0.00355	1.1347	74.9	0.00293
208	0.00550	1.74 17	73.7	0.00315
253	0.00874	2.0080	65.9	0.00335
278	0.00723	2.1375	85.9	0.00338
358	0.01389	2.6826	71.6	0.00517
385	0.01578	2.8341	69.0	0.00556
450	0.03172	2.7860	69.3	0.01138

Nas figuras 5.12 e 5.13, os dados da tabela 5.09 são resumidamente apresentados em forma de ajuste de curva. Na figura 5.12 o coeficiente K_{LR} apresenta um ajuste exponencial em relação rotação do impulsor (rpm). O comportamento é idéntico ao apresentado pelo coeficiente K_2 na figura 5.02 (pag. 63), isto porque, o coeficiente K_{LR} é determinado a partir do valor de K_2 , através do valor constante da relação entre o volume líquido e a área de troca gasosa (altura do líquido).

A figura 5.13 mostra o comportamento do coeficiente de transferência de massa K_{LT} em relação a rotação do impulsor (rpm) de cada um dos ensaios. O comportamento da função pode ser dividido em duas faixas: na primeira faixa (60 a 155 rpm) o comportamento da função é logarítmica. Na segunda faixa (208 a 450 rpm) o comportamento da função é exponencial. Comparando-se as figuras 5.12 e 5.13, o comportamento das duas funções são semelhantes apenas para a segunda faixa (208 a 450 rpm).

76

A princípio se torna difícil fazer uma análise do comportamento do coeficiente K_L, para estabelecer quais das situações (com área em repouso ou em turbulência) melhor poderão correlacionar-se com os demais parâmetros turbulentos. No sentido de se obter uma correlação matemática estável, o coeficiente K_{LR} é o que melhores condições tem, em função de estar representado por uma função exponencial. Por um outro ângulo, é aceitável que coeficiente K_{LT} não apresente um ajuste satisfatório, em função da quebra da superfície.

5.6 - RELAÇÃO ENTRE O COEFICIENTE K_{I.} E A MACRO-ESCALA DE TURBULENCIA.

Analisando o parâmetro macro-escala de turbulência (Lm), percebe-se que a mesma diminui continuamente com o aumento da agitação (turbulência). Este fenômeno pode ser constatado através da figura 5.09, que se encontra no item 5.3 (pag. 71).

O coeficiente de transferência de massa $K_L (K_{LR} e K_{LT})$ apresenta característica oposta à macro-escala de turbulência (Lm), aumentando continuamente com o aumento da agitação (turbulência). No item 3.1.3., tratou-se o coeficiente de transferência de massa K_L como parte de um coeficiente global de transferência de massa, ou seja, o parâmetro K_a .

Os inversos dos coeficientes de transferência de massa k_L (coeficiente de transferência de massa da fase líquida) e k_d (coeficiente de transferência de massa da fase gasosa), podem ser considerados como fatores de resistência à transferência de massa.

Da equação (3.08) temos os fatores de resistência:

$$\frac{1}{K_{G}} = \frac{1}{k_{G}} + \frac{m}{k_{L}}$$
(3.08)

Onde, m é a inclinação da reta da curva de equilíbrio líquido-gasoso.

Da equação (3.08) temos a resistência global é dada pela seguinte equação:

Ro = ro + rL

78

(5.05)

Onde:

- Ro = Coeficiente global de resistência à transferência de massa.
- ro = Coeficiente de resistência à transferência de massa da fase gasosa.
- rL = Coeficiente de resistência à transferência de massa da fase líquida.

Onde temos:

$$\mathbf{r}\mathbf{L} = \frac{\mathbf{m}}{\mathbf{k}_{\mathbf{L}}}$$
(5.06)

Considerando desprezível a resistência à transferência de massa na fase gasosa, e a inclinação da reta da curva de equilíbrio líquido-gasosa igual 1, temos a seguinte expressão:

$$R\sigma = \frac{1}{K_{L}}$$
(5.07)

Através da figura 5.14, podemos observar o comportamento do coeficiente global de resistência Ro em função da rotação do impulsor (rpm) de cada um dos ensaios realizados.

O ajuste da curva da função do coeficiente global de resistência (Ro) versus a rotação do impulsor (rpm) é representada pela seguinte hiperbóle:

$$R\sigma = 590666 (rpm)^{-1,532}$$
 (5.08)
Coeficiente de ajuste = 0,972

A equação (5.08) tem as mesmas característica da equação (5.03)(pag.72) como pode ser constatado pela expressão abaixo.

$$Lm = 5,830 (rpm)^{-1,164}$$
(5.03)

Através da figura 5.15, compara-se o comportamento das duas funções: a macroescala de turbulência (Lm) e o coeficiente de resistência global (Rg) em função da rotação do impulsor (rpm) de cada um dos ensaios.

Pela figura 5.15, percebe-se nitidamente uma forte correlação entre a macroescala de turbulência (Lm) e o coeficiente de resistência global (Ro). A figura 5.16, determina esta forte correlação, relacionando entre si estes dois parâmetros.

Pelo ajuste logarítmico aos dados da figura 5.16, foi possível obter uma relação direta entre o coeficiente de transferência de massa K_{LR} e a macroescala de turbulência (Lm), como pode ser constatado pela equação abaixo:

$$K_{LR} = (340, 12 \text{ Ln (Lm)} + 1764, 85)^{-1}$$
 (5.10)
Coeficiente de ajuste = 0,963

Todos os ajustes de curva realizados neste capítulo, são válidos apenas para o sistema hidrodinâmico do presente trabalho e na faixa de 60 a 450 rpm. Qualquer tentativa de extrapolação das funções ajustadas em relação à faixa citada, deve ser vista com certa reserva, para evitar-se erros grosseiros de estimativa, especialmente com relação as figuras 5.14, 5.15 e 5.16.

A equação (5.10) é muito importante, por ser a relação que se procurava como um dos principais objetivos deste trabalho. A equação (5.10) relaciona o coeficiente de transferência de massa K_L obtido analiticamente, com um parâmentro turbulento (macro-escala de turbulência (Lm)), que foi obtido apenas através de dados coletados pelo sensor foto-receptor (λ)(sonda óptica).

Analisando o parâmetro macroescala de turbulência (Lm) através do seu comportamento na figura 5.16, é possível estabelecer um significado físico para este parâmetro no contexto deste trabalho. A macroescala de turbulência (Lm) representa um coeficiente de resistência global à transferência de massa entre ar-água, sendo função direta da turbulência (agitação).
CAPÍTULO IV

CONCLUSÕES.

RECOMENDAÇÕES

Ε

REFERÊNCIAS BIBLIOGRÁFICAS

6.0 - CONCLUSOES E RECOMENDAÇÕES:

As conclusões finais deste trabalho se basearam na análise dos resultados obtidos, em função das metas estabelecidas nos objetivos deste estudo.

6.1 - CONCLUSOES - EM RELAÇÃO AOS OBJETIVOS:

6.1.1 - Reproduzir o experimento realizado por Roma [28](1988) em tanque cilíndro com impulsor de pás rotativas.

Os sinais reproduzidos apresentaram características similares aos obtidos por Roma [28](1988), como são mostrados nas figuras 5.04 e 5.05, apenas ressaltando, que os equipamentos (microcomputador (16 bits), placa A/D de 12 bits, amplificadores, programa de coleta de dados e a sonda óptica) não eram os mesmos usados por Roma op. cit. 6.1.2 - Verificar a reprodutibilidade dos dados e dos resultados dos parâmetros de turbulência, que foram obtidos pelo sensor foto-receptor (sonda óptica), em um mesmo ensaio.

Em cada ensaio, foram processadas diversas coletas de dados de turbulência superficial através da sonda óptica, a fregüência de coleta era variável, conforme metodologia descrita no item 4.1.1.7.2..

No trabalho realizado por Roma [28](1988), foi efetuada apenas uma coleta de dados de turbulência superficial para cada ensaio, impossibilitando assim, a análise da reprodutibilidade dos dados e dos resultados em um mesmo ensaio.

No apéndice B, encontram-se todas as tabelas de dados e resultados dos parâmetros de turbulência superficial (valor Rms e macroescala de turbulência), juntamente com os parâmetros estatísticos de cada coleta.

Os resultados obtidos como um todo, demonstram a sensibilidade da sonda óptica; dentro dos limites aceitáveis da estatística, os parâmetros não apresentaram discrepância. Os parâmetros em todos os ensaios se mostraram sensíveis à variação da freqüência do impulsor rotativo, como pode ser constatado através das figuras 5.06 (Rms x rpm) e 5.09 (Macroescala x rpm), onde a cada incremento no impulsor rotativo (rpm) os parâmetros responderam às perturbações.

Desta forma, é aceitável concluirmos que os dados obtidos através da sonda óptica, apresentam reprodutibilidade com relação aos dados e resultados obtidos em um mesmo ensaio.

6.1.3 - Avaliar os parâmetros de turbulência superficial, em relação a existência de correlação consistente com o coeficiente de transferência de massa K.

Foram levantas diversas possibilidades de correlação, entre os parâmetros turbulentos e o coeficiente K. Foi

encontrada apenas uma correlação significativa, na qual o coeficiente de transferência de massa K_L relaciona-se com a macroescala de turbulência (Lm), pelo conceito de resistência à transferência de massa global (Ro), e é representada pela equação (5.10), com um coeficiente de correlação de 0,97.

A conclusão deste tópico, é que a correlação representada pela equação (5.10), justifica-se como objetivo principal deste trabalho. Através desta equação (5.10) é possível a determinação do coeficiente de transferência de massa K_L , para a faixa de rotação do impulsor rotativo de 60 a 450 rotações por minuto, no sistema hidrodinâmico deste trabalho, utilizando-se apenas um parâmetro turbulento (a macroescala de turbulência (Lm)).

> 6.1.4 - Verificar a existência de alguma correlação entre os dados obtidos neste trabalho, com os obtidos por Roma [28](1988).

Através da análise dos dados da tabela 5.05, é possível verificar que os parâmetros turbulentos não apresentam qualquer correlação, tanto em ordem de grandeza, quanto com relação ao comportamento das funções.

A inexistência de qualquer tipo de correlação entre os dados dos dois trabalhos, a não ser de ter dados de característica similares (dados oscilantes em torno de uma média) é aceitável. Em função da sonda óptica ter ajustes de sensibilidade (amplificação e filtragem) de forma subjetiva (conforme metodologia descrita no item 4.1.1.6.3.) em que o pesquisador pode interferir de forma significativa no ajuste dos equipamentos.

Outros fatores que podem ter interferido para inexisténcia de correlação entre os dois trabalhos podem ser os seguintes: características da água (cor e turbidez), ajuste da sonda óptica (conforme mencionado acima), posição da sonda abaixo do nível de água e a estrutura turbulenta (função do sistema hidrodinâmico); estes fatores com certeza nos dois trabalhos em questão são distintos, o que inviabiliza qualquer tipo de comparação.

6.2 - CONCLUSOES GLOBAIS:

Durante o desenvolvimento deste trabalho surgiram alguns fatos que merecem destaque, e que passaremos a comentar.

Nos diversos parâmetros abordados (coeficiente de reaeração (K_2) , valor Rms, macroescala de turbulência (Lm) e a relação de área turbulenta/repouso), em relação a rotação do impulsor (rpm), percebeu-se que para uma determinada faixa de rotação, as características dos parâmetros se alteravam. Os parâmetros e as faixas são as seguintes:

1 - Coeficiente de reaeração K₂ - (figura 5.03).
 Na faixa de rotação do impulsor de 155 a 208 rpm, considerando a análise do coeficiente K₂ em relação a energia dissipada, observa-se uma mudança brusca no comportamento da função de reoxigenação.

2 - Valor R.m.s - (figura 5.06)

Na faixa de rotação do impulsor de 155 a 208 rpm, considerando um ajuste linear, observa-se também uma mudança brusca no comportamento da função, em relação a ordem de grandeza, mas o comportamento da função praticamente não se altera.

- 3 Macroescala de turbulência (figura 5.09).
 Na faixa de rotação do impulsor de 155 a 208 rpm, considerando novamente um ajuste linear hipotético, observa-se a mudança no comportamento da função, em relação ao grau de inclinação da reta de ajuste.
- 4 Relação da área turbulenta/repouso (figura 5.11).
 Novamente na faixa de rotação do impulsor de 155 à 208 rpm, observa uma mudança brusca no comportamento da função em questão.

Das quatro situações acima citadas, percebe-se que três envolvem os parâmetros turbulentos (Rms, macroescala de turbulência e a relação da área turbulenta/repouso) e uma envolve um parâmetro de troca de massa (líquido-gasoso). Nas quatro situações acima referidas, a faixa em que há mudança brusca no comportamento da função é sempre a mesma (155 a 208 rpm).

Podemos atribuir as mudanças no comportamento das funções, ao ponto onde ocorre a quebra da superfície líquida pela intensidade de turbulência, causada pelo impulsor rotativo.

Com relação a correlação obtida na equação (5.10), entre o coeficiente de transferência de massa (K_L) e a macroescala de turbulência (Lm), é importante o seguinte comentario: a macroescala de turbulência (Lm) é obtida sómente a partir de dados da sonda óptica (sinais elétricos), e para a determinação de cada ponto da função foram necessárias aproximadamente 30.000.000 (trinta milhões) de operações matemáticas e para a relação total este número chega na ordem de 350.000.000 (trezentos e cinqüenta milhões) de operações matemáticas. Estes dados são importantes em função de se analisar a complexibilidade do parâmetro (Lm), e a importância da correlação com o coeficiente de transferência de massa (K_L).

A macro-escala de turbulência (Lm), é um parâmetro que representa um intervalo de tempo em que existe a correlação entre dois pontos distintos. O comportamento deste parâmetro é o de diminuir com o aumento da turbulência, tal comportamento é semelhante ao inverso do coeficiente de transferência de massa (K_L), definido como coeficiente de resistência à transferência de massa (Ro). Estes dois parâmetros apresentam o mesmo comportamento em relação à turbulência, como pode se constatar pela figura 5.16.

Assim, poderíamos por analogia, concluir que a macro-escala de turbulência (Lm), é um coeficiente com significado físico de resistência à transferência de massa.

6.3 - RECOMENDAÇÕES:

Os resultados obtidos foram promissores em relação a possibilidade de um aperfeiçoamento do método óptico para a determinação do coeficiente de transferência de massa (K_L). Assim, é preciso que as pesquisas na área de sensores foto-receptores (sonda óptica) tenha continuidade, e para isto recomendariamos alguns caminhos para minimizar as dificuldades que possam advir.

- 1 Desenvolvimento de modelo matemático, a partir das considerações teóricas propostas por Roma [28](1988)
- 2 Verificar a existência de alguma relação entre os parâmetros turbulentos utilizados neste trabalho, com o real aumento da área superficial em função da turbulência.
- 3 Analisar o comportamento dos parâmetros turbulentos obtidos pela sonda óptica, em relação à composição química da água (cor, turbidez, alcalinidade e pH).

7.0 - REFERENCIAS BIBLIOGRAFICAS

- [01]
- ASCE (1984) A Standard Methods for measurement of oxigen transfer in clean water" Oxygen Transfer Standard Committee, ASCE, New York.
- [02] BAILLOD, R.C.; PAULSON, W. L.; McKEOWN, J. J. &CAMPBELL Jr. H. J. - "Accuracy and Precision of Plant Scale and Shop Clean Water Oxygen Transfer Tests". Journal of Water Poll. Control Fed., v.58, n^Q 4, p. 290-299, Apr., 1986.
- [03] BARBOSA Jr., A. R., "Desenvolvimento de Metodologia para Determinação do Coeficiente de Reaeração dos Escoamentos Naturais da água com o Emprego de Traçador Gasoso". São Carlos: SHS/ EESC/ USP, 187p Dissertação (mestrado em Hidráulica e Saneamento). Escola de Engenharia de São Carlos, USP, 1989.
- [04] BENDAL, J. S. e PIERSOL, A. G., "Engineering Applications of Correlation and Spectral Analysis", 1^a ed., John Wiley e Sons Inc., New York, 302p., (1980).

- [05] BENNETT, J. P., RATHBUN, R. E., "Reaeration in OpenChannel Flow". Geological Survey Professional Paper, Washington U.S. Government Printing Office, 1972.(Paper n^Q 737).
- [07] BROWN, L. C., BAILLOD, C. R., "Modeling and Interpreting Oxygen Transfer Data", Journal of the Environmental Engineering Division, ASCE, v.108 n. 4, 607-628, Aug., 1982.
 - [08] COSTA, O.S., "Análise do Efeito da Umidade sobre o Coeficiente de Reoxigenação". São Carlos: SHS/ EESC/ USP, 86p Dissertação (mestrado em Hidráulica e Saneamento). Escola de Engenharia de São Carlos, USP, 1992.
 - [09] COULSON, J. M., & RICHARDSON J. F., Chemical Engineering, I vol. - Fundação Calouste Gulbenkian, 1974.
- [10] CHURCHILL, M. A., ELMORE, H. L., BUCKINGHAM, R. A. "The Prediction of Stream Reaeration Rates". Journal of the Sanitary Engineering Division, ASCE, v. 88, n^Q.4, 1-46, July, 1962.
- [11] DANCKWERTS, P. V. "Significance of Liquid-Filme Coefficients in Gas Absorption", Indl. and Eng. Chem., v. 43, n^Q 06, 1460-1467p, june 1951.
- [12] ELMORE, H. L., WEST, W. F., "Effect of Water Tempeture on Stream Reaeration". Journal of the Sanitary Engineering Divis on, ASCE, v.87, 59-71, 1961.
- [13] FORTESCUE, G. E. & PEARSON, J. R. A. "On Gas Absorption into a Turbulent Liquid", Chem. Eng. Sc. L Pergamon Press v. 22, 1163-1176p, 1967.

- [14] GAMESON, A. L. H., TRUESDALE, G. A., and VARLEY, R. A. "Some Factors Affecting the Aeration of Flowing Waters". The Water and Sanitary Enginner 52 - 59p, 1959.
- [15] HANRATTY, T. J., "Effect of Gas Flow on Physical Absorption" In: Air-Water Mass Transfer: Second International Symposium on Gas Transfer at Water Surfaces, ASCE, New York, 10-33p. 1990.
- [16] HIGBIE, R., (1935) " On the adsorption of a pure gas into a still liquid during short period exposure" -"Trans. American Inst. of Chemical Enginners", Vol. 31: 365-390p.
- [17] Instrucciones de Servicio Aparato de Oxigenio para Laboratorios, AM221. RDA - 7305 Waldheim, PSF 73: Forschungsinstitut "Kurt Schwabe" Meinsberg, s.d., 34 p.
- [18] KARMAN. T. V. and HOWARTH, L. "On the Statistical Theory of Isotropic Turbulence", Proc. Royal Soc. London v. 164, 192-215p. 1938.
- [19] KISHINEVSKY, M. Kh. "Two Approaches to the Theoretical Analisys of Absorption Processes" . Journal Appl. Chemmistry U.S.S.R. v.28 881-886p., 1955.
- [20] KRAMER, E. R., "Predicting Reaeration Coefficients for Polluted Estuary". Journal Env. Div. Proc., ASCE, V.190, n.1, 77-92p., Feb. 1974.
- [21] KRENKEL, A. M., ORLOB,G.T. "Turbulent Diffusion and the Reaeration Coefficient". Journal of the Sanitary Engineering Division, ASCE, New York, v. 88, n. 2, 53-83, Mar., 1962.
- [22] LEWIS, W. and WHITMAN, W. G. "Principles of Gas Absorption", Indl. and Eng. Chem. v. 16 n^O 12 1215-1220p., 1924.

- [23] LUMLEY J. L., e TENNEKES, H., (1977) "A First Course in Turbulence". 4^a ed. Massachusetts, Halliday Lithograph Corporation. 300p.
- [24] MAXWEEL, W. H. C., HOLLEY, E. R. "A Mothed for Deaerating Water. Journal of Hydraulics Division, ASCE, v.95 n^Q.01, 577-580p., 1969.
- [25] MELLO, H. A., e INTRATOR, E., (1984) "Dispositivos Semicondutores". 2^ª ed. Rio de Janeiro, Livros Técnicos e Científicos Editora S/A., 225p.
- [26] METZGER I., (1968) "Effects of Temperature on Stream Aeration" J. Sanit. Engerg Div. ASCE, (94)(SA6)1153-1159p.
- [27] RAMIREZ, M. R., "Introdução à Teoria Ergódica " 12^Q Cóloquio Brasileiro de Matemática - Poços de Caldas -Minas Gerais, 16 a 28 de julho de 1979 - publicado pelo Instituto de Matemática e Ciências Aplicada do C.N.Pq.
- [28] ROMA, W. N., "Medida dos Parâmetros de Turbulência Superficial e sua Interrelação com o Coeficiente de Reaeração". São Carlos: SHS/ EESC/ USP, 1988. p. 62 Tese (Livre Docência). E. E.S.C. USP, 1988.
- [29] SCHULZ, H.E., GIORGETTI, M. F., "Um Modelo de Transferência de Oxigênio na Interface Ar-Água a Partir da Teoria Estatística de Turbulência". In: CONGRESSO LATINOAMERICANO DE TRANSFERENCIA DE CALOR E MATERIA 2., Anais. São Paulo, p.436-451, 1986.
- [30] SCHULZ, H. E. "Investigação do Mecanismo de Reoxigenação da água em Escoamento e sua Correlação com o Nível de Turbulência junto à Superfície". São Carlos: SHS/EESC /USP, p. 865, Tese (Doutorado em Hidráulica e Saneamento). Escola de Engenharia de São Carlos, USP, 1990

- [31] STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER. American Public Health association. 13^a ed. USA, 609p., 1971.
- [32] TAYLOR, G. I., " Diffusion by Continuonus Movements", Proceedings of the London Mathematical Society, series 2, 20, 196.
- [33] TOOR, H. L. and MARCHELLO, J.M. "Film Penetration Model for Mass and Heat Transfer", A. I. Ch. E. Journal, v.04, n⁰ 01, 97-101p., march, 1958.
- [34] WHITMAN, W. G. "The Two-Film Theory of Gas Absorption", Chem. and Metall. Eng. v. 23, n^Q. 04, 146-148p., july 1923.

ANEXO - A

PROGRAMAS EM LINGUAGEM PASCAL

Apéndice de programas:

Os programas computacionais utilizados no desenvolvimento do presente trabalho, utilizados para dar suporte aos ensaios realizados, foram desenvolvidos pelo autor em conjunto com os engenheiros Erícson Dias Mello e Luciano Cleto, que desenvolviam trabalhos na mesma área e que se utilizaram dos mesmos em seus trabalhos.

A determinação do coeficiente de reoxigenação por regressão linear aplicada a curva de oxigênio versus tempo, como os gráficos apresentados no item 5.0 (capitulo de resultados) foram calculados com o auxílio do software planilha eletrônica Quatro-PRO licenciado para uso do departamento de Hidráulica e Samento da E.E.S.C. - USP.

A.1 - PROGRAMA GERENCIADOR DOS ENSAIOS:

O programa faz aquisição de dados de temperatura, oxigênio dissolvido e dados de turbulência, através de subrotina que se utiliza de uma placa conversora A/D de 12 bits, tendo o sistema vários estágios de manipulação de variáveis, antes e depois da placa A/D.

Os dados de temperatura e oxigênio dissolvido são coletados em intervalos que podem variar de 1 a 10 minutos, 05 dados de turbulência obtidos pela sonda óptica variam de 10 minutos a uma hora. O número de pontos coletados por medida podem variar de 1 a 8196 pontos, com velocidades de aquisição de 1 a 300 pontos por segundo, (estas faixas de operação, são atribuidas dada as condições físicas do sistema de reoxigenação e ao equipamento de suporte disponível) o tempo de operação do programa se extende até a água atingir o ponto de saturação de oxigênio dissolvido na temperatura em que se encontra o sistema. Na página seguinte apresentamos o fluxograma do programa.

