" 303-REPIDISCIA -+

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE HIDRÁULICA E SANEAMENTO

A INFLUÊNCIA DA ORIENTAÇÃO DO DUTO NO COEFICIENTE DE DESCARGA DE UM MEDIDOR DE VAZÃO TIPO ORIFÍCIO BIDIMENSIONAL

SELMA VARGAS DA SILVA

Dissertação apresentada à Escola de Engenharia de São Carlos, da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Mestre em Hidráulica e Saneamento.

ORIENTADOR: PROF. DOUTOR FAZAL HUSSAIN CHAUDHRY

São Carlos Estado de São Paulo Fevereiro de 1997

Ária Hidráulica e planeamento 311 000 16642 Class.<u>TESE-EESC</u> Cutt. <u>5529</u> Tombo 1109/97

st 0934430

4 ::

Ficha catalográfica preparada pela Seção de Tratamento da Informação do Serviço de Biblioteca - EESC-USP

S586i	Silva, Selma Vargas da A influência da orientação do duto no coeficiente de descarga de um medidor de vazão tipo orifício bidimensional / Selma Vargas da Silva São Carlos, 1997.
	Dissertação (Mestrado) Escola de Engenharia de São Carlos-Universidade de São Paulo, 1997. Área: Hidráulica e Saneamento Orientador: Prof. Dr. Fazal Hussain Chaudhry
	l. Coeficiente de descarga. 2. Orifício. 3. Cavitação. I. Título

L'INIVERSIDADE DE SÃO PAULO Escola de engeniiaria de são carlos

FOLHA DE APROVAÇÃO

Dissertação defendida e aprovada em 18-4-1997 pela Comissão Julgadora:

Prof. Titular FAZAL HUSSAIN CHAUDHRY (Orientador) (Escola de Engenharia de São Carlos - Universidade de São Paulo)

Prof. Doutor **RODRIGO DE MELO PORTO** (Escola de Engenharia de São Carlos - Universidade de São Paulo)

) Join Generes

Profa. Doutora ANA INÉS BORRI GENOVEZ (Universidade Estadual de Campinas - UNICAMP)

0

Prof. Dr. HARRY EDMAR SCHULZ Coordenador da Área de Hidráulica e Saneamento

JOSÉ CARLOS A. CINTRA Presidente da Comissão de Pós-Graduação Homenagem Especial :

Dedico este trabalho à minha família, em especial aos meus pais pelo apoio e carinho.

AGRADECIMENTOS

Ao prof. Dr. Fazal Hussain Chaudhry pela orientação e incentivo.

Ao prof. Dr. Harry Schulz pelas sugestões e interesse.

Ao prof. Paulo Pires pela obtenção das fotografias.

Às amigas Rumy e Silvana pelo incentivo e amizade.

À FAPESP, pelo financiamento para viabilização da pesquisa.

Ao CNPq, pela bolsa de pós graduação.

À oficina do Centro de Recursos Hídricos e Ecologia Aplicada (CRHEA) da USP.

Ao Sr.Osni Aparecido Rizato pela dedicação na instalação dos equipamentos no laboratório de Hidráulica do CHREA-USP.

Ao departamento de Hidráulica e Saneamento pelo apoio durante o desenvolvimento da pesquisa.

SUMÁRIO

Lista de figuras	i
Lista de tabelas	V
Lista de abreviaturas, siglas	vi
Lista de símbolos	vii
Resumo	X
Abstract	xi
Capítulo 1	1
1.Introdução	1
Capítulo 2	
2.Objetivos	
Capítulo 3	4
3. Revisão bibliográfica	4
3.1.Emprego de medido	or de vazão tipo orifício4
3.2. Trabalhos recentes	7
3.2.1.Coeficiente	de perda7
3.2.2.Coeficiente	de descarga19
3.2.3.Cavitação	
3.2.4.Regime lam	iinar40
3.2.5.Distribuição	de pressões e velocidades 43
3.2.6.Transporte	de sedimentos45
Capítulo 4	
4.Metodologia	

Capítulo 5	
5.Análise de resultados	
Capítulo 6	
6.Conclusão	

Anexo A	
Anexo B	
Anexo C	

Referência bibliográfica

r

LISTA DE FIGURAS

F-84
Figura 1 - Esboço para definição da equação de energia9
Figura 2 - Estudo comparativo de coeficientes de perda de orifícios e
bocais11
Figura 3 - Efeito de Rey nas características de orifícios de canto vivo e
β=0,60513
Figura 4 - Esquema generalizado de um medidor de fluido16
Figura 5 - Comparação de perda de carga para vários orifícios18
Figura 6 - Comparação de parâmetros de perda para vários orifícios 19
Figura 7 - Placa de orifícios e tomadas de pressão24
Figura 8 - Instalação experimental de Numachi et al25
Figura 9 - Relação entre o coeficiente de descarga (Cd) e o coeficiente
de
cavitação (σ)26
Figura 10 - Relação entre o coeficiente de descarga (Cd) número de
Reynolds (Rey)27
Figura 11 - Variação de Cd com σ para diferentes orifícios
Figura 12 - Determinação dos níveis de cavitação

「日本」の行

Ŵ

página

i

Figura 18 - Distribuição do vetor velocidade média segundo Morrison et
alii
Figura 19 - Variação de Cd com Rey para diferentes sentidos de fluxo47
Figura 20 - Esquema geral do circuito fechado de água50
Figura 21 - Tela de arame57
Figura 22 - Eixo de rotação58
Figura 23 - Caixa tranqüilizadora59
Figura 24 - Seção transversal do duto61
Figura 25 - Vista em planta do duto62
Figura 26 - Dispositivo de acrílico63
Figura 27 - Corte tridimensional do duto de acrílico com a placa de
orifício64
Figura 28 - Orifício bidimensional66
Figura 29 - Manômetro de água67
Figura 30 - Manômetro de mercúrio68
Figura 31 - Menu de calibração75
Figura 32 - Representação esquemática da montagem para medida da
concentração de ar76
Figura 33 - Determinação da voltagem de operação79
Figura 34 - Espectro do Césio
Figura 35 - Posições dos perfis de absorção da radiação gama83
Figura 36 - Variação de Cd com Rey para fluxo vertical ascendente
e $\beta = 0,384185$
Figura 37 - Variação de Cd com Rey para fluxo vertical descendente
e $\beta = 0,384186$
Figura 38 - Variação de Cd com Rey para fluxo horizontal

ii

1	
e $\beta = 0,3841$	
Figura 39 - Variação de Cd com Rey para fluxo	vertical ascendente
$e \beta = 0,4873$	
Figura 40 - Variação de Cd com Rey para fluxo	vertical descendente
$e \beta = 0,4873$	
Figura 41 - Variação de Cd com Rey para fluxo	horizontal
$e \beta = 0,4873$	
Figura 42 - Comparação de resultados	
Figura 43 - Variação de Cd com σ para fluxo ver	rtical ascendente
e $\beta = 0,3841$	94
Figura 44 - Variação de Cd com σ para fluxo ver	rtical descendente
e $\beta = 0,3841$	
Figura 45 - Variação de Cd com σ para fluxo ho	orizontal
e $\beta = 0,3841$	96
Figura 46 - Variação de Cd com σ para fluxo ve	ertical ascendente
e $\beta = 0,4873$	97
Figura 47 - Variação de Cd com σ para fluxo ve	ertical descendente
e $\beta = 0,4873$	
Figura 48 - Variação de Cd com σ para fluxo ho	orizontal
e beta = 0,4873	
Figura 49 - Leitura do acelerômetro versus o par	ra fluxo vertical
ascendente e $\beta = 0,3841$	
Figura 50 - Leitura do acelerômetro versus σ pa	ra fluxo vertical
descendente e $\beta = 0,3841$	
Figura 51 - Leitura do acelerômetro versus σ pa	tra fluxo horizontal e $\beta =$
0,3841	

iii

Figura 52 - Leitura do acelerômetro versus σ para fluxo vertical
ascendente e $\beta = 0,4873$ 104
Figura 53 - Leitura do acelerômetro versus σ para fluxo vertical
descendente e $\beta = 0,4873$ 105
Figura 54 - Leitura do acelerômetro versus σ para fluxo horizontal
e $\beta = 0,4873106$
Figura 55 - Avaliação gráfica da concentração de bolhas de ar para fluxo
vertical ascendente, β =0,3841, x=5cm e Rey = 36.019,79 108
Figura 56 - Avaliação gráfica da concentração de bolhas de ar para fluxo
vertical ascendente, β =0,3841, x=10cm e Rey =36.019,79 109
Figura 57 - Avaliação gráfica da concentração de bolhas de ar para fluxo
vertical ascendente, β =0,3841, x=5cm e Rey =73.186,17110
Figura 58 - Avaliação gráfica da concentração de bolhas de ar para fluxo

vertical ascendente, β =0,3841, x=10cm e Rey =73.186,17 ... 111

LISTA DE TABELAS

Tabela 1 - Valores médios de Cd para diferentes β e direções de flux	xo91
Tabela 2 - Vertical Ascendente, $\beta = 0,3841$	
Tabela 3 - Vertical Descendente, $\beta = 0,3841$	125
Tabela 4 - Horizontal, $\beta = 0,3841$	
Tabela 5 - Vertical Ascendente, $\beta = 0,4873$	129
Tabela 6 - Vertical Descendente, $\beta = 0,4873$	132
Tabela 7 - Horizontal, $\beta = 0,4873$	134

LISTA DE ABREVIATURAS E SIGLAS

AGA	American Gas Association.
ANSI	American National Standards Institute.
API	American Petroleum Institute.
ASME	American Society of Mechanical Engineers
CRHEA	Centro de Recursos Hídricos e Ecologia Aplicada
GPA	Gas Processors Association.
ISSO	International Standards Organization.
JES	Japanese Engineering Standard.
LDA	Lase Doppler Anemometer.
PASME	American Society of Mechanical Engineers Parameter.
PRFV	Plástico Reforçado com Fibra de Vidro.
SAPRA	Serviço de Assessoria e Proteção Radiológica.

LISTA DE SÍMBOLOS

- A área do duto (L^2)
- Ao área do orificio (L^2)
- Car concentração de bolhas de ar (**)
- Cc coeficiente de contração (**)
- Cd coeficiente de descarga (**)
- Cd:r coeficiente de descarga com correlação r/d (**)
- Cd:r,L coeficiente de descarga com correlações r/d e L/d (**)
- D diâmetro do duto (L)
- d diâmetro do orifício (L)
- f fator de atrito (**)
- g aceleração da gravidade (L/T^2)
- G excesso de perda de pressão como uma porcentagem de pressão diferencial através do medidor (**)
- h₁ excesso de perda de carga devido ao orificio (m.c.f.)
- Hj pressão a jusante do orifício (M/LT²)
- hm diferencial de pressão (M/LT²)
- Hm pressão a montante do orifício (M/LT²)
- hp carga de velocidade média u2/2g (m.c.f.)
- Hti carga total na seção i (m.c.f.)
- Htj carga total na seção j (m.c.f.)
- K coeficiente de perda de carga (**)
- Ki,j coeficiente de perda entre seções i e j (**)

- m razão de áreas = Ao/A(**)
- mf massa final (M)
- mi massa inicial (M)
- p1 pressão na seção 1 (M/LT²).
- P2 pressão estática na seção 2 (M/LT²)
- P3 pressão na seção 3 (M/LT²)
- Pd pressão a jusante (M/LT²)

Pdch=Pu- Δ Pch

- Pt₁ pressão total na seção $1 (M/LT^2)$
- Pt₄ pressão total na seção 4 (M/LT²)
- Pu pressão a montante(M/LT²)
- Pv pressão de vapor (M/LT^2)
- Q vazão (L^3/T)
- r raio de curvatura (L)
- Rey número de Reynolds (**).
- Rh raio hidráulico (L)
- Uo(12) velocidade no centro da seção localizada a uma distância de

12D a jusante do orificio (L/T)

- vd velocidade através do duto (L/T)
- Vk velocidade na seção k (L/T)
- Vo velocidade média através do orificio (L/T)
- x_1 distância axial da seção 1 (L)
- x_2 distância axial da seção 2 (L)
- Xar quantidade de ar (L)
- Xar+água quantidade de mistura de ar e água (L)
- Xr comprimento da região de recuperação de pressão (**)

- Xs comprimento da região de recuperação do campo de pressão (**)
- β razão de diâmetros (**)
- δ densidade (**)
- ΔP queda de pressão (M/LT²)

 ΔPch - queda de pressão quando ocorre cavitação "choked" (M/LT²)

- Δt intervalo de tempo (T)
- γ peso específico (M/L³)
- v viscosidade cinemática (T/L²)
- ρ massa específica (M/L³)
- σ coeficiente ou número de cavitação (**)
- σc coeficiente de cavitação crítica (**)
- σch coeficiente de cavitação "choked" (**)
- σi coeficiente de cavitação incipiente (**)

(**) - Adimensional.

RESUMO

O presente trabalho determina o comportamento do coeficiente de descarga de um medidor de vazão tipo orifício a respeito do sentido do escoamento em relação a gravidade. Um circuito hidráulico foi construído e montado no laboratório, para realização de ensaios com orifício bidimensional. Estes experimentos incluíam medidas de vazão, diferencial de pressão, aceleração e concentração de gás, a jusante do orifício para várias condições operacionais. Não foi encontrada nenhuma evidência clara do efeito da orientação do escoamento para um largo intervalo do número de Reynolds (Rey). As condições operacionais produzidas pelo aparato experimental, permitiram observar cavitação suave a moderada após orificio. A concentração das bolhas de cavitação variaram entre 3-7% para um coeficiente de cavitação (σ) entre 5-0,3. O coeficiente de descarga permaneceu praticamente constante no intervalo de σ analisado. Este estudo elucidou a questão da influência da orientação do escoamento no coeficiente de descarga apontados na literatura, para ensaios realizados com água.

x

ABSTRACT

This study determines the behavior of the discharge coefficient (Cd) of an orifice flow meter with respect to the orientation of flow in relation to gravity. A hydraulic circuit with a tilting duct was constructed and mounted in the laboratory, to conduct experiments with twodimensional orifice. These experiments included measurements of discharge, pressure differential, vibrational acceleration and gas phase concentration, downstream from the orifice for various operational conditions. No clear evidence of the effect of flow orientation on Cd was found of a large range of Reynolds number (Rey). The operational conditions produced by experimental apparatus, permitted observing light to moderate cavitation behind the orifice. The cavitation bubbles concentration varied between 3-7% for cavitation coefficient (σ) between 5-0,3. The discharge coefficient stayed practically constant in this range of σ . This investigation has elucidated the question of the influence of the flow orientation on the discharge coefficient raised in the literature, to experiments performed with water.

CAPÍTULO 1

1-INTRODUÇÃO

O medidor tipo orificio é a forma mais simples e talvez a mais antiga de se regular o escoamento dos fluidos. Atualmente grandes quantidades de materiais tais como água, óleo, gás, etc, estão sendo transportados através de tubulações. Sendo assim o controle do escoamento de tais fluidos requer uma grande precisão de medidas. O medidor tipo orifício também é o equipamento mais comumente usado para regular razões volumétricas de escoamento, e sua popularidade pode ser atribuída pela sua simplicidade e baixo custo de manutenção.

A maioria dos estudos, entretanto, se preocupa em determinar uma equação global para o coeficiente de descarga, mas o desenvolvimento de tal equação requer informações de gradientes de pressões nas proximidades do orifício. Há poucos estudos que focalizam a organização do escoamento logo a jusante do medidor. O campo de pressões próximo ao orifício poderá acarretar mudança no coeficiente de descarga, além de ocasionar formação de fases gasosas e cavitação. Os aspectos detalhados do escoamento nas proximidades do orifício podem explicar ainda a sensibilidade do coeficiente de descarga quanto ao efeito da orientação da tubulação. Há alguns estudos na literatura que apontam uma variação no coeficiente para escoamentos não horizontais, como vertical ascendente e descendente.

CAPÍTULO 2

2-OBJETIVOS

Este trabalho tem por objetivo estudar o escoamento a jusante de um medidor orificio bidimensional, com vistas a identificação dos agentes responsáveis pela dependência do coeficiente de descarga sobre a orientação do duto em relação a horizontal. Para tanto, fez-se uma visualização do escoamento na seção de observação em acrílico para altos valores de número de Reynolds, medidas do conteúdo gasoso na região de separação por meio de absorção de raios gama, determinação de níveis de cavitação por meio de um acelerômetro, além das medidas de vazão e pressão nas paredes do duto.

CAPÍTULO 3

3-REVISÃO BIBLIOGRÁFICA

3.1-EMPREGO DE MEDIDOR DE VAZÃO TIPO ORIFÍCIO

Os orificios circulares concêntricos representam um dispositivo de mais larga aplicação em engenharia. São utilizados com finalidade de medida de vazão, como regulador de escoamento em turbinas de aeronaves, como dispositivo de controle de pressão em instalações com componentes múltiplos e como obstáculo para introduzir perda de carga localizada. Independentemente do tipo de uso, há necessidade de se caracterizar o comportamento dos orificios quanto a relação entre a vazão e diferença de pressão, através de coeficientes de descarga e de perda de carga, a distribuição longitudinal de pressão e velocidade na tubulação, a distribuição de pressão e velocidade em diversas seções de escoamento, a ocorrência de cavitação e o seu efeito sobre os coeficientes de descarga e perda de carga.

Para medidas de vazão em instalações, utiliza-se os valores de coeficiente de descarga, determinados a partir de experimentos realizados

em laboratório, expressos (graficamente) em função de número de Reynolds e outros fatores que caracterizam as condições experimentais. A aplicação prática desta relação supõe que se empregando os orifícios com mesma forma geométrica sob condições similares, valem os coeficientes de descarga determinados em laboratório (Bogema et al. 1962).

Segundo estes autores, a similaridade das condições deve incluir não somente a similaridade das dimensões e formas do orifício e tubulação, como também a similaridade nos padrões de escoamento nas proximidades do orificio. O perfil de velocidade a montante do orificio é resultado da interação do fluido com o tipo de trecho percorrido, cujo comprimento deve portanto, representar uma das restrições para o emprego do orificio. Os obstáculos como cotovelos, válvulas, etc, causam vórtices e distorções no perfil de velocidade enquanto que os comprimentos retilíneos da tubulação tendem a promover 0 estabelecimento do perfil normal. Tendo em vista as condições acima, têm sido realizados estudos contínuos das características de medidores tipo orificio.

