Rogério Michelan

INFLUÊNCIA DO TIPO DE IMPELIDOR SOBRE O DESEMPENHO DO REATOR ANAERÓBIO EM BATELADA SEQÜENCIAL COM BIOMASSA GRANULADA TRATANDO ESGOTO SINTÉTICO

Dissertação apresentada à Escola de Engenharia de São Carlos da Universidade de São Paulo, como parte dos requisitos para a obtenção do Titulo de Mestre em Hidráulica e Saneamento.

Orientador: Prof. Dr. José Alberto Domingues Rodrigues Co-orientadora: Prof. Dra.Suzana Maria Ratusznei

> São Carlos 2006

Ficha catalográfica preparada pela Seção de Tratamento da Informação do Serviço de Biblioteca – EESC/USP

M623i	Michelan, Rogério Influência do tipo de impelidor sobre o desempenho do reator anaeróbio em batelada seqüencial com biomassa granulada tratando esgoto sintético / Rogério Michelan - São Carlos, 2005.
	Dissertação (Mestrado) Escola de Engenharia de São Carlos-Universidade de São Paulo, 2005. Área: Hidráulica e Saneamento. Orientador: Prof. Dr. José Alberto Domingues Rodrigues. Co-orientadora : Profª Drª Suzana Maria Ratusznei.
	1. Tratamento anaeróbio. 2. Impelidor. 3. Esgoto sintético. 4. Baixa carga orgânica. 5. Batelada seqüencial. 6. Biomassa granulada. 7. Tubo interno. I. Título.

FOLHA DE JULGAMENTO

Candidato: Engenheiro ROGÉRIO MICHELAN

Dissertação defendida e julgada em 10-02-2006 perante a Comissão Julgadora:

DW/WW

APRONADO

Prof. Dr. JOSÉ ALBERTO DOMINGUES RODRIGUES (Orientador) (Escola de Engenharia Mauá)

son

Aprovado

Prof. Dr. EDSON LUIZ SILVA (Universidade Federal de São Carlos/UFSCar)

Digie

Aprovado

Prof. Dr. **DEOVALDO DE MORAES JÚNIOR** (Universidade Santa Cecília/ UNISANTA)

Profa. Titular MARIA DO CARMO CALIJURI Coordenadora do Programa de Pós-Graduação em Engenharia (Hidráulica e Saneamento) e

Presidente da Comissão de Pós-Graduação

lora da Processia de Po Roma (Robinsiona e Sun angli (Sun de Sun

Dedico este trabalho aos meus pais, Vicente Michelan e Dalva Agostini Michelan, que me forneceram os subsídios para poder trilhar pelos caminhos da vida.

Agradecimentos

Agradeço inicialmente a Deus por me mostrar, a cada dia, que apesar de eu gozar de meu livre arbítrio seus planos são infinitamente melhores e por me fazer entender que o meu trabalho pode não gerar frutos imediatamente, mas que é recompensado no momento adequado.

Dona Dalva e Seu Vicente, meus pais, que durante toda a minha vida me foram ótimos exemplos de boa conduta moral e ética. Além de, desde sempre, terem lutado contra tantas adversidades para que hoje eu pudesse estar aqui. E que espero um dia poder retribuir todo o amor e carinho.

Ao meu irmão Renato Michelan pelas várias brigas da infância e pelos papos profundos regados a cerveja na praça de Palmares Paulista ou no "bar do Tião".

A Dorival Gilberto Michelan, o Tio Val, que nos momentos mais difíceis aparecia como Anjo Salvador para fornecer apoio em gestos e palavras.

A Denise Conceição de Góis Santos que com sua companhia e palavras tornaram inesquecíveis momentos simples dia a dia participando de minha vida como mais do que uma amiga.

Aos professores da Universidade Federal de São Carlos, em especial a Prof. Dra. Teresa Cristina Zangirolami que sempre se esforçaram para que eu desse o melhor de mim.

Aos professores, funcionários e colegas da Escola de Engenharia de São Carlos – Universidade de São Paulo me ajudaram a galgar mais este degrau de minha vida profissional.

A Dra. Catarina Simone de Andrade Canto, Thiago Ruiz Zimmer, Roberto Antônio Bezerra Júnior que tornaram extremamente agradável e divertida a convivência no laboratório durante o ano de 2005 em São Caetano.

A Roberta Albanez por operar o reator nas semanas em que viajei Brasil afora.

A Kelly de Araújo Rodrigues que com muito carinho me acolheu em minhas idas a São Carlos.

A Romina Beatriz de Silva Moura uma grande amiga com quem tive o prazer de conviver durante a primeira etapa deste trabalho e que tenho a honra de conservar a amizade.

A Leonardo Henrique Soares Damasceno com suas piadas no laboratório de informática do SHS e pelo convívio durante este período.

A Iolanda Cristina Silveira Duarte pela ajuda com as análises microbianas.

Ao Prof. Dr. José Alberto Domingues Rodrigues pela sua amizade, competência e profissionalismo com que me orientou durante este projeto.

A Prof. Dra. Susana Maria Ratusznei que pela amizade e ajuda na realização deste trabalho.

Ao Prof. Dr. Deovaldo de Moraes Junior pela ajuda com os ensaios de consumo de potência e pelas sugestões durante as qualificações.

Ao Pessoal do Bloco 27 do alojamento da Universidade Federal de São Carlos que me possibilitaram entender melhor a Humanidade em sua variedade de personalidades.

A Escola de Engenharia Mauá, do Instituto Mauá de Tecnologia, na pessoa do Ilmo. Reitor Prof. Dr. Otávio de Mattos Silvares, pela cessão das instalações e apoio para a realização da etapa experimental.

À FAPESP pela concessão de bolsa de estudos (Processo nº04/03,216-5) e pelo financiamento do projeto (Processo nº2001/05.489-0)

Ao CNPQ pela concessão de bolsa de estudos (Processo nº130521/2004-3).

Não posso deixar de agradecer a todas as pedras que estiveram em meu caminho e que me possibilitaram vislumbrar, a cada pedra, um horizonte mais distante.

RESUMO

Em um reator de fundo redondo e volume útil de 5 l tratando esgoto sintético com carga orgânica de 800 mgDQO. l^1 com biomassa granulada a influência do tipo de escoamento e velocidade rotacional foi investigada com o uso de cinco impelidores sendo eles turbina e pá de seis pás planas verticais, turbina e pá de seis pás planas inclinadas 45° e hélice, comumente aplicados em processos biológicos. Foi também investigada a viabilidade de implementação de tubo de tiragem ao reator em conjunto com os impelidores tipo hélice e tipo pá de pás planas inclinadas alternadamente, com vistas a melhorar a mistura e consequente transferência de massa no meio reacional. Os resultados mostram que a alteração do tipo de impelidor e as variações da velocidade rotacional não exerceram influência significativa sobre a estabilidade e desempenho dos sistemas estudados. Entretanto a análise das constantes do modelo cinético de primeira ordem mostrou que a alteração na velocidade rotacional exerceu influência de aumento dos valores das constantes, demonstrando com isto que o aumento da velocidade rotacional melhora a transferência de massa sólido-líquido no meio reacional. A análise das constantes cinéticas também demonstrou que a promoção de escoamento axial em reatores agitados mecanicamente é preferível ao escoamento radial quando comparados os impelidores tipo pá de pás planas verticais e de pás planas inclinadas. A presença do tubo de tiragem demonstrou incrementar significativamente a transferência de massa, através do aumento dos valores numéricos das constantes utilizadas no ajuste do modelo cinético de primeira ordem aos valores experimentais. A potência consumida foi inferior a 1,6.10⁻³ HP/m³ com rotações abaixo de 200 rpm e os impelidores axiais consumiram 75 % a menos de potência do que os radiais.

Palavras chaves: tratamento anaeróbio; impelidor; esgoto sintético, baixa carga orgânica, batelada seqüencial; biomassa granulada, tubo de tiragem.

ABSTRACT

The effect of flow type and rotor speed were investigated in a round-bottom reactor with 5 l useful volume containing granular biomass and treating synthetic wastewater with organic load of 800 mgCOD.l-1. Five impellers have been used to this end, namely: turbine and paddle with six-vertical-flat blade, turbine and paddle with six-45°-inclined-flat-blade and helix, commonly used in biological processes. Utilization of a draft tube together with the helix and six-alternately-inclined-flat-blade impellers was also assessed as a means to improve mixing and consequently mass transfer in the reaction medium. Results showed that altering impeller type and variation in rotor speed did not exert significant effect on the stability and performance of the investigated systems. However, analysis of the first order kinetic model constants showed that alteration in rotor speed resulted in increase in the values of the constants, demonstrating that increase in rotor speed improves solid-liquid mass transfer in the reaction medium. Analysis of the kinetic constants also showed that axial flow in mechanically stirred reactors is preferable over radial flow when the vertical flat blade impeller is compared to the inclined flat blade impeller. The presence of the draft tube showed significant improvement in mass transfer, which could be seen by the increase in the values of the constants used in the fit of the first order kinetic model to the experimental values. The power consumed was less than 1.6.10-3 HP/m3 at rotor frequency below 200 rpm and the axial impellers consumed 75 % less power than the radial ones.

Key words: anaerobic treatment; impeller; synthetic wastewater; low organic load; sequencing batch; granular biomass; draft tube.

LISTA DE FIGURAS

Figura 2.1. Representação de escoamentos em reator para escoamentos do tipo					
axial (a) e radial (b)11					
Figura 3.1. Esquema do reator anaeróbio com agitação operado em batelada					
sequencial $[1 - Biorreator com capacidade de 6 L (a = 20 cm; b =$					
17 cm; $c = 3$ cm; $d = 17$ cm, $e = 6$ cm) e um impelidor contendo					
biomassa granulada; 2 - Afluente; 3 - Bomba de alimentação; 4 -					
Bomba de descarga; 5 - Sistema de agitação; 6 - Sistema de					
automação; 7 – Efluente] 17					
Figura 3.2. Fotografia do aparato experimental					
Figura 3.3. Parâmetros de projeto para construção dos impelidores e disposição					
destes no reator					
Figura 3.4. Disposição do tubo de tiragem no reator e fotografia do mesmo21					
Figura 3.5. Aparato utilizado para medida do consumo de potência (a – motor, b –					
impelidor, c - reator, d - tacômetro digital, e - suporte para reator e f					
– dinamômetro)					
Figura 4.1. Concentração de matéria orgânica efluente e eficiência de remoção na					
condição Tu50					
Figura 4.2. Alcalinidade a bicarbonato e ácidos voláteis totais na condição Tu50 35					
Figura 4.3. Sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos					
totais (SST) e sólidos suspensos voláteis (SSV) na condição Tu50 36					
Figura 4.4. Perfis da concentração de matéria orgânica na forma de DQO e da					
eficiência de conversão ao longo de dois ciclos de operação na					
condição Tu50					

Figura 4.5. Perfis da alcalinidade na forma de bicarbonato de cálcio e da
longo de dois ciclos de operação na condição Tu50
Figura 4.6. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Tu50
Figura 4.7. Perfis da fração molar e da concentração de metano no "head-space"ao longo de dois ciclos de operação na condição Tu50
Figura 4.8. Perfis de concentração de ácido propiônico por cromatografia durante dois ciclos de operação na condição de Tu50
Figura 4.9. Concentração de matéria orgânica efluente e eficiência de remoção utilizando impelidor tipo pá de pás planas inclinadas nas condições Ti50 e Ti7540
Figura 4.10. Alcalinidade a bicarbonato e Ácidos voláteis totais utilizando impelidor tipo pá de pás planas inclinadas nas condições Ti50 e Ti7540
Figura 4.11. Sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV), utilizando impelidor tipo pá de pás planas inclinadas nas condições Ti50 e Ti7541
Figura 4.12. Impelidor tipo turbina de seis pás planas inclinadas após a realização do ensaio
Figura 4.13. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Ti5043
Figura 4.14. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Ti50
Figura 4.15. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Ti50
Figura 4.16. Perfis da fração molar e da concentração de metano no "head-space" ao longo de dois ciclos de operação na condição Ti5044

Figura 4.17. Perfis da concentração de ácidos voláteis por cromatografia durante	
dois ciclos de operação na condição Ti50 (valores médios)	44
Figura 4.18. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Ti75	46
Figura 4.19. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Ti75.	46
Figura 4.20. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Ti75	47
Figura 4.21. Perfis da fração molar e da concentração de metano no "head-space" ao longo de dois ciclos de operação na condição Ti75	47
Figura 4.22. Perfis da concentração de ácidos voláteis por cromatografia durante dois ciclos de operação na condição Ti75	47
Figura 4.23. Concentração de matéria orgânica efluente e eficiência de remoção utilizando impelidor tipo pá de pás planas inclinadas nas condições Pa50 e Pa75	50
Figura 4.24. Alcalinidade a bicarbonato e Ácidos voláteis totais utilizando impelidor tipo pá de pás planas inclinadas nas condições Pa50 e Pa75	50
Figura 4.25. Sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV), utilizando impelidor tipo pá de pás planas inclinadas nas condições Pa50 e Pa75	51
Figura 4.26. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Pa50	52
Figura 4.27. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Pa50	52
Figura 4.28. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Pa50	53

Figura 4.29. I	Perfis da fração molar e da concentração de metano no "head-space"	
ac	o longo de dois ciclos de operação na condição Pa505	53
Figura 4.30.	Perfis da concentração de ácidos voláteis por cromatografia durante	
do	ois ciclos de operação na condição Pa50 (valores médios)5	53
Figura 4.31.	Perfis da concentração de matéria orgânica na forma de DQO e da	
ef	ficiência de conversão ao longo de dois ciclos de operação na	
СС	ondição Pa755	55
Figura 4.32.	Perfis da alcalinidade na forma de bicarbonato de cálcio e da	
СС	oncentração de ácidos voláteis totais na forma de ácido acético ao	
lo	ongo de dois ciclos de operação na condição Pa755	55
Figura 4.33.	Perfis do volume acumulado e da produção de metano no reator ao	
10	ongo de dois ciclos de operação na condição Pa755	56
Figura 4.34. I	Perfis da fração molar e da concentração de metano no "head-space"	
ac	o longo de dois ciclos de operação na condição Pa755	56
Figura 4.35.	Perfis da concentração de ácidos voláteis por cromatografia durante	
de	ois ciclos de operação na condição Pa75 (valores médios)5	56
Figura 4.36.	Concentração de matéria orgânica efluente e eficiência de remoção	
ut	tilizando impelidor tipo pá de pás planas inclinadas nas condições	
Pi	i50 e Pi755	59
Figura 4.37.	Alcalinidade a bicarbonato e Ácidos voláteis totais utilizando	
in	npelidor tipo pá de pás planas inclinadas nas condições Pi50 e Pi755	59
Figura 4.38.	Sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos	
to	otais (SST) e sólidos suspensos voláteis (SSV) utilizando impelidor	
tij	po pá de pás planas inclinadas nas condições Pi50 e Pi756	50
Figura 4.39.In	mpelidor tipo pá de pás planas inclinadas antes e após o ensaio6	51
Figura 4.40.	Perfis da concentração de matéria orgânica na forma de DQO e da	
ef	ficiência de conversão ao longo de dois ciclos de operação na	
СС	ondição Pi506	52

Figura 4.41. Perfis da alcalinidade na forma de bicarbonato de cálcio e da
concentração de ácidos voláteis totais na forma de ácido acético ao
longo de dois ciclos de operação na condição Pi50
Figura 4.42. Perfis do volume acumulado e da produção de metano no reator ao
longo de dois ciclos de operação na condição Pi50
Figura 4.43. Perfis da fração molar e da concentração de metano no "head-space"
ao longo de dois ciclos de operação na condição Pi5063
Figura 4.44. Perfis da concentração de ácidos voláteis por cromatografia durante
dois ciclos de operação na condição Pi50 (valores médios)63
Figura 4.45. Perfis da concentração de matéria orgânica na forma de DQO e da
eficiência de conversão ao longo de dois ciclos de operação na
condição Pi7565
Figura 4.46. Perfis da alcalinidade na forma de bicarbonato de cálcio e da
concentração de ácidos voláteis totais na forma de ácido acético ao
longo de dois ciclos de operação na condição Pi75
Figura 4.47. Perfis do volume acumulado e da produção de metano no reator ao
longo de dois ciclos de operação na condição Pi75
Figura 4.48. Perfis da fração molar e da concentração de metano no "head-space"
ao longo de dois ciclos de operação na condição Pi7566
Figura 4.49. Perfis da concentração de ácidos voláteis por cromatografia durante
dois ciclos de operação na condição Pi7566
Figura 4.50. Concentração de matéria orgânica efluente e eficiência de remoção
utilizando impelidor tipo pá de pás planas inclinadas e reator com
tubo de tiragem nas condições Pd100 e Pd120 69
Figura 4.51. Alcalinidade a bicarbonato e Ácidos voláteis totais utilizando
impelidor tipo pá de pás planas inclinadas e reator com tubo de
tiragem nas condições Pd100 e Pd12069
Figura 4.52. Sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos
totais (SST) e sólidos suspensos voláteis (SSV) utilizando impelidor

tipo pá de pás planas inclinadas e reator com tubo de tiragem nas condições Pd100 e Pd12070
Figura 4.53. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Pd10072
Figura 4.54. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Pd10072
Figura 4.55. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Pd10073
Figura 4.56. Perfis da fração molar e da concentração de metano no "head-space" ao longo de dois ciclos de operação na condição Pd10073
Figura 4.57. Perfis da concentração de ácidos voláteis por cromatografia durante dois ciclos de operação na condição pá Pd10073
Figura 4.58. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Pd120
Figura 4.59. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Pd12075
Figura 4.60. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Pd12076
Figura 4.61. Perfis da fração molar e da concentração de metano no "head-space" ao longo de dois ciclos de operação na condição Pd120
Figura 4.62. Perfis da concentração de ácidos voláteis por cromatografia durante dois ciclos de operação na condição Pd120
Figura 4.63. Concentração de matéria orgânica efluente e eficiência de remoção nas condições He70 e He100
Figura 4.64. Alcalinidade a bicarbonato e Ácidos voláteis totais nas condições He70 e He10079

Figura 4.65. Sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos
totais (SST) e sólidos suspensos voláteis (SSV) nas condições He70 e
He10079
Figura 4.66. Perfis da concentração de matéria orgânica na forma de DQO e da
eficiência de conversão ao longo de dois ciclos de operação na
condição He /0
Figura 4.67. Perfis da alcalinidade na forma de carbonato de cálcio e da
concentração de ácidos voláteis totais na forma de ácido acético ao
longo de dois ciclos de operação na condição He70
Figura 4.68. Perfis do volume acumulado e da produção de metano no reator ao
longo de dois ciclos de operação na condição He/0
Figura 4.69. Perfis da fração molar e da concentração de metano no "head-space"
ao longo de dois ciclos de operação na condição He7082
Figura 4.70. Perfis da concentração de ácidos voláteis por cromatografia durante
dois ciclos de operação na condição He70
Figura 4.71. Perfis da concentração de matéria orgânica na forma de DQO e da
eficiência de conversão ao longo de dois ciclos de operação na
condição He100
Figura 4.72. Perfis da alcalinidade na forma de bicarbonato de cálcio e da
concentração de ácidos voláteis totais na forma de ácido acético ao
longo de dois ciclos de operação na condição He100
Figura 4.73. Perfis do volume acumulado e da produção de metano no reator ao
longo de dois ciclos de operação na condição He100 85
Figura 4.74. Perfis da fração molar e da concentração de metano no "head-space"
ao longo de dois ciclos de operação na condição He10085
Figura 4.75. Perfis da concentração de ácidos voláteis por cromatografia durante
dois ciclos de operação na condição He10085
Figura 4.76. Concentração de matéria orgânica efluente e eficiência de remoção
utilizando impelidor tipo hélice e reator com tubo de tiragem nas
condições Hd100 e Hd120

Figura 4.77. Alcalinidade a bicarbonato e Ácidos voláteis totais utilizando impelidor tipo hélice e reator com tubo de tiragem nas condições Hd100 e Hd120	. 88
Figura 4.78. Sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV) utilizando impelidor tipo hélice e reator com tubo de tiragem nas condições Hd100 e Hd120	. 89
Figura 4.79. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Hd100	.91
Figura 4.80. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Hd100.	.91
Figura 4.81. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Hd100	.92
Figura 4.82. Perfis da fração molar e da concentração de metano no "head-space" ao longo de dois ciclos de operação na condição Hd100	.92
Figura 4.83. Média dos perfis da concentração de ácidos voláteis por cromatografia durante dois ciclos de operação na condição Hd100	.92
Figura 4.84. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Hd120	.94
Figura 4.85. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Hd120	.94
Figura 4.86. Perfis do volume acumulado e da produção de metano no reator ao longo de um ciclo de operação na condição hélice com tubo de tiragem a 120 rpm.	.95
Figura 4.87. Perfis da fração molar e da concentração de metano no "head-space" ao longo de um ciclo de operação na condição Hd120	.95

Figura 4.88. Média dos perfis da concentração de ácidos voláteis por
cromatografia durante dois ciclos de operação na condição Hd12095
Figura 4.89. Imagens obtidas do inóculo utilizado no reator96
Figura 4.90. Imagens obtidas do lodo proveniente do reator ao final dos experimentos
Figura 4.91. Imagens obtidas do material gelatinoso coletado ao final do experimento
Figura 4.92. Comparação entre o lodo do inoculo (direita) e o lodo do reator após os ensaios (esquerda)
Figura 4.93. Material esbranquiçado gelatinoso coletado da biomassa do reator99
Figura 4.94. Variação de N _P em função de N _{Re} para os ensaios realizados neste trabalho. (a) condições sem tubo de tiragem e (b) condições com tubo de tiragem
$\Gamma_{i} = 100$
Figura 4.95. Valores experimentais e ajuste do modelo cinetico na condição 1050 109
Figura 4.96. Valores experimentais e ajuste do modelo cinético na condição Pa50 110
Figura 4.97. Valores experimentais e ajuste do modelo cinético na condição Pa75 110
Figura 4.98. Valores experimentais e ajuste do modelo cinético na condição Ti50 111
Figura 4.99. Valores experimentais e ajuste do modelo cinético na condição Ti75 111
Figura 4.100. Valores experimentais e ajuste do modelo cinético na condição Pi50
Figura 4.101. Valores experimentais e ajuste do modelo cinético na condição Pi75
Figura 4.102. Valores experimentais e ajuste do modelo cinético na condição Pd100
Figura 4.103. Valores experimentais e ajuste do modelo cinético na condição Pd120113
Figura 4.104. Valores experimentais e ajuste do modelo cinético na condição He70

Figura	4.105.	Valores	experimentais	e	ajuste	do	modelo	cinético	na	condição	
	Не	100				•••••			•••••		. 114
Figura	4.106.	Valores	experimentais	e	ajuste	do	modelo	cinético	na	condição	
	Hd	100				•••••			•••••		. 115
Figura	4.107.	Valores	experimentais	e	ajuste	do	modelo	cinético	na	condição	
	Hd	120				•••••			•••••		. 115

LISTA DE TABELAS

Tabela 3.1. Parâmetros de construção dos impelidores 19
Tabela 3.2. Composição geral da água residuária sintética. 23
Tabela 3.3. Composição da água residuária sintética utilizada nos experimentos 23
Tabela 3.4. Estratégia de operação do sistema em batelada seqüencial a ser implementada. 25
Tabela 3.5. Resumo dos ensaios realizados nesse projeto. 26
Tabela 4.1. Valores médios das variáveis monitoradas durante o ensaio Tu50 34
Tabela 4.2. Valores médios das variáveis monitoradas na operação com impelidortipo turbina de pás planas inclinadas nas condições de operação Ti50 eTi75
Tabela 4.3. Valores médios das variáveis monitoradas no ensaio com impelidor tipo pá de pás planas verticais nas condições de operação Pa50 e Pa75 49
Tabela 4.4. Valores médios das variáveis monitoradas na operação com impelidortipo pá de pás planas inclinadas nas condições de operação Pi50 ePi75
Tabela 4.5. Valores médios das variáveis monitoradas na operação com impelidortipo pá de pás planas inclinadas 45 ° e tubo de tiragem nas condiçõesPd100 e Pd120
Tabela 4.6. Valores médios das variáveis monitoradas na operação com impelidortipo hélice nas condições He70 e He100.77
Tabela 4.7. Valores médios das variáveis monitoradas na operação com impelidortipo hélice com tubo de tiragem nas condições de operação Hd100 eHd120
Tabela 4.8. Valores médios do número de potência e da potência consumida nastreze condições operacionais deste trabalho.101

Tabela 4.9. Valores médios das variáveis monitoradas nas condições sem uso de	
tubo de tiragem	. 105
Tabela 4.10. Valores médios das variáveis monitoradas nas condições com uso de	
tubo de tiragem	. 107
Tabela 4.11. Parâmetro k_1 estimado através ajustes da equação 4.1 aos perfis	
temporais coletados em cada condição operacional	. 116
Tabela 4.12. Parâmetros k_1 e k_2 estimados através ajustes da equação 4.2 aos	
perfis temporais coletados em cada condição operacional.	. 117
Tabela 4.13. Parâmetros k_1 e k_2 estimados através ajustes da equação 4.3 aos	
perfis temporais coletados em cada condição operacional.	. 118

LISTA DE ABREVIATURAS E SIGLAS

AB	Alcalinidade a Bicarbonato (gNaHCH ₃ . l^{-1}).
ASBR	Reator anaeróbio operado em bateladas seqüenciais (Anaerobic
	Sequencing Batch Reactor).
AT	Alcalinidade Total (gNaHCO ₃ . l^{-1}).
AVT	Ácidos Voláteis Totais (gHAc. l^{-1}).
AVTc	Ácidos Voláteis Totais por cromatografia (g. l^{-1}).
DQO	Demanda Química de Oxigênio (gDQO. l^{-1}).
EESC/USP	Escola de Engenharia de São Carlos da Universidade de São
	Paulo.
Hd100	Reator com tubo de tiragem e impelidor tipo hélice operado em
	rotação de 100 rpm.
Hd120	Reator com tubo de tiragem e impelidor tipo hélice operado em
	rotação de 120 rpm.
He70	Reator operado com impelidor tipo hélice em rotação de 70 rpm.
He100	Reator operado com impelidor tipo hélice em rotação de 100 rpm.
IMT	Instituto Mauá de Tecnologia.
Pa50	Reator operado com impelidor tipo pá de seis pás planas verticais
	e rotação de 50 rpm.
Pa75	Reator operado com impelidor tipo pá de seis pás planas verticais
	e rotação de 75 rpm.
Pd100	Reator operado com tubo de tiragem e impelidor tipo pá de seis
	pás planas inclinadas 45° e rotação de 100 rpm.
Pd120	Reator operado com tubo de tiragem e impelidor tipo pá de seis
	pás planas inclinadas 45° e rotação de 120 rpm.
Pi50	Reator operado com impelidor tipo pá de seis pás planas
	inclinadas 45° e rotação de 50 rpm

	•
XX	1V

Pi75	Reator operado com impelidor tipo pá de seis pás planas
	inclinadas 45° e rotação de 75 rpm
Rpm	Rotações por minuto.
Ti50	Reator operado com impelidor tipo turbina de seis pás planas
	inclinadas 45° e rotação de 50 rpm
Ti75	Reator operado com impelidor tipo turbina de seis pás planas
	inclinadas 45° e rotação de 50 rpm
Tu50	Reator operado com impelidor tipo turbina de seis pás planas
	verticais em rotação de 50 rpm.
UASB	Reator anaeróbio de manta de lodo e escoamento ascendente
	(Upflow Anaerobic Sludge Blanket).

LISTA DE SÍMBOLOS

$\theta_{\rm h}$	Tempo de detenção hidráulica (h).
C_{AF}	Concentração afluente (gDQO. l^{-1}).
CH ₄	Metano.
CO_2	Dióxido de carbono.
C_{SF}	Concentração de matéria orgânica, em termos de DQO, em
	amostras filtradas (gDQO. l^{-1}).
C _{ST}	Concentração de matéria orgânica, em termos de DQO, em
	amostras não filtradas (gDQO. <i>l</i> ⁻¹).
Е	Eficiência de conversão de matéria orgânica (%).
E_F	Eficiência de conversão de matéria orgânica filtrada (%).
E _T	Eficiência de conversão de matéria orgânica não filtrada (%).
F/M	Razão substrato/microrganismos.
H_2SO_4	Ácido sulfúrico.
NaCl	Cloreto de sódio.
NaHCO ₃	Bicarbonato de Sódio.
NC	Número de ciclos ao dia.
N _{CLS}	Rotação para suspensão completa dos sólidos.
pН	Potencial hidrogeniônico.
SFT	Sólidos fixos totais (gSFT. l^{-1}).
SST	Sólidos suspensos totais (gSST. l^{-1}).
SSV	Sólidos suspensos voláteis (gSSV.l ⁻¹).
ST	Sólidos Totais (gST.1-1).
SVT	Sólidos voláteis totais (gSVT. l^{-1}).
Т	Temperatura (°C).
t _C	Tempo de ciclo (horas).
V	Volume descarregado em um ciclo (<i>l</i>)
VR	Volume do reator (<i>l</i>).

xxvi

xxvii

SUMÁRIO

RESUMO	IX
ABSTRACT	x
LISTA DE FIGURAS	XI
LISTA DE TABELAS	XXI
LISTA DE ABREVIATURAS E SIGLAS	XXIII
LISTA DE SÍMBOLOS	xxv
SUMÁRIO	XXVII
1 INTRODUÇÃO	1
1.1 Motivação ao estudo	1
1.2 Objetivos	1
2 REVISÃO BIBLIOGRÁFICA	3
2.1 O reator anaeróbio operado em batelada seqüencial (ASBR)	3
 2.2 Mecanismos de promoção de mistura e agitação 2.2.1 Mistura promovida recirculação de biogás 2.2.2 Mistura promovida por recirculação de líquido 2.2.3 Fundamentos sobre agitação mecânica 2.2.3.1 Agitadores mecânicos 2.2.3.2 Suspensão de sólidos 2.2.3.3 Tubo de tiragem ("draft tube") 2.2.4 Mistura promovida por agitação mecânica 	4 7 8 10 10 11 12 13
2.3 Considerações finais	16
3 MATERIAIS E MÉTODOS	17
 3.1 Materiais 3.1.1 Configuração do reator operado em batelada seqüencial 3.1.2 Impelidores 3.1.3 Tubo de tiragem 3.1.4 Sistema para medida do consumo de potência 	17 17 18 20 21

3. 3.	 1.5 Inóculo 1.6 Água residuária – esgoto sintético 	22 22
3.2 3. 3.	Métodos 2.1 Análises físico-químicas 2.2 Análises microbianas	23 23 24
3.	2.3 Composição e produção do biogás	24
3.3	Procedimento experimental 3.1 Operação do reator em batelada següencial	25 25
3.	3.2 Monitoramento do reator	26
3.	3.3 Perfil ao longo do ciclo de operação	26
3.	3.4 Ensaio sobre consumo de potência	27
3.4	Formulação matemática e modelagem cinética	27
3.	4.1 Eficiência de conversão de matéria orgânica	27
3. 3.	4.2 Numero de potencia e Numero de Reynolds4.3 Modelagem cinética	28 29
4	RESULTADOS E DISCUSSÃO	33
4.1	Apresentação dos dados experimentais	33
4.	1.1 Impelidor tipo turbina de seis pás planas verticais	33
4.	1.2 Impelidor tipo turbina de seis pás planas inclinadas	39
	4.1.2.1 Condição de operação Ti50	43
4	4.1.2.2 Condição de operação 11/5	46
4.	4.1.3.1 Condição de operação Pa50	49 52
	4132 Condição de operação Pa75	55
4.	1.4 Impelidor tipo pá de seis pás planas inclinadas	58
	4.1.4.1 Condição de operação Pi50	62
	4.1.4.2 Condição de operação Pi75	65
4.	1.5 Impelidor tipo pá de seis pás planas inclinadas e tubo de tiragem	68
	4.1.5.1 Condição de operação Pd100	72
	4.1.5.2 Condição de operação Pd120	75
4.	1.6 Impelidor tipo hélice	77
	4.1.6.1 Condição de operação He70	81
4	4.1.0.2 Condição de operação He100	84 97
4.	4171 Condição de operação Hd100	91
	4172 Condição de operação Hd120	94
4.	1.8 Análise microbiana	96
4.2	Viabilidade econômica	100
4.3	Visão holística sobre as condições estudadas	102
4.	3.1 Monitoramento dos sistemas	102
	4.3.1.1 Sistemas convencionais	102
	4.3.1.2 Sistemas com uso de tubo de tiragem	107
4.	3.2 Perfis temporais	108
5	CONCLUSÕES E SUGESTÕES	123
5.1	Considerações gerais	123
5.2	Considerações sobre tubo de tiragem	124
5.3	Propostas para trabalhos futuros	125

REFERÊNCIAS BIBLIOGRÁFICAS	126
APÊNDICES	130
APÊNDICE A. Dedução do modelo cinético	130
APÊNDICE B. Ensaio com impelidor tipo turbina de pás planas verticais – v experimentais	alores 134
APÊNDICE C. Ensaio com impelidor tipo turbina de pás planas inclinadas – v experimentais	alores 139
APÊNDICE D. Ensaio com impelidor tipo pá de pás planas verticais – valores experimo	entais 146
APÊNDICE E. Ensaio com impelidor tipo pá de pás planas inclinadas – v experimentais	alores 153
APÊNDICE F. Ensaio com impelidor tipo pá de pás planas inclinadas e tubo de tira valores experimentais	gem – 160
APÊNDICE G. Ensaio com impelidor tipo hélice – valores experimentais	167
APÊNDICE H. Ensaio com impelidor tipo hélice e tubo de tiragem – valores experimen	ntais. 174
APÊNDICE I. Ensaio de consumo de potência.	181

1 INTRODUÇÃO

1.1 Motivação ao estudo

A tecnologia de tratamento anaeróbio surgiu sem a utilização de equipamentos ou procedimentos que fornecessem mistura no meio reacional. Entretanto, as condições em que eram operados estes sistemas possibilitavam a movimentação necessária ao meio, produzida pela própria formação e eliminação de biogás, os quais podem ser gerados em função de altas cargas orgânicas do afluente a ser tratado.

Com a utilização de processos anaeróbios para o tratamento de efluentes de baixa carga orgânica, constatou-se que a movimentação do fluido passa a ser um parâmetro importante no projeto e operação destes sistemas. Dentre as formas de provocar movimentação no fluido em tratamento estão: a) a recirculação de biogás, que não pode ser aplicada a processos de baixas cargas orgânicas por causa da baixa produção de biogás; b) a recirculação de líquido e c) a agitação mecânica, esta que é utilizada em diversos processos químicos e bioquímicos.

O reator aqui utilizado foi o reator anaeróbio operado em batelada seqüencial tratando esgoto sintético com biomassa granular e mistura promovida através de agitação mecânica através da aplicação de impelidores.

No mercado podem ser encontrados os mais variados tipos de impelidores para as mais diversas aplicações em misturas. Como o estudo da agitação mecânica em tratamento de efluentes de baixa carga é ainda insipiente, neste trabalho optou-se por pesquisar os impelidores mais conhecidos e utilizados em aplicações químicas e bioquímicas.

1.2 Objetivos

O objetivo principal desse projeto de pesquisa é a investigação da influência do tipo de impelidor sobre a estabilidade e eficiência de um reator anaeróbio com agitação

mecânica, operado em batelada seqüencial e contendo biomassa granulada, aplicado ao tratamento de esgoto sintético de baixa carga com fonte de carbono e energia, constando de sacarose, amido e celulose, além de extrato de carne e sais.

Os objetivos específicos deste trabalho foram:

- Estudar a influência dos tipos de escoamento (axial, radial ou misto) produzidos por agitação mecânica em duas freqüências rotacionais com cinco tipos de impelidores, sendo que em dois destes implementando tubo de tiragem no reator ("draft-tube"), sobre o desempenho de sistema ASBR operando com biomassa granulada tratando esgoto sintético de baixa carga orgânica;
- Estudar as configurações propostas visando encontrar um sistema ótimo pelo ajuste de modelos cinéticos e caracterização microbiana;
- Estudar o consumo de potência destas configurações aplicadas ao tratamento de esgoto sintético de baixa carga orgânica em reatores ASBR.