PROGRAMA DE GERENCIAMENTO DAS COLETAS DE DADOS

{O PROGRAMA GERENCIA TODO O ENSAIO - DETERMINA O MOMENTO DA COLETA DE DADOS DE OXIGÊNIO DISSOLVIDO, TEMPERATURA E DADOS DA SONDA ÓTICA}

PROGRAM OBTEMTES;

```
( O PROGRAMA COLETA DADOS DE OXIG. DISSOLV., TEMP. E TURBULENCIA. >
( A TEMPERATURA ATRAVES DE UM MEDIDOR FAC 204 ELETRONICO >
( OS DADOS DE TURBULENCIA SÃO ATRAVES DE SONDA OTICA >
($N+,E+) { ACESSA O CO-PROCESSADOR }
USES
   CRT, DOS;
        (DEFINE PONTOS DE REFERENCIA PARA DESVIOS CONDICINADOS)
LABEL
   INICIO.
   FINAL,
   ESPERA .
   OXIGENIO.
   TURBULENCIA;
TYPE
           (DEFINE TAMANHO DOS VETORES UTILIZADOS
  VET1 = ARRAY[1.. 10000] OF REAL;
  VET2 = ARRAYIO.. 2001 OF REAL;
VAR
           (DEFINE TIPO DE VARIAVEIS)
  r,
  х,
  CNT ,
  NA, NO, NT,
  NOH,
  NMED.
  AUXN.
  AUXNOT,
  AUXNTUR,
  CONTAUX
                                     : INTEGER :
  H, M, S, CS
                                     : WORD;
  MEDIA,
  ERRO,
  TPREG,
  FO,
  F1,
  FT.
  TEMPO.
  TEMPO1 .
  TEMPO2,
  TEMPO3
                                     :REAL;
  ARQUIDZ,
  ARQUITEM,
  ARQUITUR,
  PONTO,
  NOMEARQ,
  NOMETEMP
                                     :STRING:
  V
                                     :VET1;
  OD
                                     :VET2:
```

OPCAO DADOS :CHAR; :Text;

(INICIO DO PROGRAMA PRINCIPAL>

BEGIN INICIO:; (PONTO DE REFERENCIA P/ DESVIO CONDICIONADO> CLRSCR : WRITE (** / O PROGR. COLETA DADOS OXIG. DISS., TEMP. E TURBULENCIA. ' >; WRITELN: WRITE ('ENTRADA1: ARQUIVO DE ARMAZ. DE DADOS DE OXIGENIO: '): READLN (ARQUIO2): WRITELN: WRITE ('ENTRADA2: ARQUIVO DE ARMAZ. DE DADOS DE TURBULENCIA: '>; READLN (ARQUITUR); WRITELN: WRITE ('ENTRADA3: ARQUIVO DE ARMAZ. DE DADOS DE TEMPERATURA; '); READLN (ARQUITEM); WRITELN: NOMEARQ: =ARQUIO2; NOMETEMP: =ARQUITEM; FO:=1,794; (FATOR DE CONVERSAO ANGULAR PARA O OXIGENIO.) F1:=0,476; (FATOR DE CONVERSAD CONSTANTE) FT:=10; (FATOR DE CONVERSAO PARA TEMPERATURA. > AUXNOT:=20; (NUMERO PONTOS COLETADOS DE OXIG. DISSOLV. E TEMPER.) AUXNTUR:=4096; (NUMERO DE MEDIDAS DE TURBULENCIA) AUXN: =1: NMED:=0: NO:=1; NT : = 1 ; NOH:=6; (NUMERO DE MEDIDAS DE OXIG. DISS. E TEMP A CADA UMA HORA) CONTAUX := 0; TEMPO:=600; (INTERVALO DE TEMPO P/ MED. OXIG. DISS. (em segundos)) TEMPO1:=3600;(INTERVALO DE TEMPO P/ MED. TURBULENCIA (segundos).) (PARA ALGUNS ENSAIDS EM QUE O TEMPO DE REOXIGANACAO E' PEQUENO 05 VALORES DOS PARAMETROS "TEMPO" E "TEMPO1" FORAM ALTERADOS DE FORMA TERMOS UM NUMERO DE DADOS A ACEITAVEL. SETTIME(0,0,0,0); (INICIO DO PROCESSO DE REOXIGENACAO > OXIGENIO: ; < C PONTO DE REFERENCIA P/ DESVIO CONDICIONADO> FOR I:=1 TO NOH DO (REALIZA UM NUMERO N DE MEDIDAS POR HORA > BEGIN ESPERA:; (PONTO DE REFER. DE LOOP PARA O MOMENTO DA COLETA > GETTIME (H, M, S, CS); TEMP02:=3600*H+60*M+S+0.01*CS; IF TEMPO2 >= (TEMPO*NO) THEN (VERIF.SE E' O MOMENTO DA COL.) BEGIN CLRSCR ; WRITELN('OBS1: DADOS DE OX. DISS. E TEMP. COLETADOS. '); WRITELN('1)NUMERO DA MEDIDA: ', NO:2); MEDIDA(\$230,1,20,V,TPREG,AUXNOT); (EXECUTA AS MEDIDAS DE OXIGENIO> WRITE('2)TEMPO DA COLETA(segundos) :'); WRITELN(TPREG: 10: 3);

```
MEDIA:=MEDIAF(V,AUXNOT)*F0+F1;(TIRA MEDIA E CONVERTE PARA
                                         VALORES REPRESENTATIVOS. >
        V[AUXN]:=MEDIA;
{ ARMAZENA EM ARQUIVO DE OXIGENIO DISSOLVIDO, >
        DISCOO(DADOS, ARQUIO2, NOMEARQ, V, TPREG);
        NMED:=NMED+1;
        OD[NMED]:=MEDIA;
        WRITE('3)MEDIA DOS DADOS DE OXIGENIO(mg/l): ');
        WRITELN(MEDIA: 6: 3);
EXECUTA MEDIDAS DE TEMPERATURA
        MEDIDA($230,3,20,V,TPREG,AUXNOT);
( TIRA A MEDIA E CONVERTE PARA VALORES REPRESENTATIVOS. )
        MEDIA:=MEDIAF(V,AUXNOT)*FT;
        V[AUXN]:=MEDIA;
(ARMAZENA EM ARQUIVO DE TEMPERATURA)
       DISCOO(DADOS, ARQUITEM, NOMETEMP, V, TPRED);
        WRITE('4)MEDIA DOS DADOS DE TEMPERATURA(C): ');
        WRITELN(MEDIA:10:4);
        NO: = NO+1;
        DELAY(10000);
    END
                            ELSE
    BEGIN
        ( AGUARDANDO INSTANTE DA COLETA DE DADOS. )
        CLRSCR :
        WRITELN;
        WRITELN( '*/OBS: ESP. COLETA OX. DISS. E TEMP. ');
        DELAY(5000);
        GOTO ESPERA
    END
END:
GETTIME(H,M,S,CS);
TURBULENCIA:; < PONTO DE REFERENCIA. >
TEMP03:=3600*H+60*M+S+0.01*CS;
( VERIFICA O INSTANTE DA COLETA DA TURBULENCIA.)
IF TEMPO3 >= (TEMPO1*NT) THEN
BEGIN
    CLRSCR:
    WRITELN('OBS2:DADOS DE TURBULENCIA COLETADOS.');
    MEDIDA($230,2,5,V,TPREG,AUXNTUR); ( DADOS SENDO COLETADOS
    "TURBULENCIA">
    STR(NT, PONTO); (CONVERTE VALOR NUMERICO EM STRING. >
    INSERT (PONTO, ARQUITUR, 7); (INSERE UMA STRING EM OUTRA EM PONTO
                                FIXO. >
    DISCOT (DADOS, ARQUITUR, NOMEARQ, V, TPREG, AUXNTUR); (ARQUIVA DADOS
                                                    DE TURBULENCIA>
    IF (NT(10) THEN (REFORMULACAO DO NOME DO ARQUIVO.)
                   DELETE(ARQUITUR,7,1)
               ELSE
                   DELETE (ARQUITUR, 7, 2);
   WRITELN('1)NUMERO DA MEDIDA :', NT:2);
   WRITE('2)TEMPO DA COLETA(segundos): ');
   WRITELN(TPREG:10:3);
```

DELAY(3000);


```
NT : = NT + 1 ;
END
                        ELSE
                       (ENDERECAMENTO AO PONTO DE REFERENCIA DA
   GOTO TURBULENCIA;
    TURBULENCIA. >
IF NO > (NOH+1) THEN
                      (BLOCO DE CONDIC. DE PARADA DO PROGRAMA.)
                             (CONDIC(O P/ FINALIZAR PROGRAMA)
BEGIN
ERRO: = OD [NMED] - OD [NMED-NOH];
IF ERRO (= 0.1 THEN
                     CONTAUX:=CONTAUX+1;
                     WRITE('VALOR DE CONTAUX.');
                     WRITELN(CONTAUX:2);
                     DELAY ( 3000 ) ;
IF CONTAUX >= 3 THEN
             GOTO FINAL ( PROCESSO DE REOXIGENACAO SATURADO. >
          ELSE
             GOTO OXIGENIO (PROCESSO DE REOXIGENACAO NAO SATURADO)
              END
          ELSE
BEGIN
    CONTAUX: =0;
    GOTO OXIGENIO ( RETORNA PARA MEDIDAS DE OXIGENIO, PROCESSO DE
    REOXIGENACAO NAO SATURADO.>
END;
( TERMINO DO BLOCO DE CONDICIONAMENTO DE PARADA DO PROGRAMA. >
FINAL:;
CLRSCR:
WRITELN( //*FINAL DO PROGRAMA. / );
WRITE ('OBS: NOVA MEDIDA: "S" E "RET" OU FINALIZAR "N" E "RET": '>;
READLN(OPCAO);
IF OPCAO='S' THEN
                GOTO INICIO;
END.
(FINAL DO PROGRAMA PRINCIPAL)
```

A.2.- PROGRAMA DE CALIBRAÇÃO DOS DADOS COLETADOS:

O programa registra a amplificação do sinal emitido pelo instrumento de medida, e a calibração consiste no ajuste dos valores obtidos, com amplitude da faixa de tensão e a estabilidade dos dados coletados, o programa apenas mostra os dados coletados.

O programa coleta dados em número de pontos e velocidades de aquisição variável, e os apresentam na tela do microcomputador na forma matricial em função do valor medido no instrumento, ajusta-se o amplificador (seguidor de tensão), até se ter o ajuste visual dos dados obtidos com a turbulência gerada na rotação do ensaio.

Na pagina seguinte apresentamos o fluxograma do programa calibrar.

PROGRAMA CALIBRAR - (CANAL DE AQUISICAO)

(PROGRAMA FAZ AQUISICOES DE DADOS VIA COMPUTADOR.) (APRESENTA OS DADOS EM TENSÃO (VOLTS) > (COM A VISUALIZACAO DADOS AJUSTA-SE O AMPLIFICADOR PROCEDENDO A -CALIBRACAO DO EQUIPMENTO> PROGRAM CALIBRAR; (DIRETIVA PARA ACIONAR CO-PROCESSADOR NUMERICO) (\$N+.E+> (SUB-ROTINAS - PRONTAS:> USES CRT. DOS: (PONTO DE REFERENCIA PARA DESVIO CONDICIONADO) LABEL INICIO: (DEFINICAO TAMANHO DO VETOR> TYPE VET1 = ARRAY [1.. 5000] OF REAL; VET2 = ARRAY [1...1250,1...4] OF REAL; VAR (DEFINICAD DO TIPO DE VARIAVEL) E, C, N, A, B, I, J, K, N1, I1 : INTEGER: : VET1; v : VET2; R OPCAO : CHAR: MEDIA : REAL; x : WORD; BEGIN (INICIO DO PROGRAMA) INICIO: : CLRSCR; WRITELN('PROGRAMA AQUISICAO DE DADOS: '>; (PROCEDIMENTO PARA AQUISICAO DE MEDIDAS) C:=9: (NYMERO DO CANAL NA PLACA A A/D A SER LIDO) (NO EXEMPLO CANAL DE TURBULENCIA) X:=20; (INTERVALO ENTRE AS MEDIDAS> (NYMERO DE MEDIDAS A SER COLETADO) N:=20: E:=\$230: (ENDERECAMENTO DO SLOT) PORT[E]:=C; (DEFINIC(O DO CANAL NO SLOT)((SUB-ROTINA DE LEITURA) MEDIDA(E,X,C,N,V); MEDIA:=0;(MEDIA DOS DADOS) FOR I:=1 TO N DO MEDIA: = MEDIA + V(I); MEDIA:=MEDIA/N;1 (SUB-ROTINA APRESENTACAO DE DADOS NA TELA) MATRIZTE(N,V); MATRIZIM(N,V); (SUB-ROTINA DE IMPRESSAD DOS DADOS) WRITELN(1 **** FINAL DA AQUISICAO DE DADOS ********/; WRITELN('/*MEDIA DAS MEDIDAS OBTIDAS: */'); WRITELN (' MEDIA = ', MEDIA:7:4); WRITE ('OBS: NOVA OPCAO "S" E "RET" OU FINALIZAR "N" E "RET": '); READLN(OPCAO); IF OPCAD = 'S' THEN GOTO INICIO;

END.

A.3 - PROGRAMA PARA DETERMINAÇÃO DA FREQUÊNCIA DE AMOSTRAGEM DE DADOS:

O programa procede a leitura de dados durante um intervalo de tempo na velocidade máxima do equipamento, em seguida plota dos dados coletados contra o tempo, através deste recurso é com o auxilio de um gerador de função e um osciloscopio é possível determinar a freqüência máxima de amostragem do equipamento.

A freqüência máxima é obtida quando o gráfico plotado apresentar apenas um ponto entre dois períodos, na pagina seguinte encontra-se o fluxograma do programa de determinação da freqüência de amostragem.

(ESTE PROGRAMA TEM OBJETIVO DE DETERMINAR A MAXIMA FREQUENCIA DE COLETA DE DADOS DO SISTEMA - (SONDA - SEGUIDOR - PLACA A/D) > PROGRAM TESTFRE; (DIRETIVA PARA ACESSAR CO-PROCESSADOR NUMERICO) <\$N+,E+> (ACESSA SUB-ROTINA PRONTAS) USES CRT, ORAPH; (PONTO DE REFERENCIA PARA DESVIOS CONDICIONADOS) LABEL INICIO; CDEFINICAO DO TAMANHO DO VETOR> TYPE VET1 = ARRAY[1.. 5000] OF REAL; (DEFINICAO DAS VARIAVEIS) VAR DRIVE, MODO, XINICIO, YINICIO, XCENTRO, YCENTRO, XFINAL, YFINAL, EIXO. E, с. NINT, тм, YFE : INTEGER; XFE REAL; :VET1: v : CHAR; OPCAO (INICIO DO PROGRAMA PRINCIPAL> BEGIN CLRSCR; (PONTO DE REFERENCIA > INICIO:; CLRSCR; WRITELN(**O PROGR. PLOTA UMA FUNCAO GERADA NUMA FREQ. DEFINIDA. '>; WRITELN; (ENDERECAMENTO DE SLOT > E:=\$230: WRITE('ENTRADA1:NUMERO DO CANAL:'); READLN(C): WRITELN: WRITE('ENTRADA2: NUMERO DE MEDIDAS: '>; READLN(TM); WRITELN; (FUNDO DE ESCALA PARA GRAFICO - EIXO Y> YFE:=5; (FUNDO DE ESCALA PARA GRAFICO - EIXO X) XFE:=TM; NINT: = 5; (DEFINIC(O P/ SUB-ROTINA GRAFICA) DRIVE:=1; MODO: = 4 ; CLRSCR;

PROGRAMA PARA DETERMINACAO DA FREQUENCIA DE AMOSTRAGEM

```
INITGRAPH (DRIVE, MODO, '');
MEDIDA(E,C,TM,V);
                           (CHAMA SUB-ROTINA DE LEITURA)
                           (CHAMA SUB-ROTINA ESCALA P/ GRAFICO)
ESCALA(XINICIO, YINICIO,
       XCENTRO, YCENTRO,
       XFINAL, YFINAL,
       ειχο,
       NINT, TM,
       YFE, XFE,
       \mathbf{v};
(CHAMA SUB-ROTINA TITULO F/ GRAFICO)
TITULO(YINICIO, XCENTRO,
       'GRAFICO DA FUNC. DE FREQUENCIA. ');
(CHAMA SUB-ROTINA COORDENADA Y >
COORDY(XINICIO, YFINAL,
       'FUN. FREQ. ');
```

SEQUENCIA; CLOSEGRAPH; WRITE('OBS:NOVA LEITURA "S" E "RET" OU FINALIZAR "N" E "RET" :">; READLN(OPCAO); IF OPCAO = 'S' THEN GOTO INICIO;

END.

(FINAL DO PROGRAMA PRINCIPAL)

A.4.- PROGRAMA DETERMINA O VALOR DO DELAY NECESSÁRIO PARA ESTABELECER UM NÚMERO DE PONTOS POR SEGUNDO DURANTE A AQUISIÇÃO DOS DADOS DE TURBULÊNCIA:

O programa determina o tempo exato de uma coleta de dados com um determinado número de pontos por segundo, assim através do incremento da função delay é possível por tentativas atingir o valor de pontos desejado por segundo.

Na pagina seguinte encontra-se o fluxograma do programa que estabelece uma freqüència de amostragem desejada.

PROGRAMA - DETERMINA O VALOR DO DELAY PARA UM NUMERO DE PONTOS POR SEGUNDO EM UMA COLETA (O PROGRAMA APRESENTA O TEMPO GASTO PARA REALIZAR A COLETA DOS DADOS COM UM DETERMINADO DELAY> PROGRAM RELOGIO; (DIRETIVA DE CO-PROCESSADOR NUMERICO> (\$N+, E+> USES CRT, (SUB-ROTINAS PRONTAS) DOS; (DEFINICAO DE PONTOS DE REFERENCIA) LABEL INICIO: (DEFINICAO DO TAMANHO DO VETOR> TYPE VET1 = ARRAY [1., 5000] OF REAL; VET2 = ARRAY [1..1250,1..4] OF REAL; (DEFINICAD DAS VARIAVEIS) VAR E,C,N,A,B,I,J,K,N1,I1,D : INTEGER; HORA, MIN, SEG, CENTSEG : WORD: VET1: : : VET2; R CHAR; OPCAO MEDIA : REAL: BEGIN INICIO:; CLRSCR; WRITELN('PROGRAMA AQUISICAO DE DADOS: ' >; WRITELN('1)ESCOLHA O NRO DO CANAL DESEJADO: '); WRITE ('OPCOES: CANAIS 1,2,3 OU 4: '); READLN(C): WRITELN('2)ESCOLHA O NUMERO DE MEDIDAS A SEREM FEITAS :'}; WRITE('OPCOES:1..5000 :'); READLN(N): WRITELN('9) ESCOLHA O DELAY DESEJADO : '); READLN(D): (PROCEDIMENTO PARA AQUISICAO DE MEDIDAS) (NUMERO DO SLOT> E:=\$230; (NUMERO DO CANAL) FORT[E]:=C; (INICIALIZA O TEMPO EM ZERO > SETTIME(0,0,0,0); FOR I:=1 TO N DO BEGIN PORT[E+2]:=0; DELAY(D); (INTERVALO DE TEMPO ENTRE AS MEDIDAS) A := PORT[E+2];B := PORT[E+9]: V[1]:=(((A+B/256)/256*10)-5) END: GETTIME (HORA, MIN, SEG, CENTSEG); (TEMPO DAS MEDIDAS) (OBTEM A MEDIA DOS DADOS COLETADOS) MEDIA:=0;

END.

A.5.- PROGRAMA DETERMINA OS COEFICIENTES DE AUTOCORRELAÇÃO, VALOR RMS, INTEGRAL DA FUNÇÃO DE AUTOCORRELAÇÃO E PLOTA O GRAFICO DA FUNÇÃO DE AUTOCORRELAÇÃO.

O programa resgata os dados armazenados em arquivos, que foram coletados durante os ensaios, e calcula os seguintes parâmetros: valor RMS, coeficientes de autocorrelação, integral da função de autocorrelaçãoe plota o gráfico da função de autocorrelação.

O fluxograma o programa que cálcula a função de autocorrelação encontra-se na pagina seguinte.

FLUXOGRAMA COMPUTACIONAL

SUBROTINA - CÁLCULA COEFICIENTE FUNÇÃO AUTOCORRELAÇÃO

PROGRAMA - CALCULA A FUNCAO DE AUTOCORRELACAO E O VALOR RMS (O PROGRAMA CALCULA OS VALORES DE RMS, CALCULA OS VALORES DE DA FUNCAO DE AUTO CORRELACAO E PLOTA O GRAFICO> PROGRAM PARAMTUR; {\$N+,E+> USES CRT, GRAPH; LABEL INICIO; TYPE VET1 = ARRAY[1.. 10000] OF REAL; VET2 = ARRAY(0.. 100) OF REAL; VAR DRIVE, MODO, XINICIO, YINICIO, XCENTRO, YCENTRO, XFINAL, YFINAL, EIXO. NINT. NCOR. CONT, MFC. YFE : INTEGER; MEDIA, VRMS, INTORAL, XFE, TEMPO, XPS :REAL; ARQUIVO, ARQUIVO1 STRING; FC :VET2: VP1 :VET1: OPCAO : CHAR : DADOS :TEXT; (INICIO DO PROGRAMA PRINCIPAL) BEGIN INICIO:; CLRSCR; WRITELN(**/O PROGRAMA PLOTA A FUNCAO DE AUTOCORRELACAO. *>; WRITELN; WRITELN (* / ARMAZENA OS VALORES EM ARQUIVO PROPRIO. /); WRITE('ENTRADA1: ARQUIVO & SER ANALISADO(Ex: TURDAD??. PAS): '); READLN (ARQUIVO); WRITELN; WRITE('ENTRADA2: NUMERO DE CORRELACOES: '); READLN (NCOR); WRITELN; WRITE ('ENTRADA3: ARQUIVO A SER ARMAZENADO OS VALORES DE CORRELACAO. '); READLN (ARQUIVO1);

WRITELN; WRITE ('ENTRADA4: NUMERO DE PONTOS MEDIDOS POR SECUNDO. '); READLN(XPS) : WRITELN: LEITURA (DADOS, ARQUIVO, VP1, CONT, TEMPO); MFC:=1:XFE:=NCOR/XPS; YFE:=MFC; CLRSCR: NINT: =5: DRIVE:=1: MODO: = 4:CLRSCR: WRITELN('*/O PROGRAMA ESTA CALCULANDO A FUNCAO DE AUTOCORRELACAO. :): FUNCAD (MFC, NCOR, CONT, MEDIA, VRMS, VP1, FC); INTGRAL: = INTEGRAL (MFC, NCOR, VRMS, XPS, FC); DISCOC(DADOS, ARQUIVO1, ARQUIVO, FC, NCOR, INTGRAL, VRMS); INITGRAPH(DRIVE, MODO, ''): ESCALA (XINICIO, YINICIO, XCENTRO, YCENTRO, XFINAL, YFINAL, EIXO. NINT, NCOR, YFE,XFE, FC>: TITULO(YINICIO, XCENTRO, 'GRAFICO DA FUNC. DE AUTOCORRELAÇÃO. '); COORDY(XINICIO, YFINAL, 'FUN. AUTCORR. '); COORDX(XFINAL, YFINAL, 'TEMPO (S)'); SEQUENCIA; CLOSEGRAPH; WRITELN('*/ FARAMETROS ENVOLVIDOS. '); WRITELN: WRITELN; WRITELN(** NOME DO ARQUIVO : ', ARQUIVO, ', '): WRITELN: WRITELN(* TEMPO DA MEDIDA (segundos) : ', TEMPO: 10:4, '. '); WRITELN: WRITELN(*AMOSTRA COM ', CONT: 5, ' PONTOS. '); WRITELN; WRITELN(** PARAMETRO1: valor medio medidas(volts): *, MEDIA: 10:8, *. *); WRITELN; WRITELN('*PARAMETRO2: valor das perturb.(vrms) :', VRMS: 10:8, '. '); WRITELN: WRITELN(** PARAMETRO3: escala de turbulencia : ', INTORAL: 10:8, '. '); WRITELN; WRITE ('OBS: NOVA OPCAO "S" E "RET" OU FINALIZAR "N" E "RET": '); READLN(OPCAO); IF OPCAO = 'S' THEN GOTO INICIO; END. (FINAL DO PROGRAMA PRINCIPAL)

ANEXO - B

SUB-ROTINAS UTILIZADAS NOS PROGRAMAS

B.1. - SUB-ROTINA DE LEITURA DE DADOS:

A sub-rotina faz a aquisição dos dados do sistema, com a utilização de perífericos que possibilitam a coneção dos dados com o programa. a sub-rotina necessita de dados, como canal de coleta, slot de enderecamento e o número de medidas a ser realizada, o programa registra o dado de tensão (volts) e o instante que a coleta é realizada.

(INICIO DA SUB-ROTINA DE LEITURA)

PROCEDURE MEDIDA (E : INTEGER: С :INTEGER: х : INTEGER; VAR V :VET1: VAR TPATUAL :REAL; VAR AUXN :INTEGER>; (O PROCEDIMENTO FAZ AQUISICAO DE DADOS VIA COMPUTADOR. > (O SINAL DO EQUIPAMENTO E DIRECIONADO PARA UM AMPLIFICADOR OU UM SEGUIDOR DE TENSAO, E COM AUXILIO DE UMA PLACA A/D DE 12 BITS O SINAL E CONVERTIDO EM DADOS NUMERICOS. > (OBS: PARAMETRO "E" :ENDERECO DO SLOT; PARAMETRO "C" :NUMERO DO CANAL: PARAMETRO "X" TEMPO DE ESPERA P/ GERAR UM NUMERO DE COLETAS POR SEGUNDO; PARAMETRO "V" :FORNECE AS MEDIDAS EM FORMA DE VETOR; VARIAVEL "TPATUAL" FORNECE O TEMPO INICIAL DA MEDIDA; VARIAVEL "AUXN" :AUXILIA NA LEITURA DE DADOS. > VAR (DEFINE OS TIPOS DE VARIAVEIS) A,B, CONT : INTEGER; H, M, S, CS : WORD; BEGIN (O INSTANTE DA COLETA) GETTIME (H, M, S, CS); TPATUAL: = 9000*H+00*M+S+D. 01*CS; PORT[E]:=C; FOR CONT:=1 TO AUXN DO BEGIN PORTIE+21:=0; DELAY(X); A:=PORTIE+2); B:=PORT[E+3]; V[CONT]:=(((A+B/256)/256#10)-5); END:

END;

(FINAL DA PROCEDURE MEDIDA)

Na pagina seguinte encontra-se o fluxograma da sub-rotina de leitura de dados.
FLUXOGRAMA COMPUTACIONAL

SUBROTINA - LEITURA DE DADOS DO EXPERIMENTO

119

B.2.- SUB-ROTINA ARMAZENAMENTO DOS DADOS EM ARQUIVOS: B.2.1.- GRAVA DADOS DE OXIGENIO:

A sub-rotina armazena os dados coletados pela sub-rotina leitura em arquivo específico, para posterior utilização em cálculos específicos.