Apesar do uso generalizado dos medidores tipo orificio nos últimos 90 anos, o seu emprego data dos tempos dos romanos quando foram utilizados para distribuição de água dos aquedutos(Morrison et al.1990). Presume-se que a taxação pelo uso de água era baseada no tamanho dos orifícios. Estes eram circulares, com espessas paredes de bronze e selos oficiais, inseridos em tubulações principais para condução de água de abastecimento.

O embasamento histórico revela os progressos da mecânica dos fluidos, necessários para o uso das placas de orifício como medidor quantitativo de vazões.

Durante o século 17, Castelli e Torricelli desenvolveram o conceito de que a taxa de escoamento é igual a velocidade vezes a área da seção transversal do duto e a vazão através do orifício varia com a raiz quadrada da carga. Pitot apresentou seu artigo sobre o tubo de Pitot em 1732, e em 1738 Bernoulli apresentou a equação hidráulica para o cálculo de taxa de escoamento. A primeira aplicação registrada de um medidor de fluxo com diferença de pressão data de 1887 (segundo Miller 1983 e ASME Research Committee on Fluid Meters 1961), quando Herschel (1887), construiu e calibrou dois medidores venturi para uso em medidas de escoamento de água.

De acordo com um relatório da American Society of Mechanical Engineers (ASME, 1935), "não se sabe exatamente quando e onde uma delgada placa de orifício foi primeiramente usada na medição de fluidos, particularmente com finalidades comerciais. Este fato não é conhecido de forma definitiva, mas provavelmente foi antes de 1890". O relatório ainda explica que Forrest M. Towl observou, naquela época, medidores tipo orifício usados para medir gás natural na vizinhança de Columbus, OH. Aparentemente, estes medidores foram instalados sob recomendação do prof. S.W. Robinson da Universidade Estadual de Ohio. Este relatório verifica também, que a primeira tentativa em coletar e organizar dados de forma comercialmente útil começou em 1915 pela recém criada ASME Flows Meters Committee.

Até 1931, a ASME e a American Gas Association (AGA) acumularam e incorporaram dados para medidores tipo orificio independentemente, mas em dezembro do mesmo ano foi formado a AGA-ASME Orifice Coefficient Committee. O resultado deste esforço foi um programa da junta ASME-AGA realizado na universidade estadual de Ohio em 1928-1932, para determinar os valores absolutos de coeficientes de descarga.

Fling (1988) apresenta um resumo cronológico dos eventos significativos em relação às pesquisas resultantes da cooperação entre AGA, American Petroleum Institute (API) e ASME e também a respeito das entidades como American National Standards Institute (ANSI) e International Standards Organization (ISO).

3.2-TRABALHOS RECENTES

Verifica-se da revisão de trabalhos relacionados ao estudo de medidores tipo orificio anteriores a 1960, que os mesmos foram de cunho empírico, visando apenas determinação de coeficiente de descarga para dado tipo de medidor.

Os trabalhos mais recentes tratam essencialmente de assuntos relacionados aos fluidos transportados, cavitação, regime de escoamento, forma de orifício ora enfocando apenas coeficiente de descarga ora distribuição de pressão e velocidade.

3.2.1-COEFICIENTE DE PERDA

Lakshmana Rao e Sridharan (1972) estudaram alguns tipos de orifícios com o escoamento sob Rey < 2000. Para orifícios de canto arredondado foi usado o valor 0,2 para a razão entre o raio de curvatura e diâmetro do orifício (r/d).

Alvi et al. (1978) estudaram características de perda de bocais e orificios de canto vivo e arredondado com 1< Rey <10000, pois neste intervalo o coeficiente de perda de uma constrição varia significantemente, sendo esta variação um indicativo de mudança de regime de escoamento a montante e jusante do medidor. Quatro razões de diâmetro (β) foram estudados para cada geometria de medidor. Sendo :

- $\beta = \frac{d}{D} \tag{1}$
- β razão de diâmetros
 d diâmetro do orifício
 D diâmetro do duto

Os experimentos foram conduzidos através de um sistema de recirculação de óleo, com um tubo de aço de 54mm. Para assegurar o regime estabelecido, quer turbulento ou laminar, foi introduzido um comprimento retilíneo de 176D antes da seção de teste, seção esta cujo comprimento era de 30D a montante e 270D a jusante do medidor. Os experimentos foram realizados a temperatura ambiente e a temperatura do óleo foi mantida por um dispositivo de refrigeração. Foram introduzidas 32 tomadas de pressão, das quais 7 situadas a montante e 25 a jusante do medidor. A vazão foi medida volumetricamente e as diferenças de pressão foram medidas por um sistema de manômetros de óleo-ar e óleo-mercúrio. Quatro diferentes óleos foram usados para obter o intervalo do Rey desejado com convenientes quedas de pressão no sistema. Dentre os

22 medidores estudados, haviam 4 orifícios de canto vivo, 14 orifícios de canto arredondado e 4 bocais.

Diversas verificações foram feitas sem o uso dos medidores para se determinar a completa natureza do escoamento de chegada e para se obter uma estimativa da precisão dos medidores. Os perfis de pressão medidos mostraram que o escoamento permanecia laminar para Rey=2000 e a transição era completa para Rey=4000.

Foram escolhidas duas seções da figura 1, uma a montante e outra a jusante do medidor, onde o escoamento estabelecido prevalecia, e aplicando-se a equação de energia obteve-se uma expressão para o coeficiente de perda.

$$K = \frac{p_1 - p_2}{0.5\rho \, vd^2} - f \frac{x_1 + x_2}{D} = \frac{h_1}{h_p} \tag{2}$$

K - coeficiente de perda = h_1/h_p

 h_1 - excesso de perda de carga devido ao orifício

 h_p - carga de velocidade média = vd^2 / 2g

p₁ - pressão na seção 1

p₂ - pressão na seção 2

 ρ - densidade

١

vd - velocidade através do duto = Q/A

Q - vazão

A - área do duto

x₁ - distância axial da seção 1

x₂ - distância axial da seção 2

f -fator de atrito

D - diâmetro do duto

g - aceleração da gravidade.

O excesso da perda de carga devido ao medidor é dada pela equação $\frac{Kvd^2}{2g}$. Na determinação de K através dos medidores de pressão, x₁ (30D) correspondia a posição da primeira tomada de pressão a montante do medidor. A distância x₂ foi determinada diferentemente para diversos Rey, tal que a posição x₂ estivesse a jusante do local de restabelecimento do fluxo. Este método de escolha de x₂ minimiza qualquer erro que possa aparecer devido a pequenas falhas na obtenção do fator de atrito, usado na equação 2. Isto seria particularmente importante para várias razões de β para os quais valores de K são muito baixos. O gráfico da figura 2 mostra valores de coeficiente de perda de carga (K) com número de Reynolds (Rey) para as várias geometrias dos medidores e observou-se que para Rey baixo, K é inversamente proporcional a Rey e diminui com β , tendo em vista a grande influência do fator de atrito para altos valores de β . Para Rey=10.000, K aproximase a uma constante, facilitando estudos posteriores com Rey>10000. Para Rey \cong 2000, a curva KxRey apresenta uma depressão com um mínimo K associado a origem da turbulência a jusante do orifício, todavia esta depressão não aparece para curvas relativas aos valores mais baixos de β . Para Rey=2000 e para altos valores de β , origina-se a turbulência a montante do medidor que pode ser associada com a redução nas perdas excessivas no desenvolvimento do escoamento na região a jusante. Observa-se ainda que para Rey muito baixo, o bocal causa perdas mais altas, enquanto que para Rey no escoamento turbulento ocorrem perdas mais baixas. Isto ocorre devido a maior influência do fator de atrito nas paredes para os menores Rey e pela ausência de contração com Rey maiores.

FIGURA 2 - Estudo comparativo de coeficientes de perda de orificios e bocais de Alvi et.al (1978)

As perdas devido ao orifício ou bocal podem também ser expressas como uma porcentagem da pressão diferencial através do medidor (G). Esta representação revela os regimes de escoamento mais claramente do que o coeficiente de perda.

$$G = \frac{\beta^4}{1 - \beta^4} KCd^2 \tag{3}$$

 G - excesso da perda de pressão como uma porcentagem de pressão diferencial através do medidor.

Cd - coeficiente de descarga.

Sendo assim, o regime do escoamento pode ser identificado como laminar, tubulento, de relaminarização e sob Rey crítico. Os autores obtém uma visão integrada de parâmetros tais como coeficiente de descarga (Cd), coeficiente de perda (K), comprimento adimensional da região de recuperação da pressão a jusante do orifício (Xr), comprimento de recuperação do campo de pressão (Xs), velocidade no centro da seção Uo(12) adimensional localizada a uma distância de 12D a jusante do orifício e o parâmetro G, (colocando-os na figura 3) confirmam a classificação do escoamento dita anteriormente.

FIGURA 3 -Efeito do Rey nas características de orifício de canto vivo e $\beta = 0,605$. Alvi et al (1978).

A localização da velocidade a uma distância de 12D, corresponde a posição do primeiro tubo de Pitot, no conjunto de experimentos, a jusante da região de separação próxima ao orifício.

13

As curvas da figura 3 mostram os tipos de regimes associados com um valor mínimo de G e K, um valor máximo de Cd, a queda da curva de Uo a partir de um valor próximo de 2 e Xr decresce a partir de um valor de pico. Se associarmos o Rey crítico como a origem da turbulência a jusante do orifício podemos concluir que :

•O acréscimo de K pode ser associado com o aumento das perdas de extremidade na região de separação devido a origem da turbulência.

•O acréscimo em G corresponde a menor recuperação de pressão como uma conseqüência do aumento de perdas de extremidade e maior rapidez na expansão do jato a jusante.

•O pico em Cd corresponde com a origem da turbulência dos estudos de visualização do escoamento de Johansen para um orifício de canto vivo com $\beta=0,5$.

•Para Rey abaixo do valor crítico, o escoamento está próximo de restabelecimento completo a montante de 12D indicando um valor próximo de 2 para Uo(12). Com a origem da turbulência, os perfis de velocidade a jusante da região de separação se tornam uniformes com uma repentina queda no valor de Uo(12).

•Aumentando-se Rey (mas mantendo-o abaixo do valor crítico), a expansão do jato a jusante se torna mais e mais gradual, indicada por um acréscimo de Xr. Esta tendência está em concordância com a solução numérica das equações de Navier-Stokes. Com a origem da turbulência, a expansão do jato de repente se torna mais rápida com consequente redução em Xr.

Observações para $\beta=0,8$ mostram um acentuado acréscimo no comprimento retilíneo também na região de Rey crítico. Isto também pode ser associado com a origem da turbulência indicando um maior

comprimento para relaminarização do escoamento. Na figura 3, a origem da turbulência no escoamento de chegada (Rey=2000) é caracterizada para uma queda no comprimento retilíneo em G, Cd e Uo(12). Daí as regiões do escoamento podem ser classificadas como na figura 3, em regime laminar, regime de Rey crítico, de relaminarização, transição e turbulento. Tal classificação facilita o entendimento da natureza de variações dos parâmetros do escoamento.

Benedict (1977) apresenta uma equação geral que descreve a perda de carga devido a diferença de pressão para qualquer medidor de fluido. Este coeficiente de perda é dado em termos de fatores adimensionais incluindo: geometria do medidor, coeficiente de descarga e coeficiente de contração. A equação se aplica igualmente para medidores tipo venturi, bocais e orificios instalados em dutos ou com entrada plena.

O indicador mais elementar de perda de carga irrecuperável através de um medidor de fluido é a queda na pressão total, Pt1-Pt4 (ver figura 4), onde 1 representa a seção de entrada, 2 representa a seção de passagem geométrica, 3 representa a seção de passagem do fluido e a seção 4 representa o local a jusante onde o jato se expande até a parede do tubo (onde a máxima pressão estática é obtida).

FIGURA 4 - Esquema generalizado de um medidor de fluido de Benedict (1977)

Foram obtidas equações para coeficiente de perda generalizado (ki,j), para medidores tipo venturi, orifícios e bocais entre seções i e j a saber:

$$Ki, j = \frac{Hti - Htj}{\frac{Vk^2}{2g}}$$
(4)

onde Hti = carga total na seção i Htj = carga total na seção j Vk = velocidade na seção k Para instalação de um orifício em um duto :

$$(K1,4)2 = \left(\frac{1-\beta^{4}}{Cd^{2}}\right) - 2\beta^{2}\left(\frac{1}{Cc} - \beta^{2}\right)$$
(5)

onde

Cc - coeficiente de contração
β - razão de diâmetros
(K1,4)2 - coeficiente de perda da seção 1 até 4

Benedict (1977) comparou na figura 5,as previsões de coeficiente de perda calculado pela equação 4 com a equação empírica de Ginzburg obtida a partir de dados experimentais expressa como:

$$(K1,4)2 = (1 - \beta 2, 4^2)^2 + 0,5(1 - \beta 2, 1^2)$$
(6)

FIGURA 5 - Comparação de perda de carga para vários orificios de Benedict (1977).

Na figura 6 são dados os valores derivados do parâmetro de perda da ASME (PASME), baseado no coeficiente de perda generalizado de Benedict.

FIGURA 6 - Comparação de parâmetros de perda para vários orifícios. Benedict (1977)

Há uma excelente concordância entre o parâmetro de perda da ASME então derivado e o parâmetro publicado pela ASME para venturi, bocal e orifício.

3.2.2-COEFICIENTE DE DESCARGA

McGreehan et al. (1988) propõem uma técnica para calcular Cd para uma geometria arbitrária de orifício, baseada em dados experimentais de vários autores. Projetistas necessitam calcular o coeficiente de descarga (Cd), para condições arbitrárias de raio de curvatura de entrada do escoamento (r), espessura do orificio (L), orientação da velocidade (tang θ). Existem dados experimentais para cada um desses efeitos separadamente e para algumas combinações com um grau limitado, mas uma técnica para calcular rapidamente o Cd para uma geometria específica e determinada condição de escoamento, não existe. O método original usado para obter Cd para uma combinação de efeitos era normalizar cada valor de Cd para um valor básico e então fazer o produto. Entretanto certas combinações de r/d, L/d, tang θ podem resultar Cd maiores que 1, o que seria absurdo sob estas circunstâncias. Daí a necessidade de se obter uma acurácia para coeficientes de descarga empíricos para cada um dos efeitos separados e um procedimento seguro para combiná-los.

Conhecida a relação entre o coeficiente de descarga para orificio de canto vivo em função do Rey, Cd:Rey, a generalização para orificio de canto arredondado pode ser expressa, segundo MacGreehan et al. (1988) como :

$$Cd:r = 1 - f(1 - Cd:\operatorname{Re} y)$$
 (7)

Cd:r = coeficiente de descarga com correlação r/d onde f é dado por:

$$f = 0,008 + 0,992e^{-5,5(r/d) - 3,5(r/d)^2}$$
(8)

De forma análoga é proposta a generalização para orifício de paredes espessas (longos) como:

$$Cd:r, L = 1 - g(1 - Cd:r)$$
 (9)

Cd:r,L = coeficiente de descarga com correlações r/d e L/d.

onde
$$g = \left[1 + 1,3e^{-1,606(L/d)^2}\right] (0,435 + 0,021L/d)$$
 (10)

Foi apresentada pelos autores MacGreehan et al. (1988) uma expressão geral para o caso em que a corrente de fluido incidir sobre o orifício a ângulo θ . Uma comparação de dados relevantes a diversas combinações dos fatores r/d, L/d e tang θ com as equações acima demonstram a eficácia da formulação generalizadora adotada pelos autores.

Fling (1988) descreveu o projeto conjunto da American Petroleum Institute (API) e da Gas Processors Association (GPA) em quantificar o coeficiente de descarga para medidores tipo orifício no intervalo 150 < Rey < 16.000.000. O projeto fora planejado visando estudar relações entre os seguintes parâmetros de medidores: tamanho do duto, razão de diâmetros (β), intervalo do número de Rey, tipos de fluidos (óleo, água, gás natural) e medidores comercialmente manufaturados. Os dados foram obtidos através de modernos equipamentos de medida de pressão diferencial interligado a um sistema de computadores. Uma nova equação deverá ser desenvolvida a partir desses valores, que estão se reunindo numa Base de Dados, e posteriormente avaliada como forma padrão.

Satto (1993)apresentou um trabalho determinando 0 comportamento dos coeficientes de descarga (Cd) e perdas de carga localizadas (K) para, três tamanhos diferentes de orificios concêntricos e para suspensões de vinhaça "in natura" e em pó. O comportamento dos coeficientes de descarga determinados com os orifícios posicionados nas direções de fluxo: horizontal, vertical ascendente e descendente. Para tanto, Satto utilizou um aparelho experimental constando de dois reservatórios de abastecimento e gravimétrico, bomba centrífuga, tubulações de sucção de inox e de recalque de plástico reforçado com fibra de vidro (PRFV), válvulas de inox, desviador de fluxo do reservatório de abastecimento para o gravimétrico, balança eletrônica e cronômetro analógico. A disposição e a construção dos medidores de orificio tipo diafragma, obedeceram aos prescritos da norma DIN. A autora concluiu que houve uma ótima concordância entre os valores dos coeficientes de perda localizada médios experimentais e teóricos para água e vinhaça "in natura" e para todas razões de m (razão da área da seção do orificio em relação a seção transversal do duto) ensaiadas. Fora observado também que para a razão de áreas 0,575, embora os comprimentos retilíneos fossem iguais para os orificios em fluxo ascendente e descendente, o coeficiente de descarga do fluxo ascendente resultou sempre menor que o descendente para água e vinhaça "in natura". Nota-se que Kapoor et al.(1986), utilizando água determinou o coeficiente do fluxo descendente menor que do fluxo ascendente para $\beta = 0.8$.

3.2.3-CAVITAÇÃO

Numachi et al.(1960) estudaram os efeitos da cavitação no coeficiente de descarga de orificios de canto vivo, em relação a vários graus definidos por um número de cavitação (σ).

$$\sigma = \frac{2g(P2 - Pv)}{\gamma Vo^2} \tag{11}$$

g = aceleração da gravidade.

P2 = pressão estática a jusante.

Pv = pressão de vapor de água.