2 REVISÃO BIBLIOGRÁFICA

2.1 O reator anaeróbio operado em batelada seqüencial (ASBR)

Um ciclo típico do reator anaeróbio operado em batelada compreende quatro etapas: (*i*) alimentação; (*ii*) tratamento propriamente dito, por meio das reações ou biotransformações dos constituintes do esgoto por microrganismos; (*iii*) sedimentação; e (*iv*) descarga, com retirada do líquido tratado e clarificado. Durante a alimentação, a matéria orgânica a ser tratada é inserida no reator em um curto espaço de tempo, prédeterminado. Desta forma ocorre variação das concentrações dos componentes com picos de concentração de compostos intermediários e alta produção de biogás. Esta etapa é a mais importante do processo e pode durar 80% ou mais do tempo total de ciclo. O tempo necessário para a etapa de reação depende da qualidade requerida de efluente e de outros fatores como concentração da escassez de matéria orgânica aos microorganismos, que proporciona baixa razão F/M (substrato/microorganismo) as condições de sedimentação são excelentes ao final da etapa de reação. (DAGUE et al., 1992; ANGENENT & DAGUE, 1995; NDON & DAGUE, 1997; ZAIAT et al.,2001).

A desvantagem do ASBR provocada pelo maior volume de reator pode ser compensada com a vantagem de não necessitar de mecanismos de sedimentação e recirculação de biomassa (SPEECE, 1996).

Um objeto de comparação entre reatores ASBR e UASB é com relação ao fato de possibilitarem o desenvolvimento de biomassa granular que permite ótimas condições de sedimentação. Contudo, há a necessidade de baixas concentrações de sólidos suspensos no afluente de um UASB enquanto que esta limitação não se verifica no ASBR (ANGENENT & DAGUE, 1995).

Diversas vantagens podem ser atribuídas aos sistemas anaeróbios operados em batelada para tratamento de águas residuárias, como melhor controle da qualidade do efluente, alta eficiência de remoção da matéria orgânica e operação simples e estável do sistema. Apesar de apresentar muitas vantagens, este tipo de biorreator é deficiente em métodos estabelecidos e técnicas de operação bem definidas (Zaiat et al., 2001). Ocorrência de zonas mortas, alto tempo de sedimentação, arraste de sólidos e inibições devido a sobrecargas orgânicas são alguns dos problemas que afetam o desempenho do tratamento.

Segundo Zaiat et al. (2001), o tratamento promovido em ASBR é particularmente apropriado para os casos de indústrias que geram efluentes de maneira intermitente ou somente em algumas épocas do ano; indústrias que trabalham com padrões de lançamento muito restritivo ou de difícil degradação onde o tempo de ciclo é o parâmetro a ser ajustado para se garantir a degradação do composto presente ou para se atingir a remoção e do ponto de vista operacional para sistemas que tenham a finalidade de reutilizar a água residuária tratada por permitir um maior controle operacional e em estudos que visam o entendimento de fenômenos relacionados com a digestão anaeróbia por permitirem maior instrumentação e controle. Ainda pelo mesmo autor, os fatores que geralmente afetam o rendimento de um ASBR são a agitação, a razão entre a concentração de substrato e a concentração de biomassa (F/M), a configuração geométrica do reator e a estratégia de alimentação.

2.2 Mecanismos de promoção de mistura e agitação

A agitação proporciona maior eficiência de contato entre matéria orgânica e os microrganismos durante a fase de reação, para isto podem ser utilizados agitação mecânica que pode ser aplicada de forma intermitente ou contínua ou recirculação de gás ou de líquido (ANGENENT & DAGUE, 1995; NDON & DAGUE, 1997; ZAIAT et al., 2001). A intensidade de agitação é um importante fator a ser observado, pois esta pode prejudicar o sistema causando danos aos grânulos presentes na biomassa ou até mesmo destruí-los.

A resistência à transferência de massa da fase líquida para a biomassa pode reduzir a velocidade global de reação, diminuindo o desempenho do reator. Dessa forma, a agitação do meio torna-se importante por aumentar o contato entre a matéria orgânica e a biomassa, reduzindo a resistência à transferência de massa e aumentando a velocidade global de reação e, portanto, o desempenho do reator.

A mistura no ASBR é realizada normalmente por agitação mecânica ou por reciclo do biogás gerado no processo. No entanto, Brito et al. (1997) afirmam que para o

tratamento de águas residuárias de baixa carga, a produção de biogás é insuficiente para promover a turbulência necessária para minimizar a ocorrência de possíveis zonas de estagnação e resistência à transferência de massa. Atentados para este fato, os pesquisadores desenvolveram um ASBR para o tratamento de águas residuárias de baixa concentração (1.000 mgDQO. l^{-1}) na qual a agitação era promovida pela recirculação do efluente por uma bomba tipo diafragma, obtendo eficiências de remoção de DQO de 60 a 70 % e qualificando a possibilidade do uso da recirculação do efluente para agitação do reator.

Cubas et al, (2001) estudando o efeito do tamanho de partículas de poliuretano na transferência de massa e conseqüentemente no desempenho global do sistema. Trabalharam com partículas variando de 0,5 a 3 cm de lado. O reator foi alimentado com água residuária sintética operando em ciclos de 8 h a 30 °C. A concentração de efluente residual aumentou com o aumento do tamanho da biopartícula. O tempo de ciclo não foi afetado com o aumento do tamanho da biopartícula quando esta variou de 0,5 a 2 cm, mas foi observado que para partículas de 3 cm o tempo de ciclo teria que se maior para atingir a eficiência alcançada quando utilizadas partículas menores. Foi estimado uma constante cinética de primeira ordem próximo a 0,59 h⁻¹ para partículas entre 0,5 e 2 cm e de 0,48 h⁻¹ para partículas de 3 cm.

Sung & Dague (1995) mostraram que o uso de agitação contínua ou intermitente não influenciou no desempenho do reator em termos de remoção de DQO e produção de metano. Apesar de a agitação contínua aparentar resultar em uma mais rápida remoção de DQO durante as três primeiras horas de ciclo.

Liu & Tay (2002) atentam para a influência da tensão de cisalhamento na granulação em reatores tipo UASB e outras configurações confirmando que o padrão de escoamento ascendente não é primordial para a garantia da granulação apesar de que quase 100 % dos eventos de granulação em grande escala se confirmarem em reatores tipo coluna. Ainda reforçam a idéia de que a o cisalhamento favorece a formação de grânulos porém pode ocorrer a destruição deles com altas tenções.

Monteith & Stephenson (1981) estudaram a hidrodinâmica de duas plantas de digestão de lodo utilizando fluoreto como traçador. Neste estudo observaram desvios significativos da mistura ideal nos digestores, diferenças causadas por curto circuito ou presença de zonas mortas ou uma combinação de ambos. No digestor primário de uma das plantas observaram que zonas mortas correspondiam a mais de 77 % do volume do digestor, reduzindo seriamente o tempo de detenção hidráulica, em outro caso

observaram que 61 % do escoamento passavam por um curto circuito fazendo com que este material não recebesse tratamento.

Karim et al (2005b) estudaram o efeito do tipo de agitação utilizando recirculação de biogás, agitação mecânica e recirculação de lodo em conjunto com o efeito da carga orgânica na performance de oito digestores, sendo quatro alimentados com 5 % de esterco e os outros quatro com 10 %. O suprimento de energia foi fixado em 8 W.m⁻³ para todos os digestores. Os estudos foram conduzidos em oito reatores de volume útil de 3,73 l em temperatura de 35 ± 2 °C. O tempo de detenção hidráulica foi mantido em 16,2 dias resultando em cargas orgânicas de 3,08 e 6,2 g.l⁻¹.d⁻ ¹, respectivamente. Os resultados mostraram que para alimentação de 5 % não houve variação nos valores de produção $(0,84-0,94 l.l^{-1}.d^{-1})$ e de produtividade de metano. Esta constatação pode ser explicada pela baixa concentração de sólidos por ser suficientemente movimentada pelo biogás produzido. Já para concentração de 10 % o tipo de agitação demonstrou ser importante e necessária. Os reatores agitados com recirculação de lodo, mecânica e recirculação de biogás apresentaram 29 %, 22 % e 15 % mais biogás do que o reator operado sem agitação, respectivamente. A agitação tornou-se necessária devido à deposição de sólidos observados nos reatores operados a 10 %, fato não observado em carga de 5 %.

Bagley & Brodkorb (1999) desenvolveram um modelo cinético baseado nas diferentes populações microbianas em uma comunidade anaeróbia, prevendo a formação e o consumo de produtos intermediários como função da pressão parcial de hidrogênio prevendo efeitos de inibição causados por esta e pelo pH. Para validar o modelo os pesquisadores simularam com resultados experimentais obtidos em um ASBR de 12 *l* de volume total, sendo alimentados 6 *l* por ciclo e a recirculação era feita pela recirculação de líquido a uma taxa de 6 *l*.h⁻¹.

Moreno et al (1998) estudaram o efeito da relação substrato/microrganismo durante um teste de biodegradabilidade. Os ensaios foram realizados em frascos de soro com duas fontes de carbono (acetato e corante azo) a 35°C com agitação de 150 rpm e sem agitação. A concentração de substrato variou entre 625 e 12500 mgAcetato. I^{-1} e de biomassa entre 2500 e 12500 mg. I^{-1} O uso de agitação aumentou significativamente os valores das constantes cinéticas utilizadas para representar o experimento. O efeito da concentração de biomassa foi negativo, isto é, baixas concentrações de biomassa apresentaram altos valores de velocidade de reação quando comparados com ensaios em altas concentrações de biomassa. Já a concentração de substrato apresentou efeito
positivo na velocidade de reação, onde altas concentrações de substrato apresentaram altas velocidades reacionais.

2.2.1 Mistura promovida recirculação de biogás

São agora apresentados alguns estudos sobre a influência do desempenho de sistemas de tratamento cuja mistura foi promovida por recirculação de biogás gerado no processo. No qual um problema observado foi a inviabilidade de utilização de mistura por recirculação de biogás em processos de tratamento de efluentes de baixa carga orgânica.

Karim et al, (2005a) trabalharam com seis digestores de volume útil de 3,73 *l* agitados com recirculação de biogás. Estudaram o efeito da velocidade de recirculação de biogás e altura de tubo de tiragem na performance do sistema. Os reatores tiveram produção de metano de 0,40 a 0,45 $l.l^{-1}d^{-1}$ sendo a maior produção de metano no reator não agitado enquanto que um aumento na recirculação de biogás provocou uma redução na produção deste, sendo uma possível explicação para este fenômeno o fato de ocorrer baixa concentração de sólidos no reator (50 gST. l^{-1}) tornando suficiente a agitação provocada pela produção de biogás. Enquanto que diferentes alturas do tubo de tiragem em relação ao fundo do reator não provocaram alteração significativa na produção de metano.

Muroyama et al, (2001) operaram um reator de 1 *l* com tubo de tiragem em regime de batelada alimentada com recirculação de biogás promovendo a agitação. A agitação ocorria durante uma hora por ciclo sendo o ciclo de 24 h. Observou-se que ocorre um aumento gradual da concentração de metano com o aumento da carga orgânica até atingir um valor de pico a partir do qual ocorre uma queda da concentração com o aumento da carga orgânica. A concentração máxima de metano foi de 53,7 %, muito próximo do valor teórico de 55 %.

Massé & Masse (2000) utilizando agitação intermitente (um minuto de agitação a cada cinco minutos) por recirculação de biogás gerado em ASBR de 42 L, tratando água residuária de matadouro suíno, obtiveram eficiências de remoção de DQO total entre 90 e 96%, para cargas orgânicas volumétricas variando de 2,07 a 4,93 gDQO. l^{-1} .

Ndon & Dague (1997), operaram um ASBR com agitação por recirculação de biogás, nas concentrações de 0,4, 0,6, 0,8 e 1 gDQO. l^1 de água residuária produzida

com leite em pó desnatado com θ_h de 12, 16, 24 e 48 horas. Atingiram eficiência de conversão de 80 a 90 % para todos os tempos testados, com exceção do θ_h de 12 nas concentrações de 0,8 e 1 gDQO. Γ^1 e do θ_h de 16 horas na concentração de 1 gDQO. Γ^1 nos quais foi observada queda de eficiência e perda de sólidos.

Schmit & Dague (1993) tratando resíduos suínos em ASBR com recirculação de biogás concluíram que para cargas orgânicas variando entre 0,9 a 5 gSV. l^{-1} .d⁻¹ é possível promover remoção entre 40 e 60 % a uma temperatura de 20 °C, confirmando que o ASBR é capaz de se adaptar a baixas temperaturas através de adaptação da biomassa por um longo período de tempo a baixas temperaturas. Observaram também que para baixas cargas o reator funcionou bem, porém com o aumento da carga ocorreram problemas de estabilidade sugerindo tratamento adicional para altas cargas.

Wirtz & Dague (1997) utilizando agitação intermitente por recirculação de biogás estudaram a redução do tempo de granulação em ASBR pela adição de polímero catiônico comparada com a granulação sem a adição de polímero. Estes pesquisadores obtiveram redução de 75 % no tempo de granulação quando comparado com o tempo necessário para o caso sem a adição do agente de granulação.

2.2.2 Mistura promovida por recirculação de líquido

A recirculação de líquido como apresenta como fator importante a velocidade superficial aplicada em cada sistema e são aqui apresentados, de forma não exaustiva, estudos da influência deste fator sobre o desempenho de sistemas de tratamento anaeróbio.

Angenent et al, (2002), avaliando o efeito da duração e da intensidade de agitação sobre o desempenho de ASBR de 5 *l* de volume útil tratando resíduo suíno, verificaram que o uso de agitação suave e intermitente permitiu um maior desempenho do reator quando comparada à agitação suave e contínua, resultando em maiores eficiências de remoção de sólidos voláteis e maior produção de metano. Segundo os autores, a agitação contínua resulta no desenvolvimento de biomassa com más características de sedimentação, a qual é lavada mais facilmente com o efluente durante a descarga. Diminuindo, assim, o desempenho do reator. Os pesquisadores observaram também que o aumento da intensidade de agitação diminuiu severamente o desempenho do reator e a quantidade total de biomassa metanogênica.

Camargo et al, (2002), utilizando um ASBR com biomassa imobilizada para o tratamento de água residuária sintética a base de glicose (500 mgDQO. l^{-1}), estudaram a influência da velocidade de recirculação da fase líquida sobre o desempenho do reator e verificaram que a eficiência de remoção de matéria orgânica não filtrada (em termos de DQO) aumentou de 83% (sem recirculação) para 95% quando a recirculação foi implementada, indicando uma melhora no contato substrato/biomassa com o uso da recirculação, ou seja, o uso da recirculação resultou em diminuição da resistência à transferência de massa, com aumento da velocidade global da reação e possibilidade de redução do tempo de ciclo.

Ramos et al, (2003), tratando água residuária sintética com concentração de 500 mgDQO. l^{-1} , obtiveram um incremento do desempenho de um ASBR com biomassa imobilizada por implantação de recirculação da fase líquida. A eficiência de remoção de matéria orgânica não filtrada, em termos de DQO aumentou de 72 para 87% depois da implantação da recirculação. Estudos cinéticos indicaram que a constante de primeira ordem da reação aumentou de 1,19 a 2,00 h⁻¹ com o aumento da velocidade superficial que passou de 0,032 para 0,191 cm.s⁻¹, respectivamente. Um valor estável de 1,90 h⁻¹ foi obtido para velocidades superficiais entre 0,191 e 0,467 cm.s⁻¹. Além disso, utilizando velocidade de recirculação de 0,191 cm.s⁻¹, verificaram aumento da velocidade global da reação com possibilidade de redução do tempo de ciclo.

Angenent et al, (2001), estudaram o efeito do aumento na duração e intensidade de agitação em ASBRs alimentados com resíduo suíno (20 gSV. l^{-1}) e concluíram que agitação contínua não é necessária para a digestão de resíduo suíno e que além disto o aumento da agitação pela implementação de bomba peristáltica deteriorou a performance do sistema severamente diminuindo a quantidade de microrganismos metanogênicos que utilizam acetato.

Kennedy *et al*, (1991) utilizando recirculação da fase líquida estudaram em um reator de manta de lodo operado em bateladas seqüenciais trataram resíduo biodegradável solúvel com carga orgânica variando entre 2,5 e 18,5 gDQO. l^{-1} .d⁻¹. Para cada carga orgânica variando o tempo de alimentação obtiveram remoção de DQO variando entre 35 e 97 % dependendo da carga orgânica e do tempo de alimentação.

2.2.3 Fundamentos sobre agitação mecânica

Impelidores de vários tipos têm sido utilizados para produzir agitação e mistura na fase líquida. Para produzir mistura é necessário suprimento de energia e isto normalmente é produzido através da rotação de um impelidor. A potência fornecida não depende unicamente do tipo de impelidor e da velocidade de rotação, mas também das propriedades físicas do fluido e da forma do reator, além da disposição dos componentes do sistema como chicanas, serpentinas e suportes. Portanto, para caracterizar o comportamento de um impelidor é necessário levar em consideração todo o ambiente em que opera o sistema.

2.2.3.1 Agitadores mecânicos

Quando um impelidor é inserido em um reator contendo um fluido, movimentação do fluido e redemoinhos são produzidos. Com isto um padrão de escoamento é estabelecido. Desta forma ficam estabelecidos impelidores, fluido e reator e a única forma de mudança nas condições de fornecimento de potência é a mudança na velocidade de rotação do impelidor. Por esta razão a demanda de potência é controlada pela rotação do impelidor. Assim sendo, o consumo de potência é usado para caracterizar vários impelidores em relação ao ambiente em que estes estão inseridos.

Reator com chicanas e impelidor tipo hélice

Quando chicanas são usadas em reator com impelidor tipo hélice o conjunto causa correntes verticais e laterais de fluido eliminando a presença de vórtices em torno do eixo do impelidor e redemoinhos. Este tipo de movimento do fluido é classificado como axial desta forma hélices são classificadas como impelidores do tipo axial, como pode ser observado na Figura 2.1(a). Este tipo de movimentação também pode ser observado para reatores operando com impelidor tipo pá inclinada.

Reator com chicanas e turbina

O impelidor tipo turbina possui a característica de produzir escoamento radial. Quando utilizado junto com chicanas estas evitam formação de vórtices em torno do eixo e o sistema produz escoamento com linhas de corrente laterais e verticais aumentando a transferência de potência e a misturas dos fluidos e eventuais sólidos em suspensão. O escoamento gerado pode ser visualizado na Figura 2.1 (b).

Figura 2.1. Representação de escoamentos em reator para escoamentos do tipo axial (a) e radial (b).

Outros impelidores

O parâmetro básico de relação entre impelidores é o diâmetro, outros impelidores podem ser construídos mudando-se algum parâmetro de construção como, por exemplo, largura ou comprimento das pás. Com estas mudanças o resultado observado para um determinado impelidor seria uma curva como as da Figura 2.1 deslocada verticalmente.

2.2.3.2 Suspensão de sólidos

A suspensão de sólidos por agitação é necessária para vários tipos de operações industriais como, por exemplo, dissolução de sólidos em líquidos, controle de crescimento de cristais, redução de tamanho de partículas, floculação de precipitados, lixiviação e reação química. Nestes casos podem ser definidos dois tipos de suspensões: a suspensão completa que ocorre quando qualquer partícula da suspensão não permanece depositada no fundo do tanque mais do que um segundo e a suspensão homogênea caracterizada pela concentração de sólidos ser a mesma em qualquer ponto da suspensão. Vários autores sugerem que a suspensão completa já é um estado satisfatório para atingir os objetivos desejados como transporte de massa, por exemplo. E este estado pode ser alcançado quando a velocidade do rotor é igual a um certo valor crítico N_{CLS} (TERRON, 1986).

Os impelidores mais empregados para a suspensão de sólidos são os do tipo turbina dispostos coincidentemente com o eixo central do vaso e com uma distância com relação ao fundo em torno de 1/3 do diâmetro do impelidor. É interessante que esta altura nunca seja menor do que a altura dos sólidos depositados no fundo do vaso, pois quando o sistema está em repouso para evitar que o impelidor fique soterrado quando a movimentação cessa.

De acordo com Baldi (1980), para N<N_{CLS} existem muitas partículas depositadas no fundo do reator e a área efetiva da interface sólido-líquido, para o transporte de massa, diminui grandemente do observado quando N=N_{CLS}. O que causa um acentuado decréscimo no transporte de massa. Por outro lado, quando N>N_{CLS} o aumento na potência dissipada na agitação não é balanceado pelo aumento no transporte de massa.

Segundo Terron (1986), dois modelos são comumente aplicados na análise do transporte de massa, o primeiro é o modelo de velocidade de escorregamento que está baseado nas equações propostas para transporte de massa em convecção forçada que ocorre em esferas isoladas imersas em fluidos escoando em regime turbulento. Porém este modelo esbarra na dificuldade em se obter a velocidade relativa entre a partícula e o fluido além do fato de que equações do modelo são válidas para escoamento no estado estacionário o que não ocorre no caso de suspensões agitadas. O segundo modelo é o da energia dissipada e propõe que idênticos coeficientes de transporte de massa sólido-líquido em partículas suspensas livremente em fluidos agitados ocorram a iguais potências dissipadas, na agitação, por unidade de massa da suspensão.

2.2.3.3 Tubo de tiragem ("draft tube")

Na maioria dos casos os agitadores com tubo de tiragem consistem de um tanque com fundo chato contendo um tubo de tiragem que na prática varia entre 20 e 40 % do diâmetro do tanque. Onde no topo do tubo existe um impelidor promotor de escoamento axial movimentando o fluido para baixo produzindo um retorno do fluido para cima na região anular.

O tubo de tiragem é mais recomendado para suspensão de lodo, em situações onde é essencial a minimização da energia gasta com agitação e aplicações que requerem controle do cisalhamento e de gradientes de velocidade. As condições a serem observadas para a implementação do tubo de tiragem são: utilização em reatores onde não ocorra a variação do nível de fluido ao longo da operação e sua aplicação em reatores que apresentam altos valores para a relação altura/diâmetro. Sendo desta forma desaconselhado para os casos onde ocorre variação do nível do líquido e onde a relação altura/diâmetro esteja próxima a unidade.

Existem dois critérios distintos para a escolha da velocidade de rotação. O primeiro é baseado na velocidade na base do tubo de tiragem, na qual a velocidade mínima deve promover a suspensão do lodo do fundo do tanque. Normalmente esta velocidade é obtida experimentalmente e é função do tamanho da partícula, porcentagem de sólidos, reologia do fluido e forma do fundo do tanque. O segundo critério é obtido pela velocidade do fluido na região anular, que para o caso da indústria da alumina, deve ser múltipla da velocidade de sedimentação para garantir que a maior partícula irá circular. E este múltiplo dever ser suficiente para garantir que não haja acúmulo das partículas grandes na região anular. Foi provado que quando estes dois pontos são satisfeitos ocorre uma minimização da necessidade de energia, o que resulta em uma redução de 35 % da potência requerida para promover a mesma agitação.

A partida do sistema e re-suspensão dos sólidos é um fator de importância na definição da potência do motor e rotação do impelidor por ser maior o gasto energético para promover a suspensão do lodo quando comparado com a energia gasta para manter a suspensão (SHAW, 1982).

Jiricková & Rieger (1995) estudando a suspensão de sólidos em vasos altos, agitados e com tubo de tiragem, desenvolveram fórmulas para descrever o consumo de potência e velocidade de suspensão. Concluíram que o baixo consumo de potência em reatores com tubo de tiragem, comparado com vasos padrão (D=H) é causado pelo fato de que somente uma parte do volume do vaso é usada para que o impelidor promova suspensão, enquanto que a outra parte funciona como uma região de sedimentação pela gravidade.

2.2.4 Mistura promovida por agitação mecânica

Estudos sobre o desempenho de sistemas anaeróbios de tratamento de efluentes mostram que ocorre aumento da eficiência de remoção destes com o aumento da rotação dos impelidores. E neste item são apresentados alguns estudos de relevância sobre o assunto.

Droste & Massé (1995) tratando resíduos suínos com carga orgânica volumétrica de 1,6 gDQO. l^{-1} .d⁻¹ conseguiram 80% de remoção carga orgânica em amostras filtradas na forma de DQO e 75% de remoção de sólidos voláteis. Obtiveram estes resultados sem a utilização de agitação, porém com tempos de alimentação e reação durando entre 14 e 28 dias.

Angenent & Dague (1995) confirmando os dados de Brito et al, (1997) afirmam que a produção de gás em reatores anaeróbios operados em batelada seqüencial (ASBR), tratando águas residuárias de baixa concentração, é insuficiente para realizar agitação no reator, sendo necessário um sistema de agitação para distribuir uniformemente o substrato durante a fase de reação. Entretanto, se a agitação for muito intensa, pode causar a destruição de grânulos, resultando em baixa eficiência de separação de sólidos. Utilizaram agitação mecânica seguindo um programa de agitação intermitente de dois minutos a cada meia hora sem, contudo informar tipo de impelidor e velocidade de rotação. Obtiveram eficiências de remoção de aproximadamente 90% e 80% para C_{SS} e C_{ST} , respectivamente. Afirmam também que a agitação mecânica pode ser responsável pela maior densidade e menor tamanho dos grânulos.

Deveci (2004) estudou o efeito da velocidade de agitação, o tamanho das partículas e a forma dos sólidos na viabilidade de uma cultura mesofílica de bactérias acidofílicas em reator agitado operado com impelidotes tipo turbina Rushton e pá. Na ausência de sólidos, para velocidades de rotação entre 1,0 e 3,35 m.s⁻¹, a queda na viabilidade não foi significativa, ficando abaixo de 16 % para um período de agitação de 4 h. Já na presença de sólidos (20 %w.w⁻¹) e com velocidade de agitação de 3,35 m.s⁻¹ ocorreu uma intensa queda de viabilidade aparentemente devido a ação dos sólidos. O impelidor tipo turbina provocou maiores danos às células do que o impelidor tipo pá sob as mesmas condições experimentais.

No trabalho desenvolvido por Rodrigues et al (2004) um ASBR operando com agitação contínua e impelidor tipo turbina com seis pás planas verticais trabalhou sob duas estratégias de agitação. Na primeira utilizaram rotação constante e igual a 50rpm, já na segunda condição utilizaram agitação variável com uma hora a 75 rpm, duas horas a 50 rpm e meia hora a 25 rpm, para um ciclo de quatro horas.Eles obtiveram eficiência de remoção de 87 % e 88 % para DQO em amostras filtradas nas condições de velocidade constante e variável, respectivamente. Diferenças significativas foram observadas quando avaliaram a cinética de degradação da matéria orgânica sendo preferível a condição de velocidade variável.

Rodrigues et al (2003) estudaram a influência da velocidade de rotação em um ASBR operado com impelidor tipo turbina com seis pás planas verticais nas velocidades de rotação de 0, 25, 50 e 75 rpm tratando 2 *l* de esgoto sintético com concentração de aproximadamente 500 mgDQO. l^{-1} . Para rotação de 50 rpm o sistema obteve eficiência de remoção de 80 e 88 % para amostras não filtradas e filtradas, respectivamente. Nesta

condição o sistema também apresentou boa retenção de sólidos evitando a quebra de grânulos.

Ratusznei et al (2001) pesquisando a influência da intensidade de agitação em reator anaeróbio tratando esgoto sintético com biomassa imobilizada em espumas de poliuretano observaram que a velocidade de agitação afeta o tempo necessário para o sistema atingir a eficiência máxima em um ciclo de agitação. Indicando que um tempo de ciclo de três horas seria suficiente para atingir remoção desejada, aumentando o número de ciclos diários e com isto otimizando o processo. Trabalhando com um modelo cinético de primeira ordem observaram também que a intensidade de agitação modifica o valor da constante utilizada no modelo, aumentando seu valor com o aumento da agitação.

Cubas et al (2004), trabalhando em um ASBR com biomassa imobilizada em espumas de poliuretano de 5 mm de lado, em velocidades de agitação de 300 a 1100 rpm, confirmaram que a intensidade de agitação modifica a eficiência do sistema podendo diminuir o tempo de batelada de um ciclo além de diminuir a concentração residual de matéria orgânica para rotações superiores a 800 rpm. Foi observado que para a variação na velocidade de rotação de 300 para 900 rpm a constante cinética de primeira ordem aumenta em aproximadamente três vezes, partindo de 0,54 para 1,5 h⁻¹. A concentração residual de matéria orgânica cai significativamente para velocidades de rotação acima de 800 rpm.

Timur & Özturk (1999), utilizando agitação intermitente de um minuto por hora tendo como impelidor uma barra magnética, avaliaram a tratabilidade de chorume de aterro sanitário em um ASBR de 2 litros a 35 C. Foram realizados estudos de cargas orgânicas volumétricas de 0,4 a 9,4 gDQO. l^{-1} .d⁻¹ e cargas orgânicas específicas de 0,2 a 1,9 gDQO.gSSV⁻¹.d⁻¹, variando-se os θ_h de 1,5 a 10 dias, para concentrações afluentes de 3,8 a 15,9 gDQO. l^{-1} . A eficiência de conversão de DQO variou entre 64 e 85% em função da carga orgânica aplicada. A DQO convertida em metano foi 83% da DQO removida.

Pinho et al.(2004) estudaram a influência da intensidade de agitação promovida por três impelidores tipo pá com velocidade entre 500 e 1100 rpm na degradação de matéria orgânica em reator ASBR contendo biomassa imobilizada em partículas cúbicas de poliuretano de 3 cm, agitado mecanicamente e alimentado com leite de soja parcialmente solúvel de DQO de 974 mg. l^{-1} . Como resultado observaram que um modelo de primeira ordem modificado representou bem os dados no intervalo de agitação pesquisado e que ocorreu um aumento de 360 % na constante cinética aparente quando a velocidade de agitação foi aumentada de 500 para 900 rpm, acima do qual a constante cinética não variou significativamente.

Pinho et al, (2005), tratando água residuária de abatedouro de suínos, demonstraram que a agitação melhora a velocidade global de degradação de matéria orgânica particulada, visto que a agitação mecânica ajuda a aumentar a velocidade de redução dos tamanhos de partículas da fração de matéria orgânica particulada.

2.3 Considerações finais

Historicamente a agitação em sistemas a anaeróbios não era considerada como fator de importância sobre a estabilidade e eficiência destes. Porém, com o aprofundamento dos estudos observou-se que pode existir um valor ótimo de agitação, abaixo da qual pode ocorrer uma queda na eficiência devido a limitação por de transferência de massa, e acima da qual pode haver uma redução da eficiência pela formação excessiva de biomassa dispersa seguida por perda da mesma. Isto posto, o tipo de impelidor pode apresentar influência significativa no desempenho do sistema pois conforme suas características de agitação (axial, radial ou mista), promove um modo de escoamento e mistura no meio líquido contido no reator, impondo tanto um estado de agitação, que define os aspectos de transferência de massa, quando as características de sedimentabilidade do lodo envolvido. Assim sendo, o estudo de cinco tipos de impelidores em duas freqüências rotacionais visa contribuir para o melhor entendimento da influência sobre a estabilidade e eficiência de sistemas agitados mecanicamente.

A aplicação de reator com tubo de tiragem para tratamento de efluentes por via anaeróbia é interessante por promover suspensão de sólidos com baixo consumo e potência e mantendo baixos níveis de tensão de cisalhamento, combinação esta que pode vir a promover redução dos efeitos de transferência de massa externa à biopartícula sem contudo degradar a biomassa. Desta forma a implementação de tubo de tiragem ao reator anaeróbio pode vir a ser boa opção de configuração para o tratamento de esgoto sintético de baixa carga orgânica.

3 MATERIAIS E MÉTODOS

3.1 Materiais

3.1.1 Configuração do reator operado em batelada seqüencial

A Figura 3.1 e Figura 3.2 mostram o esquema do reator com agitação mecânica operado em batelada seqüencial contendo lodo granulado. O reator é o modelo BIOFLO III da New Brunswick Scientific Co.

Figura 3.1. Esquema do reator anaeróbio com agitação operado em batelada seqüencial
[1 – Biorreator com capacidade de 6 L (a = 20 cm; b = 17 cm; c = 3 cm; d = 17 cm, e = 6 cm) e um impelidor contendo biomassa granulada; 2 – Afluente; 3 – Bomba de alimentação; 4 – Bomba de descarga; 5 – Sistema de agitação; 6 – Sistema de automação; 7 – Efluente].

A alimentação e descarga foram realizadas por bombas tipo diafragma, marca Prominente, modelos β e Concept, respectivamente. Um sistema de automação, composto por temporizadores, foi o responsável pelo acionamento/parada das bombas e do agitador, de modo a implementar as etapas da operação em batelada seqüencial: alimentação, reação, sedimentação e descarga.

A temperatura foi controlada por uma jaqueta de aquecimento na parte inferior do reator ligada a um banho ultratermostatizado na qual a manutenção da temperatura foi feita através do sensor do reator e do controlador do banho de aquecimento.

Figura 3.2. Fotografia do aparato experimental.

3.1.2 Impelidores

A agitação foi implementada por diferentes tipos de impelidores ao longo da etapa experimental no intuito de analisar a influência das características de mistura e escoamento radiais, axiais ou mistas:

- a. Tipo turbina constituído por seis pás planas verticais;
- b. Tipo turbina de constituído por seis pás planas inclinadas em 45°;
- c. Tipo pá constituído por seis pás planas verticais;

- d. Tipo pá constituído por seis pás planas inclinadas em 45°;
- e. Tipo hélice constituído por três lâminas.

São apresentados na Tabela 3.1 os parâmetros de construção dos impelidores utilizados neste trabalho.

Tino de Impelidor	Cino de Impelidor D/D H./D H./D Incl		Inclinação	n°	Diâmetro	
	D_t/D_1	Π_{i}/D_{i}	Π_l/D_l	mennaçao	pás/lâminas	(cm)
Turbina plana	3	3	1	0.0	6	6,2
L _i /D _i =0,25; W _i /D _i =0,2	5	5	1	0	0	
Turbina inclinada	2	2	1	15 °	6	5,7
L _i /D _i =0,25; W _i /D _i =0,2	3	5	1	43	0	
Pá plana	2	2	1	0.0	6	5,7
W _i /D _i =0,25	3	5	1	0	0	
Pá Inclinada	2	2	1	15 º	6	5,7
$W_i/D_i=0,25$	3	5	1	43	0	
Hélice	2	2	1		2	5,7
Passo =1	3	3	1	-	3	

Tabela 3.1. Parâmetros de construção dos impelidores

Na Figura 3.1 são visualizadas as razões geométricas dos impelidores utilizados neste trabalho.

Na configuração proposta estão presentes quatro chicanas de largura W_i , que corresponde a 10% do diâmetro do reator e foram mantidas em todos os ensaios.

3.1.3 Tubo de tiragem

Seguindo proposta do Professor Deovaldo de Moraes Junior, durante 1º Exame de Qualificação, sobre utilização de tubo de tiragem ("draft tube") que obriga o fluido a desenvolver escoamento axial no reator, e para sua confecção utilizou-se de um tubo de PVC de 3 " de diâmetro nominal o que corresponde a 7,62 cm e a uma relação Dt/D=0,42 sendo seu comprimento de 15 cm cuja disposição no reator é apresentada na Figura 3.4.

Figura 3.4. Disposição do tubo de tiragem no reator e fotografia do mesmo.

3.1.4 Sistema para medida do consumo de potência

O sistema utilizado para estudo do consumo de potência é apresentado na Figura 3.5. Constituído por um motor de 1/7 HP da DIACTI de corrente contínua de 20 Volts, o biorreator utilizado nos experimentos em conjunto com os impelidores acima descritos, tacômetro digital LUTRON bt-2236 utilizado para aferir a rotação dos impelidores, suporte para reator composto por duas bases unidas por rolamento para diminuir atrito e dinamômetro KRATOOS DDK2.

Este sistema possibilita medir a potência transferida do impelidor para o líquido. Para isto o reator em questão é colocado sobre um suporte móvel que está conectado a um dinamômetro a uma distância d conhecida. Ao se aplicar rotação ao impelidor este transfere potência ao sistema que por sua vez produz torque sobre o reator, que por estar sobre um suporte móvel, possibilita a leitura da força recebida através do dinamômetro. Conhecendo a distância do dinamômetro ao centro de rotação do sistema, a força medida por este e a rotação do impelidor, pode-se com o auxílio da equação 3.5 calcular a potência transferida do impelidor ao sistema para a velocidade rotacional estabelecida.

