DISTRIBUIÇÃO DE ÁGUA ATRAVÉS DE ORIFÍCIOS LATERAIS EM MANIFOLD

Marconi Fonseca de Moraes

Dissertação apresentada à Escola de Engenharia de São Carlos, da Universidade de São Paulo, como parte dos requisitos para obtenção do título de mestre em Hidráulica e Saneamento

DEDALUS - Acervo - EESC

ORIENTADOR: Prof. Dr. Fazal Hussain Chaudhry

CAMP Biblioteca DES São Carlos

Class, TESE-EESC Cutt. 1373 Tombo T0113 98

31100035949

114 AU, AU 100

Hidraulica e Sonea mento

st 0964706

Ficha catalográfica preparada pela Seção de Tratamento da Informação do Serviço de Biblioteca - EESC-USP

M827a	Moraes, Marconi Fonseca Distribuição de água através de orifícios laterais em manifold / Marconi Fonseca Moraes São Carlos, 1998.
	Dissertação (Mestrado) Escola de Engenharia de São Carlos-Universidade de São Paulo, 1998. Área: Hidráulica e Saneamento Orientador: Prof. Fazal Hussain Chaudhry.
	1. Manifold. 2. Distribuição de vazão. 3. Contração de jatos. 4. Tubos perfurados. I. Título

FOLHA DE APROVAÇÃO

Candidato: Engenheiro MARCONI FONSECA DE MORAES

Dissertação defendida e aprovada em 27-02-1998 pela Comissão Julgadora:

Prof. Titular FAZAL HUSSAIN CHAUDHRY (Orientador) (Escola de Engenharia de São Carlos - Universidade de São Paulo)

Prof. Doutor **RODRIGO DE MELO PORTO** (Escola de Engenharia de São Carlos - Universidade de São Paulo)

NO BATZ

Prof. Doutor ADEMIR PACELI BARBASSA (Universidade Federal de São Carlos - UFSCar)

> Prof. Titular FAZAL HUSSAIN CHAUDHRY Coordenador da Área de Hidráulica e Saneamento

1, mCCont's

JOSÉ CARLOS A. CINTRA Presidente da Comissão de Pós-Graduação da EESC

"À Ivone Fonseca de Moraes, exemplo de luta e sabedoria, uma mulher que é mãe por vocação
- e que tive a felicidade de nascer seu filho."
Dedico.

AGRADECIMENTOS

- À minha família, minha mãe, meus irmãos e minha cunhada, pelo apoio em todos os momentos ;
- À Cristiane Campos de Oliveira, minha futura esposa, por todo carinho e paciência;
- Ao prof. Fazal Hussain Chaudhry, meu orientador, pela atenção e incentivo no decorrer das atividades;
- Ao prof. Rodrigo de Melo Porto, chefe do laboratório de hidráulica, pelas contribuições e supervisão.
- Ao Edson Cornetta, laboratorista, pela pronta ajuda em diversas fases do trabalho;
- Aos cearenses, gaúchos, baianos, paulistas, mineiros, peruanos, colombianos, etc, que foram a grande demonstração de carinho e companheirismo com suas amizades;
- À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES),
 pela bolsa a mim concedida;
- À Deus, companheiro de todas as horas, pela força e constante presença em minha vida.

SUMÁRIO

LISTA DE FIGURAS	
LISTA DE TABELAS	
LISTA DE SÍMBOLOSxi	
RESUMOxiv	
ABSTRACTxv	
1 INTRODUÇÃO1	
2 OBJETIVO2	
3 MANIFOLDS OU DISTRIBUIDORES TUBULARES	
4 REVISÃO BIBLIOGRÁFICA	
5 MATERIAIS E METODOLOLGIA	
5. 1 Recalque d'água	
5. 2 Tubos perfurados	
5. 3 Caixa coletora (carrinho)	
5. 4 Obtenção de vazão	
5. 5 Medidas de pressão	
5. 6 Recirculação da água escoada	
6 RESULTADOS E DISCUSSÕES	
6. 1 Visualização da distribuição de vazão	

**

7 CONCLUSÃO	85
REFERÊNCIAS BIBLIOGRÁFICAS	
APÊNDICE " A "	89
APÊNDICE " B "	

LISTA DE FIGURAS

FIGURA 01.a - Representação dos tipos de manifold	04
FIGURA 01.b - Representação dos tipos de manifold	04
FIGURA 01.c – Representação dos tipos de manifold	04
FIGURA 02 – Análise da descarga do fluxo	09
FIGURA 03 – Distribuição da velocidade	12
FIGURA 04 – Divisão de fluxo	13
FIGURA 05. a – Gradiente de pressão	16
FIGURA 05. b – Distribuição de vazão nos orifícios	16
FIGURA 05. c – Vazão nos pontos de descarga	16
FIGURA 06. a – Equipamento para medidas de vazão	26
FIGURA 06. b – Equipamento para medidas de vazão	26
FIGURA 07 – Bomba	27
FIGURA 08 – Redução da área superficial da caixa coletora	29
FIGURA 09. a – Escala para medição do volume da caixa coletora	30
FIGURA 09. b – Curva de calibração do volume	30
FIGURA 10 – Caixa para coleta d'água	31
FIGURA 11 – Enchimento da caixa coletora	32
FIGURA 12 – Êmbolo	33
FIGURA 13 – Detalhe do êmbolo	33
FIGURA 14 – Pontos para tomada de pressão	34

FIGURA 15 – Peça para tomada de pressão
FIGURA 16 – Piezômetros
FIGURA 17 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 50mm$; $d = 8,36$; $N = 5$)40
FIGURA 18 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold (D = 50mm; d = 8,36; N = 10)41
FIGURA 19 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 50$ mm; $d = 8,36$; $N = 15$)42
FIGURA 20 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 50$ mm; $d = 14,50$; $N = 5$)43
FIGURA 21 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold (D = 50mm; d = 14,50; N = 10)44
FIGURA 22 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold (D = 50mm; d = 14,50; N = 15)45
FIGURA 23 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 50$ mm; $d = 20,30$; $N = 5$)46
FIGURA 24 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 50$ mm; $d = 20,30$; $N = 10$)47
FIGURA 25 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 50$ mm; $d = 20,30$; $N = 15$)
FIGURA 26 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 50$ mm; $d = 26$; $N = 5$)

FIGURA 27 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 50$ mm; $d = 26$; $N = 10$)
FIGURA 28 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 50mm$; $d = 26$; $N = 15$)
FIGURA 29 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 50mm$; $d = 32,16$; $N = 5$)
FIGURA 30 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 50$ mm; $d = 32,16$; $N = 10$)
FIGURA 31 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 50$ mm; $d = 32,16$; $N = 15$)
FIGURA 32 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 38,50$ mm; $d = 5,25$; $N = 5$)
FIGURA 33 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold (D = 38,50mm; d = 5,25; N = 10)56
FIGURA 34 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 38,50$ mm; $d = 5,25$; $N = 15$)
FIGURA 35 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 38,50$ mm; $d = 10,42$; $N = 5$)
FIGURA 36 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold (D = 38,50mm; d = 10,42; N = 10)59
FIGURA 37 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold (D =38,50mm; d = 10,42; N = 15)60

FIGURA 38 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 38,50$ mm; $d = 14,53$; $N = 5$)61
FIGURA 39 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 38,50$ mm; $d = 14,53$; $N = 10$)
FIGURA 40 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold (D = 38,50mm; d = 14,53; N = 15)63
FIGURA 41 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 38,50$ mm; $d = 20,22$; $N = 5$)
FIGURA 42 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold (D = 38,50mm; d = 20,22; N = 10)65
FIGURA 43 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold (D = 38,50mm; d = 20,22; N = 15)66
FIGURA 44 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 38,50$ mm; $d = 26,20$; $N = 5$)
FIGURA 45 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 38,50$ mm; $d = 26,20$; $N = 10$)
FIGURA 46 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 38,50$ mm; $d = 26,20$; $N = 15$)
FIGURA 47 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 26mm$; $d = 5,30$; $N = 5$)70
FIGURA 48 – Variação adimensional da pressão (a) e da vazão (b) ao longo do
manifold ($D = 26mm$; $d = 5,30$; $N = 10$)71

FIGURA 49 – Variação adimensional da pressão (a) e da vazão (b) ao longo do	
manifold ($D = 26mm$; $d = 5,30$; $N = 15$)	
FIGURA 50 – Variação adimensional da pressão (a) e da vazão (b) ao longo do	
manifold ($D = 26mm$; $d = 10,35$; $N = 5$)73	
FIGURA 51 – Variação adimensional da pressão (a) e da vazão (b) ao longo do	
manifold (D = 26mm; d = 10,35; N = 10)74	
FIGURA 52 – Variação adimensional da pressão (a) e da vazão (b) ao longo do	
manifold ($D = 26mm$; $d = 10,35$; $N = 15$)	
FIGURA 53 – Variação adimensional da pressão (a) e da vazão (b) ao longo do	
manifold ($D = 26$ mm; $d = 14,63$; $N = 5$)	
FIGURA 54 – Variação adimensional da pressão (a) e da vazão (b) ao longo do	
manifold (D = 26mm; d = 14,63; N = 10)77	
FIGURA 55 – Variação adimensional da pressão (a) e da vazão (b) ao longo do	
manifold (D = 26mm; d = 14,63; N = 15)78	
FIGURA 56 – Distribuição de vazão para $D = 38,50$ mm; $d = 26,20$; $N = 5$	
FIGURA 57 – Distribuição de vazão para D = 38,50mm; d = 26,20; N = 1080	
FIGURA 58 – Vazão de descarga no 1º orifício80	
FIGURA 59 – Vazão de descarga no 10º orificio	
FIGURA 60 – Distribuição de vazão para D = 38,50mm; d = 26,20; N = 1582	
FIGURA 61 – Vazão de descarga no 1º orificio82	
FIGURA 62 – Vazão de descarga no 15º orificio	
FIGURA 63 – O efeito da velocidade do fluxo d'água no início da tubulação84	
FIGURA 64 – O efeito da velocidade do fluxo d'água no final do tubulação84	

V

A
FIGURA B.1 - Processo iterativo para o cálculo de ∆h'(perda de carga adimen-
sional) e Q _i '(vazão na tubulação)152
FIGURA B.2 – Solução universal para obtenção de $\Delta h'$

,

LISTA DE TABELAS

TABELA 01 – Valores dos coeficientes $\phi e \theta$ para saídas laterais21
TABELA A.1 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = $50,23$ mm), diâmetro do orifício (d = $8,36$ mm) e 5 orifícios ativos (N = 5)91
TABELA A.2 - Medidas de distribuição de pressão e de vazão realizadas no labo- ratório para diâmetro do tubo (D = 50,23mm), diâmetro do orifício ($d = 8,36mm$) e 10 orifícios ativos ($N = 10$)
TABELA A.3 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = $50,23$ mm), diâmetro do orifício (d = $8,36$ mm) e 15 orifícios ativos (N = 15)
TABELAA.4 - Medidas de distribuição de pressão e de vazão realizadas no labo- ratório para diâmetro do tubo (D = 50,23mm), diâmetro do orifício ($d = 14,50mm$) e 5 orifícios ativos ($N = 5$)95
TABELAA.5 - Medidas de distribuição de pressão e de vazão realizadas no labo- ratório para diâmetro do tubo (D = 50,23mm), diâmetro do orifício ($d = 14,50mm$) e 10 orifícios ativos ($N = 10$)96
TABELAA.6 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 50,23mm), diâmetro do orifício ($d = 14,50mm$)e 15 orifícios ativos ($N = 15$)
TABELAA.7 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 50,23mm), diâmetro do orifício ($d = 20,30mm$)e 5 orifícios ativos ($N = 5$)
TABELAA.8 - Medidas de distribuição de pressão e de vazão realizadas no labo- ratório para diâmetro do tubo (D = 50,23mm), diâmetro do orifício ($d = 20,30mm$) e 10 orifícios ativos ($N = 10$)
TABELAA.9 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 50,23mm), diâmetro do orificio ($d = 20,30mm$)e 15 orifícios ativos ($N = 15$)

TABELAA.10 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 50,23mm), diâmetro do orifício ($d = 26mm$) e5 orifícios ativos ($N = 5$)
TABELAA.11 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 50,23mm), diâmetro do orifício ($d = 26mm$) e10 orifícios ativos ($N = 10$)
TABELAA.12 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 50,23mm), diâmetro do orifício ($d = 26mm$) e15 orifícios ativos ($N = 15$)
TABELAA.13 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 50,23mm), diâmetro do orifício ($d = 32,16mm$)e 5 orifícios ativos ($N = 5$)
TABELAA.14 - Medidas de distribuição de pressão e de vazão realizadas no labo- ratório para diâmetro do tubo (D = 50,23mm), diâmetro do orifício ($d = 32,16mm$) e 10 orifícios ativos ($N = 10$)108
TABELAA.15 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 50,23mm), diâmetro do orifício ($d = 32,16mm$)e 15 orifícios ativos ($N = 15$)
TABELAA.16 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 38,50mm), diâmetro do orifício ($d = 5,25mm$) e5 orifícios ativos ($N = 5$)
TABELAA.17 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 38,50mm), diâmetro do orifício ($d = 5,25mm$) e10 orifícios ativos ($N = 10$)
TABELAA.18 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 38,50mm), diâmetro do orifício ($d = 5,25mm$) e15 orifícios ativos ($N = 15$)
TABELAA.19 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 38,50mm), diâmetro do orifício ($d = 10,42mm$)e 5 orifícios ativos ($N = 5$)
TABELAA.20 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 38,50mm), diâmetro do orifício ($d = 10,42mm$)e 10 orifícios ativos ($N = 10$)
TABELA A.21 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 38,50mm), diâmetro do orifício ($d = 10,42mm$) e 15 orifícios ativos ($N = 15$)

TABELAA.22 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 38,50mm), diâmetro do orifício ($d = 14,53mm$)e 5 orifícios ativos ($N = 5$)
TABELAA.23- Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 38,50mm), diâmetro do orifício ($d = 14,53mm$)e10 orifícios ativos ($N = 10$)
TABELA A.24 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 38,50mm), diâmetro do orifício ($d = 14,53mm$) e 15 orifícios ativos ($N = 15$)
TABELAA.25 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 38,50mm), diâmetro do orifício ($d = 20,22mm$)e 5 orifícios ativos ($N = 5$)
TABELAA.26 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 38,50mm), diâmetro do orifício ($d = 20,22mm$)e 10 orifícios ativos ($N = 10$)
TABELAA.27 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 38,50mm), diâmetro do orifício ($d = 20,22mm$)e 15 orifícios ativos ($N = 15$)
TABELAA.28 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 38,50mm), diâmetro do orifício ($d = 26,20mm$)e 5 orifícios ativos ($N = 5$)127
TABELAA.29 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 38,50mm), diâmetro do orifício ($d = 26,20mm$)e 10 orifícios ativos ($N = 10$)
TABELAA.30 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 38,50mm), diâmetro do orifício ($d = 26,20mm$)e 15 orifícios ativos ($N = 15$)
TABELAA.31 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 26mm), diâmetro do orificio ($d = 5,30mm$) e5 orifícios ativos ($N = 5$)
TABELAA.32 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 26mm), diâmetro do orifício ($d = 5,30mm$) e10 orifícios ativos ($N = 10$)
TABELAA.33 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 26mm), diâmetro do orifício ($d = 5,30mm$) e15 orifícios ativos ($N = 15$)

1X

TABELA A.34 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 26mm), diâmetro do orifício ($d = 10,35mm$) e 5 orifícios ativos ($N = 5$)
TABELAA.35 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo (D = 26mm), diâmetro do orifício ($d = 10,35mm$) e10 orifícios ativos ($N = 10$)
TABELA A.36 - Medidas de distribuição de pressão e de vazão realizadas no laboratório para diâmetro do tubo ($D = 26$ mm), diâmetro do orifício ($d = 10,35$ mm) e