 γ = peso específico de água.

Vo = velocidade média através do orifício.

Os dados experimentais revelam que a cavitação pode existir até um mínimo σ =0,2 sem introduzir erros no coeficiente de descarga. Os autores mostram ainda o uso da inalação de ar na tubulação conduzindo água, para suprimir a vibração e o ruído da cavitação sem alterar o coeficiente de descarga. O medidor usado no experimento possui tomadas de pressão de acordo com o Japanese Engineering Standard (JES), mostrado na figura 7.

FIGURA 7 - Placa de orifício e tomadas de pressão de Numachi et. al (1960)

Cinco diferentes diâmetros de orificios foram usados. Sendo a chapa do orificio de bronze e a tubulação de 15cm de comprimento de plástico transparente para visualização. A água era bombeada por meio de uma bomba centrifuga através da seção de escoamento para um tanque. Um manômetro de tubo de mercúrio em U foi usado para medir a diferença de pressão através do orificio nas tomadas t1 e t2, com uma medida de pressão estática na tomada t2. A taxa de escoamento era calculada volumetricamente e regulada pelas válvulas v1,v2 e v3, bem como a pressão estática como na figura 8.

FIGURA 8 - Instalação experimental de Numachi et. al (1960).

O coeficiente de descarga (Cd) calculado :

$$Cd = \frac{Q}{\frac{\pi d^2}{4} \left[\frac{2g}{\gamma}(P1 - P2)\right]^{0,5}}$$
(12)

Q =vazão

d =diâmetro do orifício

P1 =pressão estática a montante do medidor

P2 = pressão estática a jusante do medidor.

A partir dos ensaios sobre número de cavitação incipiente (σ i), definido como o estado do escoamento no qual são vistas pequenas bolhas intermitantemente, em função da pressão estática absoluta P2 medida a jusante do medidor, os autores concluíram que o número de cavitação incipiente é aproximadamente 2,5.

Foi elaborada uma tabela que relaciona o σ com a manifestação da cavitação numa sucessão exposta a seguir:

σ	Maneiras de ocorrência da cavitação
2,50	são vistas pequenas bolhas intermitantemente
1,00	pequenas bolhas flutuando
0,60	cavitação ocorre da extremidade do orifício; escoamento instável e muito ruído
0,25	o duto está quase que completo com cavitação; escoamento muito instável; muito ruído.

Foi feito um estudo que relaciona o coeficiente de descarga (Cd) com o número de cavitação (σ), para quatro diferentes razões de diâmetros, como mostra a figura 9.

FIGURA 9 - Relação entre o coeficiente de descarga (Cd) e o

coeficiente de cavitação (σ).(Numachi et. al 1960).

Não houve nenhuma mudança aparente no coeficiente de descarga entre as condições de escoamento com cavitação e sem cavitação para σ <0,2. Abaixo da linha L, o ruído e a vibração da cavitação se tornam muito aparentes. Numachi et al.(1960) apresentaram o gráfico da figura 8 que relaciona coeficiente de descarga (Cd) com número de Reynolds (Rey) para várias razões de diâmetros (β)

FIGURA 8 - Relação entre o coeficiente de descarga (Cd) e o número de Reynolds (Rey). Numachi et al.(1960).

Esta figura mostra que as variações de σ com a mudança de valores do Rey são menores do que os padrões de tolerância permissíveis neste experimento. Foi injetada uma pequena quantidade de ar na tubulação, através de uma abertura de 6mm de diâmetro localizada a 14cm do medidor.

Discutindo o trabalho de Numachi et al. (1975), James W.Ball (1960) ressaltou que a diferença de energia entre dois pontos resultam de três fontes:

1-energia para promover o escoamento através do orifício;

2-perda de carga devido ao atrito ;

3-perda de carga devido a turbulência.

27

A contribuição de cada uma destas fontes irá variar com a geometria do jato emergindo do orificio e com a distância das tomadas de medidas do medidor. A medida que o gradiente de pressão a jusante do orifício reduz, forma-se uma região de cavitação que se desenvolve o suficientemente para alterar a geometria das linhas de corrente e o coeficiente, baseado nestas tomadas afetadas, desviará de seu valor constante. O menor desvio ocorrerá para tomadas menos afetadas pela mudança na geometria da linha de corrente. A geometria da linha de corrente a montante da veia contraída permanece essencialmente a mesma independentemente da pressão a jusante, daí o coeficiente de descarga baseado em tomadas a jusante do medidor, estando na posição da veia contraída ou a montante dela, não mudará pela presença da cavitação a jusante do orificio. Isto explica porque o coeficiente de descarga é essencialmente constante para as tomadas usadas anteriormente. Isto explica também porque o coeficiente de descarga decresce abruptamente quando a tomada a jusante é locada a uma distância "apreciável" da veia contraída, como mostra a figura 11, onde se encontram as definições empregadas para coeficiente de descarga (Cd) e o número de cavitação (σ).

28

FIGURA 11 - Variação do coeficiente de descarga (Cd) com o coeficiente de cavitação (σ) para diferentes orificios.(Ball 1975)

Como a cavitação apresenta-se a jusante do orifício devido ao decréscimo da pressão e a região de recuperação se move após a tomada, a pressão nesta tomada é menor, aumentando a aparente diferença de

energia entre as tomadas a montante e a jusante do medidor, isto resulta em um decréscimo no coeficiente de descarga visto na figura anterior.

Conhecendo o número de cavitação crítico, no qual a cavitação é incipiente para um orificio, é possível determinar a pressão a jusante requerida para prevenir a cavitação para uma dada carga a montante, ou calcular a carga permissível a montante para uma dada pressão.

Ball(1975) discorreu sobre o método de detecção de cavitação via audição. Segundo este autor, há três condições observadas em termos de auditibilidade de cavitação, a saber:

1-cavitação claramente audível;

2-cavitação claramente inaudível;

3-cavitação com auditibilidade questionável. Esta última apresentou maior dificuldade para o autor estabelecer a condição de cavitação incipiente.

Quanto os modos de ocorrência da cavitação, Ball tece alguns comentários interessantes. Acredita-se que as bolhas de ar produzidas em σ =2,5 são provenientes da solução no momento em que o escoamento passa por uma região de baixa pressão em vez de serem cavidades de vapor devido a cavitação. As bolhas produzidas por σ =1 não podem ser consideradas como prova de ocorrência de cavitação. Para poder estabelecer a ocorrência, Ball (1960) sugeriu a realização de testes com água desgaseificada.

Numachi (1960) rebateu as críticas de Ball (1960) em relação a variação de coeficiente de descarga com cavitação, lembrando que limitou-se a medir diferença de pressão em tomadas de canto e não tomadas distantes do orifício. Lembrou também que para a cavitação se iniciar, é preciso que existam núcleos microscópicos de bolhas de ar.

Tullis et al. (1973) estudaram a cavitação em vários níveis, para orifícios circulares concêntricos de canto vivo.

Os autores utilizaram um equipamento provido de numerosos piezômetros posicionados a 1D a montante e 10D a jusante do orifício. As medidas de pressão eram corrigidas adicionando ou subtraindo a perda distribuída a partir do gradiente de perda de carga. Para cada seção de teste, eram instalados tubos adequadamente a montante e a jusante do medidor, para garantir o completo desenvolvimento do escoamento a montante e a completa recuperação da pressão a jusante. Para regular a pressão e a vazão foram usadas válvulas de controle. Um sistema de cabos foi instalado por todo o comprimento das linhas de teste como amarrações, para minimizar as vibrações. A água era fornecida por um reservatório sob gravidade. Um sistema de bombas garantia altas pressões para a avaliação dos efeitos dos diversos níveis sobre os orifícios. A cavitação era medida por um acelerômetro. Cerca de 15 pontos adequadamente localizados, foram estudados para definir a condição de escoamento e a intensidade da cavitação para avaliar o princípio dos diferentes níveis da cavitação. O coeficiente de descarga (Cd) e o índice de cavitação (σ) usados são definidos como:

$$Cd = \frac{vd}{\left(\frac{2(Pu - Pd)}{\rho} + vd^2\right)^{0,5}}$$

$$\sigma = \frac{Pd - Pv}{Pu - Pd}$$
(13)
(14)

vd - velocidade média no tubo.

Pu - pressão 1D a montante do medidor.

Pd - pressão 10D a jusante do medidor.

 ρ - massa específica.

Pv - pressão de vapor.

Conforme mencionado anteriormente Pu e Pd eram ajustados para que os dados não dependessem da posição das tomadas. A única condição estipulada era que Pd fosse medido além da zona de recuperação (abaixo 4 ou 5D do orifício).

Para avaliar a cavitação, alguns limites de operação devem ser considerados:

1- início da cavitação,

2- um nível de tolerância para o ruído e a vibração,

3- início da erosão devido a cavitação,

4- escoamento completamente cavitado.

A figura 12 exemplifica leituras do acelerômetro com a cavitação incipiente e crítica.

FIGURA 12 - Determinação dos níveis de cavitação .(Tullis et al. 1973)

Há três regiões distintas A, B e C, sendo que a região A corresponde a não cavitação, a região B corresponde a cavitação incipiente a suave e a região C indica uma cavitação de suave a moderada. O coeficiente de cavitação incipiente (σ i) é identificado como

33

o valor de σ no limite entre as regiões A e B, enquanto que a cavitação crítica está no limite das regiões B e C. É sugerido um intervalo de valores de σ que correspondem a cavitação suave, moderada, intensa e super cavitação.

A cavitação "choking" (σ ch) é avaliada das características da curva de queda de pressão (Δ P) contra vazão (Q). Isto corresponde a condição onde uma diminuição da pressão a jusante do orifício não produz escoamento adicional, mantendo-se a pressão constante.

A figura 13 plota valores de $Qx\Delta P$ com duas tomadas de pressão a montante. Há uma relação linear entre log Q e log ΔP .

FIGURA 13 - Avaliação gráfica da cavitação "choking". Tullis et al (1973)

Se Pd for continuamente diminuído, eventualmente surgirá a supercavitação e haverá pressão de vapor a jusante. Dado um valor de Pu, as condições de "choking" Qch e Δ Pch, são determinadas pela intersecção das linhas horizontal e inclinada. O valor da cavitação "choked" é calculada da seguinte maneira:

$$\sigma ch = \frac{Pdch - Pv}{\Delta Pch} \tag{15}$$

$$Pdch = Pu - \Delta Pch \tag{16}$$

σch - índice da cavitação "choked".

 ΔPch - queda de pressão através do orifício quando ocorre o "choking".

A mais severa cavitação ocorre antes da condição "choking" do orifício. Uma vez que esta condição atinge o orifício e a super cavitação ocorre, não haverá nenhum dano de erosão próximo do orifício, pois o colapso ocorre muito a jusante durante a super cavitação.

A figura 14 mostra valores de $\sigma i \ge \beta$, e é aparente que o tamanho do duto tem influência no início da cavitação.

FIGURA 14 - Variação do coeficiente de cavitação incipiente (σ i) com a razão de diâmetros (β).Tullis et al.(1973).

Entretanto não foi observada nenhuma variação em σ i com a velocidade ou pressão. Isto demonstra que o Rey, que é normalmente recomendado como parâmetro de escala, não é útil para orifícios. O efeito de escala é associado ao tamanho e não é relacionado a velocidade.

Através de comparação dos resultados de cavitação incipiente obtido neste estudo, com s de Numachi et al.(1960), Tullis (1973)

concluiu que o uso de acelerador na localização da condição incipiente permite verificar uma dependência clara de σ sobre β , enquanto que a avaliação visual por Numachi et al. produz apenas uma dispersão de pontos.

l

A figura 15 mostra a influência da cavitação no coeficiente de descarga.

FIGURA 15 - Influência da cavitação no coeficiente de descarga Tullis et al.(1973)

Estes dados mostram que da condição de não cavitação a severa cavitação, a variação de Cd é menor que 0,5% de seu valor médio.

A diminuição em Cd ocorre próxima ao início do choque, que também corresponde exatamente com a máxima intensidade de cavitação.

A figura 16 mostra valores de σ correspondentes as cavitações limites em relação a β .

O trabalho de Tullis se distingue pela busca de um modo mais objetivo de observar e definir os diversos estágios de cavitação. O emprego de um acelerador permite que se defina o valor de índice de cavitação incipiente e aquela considerada crítica. Definiu-se ainda que o nível de cavitação denominado "choking" corresponde ao ponto em que a vazão mantém-se constante apesar da variação de diferencial de pressão devido ao orifício. É também neste ponto que o Cd registra uma variação brusca.

Yan et al (1972) apresentaram um trabalho sobre aspectos teóricos e experimentais das transições de regime de escoamento, causada pela cavitação, quando da passagem da água através de um medidor tipo orifício concêntrico de canto vivo. A cavitação foi medida por um número de cavitação (σ) definido por:

$$\sigma = \frac{P3 - Pv}{0.5\rho Vo^2} \tag{17}$$

- P3 pressão a jusante do medidor
- Pv pressão de vapor
- ρ massa específica
- Vo velocidade do fluido através do orifício.

O início da cavitação marca a transição da fase simples para fase dupla borbulhante; a cavitação "choked"marca o ínicio da fase dupla borbulhante para a fase dupla com jato anular. Verificou-se que o número de cavitação incipiente (σ i) é independente da velocidade do líquido, mas fortemente dependente no tamanho da geometria. A pressão mínima no início da cavitação não é um valor único, está acima da pressão de vapor e aumenta com a velocidade do fluido. No início da cavitação, há formação de pequenas bolhas devido a liberação do gás sob baixas pressões. A cavitação "choked" ocorre quando a pressão mínima se aproxima da pressão de vapor. O número de cavitação na condição "choked" é somente uma função de β e não possui um efeito de escala como na condição de cavitação incipiente. A vaporização do líquido se torna dominante na condição "choked" e na super cavitação.

Yan et Thorpe (1972) ressaltam que a admissão de ar pode também ser usada para causar a transição de regime de escoamento borbulhante para anular.

Quando σ é reduzido ao valor "choked", que é uma constante para uma dada razão β , não é necessário nenhum ar para causar a transição .

FIGURA 17 - Diagrama esquemático do sistema experimental de Yan et Thorpe.

3.2.4-REGIME LAMINAR :

Lakshmana Rao et al (1972) apresentaram um estudo sobre características de perdas de carga em alguns tipos de orificios com escoamento de chegada em regime laminar, trabalho este precursor do trabalho de Alvi et al (1978) anteriormente citado.

Os experimentos eram conduzidos por um sistema de recirculação de dois diferentes óleos, usados para estabelecer o completo escoamento laminar, obtendo convenientes quedas de pressão no sistema medidos por manômetros de óleo-ar e óleo-mercúrio. O intervalo de Rey estudado foi de 10-2000, e as razões de β (razão do diâmetro do orifício em relação ao diâmetro do duto) usadas foram de 0,2, 0,4,0,6, 0,8, sendo que para orifícios longos foi utilizado somente $\beta=0,2$. Foram feitas 29 tomadas de medida na seção de teste, 5 delas a montante e 24 a jusante do medidor. Todos os experimentos foram realizados a temperatura ambiente, e a temperatura do óleo foi mantida estável por um tanque de refrigeração de água. Os fatores de atrito teórico e experimental foram analisados com um desvio de 1%. Foram apresentadas relações de coeficiente de perda (K) versus número de Reynolds (Rey) para cada tipo de orifício e observou-se que alguns medidores revelam uma depressão na curva, exceto orifícios longos cujas perdas por atrito são significantes. Fora associado um valor mínimo de K correspondente ao valor de Rey crítico (Reyc) e o escoamento a jusante deste valor deixa de ser laminar. A variação de K versus Rey pode ser dividida em três regiões a saber:

•região 1: para baixos Rey, há uma relação linear entre K e Rey, sendo K inversamente proporcional a Rey e a curva tem inclinação de 45^o em papel bilog;

•região 2: à medida que Rey aumenta, há um desvio progressivo da linha de 45[°] e a inclinação se torna cada vez menor, até atingir o valor de Rey crítico;

•região 3: para Rey > Reyc, K aumenta com Rey, primeiro rapidamente e depois gradualmente, é esperado que para Rey>2000, K se torne uma constante para escoamento completamente turbulento.

Para medidores tipo orificio longo, há uma relação linear entre K e baixos valores de Rey. À medida que Rey aumenta, há um desvio progressivo da linha de 45º e espera-se que, o escoamento de chegada se torne turbulento e K possa ser praticamente constante.

3.2.5-DISTRIBUIÇÃO DE PRESSÕES E VELOCIDADES

Morrison et al (1990) apresentaram um estudo visando aumentar a acurácia dos medidores tipo orificio, analisando o complexo campo do escoamento nas vizinhanças do medidor, utilizando um anemômetro Laser Doppler (LDA) em conjunto com medidores de pressão a montante, a jusante e na placa de orificio.

Foram realizadas medidas de pressão para uma dada razão de diâmetros $\beta = 0,5$ e Rey = 18.400. Os resultados mostraram que a influência da placa de orificio se estende menos que 0,5D a montante. Na superfície a montante da placa de orificio, a pressão permanece constante, mas decresce rapidamente próxima a abertura a montante do medidor. A recuperação da pressão nas paredes do duto a jusante do orifício é caracterizada por um mínimo ocorrendo em X/R =1,00 (sendo X a distância a jusante do medidor e R o raio do duto) e uma distância de aproximadamente 4D para completar a recuperação. Obteve-se o diagrama da figura 18 com as medidas das velocidades a montante e a jusante do orifício .

FIGURA 18 - Distribuição do vetor velocidade média, segundo Morrison et alii.

Observa-se as regiões da veia contraída, da zona de recuperação da pressão e recirculação do fluido.

Bogema et al. (1962) estudaram o efeito da distribuição da velocidade em uma tubulação a montante de um orifício de canto arredondado na faixa de número de Reynolds (Rey) de 400-10.000. Os autores utilizaram o equipamento experimental composto de um reservatório de nível constante e uma caixa tranquilizadora para promover uma distribuição uniforme de velocidades na entrada da tubulação, que antecedia o orifício. Comprimentos variáveis desta tubulação permitiam de velocidades entre forma uniforme perfis a e parabólica. correspondendo ao escoamento completamente desenvolvido. Diferentes Rey foram obtidos da variação da velocidade e viscosidade variada, através da escolha de dois óleos e temperaturas. Observou-se que o coeficiente de descarga apresenta-se sensível à distribuição de velocidades a montante do orifício para Rey<8.000. A variação no coeficiente de descarga na faixa 600< Rey<3.000, depende sobremaneira à variação do perfil. Tal variação aumenta com a razão de diâmetros de orificio e tubulação. A maior variação no valor de coeficiente foi observada para o caso do perfil completamente desenvolvido a montante do orifício.