Figura 3.5. Aparato utilizado para medida do consumo de potência (a – motor, b – impelidor, c – reator, d – tacômetro digital, e – suporte para reator e f – dinamômetro).

3.1.5 Inóculo

O inóculo utilizado em todos os experimentos foi proveniente de reator anaeróbio de manta de lodo com escoamento ascendente (UASB), tratando água residuária de abatedouro de aves (Dacar Industrial S.A.), sediada em Tietê, SP.

3.1.6 Água residuária – esgoto sintético

O esgoto sintético utilizado apresentou aproximadamente 800 mgDQO. Γ^1 e foi composto por proteínas (na forma de extrato de carne), carboidratos de fácil e de difícil degradação (nas formas de sacarose, amido e celulose) e lipídeos (na forma de óleo de soja) contendo traços de metais e bicarbonato de sódio para tamponamento, preparado de acordo com Torres (1992) e esterilizado (121°C por 15 min) para manutenção das características ao longo da operação. As características da água residuária sintética estão apresentadas nas Tabela 3.2 e Tabela 3.3.

rabela 5.2. Composição gerar da agua residuaria sintetica.			
Composto orgânico	DQO (%)	Constituinte	
Proteínas	50	Extrato de carne	
Carboidratos	40	Sacarose, Amido, Celulose	
Lipídeos	10	Óleo de soja	

Tabela 3.2. Composição geral da água residuária sintética.

Tabela 3.3. Composição da água residuária sintética utilizada nos experimentos.

Composto	Concentração (mg. l^{-1})	
Carboidratos		
Sacarose	56	
Amido	182,4	
Celulose	54,4	
Proteínas		
Extrato de carne	332,8	
Lipídeos		
Óleo de soja $(*)$	81,6	
Sais		
NaCl	250	
MgCl ₂ .6H ₂ O	7,0	
CaCl ₂ .2H ₂ O	4,5	
Tampão		
NaHCO ₃	320	

(*) Foram adicionadas 5 gotas de detergente comercial por litro de solução para emulsionar o óleo.

3.2 Métodos

3.2.1 Análises físico-químicas

As medidas de concentrações de matéria orgânica na forma de DQO, nas formas não filtrada e filtrada, de sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST), sólidos suspensos voláteis (SSV) de ácidos voláteis totais, de alcalinidade (total, parcial, intermediária e a bicarbonato) foram realizadas segundo o *Standard Methods for the Examination of Water and Wastewater* (1995).

A determinação de ácidos voláteis intermediários foi feita por cromatografia em fase gasosa, utilizando Cromatógrafo HP^{\circledast} 6890 Series com detector de ionização de chama, coluna HP^{\circledast} ,Innowax 30 m × 0,25 mm × 0,25 µm de espessura do filme. O gás de arraste foi o hidrogênio (escoamento de 2,0 ml.min⁻¹), temperatura do injetor igual a 250 °C, razão de "splif" de 20, volume de injeção de 1,0 µl. A temperatura do forno foi de 100°C durante 3 minutos, rampa de aquecimento de 5 °C.min⁻¹ até 180 °C,

permanecendo por 5 minutos. "*Postrun*" de 200 °C durante 3 minutos. A temperatura do detector foi de 300 °C, com escoamento de ar sintético (300 ml.min⁻¹) e hidrogênio (30 ml.min⁻¹) e vazão de "*make up*" de nitrogênio (35 ml.min⁻¹).

Seguindo esta análise foram verificadas, as presenças e quantidades de ácido acético, ácido propiônico, ácido butírico, ácido valérico, ácido iso-butírico e isovalérico, tendo como ácido padrão para calibração o ácido crotônico. Desta forma quando são apresentados gráficos de ácidos voláteis totais por cromatografia mas aparecem somente um dois ou três destes ácidos significa que os outros ácidos orgânicos não estiveram presentes na amostra ou ensaio em questão.

3.2.2 Análises microbianas

A análise microbiana do lodo anaeróbio foi realizada por: *(a)* microscopia óptica comum, por contraste de fases e por fluorescência, utilizando microscópio Olympus modelo BH2.

3.2.3 Composição e produção do biogás

A determinação da composição de biogás gerado pela digestão anaeróbia foi feita através de cromatografia em fase gasosa utilizando-se o cromatógrafo HP[®] 6890 Series equipado com detector de condutividade térmica e coluna Porapak Q[®] ($2 \times 1/4$ " – 80 a 100 mesh). O gás de arraste foi o hidrogênio a 50 m*l*.min⁻¹, a temperatura do injetor igual a 150 °C e volume de amostra de 1,0 m*l*. A temperatura do forno foi de 50 °C. o detector operou a 200 °C, com escoamento de hidrogênio a 50 m*l*.min⁻¹ e vazão de "*make up*" de nitrogênio (2,5 m*l*,min⁻¹). Cabe destacar que esta análise foi capaz de identificar e quantificar a presença de CH₄ e CO₂, sendo os componentes utilizados no cálculo da fração molar de metano no "head-space". A produção de biogás foi acompanhada com a utilização de um gasômetro de deslocamento de hidróxido de sódio.

3.3 Procedimento experimental

3.3.1 Operação do reator em batelada seqüencial

A operação do biorreator em batelada seqüencial foi realizada a temperatura constante de 30 ± 1 °C e um ciclo de operação de 8 horas (ou 480 min), ou seja, três ciclos por dia. As etapas de alimentação e descarga tiveram a duração de 10 min cada, a etapa de sedimentação teve a duração de 30 min, restando, portanto, 429 min para a etapa de reação, pois 1 min foi dado como intervalo entre as etapas de alimentação e descarga como fator de segurança no sincronismo das bombas. A Tabela 3.4 resume a estratégia de operação do sistema em batelada seqüencial.

Tabela 3.4. Estratégia de operação do sistema em batelada seqüencial a ser implementada

Estratágia	Alimentação	Reação	Sedimentação	Descarga	
Estrategia	(min)	(min)	(min)	(min)	
Tempo	0 – 10	11 - 437	438 - 468	469 – 479	
Bomba de alimentação	Ligada	Desligada	Desligada	Desligada	
Bomba de descarga	Desligada	Desligada	Desligada	Ligada	
Motor de agitação	Ligado	Ligado	Desligado	Desligado	

A concentração do afluente foi de, aproximadamente, 800 mgDQO. l^{-1} , sendo realizados os ensaios conforme descrito na Tabela 3.5. O tempo de duração do ensaio em cada condição de agitação para cada tipo de impelidor foi de, aproximadamente, 15 dias, ou seja, no total um período de 30 dias. Desta forma, foi gasto um período da parte experimental de, aproximadamente, 8 meses para avaliar o comportamento do sistema em função do tipo de impelidor e da velocidade de agitação.

rubelu 5.5. Resulto dos ensulos reunzados nesse projeto.				
Tine de impelider	Agitação ⁽²⁾			Tubo de
Tipo de Impendoi	<i>E.P.</i> $^{(1)}$	Inferior	Superior	tiragem
Turbina de pás planas verticais	15 dias	_	_	Não
Turbina de pás planas inclinadas 45°	_	15 dias	15 dias	Não
Pá de pás planas verticais	_	15 dias	15 dias	Não
Pá de pás planas inclinadas 45°	-	15 dias	15 dias	Não
Pá de pás planas inclinadas 45°	_	15 dias	15 dias	Sim
Hélice	_	15 dias	15 dias	Não
Hélice	_	15 dias	15 dias	Sim

Tabela 3.5. Resumo dos ensaios realizados nesse projeto

Obs.: ⁽¹⁾ Ensaio preliminar com agitação de 50 rpm considerado como padrão para fins de comparação, pois já foram realizados experimentos com esse tipo de impelidor e com esse valor de agitação.

⁽²⁾ Os valores foram definidos ao longo dos ensaios, tendo-se como uma estimativa o intervalo de 25 a 200 rpm.

Ao final dos experimentos foi realizada uma etapa de estimativa experimental da transferência de potência dos diferentes tipos de impelidores na condição de freqüência de agitador ótima. Essa etapa teve por objetivo avaliar os aspectos econômicos da implementação da agitação no processo.

3.3.2 Monitoramento do reator

O monitoramento do reator foi feito por amostras do afluente e do efluente, medindo-se as concentrações de matéria orgânica (medida como demanda química de oxigênio – DQO), de alcalinidade parcial (AP), de alcalinidade total (AT), de alcalinidade a bicarbonato (AB), de ácidos voláteis (AV), de sólidos totais (ST), de sólidos voláteis totais (SVT), de sólidos suspensos totais (SST) e de sólidos suspensos voláteis (SSV), além da medida de pH e do volume descarregado. Estes parâmetros foram monitorados com uma freqüência de, pelo menos, duas ou três vezes por semana.

3.3.3 Perfil ao longo do ciclo de operação

Uma vez atingida a estabilidade nas diferentes condições experimentais foi medido o perfil ao longo do ciclo de operação de algumas das variáveis monitoradas. Estes perfis foram obtidos pela retirada de amostras ao longo das 8 horas de operação de um ciclo. As variáveis de interesse foram: concentrações de matéria orgânica na forma filtrada, de metano, de alcalinidade a bicarbonato e de ácidos voláteis totais e intermediários, além do pH e velocidade de produção de metano. Desta forma, foi possível obter uma melhor compreensão das rotas de degradação ao longo de um ciclo, além da estimativa dos parâmetros cinéticos de degradação da matéria orgânica com a utilização do modelo cinético proposto ajustado aos valores experimentais de concentração de matéria orgânica, concentração de ácidos voláteis totais na forma de ácido acético e concentração de metano.

As amostras retiradas para obtenção do perfil anteriormente citado foram colhidas em intervalos de tempo, de 15 a 60 mim, ao longo do ciclo, conforme o tipo de variável medida. O volume total retirado nas amostragens foi, no máximo, de 500 mL, ou seja, 10 % do volume de meio contido no reator. Após cada operação, amostras do lodo foram retiradas do reator para análise gravimétrica dos sólidos do reator. Uma vez obtidos esses perfis, o tipo de impelidor e/ou a intensidade de agitação foram mudadas iniciando-se uma nova fase de operação.

A velocidade de produção de metano foi medida fazendo-se a razão, ponto a ponto, do volume de metano produzido pelo tempo gasto para a coleta da amostra.

3.3.4 Ensaio sobre consumo de potência

Ao final dos ensaios sobre estabilidade e eficiência dos sistemas foi realizado um ensaio sobre consumo de potência para os impelidores estudados neste trabalho. As velocidades para cada ensaio estão contidas dentro do intervalo de 300 a 1700 rpm. A execução da medida da potência consumida nas velocidades rotacionais estudadas não foi possível em virtude destas estarem abaixo do limite de sensibilidade tanto do tacômetro digital quanto do dinamômetro utilizados para este fim.

3.4 Formulação matemática e modelagem cinética

3.4.1 Eficiência de conversão de matéria orgânica

Dentre os parâmetros para a verificação do desempenho do sistema estão as eficiências de conversão da matéria orgânica. Foram calculadas para amostras na forma filtrada (E_F), não-filtrada (E_T) e eficiência de remoção no reator (E), foram calculadas através das equações 3.1, 3.2 e 3.3, respectivamente, sendo C_I a concentração não filtrada de matéria orgânica no afluente, C_{ST} a concentração de matéria orgânica na

forma não filtrada no efluente, C_{SF} a concentração de matéria orgânica na forma filtrada no efluente, C_S a concentração de matéria orgânica no reator e C_{So} a concentração inicial de matéria orgânica no reator.

$$E_{T} = \frac{(C_{I} - C_{ST})}{C_{I}}.100$$
 3.1

$$E_{F} = \frac{(C_{I} - C_{SF})}{C_{i}}.100$$
 3.2

$$E = \frac{(C_{So} - C_S)}{C_{So}}.100$$
 3.3

3.4.2 Número de potência e Número de Reynolds

Quando um impelidor é inserido em um reator contendo um fluido, movimentação do fluido e redemoinhos são produzidos. Com isto um padrão de escoamento é estabelecido. Desta forma ficam estabelecidos impelidores, fluido e reator e a única forma de mudança nas condições de fornecimento de potência é a mudança na velocidade de rotação do impelidor. Por esta razão a demanda de potência é controlada pela rotação do impelidor. Assim sendo, o consumo de potência é usado para caracterizar vários impelidores em relação ao ambiente em que estes estão inseridos.

Rushton et al (1950) desenvolveram o conceito de número de potência. Eles mediram a potência consumida para promover agitação no meio líquido para vários tipos de impelidores. Estabeleceram que a razão entre as forças externas e inerciais define o número de potência.

$$Np = \frac{P}{n^3 \cdot Di^5 \cdot \rho}$$
 3.4

Sabendo que a potência pode ser definida como

$$P = F.d.2\pi.n \tag{3.5}$$

Obtém-se que o número de potência pode ser calculado por

$$Np = \frac{F.d.2\pi.}{n^2.Di^5.\rho}$$
 3.6

A movimentação de líquidos em vasos agitados é descrita pela razão entre forças inerciais e viscosas por unidade de volume de líquidos, este número é chamado de número de Reynolds modificado para impelidores.

$$N_{\rm Re} \frac{n.Di^2.\rho}{\mu}$$
 3.7

É importante notar que os adimensionais apresentados nas equações 3.4 e 3.7 são usados para o padrão, especialmente no caso da turbina plana. Também merece menção o fato de que para altos valores de N_{Re} , isto é, para a região turbulenta, o valor de N_P torna-se constante para cada tipo de impelidor. As curvas são válidas para geometrias bem definidas dos impelidores e tanques.

De posse de curvas padrão que relacionam N_P com N_{Re} pode-se calcular a potência requerida por um sistema pelo cálculo de N_{Re} , de posse deste e pela curva característica do impelidor obtém-se N_P que pode ser utilizado, junto com as características do sistema que se deseja projetar, através da equação 3.8.

$$P = N_P \cdot n^3 \cdot Di^3 \rho \qquad 3.8$$

3.4.3 Modelagem cinética

O modelo anaeróbio apresentado neste trabalho é baseado na aproximação apresentada por Bagley e Brodkorb (1999) e aplicado a um reator anaeróbio de batelada seqüencial por Rodrigues (2004), desta forma este modelo é uma adaptação do modelo desenvolvido para processos de tratamento aplicado em reatores de lodo ativado desenvolvido pela "International Water Association" (IWA). A análise cinética utilizada neste trabalho simplifica o processo anaeróbio em dois processos consecutivos: primeiramente a matéria orgânica em amostras filtradas, medido na forma de DQO (C_S), é convertido totalmente a ácidos voláteis totais, medidos como concentração de ácido acético (C_{AVT}), isto é, os processos de hidrólise, acidogênese e acetogênese e a conversão deste composto a metano, medido na forma de metano produzido por volume reacional (C_M), isto é, o processo de metanogênese acetoclástica. Ambos os processos foram assumidos como cinéticas de primeira ordem. Além disto foi considerado neste modelo concentração final residual de matéria orgânica em amostras filtradas (C_{Sr}) e ácidos voláteis totais (C_{AVTr}), quando os valores de velocidade de reação são iguais a zero.

Da equação 3.9 à equação 3.16 está representado o modelo proposto, onde a, b e c são coeficientes estequiométricos; $k_1 e k_2$ são parâmetros cinéticos aparentes de primeira ordem; R_S . R_{AVT} , $R'_{AVT} e R_M$ são as velocidades de reação de consumo de matéria orgânica em amostras filtradas, formação e consumo de ácidos voláteis totais e produção de metano, respectivamente; μ_S , μ_{AVT} , $\mu'_{AVT} e \mu_M$ são as velocidades reacionais específicas de consumo de matéria orgânica em amostras formação e consumo de ácidos voláteis totais, e consumo de ácidos voláteis totais, formação de metano, respectivamente; C_X é a concentração de biomassa; X_1 , $I_1 X_2$, e I_2 são, respectivamente, a biomassa e outros compostos intermediários formados durante o processo de degradação anaeróbia, mas não considerados no modelo cinético; e o subscrito 0 denota os valores no tempo zero. Vale mencionar que existe consumo de matéria orgânica para manutenção celular e este não é considerado neste modelo cinético.

Reação anaeróbia:

$$a.S \xrightarrow{k_1} b.AVT + X_1 + I_1 \xrightarrow{k_2} c.M + X_2 + I_2$$
 3.9

Modelos cinéticos:

$$R_{s} = \mu_{s}C_{x} = k_{1s}(C_{s} - C_{sr})$$
3.10

$$R_{AVT} = \mu_{AVT} C_{X} = k_{1AVT} (C_{S} - C_{Sr})$$
 3.11

$$R'_{AVT} = \mu'_{AVT} C_{X} = k_{2AVT} (C_{AVT} - C_{AVTr})$$
3.12

$$R_{M} = \mu_{M} C_{X} = k_{2M} (C_{AVT} - C_{AVTr})$$
 3.13

Equações do balanço material:

_

$$\frac{dC_s}{dt} = -k_{1s}(C_s - C_{sr}), \quad t=0 \Rightarrow C_s = C_{s0}$$
 3.14

$$-\frac{dC_{AVT}}{dt} = k_{1AVT}(C_s - C_{Sr}) - k_{2AVT}(C_{AVT} - C_{AVTr}), \quad t=0 \rightarrow C_{AVT} = C_{AVT}$$
3.15

$$\frac{dC_{M}}{dt} = k_{2M} (C_{AVT} - C_{AVT}), \quad t=0 \rightarrow C_{M}=0$$
 3.16

Integrando as equações 3.14 a 3.16 levam às equações 3.17 a 3.19.

$$(C_{s} - C_{sr}) = (C_{s0} - C_{sr}) \exp(-k_{1s}t)$$
3.17

$$(C_{AVT} - C_{AVTr}) = (C_{AVTr} - C_{AVTr}) \exp(-k_{2AVT}t) + (C_{S0} - C_{Sr})k_{1AVT} \left[\frac{\exp(-k_{1AVT}t)}{(k_{2AVT} - k_{1AVT})} + \frac{\exp(-k_{2AVT}t)}{(k_{1AVT} - k_{2AVT})}\right] \quad 3.18$$

$$C_{M} = (C_{AVT0} - C_{AVTr})[1 - \exp(-k_{2M}t)] + (C_{S0} - C_{Sr})\left[1 + \frac{k_{2M}\exp(-k_{1M}t)}{(k_{1M} - k_{2M})} + \frac{k_{1M}\exp(-k_{2M}t)}{(k_{2M} - k_{1M})}\right]$$
3.19

Os parâmetros foram obtidos por ajuste não linear usando o método Levenberg-Marquardt pelo software Microcal Origin 6.1®, onde os subscritos S, AVT e M indicam a equação usada para estimar o parâmetro, desta forma k_{1S} , k_{1AVT} e k_{1M} são os valores do parâmetro k_1 estimado pelas equações 3.17, 3.18 e 3.19,respectivamente. O mesmo ocorre para o parâmetro k_2 .

Todos os parâmetros cinéticos estimados são aparentes por incluírem em seus valores influência de velocidades cinéticas e de transferência de massa. Além disso, o modelo cinético é uma simplificação de todo um complexo sistema metabólico.

Os valores de concentrações iniciais de matéria orgânica na forma de DQO utilizados para o ajuste das equações 3.17, 3.18 e 3.19 foram obtidos através da média dos valores iniciais experimentais coletados no tempo zero dos dois perfis realizados em cada condição operacional. Já os valores de concentrações residuais de matéria orgânica foram obtidos através dos valores médios de monitoramento, em cada condição no decorrer dos ensaios.

As concentrações iniciais de ácidos voláteis totais utilizadas nas equações 3.18 e 3.19 foram obtidas pelo mesmo procedimento que o utilizado para as concentrações de matéria orgânica de amostras filtradas. Em contrapartida os valores de concentração residual de ácidos voláteis totais foram obtidos através da média dos dois últimos valores de concentração de ácidos voláteis totais dos dois perfis de cada condição. Tal decisão foi tomada em função de os valores médios serem baixos e pequenas diferenças provocarem alterações significativas nos resultados dos ajustes da equação 3.18 aos valores experimentais.

A dedução completa deste modelo encontra-se no APÊNDICE A.

4 RESULTADOS E DISCUSSÃO

Neste capítulo, inicialmente são apresentados os valores médios das variáveis de monitoramento em conjunto com as Figuras dos perfis experimentais obtidos no decorrer dos sete ensaios nas treze condições operacionais. Em seguida é feita uma análise comparativa estudando a influência do tipo de impelidor e velocidade rotacional sobre a eficiência e estabilidade dos sistemas praticados neste estudo.

4.1 Apresentação dos dados experimentais

4.1.1 Impelidor tipo turbina de seis pás planas verticais

Este ensaio foi realizado utilizando-se impelidor tipo turbina com seis pás planas verticais, em rotação de 50 rpm passando a ser identificado como Tu50. O volume alimentado de 2 *l* e operando em ciclos de 8 horas. Este ensaio teve duração de 21 dias, sendo os valores médios das variáveis monitoradas apresentados na Tabela 4.1, e da Figura 4.1 à Figura 4.3. Os valores das variáveis monitoradas do afluente e do efluente são apresentados no APÊNDICE B.

Parâmetro	Afluente	Efluente
Duração ciclos (dias)	-	63 (21)
C_{ST} (mgDQO. l^{-1})	800±86 (11)	125±11 (12)
E _T (%)	-	84±1 (12)
C_{SS} (mgDQO. l^{-1})	-	102±9 (13)
E _{SS} (%)	-	87±1 (13)
AVT (mgHAc. l^1)	44±6 (10)	20±3 (12)
AB (mgCaCO ₃ . l^{-1})	213±11 (10)	389±24 (12)
рН	8,9±0,2 (10)	6,72±0,09 (12)
$ST (mg.l^{-1})$	1424±270 (5)	908±129 (5)
SVT (mg. l^{-1})	782±79 (5)	258±41 (5)
SST (mg. l^{-1})	67±44 (5)	62±26 (5)
SSV (mg. l^{-1})	63±44 (5)	53±30 (5)

Tabela 4.1. Valores médios das variáveis monitoradas durante o ensaio Tu50.

* Os valores entre parênteses representam o número de amostras

O ensaio foi precedido por um intervalo de cinco dias de partida do reator, neste período a biomassa foi alimentada com afluente em concentração de 500 mgDQO.1⁻¹ para aclimatação da biomassa. Precaução tomada devido ao tempo de armazenamento da biomassa que já contava alguns meses. Após este período aumentou-se a concentração do afluente para 800 mgDQO.1⁻¹.

Figura 4.1. Concentração de matéria orgânica efluente e eficiência de remoção na condição Tu50.

Figura 4.2. Alcalinidade a bicarbonato e ácidos voláteis totais na condição Tu50.

Figura 4.3. Sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV) na condição Tu50.

O período de coleta de amostras para a elaboração da Tabela 4.1 corresponde a todo o período de ensaio, pois pelas Figura 4.1 e Figura 4.2 pode ser observado que o sistema apresentou-se estável durante toda a operação nesta condição.

Verificou-se um aumento na alcalinidade a bicarbonato efluente com relação à alcalinidade afluente, $389\pm24 \text{ mgCaCO}_3.l^{-1}$ e $213\pm11 \text{ mgCaCO}_3.l^{-1}$, respectivamente. Estes dados em conjunto com os baixos valores de ácidos voláteis totais no efluente $20\pm3 \text{ mgHAc}.l^{-1}$ confirmam a estabilidade do sistema.

Ao final do ensaio foi observado preso às lâminas do impelidor uma camada de um material esbranquiçado e gelatinoso. Este material se encontrava preso em sua parte posterior enquanto que na parte frontal das lâminas nada foi observado. Uma possível explicação para este fato pode estar no atrito provocado pelo contado do meio reacional com as partes frontais do impelidor.

Os perfis das variáveis concentração de matéria orgânica de amostras filtradas, eficiência de remoção de matéria orgânica, alcalinidade na forma de bicarbonato, ácidos voláteis totais na forma ácido acético, volume acumulado, produção, fração molar no "head-space" e concentração de metano realizados no ensaio Tu50 são apresentados da Figura 4.4 à Figura 4.8. e APÊNDICE B.

Figura 4.4. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Tu50.

Figura 4.5. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Tu50.

Figura 4.6. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Tu50.

Figura 4.7. Perfis da fração molar e da concentração de metano no "head-space"ao longo de dois ciclos de operação na condição Tu50.

Figura 4.8. Perfis de concentração de ácido propiônico por cromatografia durante dois ciclos de operação na condição de Tu50.

O perfil de concentração de matéria orgânica na forma de DQO mostra que o sistema atinge concentração estável em 3,5 h de operação sendo o valor final próximo a 100 mgDQO. l^{-1} e eficiência de conversão próxima a 74 %. Conversão esta calculada com base na concentração inicial, e por isto o valor desta, no final do perfil, é inferior ao calculado durante o monitoramento.

Os perfis de concentração de alcalinidade na forma de bicarbonato e de ácidos voláteis mostram, pela Figura 4.5, os valores destas concentrações também estabilizaram em 3,5 h de operação, bem como os perfis de ácidos voláteis intermediários pela Figura 4.8. O pico de ácidos voláteis totais ocorreu durante a primeira hora de ciclo e dos ácidos voláteis intermediários ocorreu de 40 min até 3 h de ciclo sendo observada somente a presença de ácido propiônico. Os ácidos voláteis presentes no meio aparentaram não influenciar no tamponamento do sistema, pois não houve queda no perfil de alcalinidade e observou-se também um acréscimo neste parâmetro, demonstrando que o próprio sistema contribui para seu tamponamento.

4.1.2 Impelidor tipo turbina de seis pás planas inclinadas

Neste ensaio foi testada a viabilidade de implementação do impelidor tipo turbina de seis pás planas inclinadas 45 ° operado em duas velocidades rotacionais sendo a primeira a 50 rpm e a segunda a 75 rpm, aqui identificadas como Ti50 e Ti75, respectivamente.

O ensaio teve duração de 28 dias com concentração afluente de 800 mgDQO. l^{-1} . O volume alimentado foi de 2 *l* em três ciclos diários. Na Tabela 4.2 são apresentados os valores médios dos parâmetros monitorados no decorrer do ensaio e da Figura 4.9 à Figura 4.11 é apresentada a variação destes dados ao longo do ensaio, cujos valores numéricos são apresentados no APÊNDICE C.

Parâmetro	Afluente	Ti50	Ti75
Duração ciclos (dias)	-	1-42 (14)	43-84 (14)
C_{ST} (mgDQO. l^{-1})	796±53 (20)	131±13 (9)	143±13 (9)
E _T (%)	-	84±2 (9)	82±2 (9)
C_{SS} (mgDQO. l^{-1})	-	106±8 (9)	113±7 (9)
E _{SS} (%)	-	87±1 (9)	86±1 (9)
V (<i>l</i>)	-	2,00±0,02 (8)	2,01±0,01 (5)
AVT (mgHAc. l^{-1})	40±4 (18)	19±1 (9)	19±2 (9)
AB (mgCaCO ₃ . l^{-1})	219±6 (18)	392±12 (9)	385±14 (9)
pH	9,2±0,2 (18)	6,82±0,05 (9)	6,75±0,06 (9)
ST (mg. l^{-1})	1622±54 (8)	1041±40 (4)	1075±37 (4)
SVT (mg. l^{-1})	879±37 (8)	336±50 (4)	334±38 (4)
SST (mg. l^{-1})	46±12 (8)	77±31 (4)	69±9 (4)
SSV (mg. l^{-1})	34±14 (8)	61±12 (4)	55±12 (4)
ST biomassa (g. l^{-1})	-	66,5	46,0
SFT biomassa (g. l^{-1})	-	8,4	6,1

Tabela 4.2. Valores médios das variáveis monitoradas na operação com impelidor tipo turbina de pás planas inclinadas nas condições de operação Ti50 e Ti75.

(*) os valores entre parênteses representam o número de amostras

Figura 4.9. Concentração de matéria orgânica efluente e eficiência de remoção utilizando impelidor tipo pá de pás planas inclinadas nas condições Ti50 e Ti75.

Figura 4.10. Alcalinidade a bicarbonato e Ácidos voláteis totais utilizando impelidor tipo pá de pás planas inclinadas nas condições Ti50 e Ti75.

Figura 4.11. Sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV), utilizando impelidor tipo pá de pás planas inclinadas nas condições Ti50 e Ti75.

A remoção de matéria orgânica nas duas condições apresentou similaridade, não alterando significativamente entre as condições. Os valores de alcalinidade e de ácidos voláteis confirmam a estabilidade do sistema no qual as concentrações médias de ácidos voláteis no efluente foram iguais a 19 ± 2 mgHAc. l^{-1} de forma que a intensidade de agitação não influenciou a concentração de ácidos voláteis totais na descarga das condições estudadas.

As eficiências de remoção de sólidos totais e sólidos voláteis totais ficaram próximas a 35 e 62 %, respectivamente, em ambas as condições. Já os valores de sólidos suspensos totais e sólidos suspensos voláteis tiveram acréscimo na saída do reator em relação ao afluente, porém não tiveram alterações consideráveis entre condições.

No decorrer das duas condições operacionais foi observado acúmulo de material gelatinoso no interior do reator, e ao final do ensaio o impelidor foi fotografado e apresentado na Figura 4.12.

Figura 4.12. Impelidor tipo turbina de seis pás planas inclinadas após a realização do ensaio.

Como pode ser observado o maior acúmulo de material ocorreu na parte superior do impelidor. Podendo ser uma demonstração de movimentação da biomassa sem, contudo, provocar degradação desta, visto que parâmetros como concentração de matéria orgânica efluente e sólidos totais mantiveram-se relativamente estáveis ao longo do ensaio.
4.1.2.1 Condição de operação Ti50

Os perfis de concentração de matéria orgânica de amostras filtradas, eficiência de remoção de matéria orgânica, alcalinidade na forma de bicarbonato, ácidos voláteis totais na forma ácido acético, volume acumulado, produção, fração molar no "head-space" e concentração de metano na condição Ti50 são apresentados da Figura 4.13 à Figura 4.17 e APÊNDICE C.

Figura 4.13. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Ti50.

Figura 4.14. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Ti50.

Figura 4.15. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Ti50.

Figura 4.16. Perfis da fração molar e da concentração de metano no "head-space" ao longo de dois ciclos de operação na condição Ti50.

Figura 4.17. Perfis da concentração de ácidos voláteis por cromatografia durante dois ciclos de operação na condição Ti50 (valores médios).

Os perfis de consumo de matéria orgânica na forma de DQO mostram que concentração deste atinge valor de estabilidade com 4,5 h de ciclo sendo a concentração final próxima a 100 mgDQO. l^{-1} .

A concentração de ácidos voláteis atingiu pico na primeira hora de perfil com valores superiores a 50 mgHAc. Γ^1 o mesmo ocorre com ácidos voláteis intermediários que registrou a presença de ácido propiônico, iso-butírico e iso-valérico e cujos ácidos foram observados até 3,5 h de perfil.

A produção de metano atingiu valores superiores a 120 m*l* sendo que a maior produção ocorreu entre 1,5 e 2,5 horas de perfil, como pode ser observado Figura 4.15. A concentração de metano no "head-space" atingiu valores superiores a 7 mMol. l^{-1} correspondendo a 70 % do biogás produzido ao final do ciclo.

4.1.2.2 Condição de operação Ti75

Os perfis das variáveis concentração de matéria orgânica de amostras filtradas, eficiência de remoção de matéria orgânica, alcalinidade na forma de bicarbonato, ácidos voláteis totais na forma ácido acético, volume acumulado, produção, fração molar no "head-space" e concentração de metano realizados na condição Ti75 são apresentados da Figura 4.18 à Figura 4.22 e APÊNDICE C.

Figura 4.18. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Ti75.

Figura 4.19. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Ti75.

Figura 4.20. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Ti75.

Figura 4.21. Perfis da fração molar e da concentração de metano no "head-space" ao longo de dois ciclos de operação na condição Ti75.

Figura 4.22. Perfis da concentração de ácidos voláteis por cromatografia durante dois ciclos de operação na condição Ti75.

Os perfis de concentração de matéria orgânica e de eficiência de conversão mostram que o equilíbrio é atingido com 4,5 h de ciclo com concentração residual e eficiência próximos a 100 mgDQO. l^{-1} e 70 % de remoção, apresentando resultados similares aos obtidos na condição Ti50.

Os perfis de alcalinidade e de ácidos voláteis totais atingiram estabilidade entre três e quatro horas de ciclo sendo que o pico de ácidos voláteis ocorreu entre vinte minutos e uma hora e trinta minutos. Já os perfis de ácidos intermediários mostram que o ácido propiônico foi observado do início do perfil até 2,5 h de ciclo, enquanto que os ácidos iso-butírico e iso-valérico foram observados entre 40 min e 2 h de ciclo.

O volume de metano produzido foi próximo a 140 m*l* sendo sua maior produção ocorrida entre a segunda e a terceira horas de ciclo com produção de 30 m*l*.h⁻¹. Também entre a segunda e a terceira horas de ciclo houve o maior aumento da concentração de metano no "head-space" do reator, que teve concentração final próxima a 7 mMol. l^{-1} e respectiva fração molar igual a 70 %.

4.1.3 Impelidor tipo pá de seis pás planas verticais

O impelidor tipo pá de pás planas foi testado em duas freqüências rotacionais, sendo elas 50 e 75 rpm, passando assim a serem denominadas condições Pa50 e Pa75. A concentração de matéria orgânica afluente na forma de DQO foi de 800 mg. l^{-1} em volume de 2 *l* e ciclos de 8 h. Este ensaio teve duração de 30 d. Os valores das variáveis monitoradas durante este ensaio são apresentados na Tabela 4.3 e da Figura 4.23 à Figura 4.25 e no APÊNDICE D.

Parâmetro	Afluente	Pa50	Pa75
Duração ciclos (dias)	-	1-42 (14)	42-90 (16)
$C_{ST}(mgDQO.l^{-1})$	807±27 (21)	167±19 (9)	185±8 (12)
E _T (%)	-	79±2 (9)	77±1 (12)
C_{SS} (mgDQO. l^{-1})	-	144±17 (9)	139±11 (12)
E _{SS} (%)	-	82±2 (9)	83±1 (12)
V (<i>l</i>)	-	2,01±0,01 (7)	2,00±0,01 (6)
AVT (mgHAc. l^{-1})	39±3 (17)	22±5 (8)	21±3 (11)
AB (mgCaCO ₃ . l^{-1})	223±7 (17)	379±10 (8)	375±18 (11)
pН	8,9±0,1 (17)	6,79±0,03 (8)	6,79±0,05 (11)
ST (mg. l^{-1})	1600±40 (8)	1073±53 (4)	1100±74 (4)
SVT (mg. l^{-1})	876±46 (8)	340±34 (4)	344±15 (4)
SST (mg. l^{-1})	40±18 (8)	70±10 (4)	67±17 (4)
SSV (mg. l^{-1})	32±19 (8)	60±3 (4)	65±16 (4)
ST biomassa (g. l^{-1})	-	46,5 (1)	59,4 (1)
SFT biomassa (g.l ⁻¹)	-	5,5 (1)	6,7 (1)

Tabela 4.3. Valores médios das variáveis monitoradas no ensaio com impelidor tipo pá de pás planas verticais nas condições de operação Pa50 e Pa75.

(*) os valores entre parênteses representam o número de amostras

Figura 4.23. Concentração de matéria orgânica efluente e eficiência de remoção utilizando impelidor tipo pá de pás planas inclinadas nas condições Pa50 e Pa75.

Figura 4.24. Alcalinidade a bicarbonato e Ácidos voláteis totais utilizando impelidor tipo pá de pás planas inclinadas nas condições Pa50 e Pa75.

Figura 4.25. Sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV), utilizando impelidor tipo pá de pás planas inclinadas nas condições Pa50 e Pa75.

O sistema manteve-se estável durante todo o período de sua realização, com remoção de matéria orgânica em amostras não filtradas inferior a 80 % e concentração efluente de 167 mgDQO. l^{-1} e 180 mgDQO. l^{-1} para as condições Pa50 e Pa75, respectivamente. A diferença entre as eficiências de remoção de matéria orgânica para amostras não filtradas sofreu redução de 2 % da condição Pa50 para a condição Pa75, podendo isto ser conseqüência do acúmulo de material esbranquiçado no reator.

Os valores de ácidos voláteis totais e de alcalinidade na forma de bicarbonato mostram que ocorre acréscimo de alcalinidade no efluente em relação ao afluente ao mesmo tempo em que os valores de ácidos voláteis são mantidos em valores relativamente baixos, sempre inferiores a 30 mgHAc. l^{-1} sendo os valores médios de 22 e 21 mgHAc. l^{-1} para as condições Pa50 e Pa75 respectivamente.