LISTA DE SÍMBOLOS

А	- Área da seção do tubo (manifold) , L^2
Ac	-Área do tubo, L ²
A ₁	– Área da saída lateral, L^2
a	- Área do orifício, L ²
С	- Coeficiente de descarga no orificio considerado
Cc	- Coeficiente de contração
Ce	- Coeficiente de descarga no último orificio
C _n	- Coeficiente de descarga no orificio considerado
D	– Diâmetro do tubo (manifold)
D, D _l	- Diâmetro do orifício
ð	- Aceleração da gravidade, LT ⁻²
Н	- Altura da caixa coletora
h	- Carga de pressão no orifício considerado
ho	- Carga de pressão no extremo fechado do tubo
h_{f}	– Perdas por atrito
hı	- Perdas devido ao atrito na parte do tubo entre o ponto considerado e o
	extremo fechado
h _n	- Pressão no extremo fechado do tubo
h _{teórico}	- Carga teórica para distribuição uniforme

Kd	- Coeficiente de pressão		
L	- Comprimento do tubo, L		
Ν	- Número de orificios analisados (5, 10 e 15)		
ORIF.	- Número do orifício		
Р	– Pressão ao longo do tubo		
Q, Qo	– Vazão de entrada no tubo, $L^3 T^-$		
Q1	– Vazão na lateral, $L^3 T^-$		
q _a	– Vazão no orifício 'a' , $L^3 T^-$		
qь	– Vazão no orifício ' b' , $L^3 T^-$		
qi	-Vazão de descarga no orificio		
qi / Qo	- Adimensionalização da vazão obtida no laboratório		
qi / Qo _{Hudson}	- Adimensionalização da vazão utilizando o método de Hudson		
qi / Qo _{contração} – Adimensionalização da vazão considerando o efeito de contração			
Rey	– Número de Reynolds		
V	– Volume da caixa coletora, L ³		
V_1	– Volume na entrada do tubo, L T [–]		
V _{li}	– Velocidade média na saída do orifício, L T $^-$		
V _m	– Velocidade média na tubulação, L T $^-$		
V _{mi}	– Velocidade média antes da bifurcação, L T		
X	- Distância do ponto considerado ao extremo fechado, L		
X1	- Comprimento do tubo, L		
ΔXa	- Espaçamento do orificio 'a', L		
ΔXb	- Espaçamento do orificio ' b', L		

- y Pressão no orifício, L
- Z₁ Cota geométrica, L
- Z₂ Cota geométrica, L

β

γ

θ

ρ

ø

ν

- Coeficiente de perda total
- Peso específico, F L⁻³
- Coeficiente de perda de carga na entrada da orificio
 - Massa específica, F T ⁻² L⁻⁴
- Coeficiente de perda de carga devido á mudança na direção do fluxo
- Viscosidade cinemática, L² T⁻

RESUMO

A distribuição de vazão por meio de manifold é estudada experimentalmente efetuando-se medidas de vazão através de orificio laterais e de variação de pressão ao longo do distribuidor. Várias combinações de diâmetro do tubo distribuidor, vazão de entrada e diâmetro e número de orificios circulares foram ensaiados para observar vazão através de cada orifício num manifold montado em laboratório.

Os resultados obtidos são apresentados em forma adimensional e comparados com duas formulações: a primeira sugerida por Hudson et. al. (1980) e a segunda por Chaudhry e Cardona (1987), que introduz nessa o efeito da contração dos jatos. Ficou evidente desta comparação que o modelo de Hudson et. al. (1980) não produz resultados satisfatórios em relação aos dados de vazão observados para maioria das condições experimentais. A formulação com contração apresenta maior aderência às distribuições de vazão observada. Verificou-se ainda que o número de Reynolds influencia mais na distribuição de pressão ao longo dos manifolds do que na distribuição de vazão.

Palavras - Chave: manifold; distribuição de vazão; contração de jatos; tubos perfurados

ABSTRACT

XV

The discharge distribution by manifolds is studied experimentally conducting measurements of discharge through lateral orifices and of the variation of pressure along a perforated pipe. Various combinations of manifold diameter, discharge, diameter and the number of orifices were employed in the observation of discharge through each perforation in a manifold mounted in the laboratory.

The results of these experiments are presented in dimensionles form and are compared whith the predictions of two analytic formulations: the first due to Hudson et. al. (1980), and the second Chaudhry e Cardona (1987), which improves on the first by expressly considering the effect of jet contration. These comparisons show that the Hudson et. al. (1980) model does not produce satifactory results when matched with the observed discharge data for the majority of the experimental conditions. The contration formulation presents much better agreement with the observed discharge distributions. It is observed further that the Reynold number has greater influence on pressure distributions along the pipe than on the discharge distributions.

Keywords: manifold; discharge distribution; jet contraction; perforated pipes

1) INTRODUÇÃO

Os conhecimentos sobre distribuidores tubulares são úteis na Engenharia Sanitária, onde são usados, por exemplo nos fundos dos filtros rápidos de areia, aeradores difusores para descarga de água nos esgotos; na Engenharia Hidráulica, nos projetos de sistema de aspersão na irrigação sub superficial, de eclusas para navegação e dos aproveitamentos hidroelétricos em dutos de ligação as turbinas; na Engenharia Química, em trocadores de calor; na Engenharia Mecânica, nos projetos de queimadores, aquecedores, câmaras de combustão, sistema de ar condicionado e sistema de refrigeração e na Aeronáutica, nas turbinas a gás e nas asas das aeronaves.

A distribuição de água por meio de tubo perfurado é portanto um problema de grande aplicação em engenharia, quando se deseja a distribuição espacial. Geralmente a distribuição uniforme de vazão é necessária para obter resultados satisfatórios quanto aos processos envolvidos, por exemplo nas estações de tratamento de água. Os testes com flutuadores ou traçadores têm mostrado má distribuição do fluxo provocando lavagem imperfeitas no filtro, chegando a perturbar o meio filtrante, provocando curto circuitos e/ou sobrecarga nos decantadores e misturas não homogêneas dos produtos químicos á água. Os distribuidores produzem diferentes vazões devido a variação de velocidade ao longo do duto e a variação da perda de carga nas saídas. Tem havido esforços para formular o problema de distribuição de vazões. Entretanto, necessita-se observar experimentalmente a distribuição de vazão para verificação dos resultados teóricos. O presente projeto de pesquisa propõe montar um tubo perfurado no laboratório para verificar a validade dos métodos de cálculo disponíveis.

Embora haja muitas contribuições ao problema de "manifold" até agora não se tem um guia prático para o projeto dos mesmos, Atualmente um sistema de "manifold" é projetado segundo critérios empíricos como: Diâmetro de orificio; Relação entre área principal e área das laterais; Espaçamento de centro a centro dos orificios.

2) OBJETIVOS

O presente estudo visa levantar dados sobre variabilidade de vazão através de furos locados ao longo de um tubo circular para distribuição de água em sua extensão. Por meio de um equipamento experimental adequado, objetiva-se realizar medidas de vazões através dos furos e da variação de pressão ao longo do tubo distribuídos. Podendo-se com esses dados experimentais investigar as previsões teóricas a respeito da relação entre vazões máximas e mínimas para diferentes razões de áreas e números de furos.

3) MANIFOLDS OU DISTRIBUIDORES TUBULARES

Manifold consiste de um tubo principal, ao longo do qual partem vários tubos laterais, também perfurados com diâmetros menores sendo acoplados preferencialmente em ângulo reto como é mostrado nas figuras 1 (a) e (b). Será considerado como "manifold", também um tubo principal com perfurações ao longo de seu comprimento, com seu extremo fechado (objeto de estudo), figura 1 (c). Podem ser simétricos ou assimétricos, com tubos laterais paralelos, ou não. Podem trabalhar sobre altas ou baixas pressões e podem ser usados ainda submersos.

Os principais parâmetros a serem considerados em "manifold" são:

O número e espaçamentos entre as tubulações ou furos laterais, razão entre a área do tubo principal e a área do tubo lateral, razão da descarga através da lateral com relação a vazão total no tubo principal a montante, o diâmetro do furo ao longo do tubo principal e ao longo das laterais.

 $Qo \rightarrow Vazão de entrada$

 $\rm qi\,\rightarrow\,Vazão$ nas laterais ou orifícios

FIGURA 1a; b; c - REPRESENTAÇÃO DOS TIPOS DE MANIFOLD

4) REVISÃO BIBLIOGRÁFICA

Vários estudos e trabalhos experimentais foram realizados com o propósito de formular o problema do comportamento dos fluidos em tubulações perfuradas (manifold).

Analisando o efeito da quantidade de movimento de água sobre a pressão e fluxo em manifolds, utilizados como sistema de drenagem em filtro rápidos de areia ENGER e LEVY (1929). Consideraram a variação da pressão num tubo com uma fenda desprezando-se o atrito ao longo do tubo, e deduziram uma equação que permite calcular a pressão em qualquer seção, ao longo do conduto desde o início da fenda ou primeiro orifício do tubo principal. Desse modo, obteve-se uma distribuição crescente da pressão estática de montante para jusante, concluindo-se que a pressão em qualquer ponto obedece a constante de proporcionalidade com relação à pressão no final da fenda e que independe da descarga.

Verificou-se que a área total dos orificios tem um valor limite, acima do qual não haverá descarga do fluido no início da fenda ou através do primeiro orificio, fato esse comprovado experimentalmente. Além disso, os autores apuraram que o efeito do atrito pode ser incluído nos cálculos de pressão e vazão, mediante um processo de aproximação, utilizando-se o coeficiente de descarga nos orificios ou saídas. Observou-se que tais coeficientes decrescem à medida que a velocidade no tubo aumenta, de acordo com a fórmula empírica, (equação 1):

$$c = \frac{y - \frac{v^2}{2g}}{y}c_e \tag{1}$$

onde:

c = coeficiente de descarga em orificio qualquer;

c_e = coeficiente de descarga do último orificio;

y = carga de pressão no orificio;

 $v^2/2g$ = carga cinética no tubo á montante do orificio.

Uma fórmula similar à encontrada empiricamente por ENGER e LEVY (1929) foi desenvolvida analiticamente por KUNZ (1931), na qual o coeficiente de descarga em tubos com orificios uniformemente espaçados ao longo de seu comprimento é:

$$c = c_n \times \frac{h}{h_n} \tag{2}$$

onde:

c = coeficiente de descarga na seção considerada;

 c_n = coeficiente de descarga no extremo fechado do tubo;

h = pressão na seção considerada do tubo;

 h_n = pressão no extremo fechado do tubo.

Com o propósito de determinar o fluxo de uma lâmina de água através de uma fenda de largura infinitesimal, KUNZ (1931), desenvolveu uma equação diferencial, aplicando a teoria de linhas de fluxo e tomando o coeficiente de descarga como constante e variável. Realizou a mesma análise no caso de orifícios uniformemente espaçados ao longo do tubo principal, encontrando outra equação de diferenças para a descarga. Em ambas as equações, pôde-se obter a curva de distribuição de pressão, alcançando esta o seu valor máximo no extremo fechado da fenda ou no último orifício, e o menor valor no início da fenda ou primeiro orifício. Com relação à distribuição de velocidade na linha principal, verifícou-se o comportamento contrário. Vale ressaltar que o autor não considerou o atrito no tubo principal .

7

KELLER (1949), modelou o problema do manifold analiticamente, aplicado a tubos queimadores de gás. Ele deduziu uma equação diferencial para a velocidade ao longo do manifold de seção constante com orificios uniformemente espaçados. O autor efetuou seus cálculos levando em consideração a recuperação de pressão ocasionada pela desaceleração e a perda de carga causada por atrito. A resolução da equação foi feita passo a passo, envolvendo consideráveis cálculos numéricos.

O raciocínio teórico levou KELLER (1949), a concluir que a variação da vazão é definida por duas relações:

 a) L/D - "L" é o comprimento total do tubo e "D" o diâmetro do manifold;

 b) Somatório da área total dos orificios dividido pela área da seção transversal do manifold. Concluiu que para L/D \cong 70 e Σ A_o/A \leq 1, o efeito do atrito praticamente se anula com a recuperação da pressão, e a distribuição da vazão é praticamente constante.

DOW (1950), baseou seu equacionamento matemático no desenvolvimento das condições necessárias para assegurar que a queda de pressão devida às perdas por atrito no fluxo seja exatamente balanceada pelo incremento de pressão devido à desaceleração do fluxo no manifold. Isto ocorre, necessariamente, quando parte do fluido escoa através dos orifícios, adotando um manifold de área de seção transversal variável para obter uma velocidade longitudinal uniforme. Na obtenção da solução para a variação de área, DOW (1950), considerou a relação entre o fator de atito (f) e o Número de Reynolds (Rey) ao longo do manifold, encontrando soluções diferentes no caso de fluxo laminar ou turbulento. Notou o autor, que uma transição inversa do fluxo turbulento para laminar pode alterar a distribuição e velocidades. Além disso, realizou experimentos com tubos queimadores, utilizando gás como fluido para conferir os resultados teóricos. As equações desenvolvidas por DOW (1950), permitem a construção do sistema de manifolds para uma distribuição uniforme do fluxo de gás ao longo do comprimento, assim como o projeto do sistema para uma distribuição uniforme.

SOUCEK e ZELNICK (1952), apud BAUTISTA (1986), estimaram o tempo requerido para encher ou esvaziar uma eclusa, através do estudo de um sistema de manifold. Eles realizaram testes num tubo principal com um só orificio para obter uma expressão matemática que facilitasse o cálculo do sistema.

Foi analisado o comportamento hidráulico do manifold com base nas mudanças de pressão no tubo e na descarga de fluxo através do orifício e os fatores intervenientes.

Considerando a quantidade de movimento entre as seções, a montante e jusante do orifício (figura 2), e desprezando a distribuição não uniforme da velocidade, a taxa de variação na quantidade de movimento foi expressa como:

$$\Delta QM = \frac{Q_2}{g} \gamma (V_1 - V_2) + \frac{Q_3}{g} \gamma V_1 \tag{3}$$

As forças responsáveis por essa mudança são o aumento de pressão no tubo principal e a resultante da pressão não balanceada dentro da saída lateral. Esta última é desconhecida e está intimamente relacionada com " Q_3 ".

FIGURA 2 - ANÁLISE NA DESCARGA DE FLUXO (SOUCEK & ZELNICK - 1952)

Os autores apresentam a seguinte equação para o cálculo do coeficiente de pressão, Kd

$$\gamma A_{c}(Z_{1}-Z_{2}) = \frac{\gamma}{g} Q_{2}(V_{1}-V_{2}) + \frac{K_{d}}{g} (\gamma Q_{3}V_{1})$$
(4)

Sendo $Z_1 e Z_2$ as alturas dos respectivos pontos e A_c a área do tubo.

Para o cálculo da descarga através do orificio, foi utilizada a equação do orificio. Os autores observaram que o gradiente hidráulico nas proximidades do orificio varia tão rapidamente que impossibilita definir esta carga de forma adequada.

Com base nos experimentos, os autores concluíram que o projeto de manifold é um processo indireto, e é analisado mediante um procedimento iterativo que pode ser modificado até que as relações necessárias sejam obtidas. O método só pode ser aplicado a manifolds com orificios idênticos.

Segundo os mesmos autores, o fato de o coeficiente de descarga não variar muito com a relação Q_3/Q_1 indica que o efeito da distribuição da velocidade não é muito grande.

HOWLAND (1953), com base em critérios econômicos e de uniformidade na distribuição do fluxo através de tubos perfurados, desenvolveu um método para o cálculo do manifold, no qual os orificios variavam em tamanho (orificio "a" e orificio "b") e espaçamento. A partir da equação da continuidade, a equação para orificios e espaçamentos é a seguinte:

$$\frac{\Delta X_a}{q_a} = \frac{\Delta X_b}{q_b} = \frac{X_1}{Q_1} \tag{5}$$

onde:

q_a e q_b - vazão através dos orificios a e b;

Q1 - vazão de entrada;

X1 - comprimento do tubo:

 $\Delta X_a e \Delta X_b$ - espaçamento dos orifícios a e b, respectivamente.

A pressão em um tubo perfurado, fechado no seu extremo, é dada também pela equação de Bernoulli com um termo de perda de energia. Assim:

$$h = h_0 - \frac{V^2}{2g} + h_l \tag{6}$$

onde:

h = carga de pressão em qualquer ponto do principal;

 $h_o = carga de pressão no extremo fechado do tubo;$

V = velocidade no tubo no ponto considerado;

 h_1 = perdas devido ao atrito na parte do tubo entre o ponto considerado e o extremo fechado.

Esta equação é modificada da seguinte forma para o caso da distribuição da vazão uniforme:

$$h = h_0 - \frac{V_1^2}{2g} \left(\frac{X}{X_1}\right)^2 + h_1$$
 (7)

onde:

 V_1 = velocidade na entrada do tubo;

X = distância do ponto considerado ao extremo fechado;

 $X_1 =$ comprimento do tubo.

