• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.18.2006.tde-26052006-091515
Document
Author
Full name
Luciana Silva Peixoto
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2006
Supervisor
Committee
Mauad, Frederico Fabio (President)
Azevedo, José Paulo Soares de
Barbosa, Paulo Sergio Franco
Porto, Rubem La Laina
Villela, Swami Marcondes
Title in Portuguese
Derivação de regras operacionais de proteção contra déficits de suprimento de sistemas de reservatórios via algoritmos genéticos
Keywords in Portuguese
algoritmos genéticos
otimização
planejamento de recursos hídricos
simulação
Abstract in Portuguese
As regras de operação apresentam-se como um dos principais elementos no planejamento e gerenciamento de sistemas de recursos hídricos. Em períodos de seca ou iminente seca, a aplicação de regras operacionais padrão pode apresentar-se insatisfatória, visto que períodos com déficits de grande magnitude podem ocorrer, levando o sistema a uma situação altamente vulnerável. Muitas vezes, isto pode ser evitado ou minimizado, utilizando regras de proteção, que admitem déficits menores na fase de cheia, ou de seca, ou em ambas fases de operação, aumentando assim o armazenamento no reservatório para precaver-se contra déficits de grande magnitude que possam ocorrer no futuro. Neste trabalho é desenvolvida uma rotina computacional para obtenção de regras operacionais de sistemas de reservatórios, considerando um novo tipo de regra de proteção. Aplicando os algoritmos genéticos – AGs, foram obtidas as estratégias operacionais do sistema produtor. Os resultados demonstraram que o emprego de técnicas de otimização como os AGs constitui uma ferramenta versátil para auxiliar na tomada de decisões. Além disso, as regras de proteção apresentaram-se muito úteis na prevenção contra déficits de grande magnitude
Title in English
Derivation of hedging operation rules of reservoir systems using genetic algorithms
Keywords in English
genetic algorithms
optimization
reservoir operation
water resources planning
Abstract in English
The operation rules constitute one of the main elements in the planning and management of water resources systems. The application of the standard operational rules can be present unsatisfactory in periods of drought or imminent drought. These rules can result in periods with deficits of great magnitude, leading the system to a highly vulnerable situation. Many times, this can be avoided or minimized using hedging operation rules that admit deficits in phases of flood, drought or in both phases of operation. Therefore, the storage in the reservoir is increased to prevent deficits of great magnitude that can occur in the future. In this work a computational routine to attain the operational rules of the reservoirs systems was developed, considering a new approach of hedging rule. The operational strategies of the Cantareira system were obtained through the usage of genetic algorithms (GAs). The results demonstrated that the use of optimization techniques, as the AGs, is an important tool to assist in the decision making. Moreover, the hedging rules were suitable in the prevention of deficits of great magnitude that can occur in the future
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2006-05-30
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.