Não é observada variação nos parâmetros remoção de sólidos tanto sólidos totais, sólidos voláteis totais, sólidos suspensos totais e sólidos suspensos voláteis entre as duas condições de operação, visto que ambos encontram-se muito próximos.

4.1.3.1 Condição de operação Pa50

Da Figura 4.26 à Figura 4.30 e APÊNDICE D são apresentados os perfis das variáveis concentração de matéria orgânica de amostras filtradas, eficiência de remoção de matéria orgânica, alcalinidade na forma de bicarbonato, ácidos voláteis totais na forma ácido acético, volume acumulado, produção, fração molar no "head-space" e concentração de metano realizados na condição Pa50.

Figura 4.26. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Pa50.

Figura 4.27. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Pa50.

Figura 4.28. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Pa50.

Figura 4.29. Perfis da fração molar e da concentração de metano no "head-space" ao longo de dois ciclos de operação na condição Pa50.

Figura 4.30. Perfis da concentração de ácidos voláteis por cromatografia durante dois ciclos de operação na condição Pa50 (valores médios).

Pode ser observado que o sistema necessita de quase a totalidade do tempo de ciclo para promover a remoção de matéria orgânica. Fato que se repete com as concentrações de ácidos voláteis totais, alcalinidade na forma de bicarbonato e concentração de metano no "head-space" do reator perfis onde a estabilidade foi atingida com sete horas de ciclo.

A concentração de matéria orgânica no final do ciclo atingiu valor próximo a 150 mgDQO. l^{-1} e remoção de 70 %. Enquanto que o pico de ácidos voláteis totais ocorreu entre 1,5 e 2,5 h de ciclo e a presença de ácidos voláteis intermediários foi observada do início do perfil até a quinta hora de ciclo, onde foi observada a presença de ácido propiônico que apresentou pico de 16 mg. l^{-1} na segunda hora de ciclo e dos ácidos iso-butírico e iso-valérico que não apresentaram concentração superior a 2 mg. l^{-1} .

A produção de metano variou entre 15 e 20 ml.h⁻¹ durante o período reacional, não apresentando um período definido de pico de produção e a concentração de metano ao final dos ciclos ficou próximo a 6,5 mMol. l^{-1} .

O potencial redox do meio reacional foi avaliado ao final da condição Pa75 e apresentou valor de -283 mV, nesta mesma condição foi executada a leitura de oxigênio dissolvido e constatou-se ausência de oxigênio, isto é, concentração zero.

Apresenta-se da Figura 4.31 à Figura 4.35 e APÊNDICE D, os perfis das variáveis concentração de matéria orgânica de amostras filtradas, eficiência de remoção de matéria orgânica, alcalinidade na forma de bicarbonato, ácidos voláteis totais na forma ácido acético, volume acumulado, produção, fração molar no "head-space" e concentração de metano realizados na condição Pa75.

Figura 4.31. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Pa75.

Figura 4.32. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Pa75.

Figura 4.33. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Pa75.

Figura 4.34. Perfis da fração molar e da concentração de metano no "head-space" ao longo de dois ciclos de operação na condição Pa75.

Figura 4.35. Perfis da concentração de ácidos voláteis por cromatografia durante dois ciclos de operação na condição Pa75 (valores médios).

Similar ao ocorrido na condição Pa50 nesta condição Pa75 foi necessário quase todo o tempo de ciclo para promover a degradação da matéria orgânica, que chegou a um valor de equilíbrio entre a sexta e a sétima hora de ciclo.

O consumo dos ácidos voláteis totais apresentou pico de longa duração e com valores superiores a 60 mgHAc. l^{-1} demonstrando que esta configuração aparentou não ser capaz de promover a conversão dos ácidos voláteis a metano tão eficiente quanto o

observado na condição Tu50, entretanto este acúmulo não chegou a influenciar o perfil de aumento da alcalinidade a bicarbonato.

Os perfis do volume acumulado e produção de metano mostram que a produção variou pouco ao longo do ciclo de operação e que o volume acumulado no final deste chegou a 125 m*l*. A fração molar de metano no "head-space" atingiu valor de 70 % ao final do ciclo sendo a concentração ao final do ciclo superior a 7 mMol. l^{-1} .

4.1.4 Impelidor tipo pá de seis pás planas inclinadas

Neste ensaio foi testada a viabilidade de implementação de um impelidor tipo pá de pás planas inclinadas 45° em sistema tratando esgoto sintético de concentração de matéria orgânica na forma de DQO próxima a 800 mgDQO. l^{-1} sendo alimentados ao reator um volume de 2 *l* em ciclos de 8 h. Foram utilizadas duas velocidades de rotação, de 50 rpm e 75 rpm, que passam a ser identificadas por Pi50 e Pi75, respectivamente.

Este ensaio teve duração de 28 dias e os valores médios das variáveis monitoradas durante este ensaio são apresentados na Tabela 4.4 e da Figura 4.36 à Figura 4.38 além de os valores numéricos estarem relacionados no APÊNDICE E.

Parâmetro	Afluente	Pi50	Pi75
Duração ciclos (dias)	-	42 (14)	42 (14)
$C_{ST}(mgDQO.l^{-1})$	758±25 (19)	141±16 (10)	129±13 (10)
E _T (%)	-	81±2 (10)	83±2 (10)
C_{SS} (mgDQO. l^{-1})	-	101±7 (10)	100±11 (10)
E _{SS} (%)	-	87±1 (10)	87±1 (10)
V (<i>l</i>)	-	2,00±0,01 (6)	2,00±0,02 (7)
AVT (mgHAc. l^{-1})	38±8 (20)	17±2 (10)	17±2 (9)
AB (mgCaCO ₃ . l^{-1})	225±23 (20)	397±14 (10)	395±6 (9)
pH	8,7±0,2 (20)	6,77±0,05 (10)	6,77±0,04 (9)
ST (mg. l^{-1})	1596±68 (8)	1036±55 (4)	1113±61 (4)
SVT (mg. l^{-1})	847±26 (8)	327±27 (4)	356±63 (4)
SST (mg. l^{-1})	44±11 (8)	67±15 (4)	81±24 (4)
SSV (mg. l^{-1})	35±10 (8)	66±15 (4)	60±13 (4)
ST biomassa $(g.l^{-1})$	-	57,5 (1)	61,6 (1)
SFT biomassa $(g.l^{-1})$	-	8,0 (1)	7,1 (1)

Tabela 4.4. Valores médios das variáveis monitoradas na operação com impelidor tipo pá de pás planas inclinadas nas condições de operação Pi50 e Pi75.

* Os valores entre parênteses representam o número de amostras

Figura 4.36. Concentração de matéria orgânica efluente e eficiência de remoção utilizando impelidor tipo pá de pás planas inclinadas nas condições Pi50 e Pi75.

Figura 4.37. Alcalinidade a bicarbonato e Ácidos voláteis totais utilizando impelidor tipo pá de pás planas inclinadas nas condições Pi50 e Pi75.

Figura 4.38. Sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV) utilizando impelidor tipo pá de pás planas inclinadas nas condições Pi50 e Pi75.

Todos os dados coletados durante o referido ensaio foram utilizados para a montagem da Tabela 4.4, visto que o sistema operou com estabilidade. Removendo 87 ± 1 % da matéria orgânica na forma de DQO de amostras filtradas para ambas as condições, as concentrações de matéria orgânica em amostras não filtradas foram de 141±16 e 129±13 mgDQO.*l*⁻¹ para as condições Pi50 e Pi75, respectivamente. Para os outros parâmetros observou-se grande semelhança entre as duas condições.

A possível formação de polímero pode ser observada através da Figura 4.39 na qual o impelidor tipo pá de pás planas inclinadas é apresentado antes e após sua utilização neste ensaio. Nesta figura o impelidor aparece recoberto uma camada de um material gelatinoso ao final do ensaio. Esta pode ser uma confirmação da não ocorrência de atrito entre impelidor e biomassa. Uma vez que, em caso de atrito, este material facilmente removível do impelidor não estaria aderido ao mesmo.

Cabe registrar que foram executadas análises de nitrogênio orgânico e nitrogênio amoniacal do efluente ao final da condição Pi75, cujos valores foram 11,3 mg. l^{-1} e 38,8 mg. l^{-1} , respectivamente, fornecendo assim 50,1 mg. l^{-1} de nitrogênio total Kjeldal.

Figura 4.39.Impelidor tipo pá de pás planas inclinadas antes e após o ensaio.

4.1.4.1 Condição de operação Pi50

Fornece-se da Figura 4.40 à Figura 4.44, cujos valores experimentais estão no APÊNDICE E, os perfis das variáveis concentração de matéria orgânica de amostras filtradas, eficiência de remoção de matéria orgânica, alcalinidade na forma de bicarbonato, ácidos voláteis totais na forma ácido acético, volume acumulado, produção, fração molar no "head-space" e concentração de metano realizados na condição Pi50.

Figura 4.40. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Pi50.

Figura 4.41. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Pi50.

Figura 4.42. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Pi50.

Figura 4.43. Perfis da fração molar e da concentração de metano no "head-space" ao longo de dois ciclos de operação na condição Pi50.

Figura 4.44. Perfis da concentração de ácidos voláteis por cromatografia durante dois ciclos de operação na condição Pi50 (valores médios).

Os perfis de concentração de matéria orgânica na forma de DQO, alcalinidade a bicarbonato e ácidos voláteis totais atingem seus valores finais entre a quinta e a sexta horas onde as concentrações finais foram próximas a 100 mgDQO. l^{-1} , 400 mgCaCO₃. l^{-1} e 20 mgHAc. l^{-1} , respectivamente.

O volume acumulado ao final do ciclo foi de aproximadamente 125 ml, cuja produção foi próxima a 25 ml.h⁻¹ entre a segunda e a terceira horas de perfil. Ainda nesta condição a concentração de metano atingiu 6,5 mMol. l^{-1} representando 70 % de metano.

A partir da análise de ácidos voláteis intermediários só foi observada a presença de ácido propiônico que esteve presente do início do perfil até 4,5 h de ciclo, sendo o período de pico entre 1,5 e 2,5 h e concentração pouco inferior a 15 mg. l^{-1} .

4.1.4.2 Condição de operação Pi75

Os perfis das variáveis concentração de matéria orgânica de amostras filtradas, eficiência de remoção de matéria orgânica, alcalinidade na forma de bicarbonato, ácidos voláteis totais na forma ácido acético, volume acumulado, produção, fração molar no "head-space" e concentração de metano realizados na condição Pi75 são apresentados da Figura 4.45 à Figura 4.49 e no APÊNDICE E.

Figura 4.45. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Pi75.

Figura 4.46. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Pi75.

Figura 4.47. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Pi75.

Figura 4.48. Perfis da fração molar e da concentração de metano no "head-space" ao longo de dois ciclos de operação na condição Pi75.

Figura 4.49. Perfis da concentração de ácidos voláteis por cromatografia durante dois ciclos de operação na condição Pi75.

O perfil de concentração de matéria orgânica teve variação significativa entre o tempo zero e a quarta horas de ciclo, sendo seu valor a partir deste momento praticamente constante e próximo a 120 mgDQO. l^{-1} . Os perfil de alcalinidade na forma de bicarbonato e de ácidos voláteis totais seguem a mesma tendência do perfil de concentração de matéria orgânica. O perfil de ácidos voláteis totais apresentou pico com uma hora de ciclo atingindo aproximadamente 50 mgHAc. l^{-1} concentração esta que não

chegou a influenciar significativamente a alcalinidade do meio reacional, em função de a alcalinidade na forma de bicarbonato apresentar somente tendência de aumento, conforme Figura 4.46.

O volume de metano acumulado ao final de dois perfis nesta condição foi próximo a 140 m*l* no qual o pico de produção teve início com 1,5 h de perfil chegando ao valor máximo na segunda hora, a partir da qual ocorre queda gradual até o final do período reacional. A fração molar de metano estabilizou próxima a 70 % entre a quarta e a quinta hora de perfil no qual estes 70 % equivalem a aproximadamente 7 mMol. Γ^1 .

Diferentemente da condição Pi50 onde se registrou somente a presença de ácido propiônico dentre os ácidos voláteis intermediários, nesta condição Pi75 é observada a presença dos ácidos iso-butírico e iso-valérico, cujas concentrações não ultrapassam 2 mg. l^{-1} e do ácido propiônico com concentração próxima a 20 mg. l^{-1} em uma hora de perfil.

4.1.5 Impelidor tipo pá de seis pás planas inclinadas e tubo de tiragem

Neste ensaio foi testada a viabilidade de utilização de impelidor tipo pá de seis pás planas inclinadas 45°, em conjunto com tubo de tiragem. A duração deste ensaio foi de 28 dias com o estudo de duas velocidades de rotação, 100 rpm e 120 rpm, passando assim a serem denominadas por condições Pd100 e Pd120, respectivamente. A escolha das velocidades seguiu os critérios operacionais citados no ensaio utilizando hélice com tubo de tiragem.

O reator operou com concentração inicial de esgoto sintético de 800 mgDQO. l^1 , operando em ciclos de 8 h e volume alimentado de 2 *l*. Os resultados experimentais deste ensaio são apresentados na Tabela 4.5, da Figura 4.50 à Figura 4.52 e APÊNDICE F.

Parâmetro	Afluente	Pd100	Pd120
Duração ciclos (dias)	-	1-41 (14)	44-83 (14)
$C_{ST}(mgDQO.l^{-1})$	794±37 (18)	146±8 (7)	127±9 (10)
E _T (%)	-	82±1 (7)	84±1 (10)
C_{SS} (mgDQO. l^{-1})	-	125±7 (7)	113±8 (10)
E _{SS} (%)	-	84±1 (7)	86±1 (10)
V Descarregado (l)	-	2,01±0,01 (7)	1,98±0,02 (5)
AVT (mgHAc. l^{-1})	36±30 (16)	18±3 (8)	14±2 (9)
AB (mgCaCO ₃ . l^{-1})	219±9 (16)	374±10 (8)	376±5 (9)
pH	8,9±0,1 (16)	6,86±0,03 (8)	6,81±0,08 (9)
ST (mg. l^{-1})	1576±113 (8)	1069±77 (4)	1069±47 (4)
SVT (mg. l^{-1})	886±36 (8)	357±62 (4)	363±26 (4)
SST (mg. l^{-1})	40±13 (8)	65±6 (4)	70±13 (4)
SSV (mg. l^{-1})	34±15 (8)	46±5 (4)	66±11 (4)
ST biomassa $(g.l^{-1})$	-	69,2 (1)	56,5 (1)
SFT biomassa (g. l^{-1})	-	9,5 (1)	7,8 (1)

Tabela 4.5. Valores médios das variáveis monitoradas na operação com impelidor tipo pá de pás planas inclinadas 45 ° e tubo de tiragem nas condições Pd100 e Pd120.

(*) Os valores entre parênteses representam o número de amostras

Figura 4.50. Concentração de matéria orgânica efluente e eficiência de remoção utilizando impelidor tipo pá de pás planas inclinadas e reator com tubo de tiragem nas condições Pd100 e Pd120.

Figura 4.51. Alcalinidade a bicarbonato e Ácidos voláteis totais utilizando impelidor tipo pá de pás planas inclinadas e reator com tubo de tiragem nas condições Pd100 e Pd120.

Figura 4.52. Sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV) utilizando impelidor tipo pá de pás planas inclinadas e reator com tubo de tiragem nas condições Pd100 e Pd120.

O sistema necessitou de um curto período de adaptação de dois dias para não apresentar variação significativa nos parâmetros medidos, a partir dos quais apresentou boa estabilidade. Para a construção da Tabela 5.4 não foram utilizados os dois primeiros pontos de monitoramento do efluente na condição Pd100 dos parâmetros DQO total e filtrada, eficiência total e filtrada, alcalinidade a bicarbonato, ácidos voláteis totais e pH. Também não foi utilizado o primeiro valor de SST e SSV da condição Pd100, em função de estes pontos representarem um período de adaptação do sistema à condição de operação, como pode ser visto nas Figura 4.50 a Figura 4.52.

Para o caso da concentração de matéria orgânica tanto filtrada quanto total, ao final do período de adaptação, notou-se uma diminuição na concentração efluente e conseqüente maior eficiência de remoção para ambos os casos, já para o caso da alcalinidade na forma de bicarbonato o efeito foi de diminuição da alcalinidade, uma vez que os dois primeiros pontos estavam próximos a 400 mgCaCO₃. l^{-1} e a concentração média nesta condição foi de 374±10 mgCaCO₃. l^{-1} . A diminuição na alcalinidade do efluente pode ter sido provocada por um aumento na turbulência promovida por este sistema em relação à condição anterior e possível maior eliminação do carbonato na forma de CO₂ gasoso.

Com o início da agitação espera-se que o fluido "empurre" a biomassa para através do tubo de tiragem e promova a suspensão dos grânulos na região anular (entre

o tubo de tiragem e a parede do reator), onde os grânulos permaneceriam suspensos sem contudo chegar ao topo da coluna liquida, caracterizando escoamento axial da biomassa. A primeira condição de operação teve, durante toda sua duração, um início de ciclo diferente do esperado. Ocorreu que, com o início da agitação iniciava-se a movimentação do fluido dentro do tubo de tiragem e este expelia a biomassa para fora do tubo pela sua parte superior. Após um tempo de aproximadamente dois minutos, parte da biomassa já havia sido transferida para a região anular, diminuindo a resistência ao início da movimentação "normal" do fluido, que começa a circular gerando o escoamento axial característico, promovido pela instalação do tubo de tiragem. Este fato demonstra que para o sistema com impelidor tipo pá de pás planas inclinadas a velocidade rotacional de 100 rpm é suficiente para manter a suspensão da biomassa na região anular durante o período reacional, porém apresenta problemas durante o início de cada ciclo por não fornecer energia suficiente para promover a adequada suspensão da biomassa.

Durante os primeiros dias de operação na segunda condição de agitação (Pd120) observou-se a eliminação de material celular flotado durante a descarga do reator. Este período durou cinco dias resultando ao final do ensaio em uma perda de 210 ml de biomassa. Este fato não foi provocado por sobrecarga orgânica, visto que não foram observadas variações significativas nas concentrações de matéria orgânica, alcalinidade, concentração de ácidos voláteis totais ou pH do efluente. Isto posto e sabendo que no início de cada ciclo, durante estes dias, a condição Pd120 apresentou a mesma característica da condição de menor velocidade, supõe-se que uma explicação para a eliminação de biomassa seja o fato de esta encontrar-se de alguma forma excedente no sistema e com isto ser eliminada por algum mecanismo ainda não entendido.

O porquê de ter sido eliminado material celular no início da condição Pd120 mas não na condição Pd100, e o fato de a circulação de fluido começar de forma inesperada para este sistema, gerando contato direto do impelidor com a biomassa são questões que merecem um maior aprofundamento.

4.1.5.1 Condição de operação Pd100

Da Figura 4.53 à Figura 4.57 e APÊNDICE F, pode-se observar os perfis das variáveis concentração de matéria orgânica de amostras filtradas, eficiência de remoção de matéria orgânica, alcalinidade na forma de bicarbonato, ácidos voláteis totais na forma ácido acético, volume acumulado, produção, fração molar no "head-space" e concentração de metano realizados na condição Pd100.

Figura 4.53. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Pd100

Figura 4.54. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Pd100.

Figura 4.55. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Pd100.

Figura 4.56. Perfis da fração molar e da concentração de metano no "head-space" ao longo de dois ciclos de operação na condição Pd100.

Figura 4.57. Perfis da concentração de ácidos voláteis por cromatografia durante dois ciclos de operação na condição pá Pd100.

A concentração de matéria orgânica na forma de DQO apresentou tendência de queda até a quarta hora de ciclo, a partir da qual estabilizou em valores próximos a 130 mgDQO. l^{-1} . Ao mesmo tempo a eficiência de remoção de matéria orgânica atingiu, no patamar de estabilidade, valores superiores a 70 %.

A alcalinidade na forma de bicarbonato apresentou sua curva característica de aumento sem demonstrar ter recebido forte influência da concentração de ácidos voláteis, esta que teve pico entre 20 mim e uma hora de ciclo e estabilizou em 3,5 h de ciclo. A presença de ácidos voláteis intermediários foi observada durante as três primeiras horas de ciclo, no qual foram identificados ácidos propiônico, iso-butírico e iso-valérico, sendo os dois últimos em concentrações inferiores a 2 mg. l^{-1} .

Os perfis de volume acumulado e produção de biogás mostraram que o volume acumulado variou entre 125 e 145 m*l*, sendo sua produção máxima próxima a 30 m*l*.h⁻¹, entre 1,5 e 2,5 h de ciclo. A fração molar de metano no biogás estabilizou em 70 % perto de três horas de ciclo, enquanto que a concentração final de metano nestes perfis ficou próxima a 7 mMol. l^{-1} .

Verifica-se da Figura 4.58 à Figura 4.62 e APÊNDICE F, os perfis das variáveis concentração de matéria orgânica de amostras filtradas, eficiência de remoção de matéria orgânica, alcalinidade na forma de bicarbonato, ácidos voláteis totais na forma ácido acético, volume acumulado, produção, fração molar no "head-space" e concentração de metano realizados na condição Pd120.

Figura 4.58. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Pd120.

Figura 4.59. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Pd120.

Figura 4.60. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Pd120.

Figura 4.61. Perfis da fração molar e da concentração de metano no "head-space" ao longo de dois ciclos de operação na condição Pd120.

Figura 4.62. Perfis da concentração de ácidos voláteis por cromatografia durante dois ciclos de operação na condição Pd120.

O perfil de concentração de matéria orgânica mostra que a maior parte da remoção ocorre até 2,5 h atingido valor final próximo a 100 mgDQO. l^{-1} , enquanto que a conversão, similarmente à condição anterior, atingiu eficiência próxima a 70 %.

O perfil de ácidos voláteis totais estabilizou com três horas de ciclo tendo seu pico registrado com 40 minutos e concentração de aproximadamente 50 mgHAc. l^{-1} . Este pico aparentemente não provocou efeito nos valores de alcalinidade, visto que este apresentou somente valores crescentes até atingir a estabilidade, fato que ocorreu com 2,5 h de ciclo.

4.1.6 Impelidor tipo hélice

O ensaio com impelidor tipo hélice teve duração de 28 dias estudando-se duas condições de operação pela variação da intensidade de agitação com a alteração na velocidade rotacional da hélice. As velocidades estudadas foram de 70 e 100 rpm, sendo denominadas He70 e He100, respectivamente.

O esgoto sintético utilizado apresentou concentração de 800 mgDQO. l^1 operando em ciclos de 8 h e volume alimentado de 2 *l*. Os resultados experimentais deste ensaio estão apresentados na Tabela 4.6, da Figura 4.63 à Figura 4.65 e APÊNDICE G.

Parâmetro	Afluente	He70	He100
Duração ciclos (dias)	-	1-42 (14)	43-84 (14)
$C_{ST}(mgDQO.l^{-1})$	776±50 (19)	154±16 (11)	146±9 (8)
E _T (%)	-	80±2 (11)	81±1 (8)
C_{SS} (mgDQO. l^{-1})	-	124±11 (11)	116±5 (9)
E _{SS} (%)	-	84±1 (11)	85±1 (9)
V Descarregado (l)	-	2,00±0,04 (7)	2,01±0,01 (8)
AVT (mgHAc. l^{-1})	44±5 (17)	24±4 (8)	19±2 (8)
AB (mgCaCO ₃ . l^{-1})	212±16 (17)	380±26 (8)	366±18 (8)
pH	8,8±0,1 (17)	6,83±0,09 (8)	6,81±0,05 (8)
ST (mg. l^{-1})	1458±71 (7)	999±22 (4)	1007±74 (3)
SVT (mg. l^{-1})	763±54 (7)	299±37 (4)	325±104 (3)
SST (mg. l^{-1})	74±31 (7)	22±8 (4)	35±13 (3)
SSV (mg. l^{-1})	68±33 (7)	16±8 (4)	32±15 (3)
ST biomassa (g. l^{-1})	-	39,9 (1)	42,3 (1)
SFT biomassa (g. l^{-1})	-	5,3 (1)	5,4 (1)

Tabela 4.6. Valores médios das variáveis monitoradas na operação com impelidor tipo hélice nas condições He70 e He100.

(*) Os valores entre parênteses representam o número de amostras

As velocidades escolhidas foram baseadas em análise visual da movimentação dos grânulos no interior do reator. Para a condição de rotação a 70 rpm tentou-se obter movimentação parecida com a obtida no ensaio com turbina de pás planas operando a 50 rpm, já para a condição He100 utilizou-se rotação em que era visível o aumento da movimentação dos grânulos. A possibilidade de utilização de rotações superiores existiu, porém em maiores rotações poderia ocorrer o rompimento dos grânulos o que prejudicaria a biomassa.

O sistema atingiu estabilidade com extrema rapidez, tendo sido utilizados todos os dados coletados para o cálculo dos valores médios.

Figura 4.63. Concentração de matéria orgânica efluente e eficiência de remoção nas condições He70 e He100.

Figura 4.64. Alcalinidade a bicarbonato e Ácidos voláteis totais nas condições He70 e He100.

Figura 4.65. Sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV) nas condições He70 e He100.

A concentração de matéria orgânica efluente na forma de DQO manteve-se sempre pouco superior a 100 mg. l^{-1} tanto para amostras filtradas como para não filtradas nas duas condições de trabalho. Ao mesmo tempo a eficiência de remoção foi sempre superior a 80 %. Enquanto que os valores de alcalinidade a bicarbonato mostram que o

sistema manteve-se estável, esta confirmada pelo acréscimo de alcalinidade efluente em relação a afluente.

A concentração de ácidos voláteis totais foi baixa durante todo o ensaio, não sendo encontrados valores superiores a $35 \text{ mgAc.} \Gamma^1$ e valores médios iguais a $24\pm4 \text{ mgHAc.} \Gamma^1$ e $19\pm2 \text{ mgHAc.} \Gamma^1$ para as condições He70 e He100, respectivamente. Observou-se aqui uma diminuição no valor de ácidos voláteis com o aumento da rotação do impelidor podendo ser esta uma evidência da melhora na transferência de massa intra-partícula.

Foi observada remoção de sólidos totais de 31,5 e 30,9 % para He70 e He100, respectivamente, tendo sido os piores valores de remoção de sólidos deste ensaio. Já que para sólidos voláteis totais as remoções foram de 60,8 e 57,4 %, sólidos suspensos totais 70,3 e 52,7 % e sólidos suspensos voláteis 76,5 e 52,9 % para He70 e He100, respectivamente. Apesar dos melhores valores de remoção de sólidos na condição He70 cabe ressaltar a importância dos altos valores do desvio-padrão encontrados nestas análises.

Ao final das duas condições de operação observou-se o acumulo de material esbranquiçado gelatinoso aparentando ser polímeros extracelulares em toda a superfície do impelidor, este fato demonstrou que, possivelmente, não houve contato entre o impelidor e os grânulos. Esta observação pode ser entendida como uma vantagem do impelidor tipo hélice sobre o tipo turbina, pois em não ocorrer contato direto do impelidor sobre a biomassa, pressupõe-se que esta se mantém integra diminuindo a possibilidade de sua eliminação com o efluente do reator na forma de material particulado.

4.1.6.1 Condição de operação He70

Os perfis das variáveis concentração de matéria orgânica de amostras filtradas, eficiência de remoção de matéria orgânica, alcalinidade na forma de bicarbonato, ácidos voláteis totais na forma ácido acético, volume acumulado, produção, fração molar no "head-space" e concentração de metano realizados na condição He70 são apresentados da Figura 4.66 à Figura 4.70 e APÊNDICE G.

Figura 4.66. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição He70.

Figura 4.67. Perfis da alcalinidade na forma de carbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição He70.

Figura 4.68. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição He70.

Figura 4.69. Perfis da fração molar e da concentração de metano no "head-space" ao longo de dois ciclos de operação na condição He70.

Figura 4.70. Perfis da concentração de ácidos voláteis por cromatografia durante dois ciclos de operação na condição He70.

A remoção de matéria orgânica atingiu seu valor de equilíbrio próximo a 5 h de ciclo com concentração deste na forma de DQO em torno de 120 mg. l^{-1} e alcançando eficiência de remoção superior a 70 %, valor abaixo do encontrado na Tabela 4.6 de monitoramento em função da diluição do matéria orgânica no reator.

O pico de ácidos voláteis totais ocorreu dos 20 mim até 1,5 h de ciclo e concentração inferior a 50 mgHAc. l^{-1} . A alcalinidade na forma bicarbonato apresentou somente tendência a subida não sendo afetada pela produção de ácidos. Em ambos os casos o sistema atingiu o equilíbrio somente após a quinta hora de ciclo, fato também ocorrido com ácidos voláteis intermediários, onde a partir da quinta hora não foi mais registrada a presença do ácido propiônico, cujo pico foi próximo a 12 mg. l^{-1} por volta da segunda hora de ciclo e único ácido volátil intermediário identificado nesta condição de operação.

Os perfis de monitoramento de metano mostram que em menos de uma hora a porcentagem de metano no "head-space" já era superior a 60 % e atingindo ao final dos perfis valores próximos a 70 % enquanto que a concentração de metano nos finais dos perfis apresentou valores próximos a 7 mMol. l^{-1} . O volume acumulado foi superior a 125 m*l* tendo como pico de produção um valor entre 22,5 e 25 m*l*.h⁻¹ entre a segunda e a terceira horas de ciclo conforme Figura 4.69.

4.1.6.2 Condição de operação He100

Os perfis das variáveis concentração de substrato de amostras filtradas, eficiência de remoção de matéria orgânica, alcalinidade na forma de bicarbonato, ácidos voláteis totais na forma ácido acético, volume acumulado, produção, fração molar no "head-space" e concentração de metano realizados na condição He100 são apresentados da Figura 4.71 a Figura 4.75 e APÊNDICE G.

Figura 4.71. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição He100.

Figura 4.72. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição He100.

Figura 4.73. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição He100.

Figura 4.74. Perfis da fração molar e da concentração de metano no "head-space" ao longo de dois ciclos de operação na condição He100.

Figura 4.75. Perfis da concentração de ácidos voláteis por cromatografia durante dois ciclos de operação na condição He100.

Observa-se uma rápida degradação da matéria orgânica com valores de concentração residual em torno de 100 mg. l^{-1} e eficiência de remoção de 70 %, ambos atingidos em um tempo de ciclo próximo a quatro horas.

A alcalinidade a bicarbonato não aparentou ser influenciada pela produção de ácidos, que apresentou pico de 40 mgAc. l^{-1} entre 20 mim e duas horas de ciclo. Um fato importante a ser observado é que o pico de ácidos voláteis totais na condição He100 foi

inferior ao observado na condição He70. Também se nota que com 4 h de ciclo os parâmetros DQO e ácidos voláteis totais já se encontram estáveis. A análise de ácidos voláteis por cromatografia, assim como na condição He70, detectou somente a presença de ácido propiônico, com concentração máxima entre 1,5 e 2,5 h com pico de concentração de 12 mg. l^{-1} a presença deste ácido foi detectada durante 60 mim e 4,5 h de ciclo.

O volume de metano nos dois ciclos chegou a 130 m*l* sendo a velocidade máxima de produção de metano foi entre 1,5 e 3 h com produção de 25 m*l*.h⁻¹ durante este intervalo de tempo. A porcentagem de metano no "head-space" estabilizou próximo a 70 % com concentração de metano de 7 mMol. l^{-1} .

4.1.7 Impelidor tipo hélice e tubo de tiragem

Neste ensaio, utilizando impelidor tipo hélice, foi testada a implementação de tubo de tiragem e concêntrico.O reator operou com concentração inicial de esgoto sintético de 800 mgDQO. l^{-1} , em ciclos de 8 h e volume alimentado de 2 *l*. Os resultados experimentais deste ensaio são apresentados na Tabela 4.7, da Figura 4.76 à Figura 4.78 e APÊNDICE H.

Afluente	Hd100	Hd120		
-	1-46 (15)	47-87 (13)		
776±32 (19)	123±9 (10)	124±7 (9)		
-	84±1 (10)	84±1 (10)		
-	106±6 (10)	115±10 (9)		
-	86±1 (10)	85±1 (9)		
-	2,02±0,03 (7)	2,00±0,02 (5)		
39±4 (17)	18±4 (7)	16±1 (9)		
228±14 (17)	396±3 (7)	396±8 (9)		
8,8±0,2 (17)	6,8±0,1 (8)	6,8±0,1 (9)		
1537±126 (8)	1099±128 (4)	1102±74 (4)		
854±96 (8)	345±25 (4)	383±99 (4)		
31±11 (8)	69±15 (4)	52±12 (4)		
26±10 (8)	54±2 (4)	51±11 (4)		
-	-	49,4 (1)		
-	-	7,4 (1)		
	Afluente - 776±32 (19) - - - 39±4 (17) 228±14 (17) 8,8±0,2 (17) 1537±126 (8) 854±96 (8) 31±11 (8) 26±10 (8) - -	AfluenteHd100- $1-46 (15)$ 776±32 (19) $123\pm9 (10)$ - $84\pm1 (10)$ - $106\pm6 (10)$ - $106\pm6 (10)$ - $86\pm1 (10)$ - $2,02\pm0,03 (7)$ $39\pm4 (17)$ $18\pm4 (7)$ $228\pm14 (17)$ $396\pm3 (7)$ $8,8\pm0,2 (17)$ $6,8\pm0,1 (8)$ $1537\pm126 (8)$ $1099\pm128 (4)$ $854\pm96 (8)$ $345\pm25 (4)$ $31\pm11 (8)$ $69\pm15 (4)$ $26\pm10 (8)$ $54\pm2 (4)$		

Tabela 4.7. Valores médios das variáveis monitoradas na operação com impelidor tipo hélice com tubo de tiragem nas condições de operação Hd100 e Hd120.

* Os valores entre parênteses representam o número de amostras

Figura 4.76. Concentração de matéria orgânica efluente e eficiência de remoção utilizando impelidor tipo hélice e reator com tubo de tiragem nas condições Hd100 e Hd120.

Figura 4.77. Alcalinidade a bicarbonato e Ácidos voláteis totais utilizando impelidor tipo hélice e reator com tubo de tiragem nas condições Hd100 e Hd120.

Figura 4.78. Sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV) utilizando impelidor tipo hélice e reator com tubo de tiragem nas condições Hd100 e Hd120.

Este ensaio teve duração de 29 dias estudando-se duas condições operacionais, tendo como diferenciais a velocidade de rotação, sendo a primeira a 100 rpm e a segunda a 120 rpm e doravante denominadas condições Hd100 e Hd120, respectivamente. A escolha destas velocidades foi baseada em exigências operacionais, visto que para baixas rotações a movimentação do fluido, promovida pelo impelidor, não é suficiente para fazer com que o fluido suspenda a biomassa na região anular fato que faria com que ocorresse agitação somente dentro do tubo de tiragem e promoveria grande turbulência, podendo provocar a degradação da biomassa. Para rotações superiores a 120 rpm o fluido promoveria suspensão completa o que também poderia romper os grânulos pelo contato intenso com o impelidor. Desta forma, as velocidades de rotação utilizadas encontram-se próximas aos limites impostos pelo sistema.

A concentração de matéria orgânica na forma de DQO para amostras filtradas e para amostras não filtradas apresentou valores muito próximos indicando que a quase totalidade da DQO foi proveniente de material dissolvido dando mais uma indicação da diminuição relativa da quantidade de material particulado no efluente do reator.

A alcalinidade na forma de bicarbonato manteve-se estável durante todo o ensaio e próximo ao valor de 400 mgCaCO₃. l^{-1} . Os ácidos voláteis mantiveram-se em baixos níveis, não ultrapassando 20 mgAc. l^{-1} na quase totalidade dos pontos.

Ao final destas duas condições se verificou o acúmulo de material esbranquiçado gelatinoso em todas as superfícies do impelidor confirmando a provável não ocorrência de contato biomassa-impelidor, mesmo porque a utilização do tubo de tiragem tem este como um dos seus princípios de utilização.

4.1.7.1 Condição de operação Hd100

São representados, da Figura 4.79 à Figura 4.83 e APÊNDICE H, os perfis das variáveis concentração de matéria orgânica de amostras filtradas, eficiência de remoção de matéria orgânica, alcalinidade na forma de bicarbonato, ácidos voláteis totais na forma ácido acético, volume acumulado, produção, fração molar no "head-space" e concentração de metano realizados na condição Hd100.