O termo h_L é tido como soma de todas as pequenas perdas no tubo, cuja distribuição de velocidade é a linha teórica da figura 3. Concluiu-se que o erro neste termo h_L é 1% ou menos quando o número total de orificios é sete ou mais. O erro é desprezível quando o número de orificios é maior que 10.

Com o método desenvolvido para cálculo do espaçamento entre orificios, o autor previu uma diminuição nos custos das tubulações e o melhoramento da uniformidade na distribuição, a qual está limitada por imperfeições de ordem mecânica.

FIGURA 3 - DISTRIBUIÇÃO DA VELOCIDADE (HOWLAND - 1953)

McNOWN(1954), realizou uma análise do escoamento em manifolds para fluxo distribuído e coletado. O fluxo foi descrito através de equações da energia e quantidade de movimento. Supôs-se que a velocidade média em qualquer seção da figura 4 é representativa do fluxo nessa seção, e que o termo de perdas representa a diferença entre as perdas totais e as perdas observadas num conduto de fluxo normal.

FIGURA 4 - DIVISÃO DE FLUXO (MCNOWN - 1954)

As variações piezométricas no tubo principal são descritas da seguinte

forma:

$$\frac{\Delta h}{\frac{V^2}{2g}} = \frac{p_c - p}{\frac{\rho V^2}{2}} = 1 - \left(\frac{V_c}{V}\right)^2 - \frac{h_f}{\frac{V^2}{2g}} = \frac{Q_\ell}{Q} \left(2 - \frac{Q_\ell}{Q}\right) - \frac{h_f}{\frac{V^2}{2g}}$$
(8)

onde:

- V = velocidade média;
- g = aceleração devido à gravidade;
- p = pressão;
- ρ = massa específica
- h_f = perdas por atrito;
- Q = vazão;
- c , ℓ = índices indicadores de escoamentos depois da bifurcação e na lateral.

O fluxo na lateral, em função da carga de velocidade na mesma, foi equacionado da seguinte forma:

$$\Delta h \frac{2g}{V_{\ell}^2} = (p_{\ell} - p) \frac{2g}{V_{\ell}^2} = \left(\frac{V}{V_{\ell}}\right)^2 - 1 - h_f \cdot \frac{2g}{V_{\ell}^2} \tag{9}$$

O autor afirma que a análise do escoamento, do ponto de vista de projeto, deve incluir as perdas de carga na região onde o fluxo é paralelo e mudanças de pressão e perdas nas junções. As perdas de energia podem ser calculadas como se fossem perdas na expansão abrupta. McNOWN e HSU (1951) estudaram analiticamente o coeficiente de contração nas saídas laterais de dutos bidimensionais e os relacionaram com a perda de energia.

$$h_{f} = \frac{\left(V_{\ell}^{1} - V_{\ell}\right)^{2}}{2g}$$
 (10)

onde:

$$V_{\ell}^{1} = \frac{Q_{\ell}}{C_{c}A_{\ell}}$$
, sendo C_c o coeficiente de contração em função de

 $(D_{\ell}/D)^{2}$

Então, as perdas na lateral podem ser expressas por:
$$h_{f} \cdot \frac{2g}{V_{\ell}^{2}} = \left(\frac{1}{c_{c}} - 1\right)^{2}$$
(11)

O autor concluiu que num conduto com pequenas saídas, o termo cinético e atrito são desprezíveis, sendo constante a pressão ao longo do distribuidor e a vazão através das mesmas. No caso de laterais, muito próximas uma da outra, a recuperação de pressão é compensada pelo atrito.

McNOWN(1954), tal como SOUCEK e ZELNICK(1945), apresentou resultados de diferenças de pressão (Δh) e perdas (h'_f) em função de Q_ℓ/Q e D_ℓ/D, respectivamente, para diferentes relações geométricas (diâmetro dos tubo e diâmetros dos orifícios).

Segundo McNOWN (1954), ALLEN E ALBISON (1955) e ACRIVOS (1959), a variação da pressão no tubo principal é devida a dois fatores:

 o atrito do fluido contra a superfície interna do tubo principal faz com que a pressão caia na direção do fluxo.

 A quantidade de movimento do fluxo principal escoando dentro do manifold tende a levar o fluido até o extremo fechado, onde um excesso de pressão estática é produzido.

No caso de um manifold de distribuição, o atrito e a quantidade de movimento apresentam efeitos em direções opostas. O primeiro fator propicia a queda da pressão, enquanto que o segundo faz com que a pressão suba, obtendo-se porém um gradiente adverso de pressão (figura 5.a), como consequência resulta uma distribuição da vazão nos orificios (figura 5.b). Nota-se que nos pontos de descarga a vazão é crescente de montante para jusante (figura 5.c).

(c)

FIGURA 5 - GRADIENTE DE PRESSÃO (a); DISTRIBUIÇÃO DE VAZÃO NOS ORIFÍCIOS (b); VAZÃO NOS PONTOS DE DESCARGA (c). (MACNOWN-1954) HORLOCK (1956), deduziu uma equação diferencial para a razão da velocidade longitudinal (V) e a velocidade normal de descarga (V_ℓ), para um fluxo incompressível através de um manifold com área de seção transversal constante (A) e uma fenda contínua de largura (b), obtendo uma expressão analítica para V/ V_ℓ. A integração numérica da equação ao comprimento L ao longo do tubo gera as distribuições individuais de "V" e "V_ℓ". O máximo valor de V / V_ℓ, " λ ", é alcançado a uma distância infinita do extremo fechado do manifold; seu valor é uma função de A / b e o fator de atrito, que é considerado ser constante e igual ao seu valor para Número de Reynolds na entrada. A análise baseada na hipótese de que a vazão no manifold se dá com velocidade longitudinal invariável ($\alpha = 1$), conduz a resultados similares aos obtidos com os dados experimentais, mas o fator de atrito "f" resulta maior do que aquele obtido para o tubo do mesmo material dos diagramas universais.

ACRIVOS et al. (1959), desenvolveu um método de cálculo de fluxo unidimensional que define um sistema contínuo de manifold com uma fenda longitudinal "L" ao longo do seu comprimento. Foi considerado um sistema discreto equivalente à distribuição dos orifícios, os quais eram uniformemente distribuídos ao longo do manifold e possuíam as mesmas dimensões. Foram realizados experimentos utilizando o ar como fluido. ACRIVOS et al. (1959) deduziram duas equações diferenciais, que devem ser resolvidas dependendo do sistema em consideração (isto é, contínuo ou discreto) utilizando iterações sucessivas. Concluíram, então que se pode formular matematicamente o problema em termos de três parâmetros adimensionais apenas, dos quais o primeiro relaciona a pressão e quantidade de movimento no extremo aberto do manifold, o segundo considera o atrito na seção reta do tubo principal e o terceiro descreve a distância entre os orificios de descarga.

ACRIVOS et al. (1959), fizeram experimentos para a comparação dos resultados teóricos obtidos nas equações anteriormente citadas, concluindo que os valores de distribuição de vazão observados eram bem próximos dos calculados.

MARKLAND (1959), considerou o manifold de comprimento total do tubo "L" e área de seção "A" com orificios em número suficiente para formar uma fenda contínua ao longo do tubo. Desenvolveu um processo matemático utilizando as equações de continuidade e quantidade de movimento e deduziu uma equação para a componente longitudinal de velocidade " V " dentro do manifold. O fluido escoa através da abertura com componente de velocidade " v' " na direção longitudinal e " V_{ℓ} " na direção normal. O autor mostrou experimentalmente que, para um manifold com paredes finas, a suposição de v' = V é razoável e, para um manifold que descarrega dentro de laterais que provocam uma constrição do fluxo na direção normal a este, é razoável que v' = 0. A equação deve ser satisfeita em cada ponto do tubo, dentro da faixa $0 \le X \le L$ e um método aconselhável para obter sua solução é o método de "Relaxação" especificando antes o valor de "V" em cada extremo do manifold. A equação á válida quando a pressão é positiva dentro do manifold.

RAWN el al. (1960), estudaram a distribuição de vazão no manifold, com a finalidade de melhorar a diluição de esgotos no mar. A vazão em cada orifício ou lateral é calculada mediante a equação do orifício. Utilizando-se os resultados de McMOWN e HSU (1951), sobre C_c , obtiveram-se os gráficos para o coeficiente de

descarga como uma função da relação do termo cinético no tubo principal e a pressão total no mesmo. Os autores incluíram as perdas por atrito em seus cálculos.

O método da resolução é iterativo, inicializando pelo orificio no final do tubo principal, podendo ser variados os tamanhos ou espaçamentos dos orificios com propósito de se obter uniformidade na distribuição.

Um requisito necessário ao selecionar o tamanho dos orificios é que a soma total das áreas dos mesmos deve ser menor que a seção transversal do tubo principal. O processo requer consideráveis cálculos até atingir um arranjo satisfatório.

VIGANDER et al. (1970), estudaram experimentalmente, os parâmetros que afetam o coeficiente de descarga em uma tubulação com orificios laterais, com o propósito de calcular um sistema de manifold para distribuição de água refrigerada numa estação nuclear. Os autores consideraram um sistema com orificios únicos e múltiplos, variando o diâmetro e espaçamento dos orificios e levando em consideração o atrito. Dos resultados obtidos, os autores concluíram que o espaçamento entre orificios tem um efeito muito pequeno no coeficiente de descarga, sendo que a velocidade de distribuição dentro do tubo aparentemente não é suficientemente perturbada pela descarga de orificios múltiplos para provocar uma alteração no coeficiente de descarga. Além disso, o atrito não tem grande influência na variação do referido coeficiente, sendo este função basicamente da relação entre o termo cinético no tubo principal e a energia total dentro do tubo. Utilizando o mesmo método de RAWN et al. (1960), VIGANDER et al. (1970), calcularam a distribuição de vazão através dos orificios. Eles ressaltaram que o trabalho

computacional é dispendioso, tendo em vista o método de tentativas e erro empregado por eles.

Segundo HUDSON et al. (1980), inúmeras pesquisas foram realizadas com a finalidade de se estudar o comportamento hidráulico de um sistema de manifold, mas não há um método direto para cálculo do sistema. Isso tem provocado diversos problemas em estações de tratamento, devido à não - uniformidade na distribuição do fluxo de lavagem de filtros. Foram utilizados conjuntos de dados experimentais obtidos por outros pesquisadores, para desenvolver o equacionamento de comportamento hidráulico do manifold, sob as seguintes suposições:

 a) Os efeitos de atrito no manifold e laterais são balanceados pela recuperação de pressão ao longo do tubo principal, no qual a carga piezométrica é constante;

 b) As perdas de energia em qualquer lateral ou saída são as mesmas ao longo da principal.

O autor apresenta uma formulação para distribuição de vazão. Reproduz-se a equação de perdas totais :

$$h_{f}^{*} = \left[\phi\left(\frac{V_{mi}}{V_{\ell i}}\right)^{2} + \theta + 1\right] \frac{V_{\ell i}^{2}}{2g} = \beta \frac{V_{\ell i}^{2}}{2g}$$
(12)

onde:

 $h_{f}^{,} =$ Perda de energia

 $\phi = \epsilon$ o coeficiente de perda de carga devido à mudança na direção do fluxo;

 θ = coeficiente de perda de carga na entrada da lateral;

V_{mi} = velocidade média na linha principal, antes da bifurcação i;

 $V_{\ell i}$ = velocidade média na lateral i.

Os coeficientes $\phi e \theta$ foram determinados a partir de dados experimentais.

TABELA I -VALORES DOS COEFICIENTES ϕ e θ PARA AS

Comprimento de laterais	φ	θ
maiores que três diâmetros (comprida)	0,9	0,4
menores que três diâmetros (curta)	1,5	0,7

SAÍDAS LATERAIS. (HUDSON -1980)

Para o cálculo das vazões, o autor tomou como base a equação da continuidade:

$$Q_{t} = Q_{\ell 1} + Q_{\ell 2} + Q_{\ell 3} + \dots + Q_{\ell i}$$
(13)

$$Q_{t} = A_{\ell 1} V_{\ell 1} + A_{\ell 2} V_{\ell 2} + A_{\ell 3} V_{\ell 3} + \dots + A_{\ell i} V_{\ell i}$$
(14)

 $Q_t = vazão de entrada no principal;$

($\mathbf{A}_{\ell} ~ \mathbf{e} ~ \mathbf{V}_{\ell}$)= área e velocidade da lateral na saída i.

Se todas as laterais têm áreas iguais e, utilizando-se da equação de perdas totais, obtém-se:

$$Q_t = A_\ell V_{\ell 1} \left(1 + \sqrt{\frac{\beta_1}{\beta_2}} + \sqrt{\frac{\beta_1}{\beta_3}} + \sqrt{\frac{\beta_1}{\beta_4}} + \dots + \sqrt{\frac{\beta_1}{\beta_i}} \right)$$
(15)

Generalizando:

$$V_{\ell_i} = \frac{Q_T}{A_\ell \sqrt{\beta_1}} \left(\sum_{i=1}^n \frac{1}{\sqrt{\beta_i}} \right)^{-1}$$
(16)

O cálculo das vazões, então, é realizado mediante um processo iterativo, considerando inicialmente igual distribuição de fluxo através das laterais. Obtém-se, assim, os valores correspondentes de β_i para o cálculo da nova distribuição de $V_{\ell\,i}$. O procedimento deve continuar até atingir a precisão desejada.

O dimensionamento dos canais de distribuição de fluxo nos decantadores foi estudado, segundo CARDONA (1988), por RICHTER (1982). O autor considerou a pressão constante ao longo do canal de distribuição provido de saídas laterais. Ele desprezou as perdas por atrito e utilizou o método de HUDSON et al. para o cálculo da distribuição de vazão através das laterais. Encontrou que, para uma variação da <u>descarga permissível de 10%</u> entre a primeira e a última saída, a relação da soma das áreas das laterais e área do principal deve ser igual a 0,46. Também estudou o efeito do número de Froude, concluindo que para existir passagem de água através das saídas é necessário que o número de Froude imediatamente antes da saída não deve ser superior ao número de Froude na bifurcação. Deduziu que a relação da soma das áreas dos tubos laterais e área do tubo principal deve ser menor ou igual a 0,5 , para se obter uma distribuição de fluxo praticamente uniforme, nos casos em que os números de Froude são relativamente baixos.

Um dos primeiros pesquisadores a estudar um sistema de manifold em forma de malha foi OTIS (1982), com propósitos de distribuição do efluente de fossas sépticas dentro da área de absorção do solo. Considerou uma malha composta de uma tubulação principal que abastece com efluente vários laterais perfurados, igualmente espaçados. BAUTISTA (1985), realizou um estudo experimental em malhas de distribuição de água utilizadas para lavagem de filtros rápidos de areia. Tais malhas são compostas de uma linha principal e várias laterais distribuídas perpendicularmente e providas de orifícios uniformemente distribuídos ao longo de seu comprimento. O estudo visava avaliar a não - uniformidade na distribuição de vazão e identificar os parâmetros no comportamento do sistema. O acervo de dados obtidos por este pesquisador oferece meios para efetuar as comparações de valores experimentais e teóricos a serem desenvolvidos neste trabalho.

CHAUDHRY e REIS (1986), apresentaram um equacionamento para o cálculo da carga hidráulica e distribuição espacial de vazão de um sistema de manifold de seção constante com linhas laterais e orificios uniformemente espaçados.

CHAUDHRY e CARDONA (1987), apresentam uma nova metodologia de cálculo da divisão de vazão por meio de distribuidores lineares. O método considera expressamente a contração dos jatos na avaliação da sua energia cinética que representa a parte mais importante da perda de carga total. Apresentam-se um algorítmo para solução numérica das equações de diferenças que exprimem a formulação do problema. Desenvolveram ainda uma comparação entre os dados observados e as previsões dos métodos avaliados com e sem o efeito da contração dos jatos na energia cinética. CHAUDHRY e CARDONA (1987), consideraram um distribuidor múltiplo na forma mais simples, constituído de um tubo principal de diâmetro constante provido de ' N ' saída laterais idênticas igualmente espaçadas ao longo da escoamento. Suporam a ausência da interferência entre as saídas laterais adjacentes, a perda de carga através destas pode ser descrita por meio da mesma relação para qualquer posição ' i ' ao longo da tubo.