(INICIO DA SUB-ROTINA QUE GRAVA DADOS DE OXIGENIO)

```
PROCEDURE DISCOO(VAR SAIDA : TEXT;
VAR ARQUIVO :STRING;
VAR NOMEARQ :STRING;
VAR V :VET1;
VAR TPATUAL :REAL);
```

(O PROCEDIMENTO ARMAZENA EM DISCO OS VALORES DAS MEDIDAS>
(OS DADOS ARQUIVADOS SAO DE TEMPO E OXIGENIO DISSOLVIDO, SAO

DISPOSTOS EM DUAS COLUNAS COM N LINHAS, O VALOR DO OXIGENIO E A MEDIA DOS VALORES OBTIDOS NA LEITURA. >

```
VAR
```

I:INTEGER; BEGIN (INICIO DA GRAVAC(O) I:= 1; ASSIGN(SAIDA,ARQUIVO);

IF (ARQUIVO=NOMEARQ) THEN

APPEND(SAIDA) (ABRE UM ARQUIVO JA EXIST.) Else

REWRITE(SAIDA); (ABRE UM NOVO ARQUIVO) WRITELN(SAIDA, TPATUAL:12;4,V[I]:12:4); CLOSE(SAIDA); END;

(FINAL DA PROCEDURE DISCOO)

FLUXOGRAMA COMPUTACIONAL

SUBROTINA - LEITURA DE DADOS DE OXIGÊNIO

B.2.2.- GRAVA DADOS DE TURBULENCIA:

A sub-rotina armazena os dados coletados pela sub-rotina leitura de dados turbulênciaem arquivo especifico, para posterior utilização em cálculos específicos.

(INICIO DA SUB-	ROTINA QUE GRA	VA OS DADOS DE TURBULENCIA>
PROCEDURE DISCOT	VAR SAIDA	: TEXT ;
	VAR ARQUIVO	:STRING;
	VAR NOMEARQ	:STRING;
	VAR V	: VET1;
	VAR TPATUAL	:REAL;
	VAR AUXN	: INTEGER > ;
< O PROCEDIMENTO	ARMAZENA EM D	ISCO OS VALORES DAS MEDIDAS>
COS VALORES SAC	REFERENTES AO	DADOS DE TURBULENCIA, SINAL GERADO
PELA SONDA OTI	CA, O PRIMEIRO	DADO ARMAZENADO NA COLUNA E O
INSTANTE DA CO	LETA(TEMPO) >	
VAR		
I: INTEGER;		
BEGIN	(INICIA A OR	AVACAD>
ASSIGN (SAIDA, ARQ	UIVO>;	
IF (ARQUIVO=NOMEA	RQ> THEN	
*	APPEND (S	SAIDA) (ABRE UM ARQ. JA EXISTENTE)
	ELSE	
·	REWRITE	(SAIDA); (ABRE UM NOVO ARQUIVO >
WRITELN (SAIDA, TP	ATUAL:12:4);	
FOR I: = 1 TO AUXN	DO	4
WRITELN (SAIDA, VI	IJ:7:4>;	
CLOSE (SAIDA);		
END;		
(FINAL DA PROCED	URE DISCOT>	

FLUXOGRAMA COMPUTACIONAL

SUBROTINA - GRAVA OS DADOS LEITURA TURBULÊNCIA

B.3.- SUB-ROTINA DE LEITURA DE DADOS JA ARMAZENADO EM ARQUIVOS:

Para executar os cálculos, como Rms, coeficiente autocorrelação, coeficiente de absorção e outros, é necessário resgatar os dados armazenados durante os ensaios, o que é realizado por esta sub-rotina.

(SUB-ROTINA DE LEITURA DOS DADOS de arquivos)

PROCEDURE LEITURA (VAR ENTRADA : TEXT; ARQUIVO :STRING; VAR V1 :VET1; VAR CONT :INTEGER; VAR TEMPO :REAL); (O PROCEDIMENTO LE DADOS ARMAZENADOS EM DISCO.> VAR

I: INTEGER;

BEGIN

```
ASSIGN(ENTRADA, ARQUIVO);

RESET(ENTRADA);

READLN(ENTRADA, TEMPO);

CONT:=1;

WHILE NOT EOF(ENTRADA) DO

BEGIN

READLN(ENTRADA, V1(CONT));

CONT:=CONT+1;

END;

CONT:=CONT - 1;

CLOSE(ENTRADA)
```

END;

FLUXOGRAMA COMPUTACIONAL

SUBROTINA - RESGATA DADOS ARMAZENADOS EM ARQUIVOS

B.4. - FUNCTION - CALCULA A MEDIA DE UMA RELAÇÃO DE DADOS:

Cálcula a média de vetor de dados, obtido de medidas realizadas nos ensaios.

(FUNCAO QUE CALCULA A MEDIA DOS DADOS>

FUNCTION MEDIAF(VAR V1:VET1;VAR CONT:INTEGER%REAL; (A FUNCAO CALCULA A MEDIA DAS MEDIDAS.) VAR I:INTEGER; SOMA:REAL; BEGIN

```
SOMA:=0;
FOR I:=1 TO CONT DO
SOMA:=SOMA + V1[I];
MEDIAF:=SOMA/CONT;
END;
```

(FINAL DA FUNCAO MEDIDA)

FLUXOGRAMA COMPUTACIONAL

FUNCTION - CALCULA A MÉDIA DE UMA RELAÇÃO DE DADOS

B.5.- SUB-ROTINA DO CALCULO DO VALOR R.M.S.:

Para o cálculo do valor Rms, é nessário a média dos valores medidos, que é executado pela function média, em seguida cálcula-se o somatório do valor da medida menos a média elevado ao quadrado, dividido pelo número de pontos coletados, após completado o somatório o valor Rms, é a raiz quadrada deste.

(FUNCAD QUE CALCULA O VALOR RMS >

FUNCTION VRMSF(VAR V1:VET1;VAR CONT:INTEGER):REAL; (A FUNCAO VRMSF CALCULA O VALOR RMS DAS MEDIDAS.)

VAR

I: INTEGER; Soma, media: real;

BEGIN

```
SOMA:=0;

MEDIA:=MEDIAF(V1,CONT);

FOR I:=1 TO CONT DO

SOMA:=SOMA + SQR(V1[I] - MEDIA);

VRMSF:=SQRT(SOMA/CONT)

END;
```

(FINAL DA FUNCAO QUE CALCULA O VALOR RMS)

B.6.- SUB-ROTINA DO CALCULO DOS COEFICIENTES DA FUNÇÃO AUTOCORRELAÇÃO:

Para o cálculo dos coeficientes da função de autocorrelação, é nessário a média dos valores medidos, que é executado pela function média, o valor de R.M.S., que é executado pela procedure VRMSF, assim para cada correlação se obtém um coeficiente, que após n correlações, tem-se a função de autocorrelação, os coeficientes (ou os pontos) desta função representam existem relações entre dois pontos distintos. Enquanto existir correlação entre dois pontos considera-se que os pontos encontra-se dentro do mesmo turbilhão.

```
PROCEDURE FUNCAO
(VAR
   NCOR,
   CONT
                            : INTEGER ;
VAR
 MEDIA, VRMS
                           :REAL;
VAR
 ٧1
                            :VET1;
VAR
 FC
                            :VET2>;
(O PROCEDIMENTO FUNCAO CALCULA A FUNCAD DE AUTOCORRELACAD. >
VAR
 I, TAU: INTEGER;
 SOMA: REAL ;
BEGIN
    MEDIA: = MEDIAF (V1, CONT);
    VRMS:=VRMSF(V1,CONT);
    FOR I:=1 TO CONT DO
    VI[I]:= (VI[I] - MEDIA);
    FOR TAU: = 0 TO NCOR DO
    BEGIN
        FC[TAU]:=0;
        FOR I := 1 TO CONT DO
        IF(I + TAU) > CONT
        THEN
           FC[TAU]:=FC[TAU]
        ELSE
           FC[TAU]:=FC[TAU]+((V1[I]*V1[I+TAU])/SQR(VRMS));
        FC[TAU]:=FC[TAU]/(CONT-TAU);
    END;
```

END;

FLUXOGRAMA COMPUTACIONAL

SUBROTINA - CÁLCULA COEFICIENTE FUNÇÃO AUTOCORRELAÇÃO

B.7.- SUB-ROTINA DO CÁLCULO DA MACROESCALA DE TURBULENCIA

A sub-rotina cálcula a integral da função de autocorrelação total, definida como macroescala de turbulência. Por analogia representaria o comprimento médio dos turbilhões.

(CALCULA A INTEGRAL DA FUNCAO DE AUTOCORRELACAO)

FUNCT ION	INTEGRAL (VAR	MFC,	
		NCOR, TAU	: INTEGER;
	VAR	VRMS,	
7		XPS, CORR	:REAL;
	VAR	FC	:VET2>:REAL;

(A FUNCAO INTEGRAL CALCULA A INTEGRAL DA FUNCAO DE CORRELACAO)

```
BEGIN
```

ENP

```
CORR:=0;
FOR TAU:=0 TO NCOR DO
BEGIN
CORR:=CORR + FC[TAU]*MFC/XPS;
END;
TNTEGRAL:=CORR*VRMS;
```


SUBROTINA - CÁLCULA DA MACROESCALA DE TURBULÊNCIA

B.B.- SUB-ROTINA DE MONTAGEM DE TELAS NO VIDED:

As sub-rotina de montagem de tela, e configuração e loops de rotina; não serão apresentados os referidos fluxogramas, por ser apenas comandos em linha.

SUB-ROTINA PARA MONTAR GRAFICO NA TELA DO VIDEO

```
(INICIO DA SUB-ROTINA - APRESENTACAO DOS DADOS NA TELA>
PROCUDURE MATRIZTE (VAR N
                                : INTEGER :
                    VAR V
                                :VET1>;
K:=1;
                (APRESENTACAO DOS DADOS EM FORMA DE MATRIZ)
FOR I:=1 TO ((N DIV 4)+1) DO
FOR J:=1 TO 4 DO
R[1, J]:=0;
IF (N \mod 4) = 0 THEN
                     BEGIN
                     FOR I:=1 TO (N DIV 4) DO
                     FOR J:=1 TO 4 DO
                     BEGIN
                         REI, J):=V(K);
                         K:=K+1;
                     END:
                     N1:=(N DIV 4);
                     END;
I1:=1;
IF (N MOD 4) <> O THEN
                    WHILE I1 (= ((N DIV 4) + 1) DO
                    BEGIN
                        IF I1 (= (N DIV 4) THEN
                                 BEGIN
                                      FOR J:=1 TO 4 DO
                                          BEGIN
                                              R[11, J]:=V[K];
                                               K:=K+1;
                                          END;
                                      I1:=I1+1
                                 END;
                        IF I1 = ((N DIV 4) + 1) THEN
                                 BEGIN
                                      FOR J:=1 TO (N MOD 4) DO
                                          BEGIN
                                              R[I1, J]:=V[K];
                                              K:=K+1;
                                          END;
                                             N1:=((N DIV 4)+1);
                                             I1:=I1+1
                                 END;
                    END:
```

(FINAL DA PROCUDURE MATRIZTE)

```
136
(SUB-ROTINA QUE MONTA A ESCALA DO GRAFICO)
                                (DEFINICAO DAS VARIAVEIS>
PROCEDURE ESCALA
                  (VAR
                   INICIOX, INICIOY,
                   CENTROX, CENTROY,
                   FINALX, FINALY,
                   EIXO, NINT,
                                                   : INTEGER;
                   TM, FEY
                   VAR
                   FEX
                                                   :REAL:
                                                   :VET1>;
                   v
(O PROCEDIMENTO ESCALA PREPARA AS ESCALAS DO GRAFICO UTILIZADO. >
                    (PONTOS DE REFERENCIA NA TELA DO VIDEO)
CONST
     XPOS = 260;
     YPOS = 70;
                    (PONTO DE REFERENCIA PARA DESVIO CONDICIONADO)
LABEL
     NOVO:
                    (DEFINICAD DE VARIAVEIS)
VAR
   Ι.
  AUXY, AUXY1,
   PULO,
  INTERVALO,
  FATOR,
  EX, EY,
  XES, YES,
                          : INTEGER;
  XES1, YES1
                          :REAL;
   CX.CY
                          :STRING:
   PONTO
                       (INICIO DA SUB-ROTINA>
BEGIN
     CENTROX: =GETMAXX DIV 2;
     CENTROY: = GETMAXY DIV 2;
     INICIOX: = CENTROX - XPOS;
     INICIOY: = CENTROY - YPOS;
     FINALX: = CENTROX + XPOS;
     FINALY: = CENTROY + YPOS;
     EIXO: = CENTROY:
     I:=INICIOX;
     WHILE I <= FINALX DO
                           BEGIN
                            PUTPIXEL(I,FINALY + 1,1);
                            PUTPIXEL(1, FINALY + 2,1);
                            PUTPIXEL(I,FINALY + 3,1);
                            XES:=I;
                            YES:=FINALY + 9;
                            CX:=(((I-INICIOX)*FEX)/(FINALX-INICIOX));
                            STR(CX:5:2, PONTO);
                            SETTEXTJUSTIFY (CENTERTEXT, TOPTEXT);
                            SETTEXTSTYLE (SMALLFONT, HORIZDIR, 4);
                            OUTTEXTXY (XES, YES, PONTO);
                            I:=I+TRUNC((FINALX-INICIOX) / NINT);
                           END;
     PULO: = 1 ;
     AUXY: = EIXO;
     AUXY1 := INICIOY;
```

```
I:=AUXY:
  NOVO:;
  IF PULO = 2
                THEN
                    BEGIN
                        AUXY: =FINALY;
                        AUXY1 := EIXO;
                        I:=AUXY1;
                    END:
                  AUXY1>
   WHILE
          ((I))=
          AND (I <= AUXY) DO
                          BEGIN
                             PUTPIXEL(INICIOX-1, I, 1);
                             PUTPIXEL(INICIOX-2, I, 1);
                          PUTPIXEL (INICIOX-3, I, 1);
                          PUTPIXEL(INICIOX-4, I, 1);
                          XES1:=INICIOX - 4;
                          SETTEXTJUSTIFY (RIGHTTEXT, CENTERTEXT);
                          SETTEXTSTYLE (SMALLFONT, HORIZDIR, 4);
                          IF PULO = 1 THEN
                          BEGIN
                          YES1:=1;
                          FATOR:=AUXY - AUXY1;
                          CY:=(((AUXY-I)*FEY)/FATOR);
                          STR(CY:5:2, PONTO);
                          OUTTEXTXY (XES1, YES1, PONTO);
                          INTERVALO: = TRUNC((AUXY - AUXY1) / NINT);
                          I:=I - INTERVALO;
                          END;
                          IF PULO = 2 THEN
                         BEOIN
                          YES1 := I :
                          CY:=(((I-AUXY1)*FEY)/(-FATOR));
                          STR(CY:5:2, PONTO);
                          OUTTEXTXY (XES1, YES1, PONTO);
                          I:=I + INTERVALO;
                          END;
                          END;
   PULO := PULO + 1;
   IF PULO = 2 THEN
                    GOTO NOVO;
   LINE (INICIOX, CENTROY+YPOS, FINALX, CENTROY+YPOS);
   LINE (INICIOX, INICIOY, INICIOX, FINALY);
   LINE (INICIOX, CENTROY-YPOS, FINALX, CENTROY-YPOS);
   LINE (CENTROX+XPOS, CENTROY-YPOS, CENTROX+XPOS, CENTROY+YPOS);
   LINE (INICIOX, EIXO, FINALX, EIXO);
   FOR I:=1 TO TM DO
   BEGIN
       EX:=INICIOX + TRUNC((I/TM)*(FINALX - INICIOX));
       EY:=EIXO - TRUNC((V(I)/FEY)*(EIXO - INICIOY));
       CIRCLE(EX,EY,2)
   END;
END:
 (FINAL DA SUB-ROTINA ESCALA)
```

SUB-ROTINA - COLOCA O NOME NO GRAFICO

(INICIO DA SUB-ROTINA TITULO>
PROCEDURE TITULO(VAR INICIOY, CENTROX: INTEGER; NOME: STRING);
(O PROCEDIMENTO IMPRIME UM TITULO CENTRALIZADO NO TOPO DA TELA>
BEGIN
SETTEXTJUSTIFY(CENTERTEXT, TOPTEXT);
SETTEXTSTYLE(SMALLFONT, HORIZDIR, 5);

OUTTEXTXY (CENTROX, INICIOY - 30, NOME); END;

(FINAL DA SUB-ROTINA TITULO>

SUB-ROTINA PARA DEFINICAO DA COORDENADA Y E X

(INICIO DA SUB-ROTINA COORDENADA Y) PROCEDURE COORDY(VAR INICIOX,FINALY:INTEGER;NOME:STRING); (O PROCEDIMENTO IMPRIME A IDENTIFICACAO DAS ORDENADAS)

BEGIN

SETTEXTJUSTIFY(CENTERTEXT,CENTERTEXT); SETTEXTSTYLE(SMALLFONT,VERTDIR,4); OUTTEXTXY((INICIOX - 55),((FINALY DIV 2) - 8),NOME); END; (FINAL DA SUB- ROTINA - DEFINE A COORDENADA Y)

(INICIO DA SUB-ROTINA - DEFINE A COORDENADA X > PROCEDURE COORDX(VAR FINALX,FINALY:INTEGER;NOME:STRING); (O PROCEDIMENTO IMPRIME A IDENTIFICACAO DAS ABSCISSAS>

BEGIN

SETTEXTJUSTIFY(CENTERTEXT,TOPTEXT); SETTEXTSTYLE(SMALLFONT,HORIZDIR,4); OUTTEXTXY((FINALX-35),FINALY + 12,NOME); END;

(FINAL DA SUB-ROTINA QUE DEFINE COORDENADA X)

SUB-ROTINA DE RETORNO PARA NO LOOP

(SUB-ROTINA DE QUESTIONAMENTO PARA CONTINUAR O PROGRAMA) PROCEDURE SEQUENCIA; (O PROCEDIMENTO IMPRIME UMA MENSAGEM NA PARTE INFERIOR DA TELA) CONST

MENSAGEM = 'PRESS A BARRA DE ESPACO PARA CONTINUAR';

```
VAR

CHAVE: CHAR;

BEGIN

SETTEXTJUSTIFY(CENTERTEXT, TOPTEXT);

SETTEXTSTYLE(SMALLFONT, HORIZDIR, 4);

OUTTEXTXY(GETMAXX DIV 2, GETMAXY-10, MENSAGEM);

REPEAT

CHAVE := READKEY

UNTIL

CHAVE := READKEY

UNTIL

CHAVE=' ';

CLEARDEVICE;

END;

(FINAL DA SUB-ROTINA DE QUESTIONAMENTO )
```

APENDICE - A

DADOS DE OXIGÊNIO DISSSOLVIDO DOS ENSAIOS

DETERMINAÇÃO DO COEFICIENTE K2

Tabela A.01 - Dados p/ determinação Coeficiente K p/ ensaio 60 rpm $\frac{2}{2}$

Valor do oxiganio inicial = 2,80 mg/l Valor do oxiganio Saturado = 7,45 mg/l

	·····		 	
Tempo	Oxig. Diss.	(Cs - Co)	Coeficiente K em	Temperatura
em	(mg/l)	$Ln \frac{1}{(Ce - C)}$	2 -1	em
horas	(no ensaio)		Horas	Oraus Cent.
0.0000	2. 800	0.000	-x x -	25. 600
0.1077	2.913	0.024	0.140	25.878
0. 3335	3.007	0.045	0.130	26. Dí 3
0. 5001	3.068	0. 059	0.119	25. 960
0. 6681	3.150	0.078	0.117	20. 0 28
0.8347	3.254	0.103	0.123	26.016
1.0012	3.407	0.140	0.140	26. 085
1.1009	3.453	0.151	0,190	25. 978
1.3395	3.480	0.158	0.119	26.132
1.5000	3.565	0. 18 0	0.120	26. 263
1. 6680	3. 6 89	0.212	0.127	26. 121
1.8940	э. 797	0.241	0.132	26. 151
2.0011	3.844	0.254	0.127	26. 318
2.1667	3.872	D. 202	0.121	26. 128
2.9947	3. 293	0.279	0.120	26, 174
2.5019	4.084	0. 323	0.129	20. 200
2.0079	4.119	0. 334	0.125	20. 304
2.8344	4.194	D. 356	0.120	26. 179
3.0010	4. 298	0. 389	0.130	20. 108
3.1073	4.335	0.401	0.127	26. 129
3.3339	4.360	0.409	0.123	26. 289
3.5005	4. 400	0.442	0.120	20. 421
3.0071	4. 528	D. 4 <i>6</i> 5	0.127	26. 348
3.833 <i>6</i>	4.579	0.482	0.120	26. 272
4.0002	4. 037	D. 503	0.126	26. 285
4.1072	4. 627	0.499	0.120	20. 222
4.3338	4. 697	0.524	0.121	26. 284
4.5009	4.765	0.549	0.122	20. 249
4.0009	4.811	0.566	0.121	26. 256
4.8995	4.879	0. 593	0.123	26. 188
5.0000	4. 921	0.009	0.122	20. 103
5.1070	4.913	D. 000	0.117	26. 029
5.3930	4. 974	0. 630	0.118	20. D88
5.5001	5.051	D. 002	0.120	20. 080
5.0007	5.101	0.689	0.120	25. 906
5.8947	5.175	0.715	0.129	25, 947
б. 001 3	5. 222	0.7 3 6	0.123	25. 883
0. 1008	5.200	0.750	0.123	25. 700
G. 3334	5. 288	0.766	D.121	25. 719
6. 501 3	5. 313	0.777	0.120	25, 708
6. 6679	5. 389	0.811	0.122	25. 751
ő. 89 45	5.410	0.827	0.121	25, 073
7.0010	5. 458	0.847	0.121	25. 742

Continuação da tabela A.01 -

Tabela A.01 - Dados p/ determinação Coeficiente K p/ ensaio 60 rpm

Valordo oxiganio inicial = 2,80mg/l Valordo oxiganio Saturado = 7,45mg/l

Tempo em horas	Oxig. Diss. (mg/l) (no ensaio)	$Ln \frac{(Cs - Co)}{(Cs - C)}$	Coeficiente K ₂ em Horas ⁻¹	Temperatura em Graus Cent.
7.1080	5. 490	0. 867	0.121	25. 631
7.3340	5. 554	0. 897	0.122	25. 698
7. 5011	5. 662	0.950	0.127	25. 653
7.6667	5. 679	0. 965	0.120	25. 610
7.8343	5. 691	0. 972	0.124	25. 581
8.0008	5.719	0. 988	0.123	25. 533
8.1078	5. 755	1.009	0.124	25.501
8.3344	5. 807	1.040	0.125	25. 509
8. 5010	5.836	1.058	0.124	25. 518
8. 6675	5.865	1.070	0.124	25. 437
8.8341	5. 883	1.088	0.123	25. 429
9.0000	5. 924	1.114	0.124	25. 425
9.1670	5. 964	1.141	0.124	25. 405
9. 3942	б. 010	1.172	0.126	25. 375
9. 5007	б. 027	1.184	0.125	25. 300
9. 0073	6.053	1.203	0.124	25. 342
9.83 38	6. D62	1.209	0.123	25. 393
0.0004	Ø. 078	1.221	0.122	25. 391

Valor médio da temperatura = 25.899 Desvio Padrão temperatura = 0.323

Regression Output:

Constant	0.00000	X Coefficient(s)	0. 12 9 20
Std Err of Y Est	0. 01253	Std err of Coef.	0. 00028
R Squared	0. 99811		
No. of Observations	61		
Degrees of Freedom	60		