Figura 4.79. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Hd100.

Figura 4.80. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Hd100.

Figura 4.81. Perfis do volume acumulado e da produção de metano no reator ao longo de dois ciclos de operação na condição Hd100.

Figura 4.82. Perfis da fração molar e da concentração de metano no "head-space" ao longo de dois ciclos de operação na condição Hd100.

Figura 4.83. Média dos perfis da concentração de ácidos voláteis por cromatografia durante dois ciclos de operação na condição Hd100.

A concentração de matéria orgânica de 133 mgDQO. Γ^1 , que corresponde a aproximadamente 70 %, foi obtida com duas horas de ciclo. As concentrações finais de matéria orgânica foram de 97 e 106 mgDQO. Γ^1 com respectivas conversões finais de 74,3 e 75,5 % para os ciclos 31 e 37, respectivamente. Desta forma a utilização de tubo

de tiragem demonstrou incrementar significativamente a transferência de massa sólidolíquido, diminuindo assim o tempo necessário para degradação da matéria orgânica.

Os perfis de ácidos voláteis totais e alcalinidade na forma de bicarbonato atingiram seus valores de equilíbrio com tempos inferiores a três horas. Este também foi o período de ocorrência dos ácidos voláteis intermediários no qual foram detectados, além do ácido propiônico que atingiu concentração de 15 mg. Γ^1 , também o ácido isobutírico e o ácido iso-valerico, estes em menor quantidade não ultrapassando 2 mg. Γ^1 .

O volume acumulado de metano atingiu 147 ml, com produção máxima obtida entre 1,5 e 2,5 h de ciclo, como observado na Figura 4.81. Outras regiões que podem ser observadas neste perfil são a queda na produção entre 2,5 e 5,5 h e uma região de produção constante a partir de 5,5 h. A etapa de produção constante pode ser entendida como indício de consumo total de matéria orgânica passível de degradação pela via acetoclástica e conseqüente produção de metano exclusivamente pela via hidrogenotrófica. Este metano produzido pela via hidrogenotrófica tem como substrato o bicarbonato, este se encontra em alta concentração no meio, o que pode caracterizar reação de ordem zero.

4.1.7.2 Condição de operação Hd120

Os perfis das variáveis concentração de matéria orgânica de amostras filtradas, eficiência de remoção de matéria orgânica, alcalinidade na forma de bicarbonato, ácidos voláteis totais na forma ácido acético, volume acumulado, produção, fração molar no "head-space" e concentração de metano realizados na condição Hd120 são apresentados da Figura 4.84 à Figura 4.88 e APÊNDICE H.

Figura 4.84. Perfis da concentração de matéria orgânica na forma de DQO e da eficiência de conversão ao longo de dois ciclos de operação na condição Hd120

Figura 4.85. Perfis da alcalinidade na forma de bicarbonato de cálcio e da concentração de ácidos voláteis totais na forma de ácido acético ao longo de dois ciclos de operação na condição Hd120.

Figura 4.86. Perfis do volume acumulado e da produção de metano no reator ao longo de um ciclo de operação na condição hélice com tubo de tiragem a 120 rpm.

Figura 4.87. Perfis da fração molar e da concentração de metano no "head-space" ao longo de um ciclo de operação na condição Hd120.

Figura 4.88. Média dos perfis da concentração de ácidos voláteis por cromatografia durante dois ciclos de operação na condição Hd120.

Desempenhos semelhantes são observados entre as condições Hd100 e Hd120. Como, por exemplo, a concentração de matéria orgânica se aproxima da concentração residual rapidamente, isto é, em tempo inferior a três horas de ciclo. O mesmo ocorre com a alcalinidade na forma de bicarbonato.

Os perfis de ácidos voláteis totais demonstram que o pico para este parâmetro teve curta duração (inferior a duas hora), fato confirmado pela análise de ácidos voláteis

por cromatografia, onde também foi observada a presença de ácido iso-valérico e ácido iso-butírico além do ácido propiônico.

Os perfis de gases mostram que a maior produção de gases ocorre nas três primeiras horas de ensaio, tempo suficiente para a produção de 90 m*l* de gás metano nas CNTP. Já o aumento mais acentuado da concentração de metano no "head-space" ocorre até a quarta hora de ciclo onde se atinge concentração de 5,767 mMol. l^{-1} para um tempo de 3,88 h sendo a concentração final de 7,09 mMol. l^{-1} .

4.1.8 Análise microbiana

Ao final dos experimentos foram coletadas amostras o lodo e do material gelatinoso para análises microbianas. As imagens obtidas foram provenientes de análise com luz visível, não tendo sido possível obter imagens em fluorescência em virtude do tempo de armazenamento anterior à análise.

Inoculo

Figura 4.89. Imagens obtidas do inóculo utilizado no reator.

Lodo do reator

Figura 4.90. Imagens obtidas do lodo proveniente do reator ao final dos experimentos.

As imagens obtidas do inoculo utilizado neste trabalho apresentam grande quantidade de organismos filamentosos, poucos organismos parecidos com cocos ou bacilos. As imagens obtidas do lodo ao final dos experimentos demonstraram ter ocorrido alteração na comunidade microbiana tendo sido observada predominância de bacilos curvos e cocos.

Os filamentos encontrados no inóculo aparentam representar microrganismos semelhantes a *Metanosaeta* enquanto que os cocos presentes no lodo do reator aparentam-se com microrganismos do tipo *Metanosarcina*.

Desta forma as alterações mais sensíveis observadas entre o inoculo e a biomassa do reator foram a redução dos microrganismos filamentosos, o aumento dos microrganismos em forma de cocos e a predominância dos bacilos curvos no lodo do reator.Os fatores que influenciaram estas mudanças foram a alteração no substrato fornecido à biomassa antes dos ensaios (resíduos de abatedouro de aves) e durante os ensaios (esgoto sintético) e a mudança na configuração do reator sendo que o inóculo foi retirado de um reator UASB e durante os ensaios operou-se em regime de batelada seqüencial.

Material gelatinoso

Figura 4.91. Imagens obtidas do material gelatinoso coletado ao final do experimento.

Os bacilos curvos encontrados no lodo do reator também foram encontrados no material gelatinoso formado no reator durante os ensaios estes apresentaram comprimentos próximos a $5 \,\mu m$ conforme Figura 4.91 (a e b), também foram visualizados bacilos de menor tamanho Figura 4.91c e filamentos na Figura 4.91d.

Apesar de não haver sido realizada uma análise quantitativa sobre as amostras pôde-se observar que a presença de microrganismos na forma de bacilos curvos foi mais intensa no material gelatinoso quando comparados com a biomassa coletada após o término dos experimentos.

Figura 4.92. Comparação entre o lodo do inoculo (direita) e o lodo do reator após os ensaios (esquerda).

Durante a desmontagem do reator foi observado um tom acinzentado em grande parte dos grânulos da biomassa que dava ao lodo tonalidade parecida, e na Figura 4.92 este é comparado ao lodo do inóculo onde é visível a diferença entre o lodo após o período de realização dos ensaios com partes esbranquiçadas ao lado do inoculo, este totalmente negro e com grânulos mais uniformes.

Uma alíquota do material esbranquiçado é visualizável na Figura 4.93 onde se observa grânulos em meio a pequenas partículas deste material. A quantificação deste material foi inviável em função da dificuldade de separação total desta da biomassa.

Figura 4.93. Material esbranquiçado gelatinoso coletado da biomassa do reator.

4.2 Viabilidade econômica

As velocidades para cada ensaio estão contidas dentro do intervalo de 300 a 1700 rpm e os valores da relação entre número de potência e número de Reynolds são apresentados na Figura 4.94 e cujos valores numéricos estão no APÊNDICE I.

Figura 4.94. Variação de N_P em função de N_{Re} para os ensaios realizados neste trabalho.
 (a) condições sem tubo de tiragem e (b) condições com tubo de tiragem.

O Número de potência tem a propriedade de tornar-se constante e distinto para cada configuração em altos valores de N_{Re} e esta região foi atingida nestes ensaios, pois os valores do adimensional Número de Reynolds foram superiores a 10^4 em todas as condições estudadas. Desta forma a média dos valores de N_P pôde ser extrapolada como parâmetro da estimativa da potência consumida nos ensaios executados neste trabalho nas velocidades aplicadas durante os estudos de estabilidade e eficiência.

Na Tabela 4.8 são apresentados os valores do número de potência para cada impelidor na região de escoamento turbulento onde este valor é constante, juntamente com o valor da potência volumétrica, extrapolada para cada condição operacional. A potência volumétrica é um parâmetro bastante utilizado em cálculos de aumento de escala.

		Potência $(kW/10^3 m^3)$			
Impelidor	N_P	Velocidade	Velocidade		
		inferior	superior		
Turbina de pás verticais	5,0±0,2 (7)	5,3E-01			
Turbina de pás inclinadas	2,6±0,4 (7)	1,8E-01	6,1E-01		
Pá de pás verticais	5,0±0,7 (5)	3,5E-01	1,2E+00		
Pá de pás inclinadas	1,3±0,2 (9)	8,8E-02	3,0E-01		
Pá de pás planas inclinadas e	1.2±0.1 (10)	6.4E-01	1,1E+00		
tubo de tiragem	1,2_0,1 (10)	0,12 01			
Hélice	0,36±0,08 (6)	6,8E-02	2,0E-01		
Hélice e tubo de tiragem	0,41±0,06 (10)	2,3E-01	3,9E-01		

Tabela 4.8. Valores médios do número de potência e da potência consumida nas treze condições operacionais deste trabalho.

*os valores entre parênteses representam o número de pontos

** o fator conversão de k $W.10^{-3}$ m⁻³ para H $P.10^{-3}$ m⁻³ é 1,3 H $P.kW^{-1}$

Como visto na literatura (RUSHTON et al, 1950) os impelidores tipo turbina e tipo pá, de pás planas verticais, são os maiores promotores de turbulência e com isto são os impelidores que geram maior transferência de energia para os meios líquidos. Esta característica é vantajosa para sistemas aeróbios em função destes necessitarem de alta turbulência para promoverem a dispersão de oxigênio no meio líquido, porém para sistemas anaeróbios a transferência de oxigênio não é o objetivo e sim a mistura do meio líquido, que pode ser atingida com um consumo de energia muito inferior.

A utilização de impelidores tipo turbina e tipo pá, ambos de pás planas inclinadas e com valores próximos a 2,6 e 1,3 kW.10⁻³ m⁻³, respectivamente, não promoveu a transferência de potência conseguida pelos de pás planas verticais. E o impelidor tipo hélice foi o responsável pela menor transferência de potência dentre os impelidores avaliados.

A utilização de tubo de tiragem em conjunto com os impelidores tipo pá de pás planas inclinadas e hélice não gerou alteração no número de potência destes impelidores quando comparados à operação destes sem tubo de tiragem. Esta constância pode ser entendida como vantajosa pois o caso do impelidor tipo hélice operando a 100 rpm quando comparadas as condições sem e com tubo de tiragem consomem a mesma quantidade de potência, entretanto, para o caso do sistema com tubo de tiragem os problemas de transferência de massa externa aos grânulos são minimizados pela suspensão completa.

Os valores requeridos de potência volumétrica foram inferiores a 1 kW.10⁻³.m⁻³ para todas as condições exceção da condição Pa75, que teve o maior valor de consumo de potência e igual a 1,2 kW.10⁻³.m⁻³.

O livro da companhia Metcalf & Eddy (2003) em sua quarta edição, página 448, sugere como valores típicos de requerimento de energia, em sistemas aeróbios, para manter regime de mistura completa com agitadores mecânicos de 20 a 40 kW.10⁻³.m⁻³, dependendo do tipo e desenho do aerador. E o que se pode observar, através da Tabela 4.8 é que a potência necessária para promover mistura em sistemas anaeróbios equivale a menos que 5 % do que é sugerido para sistemas aeróbios. Desta forma, o argumento de que a utilização de agitação em sistemas anaeróbios inviabilizaria o processo por causa do aumento da necessidade energética cai por terra.

4.3 Visão holística sobre as condições estudadas

4.3.1 Monitoramento dos sistemas

Neste tópico são apresentados comparativamente os valores de monitoramento dos ensaios realizados durante este projeto de mestrado. Em uma primeira etapa são analisados os ensaios realizados com os impelidores na busca pela melhor configuração, na segunda etapa é testada a utilização de tubo de tiragem em conjunto com o impelidor tipo pá de pás planas inclinadas e com o impelidor tipo hélice.

4.3.1.1 Sistemas convencionais

Na Tabela 4.9 são apresentados os parâmetros monitorados durante a realização dos ensaios com os seguintes impelidores sem o uso de tubo de tiragem:

- Tipo turbina de pás planas verticais na rotação de 50 rpm denominada Tu50;
- Tipo turbina de pás planas inclinadas nas rotações de 50 e 75 rpm, denominadas Ti50 e Ti75, respectivamente;

- Tipo pá de pás planas verticais nas rotações de 50 e 75 rpm, denominadas Pa50 e Pa75, respectivamente;
- Tipo pá de pás planas inclinadas nas rotações de 50 e 75 rpm, denominadas Pi50 e Pi75, respectivamente e;
- Tipo hélice nas rotações de 70 e 100 rpm, denominadas He50 e He75, respectivamente.

Os maiores valores de eficiência de remoção de matéria orgânica em amostras filtradas foram obtidos nas condições Tu50, Ti50, Pi50 e Pi75 todos com valor de 87±1 % de remoção e a diferença entre valores em condições dentro de um mesmo ensaio demonstra que não foi observado valor ótimo nos intervalos de rotação estudado.

As condições Pa50 e Pa75 apresentaram os piores desempenhos em termos de remoção de matéria orgânica na forma de DQO, apresentando 82 ± 2 e 83 ± 1 % para amostras filtradas e 79 ± 2 e 77 ± 1 % para amostras totais, respectivamente. Estranhamente os impelidores promotores de escoamento radial apresentaram o melhor e o pior desempenho dentre as condições estudadas, Tu50 e Pa50, respectivamente.

Ainda em termos de remoção de matéria orgânica na forma de DQO observa-se pouca diferença entre valores de concentração de matéria orgânica em amostras filtradas e não filtradas nas quais a diferença esteve entre 3 % e 4 % para a maior parte das condições e de 6 % para as condições Pa75 e Pi50, levantando assim um indício da não degradação da biomassa presente no reator.

Os valores de concentração de ácidos voláteis totais e de alcalinidade na forma de bicarbonato apresentaram comportamentos semelhantes não produzindo variações significativas entre cada condição dentro de um mesmo ensaio, isto é, os valores de ácidos voláteis totais e de alcalinidade a bicarbonato mantiveram-se estáveis não produzindo valor ótimo de rotação para cada ensaio. Ao se comparar resultados de ácidos voláteis totais e alcalinidade a bicarbonato entre diferentes impelidores, novamente não foi observada variação marcante entre estes, indicando que o tipo de escoamento não altera significativamente estes parâmetro para o sistema que, ressaltando, foi operado em baixas cargas orgânicas.

Nas nove condições estudadas a remoção de sólidos totais foi próxima a 32 % e a remoção de sólidos totais teve melhores resultados através da condição Tu50 e muita similaridade nas outras condições estudadas. Porém é necessário ressaltar que os valores de sólidos neste estudo têm relevância quando do estudo da perda de biomassa por

rompimento dos grânulos do sistema, fato não ocorrido nos ensaios desenvolvidos, pois o efluente era sintético com baixa concentração de sólidos.

Os valores de sólidos obtidos da biomassa ao final de cada condição operacional fornecem um valor aproximado da concentração de sólidos totais e da concentração de sólidos fixos totais do lodo utilizado no experimento sem, contudo, fornecer valores conclusivos sobre mudança na densidade ou teor de sólidos fixos ao longo das condições operacionais estudadas.

De uma forma geral, através da Tabela 4.9, não há clara uma configuração que seja destacada pelo melhor desempenho na análise dos parâmetros de monitoramento dos sistemas, tornando necessária uma outra forma de avaliação, através da análise dos valores dos parâmetros do modelo cinético de primeira ordem.

Parâmetro	Afluente	Tu50 ^(*)	Ti50	Ti75	Pa50	Pa75	Pi50	Pi75	He70	He100
$C_{ST}(mgDQO.l^{-1})$	787±17	125±11	131±13	143±13	167±19	185±8	141±16	129±13	154±16	146±9
C_{SS} (mgDQO. l^{-1})	-	102±9	106±8	113 ± 7	144±17	139±11	101 ± 7	100±11	124±11	116±5
E _T (%)	-	84±1	84±2	82±2	79±2	77±1	81±2	83±2	80±2	81±1
E _{ss} (%)	-	87±1	87±1	86±1	82±2	83±1	87±1	87±1	84±1	85±1
AVT (mgHAc. l^{-1})	40±3	20±3	19±1	19 ± 2	22±5	21±3	17 ± 2	17 ± 2	24±4	19 ± 2
AB (mgCaCO ₃ . l^{-1})	220±6	389±24	392±12	385±14	379±10	375±18	397±14	395±6	380±26	366±18
pH	8,9±0,2	6,72±0,09	6,82±0,05	6,75±0,06	6,79±0,03	6,79±0,05	6,77±0,05	6,77±0,04	6,83±0,09	6,81±0,05
$ST (mg.l^{-1})$	1545±76	908±129	1041 ± 40	1075±37	1073±53	1100 ± 74	1036±55	1113 ± 61	999±22	1007 ± 74
SVT (mg. l^{-1})	841±49	258±41	336±50	334±38	340±34	344±15	327±27	356±63	299±37	325±104
SST (mg. l^{-1})	49±16	62±26	77±31	69±9	70±10	67±17	67±15	81±24	22±8	35±13
SSV (mg. l^{-1})	42±17	53±30	61±12	55±12	60±3	65±16	66±15	60±13	16±8	32±15
STbiomassa (g.l ⁻¹)	-	-	66,5	46,0	46,5	59,4	57,5	61,6	39,9	42,3
SFTbiomassa (g.l ⁻¹)	-	-	8,4	6,1	5,5	6,7	8,0	7,1	5,3	5,4

Tabela 4.9. Valores médios das variáveis monitoradas nas condições sem uso de tubo de tiragem.

(*) ensaio realizado em uma única condição por ser utilizado para fins de comparação

4.3.1.2 Sistemas com uso de tubo de tiragem

A Tabela 4.10 apresenta os valores médios das variáveis de monitoramento nas condições operacionais em que foi utilizado o tubo de tiragem.

Tabela 4.10. Valores médios das variáveis monitoradas nas condições com uso de tubo de tiragem

Parâmetro	Afluente	Pd100	Pd120	Hd100	Hd120
$C_{ST}(mgDQO.l^{-1})$	787±17	146±8	127±9	123±9	124 ± 7
C_{SS} (mgDQO. l^{-1})	-	125±7	113 ± 8	106±6	115±10
E _T (%)	-	82±1	84±1	84±1	84±1
E _{ss} (%)	-	84±1	86±1	86±1	85±1
AVT (mgHAc. l^{-1})	40±3	18±3	14 ± 2	18±4	16±1
AB (mgCaCO ₃ . l^{-1})	220±6	374±10	376±5	396±3	396±8
pH	8,9±0,2	6,86±0,03	6,81±0,08	6,8±0,1	6,8±0,1
$ST (mg.l^{-1})$	1545±76	1069±77	1069±47	1099±128	1102 ± 74
SVT (mg. l^{-1})	841±49	357±62	363±26	345±25	383±99
SST (mg. l^{-1})	49±16	65±6	70±13	69±15	52±12
SSV (mg. l^{-1})	42±17	46±5	66±11	54±2	51±11
STbiomassa (g. l^{-1})	-	69,2	56,5	-	49,4
SFTbiomassa (g.l ⁻¹)	-	9,5	7,8	-	7,4

As quatro condições apresentaram desempenhos muito semelhantes em termos de remoção de carga orgânica na forma total e filtrada para as condições Pd120, Hd100 e Hd120 e estas pouco superiores à condição Pd100 fazendo com que não se tenha um valor ótimo de velocidade rotacional nas rotações estudadas.

A diferença entre os valores de remoção total e remoção em amostras filtradas apresentou-se muito baixa fornecendo a informação de que a quase totalidade da matéria orgânica presente nos efluentes das condições estudadas era proveniente de matéria orgânica não degradada e não de degradação de material biológico do reator.

Os valores médios de ácidos voláteis totais mantiveram-se inferiores a $20 \text{ mgHAc.} l^{-1}$ em todas as condições, sendo muito pequena a diferença dos valores de

ácidos voláteis totais entre as condições sem que se torne possível a obtenção de uma condição de operação ótima para a remoção de ácidos voláteis totais.

A alcalinidade a bicarbonato não demonstrou variação dentro de uma mesma condição, tanto quando entre as condições Pd100 e Pd120 quanto entre as condições Hd100 e Hd120. Ao se analisar os valores de alcalinidade a bicarbonato entre os dois impelidores observa-se que as condições Hd100 e Hd120 apresentaram valores mais elevados do que nas condições Pd100 e Pd120.

As análises de sólidos nestas quatro condições mostram muita similaridade com as condições sem utilização de tubo de tiragem, não apresentando diferenças significativas entre impelidores nem entre as condições de um mesmo impelidor. E como ocorrido nas condições de operação sem utilização de tubo de tiragem, as análises de sólidos demonstram não ter ocorrido perda de sólidos em suspensão na descarga do reator.

A análise dos parâmetros de monitoramento na Tabela 4.10 não foi suficiente para determinar uma condição ótima de operação dentre as condições estudadas. A comparação entre as condições em que o tubo de tiragem foi inserido com as condições onde este aparato não foi utilizado, isto é, comparação entre Tabela 4.9 e Tabela 4.10 mostram muita similaridade

4.3.2 Perfis temporais

A estabilidade e constância dos valores das variáveis de monitoramento dentre as condições avaliadas nesta pesquisa tornaram ainda mais relevante a importância dos resultados obtidos através da análise dos parâmetros cinéticos no intuito de se obter uma configuração ótima dentre as estudadas.

As equações de modelo utilizadas neste trabalho para representar a variação ao longo de um ciclo operacional da concentração de matéria orgânica (equação 3.17), de ácidos voláteis totais (equação 3.18) e de metano no "head-space" (equação 3.19) e desenvolvidas em materiais e métodos são aqui reescritas nas equações 4.1, 4.2 e 4.3.

$$(C_{s} - C_{sr}) = (C_{s0} - C_{sr}) \exp(-k_{1s}t)$$
4.1

$$(C_{AVT} - C_{AVTr}) = (C_{AVTr} - C_{AVTr}) \exp(-k_{2AVT}t) + (C_{S0} - C_{Sr})k_{1AVT} \left[\frac{\exp(-k_{1AVT}t)}{(k_{2AVT} - k_{1AVT})} + \frac{\exp(-k_{2AVT}t)}{(k_{1AVT} - k_{2AVT})}\right] \quad 4.2$$

$$C_{M} = (C_{AVT0} - C_{AVTr})[1 - \exp(-k_{2M}t)] + (C_{S0} - C_{Sr})\left[1 + \frac{k_{2M}\exp(-k_{1M}t)}{(k_{1M} - k_{2M})} + \frac{k_{1M}\exp(-k_{2M}t)}{(k_{2M} - k_{1M})}\right]$$

$$4.3$$

Os parâmetros foram obtidos por ajuste não linear usando o método Levenberg-Marquardt com o software Microcal Origin 6.1®, onde os subscritos S, AVT e M indicam a equação usada para estimar o parâmetro, desta forma k_{1S} , k_{1AVT} e k_{1M} são os valores do parâmetro k_1 estimado pelas equações 4.1, 4.2 e 4.3, respectivamente. O mesmo ocorre para o parâmetro k_2 .

A seguir, da Figura 4.95 à Figura 4.97 são apresentados os valores experimentais dos perfis temporais das variáveis concentração de matéria orgânica, concentração de ácidos voláteis totais e de metano em conjunto com os ajustes do modelo cinético proposto, representados pelas equações 4.1, 4.2 e 4.3, respectivamente para as treze condições experimentais.

Figura 4.95. Valores experimentais e ajuste do modelo cinético na condição Tu50.

Figura 4.96. Valores experimentais e ajuste do modelo cinético na condição Pa50.

Figura 4.97. Valores experimentais e ajuste do modelo cinético na condição Pa75.

Figura 4.98. Valores experimentais e ajuste do modelo cinético na condição Ti50.

Figura 4.99. Valores experimentais e ajuste do modelo cinético na condição Ti75.

Figura 4.100. Valores experimentais e ajuste do modelo cinético na condição Pi50.

Figura 4.101. Valores experimentais e ajuste do modelo cinético na condição Pi75.

Figura 4.102. Valores experimentais e ajuste do modelo cinético na condição Pd100.

Figura 4.103. Valores experimentais e ajuste do modelo cinético na condição Pd120.

Figura 4.104. Valores experimentais e ajuste do modelo cinético na condição He70.

Figura 4.105. Valores experimentais e ajuste do modelo cinético na condição He100.

Figura 4.106. Valores experimentais e ajuste do modelo cinético na condição Hd100.

Figura 4.107. Valores experimentais e ajuste do modelo cinético na condição Hd120.

As equações 4.1, 4.2 foram ajustadas com base em 15 pontos experimentais, que são provenientes da média dos valores dos perfis em duplicata obtidos em cada condição operacional. Para o ajuste da equação 4.3 foram utilizados entre 35 e 39 pontos, esta variação se deve ao fato de o número de pontos não ser baseado em tempos pré-determinados mas sim no volume de biogás produzido.

Na Tabela 4.11 são apresentados os valores da constante cinética de primeira ordem (k_{1S}) que representa o consumo de matéria orgânica na forma de DQO para cada uma das condições operacionais estudadas.

Con	dição	$k_{1S} (h^{-1})$	r^2	Chi-sqr
	Tu50	0,96±0,02	0,996	40,27
	Ti50	0,78±0,03	0,989	120,13
	Ti75	0,92±0,04	0,985	117,80
Sam	Pa50	0,51±0,03	0,967	350,04
tubo	Pa75	0,52±0,04	0,937	500,59
interno	Pi50	0,57±0,01	0,996	53,98
	Pi75	0,84±0,03	0,987	114,92
	He70	0,71±0,04	0,971	263,3
	He100	1,08±0,04	0,990	82,77
	Pd100	1,4±0,1	0,961	341,16
Com	Pd120	1,21±0,08	0,971	151,73
tubo interno	Hd100	1,5±0,1	0,964	241,98
	Hd120	1,6±0,1	0,967	352,81

Tabela 4.11. Parâmetro k₁ estimado através ajustes da equação 4.1 aos perfis temporais coletados em cada condição operacional.

Na Tabela 4.12 são apresentados os parâmetros cinéticos utilizados na equação 4.2 para ajuste aos dados experimentais de variação de concentração de ácidos voláteis totais ao longo de ciclos operacionais.

Cone	dição	$k_{1AVT} (h^{-1})$	$k_{2AVT} (h^{-1})$	r^2	Chi-sqr
	Tu50	0,66±0,05	0,981	3,2	0,981
	Ti50	0,47±0,07	0,886	17,99	0,886
	Ti75	0,63±0,09	0,905	14,05	0,905
Sem	Pa50	0,25±0,07	0,813	24,81	0,813
tubo	Pa75	0,25±0,03	0,845	26,53	0,845
interno	Pi50	0,25±0,06	0,707	18,11	0,707
	Pi75	0,56±0,06	0,943	7,87	0,943
	He70	0,40±0,04	0,943	4,73	0,943
	He100	0,54±0,06	0,935	4,67	0,935
	Pd100	0,9±0,2	0,848	23,09	0,848
Com	Pd120	0,97±0,09	0,966	4,04	0,966
tubo interno	Hd100	1,1±0,2	0,920	7,41	0,920
	Hd120	0,79±0,08	0,961	3,88	0,961

Tabela 4.12. Parâmetros k_1 e k_2 estimados através ajustes da equação 4.2 aos perfis temporais coletados em cada condição operacional.

A equação 4.3 descreve a variação da concentração de metano no decorrer de um ciclo experimental e os parâmetros k_{1M} e k_{2M} , utilizados para ajuste desta equação, são apresentados na Tabela 4.13.

Cone	dição	$k_{1AVT} (h^{-1})$	k_{2AVT} (h ⁻¹)	r^2	Chi-sqr
	Tu50	0,065±0,002	1,0±0,1	0,979	36,33
	Ti50	0,061±0,002	1,6±0,3	0,974	39,62
	Ti75	0,073±0,003	1,5±0,3	0,968	52,25
Sam	Pa50	0,050±0,001	$0,97\pm0,07$	0,994	6,67
tubo	Pa75	0,066±0,002	$0,68\pm0,05$	0,989	16,40
interno	Pi50	0,049±0,001	1,5±0,2	0,985	20,05
	Pi75	0,061±0,002	1,6±0,3	0,975	32,94
	He70	0,057±0,002	1,4±0,2	0,985	17,85
	He100	0,061±0,002	1,8±0,3	0,982	25,01
	Pd100	0,057±0,002	1,4±0,3	0,962	57,88
Com	Pd120	0,084±0,003	2,1±0,5	0,963	54,24
tubo interno	Hd100	0,076±0,003	4 ± 2	0,953	74,77
	Hd120	0,051±0,003	3±1	0,962	67,46

Tabela 4.13. Parâmetros k₁ e k₂ estimados através ajustes da equação 4.3 aos perfis temporais coletados em cada condição operacional.

A análise dos coeficientes de correlação indica um bom ajuste do modelo cinético de primeira ordem proposto neste trabalho, apesar das simplificações nos passos do metabolismo anaeróbio.

A constante k_1 representa a etapa de hidrólise-acidogênse-acetogênese enquanto que a constante k_2 representa a etapa de metanogênese acetoclástica. Este modelo é uma seqüência de reações irreversíveis em série e tem como etapa limitante a que apresenta k com menor valor. E a analise das Tabela 4.12 e Tabela 4.13 apresenta maiores valores para a constante k_2 quando comparados à constante k_1 , desta forma, a etapa de conversão da matéria orgânica a ácidos voláteis totais, isto é, a etapa de hidróliseacidogênese-acetogênese é a etapa que limita o processo e não a segunda etapa, a de metanogênese acetoclástica. Como observado por Rodrigues et al (2004), isto pode ser conseqüência do tipo de substrato, composto por carboidratos de degradação relativamente difícil como amido e celulose. Além disto, a hidrólise de proteínas e lipídeos pode representar uma etapa limitante da reação.

Os valores obtidos através dos parâmetros k_1 e k_2 a partir dos ajustes das equações 4.1 a 4.3 são provenientes dos coeficientes estequiométricos (a, b e c) dos compostos envolvidos nas reações consecutivas do modelo apresentado anteriormente. A constante cinética representa o consumo ou produção de determinado composto e a solução analítica desenvolvida neste trabalho pressupõe que a relação entre compostos seja 1:1:1, isto é, coeficientes estequimétricos iguais, caso este pressuposto fosse correto o a constante k_1 teria o mesmo valor tanto para k_{1S} , k_{1AVT} e k_{1M} , e este fato ocorreria também com as constantes k_2 . A diferença entre os valores das constantes e isto pode ser confirmado pelo fato de que as relações k_{1AVT}/k_{1S} e k_{2M}/k_{2AVT} produziram valores muito próximos entre os ensaios, de 0,6±0,1 e 0,35±0,09, respectivamente, para todas as condições, indicando através dos baixos valores de desvio padrão, que os coeficientes estequimétricos valores dos constantes ao longo dos ensaios. É relevante apontar o fato de que somente o parâmetro k_{1M} foi muito pequeno comparado aos outros e provavelmente este parâmetro não tem significado físico.

A mudança da condição Ti50 para a Ti75 foi acompanhada de um acréscimo próximo a 18 % para o parâmetro k_{1S} . Aumentos dos valores numéricos também foram observados nos parâmetros k_{1AVT} e k_{1M} que aumentaram de 0,47 e 0,061 h⁻¹ para 0,63 e 0,073 h⁻¹, respectivamente, enquanto que os parâmetros k_{2AVT} e k_{2M} mantiveram-se constantes. Desta forma obtêm-se a condição Ti75 é preferível sobre a condição Ti50 por promover melhoras na etapa de hidrólise-acidogênese-acetogênese sem, contudo interferir na velocidade de conversão dos ácidos voláteis totais a metano. E como a primeira etapa é a limitante do processo de degradação da matéria orgânica conclui-se que a condição Ti75 é ótima em se tratando de impelidor tipo turbina de pás planas inclinadas para as velocidades rotacionais estudadas.

Ao se avaliar as condições Pa50 e Pa75 obtêm-se que o aumento da velocidade rotacional não promoveu alterações significativas nos parâmetros k_{1S} e k_{1AVT} enquanto que a constante k_{1M} aumentou de 0,050±0,001 a 0,066±0,002 h⁻¹, para as mesmas condições, respectivamente. Fato que chamou a atenção neste ensaio foi a diminuição nos valores das constantes k_{2AVT} e k_{2M} com o aumento da velocidade rotacional. Coincidentemente a comparação entre as Figura 4.27 e Figura 4.32, no que diz respeito a ácidos voláteis totais, mostra que durante os ciclos na condição Pa75 os valores de ácidos voláteis totais foram superiores aos observados na condição Pa50.

O aumento na velocidade rotacional entre as condições Pi50 e Pi75 promoveu aumentos nos valores das constantes cinéticas k_{1S} , k_{1AVT} e k_{1M} superiores a 47 %, 24 % e 100 %, respectivamente. Os parâmetros k_{2AVT} e k_{2M} mantiveram-se constantes em função da variação da velocidade rotacional. A partir disto a rotação ótima dentre as condições estudadas para o impelidor tipo pá de pás planas inclinadas é operando a 75 rpm, isto é, condição Pi75.

O impelidor tipo hélice, nas condições He70 e He100 apresentou aumento mais expressivo para a constante k_{1S} de 52 % que aumentou de 0,71 h⁻¹ a 1,08 h⁻¹, respectivamente. Isto torna preferível a aplicação da rotação de 100 rpm em detrimento da velocidade de rotação de 70 rpm para o impelidor tipo hélice. A condição He100 foi a promotora do sistema ótimo dentre as condições utilizando impelidores promotores de escoamento axial, isto é, dentre as condições Pi50, Pi75, Ti50, Ti75, He70 e He100.

Ao se comparar entre o tipo de escoamento promovido pelos impelidores tipo turbina obteve-se que durante condição em que ocorreu escoamento radial (Tu50) o desempenho em termos de parâmetros cinéticos foi superior aos dois desenvolvidos em condições de escoamento axial (Ti50 e Ti75).

A comparação entre as condições Pa50 e Pi50 mostra que não ocorrem diferenças entre os valores das constantes k_{1S} , k_{1AVT} e k_{1M} , mas os valores das constantes k_{2AVT} e k_{2M} são maiores na condição Pi50, apresentando vantagem para o sistema cujo impelidor promotor de escoamento axial. E ao comparar as condições Pa75 e Pi75 observa-se que a operação em escoamento axial foi promotora dos maiores valores das constantes cinéticas, principalmente para as constantes k_{2AVT} e k_{2M} . Assim sendo, o impelidor tipo pá promotor de escoamento axial forneceu melhores resultados nas duas velocidades rotacionais estudadas, quando comparado com o impelidor tipo pá promotor de escoamento radial.

Até este ponto foram estudadas as influências da velocidade de rotação e do tipo de escoamento em sistemas desprovidas de tubo de tiragem e o que se concluiu foi que o aumento da velocidade rotacional promove melhoras na transferência de massa nos sistemas estudados. Impelidor tipo pá o de pás inclinadas é preferível em detrimento ao impelidor tipo pá de pás planas verticais e quando se analisou os impelidores tipo turbina a vantagem de desempenho foi obtida pela condição Tu50. E dentre as condições promotoras de escoamento axial a condição He100 foi a que apresentou melhores resultados.

Desta forma os ensaios com impelidores tipo hélice e tipo pá de pás planas inclinadas foram os que apresentaram maiores aumentos do valor da constante cinética k_{1S} com o aumento da rotação dos impelidores, enquanto que as condições com impelidor tipo turbina de pás planas inclinadas apresentaram aumento pouco significativo. Já o ensaio com impelidor tipo pá de pás planas e o ensaio com impelidor tipo pá de pás planas e o ensaio com impelidor tipo pá de pás planas inclinadas e tubo de tiragem mantiveram-se constantes.