Um estudo da hidráulica dos emissários submarinos foi realizado por RAMAMURTHY e SATISH (1987). Eles enfatizaram a importância de se manter uniforme a distribuição de quantidade de movimento nas laterais em tais sistemas, sendo que os estudos de pesquisadores anteriores foram limitados à análise do manifold visando uma distribuição uniforme das vazões laterais.

Os autores consideraram teoricamente um tubo principal poroso para simular uma fenda contínua que substitui um número grande de orificios. Incluíram o efeito do atrito, da recuperação da pressão ao longo do principal e do coeficiente de descarga C_d constante nas saídas laterais.

RAMAMURTHY e SATISH (1987), realizaram experimentos em tubo com laterais de igual diâmetro e espaçamento variado. O modelo matemático conduziu a resultados compatíveis com aqueles obtidos mediante experimento. Também estudaram o comportamento do coeficiente de descarga através de uma saída lateral colocada num tubo em função de diversos parâmetros com relações entre área da lateral e principal, comprimento e diâmetro da lateral e termo cinético e energia total no distribuidor.

Os autores concluíram que o valor ótimo da relação entre comprimento da lateral e o seu diâmetro, obtida experimentalmente, está na faixa de 7 - 10, valores estes que produzem coeficientes de descarga relativamente altos e constantes. Eles desenvolveram uma função polinomial para obter o valor de C_d em função da relação do termo cinético e energia total no tubo principal.

5) MATERIAIS E METODOLOGIA

De acordo com as formulações teóricas, a distribuição de vazão é determinada pela relação entre a área dos orificios e a área transversal do tubo distribuidor, números de furos e outros parâmetros intervenientes, dependendo da aplicação prática. Nesta pesquisa as perfurações foram relativamente próximas entre si fazendo com que a perda de carga distribuída não tenha um papel preponderante. A variação na relação entre áreas de orificios e o tubo distribuidor foi obtida através da variação dos diâmetros dos tubos e dos orificios.

O trabalho experimental foi realizado num equipamento especialmente montado para este estudo no Laboratório de Hidráulica no campus da Escola de Engenharia de São Carlos.

Para a coleta de dados utilizaram-se os seguintes equipamentos básicos: Uma bomba para o abastecimento da água (figura 7), um suporte com um "carrinho" (caixa coletora) para a coleta do volume de água (figura 10), um cronômetro para marcar o tempo de enchimento do "carrinho" e os tubos perfurados, manifolds, (figuras 6a e 6b).

(b)

FIGURAS 6a e b - EQUIPAMENTO PARA MEDIDAS DE VAZÕES

5.1) RECALQUE D'ÁGUA

A água utilizada nos experimentos foi fornecida por um reservatório existente no laboratório de Hidráulica na Escola de Engenharia de São Carlos (E.E.S.C.), onde foram realizados todos os ensaios. O reservatório, para a distribuição de água, tem formato cúbico, construído de concreto armado, nas dimensões de 3,0m de altura por 4,0m de comprimento e 3,0m de largura, tendo a capacidade de 36m³. Para o bombeamento da água ao manifold, utilizou - se uma bomba centrífuga da marca KSB, modelo meganorm, com a vazão máxima de 700m³/h e rotação máxima de 3.500rpm.

A água utilizada para experimentos foi conduzida por uma tubulação de 21/2", ligada da bomba ao tubo a ser ensaiado.

FIGURA 7 - BOMBA

5.2) TUBOS PERFURADOS (MANIFOLDS)

Os tubos utilizados eram de p.v.c. com os seguintes diâmetros: 50,23 mm; 38,50 mm e 26,0 mm. Os diâmetros dos orifícios ou saídas laterais variaram entre 5mm e 32mm, para obter a relação de áreas entre 0,05 e 0,35.

TUBOS (mm)	SAÍDAS LATERAIS ou	
	ORIFÍCIOS (mm)	
50,23	8,36; 14,50; 20,30;	
	26,00; 32,16	
38,50	5,25; 10,42; 14,53;	
	20,22; 25,20	
26,00	5,30; 10,35; 14,63	

Os ensaios foram feitos inicialmente com o tubo de maior diâmetro, com o menor orificio. Após cada ensaio os orificios foram aumentados por uma furadeira de bancada. Foram feitos em cada tubo 15 orificios igualmente espaçados de 30cm.

5.3) CAIXA COLETORA (CARRINHO)

Para coletar o volume d'água descarregado através dos orificios utilizou - se uma caixa coletora, com dimensões 25cm×25cm ×25cm, sobre um carrinho, com uma tampa de espessura 5cm, tendo uma abertura de 6×7cm (figura 8), para diminuição da área superficial obtendo, assim, uma medida de volume mais precisa, utilizando-se para cálculo do mesmo alturas superiores a 190mm (figura 9b).

29

FIGURA 8 - REDUÇÃO DA ÁREA SUPERFICIAL DA CAIXA COLETORA

A caixa coletora possui rodinhas e está devidamente encaixada sobre uma bancada de estrutura metálica, para facíl locomoção do mesmo. A caixa possui uma escala para medir a altura da água, obtendo assim o volume coletado pelo mesmo. O volume da caixa coletora foi calculado com a fómula:

$$V = [12.260 + 6 [H - 190]]$$
(17)

onde:

V= Volume (L)

H = Altura (mm)

FIGURA 9. a - ESCALA PARA MEDIÇÃO DO VOLUME DA CAIXA COLETORA

A fórmula foi obtida após estudo para calibração da caixa coletora.

FIGURA 9. b – CURVA DE CALIBRAÇÃO DO VOLUME

Uma torneira de p.v.c. é acoplada ao fundo da caixa coletora para o esvaziamento.

FIGURA 10 - CAIXA PARA COLETA D' ÁGUA

5.4) OBTENÇÃO DA VAZÃO

Para a obtenção da vazão descarregada através dos orificios, procedeu-se pelos seguintes passos :

a) Colocava-se a caixa coletora de baixo de cada jato proveniente do orificio colhendo, assim, um determinado volume.

 b) Efetuava-se a medida do tempo simultaneamente ao enchimento da caixa coletora, com um cronômetro manual, digital com precisão de 1/100 segundos. Realizou-se um estudo para verificação das medidas de vazão por essa cronometragem.

c) Calculando a razão entre o volume e o tempo decorrido durante o enchimento, obtinha-se a vazão através do orificio.

FIGURA 11 - ENCHIMENTO DA CAIXA COLETORA

O procedimento descrito anteriormente foi repetido três vezes para cada orifício tomando-se como valor representativo, a média aritméticas das vazões calculadas.

Os ensaios foram feitos com 5 vazões diferentes. Trabalhando com 5, 10 e 15 furos.

A fixação do número de furos a serem ensaiados foi obtida através da colocação na posição adequada de um êmbolo de borracha e de sua dilatação por pressão de ar no interior do mesmo, desta forma eliminando parte dos 15 furos existentes ao longo do tubo (figuras 12 e 13).

FIGURA 12 - ÊMBOLO

FIGURA 13- DETALHE DO ÊMBOLO

5.5) MEDIDAS DE PRESSÃO

Além das medidas de vazão foi observado o perfil de pressão ao longo do tubo por meio de tomadas de pressão localizadas imediatamente a jusante dos orificios (figura 14).

FIGURA 14 - PONTOS PARA TOMADA DE PRESSÃO

As tomadas de pressão utilizaram furos de 1mm na parede do tubo, perpendiculares às linhas de corrente do escoamento. Entretanto, o problema de medida de pressão estática não se configura tão simples. A turbulência do escoamento provoca uma flutuação aleatória da velocidade que se superpõe à velocidade média, consequentemente a pressão estática no orifício de tomada de pressão flutua de maneira irregular. Contudo, sob todas as circunstâncias, essa flutuação foi pequena ou tão rápida que o medidor indicava a pressão média no orifício perfurado do condutor. Um fato importante para tomada de pressão é a garantia da ausência de rebarbas e outras irregularidades na vizinhança do orifício junto a superfície interna do duto, que, quando presentes alteram de maneira sensível a medida de pressão.

Para prevenir essas irregularidades construiu-se um dispositivo constituído de uma "arruela" de borracha onde foi encaixado um bico de cobre com saída de ¼ para mangueira (figura 15). Essas duas peças formam um conjunto que, depois foram colocados cuidadosamente na parede de tubo exatamente em cima do furo da tomada de pressão de diâmetro igual a 1mm.

FIGURA 15 – PEÇA PARA TOMADA DE PRESSÃO

Para se fazer as leituras de pressão utilizou-se um quadro de piezômetros. Os tubos piezométricos eram de plásticos (figura 16). Entre o quadro de piezômetro e os tubos piezométricos propriamente ditos, tinha-se uma escala de papel milimetrado com um plástico transparente cobrindo-o em toda a sua extensão, visando uma maior proteção do mesmo.

FIGURA 16 - PIEZÔMETROS

A ligação entre o ponto de tomada de pressão locado no tubo (manifold) e o quadro piezométrico se fez através de mangueira plástica transparente com diâmetro 3/16 e 2mm de espessura.

Na união entre a mangueira e os tubos piezométricos colocou-se um registro com uma torneira sangradora em forma de tê. O registro com torneira é usado para eliminar a formação de bolhas de ar ao longo da tubulação.

5.6) RECIRCULAÇÃO DA ÁGUA ESCOADA

Para aproveitar a água descarregada pelo "manifold", já existe no laboratório um dreno, sobre o qual a tubulação ficou situada.

O dreno conduz a água ao reservatório de alimentação possibilitando o aproveitamento da água utilizada em todo o experimento.

6) <u>RESULTADOS</u> <u>E</u> <u>DISCUSSÕES</u>

Em cada ensaio de distribuição de vazão realizado no equipamento experimental descrito capítulo anterior, foram obtidos dados de vazão descarregada por cada furo, qi (i = 1, 2, ..., N) e pressão (P) em locais 'j' da tubulação. Para fins de apresentação são calculados parâmetros adimensionais em forma de razão de:

- 1- Áreas (a / A), área do orifício por área do tubo principal;
- 2- Vazões (qi / Qo), vazão através de furo individual pela vazão de entrada;
- 3- Pressões (P / hteórico), pressão medida por carga teórica para distribuição uniforme.

$$h_{teórico} = \frac{Q_0^2}{N^2 a^2 2g} \tag{18}$$

onde :

5

Qo = Vazão de entrada;

- N = Número de orificios analisado (5; 10; 15);
- a = Área do orificio;
- g = Aceleração da gravidade.

Sendo cada condição de ensaios, definida por diâmetro do tubo (D) mm; diâmetro do orifício (d) mm; número de orifícios ativos (N) e vazão de entrada no tubo (Qo). Tabelas (A.1- A.39) apresentam resultados de todos os ensaios.

Conforme explicitado anteriormente, foram ensaiados manifolds com três diâmetros, cada qual com uma série de tamanho de orificios circulares.

Os dados de vazão obtidos em laboratório foram comparados com o modelo de Hudson (qi / Qo Hudson) e com o modelo Chaudhry e Cardona, que leva em consideração o efeito de contração (qi / Qo contração), apêndice B. Os resultados desta comparação são apresentados em forma gráfica para todos os ensaios nas figuras (17 - 55).

Estas figuras apresentam graficamente as distribuições de pressões e vazões ao longo do manifold para cada uma das diversas condições operacionais.

Observe por exemplo nas figuras (17, 18, 19, 32, 33, 34, 35, 47), para orifícios de diâmetros menores em relação ao diâmetro do manifold (a / A pequeno), a distribuição de pressão e vazão são quase uniformes para todos os números de Reynolds.

Á medida que (a / A) e (N) crescem, há variação de pressão e de vazão ao longo do manifold. Também verifica-se que o efeito da variação do número de Reynold começa a manifestar-se mostrando que necessitam-se maiores pressões adimensionais no manifold para fazer face a perdas de carga distribuídas crescentes.

São apresentadas também nas figuras (17 - 55) as previsões da distribuição de vazão pelos métodos apresentados por Chaudhry e Reis (1986) e Chaudhry e Cardona (1987). Observa-se que as distribuições obtidas pelo método posterior se ajustam melhor aos dados experimentais. No entanto, no caso de orificios de maiores diâmetros ou em maiores números, como por exemplo nas figuras (30-b, 31- b, 46-b e 55- b), quando a pressão varia consideravelmente ao longo do manifold, as previsões teóricas para orificios próximos aos extremos do manifold se afastam dos dados observados.

Analisando os gráficos das figuras (24, 25, 26, 27, 29, 39, 40, 41, 42), percebemos que o aumento dos diâmetros dos orificios ocasiona contrações acentuadas, que por sua vez promovem o afastamento do modelo de Hudson.

Tais efeitos podem ser constatados visualmente através das figuras (56, 57, 58, 59, 60, 61, 62), onde também fica evidente a desuniformidade na distribuição de vazão do primeiro ao último orifício tomado para estudo.

FIGURA 17 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 50mm; d = 8,36mm; N = 5).

FIGURA 18 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 50mm; d = 8,36mm; N = 10).

FIGURA19 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 50mm; d = 8,36mm; N = 15).

FIGURA 20 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 50mm; d = 14,50mm; N = 5).

FIGURA 21 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 50mm; d = 14,50mm; N = 10).

FIGURA 22 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 50mm; d = 14,50mm; N =15).

FIGURA 23 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 50mm; d = 20,30mm; N = 5).

FIGURA 24 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 50mm; d = 20,30mm; N = 10).

FIGURA 27 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 50mm; d = 26mm; N = 10).

FIGURA 29 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 50mm; d = 32,16mm; N = 5).

FIGURA 30- VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 50mm; d = 32,16mm; N = 10).

FIGURA 31 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 50mm; d = 32,16mm; N = 15).

FIGURA 32 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 38,5mm; d = 5,25mm; N = 5).

FIGURA 33 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D =38,5mm; d = 5,25mm; N =10).

FIGURA 34 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D=38,5mm; d = 5,25mm; N=15).

FIGURA 35 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D=38,5mm; d = 10,42mm; N = 5).

FIGURA 37 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D =38,5mm; d = 10,42mm; N =15).

FIGURA 38 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D =38,5mm; d = 14,53mm; N = 5).

FIGURA 39 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D=38,5mm; d=14,53mm; N=10).

FIGURA 41 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 38,5mm; d = 20,22mm; N = 5).

FIGURA 42 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 38,5mm; d = 20,22mm; N = 10).

FIGURA 43 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 38,5mm; d = 20,22mm; N = 15).

FIGURA 45 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 38,5mm; d = 26,20mm; N = 10).

FIGURA 46 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 38,5mm; d = 26,20mm; N = 15).

FIGURA 47 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 26mm; d = 5,30mm; N = 5).

FIGURA 48 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 26mm; d = 5,30mm; N = 10).

FIGURA 49 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 26mm; d = 5,30mm; N = 15).

FIGURA 50 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 26mm; d = 10,35mm; N = 5).

FIGURA 51 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 26mm; d = 10,35mm; N =10).

FIGURA 52 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 26mm; d = 10,35mm; N =15).

FIGURA 53 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 26mm; d = 14,63mm; N = 5).

FIGURA 54 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 26mm; d = 14,63mm; N = 10).

FIGURA 55 - VARIAÇÃO ADIMENSIONAL DA PRESSÃO (a) E DA VAZÃO (b) AO LONGO DO MANIFOLD. (D = 26mm; d = 14,63mm; N = 15).

6.1) VISUALIZAÇÃO DA DISTRIBUIÇÃO DE VAZÃO

O estudo visou avaliar a não uniformidade na distribuição de vazões nos orificios ao longo do tubo. Nas figuras (56, 57, 58, 59, 60, 61, 62) observamos claramente a desuniformidade na distribuição da vazão, que é crescente do 1° para último orificio.

FIGURA 56 - DISTRIBUIÇÃO DE VAZÃO PARA D = 38,5mm; d = 26,20mm; N = 5

FIGURA 57 - DISTRIBUIÇÃO DE VAZÃO PARA D = 38,5mm; d = 26,20mm; N = 10

FIGURA 58 - VAZÃO DE DESCARGA NO 1º ORIFÍCIO PARA D = 38.5mm; d = 26,20mm; N = 10

FIGURA 59 - VAZÃO DE DESCARGA NO 10° ORIFÍCIO PARA D = 38.5mm; d = 26,20mm; N = 10

Nota-se ainda a crescente variação ao longo do tubo ao compararmos as figuras (57, 58, 59) com (60, 61, 62) à medida que aumentarmos o número de orifícios (N).