3.2.6-TRANSPORTE DE SEDIMENTOS

Kapoor et al (1986) apresentaram um estudo sobre os efeitos de sedimentos transportados tais como areia e carvão sobre o coeficiente de descarga (Cd) de medidores tipo orifício circular concêntrico. Os ensaios foram realizados com quatro diferentes razões de diâmetros (β) designados de acordo com a ASME (1959), e os medidores foram testados com dutos posicionados na horizontal e vertical com escoamento ascendente e descendente. Na primeira fase, os ensaios foram feitos com água, em função do número de Reynolds, afim de somente estabelecer as características de descarga dos medidores. Na segunda fase, os experimentos foram conduzidos sem transporte de sedimentos. Quando da primeira fase do escoamento, foi observado que a direção do escoamento possuía pouca influência no coeficiente de descarga, exceto no caso de $\beta=0.8$. Os coeficientes observados são cerca de 2 a 6% menores que os da ASME (1959). Embora os comprimentos retilíneos usados a montante e a jusante do medidor fossem menores que os recomendados pela ASME, acredita-se que esta não é a única razão para os baixos valores de Cd. É provável que o duto usado no estudo seja rugoso e isto também possa ter influenciado o coeficiente, devido a influência da rugosidade na distribuição de velocidades no escoamento de

chegada. As diferenças nos valores do Cd para as três direções no caso de $\beta=0,8$, pode ser provavelmente atribuída ao pequeno comprimento de chegada do escoamento na vertical como mostra a figura 19.

Na segunda fase do experimento, foram observadas as seguintes características :

• Cd para o escoamento com transporte de sedimento é maior que o escoamento somente de água;

 geralmente o coeficiente de descarga aumenta com o aumento do tamanho e concentração do sedimento;

• o coeficiente revelou-se dependente do Rey para certos tamanhos e concentrações de sedimentos;

• a direção do escoamento afeta o coeficiente de descarga.

Notou-se também que na segunda fase do ensaio, o Cd para escoamento na vertical descendente é maior que o Cd para escoamento na horizontal, enquanto que Cd para escoamento na vertical ascendente é menor.

FIGURA 19 - Variação do coeficiente de descarga (Cd) com número de Reynolds (Rey) para diferentes sentidos de fluxo. Kapoor et al (1986)

CAPÍTULO 4

4.METODOLOGIA

Para o desenvolvimento da pesquisa foi construído um circuito fechado de água com o auxílio financeiro da FAPESP -fundação de Amparo à pesquisa do Estado de São Paulo.

O sistema consta basicamente:

- dois reservatórios, um de cimento amianto com capacidade de 1000 *l* para abastecimento, outro de latão de forma cilíndrica em sua parte superior com 57cm de diâmetro e forma cônica em sua parte inferior, usado para medidas de vazão gravimétrica com capacidade de 260 *l*;

- uma bomba centrífuga de 15 Hp da indústria Mark, modelo G11, de ferro fundido, 3500 rpm, com altura manométrica de 40,0 m;

 - uma balança eletrônica da marca Filizola, com capacidade máxima de 750 Kg e precisão de 200g;

 - um duto retangular de acrílico de 0,5"de espessura, com seção retangular de 50mm de largura por 80 mm de altura e comprimento de 2500 mm;

-tubulações flexíveis de 3";

-tubulações de PVC de 3";

-viga metálica em U;

- placa de latão de 3mm de espessura.

Esta bancada foi construída na oficina do Centro de Recursos Hídricos e Ecologia Aplicada (CRHEA), da Escola de Engenharia de São Carlos. A figura 20 mostra o esquema geral do circuito fechado de água utilizado nos experimentos.

FIGURA 20 - Esquema geral do circuito fechado de água Canaleta na direção horizontal 1. Reservatório gravimétrico.

2.Registro de gaveta.

3. Tubulação de PVC de 3".

4. Caixa tranqüilizadora.

5. Tubulação flexível de 3".

6.Placa de orifício.

7.Pilar de sustentação do eixo.

8.Bomba centrífuga de 15 Hp.

9.Registro de esfera.

10. Válvula de retenção.

11.Tê.

12.Balança eletrônica.

13. Reservatório gravimétrico.

14.Curvas.

15.Duto retangular de acrílico.

A água utilizada nos ensaios é armazenada em um reservatório de concreto armado externo ao laboratório. A captação de água do manancial é feita através de bombas acionadas manualmente. Toda água retirada do rio, retorna ao mesmo após concluídos os experimentos.

Para a realização dos ensaios mantém-se o abastecimento de água ininterruptamente. Uma vez preenchido o reservatório 1, mantém-se constante seu nível por meio de um extravasor, garantindo assim as condições do regime permanente. Este reservatório está colocado sobre uma estrutura metálica feita de cantoneiras soldadas, com comprimento de 3,0m.

Na foto 1, vemos a canaleta posicionada para o ensaio com escoamento vertical ascendente e a estrutura metálica (azul escuro) de sustentação do aparelho de radiação gama para ensaios de concentração de bolhas de ar. À direita vemos o reservatório de abastecimento, a tubulação flexível (cinza), a estrutura metálica de sustentação da canaleta (azul claro), a tubulação flexível (verde) e à esquerda do reservatório de abastecimento o reservatório para medidas gravimétricas de vazão.

FOTO 1 - Esquema geral do equipamento experimental utilizado.

A foto 2 mostra a bomba centrífuga, os dois pilares de sustentação do eixo (azul claro), a viga metálica onde está apoiada a canaleta, a tubulação flexível a jusante da seção de estudo, o reservatório para medidas gravimétricas e a tubulação de retorno (PVC marrom) ao reservatório de abastecimento.

FOTO 2 - Vista de alguns elementos da bancada.

A foto 3 mostra a curva feita pela tubulação flexível quando da mudança de sentido do escoamento. É necessário sua fixação para evitar vibrações excessivas devido ao acionamento da bomba. É vista também a conexão que une a tubulação flexível de seção circular ao duto de acrílico de seção retangular.

FOTO 3 - Posicionamento da tubulação flexível para o sentido do fluxo vertical ascendente.
Na foto 4, vemos a tubulação de retorno ao reservatório de abastecimento e a tubulação para desvio do fluxo para a medição de vazão com a balança eletrônica. Há dois registros de esfera em cada tubulação, e assim que o registro da esquerda é aberto, aciona-se um cronômetro e tem-se o tempo de preenchimento do reservatório.

FOTO 4 - Vista dos reservatórios utilizados no experimento.

A foto 5 mostra o reservatório gravimétrico suspenso por uma alavanca, pois é necessário que não haja nenhum peso na balança eletrônica quando da realização do auto teste realizado assim que esta é ligada. Finalizados os testes, a balança estará zerada e o reservatório é liberado para iniciar os ensaios.

FOTO 5 - Balança eletrônica e reservatório para medidas gravimétricas

Na conexão de saída do reservatório foi introduzida uma tela de arame para amenizar o escoamento na tubulação flexível. A figura 21 mostra o detalhamento.

FIGURA 21. Tela de arame.

Esta tela diminui as oscilações do escoamento e o aparecimento de bolhas na seção de teste. As tubulações flexíveis estão convenientemente posicionadas para possibilitar a mobilidade desejada ao conjunto.

Visando determinar o comportamento do coeficiente de descarga Cd em relação a três diferentes sentidos de fluxo: horizontal, vertical ascendente e descendente, os ensaios foram realizados de tal maneira que a estrutura da canaleta girasse em torno de um eixo, possibilitando o posicionamento adequado para o ensaio e conservando a identidade geométrica do orifício. Foi usado um eixo maciço de 2" com suas extremidades torneadas e inseridas em um mancal. Este por sua vez foi parafusado a um conjunto de pilares fixos no chão. A viga metálica com formato em U de suporte do duto de acrílico foi soldada ao eixo rígido, adquirindo assim rigidez ao sistema. A figura 22 mostra o eixo de rotação da viga.

FIGURA 22 - Eixo de rotação.

Escolhida a direção da viga e o sentido do fluxo, adquiria-se a estabilidade do duto através de um sistema de tirantes, amenizando as vibrações excessivas provocadas pela alta velocidade do fluxo.

Devida a ausência de comprimentos retilíneos, fez-se necessário a confecção de uma caixa tranquilizadora a montante da canaleta de acrílico para amortecer o escoamento e suavizar as perturbações. Obteve-se o formato de boca de sino, aquecendo-se placas de PVC de 3mm de espessura em torno de um molde de madeira. Este mesmo procedimento foi utilizado para a confecção das conexões que unem as extremidades da canaleta de acrílico de seção retangular, com a caixa tranquilizadora e com a tubulação flexível, ambas de seções circulares. No interior da caixa

introduziu-se um anteparo para amortecer o movimento da água. A figura 23 mostra o detalhamento da caixa.

FIGURA 23 - Caixa tranquilizadora.

A conexão 1 une o tubo de PVC de 6" de diâmetro com a canaleta de seção retangular e, a conexão 2 une uma tubulação flexível de 3" de diâmetro com o tubo de PVC. Para melhor fixação das peças foram feitas abas com placas de PVC para a colocação de parafusos e entre estas foram introduzidas juntas de neoprene para vedação. A conexão 1 foi soldada com o tubo e o acabamento de ambas as conexões foi feito com massa plástica interna e externamente. A água se choca com o anteparo que é fixado por parafusos e se desloca pelas aberturas laterais. A seta cinza mostra o sentido do escoamento.

A foto 6 mostra a caixa tranqülizadora, tendo nas extremidades a tubulação flexível e o duto retangular.

FOTO 6 - Caixa tranqülizadora.

Nas extremidades da canaleta foram necessárias conexões semelhantes as da caixa tranquilizadora, para uni-la a seções não circulares. A adaptação de abas de placas de PVC permitiu a melhor fixação dos componentes do sistema pela possibilidade da colocação de parafusos. A figura 24 mostra a extremidade do duto e a adaptação feita para a união com outras seções.

FIGURA 24. Seção transversal do duto.

Nesta figura, vemos a viga metálica em U soldada ao eixo maciço, a base da canaleta parafusada na viga, as quatro placas de acrílico que formam o duto, e as aberturas dos parafusos na placa de PVC. O duto retangular possui seção transversal de 50mm de largura e 80mm de altura. Este duto é formado por quatro placas de acrílico de 12,7mm de espessura parafusadas entre si que formam a tampa, as paredes laterais e a base. Esta base está fixa por parafusos em uma viga metálica com formato em U. Na junção externa das paredes com a base foram colocadas camadas de silicone para promover a vedação desejada. A aba de PVC foi colada contornando a canaleta e parafusada com outra semelhante da caixa tranquilizadora . Entre estas foi colocada uma placa de neoprene para evitar vazamentos. Na figura 25 temos a vista em planta da canaleta observa-se que há uma inserção nas paredes laterais internas do duto para a colocação da placa de orifício e do cordão de 0-ring, e o dispositivo usado para a instalação da placa de orifício.

FIGURA 25. Vista em planta do duto.

- 1. Mancal.
- 2. Pilar.
- 3. Extremidade torneada do eixo.
- 4. Perfil metálico em U.
- 5. Parafuso que fixa o duto na viga metálica.
- 6. Parafuso de fixação das placas de acrílico.
- 7. Parafuso que pressiona a placa de latão.
- 8. Dispositivo usado para a instalação da placa de orifício.
- 9. Cordão de o-ring.
- 10. Tomada de pressão.
- 11. Parafuso que fixa o dispositivo de acrílico às paredes do duto.
- 12. Abertura para a entrada da placa de orificio
- 13.Seção de teste.

Na figura 26 temos uma visão tridimensional do dispositivo de acrílico usado, para a instalação da placa de latão . Nesta figura vemos em rosa, o sulco feito na placa de acrílico para a colocação da placa de latão.

FIGURA 26 - Dispositivo de acrílico.

FIGURA 27 - Corte tridimensional do duto de acrílico com a placa de orificio.

Na figura 27 podemos observar as dimensões da abertura da placa de orificio inserida no duto, as tomadas de pressão, a rosca para a colocação dos parafusos e o parafuso de ajuste da placa de latão. As tomadas de pressão foram posicionadas o mais perto possível da placa e possuem dois diâmetros, um externo de 4mm e outro interno com 1,5 mm.

A foto 7 mostra a placa de orificio no duto e as tomadas de pressão a montante e jusante do mesmo.

FOTO 7 - Placa de orifício no duto retangular.

Foi ensaiado orificio bidimensional com duas placas de tamanhos diferentes. Sendo β definido como a raíz quadrada da razão de áreas, pode ser considerado equivalente à razão de diâmetros de orificios circulares para tubos, ou seja:

$$\beta = \sqrt{\frac{A_o}{A}} \tag{18}$$

onde β - raíz quadrada da razão de áreas.

Ao - área do orificio.

A - área da canaleta.

As posições da placa de orifício permitiram obter os valores de β de 0,384 e 0,487.

A cada ensaio eram registradas temperaturas ambiente e da água, vazões, pressões e aceleração. A figura 28 mostra a placa feita de latão com 3mm de espessura e com as medidas em conformidade com a norma DIN alemã.

FIGURA 28 - Orificio bidimensional.

Nesta figura temos H como sendo a altura interna do duto e a o ângulo da extremidade inferior da placa.

O dispositivo fabricado para colocação e fixação da placa de orificio é composto de um retângulo de acrílico com um sulco de aproximadamente 8 mm de profundidade por 5 mm de largura para o encaixe da placa de latão, e um parafuso que a pressiona evitando o escorregamento. Entre a tampa do duto e o dispositivo foi introduzido um cordão de o-ring para promover a vedação. As tomadas de pressão foram posicionadas logo a montante e jusante do orifício. O furo para a tomada colocação do adaptador metálico de ligação à mangueira de plástico, tinha 4mm de diâmetro. As mangueiras foram ligadas a dois manômetros: um de mercúrio para ensaios com altas vazões e outro de água para baixas vazões. O manômetro de água registra diferencial de pressões enquanto o de mercúrio, com o formato em U, fornece o valor da pressão nas tomadas em relação à atmosfera. Para ensaios com valores baixos de vazões, as tomadas a montante e jusante do orifício são ligadas a cada braço do manômetro de água conforme a figura 29:

FIGURA 29 - Manômetro de água.

Quando são feitos ensaios com altos valores de vazão, as mangueiras são retiradas do manômetro de água e inseridas em um pequeno tubo de PVC de onde sai uma única mangueira que se conecta ao manômetro de mercúrio (figura 30). Abre-se a válvula correspondente a somente uma tomada de pressão escolhida e faz-se a leitura em relação a atmosfera.

FIGURA 30 - Manômetro de mercúrio.

Com os valores da pressões a montante (Hm), jusante (Hj) obtém-se o valor aparente da velocidade do orifício pela fórmula:

$$Vo(m/s) = \sqrt{\frac{2 \cdot (Hm - Hj) \cdot g}{1000}}$$
(19)

onde Vo - velocidade aparente no orificio (m/s)

Hm - pressão estática a montante (mm)

- Hj pressão estática a jusante (mm)
- g aceleração da gravidade (m/s²)

Para se obter as medidas de vazão gravimétrica o fluxo é desviado do reservatório de abastecimento para o gravimétrico montado sobre a balança eletrônica, ao mesmo tempo acionando um cronômetro. O tempo registrado é aquele necessário ao preenchimento do reservatório de medidas gravimétricas. Registradas as massas inicial e final e o intervalo de tempo, calcula-se a vazão como:

$$Q(l/s) = \left(\frac{mf - mi}{\Delta t}\right)$$
(20)

onde mf - massa final (Kg) mi - massa inicial (Kg) Δt - intervalo de tempo (s) Q - vazão (l/s)

O número de Reynolds utilizado para seção não circulares foi:

$$\operatorname{Re} y = 4 \cdot v d \cdot R_h / \upsilon \tag{21}$$

onde Rey - número de Reynolds

Vd - velocidade média do escoamento no duto (m/s)

- Rh raio hidráulico do duto.(m)
- v viscosidade cinemática.

A velocidade média de água no duto é calculada como:

$$vd = \frac{Q}{A} \tag{22}$$

onde vd - velocidade no duto.(m/s)

Q - vazão medida por método gravimétrico.(m3/s)

A - área da seção transversal da canaleta.(m²)

69

O coeficiente de descarga é determinado pela equação

$$Cd = \frac{Q}{A_0\sqrt{2 \cdot g \cdot h_m}} \tag{23}$$

sendo:

Q - vazão ($m^{3/s}$).

 A_0 - área do orifício (m²).

g - aceleração da gravidade (m/s^2) .

 h_m - diferencial de pressão (mca).

Os ensaios consistiam ainda em determinar os diversos graus de cavitação através de um coeficiente de cavitação σ calculado como na equação 14 e associar este σ a leitura de um acelerômetro. A posição escolhida para a colocação do acelerômetro, foi aquela que visualmente continha maior quantidade de bolhas.

Os aparelhos utilizados para a análise da cavitação foram :

•um acelerômetro tipo 4384 com sensitividade de 1,001pC/ms⁻² (foto 8);

• um calibrador tipo 4294 com nível de aceleração de 10,05 m/s² (foto 9) e

• um analisador tipo 2148 de dois canais da marca Brüel & Kjaer (foto 10), para registrar o grau de ocorrência de cavitação na seção a jusante do orifício.

FOTO 8 - Acelerômetros.

FOTO 9 - Calibrador tipo 4294.

FOTO 10 - Analisador tipo 2148 de dois canais da marca Brüel & Kjaer

Para calibrar o analisador foi usado uma fonte com um nível de sinal conhecido para medição de vibração. A foto 11 mostra o acelerômetro acoplado ao calibrador para a devida calibração do analisador.

FOTO 11 - Calibração do analisador.

Os sinais de vibração entram no analisador usando soquetes de carga no painel traseiro.