Tabela A.02 - Dados p/ determinação Coeficiente K p/ ensaio 78 rpm $\frac{2}{2}$

Valor do oxiganio inicial = 3.00 mg/l Valor do oxiganio Saturado = 7.40 mg/l

·····	1	{	Coeficiente	1
Tempo	Oxig. Diss.	(Cs - Co)	K em	Temperatura
ēm	(mg/l)	$Ln {(Cs - C)}$	2 -1	em
horas	(no ensaio)		Horas	Graus Cent.
0.0000	3.000	0.000	-××-	25. 920
0.1077	3.151	0. 035	0.208	26, 183
0.3944	3.241	0.056	0.108	26. 204
0. 501 1	3.328	0.077	0.155	26. 202
0. 6676	3.441	0.100	0.158	26. 249
0.8342	3, 573	D. 14D	0.167	20, 311
1.0008	3.044	0.158	0.158	26.156
1.1073	3.702	0.190	0.109	20. 281
1.3339	9.855	0.210	0.102	26. 317
1.5005	3. 929	0.237	0.158	26. 351
1.0071	4.023	0.265	0.159	20. 291
1.8397	4.047	0.272	0.148	26. 345
2.0002	4.183	0.313	0.157	26, 219
2.1672	4, 259	0. 337	0.155	26. 143
2.3338	4.959	0.368	0.157	26. 207
2.5004	4.945	0.365	0.140	26. 223
2.0070	4.521	0.424	0.159	26, 290
2.8336	4.578	0.444	0.157	26. 320
3.0002	4. 630	0.403	0.154	26.249
3.1672	4. 687	0.483	0.153	26. 305
3.3398	4.776	0.517	0.155	26. 368
9.5004	4.762	0.511	0.146	26. 348
3.0070	4. 935	0.579	0.158	26. 429
3.8344	4.985	0.000	0.156	26.414
4.0010	5.023	0.010	0.154	20. 310
4.1680	5.053	0.028	0.151	20. 40D
4.9940	5.112	0.654	0.151	20. 355
4.5012	5.190	0.697	0.153	26. 310
4.6678	5. 270	0.720	0.155	26. 508
4.9344	5. 331	D. 754	0.156	26. 425
5.0002	5. 377	0.777	0.155	26. 394
5.1071	5. 382	0.779	0.151	26. 425
5.3397	5,490	0.835	0.150	20. 024
5.5003	5.529	0.855	0.155	26. 477
5.0009	5. 550	0.870	0.153	26. 467
5.8335 6.0001	5.014	U. 902	0.155	26. 368
0.0001	5.700	0.951	0.159	26. 335
0.1071	5. 091	0.946	D.153	26. 398
0.3337 6 5000	J. 781	1.000	D. 158	26. 489
0.0003	5.829	1.030	D.158	26.484
0.0009	J. 885	1.000	0.100	26. 368

Continuação da tabela A.02 -

Tabela A.02 - Dados p/ determinação Coeficiente K p/ ensaio 78 rpm

Coeficiente Oxig. Diss. тетро Temperatura (Cs - Co) **К** өт (mg/l) өm Ln em (Cs - C) Horas⁻¹ (no ensaio) horas Graus Cent. 6. 83**3**5 5. 877 1.001 0.155 26. 459 7.0001 5. 927 1.094 0.150 26. 927 7.1071 5. 985 1. 1 35 0.158 20. 410 7.3997 5. 997 1.143 0.150 26. 224 7. 5009 o. 034 1.170 0.156 20. 348 0.159 7.0009 0. 090 1.216 20. 228 7.8330 6. 116 1. 292 0.157 26. 218 8.0001 6. 159 1. 205 0.158 25. 950 8.1073 6.177 1. 280 0.157 26.083 8.3339 6. 210 1. 308 26. 058 0.157

Valor do oxiganio inicial = 3.00 mg/l Valor do oxiganio Saturado = 7,40 mg/l

> Valor médio da temperatura = 26.310 Desvio Padrão temperatura = 0.135

Regression Output:

Constant	0.00000		
Std Err of Y Est	0. 0 1243	X Coefficient(s)	0. 15615
R Squared	0. 99897	Std err of Coef.	0.00030
No. of Observations	51		
Degrees of Freedom	50		

Tabela A.03 – Dados p/ determinação Coeficiente K p/ ensaio 98 rpm $\frac{2}{2}$

Valor do oxiganio inicial = 2.50 mg/l Valor do oxiganio Saturado = 7.65 mg/l

			Coeficiente	Temperature
Tempo	Dxig. Diss.	(Cs - Co)	K em	remperatora
em		$\frac{Ln}{(Cs - C)}$	-1	
norag	(no ensuo)			
0.0000	2.500	0.000	-x x -	24. 985
0.1677	2.667	O. 033	0.197	24. 919
0.3945	2.892	D. 067	0.199	24. 894
0. 501 2	2.985	0.099	0.197	24.812
D. 6678	9.155	0.127	0.190	24.756
0.8944	3.259	0.159	0.191	24. 658
1.0010	3.384	0.189	0.188	24. 613
1.1070	9.529	0.223	0.191	24. 592
1.3342	3.657	0.254	0.191	24. 501
1.5008	3.781	Q. 286	0.191	24.489
1.0081	3.890	0.315	0.189	24.420
1.8947	3. 980	0.340	0.185	24. 325
2.0013	4.101	0. 372	0.180	24. 289
2.1678	4.215	0.405	0.187	24. 236
2.3344	4. 926	D. 498	0.188	24. 170
2.5010	4.421	0.467	0.197	24.103
2.0070	4.518	0.497	0.180	24.023
2.8342	4.040	0.537	0.189	23.901
3 4 6 7 4	4. 904	0.507	0.185	23 790
3.3340	4.920	0. 635	0.190	23.750
3.5000	4. 002	0.661	0.189	23. 714
3.0073	5.079	0. 695	0.189	23. 701
3.8339	5.109	0.790	0.190	23, 689
4.0005	5. 238	0. 759	0.190	23. 665
4.1070	5. 399	0. 801	0.192	23. 751
4.9990	5. 427	0. 840	0.194	23. 721
4.5002	5.460	0. 855	0.190	23. 691
4.0008	5.569	0, 903	0.193	29.075
4.8334	5. 604	0. 923	0.191	23. 700
5.0001	5.650	0.949	0.190	23.730
5.1679	5.744	0, 994	0.192	23. 675
5.3345	5.811	1.030	0.193	23. 658
5.5011	5.920	1.094	0.199	23. 632
5.6678	5. 930	1.097	0.193	23. 598
5.8344	5. 953	1.110	0.190	23.569
o. 0010	0. 0 5 9	1.171	0,195	29, 576
6. 167 5	б. 128	1.219	0.198	23. 551
6.3341	Ø. 129	1.210	0.192	23. 614
đ. 5007	6. 224	1.284	0.198	29.570
0. <i>0</i> 073	0. Z09	1.910	0.197	23.550

Continuação da tabela A.O3 -

Tabela A.03 – Dados p/ determinação Coeficíente K p/ ensaio 98 rpm

Valor do oxiganio inicial = 2.50 mg/l Valor do oxiganio Saturado = 7.65 mg/l

Tempo em horas	Oxig. Diss. (mg/l) (no ensaio)	$Lr, \frac{(Cs - Co)}{(Cs - C)}$	Coeficiente K em Horas ⁻¹	Temperatura em Graus Cent.
6. 8339	6. 289	1. 331	0.195	23. 548
7.0005	б. 31 3	1.348	0.193	29. 501
7.1670	б. 34 0	1.309	0.191	23.438
7.3330	o. 405	1. 420	0.194	23. 501
7.5002	o. 430	1. 440	0.192	23. 505

Valor médio da temperatura = 23.969 Desvio Padrão temperatura = 0.457 Regression Output:

Constant	0. 00000		
Std Err of Y Est	D. 01341	X Coefficient(s)	0. 19289
R Squared	0.99905	Std err of Coef.	0. 00045
No. of Observations	40		
Degrees of Freedom	45		

Tabela A.04 - Dados p/ determinação Coeficiente K p/ ensaio 108 rpm 2

Valor do oxiganio inicial = 2.60 mg/l Valor do oxiganio Saturado = 7.45 mg/l

· · · · · · · · ·	}	· · · · · · · · · · · · · · · · · · ·	Coeficiente	[
Tempo	Oxig. Diss.	(Cs - Co)	K em	Temperatura
ØM	(mg/l)	$Ln \frac{1}{(Cs - C)}$	2 -1	em
horas	(no ensaio)		Horas	Graus Cent.
0.0000	2,000	0.000	-x x -	25. 242
0.1677	2.750	0. 031	0.187	25, 409
D. 3344	2.905	0.065	0.194	25.520
0. 5010	3.051	0. 098	0.195	25.409
0. 0070	3.184	0.129	0.192	25, 480
0.8342	3. 330	0.103	0.195	25. 411
1.0007	Э. 442	0. 191	0.191	25. 315
1.1080	3.579	0. 225	0.193	25. 474
1.3946	3. 680	0.252	0.189	25.509
1.5012	3.777	0.278	0.185	25. 585
1.6678	3. 923	D. 318	D.191	25. 574
1.8344	4.014	0. 345	0.199	25.576
2.0009	4.122	0. 377	0.199	25. 520
2.1007	4. 229	0.409	0.189	25. 612
2.3347	4. 324	0.439	ð. 199	25. 6 89
2.5013	4.424	0.472	0.189	25. 742
2.0079	4, 590	0.528	0.198	25. 715
2.8345	4.649	0.549	0.194	25. 728
3.0011	4. 740	Ø. 582	0.194	25. 687
3.1 <i>6</i> 6 8	4.822	0. <i>6</i> 13	0.194	25, 794
3. 3 3 3 4	4.940	0. 659	0.198	25.768
3.5014	4.906	0.045	0.184	25, 820
3. 6680	5. 099	0. 722	0.197	25.83 <i>6</i>
3.8940	5.101	0.725	0.189	25. 852
4.0012	5.188	0.769	0.191	25.796
4.1670	5. 279	0. 804	0.193	25. 741
4.3336	5. 360	0.842	0.194	25. 955
4.5002	5. 425	0.873	0.194	25. 900
4.0008	5. 427	0. 874	0.187	25.977
4.8333	5. 618	0.973	0.201	25. 888
5.0013	5. 614	0.971	0.194	25. 708
5.1672	5. 644	0. 9 89	0.191	25.910
5.3338	5.749	1.048	0.190	25.839
5. 5004	5.817	1.089	0.198	25.897
5.0070	5. 882	1.129	D. 199	25.820
5.8330	5. 915	1.151	0.197	25. 845
ð. 0002	5. 973	1.189	0.198	25.058
6.1673	6.017	1.219	0.198	25. 913
6. 3 3 39	6.050	1.242	0.196	25. 657
6. 5005	Ø. 112	1.288	0.198	25. 740
0. 0071	0. 1 0 8	1.390	0.200	25. 598

p.

Continuação da tabela A.04 -

Tabela A.04 - Dados p/ determinação Coeficiente K p/ ensaio 108 $_{rpm}$

Coeficiente Oxig. Diss. Temperatura Tempo (Cs - Co) K_ 9m em. (mg/l) Ln em (Cs - C) Horas⁻¹ (no ensaio) horas Graus Cent. o. 195 6.8337 25. 743 1.352 0.198 7.0003 *б*. ЭОО 1.439 0.200 25. 640 o. 324 7.1675 1.460 0.204 25. 658 7.3340 6. 947 1. 481 0.202 25. 784 7.5000 6. 392 1. 529 0.203 25. 780 7.0072 6. 450 1. 579 0.200 25. 712 7.8338 6. 485 1. 615 0.200 25. 532 8.0004 6. 517 1. 048 0.200 25. 436 8.1070 6. 55**3** 1. 088 0.207 25. 429 8.3342 6. 594 1.794 0.209 25. 480

Valor do oxiganio inicial = 2.60 mg/l Valor do oxiganio Saturado = 7.45 mg/l

> Valor médio da temperatura = 25.672 Desvio Padrão temperatura = 0.174

Regression Output:

Constant	0.00000		
Std Err of Y Est	0. 02822	X Coefficient(s)	0. 19995
R Squared	0.99699	Std err of Coef.	0. 00082
No. of Observations	51		
Degrees of Freedom	50		

Tabela A.05 - Dados p/ determinação Coeficiente K p/ ensaio 145 rpm

Valor do oxiganio inicial = 3.00 mg/l Valor do oxiganio Saturado = 7.45 mg/l

Tempo	Oxig. Diss.	$\frac{(Cs - Co)}{100}$	Coeficiente K em	Tèmperatura
horas	(no ensaio)	Cs - C	Horas -1	Graus Cent.
0.0000	3,000	0.000	-xx-	25. 691
0.1677	3,245	0.057	0.338	25. 647
0.3944	3.421	0.099	0.297	25. 659
0. 5010	3.648	0.157	0.314	25. 003
0. 6676	3.824	0. 205	0.307	25. 006
0.8342	4.047	0.208	0.321	25. 613
1.0008	4.240	0. 327	0.326	25.403
1.1078	4. 390	0, 375	0.321	25. 571
1.3344	4. 620	0.459	0.339	25. 537
1.5010	4.718	0.499	0.325	25. 541
1.0078	4. 873	0.540	0.327	25. 531
1.8344	4. 987	0. 592	0.922	25. 355
2.0010	5.159	0. 661	0.331	25. 289
2.1080	5.253	0.700	0,32 <i>0</i>	25. 348
2.9946	5.412	0.781	0.995	25. 327
2.5012	5.518	0. 835	0.334	25. 343
2.6671	5. 618	0. 887	0.333	25. 347
2.8337	5.000	0.911	0.321	25, 363
3.0003	5.844	1.019	0.340	25. 101
3.1673	5.930	1.078	0.340	25.316
9. 9 9 90	5. 993	1.110	0.335	25. 322

Valor médio da temperatura = 25.456 Desvio Padrão temperatura = 0.153 Regression Output:

Constant	0.00000		
Std Err of Y Est	O. 01 381	X Coefficient(s)	0. 39195
R Squared	0. 99843	Std err of Coef.	0. 00155
No. of Observations	21		
Degrees of Freedom	20		

Tabela A.06 - Dados p/ determinação Coeficiente K p/ ensaio 155 rpm 2

Valor do oxiganio inicial = 2.80 mg/l Valor do oxiganio Saturado = 7.45 mg/l

Tempo em horas	Oxig. Diss. (mg/l) (no ensaio)	$Ln \frac{(Cs - Co)}{(Cs - C)}$	Coeficiente K em 2 Horas ⁻¹	Temperatura em Graus Cent.
0.0000	2. 800	0.000	-xx-	25. 419
0.1077	9.004	0.058	0.349	25. 394
0. 3344	3. 319	0.119	0.354	25, 442
0. 5010	3.509	0. 191	0.361	25. 454
0. <i>6</i> 67 <i>6</i>	3.758	0.231	0.340	25. 394
0.8341	4.015	0. 303	0.363	25. 280
1.0007	4.229	0. 36 7	0.367	25. 203
1.1077	4.440	0.437	0.374	25. 280
1.3349	4. 591	0.486	0.365	25. 284
1.5009	4.801	0.563	0.375	25. 337
1.0075	4. 950	0.621	0.372	25. 942
1.8340	5.129	0. 692	0.377	25. 289
2.0000	5.120	0.730	0.365	25. 263
2.1075	5. 358	0, 799	0.309	25. 210
2.3341	5. 499	0. 809	0.372	25. 211
2.5007	5. 589	0.910	0.996	25. 264

Valor médio da temperatura = 25.317

Desvio Padrão temperatura = 0. 080 Regression Output: Constant 0.00000 Std Err of Y Est 0. 00778 X Coefficient(s) 0. 30929 R Squared 0. 99931 Sid err of Coef. 0. 00132 No. of Observations 10 Degrees of Freedom 15

Tabela A.07 - Dados p/ determinação Coeficiente K p/ ensaio 208 rpm

154

Valor do oxiganio inicial = 2.80 mg/l Valor do oxiganio Saturado = 7.30 mg/l

Tempo em horas	Oxig. Diss. (mg/l) (no ensaio)	$Ln \frac{(Cs - Co)}{(Cs - C)}$	Coeficiente K em 2 Horas ⁻¹	Temperatura em Graus Cent.
horas 0,0000 0.0846 0.1667 0.2505 0.3339 0.4174 0.5009 0.5843 0.6678 0.7512 0.8347 0.9167 1.0002 1.0841 1.1675 1.2510	(no ensaio) 2. 800 3. 011 3. 197 3. 390 3. 587 3. 714 3. 945 4. 128 4. 250 4. 369 4. 369 4. 516 4. 682 4. 715 4. 841 5. 086	D. 000 D. 048 O. 092 O. 141 O. 192 O. 227 D. 294 O. 350 O. 389 O. 429 O. 429 O. 480 O. 542 O. 554 O. 604 O. 672 O. 709	-xx- 0.566 0.554 0.561 0.576 0.544 0.586 0.599 0.582 0.571 0.575 0.591 0.557 0.557 0.575 0.567	26. 219 26. 219 26. 163 26. 298 26. 287 26. 233 26. 289 26. 266 26. 227 26. 220 26. 213 26. 242 26. 259 26. 151 26. 285 26. 217 26. 273
1.3344 1.4179 1.5014 1.5834 1.6669 1.7503 1.8338 1.9173	5.220 5.348 5.429 5.500 5.009 5.719 5.792 5.840	0.775 0.835 0.878 0.916 0.979 1.046 1.093 1.126	0.580 0.589 0.585 0.579 0.587 0.598 0.598 0.590	26. 171 26. 167 26. 259 26. 127 26. 145 26. 145 26. 116 26. 949

Valor médio da temperatura = 26.206 Desvio Padrão temperatura = 0.076

Regression	Output:		
Constant	0.00000		
Std Err of Y Est	O. 01943	X Coefficient(s)	0. 58340
R Squared	0. 99851	Std err of Coef.	0.00245
No. of Observations	24		
Degrees of Freedom	29		

Tabela A.08 - Dados p/ determinação Coeficiente K p/ ensaio 253 rpm

156

Valor do oxiganio inicial = 3.00 mg/l Valor do oxiganio Saturado = 7.35 mg/l

Tempo em horas	Oxig, Diss. (mg/l) (no ensaio)	$Ln \frac{(Cs - Co)}{(Cs - C)}$	Coeficiente K em 2 Horas ⁻¹	Temperatura em Graus Cent.
0.0000	3.000	0.000	-x x -	25. 930
0.0840	3.259	0. 061	0.726	26. 100
0, 100 8	9.480	0.11 8	0.710	25. 995
0. 2503	3.702	D. 170	0.703	20.038
0. 3338	3. 928	0.240	0.719	20. 101
0.4172	4.122	D. 298	0.715	26.089
0.5000	4. 301	0. 355	0.710	25. 979
0. 5840	4. 459	0.409	0.700	26.094
0.0075	4.007	0.483	0.724	25. 991
0.7509	4. 803	0.535	0.713	20.005
0.8343	4. 948	0.594	0.712	26.033
0.9178	5.100	D. 659	0.718	26.050
1.0012	5.215	0.712	0.711	26.124
1.0845	5. 319	0.762	0.702	26.039
1.1080	5.460	0.834	0.714	26. 096
1.2514	5.547	D. 881	0.704	26.119
1.3335	5.650	0.940	0.705	25, 969
1.4109	5.769	1.012	0.714	26.106
1.5003	5.840	1.002	0.708	25.808
1.5830	5.940	1.127	0.711	26.054
1.6670	6. D25	1.189	0.713	25. 911
1.7505	0. DPP	1.240	0.712	25. 870
1.8339	6. 158	1.295	0.700	26.046
1.9174	6. 248	1.979	0.710	25. 863
2.0008	Ø. 318	1.439	0.719	25.858

Valor médio da temperatura = 26.008 Desvio Padrão temperatura = 0.088

		and the second s	
Regression	Output:		
Constant	0. 00000		
Std Err of Y Est	0.00619	X Coefficient(s)	0.71109
R Squared	0. 99979	Std err of Coef.	0.01062
No. of Observations	25		
Degrees of Freedom	24		

Tabela A.09 - Dados p/ determinação Coeficiente K p/ ensaio 276 rpm

Valor do oxiganio inicial = 2.80 mg/l Valor do oxiganio Saturado = 7.25 mg/l

	1	1	Coeficiente	
Tempo	Oxig. Diss.	(Cs - Co)	Kem	Temperatura
o m	(mg/l)	$Ln \frac{1}{(Cs - C)}$	2 -1	em
horas	(no ensaio)		Horas	Graus Cent.
0.0000	2.800	0.000	-x x -	26. 200
0.0338	2.915	0.020	0.774	20. 459
0.0081	9,025	0.052	0.7 <i>6</i> 2	20. 355
0.1008	9.125	0.070	0.752	26. 376
0.1335	3.229	0. 101	0.759	26. 409
0.1070	3. 337	0.129	0.707	26. 296
0.2003	3.458	0.100	0,799	20. 403
0.2345	9.510	0.174	0.741	26. 354
0.2672	Э. б1 7	D. 203	0.759	26. 294
0. 301 3	9.7 0 0	0. 228	0.750	26.316
0. 3339	3.785	0.250	0.749	20. 300
0. 3681	3.840	0. 268	D.728	26. 300
0. 4008	3. 920	0. 290	0.723	26. 235
0. 4935	4.015	0.319	0.790	26. 900
0.4676	4.118	0. 351	0.751	20. 350
0. 5003	4. 201	0. 378	0.756	26. 205
0. 5342	4.240	0. 393	0.735	26. 398
0. 5669	4. 320	0.419	0.737	26. 973
0. 6011	4.418	0.452	0.752	20. 308
D. 0337	4. 489	0.477	0,753	26, 259
0. 6679	4. 539	0.496	0.742	20. 351
0.7000	4.648	0.537	0.766	26. 375
0.7347	4, 705	0.559	0.761	20. 308
0.7674	4. 790	0. 599	0.772	20. 912
0. 8001	4.850	0. đ20	0.775	26. 940
0.8342	4. 913	0.644	0.772	26. 288
0.8009	5.002	0. 683	0.788	26. 977
0.9010	4. 998	D. 681	0.750	26. 285
0. 9337	5.050	0.704	0.754	26. 298
0. 907 8	5. 105	0.730	0.754	26. 189
1.0005	5. 198	0.774	0.774	26. 272
1.0344	5.269	0. 809	0.782	26. 180
1.0071	5.254	0. 802	0.751	26. 283
1.1012	5.350	0.854	0.776	26. 917
1.1339	5, 398	0. 97 7	0.773	20. 322
1.1080	5. 467	0.915	0.783	26. 307
1.2007	5. 510	0.942	0.785	26. 331

Continuação da tabela A.09 -

Tabela A.09 - Dados p/ determinação Coeficiente K p/ ensaio 276 r_{pm}

Valor do oxiganio inicial = 2.80 mg/l Valor do oxiganio Saturado = 7.25 mg/l

Tempo em horas	Oxig. Diss. (mg/l) (no ensaio)	$Ln \frac{(Cs - Co)}{(Cs - C)}$	Coeficiente K em 2 Horas ⁻¹	Temperatura em Graus Cent.
1.2394	5, 551	0. 963	0.781	20. 340
1.2075	5. 503	0. 935	0.738	20. 223
1.3002	5. 621	1.005	0.77 3	20. 303
1.3943	5.705	1.058	0.793	26. 255
1.3070	5.714	1.004	0.779	26. 255
1.4012	5.752	1.089	0.777	26. 215

Valor médio da temperatura = 26.912 Desvio Padrão temperatura = 0.064 Regression Output:

Constant	0.00000		
Std Err of Y Est	D. 01332	x Coefficient(s)	0.70922
R Squared	0. 99833	Std err of Coef.	0. 00250
No. of Observations	43		•
Degrees of Freedom	42		

Tabela A.10 - Dados p/ determinação Coeficiente K p/ ensaio 358 rpm

Valor do oxiganio inicial = 3.00 mg/l Valor do oxiganio Saturado = 7.30 mg/l

			Coeficiente	
Tempo	Oxig. Diss.	(Cs - Co)	K em	Temperatura
em	(mg/l)	Ln (Cs - C)	2 -1	em
horas	(no ensaio)		Horas	Graus Cont.
0.0000	3.000	0.000	-x x -	26. 393
0.0338	3.211	0.050	1.488	26.466
0.0091	3.418	0. 102	1.503	20. 440
0. 1009	3. 602	0.151	1.495	20. 459
0. 1390	3.758	0.194	1.452	26. 527
0.1077	3.945	D. 248	1.480	20.410
0.2004	4.118	0. 901	1.503	26. 401
0.2345	4.268	0.349	1.490	26, 450
0.2672	4. 970	0. 384	1.436	20. 397
0. 301 3	4. 493	0.426	1.415	26. 388
0. 3340	4. 627	0.475	1.424	20. 321
0.3678	4. 798	0.542	1.472	26. 321
0. 4005	4.956	0.607	1.515	26. 382
0.4340	5. 052	0.649	1.492	26. 268
0. 4673	5.103	0. 699	1.490	26. 332
0. 5014	5.276	0.754	1.503	20. 340
0. 5941	5. 916	0.774	1.448	26. 360
0. 5668	5.360	0.799	1.410	26. 590
0. 0009	5, 498	0, 870	1.448	26. 357
0. 6336	5. 613	0. 935	1.476	26. 345
0. 6677	5.721	1.002	1.501	26. 278
0.7003	5.758	1.020	1.464	26. 438
0.7344	5.813	1.062	1.445	26. 261
0.7071	5, 943	1.159	1.503	26. 229
0.8019	б. D65	1.247	1.550	26. 238
0.8940	0. 00P	1.203	1.443	26. 359
D. 8667	Ø. 113	1.287	1.485	20. 293
0. 9008	6. 19 8	1.301	1.511	26.318
0. 9335	đ. 235	1.396	1.495	26. 246
0. 9070	Ø. 253	1.413	1.400	26.236
1.0003	Ø. 312	1.471	1.470	26. 266
1.0344	0. 38P	1.552	1.500	20. 297
1.0071	o. 421	1.588	1.488	26. 315
1.1000	6. 412	1.577	1,433	26. 359
1.1947	6. 498	1.079	1.480	26. 320
1.1074	o, 548	1.744	1.494	20. 310
1.2001	6. 605	1.822	1.519	26. 925
1.2342	G, G1 3	1.833	1.485	26. 315
1.2009	6. 625	1.852	1.402	26. 308
1.3010	6. 678	1.933	1.480	26. 299