FIGURA 60 - DISTRIBUIÇÃO DE VAZÃO PARA D = 38.5mm; d = 26,20mm; N = 15

FIGURA 61 - VAZÃO DE DESCARGA NO 1º ORIFÍCIO PARA D = 38.5mm; d = 26,20mm; N = 15 (a)

FIGURA 62 - VAZÃO DE DESCARGA NO 15°ORIFÍCIO PARA D = 38.5mm; d = 26,20mm; N = 15

A partir da analise dos dados experimentais conclui-se que a desuniformidade da vazão é ocasionada principalmente pela velocidade de fluxo ao longo do manifold. Apesar das perdas de cargas ao longo do tubo e as perdas localizadas nas saídas das laterais, a pressão na maioria das condições ensaiadas cresce ao longo do manifold tendo em vista que a velocidade da entrada (V_0) é maior do que a velocidade da fluxo d'água no final da tubulação acarretando uma distribuição crescente da vazão de montante para jusante. Figura (63 e 64).

FIGURA 63 –O EFEITO DA VELOCIDADE DO FLUXO D'ÁGUA NO INÍCIO DA TUBULAÇÃO

FIGURA 64 –O EFEITO DA VELOCIDADE DO FLUXO D'ÁGUA NO FINAL DA TUBULAÇÃO

7) CONCLUSÃO

O presente trabalho teve como objetivo estudar a desuniformidade da distribuição da vazão e pressão em tubos perfurados (manifold simples), através de ensaios com equipamento montado para esse fim.

Os resultados de distribuição de vazão ao longo do distribuidor tubular assim obtidos foram comparados com o modelo teórico apresentado por Hudson et al. (1980) e as previsões de distribuição apresentadas por Chaudhry e Reis (1986). Este último que considera o efeito de contração conduziu a resultados mais próximos aos observados. O modelo de Hudson produz valores de distribuição de vazão discordante dos dados experimentais, exceto as situações em que trabalhava-se com orificios muito pequenos.

Verificou-se ainda que o número de Reynolds influencia mais na distribuição de pressão ao longo dos manifolds do que na distribuição de vazão.

Com a representação gráfica dos dados obtidos demostra-se claramente a validade de se considerar o efeito de contração para o distribuidor de saídas laterais em forma de orifícios circulares.

REFERÊNCIAS BIBLIOGRÁFICAS

- ACRIVOS, A.; BABCOK, B.C. and GIGFORD, R.L. Flow distribuitions in Manifold. Chemical Engineering Sciences. v.10, p. 112-124, 1959.
- BAUTISTA, O.E. "Estudo da Distribuição de Água por Manifolds Tubulares Empregados no Fundo de Filtros Rápidos". São Carlos, 1986. 171p. Dissertação (Mestrado Hidr. San.) - Escola de Engenharia de São Carlos, Universidade de São Paulo.
- CARDONA, Edith V. R. "Modelação da Distribuição de Vazão por Distribuidores em Malha" - São Carlos, 1988. Dissertação (Mestrado Hidr. San.) - Escola de Engenharia de São Carlos, Universidade de São Paulo.
- CHAUDHRY, F.H. e CARDONA, Edith V. R. " Modelação da Divisão de Vazão por Manifolds" (1987).
- CHAUDHRY, F.H. e REIS, L.F.R " Calculating Flow in Manifold and Orifice System " Journal of Environmental Engineering, ASCE, v.118, n.4, p.585-596, July/August, 1992.
- DOW W. M. The Unifom Distribution of a Fluid Flowing Through a Perforated Pipe." Trans. ASME". v. 12, 1950.
- ENGER, M.L. and LEVY, M.I. Pressures in Manifold Pipes. Journal American Water Works Association. v.21, May, 1929, p. 659.
- HORLOCK, L.H. An Investigation of the Flow in Manifold with Open and Closed Ends. Journal of the Royal Aeronautical Society, November, 1956
- HOWLAND, W.E. Design of perforated Pipe for Uniformity of Descharge. Proceeding Third Midwest Conference of fluids Mechanics. 1953.
- HUDSON H. E, H. ULHER and BAILEY, R. Dividing Flow Manifold with Square Edged Lateral. Journal of Environmental Engineering, ASCE, August, 1979. p.745
- KELLER, J.D. The Manifold Problem. Trans. Am.Soc. ech. Engineers. v.71, p.77, 1971.
- KUNZ, Jakob Jets fron Manifold Tubes. Trans. Amer. Soc. Mech. Engsers. v.53, p.181, 1983.
- MARCKLAND, E. The Analysis of Flow From Pipe Manifold. Engineering, v.187, January, 30, 1959, p. 150-151
- McNOWN, J.S. Mechanics of Manifolds Flow. Trans. ASCE. p.1103-1119, n 2714, 1954.
- McNOWN, J.S. and EN-YUN HSU Application of Conformal Mapping to Divided Flow. Proceeding the Midwestern Conference on Fluid Dynamics, University of Illinois, J.W. Edwarads, Ann Arbor, Mich., 1951.

- OTIS, R.J. Pressure Distribution desingn for Septic Tank Systems. Journal of the Environmental Engineering Division, ASCE. v. 108, n⁰ EEN, February, 1982.
- RAMAMURTHY, A. S. and SATISH, M.G. Internal Hydraulics of Diffusers with Uniform Lateral Momentum Distribution. Journal of Environmental Engineering, ASCE, v.113, n.3, june, 1987.
- RAWN, A.M. ; BOWERMAN, F.R. and BROOKS, N.H. Diffusers for Disposal of Sewage in Sea Water. Journal of the Sanitary Engineering Division, ASCE.
 v.86, n⁰ SA 2, March, 1960.
- RITHTER, C.A. Dispositivos de Entrada e Saída dos Decantadores. <u>Revista DAE</u>, n.131, Dezembro, 1982.
- SOUCEK, E. and ZELNICK, E.W. Lock Manifold Experiments. Proceeding of the ASCE. v.71, n.3, March, 1945.
- VIGANDER, S.; ELDER, R. A. and BROOKS, N.H. Internal Hydraulics of Thermal Discharge Dischrges diffusers. Journal of the Hidraulics Division,ASCE, v.96, n. HY 2, February, 1970.

MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO.

Foram realizados ensaios para 3 valores de diâmetro de manifold D; 5 diâmetro de orifício d; número de orifícios N (5, 10, 15) e 5 vazões de entrada Qo. Para cada condição de ensaio foram medidos no laboratório, (vazão descarregada pelo orifício, qi (i = 1,2,3,...,N) e pressão ao longo do tubo P) e calculado o número de Reynolds (Rey) na entrada da tubulação (definido pela razão entre o produto do diâmetro da tubulação "D" e a velocidade média "V_m" pela viscosidade cinemática "v"). Para melhor representação dos dados calculou-se a vazão adimensional como razão entre vazão escoada pelo orifício e a vazão de entrada (qi / Q₀) e a pressão adimensional ao longo do tubo como razão entre a pressão medida e uma carga característica teórica (P / h teórico), equação (18).

As tabelas (A.1 – A.39), apresentam os dados qi (1/s) e P (mm) observados e adimensionalizados para diversas condições experimentais (D, d, N, Qo) e respectivos números de Reynolds (Rey).

TABELA A.1 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 50,23mm), DIÂMETRO DO ORIFÍCIO (d = 8,36mm) e 5 ORIFÍCIOS ATIVOS (N = 5)

Qo (L	_/s) = 0,6	021	REY =	1,53E+04	Qo (L/s)	= 0,6464		REY =	1,65E+04
ORIF	P (mm)	P/hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1895	3,0541				1990	2,9859		
1			0,1203	0,1998	1			0,1282	0,1983
2			0,1227	0,2038	2			0,1315	0,2034
	1895	3,0541				1990	2,9859		
3			0,1202	0,1997	3			0,1298	0,2008
4			0,1191	0,1978	4			0,1288	0,1993
	1895	3,0541				1990	2,9859		
5			0,1198	0,1989	5			0,1281	0,1982

Qo (L	_/s) = 0,7	784	REY =	1,98E+04	Qo (L/s) = 0,9579			REY = 2,44E+04	
ORIF	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	2430	3,1308				2980	2,9522		
1			0,1540	0,1978	1			0,1950	0,2036
2			0,1574	0,2022	2			0,1974	0,2061
	2430	3,1308				2980	2,9522		
3			0,1548	0,1988	3			0,1930	0,2015
4			0,1558	0,2002	4			0,1855	0,1936
	2430	3,1308				2980	2,9522		
5			0,1565	0,2010	5			0,1871	0,1953

Qo(L/s)	= 1,0317		REY = 2,63E+04			
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo		
	3405	3,1348				
1			0,2021	0,1959		
2			0,2078	0,2014		
	3405	3,1347716				
3			0,2079	0,2016		
4			0,2068	0,2004		
	3405	3,1347716				
5			0,2071	0,2007		

91

TABELA A.2 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 50,23mm), DIÂMETRO DO ORIFÍCIO (d = 8,36mm) e 10 ORIFÍCIOS ATIVOS (N = 10)

Qo(L	/s) = 1,26	652	REY =	3,22E+04	Qo (L/s) = 1,3379			REY = 3,41E+04	
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	2000	3,1543				2050	2,9858		
1			0,1281	0,1012	1			0,1319	0,0986
2			0,1309	0,1035	2			0,1345	0,1006
	2000	3,1543				2050	2,9858		
3			0,1285	0,1016	3			0,1321	0,0988
4			0,1287	0,1017	4			0,1345	0,1005
	2005	3,1728				2050	2,9858		
5			0,1257	0,0994	5			0,1341	0,1002
6			0,1249	0,0987	6			0,1330	0,0994
	2005	3,1728				2055	3,0023		
7		1	0,1227	0,0970	7			0,1335	0,0998
8			0,1250	0,0988	8			0,1351	0,1010
	2010	3,1912				2060	3,0188		
9			0,1262	0,0998	9			0,1351	0,1009
10		1	0,1244	0,0983	10			0,1342	0,1003
	2010	3,1912				2060	3,0188		

Qo(L	/s) = 1,40	075	REY =	3,58E+04	Qo (L/s)	= 1,4823		REY =	3,77E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	2190	3,1149				2280	3,0507		
1			0,1409	0,1001	1			0,1472	0,0993
2			0,1438	0,1022	2			0,1505	0,1015
	2190	3,1149				2280	3,0507		
3	1		0,1412	0,1003	3			0,1476	0,0996
4			0,1422	0,1010	4			0,1416	0,0955
	2200	3,1447				2280	3,0507		
5			0,1427	0,1014	5			0,1490	0,1005
6			0,1433	0,1018	6			0,1494	0,1008
	2200	3,1447				2285	3,0641		
7			0,1399	0,0994	7			0,1473	0,0994
8			0,1421	0,1009	8			0,1499	0,1011
	2200	3,1447				2290	3,0775		
9			0,1367	0,0972	9			0,1506	0,1016
10			0,1348	0,0958	10			0,1491	0,1006
	2205	3,1597				2290	3,0775		

Qo (L/s)	= 1, <mark>5</mark> 318		REY =	3,90E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	2335	2,9949		
1			0,1539	0,1005
2			0,1602	0,1046
	2335	2,9949		
3			0,1579	0,1031
4			0,1509	0,0985
	2335	2,9949		
5			0,1510	0,0986
6	2335		0,1519	0,0992
		2,9949		
7			0,1497	0,0978
8			0,1518	0,0991
	2340	3,0075		
9			0,1533	0,1001
10			0,1512	0,0987
	2340	3,0075		

TABELA A.2 - (CONTINUAÇÃO)

TABELA A.3 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 50,23mm), DIÂMETRO DO ORIFÍCIO (d = 8,36mm) e 15 ORIFÍCIOS ATIVOS (N = 15)

Qo(L	Qo(L/s) = 1,7629 REY = 4,49E+04				Qo (L/s) =1,8337			REY = 4,67E+04	
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1840	2,9713				1915	3,0430		
1			0,1152	0,0653	1			0,1200	0,0655
2			0,1164	0,0660	2			0,1227	0,0669
	1840	2,9713				1915	3,0430		
3			0,1161	0,0659	3			0,1211	0,0660
4			0,1173	0,0665	4			0,1216	0,0663
	1840	2,9713				1915	3,0430		
5			0, <mark>1</mark> 128	0,0640	5			0,1203	0,0656
6			0,1181	0,0670	6			0,1232	0,0672
	1845	2,9926				1915	3,0430		
7			0,1164	0,0660	7			0,1207	0,0658
8			0,1188	0,0674	8			0,1233	0,0672
	1845	2,9926				1920	3,0627		
9			0,1198	0,0680	9			0,1249	0,0681
10			0,1183	0,0671	10			0,1235	0,0673
	1850	3,0140				1920	3,0627		
11			0,1185	0,0672	11			0,1225	0,0668
12			0,1178	0,0668	12			0,1216	0,0663
	1850	3,0140				1925	3,0825		
13			0,1188	0,0674	13			0,1227	0,0669
14			0,1194	0,0677	14			0,1227	0,0669
	1850	3,0140				1925	3,0825		
15			0,1194	0,0677	15			0,1227	0,0669
	1850	3,0140				1925	3,0825		

5)4	

Qo (L	/s) = 1,9	776	REY =	5,04E+04	Qo (L/s)	= 2,0863		REY =	5,31E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	2035	3,0239				2145	3,0529		
1			0,1295	0,0655	1			0,1371	0,0657
2			0,1321	0,0668	2			0,1392	0,0667
	2035	3,0239			1	2145	3,0529		
3			0,1315	0,0665	3			0,1382	0,0662
4			0,1322	0,0668	4			0,1364	0,0654
	2035	3,0239			1	2150	3,0682		
5			0,1281	0,0648	5			0,1388	0,0665
6			0,1329	0,0672	6			0,1393	0,0668
	2040	3,0409				2155	3,0834		
7			0,1309	0,0662	7			0,1378	0,0661
8			0,1333	0,0674	8			0,1400	0,0671
	2040	3,0409				2155	3,0834		
9			0,1342	0,0678	9			0,1416	0,0679
10			0,1327	0,0671	10			0,1404	0,0673
	2045	3,0579				2160	3,0987		
11			0,1324	0,0670	11			0,1401	0,0671
12			0,1310	0,0662	12			0,1388	0,0665
	2045	3,0579				2160	3,0987		
13			0,1321	0,0668	13			0,1392	0,0667
14			0,1325	0,0670	14			0,1395	0,0669
	2050	3,0749				2160	3,0987		
15			0,1323	0,0669	15			0,1398	0,0670
	2050	3,0749				2160	3,0987		

TABELA	A.3 -	(CONTINUAÇÃO)	
--------	-------	---	----------------------	--

Qo (L/s)	= 2,2374			REY =	5,70E+04
ORIF.	P (mm)	P / hteor.	P (mm)	qi (L/S)	qi / Qo
	2330	3,1454	2330		
1				0,1492	0,0667
2				0,1313	0,0587
	2330	3,1454	2330		
3				0,1507	0,0673
4				0,1511	0,0675
	2335	3,1586	2335		
5				0,1522	0,0680
6				0,1335	0,0597
	2340	3,1719	2340		
7				0,1502	0,0671
8				0,1526	0,0682
	2345	3,1852	2345		
9				0,1547	0,0692
10				0,1536	0,0687
	2345	3,1852	2345		
11				0,1534	0,0686
12				0,1520	0,0680
	2350	3,1985	2350		
13				0,1523	0,0681
14				0,1509	0,0675
	2350	3,1985	2350		
15				0,1497	0,0669
	2350	3,1985	2350		

TABELA A.4 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 50,23mm), DIÂMETRO DO ORIFÍCIO (d =14,50mm) e 5 ORIFÍCIOS ATIVOS (N = 5)

Qo(L	/s) = 0,95	527	REY =	2,43E+04	Qo (L/s)	= 1,1453		REY =	2,92E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1300	2,2818				1390	2,4955		
1			0,1877	0,1970	1			0,2172	0,1896
2			0,1875	0,1968	2			0,2196	0,1917
	1305	2,3554				1395	2,5464		
3			0,1912	0,2007	3			0,2336	0,2039
4			0,1911	0,2005	4			0,2358	0,2059
	1308	2,3995				1400	2,5973		
5			0,1953	0,2050	5			0,2392	0,2088