Eram atribuídos dados ao analisador em um menu de calibração (figura 31), tais como: uso do número de canais e qual(is) o(s) escolhido(s), entrada do tipo de sinal que no caso deste experimento era

dado como carga, o valor de referência do usuário $(1.0 *10^{-6} \text{ m/s}^2)$ que aparece automaticamente no analisador dependendo da referência de calibração selecionada e é usado para o cálculo dos níveis de vibração, a frequência de calibração (160 Hz) e a sensitividade do transdutor (3.16 pC/ms⁻²).

Selecionava-se ainda o número de leituras para o cálculo das médias e manualmente iniciava-se a calibração. No término deste cálculo, o analisador estava calibrado e fornecia o ajuste do ganho.

Elapsed no. of flvg.	101	07	Calibration CALIB R	ATION	
HUTO H 1.6E-0	12 1	0.		Fage Z Of Y	
1_0E+02-11			Mode	🖬 B A&B	F 1
3_2E+01-			Calib. Level :	1.00E+01 m∕s²	F2
1.0E+01-			Calib. Frequency :	160.00 Hz	F3
3.2E+00-			Transducer Sens. :	1.000 pC∕ms-2	F4
1.0E+00-			Gain Adjustment :	3.32E+00	F 5
3.2E-01-			No. of Lin. Avg.	128 256 512 1024	F 6
1_0E-01-		Auto Calibration	START FINISHED	F7	
3_2E-02-			-> Page 3 (Verific	ation)	F 8
1.0E−02. ■ 160.00 Hz		GAIN > 3.16			

FIGURA 31 - Menu da calibração.

Feito isto acionava-se um trigger manual e o analisador plotava gráficos de aceleração (em m/s²) por frequência (Hz) e fornecia o valor RMS da aceleração. A leitura do acelerômetro era feita juntamente com as medidas de vazão, temperatura e pressão e então a associava ao σ para avaliar os diversos níveis de ocorrência da cavitação.

Para determinar-se o perfil de concentração de ar foi empregado o aparelho de absorção de raios gama. A determinação da intensidade do feixe emergente foi realizada com o equipamento apropriado para a detecção e contagem de pulsos, de acordo com o esquema ilustrativo de montagem mostrado na figura 32:

FIGURA 32: Representação esquemática da montagem para medida da concentração de ar pela técnica da absorção de raios gama.

A concentração de bolhas de ar foi avaliada por um sistema de radiação gama constituído por uma fonte de Césio 137, um tubo fotomultiplicador e uma analisador ORTEC. A intensidade de radiação é absorvida por um cristal acoplado ao fotomultiplicador que gera pulsos ao analisador. A foto 12 mostra a caixa de armazenamento do Césio (verde) fixo na estrutura metálica de suporte. A foto 13 mostra o analisador usado para a contagem de desintegrações da radiação gama. São feitos relatórios mensais de medição de radiação do laboratório pelo Serviço de Assessoria e Proteção Radiológica SAPRA em São Carlos.

FOTO 12 - Caixa de armazenamento do Césio 137.

FOTO 13 - Analisador do sistema de radiação gama.

Para se obter o valor da voltagem de operação foi feita uma série de contagens de pulsos com incrementos de 50 volts até o máximo de 950 volts. Plotados os valores das desintegrações, obteve-se o gráfico da figura 33.

Figura 33 - Determinação da voltagem de operação

A tendência desta curva é atingir um patamar com o número de desintegrações constante. Foi admitido o valor de 910 V como valor de voltagem de operação, sabendo-se que um valor muito superior poderia danificar o tubo fotomultiplicador usado no experimento.

A contagem destes pulsos foi feita a cada 4 minutos e o valor do ganho foi estipulado em 4. Esses valores foram observados na prática, como sendo os valores de operação que resultam no melhor funcionamento do aparelho e da resolução do problema em questão.

Usando-se os discriminadores e o controle de ganho do analisador foram feitas várias medidas de intensidade até obter o espectro de Césio.

Através do espectro determinou-se a janela de voltagem de 1,8 V acima de 7,5 V como na figura 34.

;:

FIGURA 34 - Espectro de Césio.

Obtidos estes valores iniciou-se o experimento para medidas de concentração de bolhas devido a cavitação. Primeiramente fez-se a contagem de pulsos por 4 minutos e obteve-se a intensidade de radiação que atravessa o duto cheio de água. Depois fez-se a contagem de pulsos para a canaleta com mistura de água e ar. Calculou-se a concentração de bolhas de ar pela equação:

$$Car = \frac{x_{ar}}{x_{ar} + x_{água}}$$
(24)

Com os valores da concentração de ar foram feitos gráficos em relação a posição a jusante do orificio em que o feixe de radiação se localizava. As posições eram definidas a cada 2 cm a partir da base do duto quando da direção horizontal, para varrer toda a altura do duto obtendo o perfil 1 que ficava a 10 cm do orificio e o perfil 2 a 20 cm como na figura 35.

FIGURA 35 - Posições dos perfis de absorção da radiação gama

Os gráficos obtidos dos ensaios de concentração de bolhas de ar, bem como os gráficos de Cd em função do coeficiente de cavitação (σ) e do número de Reynolds, se encontram no capítulo 5 para análise e discussão.

CAPÍTULO 5

5.ANÁLISE DE RESULTADOS

O programa experimental foi desenvolvido basicamente em uma canaleta retangular transparente de 80mm de altura e 50mm de largura, duas placas de orifício usadas separadamente com razões de contração β =0.4873 e β =0.3841.

Os ensaios foram realizados com água e costituíram em determinar e observar o comportamento do coeficiente de descarga (Cd) com as direções de fluxos : horizontal, vertical ascendente, vertical descendente.

Foram feitas medidas de pressão, vazão, aceleração, concentração de bolhas de ar, bem como leituras de temperatura da água e do ambiente no início e término do experimento. O duto basculante, possibilitou a diversificação de direções e sentidos do escoamento, mantendo assim a identidade do medidor.

Determinou-se o Cd através da equação 23, e o valor do Rey pela a equação 21. Os gráficos das figuras 36 a 41 ilustram os valores de Cd x Rey. Observa-se que Cd é praticamente constante para valores de Rey acima de 10000. Calcularam-se valores médios de Cd nesta faixa de Rey para aberturas da placa de orifício e sentidos de escoamento. A tabela 1 mostra os resultados destes gráficos.

Figura 37 - Variação de Cd com Rey para fluxo vertical descendente e beta = 0,3841.

. 's

Figura 40 - Variação de Cd com Rey para fluxo vertical descendente e beta = 0,4873.

89

Figura 41 - Variação de Cd com Rey para fluxo horizontal e beta = 0,4873.
Figura	Rey	β	m	Direção do	Cd
				Fluxo	
36	5000-80000	0.384	0.147	Vertical	0.6581
				Ascendente	
37	5000-80000	0.384	0.147	Vertical	0.6610
				Descendente	
38	5000-80000	0.384	0.147	Horizontal	0.6623
39	10000-120000	0.487	0.237	Vertical	0.6927
				Ascendente	
40	10000-120000	0.487	0.237	Vertical	0.6922
				Descendente	
41	10000-120000	0.487	0.237	Horizontal	0.6926

Tabela 1 - Valores médios de Cd para diferentes β e direções de fluxo.

Nota-se que os valores obtidos de Cd para β =0.4873 resultaram praticamente iguais para os três sentidos de escoamento tendo em vista que as pequenas diferenças existentes encontram-se na faixa de possíveis erros experimentais. Dois manômetros foram usados, um de água e outro de mercúrio, sendo que a leitura feita neste último apresentava maior probabilidade de erro. No entanto, o valor de Cd no ensaio de sentido vertical descendente resultou maior que no vertical ascendente para β =0.841 e Rey≤10⁸

Satto (1993) realizando ensaios com água e com orifício circular concêntrico observou que o Cd obtido para β =0.497 resultou

ligeiramente maior para fluxo vertical descendente que no vertical ascendente. Kapoor et alii (1986) obtiveram variações para β =0.8.

Estes autores explicam a variação no valor de Cd para diferentes sentidos, baseados no comprimentos retilíneos diversos, utilizados para cada caso. No atual estudo, emprega-se o mesmo duto com os mesmos acessórios para todos os sentidos de escoamento ensaiados, observando valores praticamente constantes de Cd para as orientações do duto. Assim, pode-se dizer com confiança que que a orientação do duto não influi no valor do coeficiente de descarga para medidores tipo orifício, em ensaios realizados com água. Os resultados de Cd obtidos neste estudo, são comparados na figura 42 com dados e relações empíricas reportadas por Satto (1993), e Rouse e Howe (1953), norma Din (1965).

Observe que a equação para coeficiente de vazão utilizada nesta comparação, expressa em termos de razão de áreas (m) como:

$$Cd = 0.611 + 0.075 \left(\frac{m}{1-m}\right)$$

foi ajustado aos dados observados sobre vertedores de paredes delgadas que possui certa similaridade com o sistema ensaiado.

Figura 42 - Comparação de resultados

As figuras 43 a 48 mostram gráficos de Cd em função de σ , para observar o comportamento do Cd em relação a cavitação e a possível ocorrência da cavitação "choked".

Figura 43 - Variação do coeficiente de descarga com o coeficiente de cavitação, para fluxo vertical ascendente e beta = 0,3841.

Figura 44 - Variação do coeficiente de descarga com o coeficiente de cavitação para fluxo vertical descendente e beta = 0,3841.

Figura 45 - Variação do coeficiente de descarga com o coeficiente de cavitação para fluxo horizontal e beta = 0,3841.

Figura 46 - Variação do coeficiente de descarga com o coeficiente de cavitação para fluxo vertical ascendente e beta = 0,4873.

Figura 47 - Variação do coeficiente de descarga com o coeficiente de cavitação para fluxo vertical descendente e beta = 0,4873.

Figura 48 - Variação do coeficiente de descarga com o coeficiente de cavitação para fluxo horizontal e beta = 0,4873.

A cavitação foi caracterizada por um coeficiente de cavitação σ , calculado pela equação 13.

Nota-se destes gráficos que Cd é praticamente constante em relação ao coeficiente de cavitação σ . Tullis (1973) observou que Cd sofre um decréscimo na condição severa de cavitação. No caso de experimentos com β =0.5 em dutos circulares, identificou-se que o valor de σ correspondente era em torno de 0.4. As condições de cavitação severa e supercavitação não puderam ser realizadas no equipamento deste estudo, razão pela qual o efeito de σ sobre Cd não foi registrado. Diferentemente da observação de Tullis et al (1973) e Ball (1960), Numachi (1960) observou uma independência no valor de Cd em relação a σ . Entretanto, existe diferença de opiniões entre estes autores quanto ao local de medida de diferencial de pressão. Neste estudo, empregou-se a metodologia utilizada por Numachi et al (1960).

A cada valor de σ foi associado um valor de aceleração medido por um acelerômetro colado na parede do duto e a jusante do medidor. Obtendo-se assim gráficos bi-log de leitura do acelerômetro versus σ , para analisar os níveis de cavitação. Estes se encontram nas figuras 49 a 54.

Figura 49 - Leitura do acelerômetro versus coeficiente de cavitação para fluxo vertical ascendente e beta = 0,3841.

Figura 50 - Leitura do acelerômetro versus coeficiente de cavitação para fluxo vertical descendente e beta = 0,3841.

Figura 51 - Leitura do acelerômetro versus coeficiente de cavitação para fluxo horizontal e beta = 0,3841.

σ Figura 52 - Leitura do acelerômetro versus coeficiente de cavitação para fluxo vertical ascendente e beta = 0,4873.

Figura 53 - Leitura do acelerômetro versus coeficiente de cavitação para fluxo vertical descendente e beta = 0,4873.

Figura 54 - Leitura do acelerômetro versus coeficiente de cavitação para fluxo horizontal e beta = 0,4873.

Nota-se que as leituras do acelerômetro são iniciadas com escoamento não cavitado e que, à medidaa que σ diminui para vazões crescentes, os valores registrados de aceleração aumentam de forma acentuada, até o ponto crítico a partir do qual a variação é relativamente suave. A mudança no coeficiente angular das retas ajustadas em vários trechos sugere valores de cavitação incipiente e crítico segundo Tullis et al (1973). Nos ensaios realizados aqui, o arranjo experimental não permitiu observar a cavitação "choked"que se verifica a menores valores de σ , devido às restrições construtivas.

Realizaram-se medidas de concentração de bolhas no escoamento a jusante do orifício, por meio de absorção de radiação gama, com vistas a verificação do efeito da orientação do duto na cavitação, e por conseguinte no coeficiente de descarga. Entretanto, como não foi observado o efeito da orientação do duto sobre Cd, alguns ensaios foram feitos para medida de concentração de bolhas com o escoamento vertical ascendente. As figuras 55 a 58 apresentam resultados sobre a distribuição de ar na seção do duto para diferentes Rey e distâncias a jusante do orifício.

Figura 55 - Avaliação gráfica da concentração de bolhas para fluxo vertical ascendente, beta = 0,3841, x=5cm e Rey=36.019,79

Figura 56 - Avaliação gráfica da concentração de bolhas para fluxo vertical ascendente, beta = 0,3841, x=10cm e Rey=36.019,79

ascendente, beta = 0,3841, x=5cm e Rey=73.186,17.

Figura 58 - Avaliação gráfica da concentração de bolhas para fluxo vertical ascendente, beta = 0,3841, x=10cm e Rey=73.186,17.

Observa-se dos gráficos que, para distâncias diferentes e mesmo Rey, a distribuição da concentração é quase constante. Entretanto, o aumento de Rey \cong 36.000 para \cong 73.000, acarretou num aumento de concentração da ordem de 3 a 7%. Nota-se também que a concentração máxima observada no centro do duto às distâncias de medição, mostrando que há uma redistribuição das bolhas após orifício. As fotos 14 e 15 mostram o escoamento a jusante do orifício e o comportamento das bolhas no fluxo vertical ascendente.

FOTO 14 - Escoamento com Rey=36.019,79 e σ = 5,038.

FOTO 15 - Escoamento com Rey = 73.186,17 e σ = 0,309.

CAPÍTULO 6

6. CONCLUSÃO

Este estudo teve como objetivo estudar o escoamento a jusante de um medidor de vazão tipo orifício bi-dimensional, enfatizando a dependência do Cd em relação ao sentido do escoamento. Para isso, foi confeccionado um duto basculante para levantamento de medidas de cavitação, concentração de bolhas de ar, pressão e vazão. Os resultados dos ensaios com orifício de duas aberturas, realizados em duto em diversas orientações e variadas condições de escoamento, não confirmaram a hipótese de dependência dos coeficientes de descarga sobre a orientação do escoamento em relação a gravidade. Há necessidade de investigações posteriores da dependência de Cd sobre a orientação do duto, com ensaios utilizando-se outros fluidos ou soluções. Os ensaios de cavitação utilizando acelerômetro permitiram a obtenção de gráficos que sugerem intervalos de cavitação incipiente e crítica. As medidas de concentração de bolhas de ar por meio de absorção de radiação gama, indicaram um acréscimo de concentração de bolhas com o aumento de Rey.

ANEXO A

Obtenção da equação de atenuação de um feixe radioativo e da equação de concentração de bolhas de ar devido a cavitação.

A atenuação de um feixe incidente num absorvedor depende da sua espessura X (mm), a intensidade do feixe I (número de fótons/cm2 . seg), densidade aparente do meio ρ (g/cm3) e do coeficiente de atenuação de massa do absorvedor μ (cm2/g).

Sendo um feixe incidente Io em uma canaleta de acrílico cheia de água, podemos escrever que

$$I_{1} = I_{0} \cdot e^{-\left[\mu_{\acute{a}gua} \cdot \rho_{\acute{a}gua} \cdot x_{\acute{a}gua} + \mu_{acrílico} \cdot \rho_{acrílico} \cdot x_{acrílico}\right]}$$

Sendo	$\mu_{ m água}$	= coeficiente de atenuação da água.						
	$ ho_{ m água}$	= densidade aparente da água.						
	$X_{ m água}$	= espessura de ocupação de água.						
	$\mu_{acrilico}$	= coeficiente de atenuação do acrílico.						
	$\rho_{acrílico}$	= densidade aparente do acrílico.						
	X _{acrílico}	= espessura do acrílico.						

Com os valores de macrílico, pacrílico e xacrílico constantes, denomina-se B como:

 $B = \mu_{acrílico} \cdot \rho_{acrílico} \cdot x_{acrílico}$

Temos I1 como sendo

$$I_1 = I_0 \cdot e^{-\left[\mu_{\acute{a}gua} \cdot \rho_{\acute{a}gua} \cdot x_{\acute{a}gua} + B\right]}$$
(1)

Consideremos agora, o caso de uma mistura de água e ar no duto. Neste caso obteremos a equação II e a absorção será devido as seguintes variáveis:

$$I_{2} = I_{0} \cdot e^{-\left[\mu_{a} gua^{\cdot \rho} a gua^{\cdot x} a gua^{+\mu} a crílico^{\cdot \rho} a crílico^{\cdot x} a crílico^{+\mu} a r^{\cdot \rho} a r^{\cdot x} a r\right]}$$

Sendo:

ndo: $\begin{pmatrix} \mu_{ar} \\ \rho_{ar} \\ X_{ar} \end{pmatrix}$ = coencient. = densidade aparente do ar. = espessura de ocupação do = coeficiente de atenuação do ar. = espessura de ocupação do ar.

Pode-se supor que a absorção de radiação pelo ar seja desprezível, fazendo com que:

$$\mu_{ar} \cdot \rho_{ar} \cdot x_{ar} \cong 0$$

É dado pelas condições do problema que a espessura do acrílico e a quantidade de água no duto soma 50mm.