Continuação da tabela A.10 -

Tabela A.10 - Dados p/ determinação Coeficiente K p/ ensaio 358 $_{rpm}$

Valor do oxiganio inicial = 3.00 mg/l Valor do oxiganio Saturado = 7.30 mg/l

Tempo em horas	Oxig. Diss. (mg/l) (no ensaio)	$Ln \frac{(Cs - Co)}{(Cs - C)}$	Coeficiente K em 2 Horas ⁻¹	Temperatura em Graus Cent.
4 9 9 9 7	< 70 0	4 000	4 497	24 270
1.3337	8.708	1.983	1.487	20. 279
1.3077	o. 741	2.041	1.492	20.287
1.4004	Ø. 758	2.071	1.479	26, 267
1.4345	6, 792	2.130	1.489	26.236
1.4072	0. 7 89	2. 190	1.452	26. 237
1.5014	o. 801	2.154	1.435	20. 222

Valor médio da temperatura = 26.336 Desvio Padrão temperatura = 0.077

Regression Output:

Constant	0.00000		
Sid Err of Y Est	0. 02304	X Coefficient(s)	1. 47758
R Squared	0. 99878	Sid err of Coef.	0. 00390
No. of Observations	40		
Degrees of Freedom	45		

Tabela A.11 - Dados p/ determinação Coeficiente K p/ ensaio 385 rpm

Valor do oxiganio inicial = 2.80 mg/l Valor do oxiganio Saturado = 7.30 mg/l

			Coeficiente	
Tempo	Oxig. Diss.	(Cs - Co)	K em	Temperatura
₽ M	(mg/l)	Ln (Cs - C)	2 -1	
horas	(no ensaio)		Horas	Oraus Cent.
0.0000	2.800	0.000	-x x -	26. 278
0.0338	3.045	0.050	1.055	26. 367
0.0080	3.289	0.115	1.091	26. 399
0.1007	3.521	0.175	1.733	20. 312
0. 1935	3.713	0.227	1.098	26. 344
0.1070	3. 920	0. 288	1.718	26. 400
0. 2003	4. 101	0. 341	1.704	20. 907
0.2344	4. 273	0. 997	1.092	26. 377
0.2071	4. 459	0. 459	1.714	26. 334
0. 301 2	4. 625	0.520	1.727	26. 959
0.3339	4. 785	D. 582	1.743	26. 204
0. 3 <i>66</i> 8	4. 920	0.037	1.737	26. 215
0.4009	5. 025	0. 682	1.701	20. 203
0.4336	5, 159	0.743	1.719	26.213
0.4677	5.209	0.796	1.701	26. 961
0. 5004	5. 369	0.840	1.091	26. 354
0. 5345	5.489	0.910	1.703	26. 201
0.5673	5. 621	0. 986	1.738	26. 392
0. 0014	5.714	1.043	1.734	26, 205
0. 6341	5.859	1.139	1.790	26. 195
0. 0008	5.842	1.127	1.690	26, 282
0.7008	5.940	1.201	1.713	26. 283
0.7330	Ø. 013	1.251	1.700	26. 351
0.7077	o. 025	1.201	1.043	20. 278
0. 8004	o. 125	1.343	1.678	20. 272
0.8945	o. 21,3	1.421	1.702	20. 279
0.8672	<i>6</i> . 270	1.475	1.700	26. 274
0. 901 3	o. 325	1.529	1.697	20. 302
0. 9340	<i>6</i> . 330	1.595	1.643	26, 224
0. 9007	<i>6.</i> 402	1.012	1.667	26. 243
1.0008	Ø. 419	1.629	1 . 02 2	26. 249
1.0335	o. 515	1.746	1.090	2 <i>6</i> . 335
1.0070	o. 548	1.789	1.070	26. 296
1.1003	6. 6D1	1.863	1.693	26.172
1.1344	o. 659	1.948	1.718	26. 289
1.1071	0. 09 8	2.011	1.729	20. 279
1.2012	Ø. 715	2.039	1.098	26.276

Continuação da tabela A.11 -

Tabela A.11 - Dados p/ determinação Coeficiente K $_2$ p/ ensaio 358 $_{\rm rpm}$

Valor do oxigenio inicial = 2.80 mg/l Valor do oxigenio Saturado = 7.30 mg/l

Tempo em horas	Oxig. Diss. (mg/l) (no ensaio)	$Ln \frac{(Cs - Co)}{(Cs - C)}$	Coeficiente K em 2 -1 Horas	Temperatura em Graus Cent.
1.2339	6.726	2.059	1.008	26. 252
1.2090	6.703	2.019	1.592	20. 325
1.3007	o. 758	2.117	1.627	26. 289
1.3334	0.79 8	2. 193	1.645	26. 293

Valor médio da temperatura = 26.292 Desvio Padrão temperatura = 0.060

Regression Output:

Constant	0.00000		
Std Err of Y Est	0. 03208	X Coefficient(s)	1. 67714
R Squared	0.99764	Std err of Coef.	0.00040
No. of Observations	41		
Degrees of Freedom	40		

Tabela A.12 - Dados p/ determinação Coeficiente K p/ ensaio 450 rpm $\frac{2}{2}$

165

Valor do oxiganio inicial = 2.80 mg/l Valor do oxiganio Saturado = 7.20 mg/l

Tempo em horas	Oxig. Diss. (mg/l) (no ensaio)	$Ln \frac{(Cs - Co)}{(Cs - C)}$	Coeficiente K em 2 Horas	Temperatura em Oraus Cent.
0.0000	2.800	0.000	-x x -	26. 200
0.0254	2.915	0.020	0.774	26. 459
0.0512	3.025	0.052	0.762	26. 355
0.0754	3.125	0.076	0.752	26. 376
0.1011	3. 229	101.0	0.759	26. 409
0. 1253	9. 337	0.129	0.767	26. 296
0.1510	3.458	0.100	0.799	26. 403
0. 1752	3. 510	0.174	0.741	26. 354
0. 2008	3. 617	0. 209	0.759	20, 294
0.2251	3.700	0. 2 28	0.750	26, 316
0. 2507	3,785	0. 250	0.749	26. 966
0.2764	9.84 6	0, 20 8	0.728	26. 306
0.3000	3. 920	0. 290	0.723	26. 235
0. 3263	4. 015	0.319	0.730	26. 300
0.3505	4.118	0. 351	0.751	26. 350
0.3761	4. 201	0. 378	0.750	26. 205
0.4004	4.240	0. 393	0.735	26. 398
0.4260	4.320	0.418	0.737	26. 373
0. 4502	4.418	0.452	0.752	26. 368
0. 4759	4. 489	0.477	0.753	26. 259
0. 5001	4. 539	0.496	0.742	26. 351
0. 5271	4. 648	0.537	0.700	26. 375
0.5513	4. 705	0.559	0.761	26. 3 68
0.5755	4. 790	0. 593	0.772	26. 312
0. 6012	4.856	0.620	0.775	26. 340
0. 6254	4.913	0.644	0.772	26. 288
0. 0311	5,002	D. 683	0.788	26. 377
0. 6753	4.998	0. 681	0.750	26. 285
0.7009	5.050	0.704	0.754	20. 298
0.7252	5.105	0.730	0.754	26. 189
0. 7508	5. 198	0.774	0.774	26. 272
0.7778	5.269	0, 809	0.782	26.180
0.8000	5.254	0. 902	0.751	26. 283
8.8203	5,356	0.854	D.770	20. 317

valor médio da temperatura = 26.437 Desvio Padrão temperatura = 0.058 Ensaio realizado 450 rpm

Regressio	n Output:		
Constant	D. 00000		
Std Err of Y Est	0.04004	x Coefficient(s)	3. 39266
R Squared	0.99768	Std err of Coef.	0. 01429
No. of Observations	34		
Degrees of Freedom	33		

APÊNDICE - B

DADOS DOS PARÂMETROS TURBULENTOS

RELACA	U DE DADOS	COLETAN	IOS NO EN	VSA10 EM 14	5 KPM -	icoleta nr	01)						
PONTÓ	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	tensã o	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO
1	1.1572	 61	1.2695	121	1.1621	181	1.0986	241	1.0059	301	1.1377	361	1.0889
2	1.1768	62	1.2598	122	1.1426	182	1.1377	242	0.9790	302	1.1133	362	1.1304
3	1.1621	63	1.1914	123	1.1377	183	1.1426	243	0.9814	303	1.0742	363	1.2036
4	1.1279	64	1.0913	124	1.1841	184	1.1572	244	0.9717	304	1.0376	364	1.2598
5	1.1182	65	1.0059	125	1.2231	185	1.1572	245	0.9717	305	1.0156	365	1.2988
6	1.1255	66	0.9961	126	1.2695	186	1.1572	246	0.9619	306	1.0010	366	1.3281
7	1.1523	67	1.0254	127	1.2988	187	1.1377	747	0.9619	307	0.9814	367	1.3452
8	1.1450	68	1.0767	128	1.2817	188	1.0913	748	0.9521	308	0.9766	368	1.3281
9	1.1133	69	1.0742	129	1.7500	189	1.0400	249	0.9570	309	0.9888	369	1.7769
10	1.0547	70	1.0670	130	1.1987	190	1.0010	250	0.9521	310	0 9963	370	1 2695
11	1.0107	71	1.0889	131	1.1377	191	6 9814	251	6.9619	115	0.9941	375	1 1474
17	0.9717	72	1 1353	132	1 1075	197	0.0011	252	A 0717	717	1 0050	273	1.1710
13	S 9619	73	\$ 1476	177	1 1035	192	6 9941	252	0.7717	312	1.0037	372	1.0007
14	0 9570	74	1 2024	174	1 1770	198	1 0107	200	1 0357	210	0 0005	278	1.0152
15	0 9570	75	1.1000	124	1 1230	105	1.0107	755	1.0332	714	0.7703 A 0744	3/4 275	1.0130
12	A 0000	72	1 7021	120	1,1070	173	1.075	200	1.0070	212	0017100 A 0501	3/3	V.770/ 0.07//
10	1 4547	70	1.2001	130	1.2000	170	1.1023	230 757	1.1230	210	V.7321	3/5	0.9/66
10	1,000	() 07	1.2000	131	1.0202	17/	1.1714	250	1.1000	210	4.72//	3//	V.7044
10	1.1/72	20 70	1.2402	100	1.3721	178	1.2347	238	1.0/92	318	0.9229	3/8	1.0136
17	1.0003	(7 00	1.2107	137	1.0718	177	1,2/44	239	1.0447	319	8.9229	319	1.05/6
20	1.3323	8V 01	1,1810	140	1.086/	200	1,2349	260	1.0449	520	0.9277	380	1.0/42
22	1.0104	01	1.1328	141	1.0020	201	1.2138	261	1.0543	321	0.9668	381	1.1230
22	1.2108	82	1,1011	142	1.3086	202	1.1865	262	1.1328	322	1.0107	382	1.1914
20	1.0984	80	1.0412	143	1.2598	203	1.2305	263	1.2134	323	1.0767	383	1.2354
29 55	1.0010	34 05	1.0913	144	1.2109	204	1.1987	264	1.2793	324	1.1523	384	1.2793
23	8996.0	83	1.1504	145	1.1/14	205	1.2061	265	1.2988	325	1.2109	385	1.2939
26 .	0.95/0	86	1.1523	146	1.1621	206	1.1768	266	1.2793	326	1.2573	386	1.3086
27	0.9/90	87	1.2061	147	1,1523	207	1.1377	267	1.2598	327	1.2744	387	1.2939
28	1.0449	88	1.2451	148	1.1450	208	1.1377	268	1.4722	328	1.2744	388	1.2598
29	1.1035	89	1.2342	149	1.1426	209	1.1572	269	1.1328	329	1.2695	389	1.2646
30	1.1743	90	1,2988	150	1.1523	210	1.2085	270	1.0913	330	1.2598	390	1.2646
31	1.2109	91	1.3086	151	1.1621	211	1.2500	271	1.0547	331	1.2549	391	1.2842
32	1.2378	92	1.2939	152	1.1914	212	1.2671	272	1.0376	332	1.2256	392	1.2964
33	1.2305	93	1,2744	153	1.2134	213	1.2500	273	1.0229	333	1,1670	393	1.2866
34	1.1816	94	1.2598	154	1,2158	214	1.2207	274	1.0254	334	1.1621	394	1.2695
35	1.1426	95	1,2305	155	1.2305	215	1.2158	275	1.0400	335	1.1523	395	1.2305
36	1.0815	96	1.1938	156	1.2549	216	1.2061	276	1.0449	336	1.1621	396	1.1816
37	1.0447	97	1.1621	157	1,3135	217	1.2061	277	1.0303	337	1.1719	397	1.1377
38	1.0547	98	1,1255	158	1.3477	218	1.1768	278	1.0107	338	1.2061	398	1.0889
39	1.0742	99	1.1328	159	1.3477	219	1.1475	279	0.9912	339	1.1914	399	1.0498
40	1.0913	100	1.1792	160	1.2788	220	1.1377	280	0.9619	340	1.1694	400	1.0352
41	1.1084	101	1.2012	161	1.2158	221	1.1475	281	0.9326	341	1.1230	401	1.0352
42	1.0887	102	1.2158	162	1.1426	222	1.1914	282	0.9326	342	1.0767	402	1.0645
43	1.0645	103	1.2158	163	1.0889	223	1.2012	283	0.9399	343	1.0718	403	1.1157
44	1.0107	104	1.1865	164	1.0571	224	1.1938	284	0.9473	344	1.0840	404	1.1719
45	0.9814	105	1.1475	165	1.0645	225	1.1523	285	0.9888	345	1.1279	405	1.2158
46	0.9766	106	1.1182	166	1.0767	226	1.1133	786	1.0754	344	1 1572	404	1 7407
47	0.9814	107	1.0791	167	1.0840	222	1.0889	200	1 0449	747	1 1914	400	1 2305
48	0.9668	108	1.0449	168	1.0864	228	1.0840	788	1 0067	749	1 1749	409	1.1003
49	0.9717	109	1.0449	169	1.1035	220	1 0013	200	1 1597	740	1 1012	400	1.1717
50	0.9619	110	1.0400	178	1.1255	230	1 1230	790	1 1914	350	1 1010	410	1.1237
51	0.9717	111	1.0596	171	1.1719	200	\$ \$377	200	1 2802	751	1 1012	410	1 00522
52	0.9766	112	1.0984	t72	1,7159	233	1.1579	202	1.7495	166 757	1 1012	111	1.0037
53	0,9888	113	1,1621	173	1.7540	232	1 1470	202	1 7784	332 757	1 1007	712	0.7000 0.07/2
54	1.0254	114	1,7707	174	1.2574	100	1 1747	273 701	1.11777	7E4	1.170/ 1.70/	410	V:7/00
55	1.0791	115	1.2500	175	1 7100	775	1.1/40	274	1.4073	039 7e=	1.2083	919 415	1 0010
54	1 1197	114	1 7744	174	1 1270	233	01011	27J 70/	1.1329	222 751	1.2012	913 	1,0010
. 57	1 1197	117	1 7LAL	177	1 10/0	200 777	1.1090	27b 907	1.2303	338 757	1.16/0	416	1.0449
57 50	1 1970	110	1.1040 1 07AE	111	1.1004	237	1.1920	297	1.2104	331	1.1230	41/	1.0742
50 50	1 1577	110	1 1017	1/8 (70	1,0043	258	1.1011	298	1.1/68	338	1.0887	418	1.1182
51 40	1 2207	170	1.1703	1/7	1.03//	79A	1.0040	299	1.1571	539	1.0/42	419	1.1426
50	10254	120	1.1714	1983	0.0010	2413	1.0000	5685) 15./ %	540	1 61747	370	1 1270

) E) ACĂ	a ne nanor	COLETA	NOC NO CHO	ATO CH 14	5 DOM _	(colota or	A11 +	CONTINUAD	• • • • •				168
IEL HYH Yn yf r	NU DE DADUE TENEÃO	DOULD HI	185 NO ENG TENDÃO	HIU ER 14	- 878 - דרעראר	COLECA AF	. V1) 4 TEWEXA	(CONTINUED	.HU) TENEÃO	DONTO	τεμελο	DONTO	าคมกิลก
UNIU 	1EN3AU	PUNIU	1ENSAU	PUNIU	120340	PUN30	128580	PURID	1ENSAU	PUN 90	120380	PUNIU	1ENDHU
421	1.1816	481	1.1475	541	1.2451	601	1.1230	661	1.0010	721	1.3867	781	1.1279
422	1.1674	482	1.0596	542	1.2402	602	1.1621	662	0.9717	722	1.4526	782	1.0887
423	1.1621	483	1.0010	543	1.2305	603	1.1816	663	0.9961	723	1.5039	783	0.9961
424	1.1572	484	0.9863	544	1.2012	604	1.2109	664	1.0742	724	1.5137	784	0.9326
425	1.1523	485	0.9961	545	1.1914	605	1.2256	665	1.1523	725	1.4844	785	0.9229
426	1.1377	486	1.0156	546	1.1865	606	1.2158	666	1.2842	726	1.4136	786	0.9326
427	1.1426	487	1.0718	547	1.1914	607	1,1768	667	1.3574	727	1.3330	787	0,9570
428	1.1230	488	1.1450	548	1.2061	608	1.1719	668	1.3477	728	1,2451	788	1,1914
429	1.1426	489	1.2207	549	1.2305	609	1.1743	667	1.2695	729	1.1621	789	1.5967
430	1,1425	490	1.3159	550	1.2695	610	1.2109	670	1.1914	730	1.0742	790	1.8164
431	1.1377	491	1.3867	551	1,7866	611	1.2793	671	1.1670	731	1.0059	791	1,8355
432	1.1206	492	1.4404	552	1.2793	612	1.3184	672	1.1182	732	0.9790	792	1.7456
433	1.1779	493	1.4648	553	1.2354	613	1.3493	673	1.0498	733	6.9746	793	1.5723
434	1.1133	494	1.4355	554	1.2109	614	1.3477	674	0.9961	734	0.9814	794	1.3818
435	1.1035	495	1.3721	555	1.1963	615	1.3208	675	0.9814	735	0 9917	795	1.1947
436	1.0791	496	1.2793	556	1.2207	616	1.2793	676	0.9912	736	A 9843	796	1 0570
437	1 0599	170	1 1577	557	1 2726	117	1 2100	570	1 0100	777	A 0014	707	1 0758
439	1 0577	499	1 6400	559	1 7917	619	1 1507	677	1 1275	739	0.7014	700	1.0251
470	1.0012	400	A 0717	550	1 2140	610	((777	670 170	1.1475	770	A 0110	700	1.0331
440 	1 1094	500	0.077L	540	1 0747	617 470	1.1377	0/1 LQA	1.2073	780	A 9722	000	1.0070
441	1 1471	500	A 0171	500	7.0072	620	1.1720	201	1.3300	741	1 0078	000	1.113.
337	1 1450	501	V.7131 A 9459	301 547	0,7003	521 277	1,1401	100	1 2791	741	1.0034	001	1,1230
772 447	1.1730	502	0.00/0	502	0.1013	011	1.1200	001 / 07	1,2070	742	1.0332	002	1,1013
440 स्वर	1,1420	503	V.070V A 9104	300	1 0701	013	1.0040	003	1,1753	743	1.0376	803	1.2138
777 115	1.1323	504	V.710V	204	1.0/71	024	1.0470	004 (DE	1.14/3	744	1.0378	004	1,207
943 221	1,1240	303	0.07217	303	1.2334	6Z3 797	1.0400	680 707	1.1033	/43	1.0400	508	1,2988
775 **7	1.1041	JV6 507	0.7323	388	1.33/4	525	1.0447	000	1.0887	/ 45	1.0332	805	1.34//
991 110	1.1046	207	0.9321	36)	1.4183	621 (20	1.1182	687	1.0791	34J 740	1.0352	807	1.3428
448	1.1010	500	V.7000	368	1,3523	628	1.1703	588	1.0889	/48	1.0234	808	1.7485
44Y 153	1.1816	209	7.0024	369	1.2334	629	1.2646	687	1.0713	/44	1.0303	809	1.218
430	1.1/43	310	1.0/91	570	1.0986	630	1.2549	690	1.0889	/50	1.1135	810	1.1450
451	1.1621	511	1.2012	571	1.0327	631	1.1597	691	1.0889	751	1.2109	811	1.0742
452	1.1/14	512	1.3208	572	1.0254	632	1.0596	692	1.0791	752	1.2744	812	1.0352
453	1.1938	513	1.4160	573	1.0547	633	1.0107	693	1.0742	753	1.3525	813	1.0352
454	1.2207	514	1,4741	574	1.0815	634	1.0156	694	1.0840	754	1.4893	814	1.0742
455	1.2695	515	1.5527	575	1.0913	635	1.0474	695	1.1035	755	1.6943	815	1.1304
456	1.3086	516	1.5820	576	1.1133	636	1.0742	696	1.0840	756	1.7480	816	1.2061
457	1.3013	517	1.5625	577	1.1279	637	1.1255	697	1.0498	757	1.5601	817	1.2646
458	1.2402	518	1.4502	578	1.1523	638	1.2402	698	1.0205	758	1.2695	818	1.2549
459	1.1719	519	1.2988	579	1.1768	639	1.3696	699	1.0205	759	1.0059	819	1.1941
460	1.1084	520	1.2549	580	1.2012	640	1.4160	700	1.0303	760	0.9204	820	1.1035
461	1.0791	521	1,0864	581	1.1914	641	1.3452	701	1.0498	761	0.8984	821	1.0547
462	1.0962	522	0.9961	582	1.1621	642	1.2061	702	1.0986	762	0.8838	822	1.0498
463	1.1719	523	0.9692	583	1.1255	643	1,0887	703	1.1621	763	0.9033	823	1.0205
464	1.2769	524	0.9766	584	1.1035	644	1.0478	704	1.2158	764	0.9229	824	0.9863
465	1.3818	525	1.0034	585	1.0913	645	1.0400	705	1.2451	765	0.9351	825	0.9668
466	1.4160	526	1.0742	586	1.1035	646	1.0205	706	1.2354	766	0.9448	826	0.9619
467	1.3770	527	1,1475	587	1.1035	647	1.0205	707	1.2061	767	0.9619	827	0.957(
468	1,2891	528	1.2012	588	1.0962	648	1.0449	708	1.1523	768	1.0010	828	0.9717
469	1.2012	529	1.1963	589	1.0889	649	1.0889	709	1.1279	769	1.0791	829	0.9912
470	1.1328	530	1.1279	590	1.0889	650	1.1426	710	1.1670	770	1.2109	830	1.0400
471	1.0913	531	1.0083	591	1.0498	651	1.1597	711	1.1450	771	1.3550	831	1.0913
472	1.0913	532	0.9570	592	1.0107	652	1.1230	712	1.0840	772	1.4844	832	1.167(
473	1.1230	533	0.9399	593	0.9814	653	1.1230	713	1,0571	773	1.5137	833	1.2305
474	1.1719	534	0.9375	594	0.9668	654	1.1621	714	1.0352	774	1.3672	834	1.2354
475 .	1.2500	535	0.9570	595	0.9717	655	1.2646	715	1.0059	775	1.0620	835	1.1426
476	1.3110	536	0.9961	596	0.9668	656	1.3623	716	1.0181	776	0.9229	836	1.0205
477	1.3574	537	1.0596	597	0.9668	657	1.3965	717	1.0449	777	0.8984	837	0,9741
478	1,3647	538	1.1182	598	0.9717	658	1.3379	718	1.0571	778	0.8911	838	1.0254
479	1.3232	539	1.1719	599	1.0059	659	1,2158	719	1,1328	779	0,9277	839	1.1890
480	1.2354	540	1.2183	600	1.0596	660	1.1035	720	1,2866	780	1.0620	840	1.2891