Qo(L	/s) = 1,35	576	REY =	3,46E+04	Qo (L/s)	= 1,4369		REY =	3,66E+04
ORIF	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1475	2,3922				1520	2,4269		
1		^	0,2666	0,1964	1			0,2812	0,1957
2			0,2680	0,1974	2			0,2839	0,1976
	1485	2,4647				1530	2,4916		
3			0,2726	0,2008	3			0,2898	0,2017
4			0,2737	0,2016	4			0,2899	0,2018
	1490	2,5009				1535	2,5240		
5			0,2767	0,2038	5			0,2920	0,2032

Qo (L/s)	= 1,6498		REY =	4,20E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1640	2,4298		
1			0,3240	0,1964
2			0,3270	0,1982
	1655	2,5035		
3			0,3320	0,2012
4			0,3323	0,2014
	1660	2,5280		
5			0,3345	0,2028

TABELA A.5 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 50,23mm), DIÂMETRO DO ORIFÍCIO (d = 14,50mm) e 10 ORIFÍCIOS ATIVOS (N = 10)

Qo(L	/s) = 1,5	457	REY =	3,94E+04	Qo (L/s) = 1,8365			REY = 4,68E+04		
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	
	1255	2,4606				1275	2,0600			
1			0,1295	0,0838	1			0,1523	0,0829	
2			0,1339	0,0866	2			0,1566	0,0853	
	1255	2,4606				1280	2,1393			
3			0,1423	0,0921	3			0,1645	0,0896	
4			0,1490	0,0964	4			0,1707	0,0929	
	1260	2,5725				1285	2,2185			
5			0,1562	0,1011	5			0,1880	0,1024	
6			0,1612	0,1043	6			0,1938	0,1055	
	1265	2,6843				1290	2,2977			
7			0,1729	0,1119	7			0,2094	0,1140	
8			0,1666	0,1078	8			0,2000	0,1089	
	1265	2,6843				1295	2,3769			
9			0,1640	0,1061	9			0,1981	0,1079	
10			0,1700	0,1100	10			0,2031	0,1106	
_	1265	2,6843				1295	2,3769			

Qo(L	/s) = 2,4 ⁻	123	REY =	6,14E+04	Qo (L/s)	= 2,7962		REY =	7,12E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1400	2,3420				1495	2,3924		
1			0,2106	0,0873	1			0,2478	0,0886
2			0,2151	0,0892	2			0,2513	0,0899
	1407	2,4063				1505	2,4608		
3			0,2244	0,0930	3			0,2619	0,0937
4			0,2331	0,0966	4			0,2714	0,0971
	1417	2,4981				1528	2,6180		
5			0,2418	0,1002	5			0,2795	0,0999
6			0,2475	0,1026	6			0,2872	0,1027
	1425	2,5716				1532	2,6453		
7			0,2648	0,1098	7			0,3062	0,1095
8			0,2578	0,1069	8			0,2968	0,1061
	1430	2,6175				1540	2,7000		
9			0,2549	0,1057	9			0,2938	0,1051
10			0,2623	0,1087	10			0,3003	0,1074
	1433	2,6451	i.			1543	2,7205		

Qo (L/s)	= 3,1248		REY =	7,96E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1595	2,4630		
1			0,2777	0,0889
2			0,2803	0,0897
	1610	2,5451		
3			0,2908	0,0931
4			0,3016	0,0965
	1625	2,6272		
5			0,3136	0,1003
6			0,3195	0,1022
	1640	2,7093	-	
7			0,3437	0,1100
8			0,3332	0,1066
	1645	2,7367		
9			0,3281	0,1050
10			0,3363	0,1076
	1650	2,7640		

TABELA A.5 - (CONTINUAÇÃO)

TABELA A.6 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 50,23mm), DIÂMETRO DO ORIFÍCIO (d = 14,50mm) e 15 ORIFÍCIOS ATIVOS (N = 15)

Qo(L	(s) = 2,31	189	REY =	5,91E+04	Qo (L/s)	= 2,7540		REY =	7,01E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1255	2,4598				1307	2,5686		
1			0,1215	0,0524	1			0,1485	0,0539
2			0,1225	0,0528	2			0,1501	0,0545
	1255	2,4598				1307	2,5686		
3			0,1295	0,0558	3			0,1559	0,0566
4			0,1338	0,0577	4			0,1533	0,0557
	1255	2,4598				1310	2,6162		
5			0,1408	0,0607	5			0,1680	0,0610
6			0,1457	0,0628	6			0,1740	0,0632
	1257	2,5046				1315	2,6954		
7			0,1565	0,0675	7			0,1858	0,0675
8			0,1589	0,0685	8			0,1871	0,0679
	1260	2,5716				1320	2,7747		
9			0,1599	0,0689	9			0,1892	0,0687
.10			0,1658	0,0715	10			0,1973	0,0716
	1265	2,6835				1325	2,8540		
11			0,1712	0,0738	11			0,2029	0,0737
12			0,1722	0,0743	12			0,2035	0,0739
	1270	2,7953				1330	2,9333		
13			0,1760	0,0759	13			0,2077	0,0754
14			0,1765	0,0761	14			0,2094	0,0760
	1270	2,7953				1335	3,0125		
15			0,1881	0,0811	15			0,2214	0,0804
	1270	2,7953				1335	3,0125		

Qo(L	(s) = 3,87	783	REY =	9,88E+04	Qo (L/s)	= 4,1575		REY =	1,06E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1470	2,5982				1520	2,6089		
1			0,2101	0,0542	1			0,2254	0,0542
2			0,2114	0,0545	2			0,2267	0,0545
	1470	2,5982				1520	2,6089		
3			0,2214	0,0571	3			0,2369	0,0570
4			0,2223	0,0573	4			0,2402	0,0578
	1480	2,6782				1530	2,6785		
5			0,2375	0,0612	5			0,2506	0,0603
6			0,2407	0,0621	6			0,2578	0,0620
	1492	2,7741				1535	2,7133		
7			0,2587	0,0667	7			0,2761	0,0664
8			0,2577	0,0664	8			0,2799	0,0673
	1505	2,8780				1560	2,8872		
9			0,2659	0,0686	9			0,2839	0,0683
10			0,2799	0,0722	10			0,2991	0,0719
	1517	2,9740				1575	2,9916		
11			0,2865	0,0739	11			0,3080	0,0741
12			0,2880	0,0743	12			0,3073	0,0739
	1527	3,0539				1580	3,0263		
13			0,2937	0,0757	13			0,3146	0,0757
14			0,2957	0,0762	14			0,3138	0,0755
	1532	3,0939				1590	3,0959		
15			0,3087	0,0796	15			0,3371	0,0811
	1532	3,0939				1590	3,0959		

TABELA A.6 - (CONTINUAÇÃO)

Qo (L/s)	= 4,6041		REY =	1,17E+05
ORIF.	P(mm)	P / hteor.	qi (L/S)	qi / Qo
	1605	2,6095		
1			0,2481	0,0539
2			0,2498	0,0542
	1605	2,6095		
3			0,2641	0,0574
4			0,2700	0,0587
	1625	2,7229		
5			0,2806	0,0609
6			0,2866	0,0622
	1645	2,8364		
7			0,3066	0,0666
8			0,3125	0,0679
	1665	2,9499		
9			0,3136	0,0681
10	1685	3 0633	0,3327	0,0723
11	1000	0,0000	0.3406	0.0740
12			0,3409	0.0740
12	1695	3,1200	0,0403	0,0740
13		,	0.3474	0.0755
14			0,3448	0,0749
	1700	3,1484		
15			0,3660	0,0795
	1700	3,1484		

TABELA A.7 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 50,23mm), DIÂMETRO DO ORIFÍCIO (d = 20,30mm) e 5 ORIFÍCIOS ATIVOS (N = 5)

Qo(L	/s) = 0,89	928	REY =	2,27E+04	Qo (L/s)	= 1,4596		REY =	3,72E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1170	1,6098				1220	1,8070		
1			0,1426	0,1597	1			0,2497	0,1711
2			0,1602	0,1794	2			0,2791	0,1912
	1173	1,8030				1230	2,0480		
3			0,1774	0,1987	3			0,2958	0,2026
4			0,2011	0,2252	4			0,3138	0,2150
	1176	1,9962				1237	2,2166		
5			0,2115	0,2369	5			0,3213	0,2201

Qo(L	Qo(L/s) = 1,853 REY = 4,72E+04					Qo (L/s) = 2,1654			REY = 5,51E+04	
ORIF	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	
	1280	2,0165				1330	2,0251			
1			0,3190	0,1721	1			0,3901	0,1802	
2			0,3517	0,1897	2			0,4152	0,1918	
	1300	2,3152				1351	2,2550			
3			0,3759	0,2028	3			0,4426	0,2044	
4			0,4001	0,2158	4			0,4615	0,2131	
	1308	2,4347				1365	2,4082			
5			0,4070	0,2196	5			0,4560	0,2106	

Qo (L/s)	= 2,3387		REY = 5,96E+04			
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo		
	1365	2,0645				
1			0,4150	0,1774		
2			0,4480	0,1915		
	1390	2,2991				
3			0,4751	0,2032		
4			0,5004	0,2140		
	1405	2,4399				
5			0,5003	0,2139		

TABELA A.8 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 50,23mm), DIÂMETRO DO ORIFÍCIO (d = 20,30mm) e 10 ORIFÍCIOS ATIVOS (N = 10)

Qo(L	/s) = 1,6	516	REY =	4,21E+04	Qo (L/s)	= 2,5087		REY =	6,39E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1165	1,5054				1205	1,9574		
1			0,0901	0,0545	1			0,1635	0,0652
2			0,0988	0,0598	2			0,1777	0,0708
	1165	1,5054				1207	2,0227		
3			0,1160	0,0702	3			0,1937	0,0772
4			0,1402	0,0849	4			0,2151	0,0857
	1170	1,8817				1217	2,3489		
5			0,1545	0,0935	5			0,2376	0,0947
6			0,1848	0,1119	6			0,2634	0,1050
	1175	2,2581				1227	2,6751		
7			0,1965	0,1190	7			0,2900	0,1156
8			0,2171	0,1315	8			0,3108	0,1239
	1176	2,3333				1236	2,9687		
9			0,2224	0,1347	9			0,3293	0,1313
10			0,2312	0,1400	10			0,3277	0,1306
	1180	2,6344				1240	3,0992		

Qo(L	/s) = 3,23	398	REY =	8,25E+04	Qo (L/s)	= 3,9432		REY =	1,00E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1250	2,0539				1300	2,0467		
1			0,2203	0,0680	1			0,2705	0,0686
2			0,2420	0,0747	2			0,2974	0,0754
	1255	2,1517				1310	2,1788		
3			0,2582	0,0797	3			0,3392	0,0860
4			0,2825	0,0872	4			0,3438	0,0872
	1275	2,5429				1340	2,5749		
5			0,3059	0,0944	5			0,3707	0,0940
6			0,3352	0,1035	6			0,4049	0,1027
	1295	2,9342				1370	2,9710		
7			0,3697	0,1141	7			0,4435	0,1125
8			0,3945	0,1218	8			0,4759	0,1207
	1310	3,2276				1390	3,2351		
9			0,4163	0,1285	9			0,4955	0,1257
10			0,4154	0,1282	10			0,5019	0,1273
	1314	3,3058				1397	3,3276		

Qo (L/s)	= 4,4222	REY =	1,13E+05	
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
0	1350	2,1523		
1			0,3137	0,0709
2			0,3375	0,0763
	1365	2,3098		
3			0,3567	0,0807
4			0,3838	0,0868
	1405	2,7297		
5			0,4176	0,0944
6			0,4557	0,1030
	1440	3,0972		
7			0,5058	0,1144
8			0,5442	0,1231
	1466	3,3701		
9			0,5541	0,1253
10			0,5531	0,1251
	1475	3,4646		

TABELA A.8 - (CONTINUAÇÃO)

TABELA A.9 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 50,23mm), DIÂMETRO DO ORIFÍCIO (d = 20,30mm) e 15 ORIFÍCIOS ATIVOS (N = 15)

Qo(L	/s) = 2,92	227	REY =	7,44E+04	Qo (L/s)) = 3,9844		REY =	1,01E+05
ORIF	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1190	2,4336				1235	2,6189		
1			0,1160	0,0397	1			0,1663	0,0417
2			0,1204	0,0412	2			0,1734	0,0435
	1181	1,9469				1220	2,1824		
3			0,1273	0,0436	3			0,1796	0,0451
4			0,1389	0,0475	4			0,1917	0,0481
	1185	2,1632				1230	2,4734		
5			0,1499	0,0513	5			0,2005	0,0503
6			0,1674	0,0573	6			0,2216	0,0556
	1190	2,4336				1240	2,7644		
7			0,1822	0,0623	7			0,2410	0,0605
8			0,1930	0,0660	8			0,2557	0,0642
	1198	2,8662				1250	3,0554		
9			0,1996	0,0683	9			0,2694	0,0676
10			0,2123	0,0727	10			0,3011	0,0756
	1205	3,2448				1270	3,6373		
11			0,2329	0,0797	11			0,3172	0,0796
12			0,2468	0,0844	12			0,3407	0,0855
	1213	3,6774				1285	4,0738		
13			0,2569	0,0879	13			0,3531	0,0886
14			0,2893	0,0990	14			0,3832	0,0962
	1217	3,8937				1294	4,3357		
15			0,2899	0,0992	15			0,3901	0,0979
	1217	3,8937				1294	4,3357		

Qo(L	/s) = 4,68	364	REY =	1,19E+05	Qo (L/s)	= 5,2185		REY =	1,33E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1265	2,5242				1295	2,5446		
1			0,1985	0,0424	1			0,2216	0,0425
2			0,2076	0,0443	2			0,2320	0,0445
	1254	2,2928				1280	2,2901		
3			0,2124	0,0453	3			0,2368	0,0454
4			0,2256	0,0481	4			0,2491	0,0477
	1267	2,5662				1300	2,6294		
5			0,2356	0,0503	5			0,2610	0,0500
6			0,2514	0,0536	6			0,2847	0,0545
	1273	2,6924				1315	2,8838		
7			0,2799	0,0597	7		1	0,3084	0,0591
8			0,2976	0,0635	8		1	0,3313	0,0635
	1305	3,3655				1345	3,3927		
9			0,3157	0,0674	9			0,3501	0,0671
10			0,3546	0,0757	10			0,3921	0,0751
	1322	3,7231				1367	3,7659		
11			0,3749	0,0800	11			0,4177	0,0800
12			0,4030	0,0860	12			0,4539	0,0870
	1341	4,1228				1394	4,2240		
13			0,4193	0,0895	13			0,4720	0,0905
14			0,4531	0,0967	14			0,5034	0,0965
	1355	4,4173				1408	4,4615		
15			0,4571	0,0975	15			0,5045	0,0967
	1355	4,4173				1409	4,4784		

TABELA A.9 - (CONTINUAÇÃO)

Qo (L/s) = 6,0071 REY = 1,53E+0									
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo					
	1349	2,6116							
1			0,2561	0,0426					
2			0,2679	0,0446					
	1325	2,3043							
3			0,2744	0,0457					
4			0,2947	0,0491					
	1355	2,6884							
5			0,2998	0,0499					
6			0,3274	0,0545					
	1379	2,9956							
7			0,3550	0,0591					
8			0,3826	0,0637					
	1415	3,4565							
9			0,4051	0,0674					
10			0,4623	0,0770					
	1450	3,9046							
11			0,4840	0,0806					
12			0,5105	0,0850					
	1485	4,3527							
13			0,5395	0,0898					
14			0,5662	0,0943					
	1506	4,6215							
15			0,5814	0,0968					
	1506	4,6215							

TABELA A.10 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 50,23mm), DIÂMETRO DO ORIFÍCIO (d = 26,00mm) e 5 ORIFÍCIOS ATIVOS (N = 5)

Q(L/s	Q(L/s) = 1,2016 REY = 3,06E+04				Qo (L/s)	= 1,8413		REY =	4,69E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1163	1,7218				1185	1,6297		
1			0,1621	0,1349	1			0,2532	0,1375
2			0,1793	0,1492	2			0,2938	0,1595
	1168	2,2000				1297	2,1186		
3			0,2323	0,1933	3			0,3997	0,2171
4			0,2889	0,2404	4			0,4242	0,2304
	1175	2,8696				1210	2,6482		
5			0,3390	0,2821	5			0,4703	0,2554