 $x_{água} + x_{ar} = 50mm$

Simplificando a equação II a:

$$I_2 = I_0 \cdot e^{-\left[\mu_{\acute{a}gua} \cdot \rho_{\acute{a}gua} \cdot (50 - x_{ar}) + B\right]}$$

Desenvolvendo-se, temos:

$$I_2 = I_0 \cdot e^{-\left[\mu_{\acute{a}gua} \cdot \rho_{\acute{a}gua} \cdot 50 - \mu_{\acute{a}gua} \cdot \rho_{\acute{a}gua} \cdot x_{ar} + B\right]}$$
(III)

Substituindo I em III, obtemos:

$$I_{2} = I_{0} \cdot e^{-\left[\mu_{\acute{a}gua} \cdot \rho_{\acute{a}gua} \cdot 50 + B\right]} \cdot e^{\left[\mu_{\acute{a}gua} \cdot \rho_{\acute{a}gua} \cdot x_{ar}\right]}$$

$$I_2 = I_1 \cdot e^{\left[\begin{array}{c} \mu_{\acute{a}gua} \cdot \rho_{\acute{a}gua} \cdot x_{ar} \right]}$$

$$\ln \frac{I_2}{I_1} = \ln e^{\left[\mu_{\acute{a}gua} \cdot \rho_{\acute{a}gua} \cdot x_{ar} \right]}$$

O espaço ocupado pelo ar na linha de radiação do feixe é dado por:

$$\overline{x_{ar}} = \frac{1}{\mu_{\acute{a}gua} \cdot \rho_{\acute{a}gua}} \cdot \ln \frac{I_2}{I_1}$$

Define-se a concentração de ar (Car), como a relação de volume de ar (vol ar) e volume de mistura ar- água ,

$$Car = \frac{vol_{ar}}{vol_{ar} + vol_{água}}$$

Se A for a área do feixe de radiação, então os volumes de ar e água atingidos pelo feixe podem ser expressos como x ar.A e xágua.A, assim

$$\operatorname{Car} = \frac{x_{\operatorname{ar}} \cdot A}{(x_{\operatorname{ar}} + x_{\operatorname{água}}) \cdot A}$$

Simplificando, obtém-se finalmente a expressão para concentração de ar :

$$Car = \frac{x_{ar}}{50}$$

Observação:

Pedrosa Filho (1981) obteve experimentalmente o valor de $\mu_{água}$ como:

 $\mu = 0.0849 \ (cm^2 / g)$

que verifica-se ser bem próximo ao valor teórico:

 $\mu_{te\acute{o}rico} = 0.0857 ~(cm^2 \,/\,g)$

No presente estudo foi utilizado o valor observado por Pedrosa Filho.

ANEXO B

TABELA 2 Vertical Ascendente Beta = 0,3841

÷

ś

	Pu			Pd			Pd 5D		Pu	Pd	Pd 5D		Pv_		
mmHg	mmhg	mmH2	mmHg	mmhg	mmh2O	mmHg	mmhg	mmH2O	mmH2	mmH2	mmH2	vo(m/s)	mmH2O	sigma	
675,5	861	918	748,5	787,5	844	752	786	844	2553,1	581,28	515,5	6,21987	250	5,03808	Cond.1
706	830	888	1011	528	586	1028	510	567	1726,5	-6557	-7027	12,7486	266	0,30922	Cond.2
701	836	893	971	568	626	978	561	619	1873,6	-5481	-5669	12,0122	266	0,53891	
699	838	895	936	601	662	948	588	645,5	1927,4	-4569	-4902	11,2896	266	0,70762	
693	843,5	900	900	638	695	907,5	635,5	693	2081,6	-3582	-3718	10,5418	266	1,03747	
690,5	845	902	868	670	727,5	872,5	668	721	2136	-2722	-2805	9,76263	282	1,39924	
687	849	908	842	695	753	844	695	752	2238,9	-2036	-2062	9,15825	282	1,78014	
678	859	916	770	768	826	759	765	822,5	2492,5	31,088	138,24	6,94936	282	4,18648	
679	858	914	763	775	835	772,5	768	829	2464,6	221,47	0,448	6,63405	282	3,94389	-
678	858	915	758,5	780	839	763	776,5	834	2479,1	348,3	239,16	6,46574	282	4,44531	
amb(C	Tág(C)	mi(Kg)	mf(Kg)	Dt(s)	Q(l/s)	vd(m/s)	Rey	Cd	Acel	Arquivo			Cdteórico		
20	20	32,4	254,6	95	2,33895	0,58474	36019,79	0,63736	0,29	92	Cond.1		0,6617106		
21	20	32,2	254,8	46,84	4,75235	1,18809	73186,17	0,63182	21	93	Cond.2		0,65595371		
21	20	32,2	254,8	49,48	4,49879	1,1247	69281,33	0,63478	18	94			0,65902742		
21	20	32,2	254,2	52,75	4,20853	1,05213	64811,37	0,63183	12	95			0,65596731		
21	20	32,2	254,8	56,69	3,92662	0,98165	60469,92	0,63132	5,7	96			0,65543972		
22	20	32,2	255,4	60,83	3,66924	0,91731	56506,33	0,63703	3,3	97			0,66136126		
22	20	32,2	254,6	66,17	3,36104	0,84026	51760,01	0,62203	1,4	98			0,64578801	·	
22	20	32,2	254,4	85,68	2,59337	0,64834	39937,91	0,63251	0,85	99			0,65667242		
22	20	32,2	254,4	88,6	2,5079	0,62698	38621,67	0,64074	0,54	100			0,66521264		
22	20	32,2	254,4	91,01	2,44149	0,61037	37598,95	0,64001	0,32	101			0,66445497		
								0,63394							
	P1C1	P2C1	P1C2	P2C2	Água			P1C1	P2C1	P1C2	P2C2	P1C1	P2C1	P1C2	P2C2
Posiçã	Pulsos	Pulsos	Pulsos	Pulsos	Im		Posição	Xar	Xar	Xar	Xar	Cc(%)	Cc(%)	Cc(%)	_Cc(%)
0	487005	486691	494914	492048	482405		0	0,11178	0,1042	0,3015	0,2331	2,23566	2,08372546	6,03062	4,66249
1	489037	489328	496821	495130	2min		1	0,16083	0,1678	0,3468	0,3067	3,21652	3,35665749	6,93658	6,13341
2	489621	489987	497823	496819			2	0,17488	0,1837	0,3706	0,3468	3,49767	3,67369845	7,41121	6,93563
3	489040	488613	497117	495997			3	0,1609	0,1506	0,3538	0,3273	3,21797	3,01219197	7,07689	6,54555
4	485682	485712	494641	483615			4	0,07974	0,0805	0,295	0,0295	1,59484	1,60938644	5,90064	0,59014
5	258504	255998	262732	253960			5	-7,3483	-7,463	-7,157	-7,557	-146,97	-149,261338	-143,14	-151,14

Cont.Tabela 2 Vertical Ascendente beta = 0,3841

Pm	Pj	vo	Tamb	Tág	mi	mf	Dt	Q	vd			Pv
(mmh20)	(mmh20)	(m/s)	(C)	(C)	(Kg)	(Kg)	(s)	(l/s)	(m/s)	Rey	Cd	(mmh20)
3465	1912	5,51995	28	26	33,6	254,6	103,61	2,133	0,53325	32848,18	0,654943	396
3468	1918	5,51462	28	26	33,6	263	107,78	2,12841	0,5321	32777,51	0,654166	396
3460	1910	5,51462	28	26	33,6	255	103,88	2,13131	0,53283	32822,1	0,655056	396
3550	1713	6,00349	28	26	33,6	256	96,41	2,30681	0,5767	35524,95	0,651263	396
3515	1670	6,01655	28	26	33,8	255,8	96,17	2,30841	0,5771	35549,55	0,6503	396
3500	1655	6,01655	28	26	33,8	257,6	97,04	2,30627	0,57657	35516,49	0,649695	396
3570	1419	6,49635	28	26	33,8	257,4	89,35	2,50252	0,62563	38538,78	0,652913	396
3528	1368	6,50993	28	26	33,6	256	88,74	2,5062	0,62655	38595,45	0,65251	396
3498	1350	6,49182	28	26	33,8	256,8	89,03	2,50477	0,62619	38573,51	0,653958	396
3569	3414	1,74387	28	26	33,8	254,6	326,31	0,67666	0,16916	10420,52	0,65766	396
3567	3415	1,72692	28	26	33,8	254,2	326,1	0,67587	0,16897	10408,34	0,663342	396
3566	3414	1,72692	28	26	33,6	254,2	326,13	0,67642	0,1691	10416,83	0,663883	396
3582	3386	1,961	28	26	33,6	253,4	288,89	0,76084	0,19021	11716,99	0,657606	396
3580	3386	1,95097	28	26	33,6	253	289,02	0,75912	0,18978	11690,4	0,659487	396
3579	3385	1,95097	28	26	33,6	251,6	288,13	0,7566	0,18915	11651,69	0,657303	396
3609	3327	2,3522	28	26	33,6	254,2	240,02	0,91909	0,22977	14153,99	0,662265	396
3607	3325	2,3522	28	26	33,6	254	240,06	0,9181	0,22953	14138,8	0,661555	396
3605	3323	2,3522	28	26	33,8	254,2	240,54	0,91627	0,22907	14110,58	0,660235	396
3593	2812	3,91449	28	26	33,6	254,6	143,99	1,53483	0,38371	23636,36	0,664558	396
3592	2809	3,9195	28	26	33,6	260,8	147,33	1,54212	0,38553	23748,59	0,66686	396
3602	2821	3,91449	28	26	33,6	253,2	142,55	1,54051	0,38513	23723,89	0,667019	396
2781	1808	4,36924	28	26	33,6	254,6	129,91	1,70118	0,42529	26198,14	0,659921	396
2784	1809	4,37373	28	26	33,6	254,2	129,96	1,69745	0,42436	26140,66	0,657797	396
2782,5	1809	4,37036	28	26	33,4	252,6	129,11	1,69778	0,42444	26145,77	0,658432	396
2779,5	1809	4,36362	28	26	33,6	253	129,05	1,70012	0,42503	26181,79	0,660358	396
2838,5	1688,5	4,75005	28	26	33,6	254,8	119,66	1,84857	0,46214	28467,99	0,659608	396
2833	1681	4,75418	28	26	33,8	256	120,02	1,85136	0,46284	28510,91	0,660028	396
2899,5	1550	5,1456	28	26	33,8	253,4	110,02	1,996	0,499	30738,41	0,657465	396
2898,5	1551,5	5,14083	28	26	33,6	253,4	109,99	1,99836	0,49959	30774,8	0,658854	396
2749	1856	4,18577	28	26	33,6	253,8	135	1,63111	0,40778	25119,11	0,660475	396
2628	2083	3,27	28	26	33,6	253,6	172,67	1,27411	0,31853	19621,24	0,660398	396
2601	2129,5	3,04152	28	26	33,8	253,2	185,38	1,18351	0,29588	18226,13	0,659525	396
2557	2203	2,63543	28	26	33,8	253,2	215,16	1,01971	0,25493	15703,48	0,655801	396
2796,5	715,5	6,38977	28	26	34	254,6	89,6	2,46205	0,61551	37915,63	0,65307	396
2889	431	6,94449	28	26	32,6	255,2	82,86	2,68646	0,67161	41371,47	0,655674	396
											0,658114	

.

TABELA 3 Vertical Descendente Beta = 0,3841

	Pu			Pd			Pd 5D		Pu	Pd	Pd 5D		Pv	
mmHg	mmhg	mmH2O	mmHg	mmhg	mmh2O	mmHg	mmhg	mmH2O	mmH2O	mmH2O	mmH2O	vo(m/s)	mmH2O	sigma
676	861	917,5	737	800	857	739	796,5	855	2545,86	904,728	832,22	5,67442	314	6,13794
709,5	827,5	885	1000	539,5	595,5	1009	540	587	1645,31	-6252,5	-6357,9	12,4481	314	0,41585
712,5	826	882	1016,5	525	580	1023,5	517	571	1583,26	-6668,6	-6869,5	12,7241	314	0,33321
705,5	832	890	960	580	636,5	965	573	630	1760,18	-5169,8	-5331,8	11,6604	298	0,61623
703,5	834	891,5	912	628	685	930,5	609,5	666	1813,51	-3878,5	-4375,9	10,5677	298	0,86053
695	843	899	885,5	653,5	710	891,5	648,5	705	2047,49	-3178,3	-3326,3	10,1257	298	1,18644
689	848	905,5	840	698	756	844,5	694,5	751	2197	-1968,8	-2074,9	9,04058	298	1,78541
683	855	912	788	751,5	808	792	747,5	803	2371,43	-434,64	-543,29	7,41992	298	3,14222
679	857	916	764	774	832	764	772,5	829,5	2454,17	192,56	171,376	6,66129	298	4,32513
675	862	920	732	806	863	734,5	804,5	860,5	2574,27	1052,74	997,92	5,46373	298	6,78777
Tamb(C)	Tág(C)	mi(Kg)	mf(Kg)	Dt(s)	Q(l/s)	vd(m/s)	Rey	Cd	Acel	Arquivo			Cdteórico	
24	21	32,2	254,2	101,73	2,18225	0,54556	33606,61	0,65182	0,19	71			0,66995	
24	21	32,2	253,2	47,31	4,67132	1,16783	71938,28	0,63604	18	72			0,65372	
24	21	32,2	253	46,08	4,79167	1,19792	73791,67	0,63828	19	73		· · · · · · · · · · · · · · · · · · ·	0,65602	
23	21	32,2	255,2	50,84	4,38631	1,09658	67549,17	0,63758	15	74			0,6553	
23	21	32	252,4	53,6	4,11194	1,02799	63323,88	0,6595	10	75			0,67783	
23	21	32	252,8	58,43	3,77888	0,94472	58194,76	0,63254	4,2	76			0,65012	
23	21	32	253,6	65,72	3,37188	0,84297	51926,96	0,63216	2	77			0,64973	
23	21	32	253,8	78,29	2,83306	0,70826	43629,07	0,64715	0,69	78			0,66514	
23	21	32	253,8	87,31	2,54037	0,63509	39121,75	0,64638	0,28	79			0,66435	
23	21	32	254,4	106,17	2,09475	0,52369	32259,21	0,64982	0,16	80			0,66788	
								0,64313						

Cont.Tabela 3 Vertical Descendente beta = 0,3841

Pm	Pj	vo	Tamb	Tág	mi	mf	Dt	Q	vd			Pv
(mmh20)	(mmh20)	(m/s)	(C)	(C)	(Kg)	(Kg)	(s)	(l/s)	(m/s)	Rey	Cd	(mmh20)
2037	1931	1,44212	25	29	30,8	250,8	389,3	0,56512	0,14128	8702,8	0,66418	330
2056	1908	1,70404	26	29	30,8	251,8	331,31	0,66705	0,16676	10272,55	0,66348	352
2068	1883	1,90518	26	29	31	253,4	298,62	0,74476	0,18619	11469,29	0,66257	352
2092,5	1832	2,26075	26	29	31	252,6	250,42	0,88491	0,22123	13627,67	0,66343	352
2097	1803	2,40172	26	29	31	253,2	237,56	0,93534	0,23384	14404,28	0,66008	352
2105	1762	2,59416	26	27	31	252,8	220,5	1,0059	0,25147	15490,79	0,65721	352
2001	1689	2,47415	25	27	31,8	252,2	227,74	0,96777	0,24194	14903,66	0,66297	330
2057	1606	2,97466	25	27	31,8	252,8	190,39	1,16078	0,29019	17875,94	0,66139	330
2091	1546	3,27	25	27	31,8	254,6	174,8	1,2746	0,31865	19628,83	0,66065	330
2115	1495	3,48775	25	27	31,8	251,6	161,35	1,36226	0,34056	20978,74	0,66201	330
2189	1336	4,09095	25	27	31,8	253,4	138,24	1,60301	0,40075	24686,34	0,66414	330
2166	1384	3,91699	25	27	32	253	144,66	1,52772	0,38193	23526,89	0,66106	330
2251	1215	4,50847	25	27	32	253,2	126,04	1,755	0,43875	27026,98	0,65977	330
2270	1174	4,63719	25	27	32	252,8	122,11	1,80821	0,45205	27846,37	0,66091	330
2347	1019	5,10445	25	27	32	252,8	110,31	2,00163	0,50041	30825,13	0,66464	330
2412	863	5,51284	25	27	32	253,6	103,54	2,14024	0,53506	32959,63	0,65801	330
2446	798	5,68628	25	27	32	252,4	99,74	2,20975	0,55244	34030,08	0,65866	330
2531	606	6,14561	25	27	32	254,4	93,17	2,38703	0,59676	36760,33	0,65833	330
2647	357	6,70297	25	27	32	255,2	86	2,59535	0,64884	39968,37	0,65626	330
								_			0,66104	
TABELA 4 Horizontal Beta = 0,3841

	Pu			Pd			Pd 5D		Pu	Pd	Pd 5D		Pv	
mmHg	mmhg	mmH2	mmHg	mmhg	mmh2O	mmHg	mmhg	mmH2O	mmH2	mmH2	mmH2	vo(m/s)	mmH2O	sigma
677	859,5	917	758	779	837,5	760	777	832,5	2513,2	341,08	284,25	6,52821	206	4,52148797
714	823	880	1076	463	529	1074	462	530	1523,7	-8315	-8303	13,8934	250	0,14724341
681	856,5	914	790	747	803	791,5	746,5	802,5	2419	-522,6	-549,5	7,59703	266	3,0939301
684	852,5	910	815	722,5	780	819	719,5	776,5	2324,8	-1187	-1396	8,30095	266	2,24100574
688	848,5	905,5	846	696	753	845,5	692,5	750	2216,7	-2075	-2116	9,17664	266	1,75809124
691	846,5	904	869,5	667	728,5	877	662,5	719,5	2149,9	-2786	-2943	9,8412	266	1,33327993
696	840,5	897	922,5	620	678,5	921,5	617	673,5	2000,9	-4129	-4154	10,9666	282	0,90404215
703	834	890	984	554	611,5	991,5	547,5	603,5	1818,7	-5844	-6030	12,2611	282	0,46979769
712,5	823	879	1057	483	542	1065	473	530	1542,9	-7783	-8023	13,5266	282	0,17719803
716	823	880	1059	478	533	1075	464	518	1496,8	-7873	-8276	13,5585	282	0,1475976
amb(C	Tág(C)	mi(Kg)	mf(Kg)	Dt(s)	Q(I/s)	vd(m/s)	Rey	Cd	Acel	Arquivo		Cdteór.		
19	20	32,4	253,8	89,38	2,47706	0,61927	38146,79	0,64312	0,24	81		0,67277		
20	20	32,4	253,4	43,7	5,05721	1,2643	77881,01	0,61695	11	82		0,64539		
21	20	32,2	254,6	78,91	2,8184	0,7046	43403,37	0,62879	0,78	83/4		0,65778		
21	20	32,4	254,8	70,93	3,13549	0,78387	48286,48	0,64021	1	85		0,66973		
21	20	32,2	255	65,71	3,39066	0,84766	52216,1	0,62625	1,3	86		0,65512		
21	20	32,2	254,4	60,54	3,6703	0,91758	56522,63	0,63212	3,4	87		0,66126		
22	20	32,2	254,8	54,92	4,05317	1,01329	62418,79	0,62642	7,6	88		0,6553		
22	20	32,2	255	48,66	4,57871	1,14468	70512,12	0,63294	18	89		0,66212		
22	20	32,2	255	43,49	5,12302	1,28075	78894,46	0,64193	20	90		0,67152		· · · · ·
22	20	32,2	255,2	43,43	5,1347	1,28367	79074,37	0,64187	15	91		0,67146		
								0,63306					_	