Inicia-se agora a averiguação do desempenho, através da análise de parâmetros cinéticos, de sistemas utilizando tubo de tiragem em conjunto com impelidores característicos por promover escoamento axial, sendo estes o impelidor tipo pá de pás planas inclinadas e impelidor tipo hélice.

A utilização de tubo de tiragem em conjunto com impelidor tipo pá de pás planas inclinadas, nas condições Pd100 e Pd120 somente demonstrou influência positiva do aumento da velocidade rotacional para os parâmetros k_{1M} e k_{2M} , os quais apresentaram aumentos foram próximos a 50 %. Os parâmetros k_{1S} e k_{1AVT} não apresentaram variação significativa enquanto que o parâmetro k_{2AVT} sofreu redução com o aumento da rotação do impelidor. Demonstrando que as alterações na velocidade rotacional não proporcionaram mudanças significativas no desempenho global entre as condições Pd100 e Pd120.

A alteração da velocidade rotacional entre as condições Hd100 e Hd120 mostram que os parâmetros k_{1S} , k_{1AVT} e k_{2AVT} não sofreram alterações superiores aos seus desvios padrões, já as constantes cinéticas k_{1M} e k_{2M} sofreram redução com o aumento da velocidade rotacional, apesar de os valores de concentração de metano ao final dos perfis estarem entre 6,5 e 7 mMol. l^{-1} para as duas condições operacionais.

Os ensaios realizados em sistemas dotados de tubo de tiragem forneceram valores das constantes cinéticas superiores aos obtidos pelos mesmos impelidores quando o sistema foi operado sem o mesmo. Na qual este melhor desempenho não deve ser atribuído simplesmente a um aumento na rotação dos impelidores, quando comparados com as condições na qual o tubo de tiragem não foi utilizado, fato confirmado através da comparação entre as condições He100 e Hd100, na qual a condição com tubo de tiragem apresenta maiores valores nas constantes cinéticas das três equações utilizadas para ajustas o modelo proposto aos dados experimentais.

A diferença entre o escoamento axial promovido unicamente pelos impelidores de pás planas inclinadas ou pelo impelidor tipo hélice dos sistemas com estes impelidores em conjunto com tubo de tiragem é que estas configurações garantem que o fluido desenvolva escoamento axial, enquanto que aquelas não podem garantir esta condição sob baixas condições rotacionais e a suspensão total sem tubo interno promoveria a quebra dos grânulos e que povocaria prejuízos à biomassa.

Esta obrigatoriedade de realização de escoamento axial no interior do reator facilita a promoção da suspensão completa da biomassa, minimizando assim o efeito de limitações por transferência de massa, visto que para Terron (1986) a suspensão completa é um estado satisfatório para a solução de problemas de transferência de massa. As condições Hd100 e Hd120 confirmam o observado nas condições Pd100 e Pd120 de que a garantia de suspensão completa minimiza problemas de transferência de massa e com isto as alterações na rotação dos impelidores não geram grandes diferenças no desempenho dos sistemas

Dentre as condições executadas com tubo de tiragem observa-se melhores resultados para a constante k_{1S} dentre as condições com impelidor tipo hélice, isto é, condições Hd100 e Hd120, e dentre estas os valores das constantes k_{1AVT} e k_{1M} mostram que a condição Hd100 apresenta resultados mais promissores quando comparadas à condição Hd120. Desta forma, a condição ótima de operação de sistema dotados de tubo de tiragem dentre as condições estudadas nesta pesquisa, com base nos parâmetros cinéticos é a condição Hd100.

Em função dos altos valores e da pequena discrepância entre as constantes cinéticas para as condições com tubo de tiragem pode-se concluir que nestas condições a influência da transferência de massa sólido-líquido externa à partícula foi minimizada, o que faz com que os parâmetros cinéticos sejam influenciados mais significativamente pela transferência de massa interna aos grânulos e pelas conseqüentes interações microbianas de simbiose.

5 CONCLUSÕES E SUGESTÕES

5.1 Considerações gerais

Os estudos de monitoramento dos sistemas não ofereceram resultados conclusivos sobre uma configuração ótima em termos da estabilidade e eficiência dos sistemas em função da semelhança entre os resultados dos parâmetros de monitoramento entre todas as condições aplicadas. Esta semelhança tornou ainda mais significativa a importância do estudo cinético dos sistemas estudados, através da aplicação de um modelo que represente os mesmos.

Os impelidores promotores de escoamento axial apresentaram os melhores resultados nos valores das constantes cinéticas e dentre as condições em que este tipo de escoamento foi aplicado a condição ótima é foi He100.

Para os sistemas sem utilização de tubo de tiragem o aumento na velocidade rotacional foi muito significativo aumentando os valores das constantes cinéticas. Enquanto que para os sistemas providos de tubo de tiragem esta diferença não foi tão marcante.

A agitação mecânica em sistemas anaeróbios com biomassa granulada tratando efluente de baixa carga orgânica é viável por necessitar de baixos valores de fornecimento de energia quando comparada à energia necessária para promover mistura e aeração em sistemas de tratamento aeróbio. A utilização de tubo de tiragem em conjunto com impelidores promotores de escoamento axial demonstrou melhorar sobremaneira a transferência de massa nas condições estudadas nesta pesquisa, superando os resultados de todas as condições em que este dispositivo não foi aplicado e apresentando como condição de operação ótima a He100.

A potência consumida nestes sistemas é igual à potência consumida para os mesmos impelidores sem a utilização de tubo de tiragem desvinculando melhores resultados de um maior consumo de energia.

5.2 Considerações sobre tubo de tiragem

Este tipo de acessório é utilizado para garantir fluxo axial no reator e é indicado para impelidores tipo hélice e tipo pá de pás planas inclinadas. Em contrapartida a utilização de tubo de tiragem não é recomendada para impelidores tipo turbina e pá ambos de pás planas verticais. A contra-indicação é decorrente do fato de que a proximidade do impelidor com a parede do tubo de tiragem pode propiciar o surgimento de uma região com alta tensão de cisalhamento. Esta tensão pode provocar o rompimento dos grânulos, prejudicando a biomassa. A altura Hi é mantida igual a D/3 quando os sistemas são operados sem tubo de tiragem, para os casos de utilização de tubo de tiragem e o impelidor foi posicionado no centro do tubo de tiragem.

O menor comprimento do eixo aumenta a durabilidade dos rolamentos em função de menor vibração além de requerer um eixo com menor diâmetro em relação ao impelidor colocado no centro do tubo de tiragem como foi o caso aqui estudado.

Na revisão bibliográfica foram abordados critérios na definição de condições operacionais em reatores operados com tubo de tiragem em sistemas sólido-líquido expostos por Shaw (1982) cujos critérios merecem novas considerações para o caso de ASBR de tubo de tiragem. O critério da velocidade do fluido na região anular não pode ser aplicado visto que o objetivo, em ASBR operado com biomassa granulada, é garantir que a biomassa permaneça suspensa na região anular, não entrando na região interna ao tubo de tiragem onde pode vir a sofrer rompimento em contato com o impelidor. E para o caso do critério da velocidade do fluido na base do tubo de tiragem, a atenção que deve ser dada é que a velocidade de rotação do impelidor no início de cada ciclo operacional não necessariamente é igual à velocidade durante o restante do período reacional de um ASBR em virtude de uma maior demanda de energia no momento de início de agitação para promover a suspensão da biomassa.

Desta forma o intervalo de velocidade rotacional do impelidor pode ser compreendido entre a velocidade mínima necessária para a suspensão adequada da biomassa no início de cada ciclo e a velocidade máxima na qual não ocorra o arraste dos grânulos para dentro do tubo de tiragem. Sendo este intervalo específico para cada sistema e aplicável nos casos onde o parâmetro velocidade rotacional não possa ser automatizado. Já para sistemas providos de inversores de freqüência deve-se buscar a utilização de duas velocidades rotacionais sendo a primeira alta para garantir a suspensão da biomassa e a segunda menor e suficiente para manter a suspensão completa dos sólidos.

5.3 Propostas para trabalhos futuros

Em virtude dos resultados promissores produzidos através dos ensaios realizados com tubo de tiragem torna-se interessante um aprofundamento no estudo de parâmetros construtivos e operacionais para reatores anaeróbios operados em batelada seqüencial com biomassa imobilizada e providos de tubo de tiragem.

Dentre os parâmetros construtivos, com vistas a reduzir o consumo energético e garantir a integridade da biomassa, pode-se destacar:

- A relação entre diâmetro do tubo e diâmetro do reator;
- Profundidade do tubo de tiragem em relação ao fundo do reator, e;
- A forma da base do reator.

Os ensaios, com tubo de tiragem, realizados neste trabalho tiveram os impelidores posicionados no centro do tubo de tiragem, entretanto, sabe-se que o melhor posicionamento para o impelidor é a parte superior do tubo. Desta forma sugere-se que em trabalhos futuros aplique-se esta recomendação.

O parâmetro operacional mais importante a ser investigado é a velocidade de rotação dos impelidores na busca pela rotação que consuma pouca energia e garanta a suspensão completa. E para sistemas providos de inversores de freqüência sugere-se a aplicação de duas velocidades onde inicialmente se promova a suspensão da biomassa e em seguida em menor velocidade o reator seja operado durante o período reacional.

REFERÊNCIAS BIBLIOGRÁFICAS

- Aiba, S.; Humphrey A. E.; Millis N.F., Biochemical Engineering. Academic Press, Inc., New York & London.
- Angenent, L.T.; Dague, R.R. (1995). A laboratory- scale comparison of the UASB and ASBR processes. In: 50.th Purdue Industrial. Wastewater Conference Proceedings, Ann Arbor Press, Chelsea, p. 365-377.
- Angenent, L.T.; Sung, S.; Raskin, L. (2002). Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. *Water Research*, **36**, 4648-4654.
- Angenent, L.T.; Sung.S.; Raskin, L. (2001). Mixing intensity I anaerobic sequencing batch reactors affects reactor performace and microbial community structure. In: 6th World Congress of Anaerobic Digestion.
- Bagley, D. M.; Brodkorb, T.S. (1999). Modeling Microbial Kinetics in an Anaerobic Sequencing Batch Reactor – Model Development and Experimental Validation. *Water Environ. Res.* 71, 1320-1332.
- Baldi, G. (1980); Hydrodynamics of multiphase reactors, in multiphase chemical reactors, NATO Advanced Study Institution, Vimeiro, Portugal.
- Brito, A.G.; Rodrigues, A.C.; Melo, F.L. (1997). Feasibility of a pulsed sequencing batch reactor with an anaerobic aggregated biomass for the treatment of low strength wastewaters. *Water Science and Technology*, **35**, 193-198.
- Camargo, E.F.M.; Ratusznei, S.M.; Rodrigues, J.A.D.; Zaiat, M.; Borzani, W. (2002). Treatment of low-strength wastewater using immobilized biomass in a sequencing batch external loop reactor: influence of the medium superficial velocity on the stability and performance. *Brazilian Journal of Chemical Engineering*, **19**, 267-275.

- Cubas, S. A.; Pinho, S.C.; Foresti, E.; Rodrigues, J. A. D.; Ratusznei, S. M.; Zaiat, M. (2001). Effects of solid-phase mass transfer on na stirred anaerobic sequencing batch reactor containing immobilized biomass. In: VII Latin American Workshop and Symposium on Anaeribic Digestion.
- Cubas, S.A.; Foresti, E.; Rodrigues, J.A.D.; Ratusznei, S.M.; Zaiat, M. (2004). Infuence of liquid-phase mass transfer on the preformance of a stirred anaerobic sequencing batch reactor containing immobilized biomass. Biochemical Engineering Journal, 17, 99-105.
- Dague, R.R.; Habben, C.E.; Pidaparti, S.R. (1992). Initial studies on the anaerobic sequencing batch reactor. *Water Science and Technology*, **26**, 2429-2432.
- Deveci, H (2004). Effects of particle size and shape of solids on the viability of acidophilic bacteria during mixing in stirred tank reactors. Hydrometallurgy, 71, 385-396
- Droste, R. L.; Massé, D. I (1995) Anaerobic treatment in sequencing batch reactors. In: Internacional Symposium on Technology Transfer, Pre-Prints, Salvador, Bahia, Brazil.
- Fernandes, L.; Kennedy, K.J.; Ning, Z. (1993). Dynamic modeling of substrate degradation in sequencing batch anaerobic reactors (SBAR). *Water Research*, 27, 1619-1628.
- Jivicková, E.; Rieger, F. (1995), Mixing in tall vessels with a drautht tube. The Cemical Engineering Journal, 59, 273-275.
- Karim K.; Klasson, K. T.; Hoffmann, R.; Drescher S. R.; DePaoli, D. W.; Al-Dahhan, M. H., (2005). Anaerobic digestion of animal waste: Effect of mixing, Bioresourse Technology, no prelo
- Karim K.; Hoffmann, R.; Klasson, K. T.; Al-Dahhan, M. H., (2005). Anaerobic digestion of animal waste: Waste strength versus impact of mixing, Bioresourse Technology, no prelo
- Kennedy, K. J.; Sanchez, W. A.; Hamoda M. A.; Droste, R. L. (1991). Performance of anaerobic sludge blanket sequencing batch reactors. *Res. J. Water. Pollut. Control Fed.*,63, 75-83.

- Liu Y.; Tay, J. H., (2002). The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. *Water Research*, **36**, 1653-1665.
- Massé, D.I.; Masse, L. (2000). Treatment of slaghterhouse wastewater in anaerobic sequencing batch reactors. *Canadian Agricultural Engineering*, **42**, 131-137.
- Monteith, H. D.; Stephenson, J. P (1981). Mixing efficiencies in ful-scale anaerobic digesters by tracer methods. *Journal of Water Pollution Control Federation*, **53**, 78-84.
- Moreno,G.; Cruz, A. ;Buitrón, G. (1998), Influence of S0/X0 Ratio on anaerobic biodegradability test. In: Fifth Latin-american Workshop-Seminar Wastewater Anaerobic Treatment 27-30 october 1998, Viña del Mar, Chile.
- Muroyama K.; Mochizuki, T.; Wakamura, T. (2001). Methane Fermentation of Bean Curd Refuse, Journal of Bioscience and Bioengineering, 91 (2), 208-212.
- Ndon, U.J.; Dague, R.R. (1997). Effects of temperature and hydraulic retention time on anaerobic sequencing batch reactor treatment of low-strength wastewater. *Water Research*, **31**, 2455-2466.
- Ng, W.J. (1989). A sequencing batch anaerobic reactor for treating piggery wastewater. *Biological Wastes.* **28**, 39-51.
- Ramos, A.C.T.; Ratusznei, S.M.; Rodrigues, J.A.D.; Zaiat, M. (2003). Mass Transfer Improvement of a Fixed-Bed Anaerobic Sequencing Batch Reactor with Liquid Phase Circulation. *Journal of Science and Technology of the Americas -INTERCIENCIA*, 28, 214-219.
- Ratusznei, S.M.; Rodrigues, J.A.D.; Camargo, E.F.M.; Zaiat, M.; Borzani, W. (2001). Influence of agitation rate on the performance of a stirred anaerobic sequencing batch reactor containing immobilized biomass. *Water Science and Technology*, 44, 305-312.
- Rodrigues, J.A.D.; Pinto, A.G.; Ratusznei, S.M.; Zaiat, M.; Gedraite, R. (2004). Enhancement of the performance of an anaerobic sequencing batch reactor treating low strength wastewater through implementation of a variable stirring rate program. *Brazilian Journal of Chemical Engineering*, **21**,423-434.

- Rodrigues, J.A.D.; Ratusznei, S.M.; Camargo, E.F.M.; Zaiat, M. (2003). Influence of agitation rate on the performance of an anaerobic sequencing batch reactor containing granulated biomass treating low-strength wastewater. *Advances in Environmental Research*, 7, 405-410.
- Schmit, G. C.; Dague, R. R. (1993). Anaerobic sequencing batch reactor treatment of swine waste at 20 °C, 25 °C, and 35 °C. In: 48.th Purdue Industrial. Wastewater Conference Proceedings, Lewis Publishers, Chelsea, 541-549.
- Shaw, J., A.(1982); The Desing of Draft Tube Circulators. Proc. Australas. Inst. Metall.283, September, p. 47-58.
- Standard Methods for the Examination of Water and Wastewater (1995) APHA, AWWA, WPCF., 19th edition, American Public Health Association, Washington.
- Sung, S.; Dague, R.R. (1995); Laboratory studies on the anaerobic sequencing batch reactor, Water Environment Research, **67**, 294.
- Terron, L. R. (1986); Conceitos Fundamentais da Agitação de Líquidos. Revista Brasileira de Engenharia Química, **8** (4), 5-29.
- TIMUR, H.; ÖZTURK, I. (1999). Anaerobic sequencing batch reactor treatment of landfill leachate. *Water Research*, v.**33**, p3225-3230.
- Torres, P.; (1992). Desempenho de um Reator Anaeróbio de Manta de Lodo (UASB) de Bancada no Tratamento de Substrato Sintético Simulando Esgoto Sanitário. Dissertação (Mestrado), Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos.
- Wastewater engineering: treatment and reuse / Metcalf & Eddy, Inc. 4th ed. Revised by George Tchobanoglous, Franklin L. Burton, H. David Stensel. McGraw-Hill, (2003).
- Wirtz, R. A.; Dague, R. R. (1997). Laboratory studies on enhancement of granulation in the anaerobic sequencing batch reactor. Wat. Sci. Tech. v **36**, p279-286.
- Zaiat, M.; Rodrigues, J.A.D.; Ratusznei, S.M.; Camargo, E.F.M.; Borzani, W. (2001). Anaerobic sequencing batch reactors for wastewater treatment: a developing technology. *Applied Microbiology and Biotechnology*, 55, 29-35.

APÊNDICES

APÊNDICE A. Dedução do modelo cinético

O modelo anaeróbio apresentado neste trabalho é baseado na aproximação apresentada por Bagley e Brodkorb (1999) e aplicado a um reator anaeróbio de batelada seqüencial por Rodrigues (2004), desta forma este modelo é uma adaptação do modelo desenvolvido para processos de tratamento aplicado em reatores de lodo ativado desenvolvido pela "International Water Association" (IWA).

Da equação 3.9 à equação 3.16 está representado o modelo proposto, onde a, b e c são coeficientes estequiométricos; $k_1 e k_2$ são parâmetros cinéticos aparentes de primeira ordem; R_S . R_{AVT} , $R'_{AVT} e R_M$ são as velocidades de reação de consumo de matéria orgânica em amostras filtradas, formação e consumo de ácidos voláteis totais e produção de metano, respectivamente; μ_S , μ_{AVT} , $\mu'_{AVT} e \mu_M$ são as velocidades reacionais específicas de consumo de matéria orgânica em amostras formação e consumo de ácidos voláteis totais, e consumo de ácidos voláteis totais, formação de metano, respectivamente; C_X é a concentração de biomassa; X_1 , $I_1 X_2$, e I_2 são, respectivamente, a biomassa e outros compostos intermediários formados durante o processo de degradação anaeróbia, mas não considerados no modelo cinético; e o subscrito 0 denota os valores no tempo zero. Vale mencionar que existe consumo de matéria orgânica para manutenção celular e este não é considerado neste modelo cinético.

O modelo proposto seguiu as seguintes considerações:

- Reator operado em modo batelada;
- Volume constante;
- Reações exotérmicas;
- Reações em série;
- Modelo cinético de primeira ordem acrescido de residual, e;
- $t = 0 \rightarrow C_s = C_{s0}, \ C_{AVT} = C_{AVT0} \ e \ C_M = C_{M0}$

Reação anaeróbia:

$$a.S \xrightarrow{k_1} b.AVT + X_1 + I_1 \xrightarrow{k_2} c.M + X_2 + I_2$$

Modelos cinéticos:

$$R_{S} = \mu_{S}C_{X} = k_{1S}(C_{S} - C_{Sr})$$

$$R_{AVT} = \mu_{AVT}C_{X} = k_{1AVT}(C_{S} - C_{Sr})$$

$$R'_{AVT} = \mu'_{AVT}C_{X} = k_{2AVT}(C_{AVT} - C_{AVTr})$$

$$R_{M} = \mu_{M}C_{X} = k_{2M}(C_{AVT} - C_{AVTr})$$

Balanço material para o componente S.

$$\frac{dC_s}{dt} = -R_s = -k_{1s}.(C_s - C_{sr})$$
$$\frac{dC_s}{(C_s - C_{sr})} = -k_{1s}.dt$$

aplicando a condição inicial $t = 0 \rightarrow C_s = C_{s0}$, e integrando a equação, temos:

$$(C_{s} - C_{sr}) = (C_{s0} - C_{sr}) \exp(-k_{1s}t)$$
3.17

Balanço material para o componente AVT.

$$\frac{dC_{AVT}}{dt} = R_{AVT} - R'_{AVT} = k_{1AVT} \cdot (C_s - C_{sr}) - k_{2AVT} \cdot (C_{AVT} - C_{AVTr})$$
$$\frac{dC_{AVT}}{dt} = k_{1AVT} \cdot (C_s - C_{s0}) \cdot \exp(-k_{1AVT} \cdot t) - k_{2AVT} \cdot (C_{AVT} - C_{AVTr})$$
$$\frac{dC_{AVT}}{dt} + k_{2AVT} \cdot (C_{AVT} - C_{AVTr}) = k_{1AVT} \cdot (C_{s0} - C_{sr}) \cdot \exp(-k_{1AVT} \cdot t)$$

temos aqui uma equação do tipo

$$\frac{dx}{dy} = P(x).y = Q(x)$$

cuja solução é

$$y.\exp\left|\int P(x).dx\right| = \int Q(x).\exp\left|\int P(x).dx\right|dx$$

onde y=C_{AVT}, x=t, P(x) = $k_2 e Q(x)=k_{1AVT}(C_S - C_{Sr}).exp(-k_{1AVT}.t)$

substituindo

$$C_{AVT} \cdot \exp\left[\int k_{2AVT} \cdot dt\right] = \int k_{1AVT} \cdot (C_{S0} - C_{Sr}) \cdot \exp(-k_{1AVT} \cdot t) \cdot \exp\left[\int k_{2AVT} \cdot dt\right] dt$$
$$(C_{AVT} - C_{AVTr}) \cdot \exp(k_{2AVT} \cdot t) = k_{1AVT} \cdot (C_{S0} - C_{Sr}) \cdot \int \exp[(-k_{1AVT} - k_{2AVT}) \cdot t] dt$$

$$=\frac{k_{1AVT}.(C_{S0}-C_{Sr})}{k_{2AVT}-k_{1AVT}}.\{\exp[(k_{2AVT}-k_{1AVT})t]-1\}+C$$

$$(C_{AVT} - C_{AVTr}) \cdot \exp(k_{2AVT} t) = \frac{k_{1AVT} \cdot (C_{S0} - C_{Sr})}{k_{2AVT} - k_{1AVT}} \cdot \left\{ \exp[(k_{2AVT} - k_{1AVT}) t] - 1 \right\} + C$$

aplicando a condição inicial $t = 0 \rightarrow C_{AVT} = C_{AVT0} (\neq 0) \therefore C = (C_{AVT0} - C_{AVTr})$

$$(C_{AVT} - C_{AVTr}) \exp(k_{2AVT} t) = \frac{k_{1AVT} \cdot (C_{S0} - C_{Sr})}{k_{2AVT} - k_{1AVT}} \cdot \left\{ \exp[(k_{2AVT} - k_{1AVT}) t] - 1 \right\} + (C_{AVT} - C_{AVTr})$$

$$(C_{AVT} - C_{AVT0}) = (C_{AVT0} - C_{AVTr}) \cdot \exp(-k_{2AVT} \cdot t) + k_{1AVT} \cdot (C_{S0} - C_{Sr}) \cdot \left[\frac{\exp(-k_{1AVT} \cdot t)}{(k_{2AVT} - k_{1AVT})} + \frac{\exp(-k_{2AVT} \cdot t)}{(k_{1AVT} - k_{2AVT})} \right]$$
3.18

Balanço material para o componente M.

$$\frac{dC_{M}}{dt} = k_{2AVT} \cdot (C_{AVT} - C_{AVTr})$$

$$\frac{dC_{M}}{dt} = k_{2M} (C_{AVT0} - C_{AVTr}) \cdot \exp(-k_{2M} \cdot t) +$$

$$+ k_{1M} \cdot k_{2M} \cdot (C_{S0} - C_{Sr}) \cdot \left[\frac{\exp(-k_{1M} \cdot t)}{(k_{2M} - k_{1M})} + \frac{\exp(-k_{2M} \cdot t)}{(k_{1M} - k_{2M})} \right]$$

integrando o lado esquerdo da equação

$$C_{M} = C + \frac{k_{2M} \cdot (C_{AVT0} - C_{AVTr}) \cdot \exp(-k_{2M} \cdot t)}{-k_{2M}} + k_{1M} \cdot k_{2M} \cdot (C_{S0} - C_{Sr}) \cdot \left[\frac{\exp(-k_{1M} \cdot t)}{(-k_{1M}) \cdot (k_{2M} - k_{1M})} + \frac{\exp(-k_{2M} \cdot t)}{(-k_{2M}) \cdot (k_{1M} - k_{2M})} \right]$$

simplificando

$$C_{M} = C + (C_{AVT0} - C_{AVTr}) \cdot \exp(-k_{2M} \cdot t) + (C_{50} - C_{5r}) \cdot \left[\frac{k_{2M} \cdot \exp(-k_{1M} \cdot t)}{(k_{1M} - k_{2M})} + \frac{k_{1M} \exp(-k_{2M} \cdot t)}{(k_{2M} - k_{1M})} \right]$$

aplicando a condição inicial $t = 0 \rightarrow C_M = C_{M0}$ e inicialmente C_{M0}=0 portanto

$$C = -(C_{AVT} - C_{AVTr}) + (C_S - C_{Sr})$$

$$C_{M} = (C_{AVT} - C_{AVTr}) [1 - \exp(-k_{2M} \cdot t)] + (C_{S} - C_{Sr}) \left[1 + \frac{k_{2M} \cdot \exp(-k_{1M} \cdot t)}{(k_{1M} - k_{2M})} + \frac{k_{1M} \cdot \exp(-k_{2M} \cdot t)}{(k_{2M} - k_{1M})} \right]$$
3.19

APÊNDICE B. Ensaio com impelidor tipo turbina de pás planas verticais – valores experimentais

TABELA B.1: Resultados Experimentais da concentração de matéria orgânica em termos de DQO (C_{af}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT) em amostras do afluente do ensaio Tu50

Ciclo	C_{AF}	pН	AP	AI	AT	AB	AVT
	$(mgDQO.l^{-1})$			(mgCa	$CO_3.1^{-1})$		(mgHAc.l ⁻¹)
1	860,0	8,99	198,8	52,1	250,8	220,1	43,3
3	699,0	8,96	183,4	60,3	243,7	213,5	42,6
27	754,2	8,80	181,3	55,8	237,0	197,0	56,4
31	831,2	8,78	175,5	56,9	232,4	196,2	51,0
39	796,7	8,70	165,0	63,9	228,9	203,4	36,0
43	876,4	9,13	197,7	51,2	248,8	216,0	46,2
46	758,4	8,63	208,8	50,3	259,1	229,0	42,4
49	748,5	9,04	198,2	57,3	255,5	225,2	42,8
52	999,8	8,71	187,1	57,3	244,4	216,8	38,8
63	736,8	8,97	190,9	47,7	238,6	210,6	39,4

TABELA B.2: Resultados Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}) e totais (C_{ST}), eficiência de remoção de matéria orgânica em termos de DQO para amostras filtradas (E_F) e totais (E_T) pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT) em amostras do efluente do ensaio Tu50

Encoio	Ciala	C _{SF}	C _{ST}	E _F	E _T	лIJ	AP	AI	AT	AB	AVT
Ensaio	Cicio -	(mgD0	$QO.1^{-1})$	(9	6)	- рн -		(mgCaC	$CO_3.1^{-1})$		(mgHAc.l ⁻¹)
	1	105,4	118,5	86,8	85,2	6,89	274	95	369	355	20
	3	98,9	120,8	87,6	84,9	6,75	308	121	428	414	20
	6	99,2	119,1	87,6	85,1	6,65	296	137	433	420	18
	24	83,4	119,6	89,6	85,1	6,74	288	98	386	370	22
	27	105,2	128,7	86,9	83,9	6,70	291	102	393	375	25
	30	110,4	131	86,2	83,6	6,72	267	121	388	372	23
	33	90,1	104,1	88,7	87,0	6,61	261	128	389	375	20
Tu50	39	-	-	-	-	6,55	243	138	381	368	18
	42	116,1	147,6	85,5	81,6	-	-	-	-	-	-
	43	-	-	-	-	6,81	319	106	425	410	21
	46	100,1	132,4	87,5	83,5	-	-	-	-	-	-
	49	111,1	140,4	86,1	82,5	6,77	308	120	428	414	19
	52	104	272	87,0	-	6,73	302	115	416	406	14
	55	106,1	124,2	86,7	84,5	-	-	-	-	-	-
	63	96,9	116	87,9	85,5	6,75	311	105	416	398	25

TABELA B.3: Resultados experimentais da concentração de sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV) em amostras afluentes e efluentes coletadas durante o ensaio Tu50.

	Tempo		Aflu	lente			Eflu	ente	
Ensaio	rempo	ST	SVT	SST	SSV	ST	SVT	SST	SSV
	(ciclo)	$(mg.l^{-1})$							
	4	1480	752	100	92	876	212	16	0
	25	946	708	14	10	698	294	70	70
Tu50	31	1566	750	34	28	994	248	72	60
	43	1586	886	118	116	1018	306	74	60
	49	1542	816	70	70	956	230	76	74

TABELA B.4: Perfis Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais

			(Ciclo 46						Ciclo 49		
Tempo	C _{AF}	nН	AP	AI	AB	AVT	C _{AF}	nH -	AP	AI	AB	AVT
(h)	$(mgDQO.l^{-1})$	P		$(mgCaCO_3.l^{-1})$		$(mgHAc.l^{-1})$	$(mgDQO.l^{-1})$	P		$(mgCaCO_3.l^{-1})$		$(mgHAc.l^{-1})$
0,00	408,4	6,9	219	89	271	54	429,1	6,9	207	89		
0,33	319,9	6,8	257	98	330	36	333,5	7,0	256	94	269	37
0,67	250,8	6,7	258	99	324	47	275,0	6,8	256	97	311	56
1,00	206,8	6,7	264	102	333	46	234,8	6,9	273	96	325	38
1,50	174,8	6,7	268	108	356	29	194,0	6,9	272	95	344	36
2,00	146,7	6,7	279	104	363	28	184,5	6,9	288	90	344	33
2,50	118,6	6,6	291	110	385	23	137,2	6,9	307	94	360	25
3,00	110,6	6,6	295	114	395	21	116,1	6,9	299	94	382	27
3,50	101,9	6,8	276	120	385	17	112,1	6,9	294	97	375	26
4,00	112,9	6,8	296	114	399	16	113,7	6,9	316	93	372	25
4,50	108,3	6,7	297	108	392	18	99,7	6,9	324	89	393	23
5,00	111,4	6,8	298	117	404	16	104,7	6,9	317	91	399	21
6,00	101,1	6,9	294	115	399	15	113,5	6,9	317	94	393	21
7,00	96,3	6,8	319	110	-		106,7	-	-	-	-	-
8,00	100,1	6,7	318	106	409	21	111,1	-	-	-	-	-

(AVT)	durante o	ensaio	Tu50
-------	-----------	--------	------

	С	iclo 52				(Ciclo 55		
Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel	Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel
(h)	$(mMol.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$	(h)	$(mMol.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$
0,00	0,000	0,0	0	0,00	0,00	0,000	0,0	0,00	0,00
0,40	0,222	47,3	7,06	17,86	0,50	0,375	52,1	6,35	12,70
0,73	0,626	55,1	14,78	23,15	0,93	1,012	60,0	14,22	18,19
1,04	1,016	57,8	23,82	29,36	1,32	1,524	62,2	22,45	21,42
1,32	1,550	61,7	32,15	29,59	1,64	2,347	65,9	32,47	31,11
1,59	1,986	63,6	39,94	28,64	1,98	2,747	66,4	40,95	24,87
1,89	2,631	66,7	48,30	28,01	2,27	3,282	67,8	48,24	25,01
2,21	3,015	66,6	56,86	26,63	2,57	3,773	68,5	55,17	23,24
2,56	3,524	67,4	65,56	24,84	2,86	4,386	70,2	61,50	21,97
2,96	4,352	69,9	74,73	23,18	3,41	5,085	70,8	71,09	17,44
3,33	4,534	68,8	82,06	19,83	3,83	5,403	70,9	78,24	16,99
3,78	5,289	70,3	90,86	19,50	4,30	5,904	71,0	85,45	15,30
4,24	5,680	70,2	98,98	17,57	4,90	6,390	71,3	92,51	11,84
4,81	6,155	70,8	107,75	15,32	5,44	6,775	71,3	98,77	11,44
5,30	6,571	70,7	115,38	15,74	5,98	7,088	71,3	104,36	10,48
5,81	6,915	70,9	122,69	14,22	6,48	7,257	71,2	109,71	10,72
6,37	7,283	70,9	129,97	13,09	6,84	7,486	71,3	113,43	10,14
6,89	7,554	70,9	136,06	11,58	7,31	7,577	71,3	115,94	5,37
7,28	7,555	70,8	138,86	7,19					

TABELA B.5: Perfis Experimentais da concentração de metano (C_{CH4}) , porcentagem de metano no "head-space" ($\%_{CH4}$), volume de metano acumulado (V), velocidade de produção de metano (Vel) em dois ciclos do ensaio Tu50.

APÊNDICE C. Ensaio com impelidor tipo turbina de pás planas inclinadas – valores experimentais

TABELA C.1: Resultados Experimentais da concentração de matéria orgânica em termos de DQO (C_{af}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT) em amostras do afluente do ensaio com impelidor tipo turbina de pás planas verticais.

Ciala	C_{AF}	лU	AP	AI	AT	AB	AVT
CICIO	$(mgDQO.l^{-1})$	рп		(mgCa	$(CO_3.l^{-1})$		$(mgHAc.l^{-1})$
1	789,8	9,04	192	54	246	216	43
6	776,2	8,99	188	52	241	212	41
11	852,5	9,1	208	58	265	232	47
15	799,8	9,14	194	51	244	213	43
19	815,6	9,08	192	52	244	215	41
22	899,8	9,08	188	54	243	215	38
26	786,8	8,86	192	54	246	218	40
28	815,4	9,02	194	56	250	220	41
31	770,2	8,62	188	66	254	228	37
34	627,5	9	195	52	248	222	37
37	818,4	8,89	195	52	247	219	40
41	790,5	8,93	190	56	246	222	34
52	772,5	9,03	188	52	241	212	41
56	811,6	9,16	188	58	246	218	39
60	826,4	9,16	190	54	244	213	45
65	778,3						
70	771,6	8,97	188	58	246	218	40
72	774,0	8,59	194	54	247	224	33
75	773,4	8,79	189	58	247	223	35
80	861.2						

TABELA C.2: Resultados Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}) e totais (C_{ST}), eficiência de remoção de matéria orgânica em termos de DQO para amostras filtradas (E_F) e totais (E_T) pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT) em amostras do efluente do com impelidor tipo turbina de pás planas verticais.