_													169
RELAÇA Ponto	o de dado: Tensão	S COLETAD PONTO	OS NO ENS TENSÃO	SAIO EM 14 PONTO	5 RPM - TENSÃO	(coleta nr PONTO	. 01) ‡ TENSÃO	(CONTINUAC PONTO	ao) Tensão	PONTO	tensão	PONTO	TENSÃO
841	1.2158	 701	0.8887	 961	1.1914	1021	1.0913	1081	1.1768	1141	1.2695	1201	0.7446
842	1.1230	902	0.8887	962	1.1763	1022	1.1475	1082	1.2305	1142	1.2695	1202	A.9668
843	1.1133	903	0.9229	963	1.1865	1023	1.2158	1083	1.2744	1143	1.2207	1203	0.9692
844	1.5045	904	0.9717	964	1.1377	1024	1.2988	1084	1.3135	1144	1.1523	1204	0.9961
845	1.2598	905	1.0205	965	1.0645	1025	1.3867	1085	1.3135	1145	1.1035	1205	1.0449
846	1.2354	906	1.0742	966	1.0059	1026	1.4258	1086	1.2988	1146	1.0889	1206	1.0767
847	1.1523	907	1.1279	967	0.9668	1027	1.3916	1087	1.2842	1147	1.0986	1207	1.1011
848	1.1304	908	1.1670	968	0.9448	1028	1.3208	1088	1.2549	1148	1.1035	1208	1.0786
849	i.1816	909	1.1792	969	0.9717	1029	1.2598	1089	1.1914	1149	1.0645	1209	1.0742
850	1.2109	910	1.1719	970	1.0156	1030	1.1963	1090	1.1230	1150	1.0059	1210	1.0205
851	1.1963	911	1.1914	971	1.0425	1031	1.1426	1091	1.0840	1151	0.9717	1211	0.9814
852	1.1426	912	1.2329	972	1.0547	1032	1.1133	1092	1.0645	1152	0.9619	1212	0.9570
853	1.1035	913	1.2695	973	1.0791	1033	1.0742	1093	1.0596	1153	0.9741	1213	0.9424
854	1.0742	914	1.2402	974	1.0889	1034	1.0547	1094	1.0352	1154	0.9912	1214	0.9326
855	0.9912	915	1,1621	975	1.0522	1035	1.0400	1095	1.0107	1155	1.0156	1215	0.9277
856	9.9277	916	1.0938	976	1.0059	1036	1.0303	1096	1.0303	1156	1.0278	1216	0.7351
857	0.9082	917	1.0498	977	0.9863	1037	1.0303	1097	0.9961	1157	1.0352	1217	0.9521
858	0.9082	918	1.0400	978	0.9595	1038	1.0478	1078	0.9570	1158	1.0352	1218	0.9717
859	0.9619	919	1.0498	979	0.9180	1039	1.0791	1099	0.9570	1159	1.0400	1219	1.0156
860	1.0840	920	1.0645	780	0.8789	1040	1.1084	1100	0.9717	1160	1.0742	1220	1.0522
861	1.2061	921	1.0742	981	0.8813	1041	1.1304	1101	0.9912	1161	1.1133	1221	1.0498
862	1.3037	922	1.0742	982	0,8887	1042	1.1523	1102	1.0352	1162	1.1475	1222	1.0181
863	1.4014	923	1.1084	983	0.9204	1043	1.1816	1103	1.0645	1163	1.1570	1223	0.9668
864	1.4990	924	1.1377	984	0,9570	1044	1.2207	1104	1.0913	1164	1.1621	1224	0.9497
865	1.4648	925	1.1865	785	0.9497	1045	1.2451	1105	1.1377	1165	1.1377	1225	0.9375
866	1.2305	926	1.2354	986	0.9375	1046	1.2695	1106	1.2354	1166	1.0786	1226	0.9351
867	1.0156	927	1.2939	987	1.0156	1047	1.2354	1107	1,3599	1167	1.0571	1227	0.9497
868	0.9692	928	1.3232	988	1.1377	1048	1,1714	1108	1.4551	1168	1.0352	1228	0.9766
869	0.9863	929	1.3086	78 9	1.0522	1049	1.1523	1109	1.5430	1169	0.9985	1229	0.9839
870	1.0083	930	1.2793	990	1.0156	1050	1.1328	1110	1.5723	1170	0.9766	1230	0.9814
871	0.9863	931	1.2793	991	1.0376	1051	1.1011	1111	1.5723	1171	0.9351	1231	0.9717
872	0.9473	932	1,2988	992	1.1426	1052	1.0742	1112	1.5430	1172	0.9326	1232	0.9619
873	0.9277	933	1.3184	993	1,2842	1053	1.0645	1113	1.4771	1173	0.9326	1233	0.9570
874	0.9473	934	1.3135	994	1.3501	1054	1.0693	1114	1.4160	1174	0.9570	1234	0.9619
875	0.9766	935	1.2939	995	1.3965	1055	1.0913	1115	1.3477	1175	0.9912	1235	0.9814
876	0.9839	936	1.2842	996	1,4087	1056	1.0815	1116	1.2695	1176	1.0596	1236	1.0132
877	0.9668	937	1.2500	997	1.3574	1057	1.0522	1117	1.1963	1177	1.1816	1237	1.0352
878	0.9521	938	1,2036	998	1.3135	1058	1.0229	1118	1.1523	1178	1.3257	1238	1.0767
879	0.9570	939	1.1621	999	1.3330	1059	1.0010	1119	1.1279	1179	1.3574	1239	1.1133
880	0.9766	940	1.1377	1000	1.3281	1060	0.9814	1120	1,1084	1180	1.2744	1240	1.1255
881	1.0034	741	1.1182	1001	1.2598	1061	0.9863	1121	1.0889	1181	1.2524	1241	1.0840
882	0.7814	942	1,1084	1002	1.2402	1062	0.7961	1122	1.0478	1182	1.3574	1242	1.0376
883	0.9326	943	1.0596	1003	1.2817	1063	1.0010	1123	1.0400	1183	1.4673	1243	1.0059
884	0.9033	944	0.9961	1004	1.2793	1064	1.0059	1124	1.0522	1184	1.4941	1244	0.9961
385	0.8960	945	0.9570	1005	1,2305	1065	1.0156	1125	1.0742	1185	1.4355	1245	1.0132
886	0.9131	946	0.9351	1006	1.1841	1066	1.0327	1126	1.0889	1186	1.3477	1246	1.0376
887	0.9326	947	0.9229	1007	1.1816	1067	1.0547	1127	1.0742	1187	1.2451	1247	1.0962
888	0.9570	948	0.9131	1008	1.2012	1068	1.1157	1128	1.0669	1188	1.1572	1248	1.1621
889	1.0057	949	0.9204	1009	1.2134	1069	1.1426	1129	1.0840	1189	1.1182	1249	1.2109
870	1.0278	950	0.9766	1010	1.2012	1070	1.1816	1130	1.1426	1170	1.1133	1250	1.2085
891	1.0156	951	1.0742	1011	1.1816	1071	1.2207	1131	1.2036	1191	1.1304	1251	1,1719
892	0.9619	952	1.1475	1012	1.1353	1072	1.2305	1132	1.2012	1192	1.1597	1252	1.1304
893	0.9351	953	1.1621	1013	1.0762	1073	1.2134	1133	1.1963	1193	1.1792	1253	1.1230
894	0.9082	954	1.1719	1014	1.0645	1074	1.1914	1134	1.1963	1194	1.1670	1254	1.1841
895	0.8960	955	1.1670	1015	1.0107	1075	1.1841	1135	1.2500	1195	1.1182	1255	1.2793
896	0.8936	956	1.1523	1016	0.9790	1076	1.1914	1136	1.2842	1196	1.0596	1256	1.3525
897	0.8887	957	1.1157	1017	0.9766	1077	1.2109	1137	1.2964	1197	1.0156	1257	1.3916
898	0.8936	958	1.1084	1018	0.9888	1078	1.2061	1138	1.2402	1198	0.9937	1258	1.4014
899	0.8736	959	1.1279	1017	1.0156	1079	1.1816	1139	1.2158	1199	0.9668	1259	1.3916
700	0.8887	960	1.1475	1020	1.0522	1080	1.1768	1140	1.2256	1200	0.9570	1260	1.3574

RELAÇÃ	ÃO DE DADO	S COLETAD	IOS NO ENS	AIO EM 14	5 RPM -	(coleta nr	. 01) #	(CONTINUAC	A8)				110
PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO
1261	1.2598	1321	1.3428	1381	1.1670	1441	1.2061	1501	1.3623	1561	1.1914	1621	1.0156
1262	1.1523	1322	1.3916	1382	1.1230	1442	1.1717	1502	1.3428	1562	1,1255	1622	1.0132
1263	1.0498	1323	1.3867	1383	1.0887	1443	1.1206	1503	1.3037	1563	1.0547	1623	1.0059
1264	1.0205	1324	1.3330	1384	1.0352	1444	1,1133	1504	1.2695	1564	1.0156	1624	1.0156
1265	1.0205	1325	1.2500	1385	0.9692	1445	1.1523	1505	1.2549	1565	0.9888	1625	1.0474
1266	1.0620	1326	1.2061	1386	0.9277	1446	1.1523	1506	1.2500	1566	0.9961	1626	1.0840
1267	1.1182	1327	1.1719	1387	0.8789	1447	1.0742	1507	1.2573	1567	1.0083	1627	1.1255
1268	1.1816	1328	1.1499	1388	0.8618	1448	1.0107	1508	1.2500	1568	1.0352	1628	1.1426
1269	1.2305	1329	1.1523	1389	0.8574	1449	0.9814	1509	1.2451	1569	1.0645	1629	1.1523
1270	1.2549	1330	1.1426	1390	0.8643	1450	1.0156	1510	1.2500	1570	1.1060	1630	1.1426
1271	1.2402	1331	1.1328	1391	0.8691	1451	1.0815	1511	1.2378	1571	1.1328	1631	1.1743
1272	1.1963	1332	1.1377	1392	0.8960	1452	1,1548	1512	1.2012	1572	1.1523	1632	1.2012
1273	1.1182	1333	1.1304	1393	0.9619	1453	1.2402	1513	1.1841	1573	1.1719	1633	1.2231
1274	1.0645	1334	1.0786	1394	1.0840	1454	1.3184	1514	1.1621	1574	1.1963	1634	1.2573
1275	1.0791	1335	1.0742	1395	1.2061	1455	1.3965	1515	1.1597	1575	1.2061	1635	1.2744
1276	1.1133	1336	1.0425	1396	1.2793	1456	1.4038	1516	1.1523	1576	1.2256	1636	1.2842
1277	1.1426	1337	1.0522	1397	1.3232	457	1.3647	1517	1.1572	1577	1.2451	1637	1.2451
1278	1.1548	1338	1.0693	1398	1.3086	1458	1.2866	1518	1.1572	1578	1.2451	1638	1,1914
1279	1.1523	1339	1.0986	1399	1.2842	1459	1.2256	1519	1.1426	1579	1.2305	1639	1.1133
1280	1.1523	1340	1.1035	1400	1.2354	1460	1.1816	1520	1.1279	1580	1.2085	1640	1.0478
1281	1.1548	1341	1.1182	1401	1.1914	1461	1.1523	1521	1.1133	1581	1.1768	1641	1.0107
1282	1.1426	1342	1.1572	1402	1.1523	1462	1.1182	1522	1.1084	1582	1.1572	1642	0.9863
1283	1.1133	1343	1.1963	1403	1.1279	1463	1.0693	1523	1.1084	1583	1.1279	1643	0.9717
1284	1.0962	1344	1,2061	1404	1.0840	1464	1.0303	1524	1.1133	1584	1.0786	1644	0.9741
1285	1.1133	1345	1.1377	1405	1.0596	1465	1.0083	1525	1,1157	1585	1.0962	1645	1.0156
1286	1.1450	1346	1.0791	1406	1.0645	1466	1.0156	1526	1,1328	1586	1.1230	1646	1.0474
1287	1.1426	1347	1.0449	1407	1.1035	1467	1.0400	1527	1.1377	1587	1.1743	1647	1.0889
1288	1.1353	1348	1.0498	1408	1.1523	1468	1.0742	1528	1.1572	1588	1.2305	1648	1.2012
1289	1.1133	1349	1.0791	1409	1.1914	1469	1.0889	1529	1.1670	1589	1.2427	1649	1.3086
1290	1.0840	1350	1.1084	1410	1.2354	1470	1.0645	1530	1.1865	1590	1.2500	1650	1.3574
1291	1.1011	1351	1.1182	1411	1.2988	1471	1.0303	1531	1.1670	1591	1.2061	1651	1.3379
1292	1.1621	1352	1.0889	1412	1.3232	1472	1.0156	1532	1.1523	1592	1.1572	1652	1.2500
1293	1.2402	1353	1.0791	1413	1,2891	1473	0.9863	1533	1.1230	1593	1.1133	1653	1.1523
1294	1,2305	1354	1.1133	1414	1.2402	1474	0.9692	1534	1.1304	1594	1.0596	1654	1.0571
1295	1,1914	1355	1.1621	1415	1.1768	1475	0.9644	1535	1.1523	1595	1.0205	1655	0.9961
1296	1.1670	1356	1.1987	1416	1,1230	1476	0.9570	1536	1.1475	1596	0.9766	1656	0.9790
1297	1.2061	1357	1.2402	1417	1.0791	1477	0.9570	1537	1.1572	1597	0.9424	1657	0.9668
1298	1.2061	1358	1.2744	1418	1.0645	1478	0.9619	1538	1.1816	1598	0.9326	1658	0.9961
1299	1.1035	1359	1.2988	1419	1.0400	1479	0.9570	1539	1.1816	1599	0.9229	1659	1.0352
1300	0.9912	1360	1.3037	1420	1.0254	1480	0.9619	1540	1.1377	1600	0.9424	1660	1.0840
1301	0.9351	1361	1.2939	1421	1.0303	1481	0.9741	1541	1.0913	1601	0.9741	1661	1.1060
1302	0.9351	1362	1.2646	1422	1.0449	1482	1.0156	1542	1.0522	1602	1.0478	1662	1,1035
1303	0.9619	1363	1.2158	1423	1.0645	1483	1.0913	1543	1.0522	1603	1.1475	1663	1.0840
1304	1.0693	1364	1.1719	1424	1.0913	1484	1.1914	1544	1.0645	1604	1.2500	1664	1.0742
1305	1.2646	1365	1.0913	1425	1.1548	1485	1.2695	1545	1.0669	1605	1.3037	1665	1.0596
1306	1.4551	1366	1.0229	1426	1.2109	1486	1,2500	1546	1.0547	1606	1.2988	1666	1.0673
1307	1.4771	1367	0.9717	1427	1.2378	1487	1.1621	1547	1.0156	1607	1.2695	1667	1.1035
1308	1.3281	1368	0.9424	1428	1.2744	1488	1.0474	1548	0,9790	1608	1.2256	1668	1.1377
1309	1.0913	1369	0.9229	1429	1.2842	1489	1.0059	1549	0.9570	1609	1,1865	1669	1.1426
1310	0.9570	1370	0.9326	1430	1.2793	1490	0.9668	1550	0.9570	1610	1.1572	1670	1.1133
1311	0.9180	1371	0.9570	1431	1.2402	1491	0.9668	1551	0.9790	1611	1.0913	1671	1.0693
1312	0.9082	1372	1.0010	1432	1.2158	1472	0.9668	1552	1.0156	1612	1.0303	1672	1.0303
1313	0.9082	1373	1.0742	1433	1.2158	1493	1.0156	1553	1.1011	1613	0,9961	1673	1,0278
1314	0.9326	1374	1.1763	1434	1.2500	1474	1.0889	1554	1,2280	1614	0.9766	1674	1,0352
1315	0.9717	1375	1.2939	1435	1.2744	1495	1,1792	1555	1,2891	1615	0.9917	1675	1.0913
1316	1.0352	1376	1.3232	1436	1.2598	1496	1.2549	1556	1.3159	1616	1,0156	1676	1,1816
1317	1.0742	1377	1.3135	1437	1.2402	1497	1.3037	1557	1,3281	1617	1.0400	1677	1,2500
1318	1.1060	1378	1.2744	1438	1.2354	1478	1.3477	1558	1,3208	1618	1,0547	1678	1,3037
1319	1.1719	1379	1.2402	1439	1.2256	1499	1.3818	1559	1,2695	1617	1.0498	1679	1.3477
1320	1.2646	1380	1.1963	1440	1.1914	1500	1.3818	1560	1.2402	1620	1.0400	1680	1.3672

													171
RELAÇÃ	O DE DADO	S COLETAD	OS NO ENS	AIO EM 14	5 RPM -	(coleta nr	. 01) 1	(CONTINUAC	AQ)		_		-
PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSAO	PONTO	TENSAO
1681	1.3647	1741	0.9473	1801	1,1523	1861	1.0791	1921	1.2451	1981	1.3330	2041	1.2695
1682	1.3574	1742	0.9668	1802	1.1377	1862	1.1230	1922	1.3330	1982	1.3477	2042	1.2695
1683	1,3135	1743	1.0352	1803	1.1182	1863	1.1674	1923	i.3428	1983	1.3330	2043	1,2817
1684	1.2549	1744	1.1035	1804	1.0742	1864	1,2305	1924	1.2988	1984	1.3135	2044	1.3232
1685	1.2085	1745	1.1914	1805	1.0303	1865	1.2622	1925	1.1914	1985	1.2598	2045	1.3574
1686	1.1914	1746	1.1816	1806	1.0010	1866	1.2695	1926	1.0498	1986	1.2061	2046	1.3721
1687	1.2061	1747	1.2305	1807	0.9912	1867	1.2720	1927	0,9668	1987	1.1475	2047	1.3257
1688	1.2158	1748	1.3086	1808	1.0010	1868	1.2988	1928	0.9424	1988	1.0840	2048	1.2500
1689	1.2256	1749	1.3477	1809	1.0705	1869	1.2891	1929	0.9717	1989	1.0156	2049	1.1597
1690	1.7646	1750	1.3013	1810	1.0352	1870	1.2573	1930	1.0254	1770	0,9741	2050	1.0742
1691	1.3135	1751	1.2207	1811	1.0596	1871	1.2402	1931	1.1035	1991	0.9521	2051	1.0229
1692	1.3672	1752	1.1523	1812	1.0889	1872	1.2329	1932	1,1523	1992	0.9424	2052	0.9912
1693	1.4038	1753	1.0791	1813	1.0815	1873	1.2109	1933	1.1914	1993	0.9570	2053	1.0010
1694	1.4209	1754	1.0791	1814	1.0786	1874	1.2085	1934	1.1768	1994	0.9814	2054	1.0400
1695	1.4014	1755	1.1279	1815	1.1182	1875	1,1963	1935	1.1816	1995	1.0156	2055	1.1084
1696	1.3623	1756	1.2354	1816	1,1377	1876	1.1914	1936	1.2012	1996	1.0278	2056	1.1670
1697	1.3086	1757	1.3281	1817	1.1377	1877	1.1865	1937	1.2744	1997	1.0352	2057	1.1523
1678	1.2549	1758	1.3574	1818	1.0913	1878	1.1963	1938	1.3623	1998	1.0596	2058	1.1133
1699	1.2305	1759	1.2793	1819	1.0742	1879	1.1621	1939	1.4502	1999	1.1157	2059	1.0596
1700	1,1768	1760	1,1714	1820	1,0352	1880	1,1670	1940	1.5039	2000	1,2012	2060	1.0498
1701	1.1523	1761	1,1157	1821	1.0107	1881	1.1572	1941	1.5088	2001	1.2842	2061	1.0620
1702	1.1182	1762	1.0864	1822	0,9961	1882	1.1621	1942	1.4526	2002	1.2988	2062	1.1133
1703	1.0791	1763	1.1426	1823	0.9790	1883	1.2012	1943	1.3379	2003	1.2695	2063	1.1523
1704	1.0498	1764	1.2500	1824	0.9863	1884	1.2500	1944	1.2207	2004	1.2305	2064	1.2012
1705	1.0596	1765	1.3867	1825	0.9961	1885	1.3037	1945	1.1133	2005	1.1914	2065	1.2158
1706	1.0645	1766	1.3965	1825	1.0059	1886	1.3086	1946	1.0742	2006	1.1572	2066	1,2305
1707	1.0498	1767	1.3306	1827	1.0278	1887	1.3086	1947	1.0889	2007	1.1475	2067	1.2451
1708	1.0303	1768	1.3086	1828	1.0742	1888	1.2695	1948	1.1084	2008	1.1426	2068	1,2012
1709	1.0449	1769	1.3672	1829	1.1133	1889	1.2256	1949	1.1768	2009	1.1279	2069	1.1279
1710	1.0889	1770	1.3818	1830	1,1328	1870	1.1670	1950	1.2354	2010	1,1084	2070	1.0576
1711	1.1377	1771	1.3184	1831	1.1597	1871	1.1377	1951	1.2354	2011	1.0913	2071	1.0522
1712	1,1914	1772	1.1963	1832	1.1694	1892	1,1230	1952	1.1792	2012	1.0840	2072	1.0889
1713	1,2280	1773	1.0889	1833	1.1621	1893	1.0840	1953	1.1768	2013	1.0864	2073	1.1475
1714	1.2402	1774	1.0498	1834	1.1328	1874	1.0742	1954	1.2085	2014	1.0742	2074	1.1914
1715	1.2720	1775	1.0498	1835	1.1304	1895	1.0889	1955	1.2842	2015	1.0571	2075	1.2012
1716	1.2842	1776	1.0693	1836.	1.1377	1896	1.1133	1956	1.3281	2016	1.0547	2076	1.2061
1717	1.3086	1777	1.0840	1837	1,1768	1897	1,1426	1957	1.3428	2017	1.0522	2077	1.2012
1718	1.3184	1778	1.1279	1838	1.2158	1898	1.1548	1958	1.3184	2018	1.0693	2078	1.2085
1719	1.3281	1779	1.1719	1839	1.2305	1899	1,1719	1959	1.2769	2019	1,0840	2079	1,2549
1720	1.2866	1780	1,1987	1840	1.2305	1900	1,2085	1960	1.2207	2020	1.1133	2080	1.2988
1721	1.2158	1781	1.0938	1841	1.2695	1901	1.2842	1961	1.2012	2021	1.1572	2081	1,3159
1722	1.1377	1782	0.9814	1842	1.3086	1902	1.3599	1962	1.1768	2022	1.2256	2082	1.2842
1723	1.0913	1783	0.9424	1843	1.3184	1903	1.3965	1963	1.1523	2023	1.2598	2083	1.2354
1724	1.0742	1784	0.9424	1844	1.3257	1904	1.3696	1964	1,1279	2024	1.2646	2084	1.1572
1725	1.0547	1785	0.9814	1845	1.3281	1905	1.3086	1965	1.1182	2025	1.2451	2085	1.0693
1726	1.0400	1786	0.7668	1846	1.3232	1906	1.2793	1966	1.1377	2026	1.2158	2086	1.0352
1727	1.0352	1787	0.9180	1847	1.3232	1907	1.2891	1967	1,1279	2027	1.1768	2087	1.0498
1728	1.0645	1788	0.9033	1843	1.3379	1908	1,3086	1968	1.0913	2028	1.1475	2088	1.1133
1729	1.1035	1789	0.9180	1849	1.3330	1909	1.2500	1969	1,0400	2029	1.1377	2089	1.2085
1/30	1.14/5	1/90	0.9521	1850	1.303/	1910	1.1450	1970	1.0156	2030	1.1279	2090	1.3281
1731	1.1/19	1/91	1.0400	1851	1.2598	1911	1.0547	1971	1.0205	2031	1.1548	2071	1.3574
1/32	1,1079	1/92	1.10/0	1802	1.2083	1912	1.0447	1972	1.0447	2032	1.1714	2092	1.3737
1/33 1774	1.137/	1/95	1.23/3	1835	1.13/2	1715	1.0352	14/3	1.0713	2033	1.2036	2093	1.3184
1/34	1.0713	1799	1.3281	1924	1.1033	1714	1.02/8	14/4	1.13//	2034	1.2305	2044	1.5281
1133	1.0707	1/93	1.0484	1833	1.0/42	1715	1.0645	14/5	1.1/19	2035	1.2500	2095	1.3085
1130	1,0303	1746	1.9208	1839	1.0478	1716	1.03/1	19/6	1.1765	2036	1.2/44	2076	1.2329
1/3/	1.0305	1/9/	1,4065	185/	1.0156	1917	1.0449	1977	1.2402	2037	1.2842	2097	1.1523
1730	1.0107	1778	1.3330	1030	1.0034	1719	1,03/1	17/8	1.2720	2038	1.2488	2098	1.04/4
1737 1780	V.7/1/ A 957(1000	1 2013	107V 1934	1.0083	1717 1070	1 1400	1000	1.2/75	2039	1.2939	2099	1.0054
1111	A 1 1 5 4 7	1000	711715	1000	1.0002	1720	71471	1100	112110	2040	1.1173	TIOO	U.7712