Cont.Tabela 4 Horizontal beta = 0,3841

Pm	Pj	vo	Tamb	Tág	mi	mf	Dt	Q	vd			Pv	
(mmh20)	(mmh20)	(m/s)	(C)	(C)	(Kg)	(Kg)	(S)	(l/s)	(m/s)	Rey	Cd	(mmH2O)	Sigma
2407	2274	1,61538	28	29	31	251,8	347,3	0,63576	0,15894	9790,73	0,66706	396	14,1203008
2405	2268,5	1,6365	28	30	31	251,2	347,55	0,63358	0,15839	9757,1	0,65619	396	13,7179487
2404,5	2267	1,64248	28	30	31	250,2	346,47	0,63267	0,15817	9743,07	0,65286	396	13,6072727
2416	2242	1,84767	28	30	31	251	302,74	0,7267	0,18167	11191,1	0,66662	396	10,6091954
2415	2241	1,84767	30	30	31	248,8	300,05	0,72588	0,18147	11178,5	0,66587	440	10,3505747
2455	2157	2,41801	30	30	31	251,2	233,7	0,94223	0,23556	14510,4	0,66046	440	5,76174497
2476	2120	2,64286	30	30	31,2	251,6	213,59	1,03188	0,25797	15891	0,66177	440	4,71910112
2477	2121	2,64286	30	30	31,2	250,8	212,89	1,03152	0,25788	15885,4	0,66153	440	4,72191011
2477	2120	2,64657	30	30	31,2	249,8	211,99	1,03118	0,2578	15880,2	0,66039	440	4,70588235
2438	2196	2,179	30	30	31,2	252	261,42	0,84462	0,21115	13007,1	0,65698	440	7,25619835
2526	2023	3,14147	30	30	31,2	252,6	179,3	1,2348	0,3087	19016	0,66621	440	3,1471173
2526	2023	3,14147	30	30	31,2	251	178,13	1,23393	0,30848	19002,5	0,66574	440	3,1471173
2550	1976	3,35587	30	30	31,2	251,8	167,07	1,3204	0,3301	20334,2	0,66688	440	2,67595819
2611	1850	3,86404	30	30	31,2	251,4	144,62	1,52261	0,38065	23448,2	0,66787	440	1,85282523
2776	1835	4,29679	30	30	32,4	252,8	131,21	1,67975	0,41994	25868,2	0,6626	440	1,48246546
2802	1789	4,45815	26	28	31,8	252	126,13	1,74582	0,43645	26885,6	0,66373	352	1,41855874
2831,5	1735,5	4,63719	26	28	31,8	256,2	123,34	1,81936	0,45484	28018,2	0,66499	352	1,26231752
2888,5	1623	4,98288	27	28	31,8	254,4	114,58	1,94275	0,48569	29918,3	0,66082	374	0,98696168
2966	1478	5,4032	27	28	31,8	254	105,53	2,10556	0,52639	32425,7	0,66049	374	0,74193548
3068	1274,5	5,93199	27	28	31,8	252,8	95,84	2,30593	0,57648	35511,3	0,65886	374	0,50209088
3176	1042	6,47063	27	28	32	254	88,04	2,52158	0,6304	38832,3	0,6605	374	0,31302718
											0,66231		

•

TABELA 5 Vertical Ascendente beta = 0,4873

Pm	Pj	Vo	Tamb	Tág	mi	mf	dt	Q	Vd					
(mmH2O	(mmH2O	(m/s)	(C)	(C)	(kg)	(kg)	(s)	(l/s)	(m/s)	Rey	Cd			
2007	1976	0,77988	24	20	32,4	252,6	431,12	0,51076	0,12769	7865,75	0,68939			
2018	1974	0,92913	24	21	32,4	251,8	357,37	0,61393	0,15348	9454,51	0,69554			
2033	1939	1,35804	24	21	32,4	253	246,27	0,89576	0,22394	13794,8	0,69432			
2040	1922	1,52156	24	21	32,4	252,6	220,32	0,99946	0,24986	15391,6	0,69143			
2044	1908	1,6335	24	21	32,4	252,4	204,3	1,07685	0,26921	16583,5	0,69392			
2050	1893	1,75509	24	21	32,4	252,8	189,83	1,16104	0,29026	17880	0,69634			
2064	1841	2,09171	23	22	32,2	252	158,57	1,38614	0,34653	21346,5	0,69756			
2070	1817	2,22797	-23	22	32,2	252,4	148,97	1,47815	0,36954	22763,5	0,69837			
2081	1786	2,40581	23	22	32,2	252,4	138,88	1,58554	0,39639	24417,3	0,69373			
2091	1758	2,55606	23	22	32,2	247,6	127,8	1,68545	0,42136	25955,9	0,6941			
2104	1714	2,76619	23	22	32,2	242,6	121,89	1,72615	0,43154	26582,7	0,65686			
2116,5	1680	2,92645	23	22	32,2	253,6	114,39	1,93548	0,48387	29806,5	0,69618	Cd	méd=0,6920)
2130	1647,5	3,07679	23	23	32,2	253,4	108,86	2,03197	0,50799	31292,3	0,69518			
2143	1607	3,24289	23	23	32,2	252,6	102,81	2,14376	0,53594	33013,9	0,69586			
2127	1569,5	3,30729	23	23	32,2	254,6	99,24	2,24103	0,56026	34511,9	0,71327			
2172	1513	3,59577	23	23	32,2	255,4	93,69	2,38232	0,59558	36687,8	0,69741			
2192	1453,5	3,80649	23	23	32,2	254	88	2,52045	0,63011	38815	0,697			
2210	1406	3,97171	23	23	32,2	254,8	84,88	2,62253	0,65563	40386,9	0,69505			
2233	1328	4,2138	23	23	32,2	254,6	80,5	2,76273	0,69068	42546,1	0,69015			
2256	1262,5	4,41503	23	23	32,2	255,2	76,83	2,90251	0,72563	44698,7	0,69202			
2282	1183	4,64353	23	23	32	254,2	73,02	3,043	0,76075	46862,2	0,68981			
2321	1069	4,95623	23	23	32,2	253,8	68,16	3,25117	0,81279	50068,1	0,6905			
2341	999,5	5,13032	23	23	32	254,6	66,08	3,36864	0,84216	51877,1	0,69117			
2538	1058,5	5,38774	23	23	32	253,4	62,7	3,5311	0,88278	54378,9	0,68989			
2568,5	969	5,60198	23	24	32	254	60,47	3,67124	0,91781	56537,1	0,68984			
2779	982,5	5,93695	23	24	32	252,8	56,84	3,88459	0,97115	59822,7	0,68874			

.

Cont.Tabela 5 Vertical Ascendente Beta = 0,4873

	Pu			Pd			Pd 5D		Pu	Pd	Pd 5D		Pv		
mmHg	mmhg	mmH2	mmHg	mmhg	mmh2O	mmHg	mmhg	mmH2O	mmH2	mmH2	mmH2	vo(m/s)	mmH2O	sigma	
696	841	898	770	768	825	771	766	824	2008,1	30,088	-9,28	6,22969	266	4,82042	
699	838,5	896	782	756	814	784	755,5	812	1934,6	-291,9	-327	6,60933	274	4,15589	
702	835	893	790	747,5	805	792,5	746	803,5	1847,6	-514,4	-568,2	6,80757	274	3,79071	
704	833,5	890,5	799	739,5	796,5	800,5	737	795,5	1799,6	-857,6	-913	7,22038	274	3,24904	
713	825,5	883	826	711	760	827	711	767	1571,3	-1596	-1617	7,88359	274	2,54348	
722,5	814,5	871,5	871	667,5	723,5	876	662	719	1295	-2794	-2937	8,95718	250	1,61015	
735	802,5	860	916	622	679,5	921	615,5	673,5	965,78	-4014	-4169	9,88406	250	1,08698	
746	792	848,5	954	585	642	962,5	576,5	634	675,48	-5022	-5252	10,5731	266	0,75628	
754	784	841	995	544	601	1000,5	538	596,5	460,68	-6126	-6282	11,3677	266	0,51199	
705,5	831	889	802,5	734,5	792,5	805	731,5	789	1746,7	-973	-1047	7,30488	193	3,13631	
689,5	846,5	904,5	746,5	799,5	847,5	747,5	789,5	746,5	2170,6	761,17	608,15	5,2586	200	6,66147	
697,5	838,5	895,5	779,5	757,5	816,5	780	756	814	1954,3	-237	58	6,55697	200	5,19856	
701,5	835,5	892,5	789,5	747,5	804,5	792	745	803,5	1860,1	-508,2	58,5	6,81654	250	5,44432	
708,5	828,5	886,5	811,5	726,5	783,5	814	722,5	780	1672,7	-1201	-1289	7,50851	250	2,85715	
714,5	824,5	880,5	833,5	705	762	837	700	748,5	1536,2	-1786	-1892	8,07358	250	2,29222	
711	826,5	883	825	713	770,5	828	710	767,5	1610,7	-1565	-1645	7,89292	250	2,48917	
719,5	817,5	875,5	853,5	685,5	742	857	681	739,5	1376,7	-2317	-2427	8,51307	250	1,92542	
725	812	870	874	664	721,5	878	659	717	1228,7	-2883	-3005	8,98199	250	1,59326	
739,5	798	855,5	926,5	611	667,5	930,5	608	662	844,68	-4302	-4394	10,0486	250	1,02257	
733,5	803,5	851	912	626	683	916,5	623,5	681	989,42	-3905	-4000	9,79983	193	1,16382	
743,5	794,5	851	947	591	647,5	951,5	585	644	742,76	-4847	-4991	10,4722	193	0,84006	
748	789	847	965,5	574	630,5	970	567	624,5	609,7	-5325	-5480	10,7902	200	0,70932	
755	782,5	839,5	992	545,5	602,5	1002	534,5	595,5	427,04	-6065	-6352	11,2861	206	0,50781	
764	773,5	831	1027	512,5	569	1033	505,5	561,5	185,33	-6980	-7154	11,8565	250	0,3537	
765,5	771	829	1037,5	501	557,5	1038	499,5	555	132,01	-7276	-7302	12,0556	250	0,32938	
767,5	771	829	1036,5	501	558,5	1039,5	499	555,5	105,1	-7263	-7329	12,0235	250	0,32558	
765,5	772	829	1034,5	503,5	560,5	1037,5	501,5	558,5	144,46	-7202	-7269	12,0058	250	0,33459	
767,5	771	829	1034,5	503,5	561	1037,5	499	555,5	105,1	-7203	-7303	11,974	250	0,33039	
766	771,5	830	1033,5	504,5	561,5	1037,5	500	557,5	132,51	-7175	-7290	11,974	250	0,33141	

Cont.Tabela 5 Vertical Ascendente Beta = 0,4873

		-										 		
			-											
amb(C	Tág(C)	mi(Kg)	mf(Kg)	Dt(s)	Q(l/s)	vd(m/s)	Rey	Cd	Acel	Arquivo	Cdteor.			
21	22	32,4	254	55,13	4,01959	1,0049	61901,69	0,67919	0,12	16	0,7015			
21,5	22	32,4	253	52,13	4,23173	1,05793	65168,62	0,67396	0,18	17	0,6961			
21,5	22	32,4	253,4	50,34	4,39015	1,09754	67608,26	0,67883	0,26	18	0,7011			
21,5	22	32,4	251,8	48,3	4,54244	1,13561	69953,62	0,66222	0,28	19	0,6839			
21,5	22	32,4	253,2	44,35	4,97858	1,24464	76670,12	0,66475	0,29	20	0,6865			
20	21	32,4	254,2	38,77	5,72092	1,43023	88102,14	0,67231	1,3	22	0,6943			
20	21	32,4	253,2	34,95	6,3176	1,5794	97290,99	0,67281	3,5	23	0,6949			
21	22	32,4	254	32,66	6,78506	1,69626	104489,9	0,67551	6,7	24	0,6976			
21	22	32,4	250,8	30,2	7,23179	1,80795	111369,5	0,66965	7	25	0,6916			
17	19	32,4	253,6	47,77	4,63052	1,15763	71310,03	0,66726	0,43	26	0,6891			
18	20	32,4	253	62,09	3,55291	0,88823	54714,77	0,7112	0,34	27	0,7345			
18	20	32,4	255	52,81	4,21511	1,05378	64912,71	0,67668	0,33	28	0,6989			
20	20	32,4	253,8	50,16	4,41388	1,10347	67973,68	0,6816	0,6	29	0,7039			
20	20	32,4	253,6	46,21	4,78684	1,19671	73717,38	0,67108	0,62	30	0,6931			
20	20	33,2	253,8	42,92	5,13979	1,28495	79152,84	0,67013	0,49	31	0,6921	Cd	méd=0,67	005
20	20	32,2	253,2	44,18	5,00226	1,25057	77034,86	0,66712	0,73	32	0,689	(exclu	uindo um p	ponto)
20	20	32,4	252	40,49	5,42356	1,35589	83522,85	0,67062	0,92	33	0,6926			
20	20	32,2	252,4	38,44	5,72841	1,4321	88217,48	0,67133	1,1	34	0,6933			
20	21	32,2	253	34,44	6,41115	1,60279	98731,71	0,67159	4,6	35	0,6936			
17	20	32,4	252,2	35,45	6,20028	1,55007	95484,34	0,66599	3,1	37	0,6878			
17	20	32,4	251	32,78	6,6687	1,66718	102698	0,67031	9,1	38	0,6923			
18	20	32,4	254,2	32,16	6,89677	1,72419	106210,2	0,67281	16	39	0,6949			
19	20	32,4	252,2	30,43	7,22314	1,80578	111236,3	0,67369	23	40	0,6958			
20	20	32,4	254,4	29,12	7,62363	1,90591	117403,8	0,67683	22	41	0,699			
20	20	32,4	253	29,23	7,54704	1,88676	116224,4	0,65897	22	42 e 43	0,6806			

TABELA 6 Vertical Descendente beta = 0.4873

	Pu			Pd			Pd 5D		Pu	Pd	Pd 5D	,	Pv	
mmHg	mmHg	mmH2O	mmHg	mmHg	mmH2O	mmHg	mmHg	mmH2O	mmH2O	mmH2O	mmH2O	vo(m/s)	mmH2O	sigma
705,5	831,5	888,5	799	737,5	794,5	802,5	734	792	1752,456	-884,544	-979,736	7,19291	250	3,21
703,5	833,5	890,5	791,5	745,5	803	795	744	802	1806,28	-561,476	-628,256	6,81582	282	3,7337
780,5	757,5	815,5	1028	511	567	1030	509	566	-251,488	-7012,75	-7067,58	11,5176	282	0,3888
751	787,5	844	943,5	595	652	946	594	651	547,644	-4746,42	-4793,51	10,1916	282	0,922
738	800	858	903,5	637,5	692,5	904	634	690	892,272	-3634,3	-3689,12	9,42397	282	1,3159
730	806,5	863,5	879	658	714,5	880,5	655,5	712	1086,384	-3030,28	-3084,1	8,98715	200	1,6103
722,5	814,5	871,5	851,5	685,5	742,5	853	683	741	1294,952	-2290,7	-2345,52	8,38752	200	2,0477
714,5	822,5	879,5	826	711	767,5	828,5	709	767,5	1510,248	-1603,94	-1666,49	7,81667	200	2,5603
706	830,5	887,5	800,5	737	793,5	801,5	736	793,5	1732,272	-910,956	-938,868	7,2014	200	3,3174
690,5	845,5	903,5	747	789	847	748,5	788,5	845,5	2143,68	623,152	595,24	5,46194	200	6,7134
										- · ·				
amb(C	Tág (C	mi (Kg)	mf (Kg)	Dt (s)	Q (I/s)	vd (m/s)	Rey	Cd	Aceler.	Arquivo		Cdteór.		<u> </u>
20	18	32,2	253,8	48,82	4,53912	1,13478	69902,5	0,66427	0,91	61		0,68672		
22	19	32,2	253,2	50,06	4,4147	1,10368	67986,42	0,6818	0,8	62		0,70485		
22	21	31,6	252,4	29,73	7,42684	1,85671	114373,4	0,67876	18	63		0,7017		
22	21	31,6	251,4	34,13	6,44008	1,61002	99177,26	0,66516	10	64		0,68764		
22	21	31,8	248,8	36,37	5,96646	1,49161	91883,42	0,66644	4	65		0,68896		
18	19	32,6	250,2	38,26	5,6874	1,42185	87585,99	0,66614	1,7	66		0,68866		
18	19	32,6	253,4	41,61	5,30642	1,3266	81718,82	0,66595	2,4	67		0,68846		
18	19	32,6	253,2	44,74	4,93071	1,23268	75932,95	0,66399	1,3	68		0,68643		
18	19	32,6	253,2	48,82	4,51864	1,12966	69587,05	0,66049	0,93	69		0,68281		
18	19	32,6	253,6	62,38	3,5428	0,8857	54559,15	0,68277	0,17	70		0,70585		
								0,66958						

.