Encoio	Ciele	C _{SF}	C _{ST}	E _F	E _T	ъЦ	AP	AI	AT	AB	AVT
Liisaio		(mgD	$QO.1^{-1})$	(%	%)	- pm -		(mgCa	$CO_3.l^{-1}$)		$(mgHAc.l^{-1})$
	7	99,1	144,0	87,5	81,9	6,85	289	102	390	378	17
	10	95,8	119,1	88,0	85,0	6,78	307	85	392	380	17
	13	106,5	126,6	86,6	84,1	6,78	321	104	425	413	17
	22	108,5	150,2	86,4	81,1	6,78	289	115	404	392	18
	27	107,5	122,8	86,5	84,6						
Ti50	28					6,81	298	109	408	394	19
	31	102,5	116,9	87,1	85,3	6,78	287	116	403	390	19
	33	109,0	139,7	86,3	82,4						
	34					6,93	300	102	403	388	20
	37	106,3	120,1	86,6	84,9	6,86	317	102,	420	406	19
	42	122,9	142,0	84,6	82,2	6,83	286	111	397	384	19
	48	102,2	136,3	87,2	82,9	6,74	284	125	410	397	18
	51	115,8	130,9	85,4	83,5	6,83	300	104	404	391	18
	54	117,3	150,1	85,3	81,1	6,82	286	101	387	372	20
	64	121,0	155,4	84,8	80,5	6,71	286	123	410	397	17
T;75	69	105,4	130,5	86,8	83,6						
11/5	70					6,66	261	111	373	362	15
	73	106,4	142,4	86,6	82,1	6,71	268	125	393	380	18
	76	116,6	133,6	85,3	83,2	6,76	277	116	393	378	21
	78	109,5	140,4	86,2	82,4						
	84	120,3	168,1	84,9	78,9	6,77	300	111	411	399	17,6

TABELA C.3: Resultados experimentais da concentração de sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV) em amostras afluentes e efluentes coletadas durante o ensaio com impelidor tipo turbina de pás planas verticais.

	Tempo		Aflu	ente			Eflu	ente	
Ensaio	rempo	ST	SVT	SST	SSV	ST	SVT	SST	SSV
	(ciclo)	$(mg.l^{-1})$							
Ti50	3	1586	898	52	36	996	402	66	68
	9	1622	828	36	26	1028	286	40	48
	24	1552	876	64	42	1052	344	110	74
	30	1600	862	44	24	1090	314	94	54
Ti75	45	1652	844	58	58	1052	286	56	56
	52	1610	866	42	20	1062	326	68	52
	72	1658	934	28	18	1054	352	76	42
	84	1694	922	48	44	1130	374	76	72

TABELA C.4: Perfis Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais

			(Ciclo 31			Ciclo 37						
Tempo	C _{AF}	рЦ	AP	AI	AB	AVT	C _{AF}	nH _	AP	AI	AB	AVT	
(h)	$(mgDQO.1^{-1})$	pm		$(mgCaCO_3.l^{-1})$		$(mgHAc.l^{-1})$	$(mgDQO.1^{-1})$	pri –		$(mgCaCO_3.l^{-1})$		(mgHAc.l ⁻¹)	
0	444,4	6,94	226	87	290	32	468,8	7,17	238	81	294	36	
0,33	331,3	6,79	225	108	304	40	365,9	6,98	239	96	302	47	
0,67	284,2	6,75	230	119	319	42	308,0	6,92	249	109			
1	259,1	6,73	239	118	320	51	272,6	6,89	256	109	326	55	
1,5	213,4	6,74	249	122	338	46	226,0	6,89	260	115	341	48	
2	189,5	6,75	254	130	355	41	198,3	6,87	273	108	349	45	
2,5	162,3	6,77	259	123	356	37	167,5	6,88	275	115	368	31	
3	142,6	6,77	270	118	370	26	161,0	6,88	294	103	379	26	
3,5	130,5	6,77	269	122	371	28	133,1	6,87	298	105	385	25	
4	117,3	6,78	290	109	384	22	133,6	6,88	296	108	386	26	
4,5	103,4	6,78	290	115	390	20	119,3	6,87	296	106	387	21	
5	105,5	6,79	291	109	385	22	120,8	6,88	294	106	387	17	
6	104,3	6,79	291	108	387	17	111,4	6,87	298	111	396	19	
7	112,4	6,78	291	113	391	20	113,7	6,86	309	107	402	20	
8	102,5	6,78	287	117	390	19	106,3	6,86	317	103	406	19	

(AVT) durante a condição Ti50.

	C	iclo 28				(Ciclo 34	-	
Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel	Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel
(h)	$(mMol.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$	(h)	$(mMol.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$
0,00	0,000	0,0	0	0,00	0,00	0,000	0,0	0,00	0,00
0,38	0,234	47,1	7,19	19,12	0,39	0,176	43,4	9,58	24,76
0,75	0,635	51,8	15,36	22,02	0,86	0,720	55,1	20,43	23,09
1,16	1,287	56,4	27,23	28,77	1,18	1,182	58,7	29,66	28,19
1,50	1,848	59,3	37,68	30,90	1,54	1,681	62,1	39,65	27,77
1,79	2,413	62,1	46,25	29,21	1,93	2,398	64,9	50,85	28,98
2,09	2,930	63,8	54,59	27,83	2,29	3,140	67,6	61,73	30,24
2,38	3,325	64,6	62,49	27,07	2,66	3,743	68,6	72,51	29,16
2,74	3,809	65,7	71,75	26,05	3,04	4,376	69,5	82,88	27,28
3,09	4,170	66,5	80,40	24,76	3,49	4,963	70,4	93,97	24,59
3,45	4,623	67,2	88,77	23,23	3,97	5,566	71,1	104,45	22,02
3,84	5,153	67,7	97,43	22,02	4,45	5,923	71,5	113,94	19,85
4,20	5,499	68,3	104,59	20,04	4,96	6,483	71,7	122,92	17,45
4,65	5,825	68,7	112,87	18,50	5,35	6,711	72,0	129,16	16,14
5,02	6,151	69,0	119,59	18,07	5,78	7,015	72,0	135,28	13,97
5,45	6,393	69,2	126,20	15,30	6,10	7,239	72,1	139,53	13,65
5,96	6,771	69,3	133,54	14,36	6,27	7,330	72,2	141,84	13,62
6,55	7,041	69,4	141,02	12,69					
7,04	7,128	69,3	148,01	14,19					
7,22	7,200	69,5	149,02	5,72					

TABELA C.5: Perfis Experimentais da concentração de metano(C_{CH4}), porcentagem de metano no "head-space" (%_{CH4}), volume de metano acumulado (V), velocidade de produção de metano (Vel) em dois ciclos da condição Ti50.

			(Ciclo 73						Ciclo 76		
Tempo	C _{AF}	nЦ	AP	AI	AB	AVT	C _{AF}	ъЦ	AP	AI	AB	AVT
(h)	(mgDQO.l ⁻¹)	рп		$(mgCaCO_3.1^{-1})$		(mgHAc.l ⁻¹)	(mgDQO.l ⁻¹)	рп –		$(mgCaCO_3.l^{-1})$		(mgHAc.l ⁻¹)
0	404,1	6,86	217	98	289	38	413,4	6,92	225	93	298	29
0,33	299,2	6,76	223	108	300	43	305,4	6,78	217	111	298	42
0,67	258,7	6,73	227	116	307	50	260,5	6,75	229	114	307	50
1	229,7	6,72	237	117	321	45	233,6	6,76	229	122	320	44
1,5	207,5	6,73	246	116	330	45	195,0	6,77	245	116	330	43
2	173,3	6,73	259	112	346	35	170,8	6,78	251	115	343	32
2,5	154,8	6,76	260	115	356	26	136,8	6,77	266	112	357	28
3	138,2	6,73	264	101	351	19	134,3	6,83	271	107	362	24
3,5	120,3	6,74	271	114	372	19	132,9	6,82	289	105	355	54
4	140,0	6,73	268	117	372	17	125,9	6,79	272	111	367	22
4,5	120,6	6,72	-	398	386	17	113,0	6,79	277	110	371	23
5	119,6	6,72	269	112	369	17	110,4	6,77	281	113	384	16
6	109,8	6,74	268	118	373	18	107,6	6,81	271	116	375	17
7	111,6	6,71	264	128	376	22	98,9	6,76	274	114	376	18
8	106,4	6,71	268	125	380	19	116,4	6,76	277	117	378	22

TABELA C.6: Perfis Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais

144

(AVT) durante a condição Ti75.

	C	iclo 70				(Ciclo 79)	
Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel	Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel
(h)	$(mMol.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$	(h)	$(mMol.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$
0,00	0,000	0,0	0	0,00	0,00	0,000	0,0	0,00	0,00
0,46	0,191	45,6	8,13	17,62	0,30	0,071	27,9	8,44	28,19
0,85	0,608	55,3	17,27	23,26	0,68	0,446	46,5	17,00	22,35
1,19	1,100	60,1	26,46	27,42	1,01	0,899	52,9	25,48	25,62
1,47	1,575	63,0	35,36	31,29	1,31	1,378	56,9	33,63	27,70
1,75	2,064	65,1	44,21	31,55	1,61	1,864	59,7	42,32	28,90
2,06	2,794	68,1	53,84	31,49	1,93	2,603	63,7	51,50	28,33
2,34	3,212	69,0	62,22	30,06	2,33	3,295	65,7	62,50	27,57
2,62	3,710	70,0	70,61	29,73	2,63	3,760	66,8	70,78	27,70
2,95	4,295	70,4	79,66	27,35	2,95	4,280	68,0	79,26	26,25
3,35	4,617	71,2	88,83	23,24	3,27	4,747	68,8	86,98	24,10
3,77	5,188	71,7	97,41	20,48	3,66	5,196	69,6	95,29	21,37
4,21	5,510	71,8	105,43	18,03	4,08	5,638	70,4	103,06	18,44
4,70	5,907	71,9	112,53	14,44	4,61	6,166	70,8	110,79	14,58
5,20	6,148	72,0	119,12	13,16	5,16	6,525	71,2	117,53	12,27
5,73	6,431	72,0	125,28	11,67	5,59	6,883	71,4	121,94	10,41
6,25	6,866	72,0	130,48	10,07	6,12	7,139	71,6	126,79	9,13
6,76	7,149	72,1	135,25	9,32	6,59	7,343	71,6	130,67	8,28
7,13	7,069	72,0	138,54	8,89	7,11	7,663	71,7	134,80	7,91
7,31	6,989	71,8	139,28	4,00	7,28	7,585	71,7	135,17	2,14

TABELA C.7: Perfis Experimentais da concentração de metano(C_{CH4}), porcentagem de metano no "head-space" (%_{CH4}), volume de metano acumulado (V), velocidade de produção de metano (Vel) em dois ciclos da condição Ti75.

APÊNDICE D. Ensaio com impelidor tipo pá de pás planas verticais – valores experimentais

TABELA D.1: Resultados Experimentais da concentração de matéria orgânica em termos de DQO (C_{af}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT) em amostras do afluente do ensaio com impelidor tipo pá de pás planas verticais.

	-						
Ciclo	C _{AF}	nH -	AP	AI	AT	AB	AVT
CICIO	$(mgDQO.1^{-1})$	pm		(mgC	$aCO_3.1^{-1}$)		(mgHAc.l ⁻¹)
1	861,0	9,1	197	54	251	221	42
6	792,0	8,6	192	56	247	223	34
11	757,5						
16	771,6	8,67	195	56	251	222	40
20	788,3	8,72	192	57	249	219	42
25	789,1	8,93	207	58	265	242	33
28	810,7						
31	792,0	8,78	178	52	230	204	37
34	822,8	8,77	194	60	253	227	37
42	788,6	8,86	197	57	254	227	38
45	782,5	8,88	192	57	249	223	37
48		8,97	195	54	249	220	41
51	797,6	8,96	193	56	249	223	36
54	839,7	8,9	192	56	247	219	40
60	782,5	9,06	200	52	252	225	39
64	842,1	9,02	197	52	249	219	42
67	816,7	8,96	192	57	249	223	37
70	794,5						
76	819,2	9	200	56	256	226	42
79	818,9	8,96	198	50	249	220	41
81	844,4						
85	833,1						

TABELA D.2: Resultados Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}) e totais (C_{ST}), eficiência de remoção de matéria orgânica em termos de DQO para amostras filtradas (E_F) e totais (E_T) pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT) em amostras do efluente do com impelidor tipo pá de pás planas verticais.

Encoio	Cielo	C _{SF}	C _{ST}	E _F	E _T	nЦ	AP	AI	AT	AB	AVT
Elisaio		(mgD0	$QO.1^{-1})$	(%)		- рп -		(mgCaC	$CO_3.1^{-1})$		(mgHAc.l ⁻¹)
	3	134,0	151,9	83,4	81,2	6,78	272	103	374	362	17
Pa50	9	123,0	147,0	84,8	81,8	6,77	284	108	392	382	13
	12	123,8	139,0	84,7	82,8	6,76	298	103	400	386	20
	24	177,7	202,2	78,0	75,0	6,81	280	115	395	376	27
	25	146,4	171,5	81,9	78,8						
r a.30	28	153,5	175,5	81,0	78,3	6,77	279	118	397	378	26
	30	139,0	166,1	82,8	79,5						
	31					6,82	292	122	413	397	23
	34	158,4	176,6	80,4	78,2	6,76	286	111	397	376	29
	42	139,5	172,4	82,8	78,7	6,82	247	108	355	343	18
	45	113,4	183,2	86,0	77,4	6,73	289	104	393	380	19
	48	135,7	184,1	83,2	77,3	6,80	279	118	397	382	21
	51	131,8	182,5	83,7	77,5	6,74	286	115	400	388	18
	54	149,9	188,7	81,5	76,7	6,79	299	104	404	388	23
	63	129,3	184,8	84,0	77,2						
	64					6,79	301	108	408	391	24
Pa75	67	144,2	180,9	82,2	77,6	6,82	296	104	401	384	24
	70	144,8	185,1	82,1	77,1	6,88	259	106	366	351	21
	73	142,4	189,8	82,4	76,5	6,87	303	104	407	397	15
	75	131,3	171,3	83,8	78,8	6,82	273	117	390	373	24
	84	137,7	177,9	83,0	78,0						
	87	146,4	187,9	81,9	76,8	6,76	273	117	390	373	24
	90	156,5	206,0	80,7	74,5	6,72	265	106	371	354	24

	Tempo		Aflu	iente		Efluente					
Ensaio	Tempo	ST	SVT	SST	SSV	ST	SVT	SST	SSV		
	(ciclo)	$(mg.l^{-1})$									
	9	1578	854	60	60	1012	334	60	58		
Pa50	24	1618	856	52	24	1134	384	82	60		
1 40 0	30	1640	882	36	24	1100	338	74	58		
	42	1534	826	46	36	1054	302	64	64		
	51	1562	826	50	48	1032	330	74	68		
Pa75	66	1648	888	8	0	1192	364	48	48		
1 470	72	1624	960	20	20	1128	338	60	58		
	87	1598	914	46	42	1048	344	88	86		

TABELA D.3: Resultados experimentais da concentração de sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV) em amostras afluentes e efluentes coletadas durante o ensaio com impelidor tipo pá de pás planas

verticais.

TABELA D.4: Perfis Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais

			(Ciclo 28						Ciclo 34		
Tempo	C _{AF}	nH -	AP	AI	AB	AVT	C _{AF}	nH –	AP	AI	AB	AVT
(h)	$(mgDQO.l^{-1})$	pm		$(mgCaCO_3.l^{-1})$		$(mgHAc.l^{-1})$	$(mgDQO.l^{-1})$	pm		$(mgCaCO_3.l^{-1})$		(mgHAc.l ⁻¹)
0	508,0	7,06	214	89	280	34	499,1	6,96	212	94	279	37
0,33	417,9	6,89	220	95	287	39	415,0	6,8	212	109	290	43
0,67	371,0	6,82	218	109	295	45	358,2	6,73	216	118	298	51
1	338,6	6,77	219	113	296	50	313,8	6,71	225	128	313	57
1,5	302,9	6,75	233	124	318	55	304,3	6,71	229	130	318	57
2	281,7	6,76	236	114	311	54	267,9	6,72	232	130	323	55
2,5	253,8	6,76	238	126	329	50	247,8	6,74	244	133	342	50
3	252,1	6,78	246	123	336	47	233,6	6,73	246	135	345	50
3,5	240,2	6,77	249	124	340	46	209,0	6,74	254	130	354	42
4	231,3	6,75	258	121	349	42	195,4	6,73	258	133	362	42
4,5	193,3	6,77	264	115	350	41	180,0	6,74	263	132	370	34
5	179,7	6,77	261	121	357	36	174,5	6,76	218	171	367	31
6	168,9	6,78	275	117	371	29	151,6	6,81	293	126	404	23
7	154,6	6,76	278	116	376	25	150,2	6,75	279	126	389	22
8	153,5	6,77	277	116	376	24	158,4	6,76	292	122	397	23

(AVT) durante a condição Pa50.

	C	iclo 25				(Ciclo 31		
Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel	Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel
(h)	$(mMol.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$	(h)	$(mMol.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$
0,00	0,000	0,0	0	0,00	0,00	0,000	0,0	0,00	0,00
0,35	0,172	41,9	7,60	21,71	0,43	0,219	48,3	8,64	20,04
0,99	0,675	46,9	18,20	16,45	0,93	0,583	49,3	17,32	17,43
1,37	1,043	49,4	25,21	18,89	1,35	0,984	51,8	26,04	20,91
1,80	1,455	51,7	33,91	20,10	1,75	1,422	54,7	34,83	21,72
2,19	1,876	53,9	42,27	21,12	2,12	1,854	56,9	43,20	22,74
2,57	2,518	57,6	50,38	21,51	2,59	2,557	60,7	53,81	22,64
2,98	2,911	59,1	58,78	20,60	2,96	2,949	62,3	62,11	22,04
3,36	3,344	60,4	66,43	20,36	3,34	3,327	63,6	70,04	21,37
3,74	3,728	61,7	73,99	19,46	3,75	3,790	64,6	78,39	20,30
4,18	4,171	62,9	81,61	17,51	4,16	4,180	65,7	86,45	19,72
4,70	4,644	64,0	90,34	16,72	4,60	4,561	66,8	94,84	19,07
5,23	5,131	65,0	98,45	15,23	5,06	4,969	67,6	103,23	17,88
5,76	5,433	66,0	106,27	14,97	5,54	5,501	68,4	111,47	17,24
6,28	5,842	66,8	113,55	13,81	6,07	5,740	69,4	120,11	16,49
6,72	6,170	67,4	119,34	13,31	6,61	6,127	70,0	128,69	15,89
07,12	6,453	67,8	124,18	12,05	7,10	6,624	70,4	136,84	16,47
7,28	6,513	68,0	125,33	7,06	7,26	6,443	70,6	137,87	6,32

TABELA D.5: Perfis Experimentais da concentração de metano(C_{CH4}), porcentagem de metano no "head-space" (%_{CH4}), volume de metano acumulado (V), velocidade de produção de metano (Vel) em dois ciclos da condição Pa50.
			(Ciclo 67		Ciclo 70							
Tempo	C _{AF}	nН	AP	AI	AB	AVT	C _{AF}	nH _	AP	AI	AB	AVT	
(h)	$(mgDQO.1^{-1})$	pn		$(mgCaCO_3.l^{-1})$		(mgHAc.l ⁻¹)	$(mgDQO.l^{-1})$	pm		$(mgCaCO_3.l^{-1})$		(mgHAc.l ⁻¹)	
0	456,3	7,02	225	82	275	45	463,1	7,23	236	81	283	48	
0,33	375,5	6,86	218	105	284	54	360,8	6,98	235	99	300	48	
0,67	328,1	6,81	224	113	298	56	316,6	6,96	237	105	302	57	
1	305,6	6,81	229	117	301	64	292,6	6,97	245	108	311	59	
1,5	279,9	6,8	234	118	310	59	271,0	6,93	252	111	317	65	
2	262,2	6,79	238	129	323	62	250,5	6,93	249	114	318	63	
2,5	242,7	6,79	246	121	326	58	229,9	6,93	257	116	329	62	
3	235,1	6,82	255	124	338	57	226,4	6,92	267	112	337	58	
3,5	211,3	6,81	264	124	352	51	207,0	6,92	277	108	350	49	
4	203,8	6,81	263	121	349	48	199,7	6,9	269	115	345	56	
4,5	197,9	6,81	265	121	354	46	198,7	6,9	279	108	354	46	
5	168,5	6,81	272	117	361	39	169,3	6,9	288	107	363	45	
6	164,7	6,87	286	112	374	32	149,7	6,91	289	108	374	33	
7	145,9	6,82	300	115	395	28	136,9	6,94	298	106	386	25	
8	144,2	6,82	301	108	392	24	144,8	6,88	297	105	385	24	

TABELA D.6: Perfis Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais

(AVT) durante a condição Pa75.	
--------------------------------	--

	С	iclo 64			Ciclo 87							
Tempo	C _{CH4}	$\%_{\mathrm{CH4}}$	V	Vel	Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel			
(h)	$(\mathbf{mMol.l}^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$	(h)	$(\mathbf{mMol.l}^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$			
0,00	0,000	0,0	0	0,00	0,00	0,000	0,0	0,00	0,00			
0,47	0,262	39,7	7,85	16,81	0,45	0,303	39,3	7,88	17,47			
0,88	0,647	45,6	15,52	18,67	0,83	0,642	43,4	16,05	21,53			
1,26	1,031	47,4	23,41	20,88	1,23	1,082	47,7	25,43	23,52			
1,59	1,393	49,9	30,31	20,87	1,55	1,425	50,9	34,29	27,60			
2,05	1,976	53,6	39,95	20,63	1,86	1,720	53,0	41,88	24,46			
2,44	2,560	57,6	47,98	20,86	2,34	2,358	56,8	53,63	24,58			
2,83	3,048	59,4	55,86	20,23	2,66	2,997	59,2	61,70	24,77			
3,20	3,540	60,7	63,45	20,24	3,02	3,498	60,8	70,52	24,74			
3,59	3,978	62,1	70,76	18,85	3,40	3,999	62,0	79,99	24,89			
4,03	4,401	63,8	78,98	18,51	3,73	4,418	63,3	87,78	24,06			
4,49	5,029	64,6	86,79	17,32	4,09	4,794	64,2	96,25	23,13			
4,99	5,430	65,9	95,02	16,37	4,50	5,282	65,2	105,20	21,66			
5,50	5,774	67,1	103,08	15,74	4,89	5,674	66,1	113,44	21,58			
6,03	6,171	67,8	110,63	14,34	5,31	6,108	66,7	122,29	20,98			
6,58	6,684	68,5	117,86	13,03	5,75	6,465	67,7	130,75	19,12			
7,11	7,051	69,1	124,06	11,73	6,23	6,929	68,2	139,12	17,55			
7,31	7,041	69,1	124,90	4,21	6,69	7,273	68,7	146,50	16,02			
					7,10	7,538	69,1	152,54	14,65			
					7,26	7,536	69,0	153,56	6,55			

TABELA D.7: Perfis Experimentais da concentração de metano(C_{CH4}), porcentagem de metano no "head-space" (%_{CH4}), volume de metano acumulado (V), velocidade de produção de metano (Vel) em dois ciclos da condição Pa75.

APÊNDICE E. Ensaio com impelidor tipo pá de pás planas inclinadas valores experimentais

Tabela E.1: Resultados Experimentais da concentração de matéria orgânica em termos de DQO (Caf), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais

(AVT) em amostras do afluente do ensaio com impelidor tipo pá de pás planas
inclinadas.

Ciclo	C_{AF}	nЦ	AP	AI	AT	AB	AVT
CICIO	$(mgDQO.l^{-1})$	pm		(mg	CaCO ₃ .	l^{-1})	(mgHAc.l ⁻¹)
2	769,0	8,45	192	54	247	223	33
7	753,4	8,73	192	56	248	224	33
12	750,9	8,71	195	56	251	227	35
17	735,2	8,84	195	56	251	224	38
22	723,5	8,94	189	59	248	222	37
25	768,3	9,12	195	53	248	221	38
28	759,7	8,8	188	57	245	218	38
31	774,6	8,75	186	59	245	219	37
34	761,5	8,75	202	56	258	232	36
42	727,8	8,74	191	56	247	219	38
45	817,7	9,1	195	56	251	224	39
48	784,1	8,72	195	59	254	228	37
53	715,4	8,5	191	56	247	221	36
58	783,9	8,56	192	54	247	221	36
62	756,0	8,68	195	57	253	226	37
67	731,7	8,81	192	65	257	229	40
70	755,2	8,89	198	56	254	226	39
73	775,4	8,68	201	61	262	233	41
76	756,8	8,25	253	65	318	297	29

Tabela E.2: Resultados Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}) e totais (C_{ST}), eficiência de remoção de matéria orgânica em termos de DQO para amostras filtradas (E_F) e totais (E_T) pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT) em amostras do efluente do com impelidor tipo pá de pás planas inclinadas.

Encoio	Ciclo	C _{SF}	C _{ST}	E _F	E _T	ъЦ	AP	AI	AT	AB	AVT
LIISalu		(mgD0	20.1^{-1})	(%	6)	- pm -		(mgCaC	$CO_3.1^{-1})$		$(mgHAc.l^{-1})$
	3	106,1	141,8	86,0	81,3	6,80	295	102	397	386	15
Pi50	6	110,8	122,8	85,4	83,8	6,80	295	112	406	396	15
	9	91,1	116,7	88,0	84,6	6,78	315	101	416	404	16
	12	92,9	123,8	87,7	83,7	6,73	295	124	419	407	17
	21	104,7	166,8	86,2	78,0	6,64	301	130	431	418	19
	24	111,9	146,0	85,2	80,7	6,77	304	101	405	392	18
	28	98,8	134,0	87,0	82,3	6,75	285	110	394	379	22
	30	98,3	150,3	87,0	80,2	6,83	293	101	394	381	18
	34	102,6	153,3	86,5	79,8	6,78	309	120	430	417	17
	42	97,0	156,7	87,2	79,3	6,81	295	112	406	396	15
	45	117,6	153,8	84,5	79,7	6,82	298	105	403	391	17
	48	107,3	146,3	85,8	80,7	6,75	292	110	402	390	16
	51	89,5	109,6	88,2	85,5						
	54	95,9	134,7	87,3	82,2						
	55					6,72	282	116	399	387	17
D:75	63	102,6	119,5	86,5	84,2	6,73	292	115	406	396	15
F1/J	66	95,4	125,5	87,4	83,4						
	67					6,83	292	116	408	398	14
	70	116,4	124,8	84,6	83,5	6,77	295	119	414	401	18
	73	89,8	129,4	88,2	82,9	6,77	298	120	418	404	20
	78	96,6	131,1	87,3	82,7	6,78	295	108	403	390	18
	84	89,5	118,6	88,2	84,4	6,78	304	108	412	400	16

	Tempo		Aflu	iente		Efluente				
Ensaio	rempo	ST	SVT	SST	SSV	ST	SVT	SST	SSV	
	(ciclo)	$(mg.l^{-1})$								
	3	1590	886	36	36	998	366	52	52	
	9	1652	858	46	34	1106	320	70	64	
Pi50	21	1502	822	54	54	986	316	86	86	
	33	1630	858	26	18	1054	304	60	60	
	45	1698	866	50	42	1126	320	86	60	
	51	1606	884	60	34	1100	364	110	76	
	66	1514	784	44	32	1188	440	76	60	
Pi75	72	1576	818	36	32	1040	298	52	44	
	3	1590	886	36	36	998	366	52	52	
	9	1652	858	46	34	1106	320	70	64	

Tabela E.3: Resultados experimentais da concentração de sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV) em amostras afluentes e efluentes coletadas durante o ensaio com impelidor tipo pá de pás planas inclinadas.

Tabela E.4: Perfis Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT)

			(Ciclo 28			Ciclo 34						
Tempo	C _{AF}	nН	AP	AI	AB	AVT	C _{AF}	nH _	AP	AI	AB	AVT	
(h)	$(mgDQO.l^{-1})$	pm		$(mgCaCO_3.l^{-1})$		$(mgHAc.l^{-1})$	$(mgDQO.1^{-1})$	pm		$(mgCaCO_3.l^{-1})$		(mgHAc.l ⁻¹)	
0	458,3	8,8	188	57	218	38	493,3	7,03	223	80	232	36	
0,33	374,8	6,98	221	86	283	33	452,0	6,88	220	87	281	31	
0,67	328,4	6,86	225	94			422,5	6,84	229	86	284	33	
1	292,8	6,78	220	107	299	40	365,7	6,84	226	98	292	32	
1,5	240,2	6,75	229	107	304	45	278,1	6,75	230	111	299	36	
2	204,1	6,77	243	108	322	41	236,3	6,72	244	114	315	37	
2,5	181,3	6,7	247	111	333	35	195,4	6,72	245	123	328	41	
3	161,8	6,75	258	115	345	39	162,2	6,73	255	122	337	42	
3,5	155,6	6,73	271	115	362	33	148,9	6,73	261	117	350	38	
4	128,1	6,76	273	114	364	32	133,8	6,71	271	111	354	34	
4,5	126,5	6,73	269	114	364	26	122,0	6,74	272	116	361	28	
5	120,0	6,74	278	111	371	25	121,6	6,74	268	122	372	23	
6	112,4	6,76	275	114	372	23	111,2	6,76	283	114	374	23	
7	102,8	6,77	278	116	378	23	99,6	6,73	276	123	381	21	
8	98,8	6,77	271	114	370	22	102,3	6,78	276	120	385	20	

durante a condição Pi50.

	C	iclo 25			Ciclo 31						
Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel	Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel		
(h)	$(mMol.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$	(h)	$(mMol.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$		
0,00	0,000	0,0	0	0,00	0,00	0,000	0,0	0,00	0,00		
0,50	0,299	51,6	8,32	16,71	0,48	0,283	50,4	9,02	18,85		
0,99	0,762	55,0	16,77	17,25	0,97	0,733	55,9	17,17	16,70		
1,37	1,270	57,7	25,32	22,18	1,36	1,219	59,5	25,46	20,97		
1,77	1,763	60,2	34,21	22,29	1,73	1,709	61,6	33,67	22,60		
2,13	2,440	63,4	42,46	22,80	2,09	2,283	63,0	42,08	23,35		
2,49	2,926	64,1	51,37	24,81	2,46	2,865	64,7	50,60	22,56		
2,88	3,404	65,0	59,62	21,21	2,84	3,319	66,4	59,34	22,98		
3,32	3,919	65,8	68,64	20,52	3,25	3,713	66,9	67,96	20,96		
3,82	4,389	66,6	78,12	18,88	3,69	4,192	67,6	76,87	20,50		
4,31	4,881	67,3	86,65	17,41	4,17	4,623	68,1	85,92	18,94		
4,82	5,542	67,3	94,77	15,92	4,86	5,326	68,6	97,92	17,30		
5,35	5,862	67,8	101,85	13,57	5,37	5,612	69,1	105,03	13,84		
5,87	5,849	68,3	108,68	13,12	5,89	6,007	69,3	111,51	12,55		
6,38	6,640	68,3	114,26	10,80	6,36	6,295	69,6	117,29	12,35		
6,80	6,770	68,4	118,80	10,79	6,74	6,552	69,8	121,67	11,44		
7,13	6,940	68,5	121,93	9,73	7,11	6,603	69,9	125,39	10,22		
7,30	6,720	68,9	122,12	1,11	7,30	6,665	70,0	126,60	6,29		

Tabela E.5: Perfis Experimentais da concentração de metano(C_{CH4}), porcentagem de metano no "head-space" (%_{CH4}), volume de metano acumulado (V), velocidade de produção de metano (Vel) em dois ciclos da condição Pi50.

Tabela E.6: Perfis Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (CSF), pH, Alcalinidade
Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT)

			(Ciclo 70			Ciclo 73						
Tempo	C _{AF}	nН	AP	AI	AB	AVT	C _{AF}	nH _	AP	AI	AB	AVT	
(h)	(mgDQO.1 ⁻¹)	pn		$(mgCaCO_3.l^{-1})$		(mgHAc.l ⁻¹)	$(mgDQO.l^{-1})$	pri –		$(mgCaCO_3.l^{-1})$		(mgHAc.l ⁻¹)	
0	426,6	6,98	241	93	311	32	423,3	6,97	234	90	300	34	
0,33							313,0	6,83	236	112	316	45	
0,67	294,7	6,74	243	115	323	49	258,8	6,77	239	116	322	47	
1	247,8	6,75	251	117	333	48	229,7	6,76	250	122	338	50	
1,5	202,8	6,76	258	123	350	44	186,6	6,76	263	120	355	39	
2	179,5	6,75	280	122	378	34	164,1	6,77	270	121	366	36	
2,5	161,2	6,77	276	122	379	27	137,6	6,81	283	115	377	29	
3	138,5	6,8	286	112	384	21	126,9	6,82	284	114	381	25	
3,5	135,0	6,77	285	122	390	23	110,4	6,81	289	114	389	20	
4	125,9	6,77	288	120	393	21	108,3	6,85	295	115	394	21	
4,5	125,7	6,78	283	125	393	21	108,8	6,84	300	113	400	18	
5	109,7	6,76	294	117	395	23	107,6	6,8	296	114	395	21	
6	114,5	6,8	293	119	399	18	103,8	6,81	300	110	398	18	
7	112,9	6,78	299	119	403	20	95,6	6,79	299	122	407	20	
8	116,4	6,77	295	119	401	18	89,8	6,77	298	120	404	20	

durante a condição Pi75.

	C	iclo 67			Ciclo 79						
Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel	Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel		
(h)	$(mMol.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$	(h)	$(mMol.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$		
0,00	0,000	0,0	0	0,00	0,00	0,000	0,0	0,00	0,00		
0,38	0,226	45,2	7,49	19,90	0,42	0,252	49,3	8,63	20,38		
0,77	0,635	51,3	15,43	20,31	0,87	0,756	55,6	18,17	21,48		
1,15	0,971	55,7	24,52	23,63	1,25	1,262	58,6	28,13	26,29		
1,51	1,682	58,6	34,19	27,29	1,59	1,799	61,2	37,74	27,67		
1,80	2,248	62,1	42,85	29,10	1,90	2,431	64,2	46,28	27,85		
2,12	2,747	63,2	51,62	28,03	2,13	2,765	65,4	52,38	27,16		
2,48	3,325	64,5	61,59	27,18	2,45	3,279	66,3	61,06	26,36		
2,84	3,778	65,6	70,74	25,77	2,87	3,857	67,3	71,38	24,62		
3,20	4,262	66,3	79,58	24,37	3,23	4,237	68,1	79,82	23,51		
3,61	4,749	67,0	88,95	22,79	3,69	4,761	68,7	89,57	21,35		
4,03			97,31	20,03	4,08	5,125	69,1	96,99	18,98		
4,52			105,87	17,48	4,53	5,469	69,4	104,89	17,40		
5,02			113,87	15,92	5,05	5,849	69,7	113,16	16,09		
5,53			121,08	14,30	5,59	6,176	69,7	120,60	13,86		
6,08			127,91	12,32	6,05	6,511	69,5	126,55	12,68		
6,60			133,94	11,57	6,61	6,750	69,8	132,83	11,28		
7,12			138,85	9,51	7,09	6,971	69,8	137,89	10,50		
7,29			139,57	4,30	7,26	6,860	69,8	138,72	4,85		

Tabela E.7: Perfis Experimentais da concentração de metano(C_{CH4}), porcentagem de metano no "head-space" (%_{CH4}), volume de metano acumulado (V), velocidade de produção de metano (Vel) em dois ciclos da condição Pi75.

APÊNDICE F. Ensaio com impelidor tipo pá de pás planas inclinadas e tubo de tiragem – valores experimentais

TABELA F.1: Resultados Experimentais da concentração de matéria orgânica em termos de DQO (C_{af}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT) em amostras do afluente do ensaio com impelidor tipo pá inclinada com tubo de

			υ				
Ciclo	C_{AF}	pН	AP	AI	AT	AB	AVT
	$(mgDQO.l^{-1})$	_	(mgCa	aCO _{3.} 1 ⁻	¹)	(mgHAc.l ⁻¹)
2	834,8						
7	775,7	8,82	203	54	257	235	31
10	811,1	8,98	203	57	260	235	35
15	776,2	8,81	176	51	228	201	38
20	777,8						
27	813,8	8,95	189	51	240	215	35
30	795,3	8,97	196	45	241	214	38
33	751,6	9	195	49	244	218	36
38	823,2						
42	773,9	8,98	194	54	247	226	30
47	814,5	9,08	184	52	237	214	31
52	769,4	8,93	184	54	238	208	42
59	782,6	9,07	196	52	248	224	34
63	869,7	8,99	188	54	242	219	32
66	739,2	8,87	186	56	242	215	39
69	859,0	9,17	199	52	251	224	38
72	775,1	8,75	203	49	252	226	36
77	747,7	8,9	188	51	238	211	38
82	801,7	8,93	192	49	242	214	38

tiragem.