RELACA	O DE DADOS	COLETAD	os no ensi	AIO EM 14	5 RPH -	(coleta nr	. 01) 1	(CONTINUAC	AO)				
PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO
													d
2101	1.0034	2161	1.3574	2221	1.1133	2281	1.0010	2341	1.3306	2401	1.4746	2461	1.0498
2102	1.0400	2162	1.2549	2222	1.1304	2282	1.0010	2342	1.3281	2402	1.5674	2462	0,9961
2103	1.0913	2163	1.1841	2223	1.3916	2283	0.9961	2343	1.2769	2403	1.5820	2463	1.0107
2104	1.1133	2164	1.1523	2224	1.8044	2284	1.0352	7344	1.2549	7404	1.4697	7464	1.0693
2105	1.0913	2165	1.1523	2225	7.0801	2285	1.1304	2345	1.2988	2405	1.2842	2465	1.0303
2100	1 0747	2100	1 0747	7776	7 1780	7792	1 2705	2010 7784	1 7470	7406	1 1001	74LL	0 9090
2100	1 0145	2100	1.070) A 0766	1110	1 0100	2200	1.2000	1070 0787	1 7175	7407	1.0100	2400	0.0504
2107	1.0070	2101	פטודיט הרכה ה	4443	1 5017	118/ 0000	1.0101	10710	1,0100	1111	4.0014	1907 1107	0.0074 A 0545
2100	1.0378	2100	0.7117	2220	1.3787	2280	1.33/4	2340	1,0201	2400	V.7014	2400	0.0004
7104	1.0378	2167	V.9277	2229	1.1983	2287	1.3281	2047	1.385/	2407	0.94/5	2967	0.8784
2110	1.0/91	2170	0.9766	2230	0.7644	2290	1.2866	2350	1.5281	2410	0.9229	2470	8.93/5
2111	1.0/42	21/1	1.0522	2231	0.4351	2291	1.2305	2351	1.1694	2411	0.9229	24/1	0.9106
2112	1.0449	2172	1.1230	2232	0.9131	2292	1.1621	2352	1.0742	2412	0.9521	2472	0.9473
2113	0.9839	2173	1.2207	2233	0.9229	2293	1.1426	2353	1.1182	2413	0.9814	2473	1.1426
2114	0.9473	2174	1.2451	2234	0.9521	2294	1.2012	2354	1.2109	2414	1.0010	2474	1.3965
2115	0.9473	2175	1.1719	2235	1.0791	2295	1,2427	2355	1.2744	2415	1.0059	2475	1,4648
2116	0.9888	2176	1.1304	2236	1.2305	2296	1.2305	2356	1.3525	2416	1.0010	2476	1.3672
2117	1.1230	2177	1,1133	2237	1,2549	2297	1.1572	2357	1.3721	2417	0.9961	2477	1.1572
2118	1.3208	2178	1.0840	2238	1.1523	2298	1.0767	2358	1.3477	2418	1.0010	2478	0.9741
2119	1,4844	2179	1.0986	2239	1.0498	2299	1.0034	2359	1.2842	2419	1.0107	2479	0.9473
2120	1.5674	2180	1.1768	2240	1.0034	2300	0.9814	2360	1,1670	2420	1.0478	2480	0.9717
2121	1.5039	2181	1.2061	2241	1.0107	2301	0.9717	2361	1.0596	2421	1.0478	2481	1.0010
2122	1.3477	2182	1.1816	7747	1.0791	2302	0.9570	2362	1 0010	7477	1 0059	7497	1 0449
2123	1.2256	2183	1 2061	2243	1 1965	2302	0 9619	2002	A 9717	7473	0 9570	2402	1 1075
2126	1 1047	2106	1 7574	2216	1 2000	7708	1 0010	2000	A 057A	7378	0.1010 A 0770	2400	1 0245
7175	1 1023	2107	1.0014	2244	1.1700	2304	1.0010	2304	A 0220	2727	V.7417	2404	1.0043
5152	1 1014	2102	1,1077	1110	1 7678	2303	1.0010	1303	0.7000 1 000E	2423	V,000/	2403	V.7712
2120	1.1714	2100	1.3003	2240	1.33/4	2305	1.2240	2300	1.0203	2428	0.8928	2985	1.0010
4147	1,1700	1101	1.4040	2247	1.3613	2307	1,2842	2007	1.0/42	2427	0.8498	248/	1,1182
2128	1.2305	2188	1.3892	2248	1.3765	2308	1.3135	2368	1.1304	2428	0.44/3	2488	1.25/3
2129	1.2/44	2189	1.2598	2249	1.364/	2309	1,2622	2369	1.1401	2429	1.0/67	2489	1.2793
2130	1.2769	2170	1.1084	2250	1.2256	2310	1.1621	2370	1.1768	2430	1.2695	2490	1.2305
2131	1,2402	2191	1.0400	2251	0.9717	2311	1.0962	2371	1.2085	2431	1,3135	2491	1.1670
2132	1.2012	2192	1.0303	2252	0.8789	2312	1.0840	2372	1.1621	2432	1.1548	2492	1.1230
2133	1,1719	2193	1.0254	2253	0,8398	2313	1.1353	2373	1.0889	2433	0,9766	2493	1.0522
2134	1.1133	2194	0.9961	2254	0.8350	2314	1.1816	2374	1.0913	2434	0.9180	2494	0.9863
2135	1,0107	2195	1.0010	2255	0.8594	2315	1,2402	2375	1.1768	2435	0.8936	2495	0.9424
2136	0.9448	2196	1.0059	2256	0.9448	2316	1.2720	2376	1.2061	2436	0.8936	2496	0.9473
2137	0.9180	2197	1.0400	2257	1.1426	2317	1,2207	2377	1.0889	2437	0.9131	2497	1.0010
2138	0.9229	2198	1.0840	2258	1.3086	2318	1.1328	2378	1.0010	2438	0.9595	2498	1.0815
2139	0.,9888	2199	1.2207	2259	1.1523	2319	1.0669	2379	0.9619	2439	1.0498	2499	1,1182
2140	1.1792	2200	1.3330	2260	0.9474	2320	1.1060	2380	0.9717	2440	1.1255	2500	1.1084
2141	1.3916	2201	1.2695	2261	0.8936	2321	1.2012	2381	1.0010	7441	1.0840	2501	1.1035
2142	1.5381	2202	1.1401	2262	0 9939	2322	1 2329	7792	1 0499	7447	1 0097	2502	1 0240
7143	1 5947	2202	1 0747	2262	0.0000	2222	1 1914	2302	57711	2442	1 1075	2502	1 0154
2146	1 5470	2200	1 0044	7768	0.0741	2020 -	1.1010	7708	1 1018	1770 5888	1,1000	2003	A 0005
2177	1.3430	2204	1.0004	1109 1115	0.7/41	2329	1.03/1	2304	1.1714	<u>ደግንግ</u> ባለለፍ	1.9180	2304	1 0440
1170 7137	1.7100	2203	1.0007	1193 0077	0.7712	2020	V.7000	1003	1.2042	2443	1,0020	2303	1.0447
2148	1.2378	2206	1.0864	2266	0.7424	2326	0.93/3	2385	1,34//	2448	1.3918	2308	1.1341
2197	1.3322	2207	1.1100	2287	0.4082	2327	.0.9321	2387	1.3623	2447	1.1914	2507	1,2488
2148	1,1084	2208	1.0962	2268	0.8936	2328	0.9619	2388	1.4136	2448	1.1426	2508	1.3623
2149	1.1523	2209	0.9961	2269	0.8760	2329	1.0205	2389	1.5234	2449	1,1914	2509	1.3291
2150	1.1816	2210	0.9644	2270	0.8789	2330	1.1133	2390	1.6772	2450	1.2622	2510	1.2671
2151	1.1646	2211	1.0303	2271	0.8545	2331	1,1523	2391	1.7383	2451	1.3379	2511	1,1621
2152	1.1328	2212	1.1572	2272	0.8545	2332	1.0913	2392	1.7041	2452	1.4258	2512	1.0132
2153	1,1182	2213	1.2500	2273	0.8911	2333	1.0498	2393	1.6260	2453	1.4282	2513	0,9570
2154	1.1084	2214	1.3647	2274	0.9277	2334	1.0498	2394	1.5771	2454	1.3574	2514	0.7961
2155	1.1279	2215	1,4551	2275	0.9668	2335	1.1084	2395	1.5601	2455	1.3379	2515	1.0938
2156	1.1426	2216	1.4648	2276	1.0352	2336	1.2646	2396	1.5576	2456	1.3867	2516	1.1523
2157	1.1768	2217	1.4258	2277	1.0864	2337	1.3818	2397	1.5576	2457	1,4648	2517	1.1279
2158	1.2549	2218	1.3306	2278	1.0840	2338	1,3965	2398	1.5381	2458	1.4697	2518	1.0594
2159	1.3477	2219	1.2402	2279	1.0229	2339	1.3281	2399	1.4697	2459	1.3818	2519	1.0352
2160	1.4038	2220	1.1768	2280	0.9961	2340	1.3086	2400	1.4160	2460	1.2017	2520	1.0254

172

.

								0017710140	A.D. 1				173
RELAÇÃ) DE DADOS TENSÃO	COLETADO	DS NO ENSA TENSÃO	IO EN 145 Ponto	RPM - I TENSÃO	coleta nr. PONTO	. 01) ¥ (TENSÃO	CUNTINUACI Ponto	HU) TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO
					1 4017		1 0376	7761	0 9863		0.9351		0.9180
2521	1.0156	2581	1,0352	2091	1.0713	2701	1.0378	2762	0.9951	2822	0.9229	2882	0.9229
2522	1,0474	2582	1.0057	2892 7283	0.7712	2702	1,0040	2763	1.0156	2823	0.9814	2883	0.9180
2523	1.1/19	2383	1.0332	2043	0.13/0 A 0591	2703	1 2012	2764	1.0352	2824	1.1279	2884	0.9082
2524	1.3037	2384	1.12/7	2044	0.7321 A 0440	2705	1.2207	2765	1.0742	2825	1.3232	2885	0.9180
2525	1.3232	2080	1.2573	1043 7/1/	A 0017	2703	1 2085	2766	1.0913	2826	1.4209	2886	0.9668
2526	1.303/	2588	1.4038	2040 9287	0.7003	2705	1 1523	2767	1.0913	2827	1.4014	2887	1.0669
2527	1.2329	2387	1.3434	1047 D/AD	V.7/91 A 057A	2707	1 0440	2769	1.0913	2878	1.3477	2888	1.2305
2528	1.0840	2588	1.6182	2098	V.937V A 957A	2700	0.9570	2769	1.1476	7829	1.2842	2889	1.3306
2529	0.9961	2589	1.6113	2047	4.73/V	2703	0,7570	2707	1 1816	2830	1.2402	2890	1.3672
2530	1.0205	2590	1.3332	2830	1.010	2711	0.7100	2771	1.2012	2831	1.2402	2871	1.2842
2531	1.1020	2371	1.4014	2031	1.1011	2713	A 9744	5775	1.2158	2832	1.2744	2892	1,2158
2532	1.2/44	2392	1.2431	2032	1.2207	2712	1.0498	2773	1.2354	2833	1.3086	2893	1,1426
2000	1.5184	2370	1.0742	1000	1 5047	7714	1 0791	2774	1.2500	2834	1.2598	2894	1.0791
2534	1.3506	2374	1.0010 A 0017	2034	1.3003	2715	1,1779	2775	1.2378	2835	1.1182	2895	1.0156
2000	1,34//	2373	0.7003 0.00/1	1833 7151	1 7477	2716	1.2280	2776	1.1670	2836	1.0205	2896	0.9814
2536	1.3377	2378	0,7701	2030 7257	1.3072	2710	1 3281	2772	1.0889	2837	1.0156	2897	0.9814
2337	1.3323	2377	1.0234	2031	1.1100	2719	1 3947	2779	1.0303	2838	1.0572	2898	1,0303
2538	1.3525	2378	1,1011	2030 7250	0.7017 A 919A	2710	1 3281	2779	0.9814	2839	1.1035	2899	1.0596
2539	1,0100	2377	1,1010	1037 5110	V.710V	2727	1 25201	2780	0.9570	7840	1.1328	2900	1.0596
2540	1.2693	2600	1.2207	2000 7661	0.7217	2720	1 2012	2781	0.9570	2841	1.1865	2901	1.0303
2541	1.2004	2601	1.1738	2001	1 1075	2723	1 2193	2782	0.9619	2842	1.1816	2902	1.0107
2542	1.2500	2602	1.1323	1001 7113	1.1033	2722	1 2305	2783	0.9619	2843	1.1230	2903	1.0303
2343	1.2300	2600	1,0004	2003 7448	1,1277	2728	1 2174	2794	0.9570	2844	1.0400	2904	1.0449
2344	1.2085	2604	1.0105	2004 7225	1.3721	2729	1 1719	2785	0.9473	2845	0.9888	2905	1.0742
2543	1.13//	2500	0,7014	2003	1.0710	7776	1 0917	2786	0.9717	2846	1.0059	2706	1.0864
2546	1.0575	2608	0.9912 1 A759	1000 7117	1.3323	2,20	1 0303	2787	1.0107	2847	1.0278	2907	1.1035
2347	1.0132	2007	1.0002	2007	1,1071	2070	A 9717	2799	1.0791	2848	1.0352	2908	1.1548
2548	1.0034	2608	1.1328	2000 7220	1.1402	2729	0.9619	2789	1.1279	2849	0.9766	2909	1.2305
2349	1,0181	2607	1,2130	2007	1,10/0	2723	0.9619	2798	1.1084	2850	0.9229	2910	1,2109
2550	1.0234	2010	1.2982	2074	1.0075	2730	0 9814	2791	1.0791	2851	0.8936	2911	1.1572
2331	1.0181	2011	1,2230	20/1	A 0017	1731	1 0154	2702	1 0913	2852	0.8984	2912	1,1670
2552	1.0352	2612	1.2238	10/1 7173	1 0753	2732	1 0522	2793	1.1621	2853	0.9229	2913	1.2500
2333	1.0762	2813	1,2300	2013	1.0332	2733	1 0070	2794	1 7695	2854	0.9668	2914	1.3477
2334	1.1323	2014	1.2370	20/4	1.1102	2735	1 1499	2795	1.3379	2855	1.0522	2915	1.3721
2000 055/	1,1714	2010	1.1317	2013 7272	1.1700	2735	3 3244	7796	1.3525	2856	1.0522	2916	1,2988
2336	1.1738	2010	1.1/17	2010 7177	1.1011	2738	1.1573	2797	1.2793	2857	0.9961	2917	1.1719
2337	1.1/17	2017	1,1004	1911 7170	1.1200	2739	1 1173	2798	1.1523	2858	0.9570	2918	1.1035
2338	1.14/3	2010	1,1277	2679	1 7477	2739	1.0747	2799	1.0742	2859	0.9619	2919	1.1328
2337	1 0747	2017 9290	1 1041	2077	1 22022	2740	1.0645	2800	1.0913	2860	1.0156	2920	1.1963
2360	1.0/42	7610	1.1041	2550	1.0376	2741	1.0864	2801	1,0889	2861	1.0742	2921	1,1572
1301	1 0747	7677	1 1010	2692	A 9777	2747	1,1671	2802	1.0449	2862	1,1255	2922	1.1182
2382 7527	1.075	2612	1 1743	2683	0.8813	2743	1.1914	2803	1.0596	2863	1.2109	2923	1.1230
1303 7511	1.1000	7623	1 1476	2600	0.8594	2744	1.0962	2804	1,0498	2864	1.2671	2924	1.1963
2304	1.0702	2624	1.1920	2685	0.8789	2745	0.9961	2805	0.9961	2865	1,2866	2925	1.1987
1000 7511	1 2074	2625	1 0978	2686	0.9180	2746	0.9741	2806	1.0107	2866	1.2500	2926	1.1084
7517	1.1000	2620	1 0913	2600	0,9863	2747	1.0596	2807	1.0400	2867	1.1963	2927	1.0352
1391 7510	1,0700	2620	1 0747	2689	1.1963	2748	1.1670	2808	1.0693	2868	1.1426	2928	1.0352
2300	1.5477	7670	1 8571	2689	1.3770	2749	1.2354	2809	1.0742	2869	1.0889	2929	1.0889
2570	1.1075	2627	1 0571	2690	1.446	2750	1.2935	2810	1,1035	2870	1.0400	2930	1.1182
2571	1 3254	2630	1.0889	2691	1.377(2751	1.3770	2811	1.1621	2871	1.0010	2931	1.0645
7211 7577	1.0107 1.0107	7122	1.1035	7697	1.769	5 2752	1.440	2812	1.2256	2872	1.0010	2932	0.9814
1371 2577	0.7000 0 9497	7632	1.1378	2693	1.215	2753	1.4307	2813	1.2549	2873	1.0254	2933	0.9570
1070 7574	0 9477	7623	1 1749	7694	1.235	2754	1 3281	2814	1.2402	2874	1.0693	2934	0.9912
2374 2575	0.17/3 A 9744	2004	1.2256	2695	1.7843	2 2755	1.1936	2815	1,2549	2875	1.0669	2935	1.0449
1313 7571	1 0400	2000 7171	1 7405	7696	1_784	5 2756	1.118	2 2816	1.2646	2876	1.0059	2936	1.1621
1370 7577	1 1577	2030 7837	1.2891	2610	1,193	3 2757	1.0522	2 2817	1,2061	2877	0.9644	2937	1,2915
2570	1 3785	2507	1.7964	7698	1.074	2 2758	1.005	7 2818	1.1279	2878	0.9375	2938	1.3086
1370 7570	1.2003	7630	1.2744	2699	1.005	9 2759	0.996	2819	1.0693	2879	0.9229	2939	1.3306
2580	1 1084	2667	1.2012	2700	1.001	0 2760	0.981	4 2820	0.9961	288(0.9277	2940	1.3867

									AD)				174
RELAÇA Ponto	O DE DADOS TENSÃO	S COLETAD PONTO	OS NO ENS TENSÃO	AIU EN 14 Ponto	5 RPH (TENSAO	coleta nr PONTO	TENSÃO	PONTO	HU) TENGAU	PONTO	TENSÃO	PONTO	TENSÃO
2941	1.3696	3001	1,1426	3061	1.2451	3121	1,1133	3181	1.2012	3241	1.0864	3301	0.9912
2942	1.2402	3002	1.2158	3062	1.1475	3122	1.1670	3182	1.2354	3242	1,0620	3302	1.0083
2943	1.1523	3003	1.2402	3063	1.0254	3123	1.2354	3183	1.2842	3243	1,1084	3303	1.0059
2944	1.1206	3004	1.2451	3064	0.9741	3124	1.2793	3184	1.3477	3244	1.2207	3304	0.9961
2945	1.1157	3005	1.1768	3065	0.9863	3125	1.3037	3185	1.3013	3245	1.3623	3305	0.9961
2946	1.1182	3006	1.0791	3066	1.0742	3126	1.3379	3186	1.1621	3246	1.4404	3306	1.0034
2947	1.1133	3007	1.0498	3067	1.2061	3127	1.3916	3187	1.0278	3247	1.4404	3307	1.0352
2948	1.0742	3008	1.0742	3068	1.3135	3128	1,4258	3188	0.9668	3248	1.3721	3308	1.1157
2949	1.0352	3009	1.1279	3069	1.3281	3129	1.4258	3189	0.9570	3249	1.3086	3309	1.2109
2950	1.0693	3010	1,1768	3070	1.2788	3130	1.4307	3190	0.9888	3250	1.2354	3310	1.2744
2951	1.1182	3011	1,2061	3071	1.2598	3131	1,4502	3191	1,0571	3251	1.1279	3311	1.3330
2952	1.0742	3012	1.1963	3072	1,2305	3132	1.4038	3192	1.1719	3252	1.0132	3312	1.4185
2953	0.9863	3013	1.2207	3073	1.2305	3133	1.2988	3193	1,3110	3253	0.9570	3313	1.4941
2754	0.9229	3014	1.3232	3074	1.1865	3134	1.2305	3194	1.4014	3254	0.9961	3314	1.5259
2955	0.9229	3015	1.4600	3075	1.0791	3135	1,1792	3195	1.4697	3255	1.1035	3315	1.4941
2956	0.9473	3016	1.5723	3076	0.9814	3136	1.1426	3196	1.4648	3256	1.2036	3316	1.3696
2957	1.0352	3017	1.6260	3077	0.9570	3137	1.1133	3197	1.4063	3257	1.2793	3317	1.2207
2958	1.1572	3018	1.5601	3078	0.9717	3138	1.1157	3198	1.3818	3258	1.3232	3318	1.0986
2959	1.2085	3019	1.3647	3079	1.0010	3139	1.1816	3199	1.3721	3259	1.3477	3319	1.0449
2960	1,2549	3020	1.1304	3080	1.1279	3140	1.2427	3200	1.3135	3260	1.3257	3320	1.054/
2961	1.2061	3021	0.7814	3081	1.3037	3141	1.2793	3201	1.1914	3261	1.2402	3321	1.0889
2962	1,1963	3022	0.9180	3082	1.4014	3142	1.2305	5202	1.1035	3262	1.0693	3322	1.1060
2963	1.3086	3023	0.9033	3083	0.9863	3143	1.1304	5203	1.1133	5265	0.94/3	3323	1.1428
2964	1.4575	3024	8,9399	3084	1.3257	3144	1.0/42	3204	1,1621	194 70/5	0.4151	3324	1.1818
2965	1.4941	3025	1.0054	3085	1.4844	5145	1.0352	3203	1.2080	3283	0.9229	33Z3 779/	1.1738
2966	1.4455	3026	1.0/42	3085	1.8408	5145	1.0106	3205	1,2300	3288	0.9912	3328	1.1033
2467	1.3428	3027	1.0/6/	3087	1.34/9	314/	1.0034	3207	1,2427	325/ 72/0	1.2012	3321	1.1011
2758	1,2083	2028	1.0135	3088	1.2034	3198 7140	1.0203	3208	1 1707	3200	1.4030	3320 7790	1.1040
2767	1.13/2	3029	0.9/41	3087	1.13/2	0149 7150	1,0/91	3207	1.1/72	3287 3770	1.4741	3327 7770	1 7937
2970	1,2012	3030	0.9/1/	3090	1.0715	5130	1.1323	3210	1.12/7	3279	1.4073	3330	1.2092
2971	1.2788	3031	0,9751	3071	1.0/42	3131	1.15/0	3211 7917	1.0/42	32/1 2777	1.4000	7555	1.00/7
2772	1.3710	2022	1.0203	3072	1.1230	31 <i>31</i> 7457	1.13//	7717	1.0770	3232	1.0110	2222	((015
2973 4774	1,4301	3033	1.0478	3073 7004	1.2230	0130 2158	1.1133	3213 3314	1.0322	3213 3778	1.4111	6.0.0 8.7.7.5	1,1003
27/9	1.73/3	3034 7075	1.1000	3074 7005	1.2107	JIJ4 7(55	1.1033	2015	1.0873	32/7	1.7331	7775	1 0504
17/3	1.3232	2022	1,1/00	3073 7001	1.3301	3133	1 1704	3213	1 1230	3273	1 7495	3333 7774	1 0940
2779	1,1V11 A 8477	2028	1.2012	7007	1 2024	7157	1.1200	3210	1.1200	3175	1 1040	3338 7777	1 1127
2717 2979	0.3993	3037	1.1401	3077	1 4140	3137	1.0007	3217	1.0522	3278	1.0449	3338	1.1475
2110	0.0707 0.0187	7070	0 0775	7400	1.7100	7150	1 1779	7719	1.0322	3270	1 0747	2000	1 1426
2777	0.8496	3040	0.9131	3100	0.9229	3157	1.7158	321)	1.0254	3280	1.1523	3340	1.1304
7981	3.8545	3041	0.9082	3101	1.0449	3161	1.7695	3221	1.0498	3281	1.2500	3341	1.1084
7937	0.9131	3042	0.9961	3102	1.3770	3162	1.3135	3222	1.1084	3282	1.2988	3342	1,0889
2983	1.1779	3043	1.2549	3103	1.4782	3163	1.3550	3223	1.2354	3283	1.2915	3343	1.1230
2984	1.2622	3044	1.6211	3104	1.2891	3164	1.3770	3224	1.3525	3284	1.2305	3344	1.1963
2985	0.9766	3045	1.7944	3105	1.0889	3165	1.3696	3225	1.3721	3285	1.1743	3345	1.2842
2986	0.8667	3046	1.7773	3106	0.9351	3166	1.3281	3226	1.2842	3286	1.1523	3346	1.3428
2987	0.8496	3047	1.5918	3107	0.8960	3167	1.2646	3227	1.1963	3287	1.1353	3347	1,3184
2988	0.8960	3048	1.3379	3108	0.8838	3168	1.1328	3228	1.1182	3288	1.1133	3348	1.2085
2989	1,1084	3049	1.1035	3109	0,8887	3169	1.0132	3229	1.0791	3289	1.0571	3349	1,0389
2990	1.3916	3050	0.9766	3110	0.8936	3170	0.9570	3230	1.0742	3290	1.0254	3350	1.0059
2991	1.5430	3051	0.9326	3111	0.9131	3171	0.9668	3231	1.0498	3291	1.0254	3351	0.9521
2992	1.6064	3052	0.9229	3112	0.9351	3172	1.0864	3232	1.0352	3292	1.0478	3352	0.9375
2993	1.6113	3053	0.9424	3113	0,9692	3173	1.3867	3233	1.0107	3293	1.0449	3353	0,9448
2994	1.5259	3054	1.0107	3114	0.9961	3174	1.5869	3234	1.0156	3294	1.0156	3354	1.0010
2995	1.3965	3055	1.0889	3115	1.0254	3175	1.5869	3235	1.0278	3295	0.9863	3355	1.1133
2996	1.2720	3056	1.1572	3116	1.0449	3176	1.4551	3236	1.0840	3296	0,9595	3356	1.2695
2997	1.2012	3057	1.1963	3117	1.0791	3177	1.2744	3237	1.1450	3297	0.9375	3357	1.3623
2998	1.1328	3058	1.2207	3118	1.0767	3178	1.1279	3238	1.1621	3298	0.9424	3358	1.4111
2999	1.0815	3059	1.2646	3119	1.0742	3179	1.0889	3239	1.1523	329 9	0.9521	3359	1.4600
3000	1.0889	3060	1.2842	3120	1.0791	3180	1.1572	3240	1.1182	3300	0.9668	3360	1.5039