Cont.Tabela 6 Vertical Descendente beta = 0.4873

Pm	Pj	vo	Tamb	Tág	mi	mf	Dt	Q	vd			Pv			
(mmh2o)	(mmh2o)	(m/s)	(C)	(C)	(Kg)	(Kg)	(s)	(I/s)	(m/s)	Rey	Cd	(mmH20)			
2058	1906	1,72692	19,8	20	32,6	254	195,58	1,13202	0,283	17433,07	0,69001	250			
2106	1825,5	2,34593	19,8	20	32,8	253,8	142,42	1,55175	0,38794	23896,92	0,69628	250			
2132	1764	2,68704	20	21	32,8	255	125,2	1,77476	0,44369	27331,31	0,69525	250			
2160,5	1683	3,06081	20	21	32,8	254,6	109,71	2,02169	0,50542	31134,08	0,69527	250			
2197	1579,5	3,48071	22,8	24	31,8	254,2	96,28	2,30993	0,57748	35572,91	0,69857	298			
2224,5	1496	3,78063	23	24	31,2	251	87,96	2,49886	0,62472	38482,49	0,69575	298			
2255,5	1405	4,08495	23	24	31,2	252,6	82,16	2,69474	0,67369	41499,03	0,6944	298			
2287,5	1296	4,41058	23	24	31,4	253,2	76,52	2,89859	0,72465	44638,26	0,69178	298			
2315	1216	4,64353	23,2	25	31,4	254,4	72,99	3,05521	0,7638	47050,28	0,69258	298			
2347,5	1109,5	4,92844	23,2	25	31,4	252,2	68,16	3,23944	0,80986	49887,32	0,69189	298			
2411	875	5,48966	24	24	31,6	252,8	61,41	3,60202	0,9005	55471,1	0,69068	314			
2029	2010	0,61056	26	24,1	31,6	251,2	571,43	0,3843	0,09607	5918,205	0,66255	352			
2043	1977	1,13795	26	24,4	31,6	251,2	290,59	0,7557	0,18893	11637,84	0,69905	352			
2038	1995	0,91851	26	24,2	31,6	251,4	366,54	0,59966	0,14992	9234,79	0,68723	352			
2033	2012	0,64189	26	24,4	31,6	251,2	531,53	0,41315	0,10329	6362,463	0,67752	352			
2483,5	1870	3,46942	21	19,3	32,4	253	96,28	2,29123	0,57281	35285	0,69517	266			
2392	2117	2,32282	22	193	30,6	251	143,99	1,53066	0,38267	23572,19	0,69365	282			
2342	2252	1,32883	23	20,5	32,4	253	250,56	0,88043	0,22011	13558,59	0,69743	298			
2347	2229	1,52156	23	22	32,4	253,2	219,73	1,00487	0,25122	15474,99	0,69518	298	(Cdméd=0.6922	1
2392	2094	2,41801	23	22,3	32,4	253,2	139,36	1,58439	0,3961	24399,54	0,68973	298			
2344	2209	1,62748	24	22,3	32,4	252,8	206	1,0699	0,26748	16476,5	0,692	314			
2365	2143	2,08702	24	22,8	32,4	253,2	160,64	1,3745	0,34363	21167,33	0,69326	314			
2395	2055	2,58279	24	22,8	32,4	253,6	130,04	1,70102	0,42525	26195,63	0,69326	314			
2435	1938	3,12268	24	23,3	32,4	253,2	106,95	2,06452	0,51613	31793,55	0,69593	314			
2473	1826	3,56288	24	23,3	32,4	253,8	93,59	2,36564	0,59141	36430,82	0,69891	314			
2581,5	1510,5	4,584	24	23,5	32,4	253,8	73,34	3,01882	0,7547	46489,77	0,69322	314			
2524,5	1661,5	4,11486	24	23,5	32,2	253,2	81,24	2,72033	0,68008	41893,16	0,6959	314			
2661	1249	5,26341	24	23,6	32,2	254,4	63,99	3,47242	0,8681	53475,23	0,69445	314			
2696,5	1127	5,5492	24	24	32,2	252,8	60,5	3,64628	0,91157	56152,73	0,69167	314			
2673	1209	5,35945	24	24	32,2	255,6	63,41	3,5231	0,88078	54255,8	0,69196	314			
2744,5	974,5	5,893	24	24	32,2	253	57,03	3,87165	0,96791	59623,36	0,69157	314			

. .

TABELA 7 Horizontal Beta = 0,4873

	Pu			Pd			Pd 5D		Pu	Pd	Pd 5D		Pv	
mmHg	mmhg	mmH2	mmHg	mmhg	mmh2O	mmHg	mmhg	mmH2O	mmH2	mmH2	mmH2	vo(m/s)	mmH2O	sigma
693,5	843,5	901,5	764,5	774,5	831,5	765	772	829,5	2076,4	191,56	151,69	6,08116	282	5,12789
690	846,5	903	751,5	785	842,5	752	784,5	841	2162,4	508,28	493,82	5,69677	186	6,17773
699,5	837,5	894	786,5	750	807,5	789	748	805	1913,4	-548,6	-494,7	6,95024	186	3,86994
712,5	823,5	881	836,5	700,5	756,5	839	699	756	1551,1	-1886	-1827	8,21197	186	2,36449
728,5	808,5	866	897	642	698	902	636,5	693	1134	-3487	-3629	9,52203	186	1,29852
718,5	817,5	875,5	861	677,5	734	866,5	672	730	1390,1	-2526	-2675	8,76518	202	1,75208
740	797,5	855	901,5	588	644	955	584,5	639,5	831,22	-4274	-5040	10,0087	202	0,81026
755	783	840	1026,5	510,5	568	1006	531,5	589,5	433,77	-7001	-6443	12,0775	202	0,4879
761	775	832,5	1031,5	507,5	563,5	1035,5	506,5	560	245,88	-7107	-7172	12,0109	218	0,3519
744	793	851	958	580	638	963,5	576	632	717,34	-5144	-5270	10,7241	282	0,74284
749	788	845,5	979,5	559,5	616	983,5	555	612,5	582,28	-5708	-5823	11,1093	266	0,61049
777,5	759	816,5	1065	474	530	1068	471	526	-191,4	-8008	-8088	12,3843	266	0,20841
amb(C	Tág(C)	mi(Kg)	mf(Kg)	Dt(s)	Q(l/s)	vd(m/s)	Rey	Cd	Acel	Arquivo			Cdteór.	
22	20	31,8	252	55,95	3,93566	0,98391	60609,12	0,68125	0,39	60			0,70459094	
16	19	33	252,8	59,59	3,68854	0,92213	56803,49	0,68156	0,22	50			0,70490741	
16	19	33,2	253,6	50,56	4,35918	1,08979	67131,33	0,66021	0,48	51			0,68282785	
16	19	33,2	253,4	42,41	5,19217	1,29804	79959,44	0,66555	0,9	52			0,68834793	
16	19	33,2	252,6	36,09	6,07925	1,51981	93620,39	0,67204	2,4	53			0,69506691	
17	19	33,2	251	39,04	5,57889	1,39472	85914,96	0,66998	1,5	54			0,69293705	
17	19	33	251,8	32,65	6,70138	1,67534	103201,2	0,7048	12	55			0,7289447	
17	19	33	251,4	29,94	7,29459	1,82365	112336,7	0,63577	21	56			0,65755209	
18	19	33	252,6	28,84	7,61442	1,90361	117262,1	0,66732	21	57			0,69018728	
22	19	32,6	252,2	32,37	6,78406	1,69601	104474,5	0,66589	15	57			0,68870696	
21	19	33	254	31,46	7,02479	1,7562	108181,8	0,66562	20	58			0,68842212	
18	18	32,4	253,2	27,79	7,9453	1,98633	122357,7	0,67533	21	59			0,69846697	

Pm	Pj	Vo	Tamb	Tág	mi	mf	dt	Q	Vd					
(mmH2O)	(mmH2O)	(m/s)	(C)	(C)	(kg)	(kg)	(S)	(l/s)	(m/s)	Rey	Cd			
2042	2027	0,54249	20	23	32,4	252,4	643,64	0,34181	0,08545	5263,81	0,66323			
2055	2005	0,99045	20	23	32,4	252,6	336,62	0,65415	0,16354	10073,9	0,69522			
2048	2020	0,74119	20	23	32,4	252,8	456,42	0,48289	0,12072	7436,48	0,6858			
2049	2016	0,80465	21	23	32,4	252,6	415,47	0,53	0,1325	8162,03	0,69334			
2050	1999	1,00031	21	23	32,4	252,4	337,1	0,65263	0,16316	10050,4	0,68676			
2052	1984	1,15506	22	23	32,4	252,6	287,96	0,76469	0,19117	11776,2	0,69688	C	dmédio=0,6934	41
2165	2068	1,37954	22	23	32,2	252,4	241,29	0,91259	0,22815	14054	0,69634			
2176	2039	1,63949	23	22	32,2	252,4	203,15	1,08393	0,27098	16692,5	0,69593	_		
2196	1985	2,03465	23	23	32,2	252,2	163,72	1,34376	0,33594	20693,9	0,69519			
2206,5	1943	2,27373	23	23	32,2	254,2	146,57	1,51463	0,37866	23325,4	0,7012	-		
2439	2154	2,36468	22	21	32,2	251,6	141,27	1,55305	0,38826	23917	0,69134			
2468	2085	2,74125	23	21	32,4	252,8	122,11	1,80493	0,45123	27795,9	0,69309			
2482	2049	2,9147	23	21	32,4	253	114,04	1,93441	0,4836	29789,9	0,6986			
2493	2020	3,04635	23	21	32,4	253,4	109,61	2,01624	0,50406	31050,1	0,69669			
2503	1992,5	3,16481	24	21	32,4	253,6	105,74	2,09192	0,52298	32215,6	0,69578			
. 2532	1922,5	3,45809	24	21	32,4	252,8	96,22	2,29058	0,57265	35275	0,69725			
2542	1896	3,56013	24	21	32,4	253,4	92,94	2,37788	0,59447	36619,3	0,70307			
2552	1869,5	3,65932	24	21	32,4	252,4	90,99	2,41785	0,60446	37234,9	0,69551			
2564	1835,5	3,78063	24	21	32,4	253,2	88,14	2,50511	0,62628	38578,6	0,69749			
2575,5	1800	3,90068	24	22	32,4	252,2	85,11	2,58254	0,64564	39771,1	0,69692			
2587	1768	4,00859	24	22	32,4	251,6	82,65	2,65215	0,66304	40843,1	0,69644			
2607	1716,5	4,17991	24	22	32,4	253,6	80,05	2,76327	0,69082	42554,4	0,69588			
2615,5	1673,5	4,29907	24	22	32,4	254	77,97	2,84212	0,71053	43768,6	0,69589			
2624	1646,5	4,37933	24	23	32,4	253,2	76,34	2,89232	0,72308	44541,8	0,69521	÷		
2640	1592,5	4,53343	24	23	32,4	252,6	73,74	2,98617	0,74654	45987	0,69337			
2660,5	1530,5	4,70857	25	23	32,2	253,4	71,27	3,10369	0,77592	47796,8	0,69385			
2681	1462,5	4,88948	25	23	32,2	253,4	68,74	3,21792	0,80448	49556	0,69277			
2707,5	1386,5	5,09097	25	23	32,4	253,2	65,95	3,34799	0,837	51559,1	0,69224			
2730,5	1311,5	5,27644	25	24	32,2	252,6	63,43	3,4747	0,86867	53510,3	0,69319			
2751,5	1256	5,4168	25	24	32,2	252,8	61,95	3,56094	0,89023	54838,4	0,69199			
2772	1197	5,55891	25	24	32,2	254,4	60,91	3,64801	0,912	56179,3	0,69078			
2791,5	1133	5,70436	24	24	32,2	254,2	59,39	3,738	0,9345	57565,2	0,68978			
2809	1075	5,83276	24	24	32,2	254,6	58,2	3,82131	0,95533	58848,1	0,68963			
2824	1023,5	5,94355	24	24	32,2	253,2	56,79	3,89153	0,97288	59929,6	0,68921			

.

.

Anexo c

Erros de medida:

Seja a variável z = f(x,y), estima-se a precisão da quantidade z, da teoria da combinação dos erros :

$$\Delta z^{2} = \left(\frac{\partial f}{\partial x}\right)^{2} \cdot \Delta x^{2} + \left(\frac{\partial f}{\partial y}\right) \cdot \Delta y^{2}$$

onde Δz , Δx , Δy representam erros de medidas respectivamente em z, x, y. A medida de vazão é realizada observando-se a massa coletada, m, num intervalo de tempo t. Assim :

$$Q = \frac{m}{t}$$

$$\Delta Q^2 = \left(\frac{\partial Q}{\partial m}\right)^2 \cdot \Delta m^2 + \left(\frac{\partial Q}{\partial t}\right) \cdot \Delta t^2$$

Introduzindo as derivadas parciais de Q em relação a m e t e dividindose a equação por Q, temos:

$$\left(\frac{\Delta Q}{Q}\right)^2 = \frac{\Delta m^2}{m^2} + \frac{\Delta t^2}{t^2}$$

Tem-se a precisão da balança de 200g, do cronômetro de 0,01s, o tempo médio de preenchimento de 70 s, e massa de 220Kg, estimam-se

os erros relativos
$$\frac{\Delta t}{t} = \frac{0.01}{70} = 1.43.10^{-4}$$
 e $\frac{\Delta m}{m} = \frac{0.200}{220} = 9.09.10^{-4}$
Assim o erro percentual na medida de vazão é dado por:

$$\Delta Q = 1,052.10^{-3}$$

.

Da mesma forma, o erro na medida de Cd,

$$Cd = \frac{Q}{Ao \cdot \sqrt{2gh}}$$

pode ser expresso:

$$\left(\frac{\Delta Cd}{Cd}\right)^2 = \left(\frac{\Delta Q}{Q}\right)^2 + \frac{1}{4}\left(\frac{\Delta h}{h}\right)^2$$

Considerando o erro de leitura da altura manométrica (h) de 1mm ou $\Delta h = 1$ mm e o valor de h ter variado entre 20mm e 2100mm, obtém-

se
$$\frac{\Delta h}{h} = \frac{1}{20} - \frac{1}{2100} = 0,05 - 4,76.10^{-4} = 4,95.10^{-2}$$

Assim o erro de medida de Cd variou de 1,35%.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1-AGARWAL, N.K.(1994) Mean separation and reattachment in turbulent pipe flow due to an orifice plate. *Journal of fluids engineering*, v.116, n.2, p.373-376, Jun.
- 2-ALVI, S.H.; SRIDHARAN, K.; LAKSHMANA RAO, N.S.(1978) Loss characteristics of orifices and nozzles. *Journal of fluids engineering*, v.100, n.3, p.229-307, Sep.
- 3-BENEDICT, R.P.(1977) Loss coefficients for fluid meters. Journal of fluids engineering, v.99, n.1, p.245-248, Mar.
- 4-BOGEMA, M.; SPRING, B.; RAMAMOORTHY, M.V.(1962)
 Quadrant edge orifice performance-effect of upstream velocity
 Distribution. *Journal of basic engineering*, v.84, n.4, p.415-418,
 Dec.
- 5-COIADO, E.M. Obtenção da vazão através do medidor orifício do tipo diafragma para mistura sólido-líquida (água-areia). São Carlos, 1978.
 134P. Dissertação(Mestrado)-Escola de Engenharia de São Carlos, Universidade de São Paulo.
- 6-DIN.(1965) Norma Din para medidores de vazão do tipo de orifício.Trad. de Rui Carlos Camargo Vieira. São Carlos, EESC, 1965.
- 7-FLING Jr., W. A.(1988) The API/GPA orifice-plate data base. Journal of the petroleum technology, v.40, n.7, p.920-922, Jul.
- 8-KAPOOR, B.S.; GARDE, R.J.; RANGA RAJU, K.G.(1986) Discharge characteristics of orifice meters in sediment-laden

139

flows. *The canadian journal of chemichal engineering*, v.64, p.36-41, Feb.

- 9-KNAPP, R.T; DAILY J.W.; HAMMITT, F.G. Cavitation. New York, McGraw-Hill Book, 1970. Cap.7, p.267-320: Effects of cavitation on flow.
- 10-LAKSHMANA RAO, N.S.; SRIDHARAN, K.(1972). Orifices losses for laminar aproach flow. Journal of the hydraulics division, v.98, n.11, p.2015-2035, Nov.
- 11-MCGREEHAN, W.F.; SCHOTSCH, M.J.(1988) Flow characteristics of long orifices with rotation and corner radiusing. *Journal of turbomachinery*, v.110, n.2, p.213-217, Apr.
- 12-MCNOWN, J.S.; HSU, E.Y. Application of conformal mapping to divided flow. In: MIDWESTERN CONFERENCE IN FLUID DYNAMICS, Michigan, 1951, Proceedings. Michigan, Ann Arbor, 1951. p.143-155.
- 13-MORRISON, G.L.; DeOTTE Jr., R.E.; PANAK, D.L.; NAIL, G.H.
 (1990) The flow field inside an orifice flow meter. *Chemical* engineers progress, v.86, n.7, p.75-80, Jul.
- 14-MORRISON, G.L.; PANAK, D. L.; DeOTTE Jr., R.E. (1993) Numerical study of the effects of upstream flow condition upon orifice flow meter performance. *Journal of offshore mechanics and arctic engineering*, v.115, p.213-218, Nov.
- 15-NUMACHI, F.; YAMABE, M.; OBA, R.(1960) Cavitation effect on the discharge coefficient of the sharp-edged orifice plate. *Journal of basic engineering*, v.32, n.1, p.1-11, Mar.

- 16-ROUSE, H.; Howe, J. W. Basic mechanics of fluids. New York, John Wiley, London, Chapman & Hall, 1953. Cap 5, p.82-104 : Effects of fluid weigth.
- 17-SATTO, M.Y.U. Características de medição de vazão de vinhaça por medidores tipo orifício. São Carlos, 1994. 158P.
 Dissertação (Mestrado) - Escola de Engenharia de São Carlos, Universidade de São Paulo.
- 18-STREETER, V.L.; Wylie, E. B. Mecânica dos fluidos. 7ed. São Paulo, McGraw-Hill. Cap 8, p.355-384 : Medidas dos fluidos.
- 19-TEYSSANDIER, R.G.; HUSAIN, Z.D.(1987) Experimental investigation of an orifice meter pressure gradient. *Transactions of the ASME*, v.109, n.2, p.144-148, Jun.
- 20-TULLIS, J.P.; GOVINDARAJAN, R.(1973) Cavitation and size scale effects for orifices. *Journal of the hydraulics division*, v.99, n.3, p.417-430, Mar.
- 21-YAN, Y.; THORPE, R.B.(1990) Flow regime transitions due to cavitation in the flow through an orifice. *International journal multiphase flow.* v.16, n.3, p. 1023-1045, Jun.

100