Qo (L	/s) = 2,2	319	REY =	5,68E+04	Qo (L/s)	= 2,5884		REY =	6,59E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1210	1,8024				1235	1,8554		
1			0,3137	0,1406	1			0,3827	0,1479
2			0,3673	0,1646	2			0,4396	0,1698
	1228	2,3015				1264	2,4533		
3			0,4386	0,1965	3			0,5123	0,1979
4			0,5499	0,2464	4			0,6059	0,2341
	1245	2,7729				1268	2,5357		
5			0,5623	0,2520	5			0,6479	0,2503

Qo (L/s)	= 2,9320		REY =	7,47E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1260	1,8477		
1			0,4326	0,1475
2			0,5017	0,1711
	1296	2,4261		
3			0,5913	0,2017
4			0,6758	0,2305
	1326	2,9081		
5			0,7306	0,2492

TABELA A.11 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 50,23mm), DIÂMETRO DO ORIFÍCIO (d = 26,00mm) e 10 ORIFÍCIOS ATIVOS (N = 10)

Qo (L	_/s) = 2,4	043	REY =	6,12E+04	Qo (L/s)	= 3,3010		REY =	8,41E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1168	2,1982				1180	1,7746		
1			0,0922	0,0384	1			0,1432	0,0434
2			0,0946	0,0394	2			0,1510	0,0457
	1155	0,9558				1175	1,5211		
3			0,1205	0,0501	3			0,1827	0,0553
4			0,1565	0,0651	4			0,2223	0,0673
	1164	1,8159				1190	2,2817		
5			0,2000	0,0832	5			0,2693	0,0816
6			0,2554	0,1062	6			0,3379	0,1024
	1175	2,8673				1210	3,2958		
7			0,2941	0,1223	7			0,3893	0,1179
8			0,3466	0,1442	8			0,5030	0,1524
	1183	3,6319				1222	3,9042		
9			0,4320	0,1797	9			0,5650	0,1712
10			0,4122	0,1715	10			0,5373	0,1628
	1190	4,3009				1236	4,6141		

Qo (L	_/s) = 3,5	700	REY =	9,09E+04	Qo (L/s)	= 4,1565		REY = 1,06E+05	
ORIF	P (mm	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1190	1,9508				1205	1,9188		
1			0,1621	0,0454	1			0,1934	0,0465
2			0,1745	0,0489	2			0,2063	0,0496
	1185	1,7340				1200	1,7589		
3			0,2080	0,0583	3			0,2437	0,0586
4			0,2499	0,0700	4			0,2928	0,0704
	1200	2,3843				1225	2,5584		
5			0,2979	0,0834	5			0,3474	0,0836
6			0,3725	0,1043	6			0,4274	0,1028
	1225	3,4681				1260	3,6776		
7			0,4244	0,1189	7			0,5127	0,1233
8			0,5050		8			0,5718	0,1376
	1250	4,5518				1285	4,4771		
9			0,5783	0,1620	9			0,6570	0,1581
10			0,5973	0,1673	10			0,7040	0,1694
	1260	4,9853				1305	5,1167		

Qo (L/s)	= 4,6446		REY =	1,18E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1220	1,9209		
1			0,2197	0,0473
2			0,2366	0,0509
	1215	1,7928		
3			0,2806	0,0604
4			0,3308	0,0712
	1248	2,6380		
5			0,3906	0,0841
6			0,4739	0,1020
	1290	3,7137		
7			0,5726	0,1233
8			0,6380	0,1374
	1328	4,6869		
9			0,7495	0,1614
10			0,7525	0,1620
	1348	5,1991		

TABELA A.11 - (CONTINUAÇÃO)

TABELA A.12 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 50,23mm), DIÂMETRO DO ORIFÍCIO (d = 26,00mm) e 15 ORIFÍCIOS ATIVOS (N = 15)

Qo (L	./s) = 2,9	775	REY =	7,58E+04	Qo (L/s)	= 4,0711		REY =	1,04E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1170	3,50552				1190	3,3753		
1			0,0930	0,0312	1			0,1393	0,0342
2			0,0840	0,0282	2			0,1307	0,0321
	1155	1,40221				1167	1,6501		
3			0,0897	0,0301	3			0,1353	0,0332
4			0,1005	0,0338	4			0,1440	0,0354
	1155	1,40221				1170	1,8752		
5			0,1205	0,0405	5			0,1630	0,0400
6			0,1413	0,0475	6			0,1873	0,0460
	1157	1,68265				1175	2,2502		
7			0,1626	0,0546	7			0,2080	0,0511
8			0,1799	0,0604	8			0,2305	0,0566
	1165	2,80441				1190	3,3753		
9			0,1965	0,0660	9			0,2578	0,0633
10			0,2110	0,0709	10			0,2829	0,0695
	1172	3,78596				1205	4,5004		
11			0,2303	0,0773	11			0,3191	0,0784
12			0,2696	0,0905	12			0,3735	0,0917
	1181	5,04794				1223	5,8505		
13			0,3236	0,1087	13			0,4455	0,1094
14			0,3670	0,1233	14			0,5080	0,1248
	1188	6,02949				1235	6,7506		
15			0,4081	0,1371	15			0,5463	0,1342
	1188	6,02949				1238	6,9756		

1	06

Qo (L	_/s) = 1,1	362	REY =	1,13E+05	Qo (L/s)	= 5,2222		REY =	1,33E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1200	3,47415				1215	3,1908		
1			0,1543	0,1543	1			0,1873	0,0359
2			0,1457	0,1457	2			0,1746	0,0334
	1173	1,76866				1187	1,9145		
3			0,1505	0,1505	3			0,1798	0,0344
4			0,1647	0,1647	4			0,1886	0,0361
	1175	1,89499				1193	2,1880		
5			0,1916	0,1916	5			0,2098	0,0402
6			0,2022	0,2022	6			0,2314	0,0443
	1183	2,40032				1200	2,5071		
7			0,2250	0,2250	7			0,2587	0,0495
8			0,2470	0,2470	8			0,2864	0,0548
	1200	3,47415				1220	3,4187		
9			0,2797	0,2797	9			0,3263	0,0625
10			0,3067	0,3067	10			0,3636	0,0696
	1217	4,54798				1250	4,7862		
11			0,3471	0,3471	11			0,4149	0,0794
12			0,4055	0,4055	12			0,4853	0,0929
	1240	6,0008				1284	6,3360		
13			0,4797	0,4797	13			0,5742	0,1100
14			0,5556	0,5556	14			0,6519	0,1248
	1256	7,01147				1307	7,3845		
15			0,5809	0,5809	15			0,6892	0,1320
	1257	7,07463				1310	7,5212		

TABELA A.12 - (CONTINUAÇÃO)

Qo (L/s)	= 5,9634		REY =	1,52E+05
ORIF.	P(mm)	P / hteor.	qi (L/S)	qi / Qo
	1235	3,1461		
1			0,2077	0,0348
2			0,2002	0,0336
	1200	1,9226		
3			0,2071	0,0347
4			0,2165	0,0363
	1210	2,2722		
5			0,2378	0,0399
6			0,2606	0,0437
	1220	2,6218		
7			0,2922	0,0490
8			0,3223	0,0540
	1248	3,6005		
9			0,3706	0,0621
10			0,4160	0,0698
	1285	4,8939		
11			0,4888	0,0820
12			0,5501	0,0923
	1327	6,3621		
13			0,6650	0,1115
14			0,7433	0,1246
	1360	7,5157		
15			0,7851	0,1317
	1362	7,5856		

۳

TABELA A.13 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 50,23mm), DIÂMETRO DO ORIFÍCIO (d = 32,16mm) e 5 ORIFÍCIOS ATIVOS (N = 5)

Qo (L	J∕s) =1,98	380	REY =	5,06E+04	Qo (L/s)	= 2,4720		REY =	6,29E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1165	1,6362				1177	1,6931		
1			0,1859	0,0935	1			0,2519	0,1019
2			0,2624	0,1320	2			0,3507	0,1419
	1172	2,2088				1195	2,6455		
3			0,4165	0,2095	3			0,4897	0,1981
4			0,5233	0,2632	4			0,6354	0,2570
	1190	3,6814				1220	3,9682		
5			0,5999	0,3017	5			0,7445	0,3012

Qo (L	_/s) = 3,3	475	REY =	8,52E+04	Qo (L/s)	= 3,6814		REY =	9,37E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1205	1,7313				1220	1,7892		
1			0,3684	0,1100	1			0,4090	0,1111
2			0,4991	0,1491	2			0,5305	0,1441
	1240	2,7412				1265	2,8628		
3			0,6622	0,1978	3			0,7336	0,1993
4			0,8435	0,2520	4			0,9286	0,2522
	1288	4,1262				1320	4,1749		
5			0,9744	0,2911	5			1,0797	0,2933

Qo (L/s)	= 3,9666		REY =	1,01E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1227	1,6851		
1			0,4321	0,1089
2			0,6005	0,1514
	1280	2,7742		
3			0,7949	0,2004
4			0,9908	0,2498
	1345	4,1099		
5			1,1483	0,2895

TABELA A.14 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 50,23mm), DIÂMETRO DO ORIFÍCIO (d = 32,16mm) e 10 ORIFÍCIOS ATIVOS (N = 10)

Qo (L	_/s) = 3,3	739	REY =	8,59E+04	Qo (L/s)) = 3,9898		REY =	1,02E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1170	2,8403				1175	2,4374		
1			0,1064	0,0315	1			0,1374	0,0344
2			0,1031	0,0306	2			0,1385	0,0347
	1155	1,1361				1157	0,9750		
3			0,1190	0,0353	3			0,1573	0,0394
4			0,1526	0,0452	4			0,1940	0,0486
	1158	1,4770				1167	1,7874		
5			0,2127	0,0630	5			0,2634	0,0660
6			0,2928	0,0868	6			0,3589	0,0900
	1175	3,4084				1194	3,9811		
7			0,4347	0,1288	7			0,4694	0,1177
8			0,5460	0,1618	8			0,6161	0,1544
	1200	6,2487				1233	7,1497		
9			0,6834	0,2026	9			0,7804	0,1956
10			0,7232	0,2143	10			0,8743	0,2191
	1215	7,9529				1250	8,5309		

Qo (L	J/s) = 4,2	2754	REY =	1,09E+05	Qo (L/s)	= 4,6873		REY =	1,19E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1180	2,4764				1185	2,3545		
1			0,1473	0,0344	1			0,1626	0,0347
2			0,1536	0,0359	2			0,1720	0,0367
	1160	1,0613				1165	1,1773		
3			0,1732	0,0405	3			0,1932	0,0412
4			0,2142	0,0501	4			0,2367	0,0505
	1173	1,9811				1180	2,0602		
5			0,2838	0,0664	5			0,3084	0,0658
6			0,3829	0,0896	6			0,4168	0,0889
	1205	4,2452				1266	3,5907		
7			0,5054	0,1182	7		-	0,5471	0,1167
8			0,6560	0,1534	8			0,7121	0,1519
	1250	7,4291				1274	7,5934		
9			0,8277	0,1936	9			0,9123	0,1946
10			0,9314	0,2178	10			1,0263	0,2189
	1270	8,8441				1300	9,1239		

Qo (L/s)	= 5,3062		REY =	1,35E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1198	2,4345		
1			0,1829	0,0345
2			0,1993	0,0376
	1173	1,2861		
3			0,2244	0,0423
4			0,2720	0,0513
	1195	2,2967		
5			0,3534	0,0666
6		1	0,4689	0,0884
	1240	4,3637		
7			0,6150	0,1159
8			0,7974	0,1503
	1313	7,7169		
9			1,0311	0,1943
10			1,1617	0,2189
	1345	9,1867		

TABELA A.14 - (CONTINUAÇÃO)

TABELA A.15 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 50,23mm), DIÂMETRO DO ORIFÍCIO (d = 32,16mm) e 15 ORIFÍCIOS ATIVOS (N = 15)

Qo (L	/s) = 4,8	808	REY =	1,24E+05	Qo (L/s)	= 5,3047		REY =	1,35E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1190	5,4970				1195	5,1704		
1			0,1522	0,0312	1			0,1647	0,0311
2			0,1484	0,0304	2	-		0,1634	0,0308
	1160	1,8323				1163	1,8614		
3			0,1496	0,0307	3			0,1650	0,0311
4			0,1506	0,0309	4			0,1639	0,0309
	1160	1,8323				1163	1,8614		
5			0,1673	0,0343	5			0,1762	0,0332
6			0,1779	0,0365	6			0,1903	0,0359
	1158	1,5880				1161	1,6545		
7			0,1927	0,0395	7			0,2093	0,0395
8			0,2136	0,0438	8			0,2280	0,0430
	1170	3,0539				1175	3,1023		
9			0,2415	0,0495	9			0,2605	0,0491
10			0,2774	0,0568	10			0,3047	0,0574
	1185	4,8862				1195	5,1704		
11			0,3847	0,0788	11			0,3925	0,0740
12			0,4314	0,0884	12			0,4915	0,0927
	1217	8,7952				1232	8,9966		
13			0,5629	0,1153	13			0,6257	0,1179
14			0,7565	0,1550	14			0,8182	0,1542
	1250	12,8263				1270	12,9261		
15			0,8739	0,1791	15			0,9508	0,1792
	1252	13,0706				1275	13,4431		

Qo (L	⊿s) = 5,5	506	REY =	1,41E+05	Qo (L/s)	= 5,9210		REY =	1,51E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1200	5,1949				1207	5,1462		
1			0,1741	0,0314	1			0,1847	0,0312
2			0,1726	0,0311	2			0,1859	0,0314
	1165	1,8890				1167	1,8261		
3			0,1738	0,0313	3			0,1850	0,0312
4			0,1722	0,0310	4			0,1855	0,0313
	1166	1,9835				1170	2,0751		
5			0,1847	0,0333	5			0,1975	0,0334
6			0,1987	0,0358	6			0,2076	0,0351
	1164	1,7946				1169	1,9921		
7			0,2127	0,0383	7			0,2290	0,0387
8			0,2365	0,0426	8			0,2504	0,0423
	1180	3,3058				1186	3,4031		
9			0,2710	0,0488	9			0,2879	0,0486
10			0,3172	0,0571	10			0,3415	0,0577
	1200	5,1949				1210	5,3952		
11			0,3963	0,0714	11			0,4251	0,0718
12			0,5119	0,0922	12			0,5535	0,0935
	1245	9,4452				1258	9,3794		
13			0,6626	0,1194	13			0,6905	0,1166
14			0,8708	0,1569	14			0,9230	0,1559
	1285	13,2233				1307	13,4465		
15			0,9954	0,1793	15			1,0740	0,1814
	1290	13,6956				1311	13,7786		

TABELA A.15 - (CONTINUAÇÃO)

Qo (L/s)	= 6,1598		REY =	1,57E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1210	4,9849		
1			0,1914	0,0311
2			0,1947	0,0316
	1170	1,9173		
3			0,1935	0,0314
4			0,1944	0,0316
	1174	2,2240		
5			0,2054	0,0333
6			0,2150	0,0349
	1171	1,9940		
7			0,2332	0,0379
8			0,2578	0,0418
	1190	3,4511		
9			0,2979	0,0484
10			0,3551	0,0576
	1215	5,3684		
11			0,4378	0,0711
12			0,5778	0,0938
	1270	9,5864		
13			0,7204	0,1105
14			0,9689	0,1573
	1323	13,6510		
15	1000		1,1000	0,1000
	1330	14,1879		

TABELA A.16 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 38,50mm), DIÂMETRO DO ORIFÍCIO (d = 05,25mm) e 5 ORIFÍCIOS ATIVOS (N = 5)

Q0 (L/s) = 0,	1525	REY =	5,05E+03	Qo (L/s) = 0,2089	*	REY =	6,91E+03
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1400	2,5148				1670	2,7633		
1			0,0326	0,2136	1			0,0446	0,2134
2			0,0302	0,1980	2			0,0415	0,1986
	1400	2,5148				1970	2,7633		
3			0,0312	0,2045	3			0,0428	0,2050
4			0,0296	0,1941	4			0,0405	0,1938
	1400	2,5148				1670	2,7633		
5			0,0290	0,1898	5			0,0395	0,1891