_													175
RELAÇÃ	0 DE DADO	S COLETAL	NOS NO ENS	AIO EM 14	5 RPM -	(coleta nr	. 01) 1 TENEÃO	(CONTINUAC	AB) TENEÃO	DONTO	TENOÃO	DONTO	τεμολο
	1EMOHU		1ENSHU	FUNIO	124380			FUNIO		FUNIO			
3361	1.5088	3421	0.9302	3481	0.9130	3541	1,2354	3601	1.0864	3661	1.2598	3721	1.0547
3362	1.4819	3422	0.9473	3482	0.9570	3542	1.2061	3602	1.0864	3662	1.2891	3722	1.0425
3363	1.4258	3423	0.9790	3483	1.0913	3543	1.1621	3603	1.0645	3663	1.2939	3723	1.0059
3364	1.4038	3424	1.0938	3484	1.2549	3544	1.1133	3604	1.0474	3664	1.2695	3724	0.9912
3365	1.3672	3425	1.2573	3485	1.3647	3545	1.0498	3605	1.0645	3665	1.2500	3725	0.9717
3366	1.3281	3426	1.3525	3486	1.4404	3546	1.0107	3606	1.1230	3666	1.2427	3726	0.9912
3367	1.2598	3427	1.3770	3487	1.4502	3547	0.9814	3607	1.2036	3667	1.2598	3727	1.0107
3368	1.1621	3428	1.3623	3488	1.3867	3548	0.9570	3608	1.3184	3668	1.3110	3728	1.0449
3369	1,0767	3429	1.3818	3489	1.3037	3549	0.9473	3609	1.4282	3669	1.3550	372 9	1.0718
3370	1.0352	3430	1.4038	3470	1.2354	3550	0.9448	3610	1.5283	3670	1.3477	3730	1.0576
3371	1.0352	3431	1.3989	3491	1.2646	3551	0.9814	3611	1.5723	3671	1.3135	3731	1.0010
3372	1.0742	3432	1.3184	3492	1.3477	3552	1.0478	3612	1.5430	3672	1.2451	3732	0.9619
3373	1.1279	3433	1.2012	3493	1.3965	3553	1.1279	3613	1.4038	3673	1.1621	3733	0.9521
3374	1.1621	3434	1.1133	3494	1.3770	3554	1.1963	3614	1.2085	3674	1.0742	3734	0.9424
3375	1.0791	3435	1.1255	3495	1.3086	3555	1.2354	3615	1.0352	3675	1.0059	3735	1.0107
3376	0.9741	3436	1.1914	3496	1.2061	3556	1.2695	3616	0.9277	3676	0.9570	3736	1.1523
3377	0.9253	3437	1.3281	3497	1.1133	. 3557	1.2695	3617	0,9082	3677	0.9351	3737	1.3672
3378	0.9033	3438	1.4331	3498	1.0400	3558	1.1914	3618	0.8936	3678	0.9326	3738	1.5942
3379	0.9033	3439	1,4648	3499	1.0059	3559	1.0889	3619	0,8887	3679	0.9351	3739	1.8433
3380	0,8887	3440	1.3867	3500	0.7814	3560	0.7888	3620	0.8960	3680	0.9570	3740	1.9727
3381	0.8984	3441	1.2231	3501	0.9717	3561	0.9473	3621	0.9473	3681	0.9961	3741	1.9116
3382	0.9131	3442	1.0449	3502	0.9619	3562	0.9180	3622	1.0205	3682	1.0449	3742	1.7041
3383	0,9180	3443	0.9375	3503	0.9521	3563	0.9180	3623	1.1133	3683	1.0742	3743	1.3916
3384	0.9570	3444	0.8960	3504	0.9619	3564	0.9375	3624	1.2354	3684	1.0742	3744	1.1182
3385	1.0498	3445	0.8789	3505	0,9912	3565	0.9912	3625	1.2939	3685	1.0645	3745	0.9570
3386	1,2207	3446	0.8838	3506	1.0303	3566	1.0889	3626	1.2695	3686	1.0181	3746	0.8736
3387	1.3574	3447	0.8691	3507	1,1035	3567	1.2158	3627	1.2256	3687	0.9766	3747	0.8740
3388	1.4038	3448	0.8496	3508	1.1426	3568	1.2842	3628	1.1572	3688	0.9839	3748	0.8594
3389	1.3770	3449	0.8350	3509	1,1621	3569	1.2793	3629	1.0840	3689	1.0913	3749	0.8594
3390	1.2598	3450	0.8545	3510	1.1768	3570	1.1841	3630	1.0352	3690	1.2036	3750	0.8569
3391	1.0791	3451	0.8789	3511	1.1792	3571	1.0645	3631	1.0107	3691	1.2598	3751	0.8887
3392	0.9570	3452	0.9277	3512	1.1523	3572	0.9961	3632	1.0400	3692	1.2402	3752	0.9082
3393	0.9082	3453	0.9619	3513	1.1084	3573	0.9497	3633	1.0889	3693	1.2134	3753	0.9375
3394	0.8936	3454	1.0913	3514	1.1084	3574	0.9375	3634	1.1523	3694	1.2305	3754	0.9546
3395	0.9082	3455	1.2695	3515	1.1963	3575	0.9229	3635	1.1865	3695	1.2793	3755	0.9473
3396	0.9351	3456	1.4038	3516	1.3086	3576	0.9229	3636	1.1572	3696	1.3208	3756	0.9619
3397	0.9619	3457	1.5210	3517	1.3916	3577	0.9351	3637	1.1187	3697	1.3574	3757	0.9961
3398	0.9912	3458	1,5527	3518	1.4209	3578	0.9619	3638	1.0791	3678	1.3770	3758	1.0840
3399	1.0449	3459	1.4844	3519	1.3574	3579	0.9863	3639	1.0596	3699	1.3818	3759	1.2256
3400	1,1914	3460	1.3013	3520	1.2769	3580	1.0034	3640	1.0181	3700	1.3501	3760	1.3232
3401	1.3721	3461	1.1192	3521	1.2500	3581	0.9961	3641	0.9863	3701	1.3379	3761	1.3477
3402	1.4893	3462	1.0400	3522	1.2646	3582	0.9863	3642	0.9595	3702	1.3574	3762	1.2939
3403	1.5088	3463	1.0742	3523	1.2549	3583	0.9961	3643	0.9473	3703	1.3897	3763	1.2207
3404	1.4038	3464	1.1377	3524	1.2256	3584	1.0278	3644	0.9399	3704	1.4063	3764	1.1914
3405	1.2158	3465	1.1768	3525	1.2305	3585	1.0938	3645	0.9277	3705	1,4209	3765	1.2158
3406	1.0205	3466	1.1572	3526	1.2549	3586	1.1987	3646	0.9375	3706	1.4258	3766	1.2256
3407	0,9570	3467	1.1230	3527	1.2988	3587	1.2451	3647	0.9521	3707	1.3965	3767	1.1914
3408	0.9619	3468	1.1523	3528	1.3477	3588	1.2256	3648	0.9814	3708	1.3477	3768	1.1572
3409	1.0010	3469	1.7402	3529	1.3673	3589	1,1719	3649	1 0059	3709	1 2915	3769	1 1157
3410	1.0522	3470	1.3232	3530	1.3354	3590	1.1304	3650	1.0059	3710	1.2500	3770	1.0645
3411	1.1011	3471	1.3159	3531	1.2866	3591	1.1182	3651	0.9961	3711	1.7256	3771	0.9961
3412	1.1182	3472	1.2500	3532	1,2061	3592	1,1187	3657	0,9863	3712	1.1914	3772	0.9570
3413	1.1476	3473	1.1548	3533	1.0913	3593	1.0986	3653	6 9796	3713	1 1577	3772	A 9474
3414	1.1865	3474	1.0840	3534	1.0059	3594	1.0791	3654	0.9766	3714	1.1279	3774	0.9619
3415	1.2305	3475	1.0034	3535	0.9649	3595	1.0742	7455	1.0107	3715	1,1177	3775	1.0107
3416	1,3086	3476	0.9473	3536	0.9717	3596	1.0594	3656	1.0357	3714	1.0747	3776	1.0299
3417	1.3721	3477	0,7180	3537	1.0205	3597	1.0499	3457	1.0445	3717	1 .0449	7777	1.1470
3418	1.3135	3478	0,8867	3538	1.0913	3598	1.0594	3458	1.0913	3719	1.0205	3779	1.2085
3419	1,0913	3479	0,8789	3539	1.1814	3599	{_0742	7450	1.1527	3710	1 6750	3770	1 1915
3420	0.9570	3480	0.8813	3540	1.2378	3600	1.0840	3660	1.1963	3720	1.0352	3780	1.1035

RELAÇÃO	DE DADOS	COLETAD	OS NO EN	SAIO EN 14	5 名2首 -	(coleta nr.	. 01) 🖡	(CONTINUAC	AQ)				
PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO	PONTO	TENSÃO
3781	1.0254	3841	1.1279	3901	1.2500	3781	0.9/66	4021	1.1525	4081	1./134		
3/82	1,0205	3842	1.0412	2407	1.2214	3762	V.7/1/	4VZZ	1.1940	4007	1.7034		
3/83	1.0/42	3843 7011	1.0/42	3903	1.44/8	3763 70/4	1 0757	9023 4078	1.12/7	4083	1.7041		
3789 7705	1,15/9	3844 2015	1.0675	3704	1.0411	3704 70/5	1.0332	4V24 4075	1,1102	4004	1.0307		
3/83	1.2401	3843	1.0/91	3703	1./480	3783	1.0378	4023	1.1100	4083 1002	1.3037		
3788	1.2047	3848	1.0913	3908	1./303	3700	1.0470	4010	1.1004	1000	1,3131		
318) 7700	1,2303	3847 7040	1.1100	3907	1,6040	376/ 70/0	1.0037	4911 1070	1.0004	4907 4000	1.0171		
3/68	1.4V17 1.9754	0010 7040	1.2477	3700	1 3740	3100 70/0	0.0210	1070	1.0377	1000 1000	A 0077		
3707 7700	1,2334	3047 7050	1.2001	3707 7010	1.2431	3707 7070	0.1011 0 0LL0	4027 3070	1.0423	4007	A 0790		
3770	1.3000	2050	1,2071	3710	1.1003	3779	1 4450	4030	1.0331	1070	0,070		
2700	1.3377	3031 7057	1 1707	3711 7017	1.13/2	3771 7077	1 0880	4031	1 0445	1071	0.0740		
3/7£ 7707	1.0000	2027	1.4007	3712 7017	1.0007	3771 7077	1.077)	4032	1.0073	1072	0.0010	,	
3173 7708	1,2073	3033	1 8111	3713	1.0203	3773	1 1779	4033	1 0594	4073 4094	7700 0		
3705	1.1100	7055	1.7111	3717	1.0103	3075	1 1201	4035	1 0499	4095	A 9449		
3773 7794	1 1475	3053	1 7500	3918	1 7744	3778 7978	1 1230	4000	1 0596	4096	1.0864		
3797	1 0940	3857	1 1304	3917	1 4404	3770	1 0747	4037	1.0815	10/0	1,0001		
3799	1 0254	3859	1.1004	371)	1 5710	3979	1.0767	4038	1.1187				
3799	3 9814	7859	A 9779	7010	1 4479	3979	1 0940	4039	1.1671				
3900	01761 0 9766	3840	A 8936	7920	1 2549	3980	1.1187	4646	1.1865				
3801	1.0034	3861	0.8887	3921	1.0400	3981	1.1523	4041	1.2158				
3802	1.0449	3862	0.9087	3977	0.9473	3987	1.7012	4047	1,2402				
3803	1.0889	3863	0.9619	3923	0.9180	3983	1.2109	4043	1.2549				
3804	1.1377	3864	1.0352	3924	0.9180	3984	1.1865	4044	1.2500				
3805	1.1719	3865	1.0840	3925	0.9326	3985	1.1426	4045	1.2329				
3806	1.2207	3866	1.1182	3926	0.7668	3986	1.0986	4046	1,1938				
3807	1.2891	3867	1.1572	3927	1.0010	3987	1.0791	4047	1.1401				
3808	1.3306	3868	1.2622	3928	1.0303	3988	1.0596	4048	1.1182				
3809	1.3477	3869	1.3379	3929	1.0693	3989	1.0400	4049	1.1133				
3810	1.3281	3870	1.3184	3930	1.1523	3990	1.0449	4050	1.1035				
3811	1.2866	3871	1.1963	3931	1.2598	3991	1.0498	4051	1.0693				
3812	1.2500	3872	1.0791	3932	1.2988	3992	1.0986	4052	1.0156				
3813	1.2183	3873	1.0254	3933	1.2646	3993	1.1182	4053	0.9668				
3814	1.2061	3874	1.0205	3934	1.1670	3994	1.1133	4054	0.9375				
3815	1.1963	3875	1.0376	3935	1.0596	3995	1.0889	4055	0.9253				
3816	1.1670	3876	1.0547	3936	0.9717	3996	1.0449	4056	0.9521				
3817	1.1475	3877	1.0478	3937	0.9277	3997	1.0205	4057	1.0010				
3818	1.1230	3878	1.0156	3938	0.9229	3998	1.0156	4058	1.0478				
3819	1.1060	3879	0.9814	3939	0.9717	3999	1.0327	4059	1.0791				
3820	1.0840	3880	0.9766	3940	1.0889	4000	1.0547	4060	1.0913				
3821	1.0547	3881	1.0254	3941	1.2500	4001	1.0693	4061	1.1182				
3822	1.0498	3882	1.1035	3942	1.3110	4002	1.0791	4062	1.1670				
3823	1.0498	3883	1.1841	3943	1.2500	4003	1.0693	4063	1,2256				
3824	1.0400	3884	1.2207	3944	1.0913	4004	1.0522	4064	1.2793				
3825	1.0449	3885	1.2207	3945	0.9570	4005	1,0449	4065	1.3330				
3826	1.0303	3886	1.1714	3946	0.8936	4006	1.0498	4066	1.3379				
3827	1,0010	3887	1.1230	3947	0.8740	4007	1.0303	4067	1.3159				
3020 7020	0.73/0	7000	1.0010	5748	0.8691	4008	1.0059	4068	1.2646				
3829	0,9277	3887 7000	0.9351	3949 7050	0.8618	4009	0.9814	4069	1.1621				
3830 7071	0.9209	3870	0.7331	3730	0.8891	4010	0.7814	4070	1.0342				
2027	0.73/3 A 9717	20071	1 1122	3731 7057	0,688/	4011	0.7814	4073	V.7701 A 057A				
3833	1.0303	7007	1 2012	0701 . 7057	0.710V	717F	V.7014	10/2 1077	0.73/V A 0571				
7974	1 0000	2073 7004	1 1577	20532	1 0701	4019	V.7003	9073 8078	V.7JZI A 0171				
3835	1.1084	3005	1 0750	0/07 2055	1 1704	4015	1 0754	1075	5 01724				
3836	1.0840	3894	0.9649	3954	1,1572	4614	1.0499	4074	0.9717				
3837	1.0742	3897	0.9669	3957	1.1450	1010	1.0407	4077	1.0400				
3838	1.0840	3898	1.0352	3958	1,1035	4018	1.0940	4078	1.2707				
3839	1.1035	3899	1.1182	3959	1.0571	4019	1.1133	4079	1.4502				
3840	1.1328	3900	1,1914	3960	1,0083	4020	1.1377	4080	1.6211				

Número da	Média Quadra- tica dos des-	Valor da Ma- croescala de	Produto do valor R.M.S. pela ma-
Coleia	vios - R.M.S.	turbuléncia.	croescala.
	metros/seg.	(segundos)	(metros)
01	0.0209	0.05992	0.00112
02	0.0239	0.05480	0.00129
03	0.0239	0.04001	0.00096
04	0.0282	0.06319	0.00177
05	0.0164	0.00929	0.00111
00	0.0211	0.05124	0.00107
07	0.0218	0.07927	0.00172
08	0.0217	0.05554	0.00121
90	0.0226	0.03839	0.00087
10	0.0194	0.04708	0.00087
1 1	0.0213	0.06735	0.00143
Averag	0.0218	0.05628	0.00122
Stand	0.0030	0.01240	0.00030
Varianc	0.0000	0.00021	0.00000

Tabela B.01 - Parâmetros obtidos dos dados de Turbulência. Número de correlações realizadas: 100 Ensaio realizado em 60 rpm.

Número Média Quadra- da tica dos des- Coleta vios - R.M.S.		Valor da Ma- croescala de turbulência.	Produto do valor R.M.S. pela ma- croescala.	
			(segundos)	(metros)
	01	0.0952	0.03969	0.00139
	02	0.0318	0.02147	0.00068
	03	0.0942	0.03568	0.00122
	04 0.0364 05 0.0336		0.03005	0.00109
			0.05241	0.00176
06 0.0353		0.0353	0. 031 33	0.00113
Aν	verag	0.0344	0.03510	0.00121
si	and	0.0010	0.01045	0.00035
Varianc		0.00001	0.00010	0.00001

Tabela B.O2 - Parâmetros obtidos dos dados de Turbulência. Número de correlações realizadas: 100 Ensaio realizado em 78 rpm.

		the second s			
Número Média Quadra- da tica dos des- Coleta vios - R.M.S.		Valor da Ma-	Produto do valor R.M.S. pela ma-		
		turbulência.	croescala.		
	metros/seg.	(segundos)	(metros)		
01	0.0522	0.03615	0.00188		
02	0.0673	0.01381	6.00093		
03	0.0549	0.01135	10000.0		
04	0.0571	0.02086	0.00172		
05	0.0625	0.03664	0.00222		
00	0.0608	0.03233	0.00196		
07	0.0647	0.04979	0.00322		
08	0.0538	0.04457	0.00239		
90	0.0031	0.04424	0.00279		
iO	0.0552	0, 02488	0.00130		
average	0.0591	0.03146	0.00191		
Stand	0.0049	0.01262	0.00070		
Varianc	0.00001	0.00016	0.000001		

Tabela B.O3 - Parâmetros obtidos dos dados de Turbulência. Número de correlações realizadas: 100 Ensaio realizado em 98 rpm.

	Número da Coleta	Média Quadra- tica dos des- vios - R.M.S. metros/seg.	Valor da Ma- croescala de turbulência. (segundos)	Produto do Valor R.M.S. pela ma- croescala. (metros)
	01	0.0841	0.02478	0.00208
	02	0.0870	0.02611	0.00228
	03	0.0934	0.04057	0.00379
•	04	0.0788	0.02012	0.00205
	05	0,0903	0.03105	0.00281
	00	0.0741	0.01959	0.00145
	07	0.0811	0.02702	0.00219
Aver	ag	0.0842	0.02789	0.00220
Stan	a	0.0067	0.00653	0.00079
Vari	anc	0.00001	0.00006	0.00001

Tabela B.04 - Parâmetros obtidos dos dados de Turbulência. Número de correlações realizadas: 100 Ensaio realizado em 108 rpm.

Número da Coleta		Média Quadra- tica dos des- vios - R.M.S.	Valor da Ma- croescala de turbulência.	Produto do valor R.M.S. pela ma- croescala.		
		metros/seg.	(segundos)	(metros)		
	01	0.2151	0.01210	0.00262		
	02	0.1579	0.01995	0.00315		
	03	0.1952	0.01703	0.00332		
	04	0.2418	0.01159	0.00279		
	05	0.1515	0.02390	0.00363		
	00	0.1311	0.02435	0.00319		
	07	0.1378	0.01973	0.00272		
	08	0.1514	0.01682	0.00254		
	09	0.1298	0.02978	0.00386		
Aver	ag	0.1679	0.01947	0.00309		
Stan	d	0.0370	0.00591	0.00043		
Vari	anc	0.0014	0.00092	0.00001		

Tabela B.05 - Parâmetros obtidos dos dados de Turbulência. Número de correlações realizadas: 100 Ensaio realizado em 145 rpm.

Tabela B.06 - Parâmetros obtidos dos dados de Turbulência. Número de correlações realizadas: 100 Ensaio realizado em 155 rpm.

		5 S		5 · · · · · · · · · · · · · · · · · · ·		
	Número Média Quadra- da tica dos des- Coleta vios - R.M.S.		Valor da ma- croescala de turbulência.	Produto do valor R.M.S. pela ma- croescala.		
		metros/seg.	(segundos)	(metros)		
	01	0.2205	0.00832	Ó. 00189		
	02	0.2245	0.01840	0.00414		
	03	0.2356	0.01925	0.00453		
	04	0.2183	0.01826	0.00398		
	05	0.2142	0.01394	0.00298		
	00	0.2114	0.01500	0.00331		
	07	0.2294	0.01229	0.00282		
	08	0.2319	0.01599	0.00355		
	90	0.2538	0.01305	0.00391		
a ver	ag	0.2266	0.01346	0.00305		
stan	d .	0.0122	0.00547	0.00012		
Vari	anc	0.0001	0.00003	0.00001		

Tabela B.07 - Parâmetros obtidos dos dados de Turbulência. Número de correlações realizadas: 100 Ensaio realizado em 208 rpm.

Número da Coleta	Média Quadra- tica dos des- vios - R.M.S.	Valor da ma- croescala de turbulência.	Produto do valor R.M.S. pela ma- croescala.
	metros/seg.	(segundos)	(metros)
01	0.8894	0.01589	0.01413
02	0.8307	0.01873	0.01556
03	0.8632	0.02995	0.02585
04	0.8489	0.02416	0.02051
Averag	0.8580	0.02218	0.01901
Stand	0.0214	0,00538	0.00460
Varianc	0.0004	0.00003	0.00002

Tabela B.08 - Parametros obtidos dos dados de Turbulência. Número de correlações realizadas: 100 Ensaio realizado em 253 rpm.

	Nú <i>mero</i> da Coleta	Média Quadra- tica dos des- vios - R.M.S. metros∕seg.	Valor da Ma- croescala de turbulência (segundos)	Produto do valor R.M.S. pela ma- croescala. (metros)
	01	1.0237	0.01719	0.01763
	02	0.9498	0.02432	0.02311
	03	0.9958	0.03447	0.03432
	04	0.9206	0.01899	0.01784
	05	0.9304	0.01374	0.01278
	00	0.9693	0.02213	0.02145
	07	0.9719	0.01982	0.01924
Aνø	rag	0.02181	0.01830	0.01830
Stand 0.00		0.00304	0.00906	0.00090
Varianc		0.00001	0.00008	0.00004

Tabela B.09 - Parâmetros obtidos dos dados de Turbulência. Número de correlações realizadas: 100 Ensaio realizado em 276 rpm.

	the second s				
Número da Coleta	Média Quadra- tica dos des- vios - R.M.S. metros/seg.	Valor da Ma- croescala de turbulência. (segundos)	Produto do valor R.M.S. pela ma- croescala. (metros)		
01	0.9579	0.01040	0.01574		
02	1.0091	0.01371	0.01384		
03 1.0064		0.03564	0.03581		
04	0.9918	0.01443	0.01422		
05	1.0400	0.02036	0.02132		
00	1.0310	0.01767	0.01816		
07	1.0185	0.02521	0.02564		
08	1.0134	0.01643	0.01665		
90	1.0081	0.01777	0.01777		
Averag	1.0092	0.01974	0.01992		
Stand	0.0234	0.00648	0.00660		
Varianc	0.0005	0.00041	0.00004		

Tabela B.10 - Parâmetros obtidos dos dados de Turbulência. Número de correlações realizadas: 100 Ensaio realizado em 358 rpm.

	Número da Coleta	Média Quadra- tica dos des- vice - P M S	Valor de Ma- croescala de turbulência	Produto do valor R.M.S. pela ma-
		metros/seg.	(segundos)	(metros)
	01	1.1199	0.01302	0.01511
	03	1.1689	0.00916	0.01071
	04	1.1176	0.01246	0.01392
	05	1.1517 1.1368	0.01543 0.01 <i>66</i> 5	0.01978 0.01893
	07	1.1154	0.01653	0.01845
Avø	rag	1.1492	0.01416	0.01429
Stand		0.0271	0.00255	0.00603
Var	ianc	0.0007	0.00001	0.00004

Tabela B.11 - Parametros obtidos dos dados de Turbulência. Número de correlações realizadas: 100 Ensaio realizado em 385 rpm.

Número M da t Coleta N		Média Quadra- tica dos des- vios - R.M.S.	Valor da Ma- croescala do turbulência.	Produto do valor R.M.S. pela ma- croescala.		
		metros/seg.	(segundos)	(metros)		
01 1.1921 02 1.2085		0.01119	0.01334			
		1.2085	0.02110	0.02552		
	03	1.1863	0.01199	0.01422		
	04 1.2007		0.01501	0.01801		
Ave	rag	1.1969	0.01494	0.01777		
Sta	nd	0.0084	0.00392	0.00480		
Varianc		0.0007	0.00002	0.00002		

Fabela	B.12	-	Parâmet	ros	obtide)s (dos	dados	de	Turbulência.	
			Número	de d	correla	içõ,	es r	ealiza	adas	s: 100	
			Ensaio	real	lizado	em	450	rpm.			

Número da Coleta	Média Quadra- tica dos des-	Valor da Ma- croescala de	Produto do valor R.M.S. pela ma-			
	metros/seg.	(segundos)	(metros)			
01	1.2138	0.01403	0.01704			
02	1.2015	0.01615	0.01941			
03	1.2077	0.00881	0.01065			
04	1.2217	0.01244	0.01529			
05	1.2003	0.01575	0.01891			
Averag	1.2090	0.01344	0.01625			
Stand	0.0079	0.00266	0.00310			
Varianc	0.0000	0.00001	0.00001			