TABELA F.2: Resultados Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}) e totais (C_{ST}), eficiência de remoção de matéria orgânica em termos de DQO para amostras filtradas (E_F) e totais (E_T) pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT) em amostras do efluente do com impelidor tipo pá de pás inclinadas e reator utilizando tubo de tiragem

Encoio	Ciala	C _{SF}	C _{ST}	$E_{\rm F}$	E _T	лЦ	AP	AI	AT	AB	AVT
Elisaio		(mgD0	$QO.l^{-1}$)	(4	%)	рп –		(mgCaC	$CO_3.l^{-1}$)		$(mgHAc.l^{-1})$
	3	143,8	183,1	81,9	183,1	6,92	334	83	417	404	18
	6	127,9	165,0	83,9	165,0	6,87	311	102	412	401	16
	9	125,3	138,7	84,2	138,7	6,89	301	93	394	382	17
	11	131,6	144,7	83,4	144,7	6,90	306	92	397	385	17
	20	134,1	160,2	83,1	160,2	6,86	297	107	404	388	22
D4100	23	121,2	136,5	84,7	136,5						
P0100	24					6,84	268	102	371	361	14
	27					6,87	290	95	385	372	19
	29	126,8	151,3	84,0	151,3						
	30					6,86	285	96	381	366	21
	33	111,6	143,8	85,9	143,8	6,86	275	104	379	364	21
	42	121,4	145,9	84,7	145,9	6,81	280	107	387	376	16
	44	104,8	137,0	86,8	137,0	6,79	277	105	383	374	12
	45					6,77	276	110	386	376	14
	47	121,3	156,5	84,7	156,5	6,78	279	104	383	373	14
	51	105,8	137,2	86,7	137,2	6,73	262	116	378	368	14
	53	129,7	149,3	83,7	149,3	6,73	270	110	380	370	14
	62	117,9	145,4	85,2	145,4						
Pd120	63					6,84	289	103	393	383	13
	65	104,2	118,4	86,9	118,4						
	68	117,3	131,7	85,2	131,7						
	69					6,86	302	86	388	374	19
	72	108,3	123,3	86,4	123,3						
	74	116,4	133,7	85,3	133,7	6,99	297	92	389	380	13
	83	109,1	126,6	86,3	126,6	6,80	288	105	393	381	17

	Tempo		Aflu	iente			Eflu	lente	
Ensaio	rempo	ST	SVT	SST	SSV	ST	SVT	SST	SSV
	(ciclo)	$(mg.l^{-1})$							
	6	1604	826	64	62	1002	266	110	108
B 1400	10	1612	860	40	26	1124	404	72	50
Pd100	23	1590	878	34	22	1004	382	60	40
	29	1760	950	30	20	1146	376	62	48
	44	1484	898	36	32	1112	368	78	64
	53	1370	908	22	22	1046	378	76	76
	65	1566	880	44	46	1012	326	50	50
Pd120	71	1622	890	50	40	1102	382	74	72
	6	1604	826	64	62	1002	266	110	108
	10	1612	860	40	26	1124	404	72	50

TABELA F.3: Resultados experimentais da concentração de sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV) em amostras afluentes e efluentes coletadas durante o ensaio utilizando impelidor tipo pá de pás planas inclinadas e reator utilizando tubo de tiragem.

TABELA F.4: Perfis Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT) durante a condição Pd100.

			(Ciclo 27						Ciclo 33		
Tempo (h)	C_{AF}	pH -	AP	$\frac{\text{AI}}{(\text{mgCaCO}_2 \Gamma^1)}$	AB	$\frac{\text{AVT}}{(\text{mgHAc } \Gamma^1)}$	C_{AF}	pH –	AP	AI (mgCaCO ₂ L^1)	AB	$-$ AVT $(mgHAc I^{1})$
0	445.7	7.26	210	74	263	28	485.2	6.81	206	<u>67</u>	250	32
0,33	301,2	6,86	230	97	297	42	269,2	7,21	220	110	299	43
0,67	256,0	6,81	243	106			234,6	7,69	233	112	310	48
1	223,2	6,83	243	104	314	46	204,9	8,13	245	115	330	43
1,5	207,7	6,82	250	105	331	35	187,2	8,57	245	115	336	34
2	172,6	6,84	267	102	350	27	155,6	8,57	258	108	346	28
2,5	155,3	6,86	262	98	346	21	140,7	9,01	263	107	354	22
3	150,5	6,84	268	98	355	15	130,4	9,19	264	106	359	15
3,5	130,9	6,85	278	93	360	15	126,7	9,23	268	107	365	13
4	137,7	6,84	280	98	367	15	113,4	9,35	268	105	360	18
4,5	131,1	6,87	281	99	370	14	120,0	9,37	268	108	362	19
5	141,6	6,87	279	98	365	15	119,1	9,37	272	108	366	19
6	131,3	6,88	280	93	361	19	108,7	9,49	270	103	359	19
7	137,3	6,86	281	96	362	21	111,3	9,42	283	106	375	19
8	116,2	6,87	290	95	371	19	111,6	9,88	275	104	364	21

	С	iclo 24					Ciclo 30		
Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel	Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel
(h)	$(\mathrm{mMol}.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$	(h)	$(\mathrm{mMol}.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$
0,00	0,000	0,0	0,0	0,00	0,00	0,000	0,0	0,0	0,00
0,40	0,184	37,2	7,1	17,56	0,36	0,273	51,0	8,6	24,22
0,75	0,500	44,9	14,6	21,59	0,75	0,607	51,0	17,7	22,79
1,11	0,946	50,7	23,5	25,25	1,12	1,075	55,4	27,4	27,00
1,38	1,321	54,5	31,2	28,54	1,42	1,580	58,9	36,5	29,50
1,67	1,844	58,0	39,7	28,81	1,70	2,065	61,5	45,1	30,78
1,96	2,479	61,8	48,3	29,54	1,98	2,694	64,8	54,1	31,93
2,26	2,991	63,8	57,0	28,82	2,29	3,248	66,4	63,6	31,60
2,58	3,478	65,3	66,0	28,34	2,54	3,649	67,4	71,9	31,77
3,01	4,106	66,9	76,7	24,51	2,84	4,175	68,4	80,6	28,95
3,42	4,569	67,6	85,1	20,98	3,15	4,580	69,0	88,7	26,86
3,91	5,124	68,2	93,4	16,91	3,52	5,042	69,6	97,3	22,75
4,42	5,451	68,7	100,9	14,55	3,95	5,461	70,0	105,6	19,68
4,94	5,825	69,0	107,3	12,30	4,38	5,723	70,2	113,3	17,71
5,45	6,112	69,1	112,7	10,59	4,89	6,183	70,5	121,1	15,30
5,96	6,223	69,3	117,5	9,50	5,44	6,573	70,5	128,3	13,04
6,57	6,605	69,5	122,4	7,99	6,05	6,958	70,6	135,5	11,87
7,09	6,788	69,6	126,8	8,51	6,65	7,240	70,7	141,8	10,50
7,26	6,834	69,6	126,9	0,56	7,14	7,386	70,8	146,6	9,67
					7,28	7,356	70,8	146,6	0,00

TABELA F.5: Perfis Experimentais da concentração de metano(C_{CH4}), porcentagem de metano no "head-space" ($\%_{CH4}$), volume de metano acumulado (V), velocidade de produção de metano (Vel) em dois ciclos da condição Pd100.

TABELA F.6: Perfis Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT) durante a condição Pd120.

			(Ciclo 66						Ciclo 72		
Tempo (h)	C_{AF} (mgDQO. l^{-1})	pH -	AP	AI (mgCaCO ₃ . l^{1})	AB	$\frac{\text{AVT}}{(\text{mgHAc}.l^{1})}$	C_{AF} (mgDQO. l^{-1})	pH –	AP	AI (mgCaCO ₃ . l^{1})	AB	$\frac{\text{AVT}}{(\text{mgHAc}.l^{1})}$
0	358,2	7,17	211	78	264	35	368,9	7,05	236	79	292	31
0,33	252,7	6,75	223	114	304	47	236,8	6,83	238	104	308	47
0,67	228,2	6,73	231	119			208,7	6,84	260	99	325	49
1	200,2	6,75	247	112	329	42	202,4	6,87	266	99	337	39
1,5	165,4	6,72	253	111	341	33	183,6	6,84	261	105	345	30
2	143,8	6,77	273	105	359	26	135,6	6,81	273	105	359	26
2,5	121,9	6,79	285	96	365	23	128,6	6,87	279	95	357	25
3	128,4	6,77	268	104	357	21	117,1	6,83	282	96	363	22
3,5	118,9	6,82	276	99	360	22	114,7	6,87	276	102	365	18
4	111,8	6,83	281	97	363	21	116,0	6,86	279	102	367	21
4,5	107,5	6,84	269	100			110,3	6,88	281	103	372	17
5	118,7	6,85	273	106	363	22	106,3	6,87	282	102	370	20
6	121,1	6,86	282	95	364	18	108,5	6,89	280	106	369	24
7	104,8	6,88	304	86	376	21	105,2	6,9	254	135	375	19
8	104,2	6,94	292	94			108,3	6,9	282	382		

	1	Ciclo					Ciclo		
Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel	Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel
(h)	$(\mathrm{mMol}.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$	(h)	$(\mathrm{mMol}.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$
0,00	0,000	0,0	0,0	0	0,00	0,000	0,0	0,0	0,00
0,54	0,339	42,2	9,1	16,84	0,41	0,176	37,6	9,4	22,87
0,87	0,766	50,8	17,4	24,79	0,79	0,546	47,2	17,7	21,90
1,21	1,277	54,4	27,4	29,80	1,12	0,960	52,6	26,2	25,36
1,48	1,789	58,1	36,3	33,18	1,45	1,453	57,0	35,5	28,21
1,75	2,491	62,2	46,4	36,93	1,75	1,990	60,3	44,7	30,84
2,00	2,922	63,8	55,8	38,43	2,06	2,687	64,1	54,4	31,51
2,32	3,585	65,0	65,5	30,23	2,33	3,186	65,8	62,2	29,08
2,69	4,089	66,7	73,9	22,76	2,64	3,818	66,7	70,9	28,18
3,14	4,616	67,5	82,0	18,11	3,04	4,249	68,3	80,6	24,31
3,67	5,073	67,8	90,3	15,69	3,42	4,754	68,9	88,8	21,24
4,17	5,441	68,5	97,5	14,12	3,86	5,128	69,0	96,2	16,85
4,74	5,899	68,6	104,4	12,26	4,35	5,499	69,8	103,7	15,43
5,26	6,124	68,7	110,3	11,13	4,86	5,901	69,9	110,8	13,71
5,80	6,367	68,8	115,7	10,03	5,36	6,262	70,1	116,2	10,99
6,31	6,516	69,2	120,1	8,77	5,91	6,534	70,2	120,8	8,46
6,77	6,701	69,1	123,8	7,89	6,43	6,801	70,3	125,8	9,43
7,12	6,779	69,5	126,2	7,05	6,83	6,901	70,3	129,2	8,53
7,30	6,768	69,4	126,6	2,11	7,14	7,148	70,4	131,1	6,38
					7,32	7,080	70,5	131,4	1,28

TABELA F.7: Perfis Experimentais da concentração de metano(C_{CH4}), porcentagem de metano no "head-space" (%_{CH4}), volume de metano acumulado (V), velocidade de produção de metano (Vel) em dois ciclos da condição Pd120.

APÊNDICE G. Ensaio com impelidor tipo hélice – valores experimentais

TABELA G.1: Resultados Experimentais da concentração de matéria orgânica em termos de DQO (C_{af}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT) em amostras do afluente do ensaio com impelidor tipo hélice

Ciclo	C_{AF}	pН	AP	AI	AT	AB	AVT
	$(mgDQO.l^{-1})$	_	(mg	gCaC	$O_3.1^{-1})$		(mgHAc.l ⁻¹)
3	896,3	8,9	195	55	250	224	37
6	821,5	9,01	187	31	218	189	41
9	691,3	8,8	187	44	231	201	42
14	741,7	9,04	191	48	239	204	48
19	722,7	8,99	198	44	242	206	51
22	838,3	8,93	200	44	244	208	51
31	819,4	8,71	200	61	261	232	40
34	730,9	8,98	205	56	261	232	41
39	758,3	8,77	213	49	262	229	46
43	735,8	8,87	193	43	235	206	42
48	791,5	8,8	194	46	241	208	45
61	730,6	8,76	190	51	241	216	35
64	770,2	8,77	196	49	245	221	34
67	766,0	8,82	199	47	247	224	32
70	834,7	8,56	189	52	242	215	37
73	787,5	8,61	199	52	251	226	35
82	795,9	8,91	196	47	243	217	37

TABELA G.2: Resultados Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}) e totais (C_{ST}), eficiência de remoção de matéria orgânica em termos de DQO para amostras filtradas (E_F) e totais (E_T) pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT) em amostras do efluente do com impelidor tipo hélice.

Condição	Ciclo	C _{SF}	C _{ST}	E _F	E _T	nH _	AP	AI	AT	AB	AVT
Collulção	CICIO -	(mgD0	$QO.1^{-1})$	(%	%)	- pm		(mgCaC	$CO_3.1^{-1})$		(mgHAc.l ⁻¹)
	3	116,1	135,6	85,0	82,5	6,73	279	94	372	360	17
	4	121,1	136,5	84,4	82,4						
	6	134,2	152,0	82,7	80,4	6,88	292	80	372	356	22
	9	108,6	136,6	86,0	82,4	6,88	284	78	363	347	23
	19	118,9	152,1	84,7	80,4						
He70	21	134,2	154,0	82,7	80,2	7,01	333	63	396	375	29
	24	122,1	148,7	84,3	80,8						
	31	111,5	149,0	85,6	80,8	6,76	299	124	423	406	24
	34	121,4	169,7	84,4	78,1	6,82	315	111	425	408	24
	39	145,2	182,6	81,3	76,5	6,78	322	112	433	414	27
	42	134,3	172,9	82,7	77,7	6,77	298	89	387	370	24
	45	111,2	166,5	85,7	78,5	6,85	296	93	389	372	24
	48	115,5	142,8	85,1	81,6	6,75	289	100	389	375	20
	61	123,6	143,8	84,1	81,5	6,79	267	90	357	344	18
	64	121,1	144,8	84,4	81,3	6,84	274	90	364	352	16
He100	67	118,9	145,8	84,7	81,2						
	70	114,1	146,8	85,3	81,1	6,79	291	113	404	391	18
	73	111,3	147,8	85,7	81,0	6,72	283	116	399	387	17
	81	115,0	131,8	85,2	83,0	6,85	288	78	365	351	21
	84	110,9	141,0	85,7	81,8	6,85	291	76	367	355	17

	Tampo		Aflu	ente			Eflu	ente	
Condição	Tempo	ST	SVT	SST	SSV	ST	SVT	SST	SSV
	(ciclo)	$(mg.l^{-1})$							
	5	1344	708	126	122	1012	340	26	20
He100	21	1466	724	96	80	1018	264	16	6
110100	31	1430	744	50	48	968	272	14	14
	42	1478	764	72	66	998	318	30	24
	48	1526	850	66	66	1050	422	24	24
He120	66	1552	824	76		1050	338	32	22
	84	1410	724	30	24	922	216	50	50

TABELA G.3: Resultados experimentais da concentração de sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV) em amostras afluentes e efluentes coletadas durante o ensaio executado com impelidor tipo hélice.

TABELA G.4: Perfis Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais

			(Ciclo 31						Ciclo 34		
Tempo	C _{AF}	nH -	AP	AI	AB	AVT	C _{AF}	nH –	AP	AI	AB	AVT
(h)	$(mgDQOl^{-1})$	P		$(mgCaCO_3.l^{-1})$		$(mgHAc.l^{-1})$	$(mgDQO.l^{-1})$	P		$(mgCaCO_3.1^{-1})$		$(mgHAc.l^{-1})$
0	449,1	6,97	237	89	300	36	439,6	6,98	237	87	300	34
0,33	313,9	6,84	239	100	308	43	361,5	6,9	247	95	309	45
0,67	272,7	6,82	251	103	323	44	312,5	6,8	241	105	314	45
1	261,3	6,78	257	104	327	47	284,7	6,8	251	110	329	45
1,5	231,0	6,79	268	124	359	45	278,5	6,79	273	113	355	45
2	209,4	6,81	278	107	357	39	221,5	6,79	269	117	358	40
2,5	187,9	6,79	282	108	364	37	178,2	6,78	274	114	364	34
3	172,5	6,83	295	107	376	36	170,4	6,85	296	108	381	33
3,5	157,6	6,81	293	110	379	34	154,8	6,8	304	100	382	30
4	144,2	6,77	285	118	384	27	150,6	6,87	308	101	388	30
4,5	154,4	6,76	298	115	395	26	149,0	6,82	320	103	-	-
5	133,8	6,75	280	123	386	23	137,5	6,79	310	105	398	24
6	137,0	6,71	299	130	411	24	128,5	6,81	323	99	405	24
7	129,2	6,73	301	122	407	22	109,6	6,81	323	109	414	24
8	111,5	6,76	300	123	406	24	121,4	6,82	315	111	410	21

(AVT) durante a condição He70.

	С	iclo 19				Ci	clo 25		
Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel	Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel
(h)	$(\mathrm{mMol}.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$	(h)	$(\mathrm{mMol}.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$
0,00	0,000	0,0	0,0	0,0	0,00	0,000	0,0	0,0	0,0
0,50	0,250	53,6	8,0	15,9	0,38	0,179	50,6	8,0	21,2
0,94	0,663	58,5	15,4	17,0	0,81	0,604	58,0	16,5	19,7
1,37	1,195	61,2	24,3	20,5	1,16	1,068	61,9	24,0	21,2
1,75	1,697	63,1	33,0	23,4	1,55	1,592	63,6	33,1	23,7
2,24	2,429	65,9	44,5	23,1	1,90	2,097	65,0	42,1	25,5
2,57	2,806	66,2	52,0	22,9	2,22	2,580	66,2	50,1	24,9
2,88	3,224	67,0	59,3	23,2	2,56	3,066	67,6	58,5	24,6
3,25	3,652	67,5	67,4	21,9	2,91	3,545	68,3	66,8	23,9
3,58	3,982	67,9	74,4	21,2	3,26	3,922	68,8	74,6	22,3
3,96	4,304	69,0	81,8	19,5	3,63	4,273	69,0	82,6	21,6
4,35	4,721	68,8	89,0	18,6	4,05	4,707	69,4	90,6	19,0
4,89	5,045	69,3	98,0	16,4	4,48	5,083	69,5	98,6	18,6
5,40	5,582	69,2	105,8	15,4	4,99	5,462	70,0	107,5	17,5
5,93	5,929	69,3	112,9	13,7	5,51	5,849	70,1	115,8	15,8
6,45	6,143	69,8	119,6	12,8	6,04	6,116	70,1	122,7	13,2
7,10	6,573	69,5	126,7	11,0	6,55	6,423	70,1	129,2	12,7
7,29	6,619	69,6	127,9	6,2	7,08	6,711	70,1	135,2	11,4
					7,31	6,791	70,2	137,0	7,7

TABELA G.5: Perfis Experimentais da concentração de metano(C_{CH4}), porcentagem de metano no "head-space" (%_{CH4}), volume de metano acumulado (V), velocidade de produção de metano (Vel) em dois ciclos da condição He70.

			(Ciclo 31			Ciclo 34						
Tempo	C _{AF}	nЦ	AP	AI	AB	AVT	C _{AF}	nЦ	AP	AI	AB	AVT	
(h)	$(mgDQO.l^{-1})$	pri –		$(mgCaCO_3.l^{-1})$		$(mgHAc.l^{-1})$	$(mgDQO.l^{-1})$	pri –		$(mgCaCO_3.l^{-1})$		$(mgHAc.l^{-1})$	
0	445,7	7,02	234	76	288	30	405,0	6,9	225	86	289	30	
0,33	333,6	6,87	238	94	305	37	303,3	6,79	222	102	299	37	
0,67	262,4	6,8	238	102	314	37	248,8	6,75	228	114	315	38	
1	219,4	6,78	242	113	325	41	221,5	6,76	260	111	345	37	
1,5	187,2	6,8	273	99	348	34	168,1	6,75	253	117	347	32	
2	161,1	6,8	262	108	350	29	162,9	6,73	257	112	349	27	
2,5	147,1	6,76	269	106	358	24	146,1	6,74	259	114	356	23	
3	126,8	6,77	282	107	374	22	165,8	6,71	268	118	371	21	
3,5	121,4	6,78	282	104	372	18	131,3	6,73	267	113	368	18	
4	104,3	6,79	281	107	376	17	117,4	6,72	275	112	371	21	
4,5	105,7	6,81	295	104	385	19	115,4	6,72	276	120	-	-	
5	109,2	6,79	277	114	376	20	134,2	6,75	270	119	374	21	
6	103,0	6,79	292	105	385	17	117,5	6,74	276	124	387	18	
7	102,7	6,77	281	111	381	16	115,0	6,69	265	127	380	16	
8	114,1	6,79	291	113	391	18	111,3	6,72	283	116	387	17	

TABELA G.6: Perfis Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais

(AVT) durante a condição He100.

	С	iclo 64				(Ciclo 67		
Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel	Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel
(h)	$(\mathrm{mMol}.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$	(h)	$(\mathrm{mMol}.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$
0,00	0,000	0,0	0,0	0,0	0,00	0,000	0,0	0,0	0,0
0,22	0,083	39,7	4,4	20,2	0,43	0,229	49,7	8,4	19,5
0,66	0,480	52,4	12,0	17,3	0,85	0,644	54,6	17,0	20,6
1,12	1,098	58,9	22,2	22,3	1,22	1,514	66,3	25,9	23,7
1,49	1,635	62,1	31,6	25,0	1,57	1,676	62,3	34,8	25,4
1,83	0,000	0,0	40,4	26,2	1,91	2,170	64,2	43,3	25,8
2,15	2,663	66,6	48,7	25,7	2,25	2,858	66,6	52,3	25,8
2,47	3,143	67,5	57,1	26,2	2,58	3,306	67,3	60,5	24,8
2,86	3,627	68,4	66,4	24,4	2,98	3,837	67,8	69,8	23,1
3,21	4,097	69,0	74,8	23,4	3,37	4,268	68,3	77,8	21,1
3,61	4,502	69,1	82,9	20,6	3,77	4,613	69,0	85,2	18,6
4,05	4,933	69,9	90,9	18,2	4,20	4,990	69,4	93,1	18,3
4,54	5,322	70,2	98,9	16,2	4,73	5,401	70,8	101,8	16,2
5,04	5,709	70,4	106,4	15,0	5,26	5,879	69,9	109,6	14,8
5,57	6,170	70,4	112,9	12,4	5,80	6,144	69,8	116,7	13,1
6,13	6,353	70,9	119,5	11,7	6,22	6,347	69,9	121,6	11,7
6,69	6,682	71,1	125,2	10,2	6,84	6,578	70,1	128,4	11,0
7,09	6,879	71,0	129,1	9,7	7,12	6,826	69,9	131,2	10,0
7,27	6,923	70,8	129,9	4,2	7,29	6,779	70,1	132,2	5,6

TABELA G.7: Perfis Experimentais da concentração de metano(C_{CH4}), porcentagem de metano no "head-space" (%_{CH4}), volume de metano acumulado (V), velocidade de produção de metano (Vel) em dois ciclos da condição He100.

APÊNDICE H. Ensaio com impelidor tipo hélice e tubo de tiragem – valores experimentais.

TABELA H.1: Resultados Experimentais da concentração de matéria orgânica em termos de DQO (C_{af}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT) em amostras do afluente do ensaio com impelidor tipo hélice com tubo de

			tirage	em.			
Ciclo	C_{AF}	pН	AP	AI	AT	AB	AVT
	$(mgDQO.l^{-1})$		(mgCa	$ICO_3 l$	l)	$(mgHAc.l^{-1})$
6	759,7	8,7	201	47	248	221	38
10	746,9	8,81	194	54	248	219	41
18	808,8	8,94	201	49	250	223	38
22	814,1	8,85	199	49	248	220	39
25	770,7	8,77	196	54	250	220	41
28	813,5	8,84	198	57	255	223	44
31	776,6	8,82	213	50	262	239	32
37	755,1	8,7	204	80	283	259	35
42	787,6	8,85	200	55	255	228	38
47	774,6	8,65	190	60	250	225	35
52	754,9	8,3	195	60	255	228	39
56	783,4	8,86	197	57	254	226	40
61	796,4	8,81	193	60	254	231	31
74	759,8	8,58	188	64	252	225	39
79	817,8	8,8	190	62	252	226	36
84	682,3	8,9	201	49	250	223	38
87	810,0	8,85	199	55	254	227	39

TABELA H.2: Resultados Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}) e totais (C_{ST}), eficiência de remoção de matéria orgânica em termos de DQO para amostras filtradas (E_F) e totais (E_T) pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT) em amostras do efluente do com impelidor tipo hélice com tubo de tiragem

Encoio	Ciala	C _{SF}	C _{ST}	E_{F}	ET	ηU	AP	AI	AT	AB	AVT
Elisalo	Cicio -	(mgD0	20.1^{-1})	(9	%)	рп -		(mgCaC	$CO_3.l^{-1})$		(mgHAc.l ⁻¹)
	3	99,5	118,2	87,2	84,8	6,82	248	87	335	323	17
	6	110,7	126,6	85,7	83,7	6,82	292	111	402	390	17
	9	108,6	142,1	86,0	81,7	6,77	298	107	406	394	16
	19	115,6	129,6	85,1	83,3						
	22	102,5	116,9	86,8	84,9	6,78	302	106	407	396	16
U4100	24	107,8	117,2	86,1	84,9						
nu100	28	110,2	130,6	85,8	83,2	6,82	303	106	409	398	16
	31	97,0	115,0	87,5	85,2	6,84	299	115	414	396	26
	37	106,8	120,7	86,2	84,4	6,75	295	113	409	396	17
	46	106,2	117,1	86,3	84,9	6,80	302	108	410	400	14
	51	103,0	115,0	86,7	85,2						
	52					6,84	296	104	400	389	15
	54	100,3	116,0	87,1	85,1						
	56					6,90	306	108	413	402	16
	60	114,9	127,8	85,2	83,5						
	61					6,75	292	119	412	401	15
	68	112,1	116,2	85,6	85,0	6,75	289	108	397	384	18
Hd120	71	130,5	128,1	83,2	83,5						
	72					6,59	282	128	410	400	14
	75	112,5	117,1	85,5	84,9	6,67	279	133	412	401	16
	77	112,0	130,0	85,6	83,2	6,70	282	131	413	403	14
	84	126,2	130,2	83,7	83,2	6,93	305	106	411	400	16
	87	120,9	132,9	84,4	82,9	7,01	298	96	394	382	17

TABELA H.3: Resultados experimentais da concentração de sólidos totais (ST), sólidos voláteis totais (SVT), sólidos suspensos totais (SST) e sólidos suspensos voláteis (SSV) em amostras afluentes e efluentes coletadas durante o ensaio com impelidor tipo hélice e tubo de

	Tempo		Aflu	iente		Efluente				
Condição	Tempo	ST	SVT	SST	SSV	ST	SVT	SST	SSV	
	(ciclo)	$(mg.l^{-1})$								
	2	1392	690	22	18	976	310	52	52	
114100	7	1502	812	34	34	1064	358	60	56	
патоо	9	1648	960	44	20	1278	368	84	54	
	14	1656	930	36	20	1078	346	80	54	
	17	1442	774	46	48	1016	340	40	40	
114120	21	1648	950	24	24	1178	532	62	62	
Hd120	24	1644	894	24	22	1068	324	62	58	
	29	1366	822	18	20	1146	338	44	42	

tiragem.

TABELA H.4: Perfis Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT) durante a condição Hd100.

177

			(Ciclo 31			Ciclo 37						
Tempo	C _{AF}	nH -	AP	AI	AB	AVT	C _{AF}	nH –	AP	AI	AB	AVT	
(h)	$(mgDQOl^{-1})$	PII		$(mgCaCO_3.l^{-1})$		$(mgHAc.l^{-1})$	$(mgDQO.l^{-1})$	pm		$(mgCaCO_3.l^{-1})$		$(mgHAc.l^{-1})$	
0	378,0	6,97	237	90	308	28	435,2	6,95	240	90	310	27	
0,33	237,6	6,77	246	118	336	40	247,6	9,75	238	111	312	52	
0,67	204,9	6,77	257	117	346	40	214,7	9,76	257	110	339	38	
1	177,7	6,77	269	124	369	33	198,4	9,76	273	112	358	37	
1,5	149,3	6,85	281	107	373	21	167,9	6,8	278	110	368	29	
2	119,9	6,8	286	111	382	21	133,5	6,78	295	104	383	21	
2,5	122,9	6,8	299	110	398	16	127,5	6,81	291	101	379	18	
3	111,8	6,8	294	106	389	16	117,2	6,81	300	101	386	20	
3,5	120,6	6,78	291	112	392	16	131,3	6,82	298	99	384	18	
4	105,1	6,78	294	109	391	17	113,3	6,81	295	103	384	21	
4,5	102,2	6,81	295	110	393	17	118,1	6,83	310	101	399	18	
5	105,8	6,82	304	112	404	17	107,4	6,8	300	99	386	18	
6	96,8	6,81	302	103	392	17	103,6	6,76	268	134	390	17	
7	100,9	6,82	303	116			111,5	6,71	290	119	397	17	
8	97,0	6,84	299	114	395	26	106,8	6,75	295	113			

								-	
	С	iclo 28					Ciclo 34		
Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel	Tempo	C _{CH4}	$\%_{ m CH4}$	V	Vel
(h)	$(\mathrm{mMol}.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$	(h)	$(\mathrm{mMol}.l^{-1})$	(%)	(m <i>l</i>)	$(ml.h^{-1})$
0,00	0,000	0,0	0,0	0,00	0,00	0,000	0,0	0,0	0,00
0,33	0,061	35,1	8,2	25,27	0,35	0,110	30,1	7,6	21,86
0,67	0,634	49,8	18,3	29,40	0,66	0,477	46,3	15,0	23,92
0,98	1,266	56,6	29,0	34,22	0,95	0,940	53,0	23,5	29,17
1,24	1,771	60,0	38,6	37,54	1,23	1,488	58,2	32,8	33,18
1,60	2,677	63,8	52,7	38,66	1,52	2,059	61,6	43,0	34,81
1,88	3,237	65,4	62,5	35,62	1,75	2,577	64,8	51,1	35,50
2,13	3,730	66,5	70,9	32,92	1,99	3,117	66,2	59,6	35,26
2,42	4,300	67,7	79,5	30,26	2,26	3,682	67,4	68,6	33,82
2,70	4,583	67,7	86,7	25,64	2,52	4,068	68,5	76,9	31,69
3,08	5,005	68,0	95,6	23,11	2,81	4,558	69,1	85,3	29,06
3,57	5,480	68,2	104,7	18,74	3,17	5,051	69,6	94,3	24,74
4,05	5,916	68,3	112,9	17,06	3,55	5,520	69,9	102,1	20,99
4,59	6,272	68,4	121,0	14,89	3,97	5,770	70,4	109,9	18,35
5,13	6,469	68,5	127,2	11,62	4,48	6,167	70,4	117,7	15,43
5,70	6,733	68,6	133,3	10,50	5,02	6,601	70,3	125,1	13,71
6,24	7,161	68,6	139,0	10,74	5,52	6,774	70,6	130,3	10,33
6,57	7,225	68,6	142,5	10,51	6,05	7,079	70,6	135,9	10,31
6,98	7,399	68,7	146,6	9,89	6,62	7,319	70,7	141,1	9,15
7,21	7,462	68,7	147,5	4,25	7,12	7,460	70,7	145,3	8,59

TABELA H.5: Perfis Experimentais da concentração de metano(C_{CH4}), porcentagem de metano no "head-space" (%_{CH4}), volume de metano acumulado (V), velocidade de produção de metano (Vel) em dois ciclos da condição Hd100.

TABELA H.6: Perfis Experimentais da concentração de matéria orgânica em termos de DQO para amostras filtradas (C_{SF}), pH, Alcalinidade Parcial (AP), Alcalinidade Intermediária (AI), Alcalinidade Total (AT), Alcalinidade a Bicarbonato (AB) e Ácidos Voláteis Totais (AVT)

		(Ciclo 84			Ciclo 87						
Tempo	C_{AF}	ъЦ	AP	AI	AB	AVT	C_{AF}	ъЦ	AP	AI	AB	AVT
(h)	$(mgDQO.l^{-1})$	pm -		$(mgCaCO_3.l^{-1})$		$(mgHAc.l^{-1})$	$(mgDQO.l^{-1})$	pri –		$(mgCaCO_3.l^{-1})$		$(mgHAc.l^{-1})$
0	513,1	7,14	236	75	286	36	498,0	7,43	236	67	277	37
0,33	277,8	6,82	258	104	330	44	326,8	7,01	254	97	318	47
0,67	239,7	6,83	259	109	335	47	235,8	7,00	273	96	337	46
1	194,6	6,8	284	111	368	38	203,0	6,98	273	99	343	40
1,5	180,8	6,78	298	98	377	27	178,2	6,99	288	97	362	32
2	152,9	6,82	292	107	382	24	156,1	6,98	293	92	365	28
2,5	137,3	6,82	301	102	388	22	144,5	6,99	303	94	-	-
3	134,3	6,88	310	101			133,0	6,98	303	90	376	24
3,5	124,8	6,84	295	109	386	26	133,5	6,99	309	95	387	24
4	121,0	6,88	295	101	382	21	144,2	7,01	301	99	384	22
4,5	120,0	6,91	309	105	401	19	132,1	6,99	308	97	391	20
5	120,6	6,9	311	99	396	19	134,0	7,00	310	94	389	21
6	127,0	6,92	303	112	400	20	123,5	7,01	300	99	383	22
7	122,5	6,96	311	103	402	18	128,5	7,01	308	102	394	22
8	126,2	6,93	305	106	397	20	120,9	7,01	298	96	382	17

durante a condição Hd120.

TABELA H.7: Perfis Experimentais da concentração de metano(C_{CH4}), porcentagem de metano no "head-space" ($\%_{CH4}$), volume de metano acumulado (V), velocidade de produção de metano (Vel) em um ciclo da condição Hd120.

	Cic	lo 75		
Tempo	C _{CH4}	$\%_{\mathrm{CH4}}$	V	Vel
	(mMol. <i>l</i> ⁻			(m <i>l</i> .h ⁻
(h)	1)	(%)	(m <i>l</i>)	1)
0,00	0,000	0,0	0	0,00
0,30	0,229	42,1	8,6	29,27
0,57	0,772	54,3	17,8	32,92
0,91	1,116	55,5	25,8	23,83
1,27	1,668	59,3	35,9	28,23
1,58	2,316	63,3	46,6	33,99
1,88	2,924	65,3	56,4	33,23
2,17	3,437	66,7	66,5	34,29
2,45	4,004	67,8	75,5	31,77
2,75	4,369	68,6	83,7	27,60
3,07	4,815	68,9	90,9	22,63
3,44	5,321	69,1	99,0	21,93
3,88	5,767	69,3	107,0	18,40
4,40	6,040	69,5	115,4	16,07
4,94	6,490	69,5	123,1	14,26
5,45	6,706	69,5	130,0	13,32
5,95	6,977	69,5	134,3	8,70
6,48	7,160	69,5	138,8	8,53
7,09	7,541	69,5	143,7	7,98
7,27	7,338	69,3	144,0	2,02

APÊNDICE I. Ensaio de consumo de potência.

Tabela I.1: Resultados Experimentais do Número de Potência e do Número de Reynolds para impelidor tipo turbina de pás planas verticais (Tu), Turbina de pás planas inclinadas (Ti), pá de pás planas verticais (Pa), pá de pás planas inclinadas (Pi), hélice (He), pá de pás planas inclinadas e tubo de tiragem (Pd) e hélice e tubo de tiragem (Hd).

Do	Np	Pa			N	lp		
Ke	Tu	ĸe	Ti	Pa	Pi	He	Pd	Hd
21775	5,20	18404						
29033	4,88	24539						
36292	4,68	30674					0,95	0,48
43550	4,77	36809	1,65	4,29			0,99	0,33
50809	5,25	42944	1,94	4,36			0,97	0,48
58067	5,12	49079	2,23	5,57			1,11	0,37
65326	4,91	55214	2,49	5,13	1,03		1,32	0,44
		61349	2,61	5,82	0,95		1,19	0,48
		67484	2,85		1,18		1,28	0,39
		73619	2,80		1,15	0,25	1,24	0,33
		79754			1,34	0,28	1,27	0,35
		85889			1,45	0,36	1,27	0,42
		92024			1,43	0,37		
		98159			1,44	0,42		
		104294			1,44	0,45		