Qo (L	./s) = 0,2	855	REY =	9,44E+03	Qo (L/s)	= 0,2999		REY =	9,92E+03
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	2150	2,8303				2273	2,8801		
1			0,0611	0,2141	1			0,0641	0,2139
2			0,0572	0,2002	2			0,0597	0,1991
	2150	2,8303				2273	2,8801		
3			0,0581	0,2034	3			0,0612	0,2042
4			0,0552	0,1933	4			0,0581	0,1937
	2150	2,8303				2273	2,8801		
5			0,0540	0,1891	5			0,0567	0,1891

Qo (L/s)	0,3262		REY =	1,08E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	2480	2,8802		
1			0,0698	0,2139
2			0,0653	0,2002
	2480	2,8802		
3			0,0666	0,2043
4			0,0630	0,1930
	2480	2,8802		
5			0,0615	0,1886

TABELA A.17 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 38,50mm), DIÂMETRO DO ORIFÍCIO (d = 05,25mm) e 10 ORIFÍCIOS ATIVOS (N = 10)

Qo (L	_/s) = 0,3	3361	REY =	1,11E+04	Qo (L/s)) = 0,3578		REY =	1,18E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1460	2,5612				1540	2,8341		
1			0,0366	0,1089	1			0,0375	0,1047
2			0,0343	0,1020	2			0,0352	0,0983
	1460	2,5612				1540	2,8341		
3			0,0329	0,0979	3			0,0355	0,0993
4			0,0322	0,0957	4			0,0359	0,1004
	1460	2,5612				1540	2,8341		
5			0,0321	0,0956	5			0,0345	0,0964
6			0,0347	0,1033	6			0,0368	0,1028
	1460	2,5612				1540	2,8341		
7			0,0350	0,1042	7			0,0369	0,1030
8			0,0323	0,0962	8			0,0337	0,0941
	1460	2,5612				1540	2,8341		
9			0,0321	0,0954	9			0,0352	0,0984
10			0,0339	0,1007	10			0,0367	0,1026
	1460	2,5612				1540	2,8341		

Qo (L	_/s) = 0,4	486	REY =	1,48E+04	Qo (L/s)	= 0,0,4829		REY =	1,60E+04
ORIF	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1755	2,7837				1860	2,8163		
1			0,0477	0,1064	1			0,0518	0,1072
2			0,0447	0,0996	2			0,0481	0,0997
	1755	2,7837				1860	2,8163		
3			0,0447	0,0997	3			0,0482	0,0998
4			0,0437	0,0974	4			0,0469	0,0971
	1755	2,7837				1860	2,8163		
5			0,0434	0,0968	5			0,0461	0,0954
6			0,0463	0,1032	6			0,0502	0,1039
	1755	2,7837				1860	2,8163		
7			0,0472	0,1052	7			0,0499	0,1034
8			0,0429	0,0957	8			0,0465	0,0962
	1755	2,7837				1860	2,8163		
9			0,0431	0,0960	9			0,0466	0,0966
10			0,0449	0,1000	10			0,0486	0,1006
	1755	2,7837				1860	2,8163		

Qo (L/s)	= 05470	REY =	1,81E+04	
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	2110	2,9624		
1			0,0587	0,1073
2			0,0555	0,1016
	2110	2,9624		
3			0,0559	0,1021
4			0,0540	0,0987
	2110	2,9624		
5			0,0528	0,0965
6			0,0566	0,1034
	2110	2,9624		
7			0,0549	0,1003
8			0,0518	0,0947
	2110	2,9624		
9			0,0516	0,0944
10			0,0553	0,1010
	2110	2,9624		

TABELA A.17 - (CONTINUAÇÃO)

TABELA A.18 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 38,50mm), DIÂMETRO DO ORIFÍCIO (d = 05,25mm) e 15 ORIFÍCIOS ATIVOS (N = 15)

Qo (L	/s) = 0,5	615	REY =	1,86E+04	Qo (L/s)	= 0,5941		REY =	1,96E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1580	2,8512				1635	2,8695		
1			0,0399	0,0710	1			0,0419	0,0706
2			0,0384	0,0684	2			0,0401	0,0675
	1580	2,8512				1635	2,8695		
3			0,0368	0,0655	3			0,0403	0,0678
4			0,0372	0,0663	4			0,0395	0,0665
	1580	2,8512				1635	2,8695		
5			0,0365	0,0651	5			0,0387	0,0651
6			0,0394	0,0701	6			0,0419	0,0706
	1580	2,8512				1635	2,8695		
7			0,0391	0,0696	7			0,0415	0,0698
8			0,0366	0,0651	8			0,0388	0,0652
	1580	2,8512				1635	2,8695		
9			0,0367	0,0654	9			0,0387	0,0652
10			0,0384	0,0684	10			0,0406	0,0683
	1580	2,8512				1635	2,8695		
11			0,0366	0,0652	11			0,0385	0,0647
12			0,0363	0,0647	12			0,0384	0,0647
	1580	2,8512				1635	2,8695		
13			0,0347	0,0618	13			0,0368	0,0619
14			0,0370	0,0660	14			0,0386	0,0650
	1580	2,8512				1635	2,8695		
15			0,0379	0,0675	15			0,0398	0,0671
	1580	2,8512				1635	2,8695		

Qo (L	⊿s) = 0,6	38	REY =	2,11E+04	Qo (L/s)	= 0,6764		REY =	2,24E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1715	2,8937				1790	2,9135		
1			0,0455	0,0713	1			0,0473	0,0700
2			0,0435	0,0681	2			0,0458	0,0677
	1715	2,8937				1790	2,9135		
3			0,0435	0,0682	3			0,0457	0,0675
4			0,0421	0,0659	4			0,0447	0,0660
	1715	2,8937			Ì	1790	2,9135		
5			0,0413	0,0647	5			0,0440	0,0650
6			0,0450	0,0705	6			0,0474	0,0701
	1715	2,8937				1790	2,9135		
7			0,0443	0,0694	7			0,0464	0,0686
8			0,0414	0,0649	8			0,0438	0,0648
	1715	2,8937				1790	2,9135		
9			0,0415	0,0651	9			0,0441	0,0652
10			0,0431	0,0676	10			0,0460	0,0680
	1715	2,8937				1790	2,9135		
11			0,0413	0,0647	11			0,0442	0,0654
12			0,0410	0,0643	12			0,0440	0,0651
	1715	2,8937				1790	2,9135		
13			0,0389	0,0609	13			0,0417	0,0616
14			0,0418	0,0655	14			0,0447	0,0661
	1715	2,8937				1790	2,9135		
15			0,0439	0,0688	15			0,0466	0,0689
	1715	2,8937				1790	2,9135		

TABELA A.18 - (CONTINUAÇÃO)

Qo (L/s)	=0,6934		REY =	2,29E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1830	2,9442		
1			0,0487	0,0702
2			0,0471	
	1830	2,9442		
3			0,0467	0,0674
4			0,0456	0,0658
	1830	2,9442		
5			0,0449	0,0647
6			0,0486	0,0701
	1830	2,9442		
7			0,0476	0,0687
8			0,0451	0,0650
	1830	2,9442		
9			0,0453	0,0653
10			0,0472	0,0680
	1830	2,9442		
11			0,0455	0,0656
12			0,0446	0,0644
	1830	2,9442		
13			0,0427	0,0615
14			0,0458	0,0660
	1830	2,9442		
15			0,0481	0,0694
	1830	2,9442		

TABELA A.19 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 38,50mm), DIÂMETRO DO ORIFÍCIO (d = 10,42mm) e 5 ORIFÍCIOS ATIVOS (N = 5)

Qo (L	_/s) = 0,2	596	REY =	8,59E+03	Qo (L/s)	= 0,3630		REY =	1,20E+04
ORIF	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1180	1,8503				1222	2,0828		
1			0,0471	0,1813	1			0,0682	0,1880
2			0,0474	0,1825	2			0,0692	0,1907
	1180	1,8503				1223	2,1098		
3			0,0527	0,2029	3			0,0749	0,2063
4			0,0548	0,2112	4			0,0744	0,2050
	1180	1,8503				1225	2,1639		
5			0,0577	0,2221	5			0,0762	0,2101

Qo (l	_/s) = 0,4	368	REY =	1,44E+04	Qo (L/s)	= 0,4690		REY =	1,55E+04
ORIF	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1265	2,2413				1284	2,2517		
1			0,0843	0,1930	1			0,0908	0,1935
2			0,0849	0,1943	2			0,0916	0,1953
	1268	2,2973				1285	2,2679		
3			0,0892	0,2041	3			0,0968	0,2063
4			0,0892	0,2041	4		2	0,0950	0,2026
	1270	2,3347				1287	2,3003		
5			0,0893	0,2045	5			0,0949	0,2023

Qo (L/s)	= 0,5003		REY =	1,65E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1305	2,2776		
1			0,0978	0,1955
2			0,0976	0,1952
	1306	2,2918	•	
3			0,1024	0,2047
4			0,1016	0,2030
	1308	2,3203		
5			0,1009	0,2016

TABELA A.20 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 38,50mm), DIÂMETRO DO ORIFÍCIO (d = 10,42mm) e 10 ORIFÍCIOS ATIVOS (N = 10)

Qo (L	_/s) = 0,5	069	REY =	1,68E+04	Qo (L/s)	= 0,6035		REY =	2,00E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1180	1,9412				1195	1,9564		
1			0,0417	0,0823	1			0,0535	0,0886
2			0,0424	0,0836	2			0,0530	0,0878
	1180	1,9412				1195	1,9564		
3			0,0478	0,0943	3			0,0558	0,0925
4			0,0499	0,0985	4			0,0583	0,0967
	1180	1,9412				1195	1,9564		
5			0,0503	0,0991	5			0,0608	0,1007
6			0,0515	0,1015	6			0,0606	0,1004
	1185	2,2185				1197	2,0347		
7			0,0556	0,1096	7			0,0653	0,1081
8			0,0592	0,1168	8			0,0686	0,1136
	1185	2,2185				1197	2,0347		
9			0,0565	0,1115	9			0,0663	0,1099
10			0,0521	0,1028	10			0,0614	0,1017
	1185	2,2185				1197	2,0347		

Qo (L	_/s) = 0,8	260	REY =	2,73E+04	Qo (L/s)	= 0,8795		REY =	2,91E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1262	2,4442				1273	2,3585		
1			0,0749	0,0907	1			0,0790	0,0898
2			0,0748	0,0906	2			0,0796	0,0905
	1265	2,5069				1275	2,3954		
3			0,0804	0,0974	3			0,0850	0,0966
4			0,0810	0,0981	4			0,0845	0,0961
	1265	2,5069				1277	2,4322		
5			0,0835	0,1011	5			0,0875	0,0995
6			0,0835	0,1011	6			0,0882	0,1003
	1270	2,6113				1280	2,4875		
7			0,0886	0,1073	7			0,0929	0,1056
8			0,0913	0,1106	8			0,0990	0,1125
	1270	2,6113				1283	2,5428		
9			0,0866	0,1048	9			0,0948	0,1077
10			0,0813	0,0984	10			0,0891	0,1013
	1270	2,6113				1285	2,5796		

Qo (L/s)	= 1,0323		REY =	3,41E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1330	2,4746		
1			0,0941	0,0911
2			0,0943	0,0913
	1335	2,5415		
3			0,1003	0,0971
4			0,0992	0,0961
	1337	2,5683		
5			0,1034	0,1001
6			0,1037	0,1005
	1340	2,6084		
7			0,1090	0,1056
8			0,1129	0,1094
	1344	2,6619		
9			0,1107	0,1072
10			0,1047	0,1014
	1344	2,6619		

TABELA A.20 - (CONTINUAÇÃO)

TABELA A.21 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 38,50mm), DIÂMETRO DO ORIFÍCIO (d = 10,42mm) e 15 ORIFÍCIOS ATIVOS (N = 15)

Qo (L	./s) = 0,8	846	REY =	2,93E+04	Qo (L/s)	= 1,1324		REY =	3,74E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1205	2,4591				1257	2,8012		
1			0,0485	0,0548	1			0,0640	0,0565
2			0,0491	0,0555	2			0,0652	0,0576
	1204	2,4182				1256	2,7762		
3			0,0542	0,0613	3			0,0704	0,0622
4			0,0546	0,0617	4			0,0690	0,0609
	1202	2,3362				1250	2,6261		
5			0,0560	0,0633	5			0,0730	0,0644
6			0,0566	0,0640	6			0,0722	0,0637
	1204	2,4182				1255	2,7512		
7			0,0615	0,0696	7			0,0771	0,0681
8			0,0640	0,0723	8			0,0811	0,0716
	1205	2,4591				1257	2,8012		
9			0,0627	0,0708	9			0,0791	0,0699
10			0,0567	0,0641	10			0,0717	0,0634
	1205	2,4591				1258	2,8262		
11			0,0597	0,0675	11			0,0769	0,0679
12			0,0609	0,0688	12			0,0790	0,0697
	1205	2,4591			-	1260	2,8763		
13			0,0673	0,0761	13			0,0854	0,0754
14			0,0650	0,0735	14			0,0822	0,0726
	1206	2,5001				1260	2,8763		
15			0,0677	0,0765	15			0,0862	0,0761
	1206	2,5001				1260	2,8763		

Qo (L	./s) = 1,3	133	REY =	4,34E+04	Qo (L/s)	= 1,5235		REY =	5,04E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1295	2,7891				1353	2,8738		
1			0,0769	0,0586	1			0,0907	0,0595
2			0,0768	0,0585	2			0,0893	0,0586
	1294	2,7705			1	1353	2,8738		
3			0,0820	0,0624	3			0,0951	0,0624
4			0,0796	0,0606	4			0,0914	0,0600
	1290	2,6961			1	1350	2,8324		
5			0,0824	0,0628	5			0,0955	0,0627
6			0,0815	0,0620	6			0,0947	0,0622
	1294	2,7705				1353	2,8738		
7			0,0880	0,0670	7			0,1010	0,0663
8			0,0926	0,0705	8			0,1064	0,0699
	1295	2,7891				1356	2,9153		
9			0,0917	0,0698	9			0,1052	0,0691
10			0,0832	0,0634	10			0,1010	0,0663
	1297	2,8263			1	1360	2,9705		
11			0,0914	0,0696	11			0,1058	0,0694
12			0,0934	0,0711	12			0,1069	0,0702
	1300	2,8821				1360	2,9705		
13			0,0988	0,0752	13			0,1138	0,0747
14		_	0,0967	0,0736	14			0,1117	0,0733
	1300	2,8821				1365	3,0396		
15			0,0984	0,0749	15			0,1149	0,0754
	1300	2,8821				1365	3,0396		

TABELA A.21 - (CONTINUAÇÃO)

Qo (L/s)	= 1,6694		REY =	5,52E+04
ORIF.	P(mm)	P / hteor.	qi (L/S)	qi / Qo
	1400	2,9342		
1			0,1006	0,0603
2			0,0989	0,0592
	1400	2,9342		
3			0,1033	0,0619
4			0,1001	0,0599
	1385	2,7616		
5			0,1041	0,0624
6			0,1034	0,0620
	1400	2,9342		
7			0,1103	0,0661
8			0,1160	0,0695
	1405	2,9917		
9			0,1151	0,0689
10			0,1108	0,0664
	1410	3,0492		
11			0,1167	0,0699
12			0,1186	0,0711
	1410	3,0492		
13			0,1252	0,0750
14			0,1226	0,0734
	1413	3,0838		
15			0,1237	0,0741
	1413	3,0838		

TABELA A.22 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 38,50mm), DIÂMETRO DO ORIFÍCIO (d = 14,53mm) e 5 ORIFÍCIOS ATIVOS (N = 5)

Qo(L	_/s) = 1,7	7308	REY =	5,72E+04	Qo (L/s)	= 1,8049		REY =	5,97E+04
ORIF	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1615	2,1137				1650	2,0884		
1			0,3066	0,1771	1			0,3204	0,1775
2			0,3208	0,1853	2			0,3349	0,1856
	1650	2,2711				1700	2,2951		
3			0,3461	0,2000	3			0,3604	0,1996
4			0,3793	0,2191	4			0,3949	0,2188
	1675	2,3835				1720	2,3778		
5			0,3781	0,2184	5			0,3944	0,2185

Qo (L	_/s) = 1,8	901	REY =	6,25E+04	Qo (L/s)	=1,9659		REY =	6,50E+04
ORIF	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1707	2,1194				1745	2,0916		
1			0,3391	0,1794	1			0,3487	0,1774
2			0,3532	0,1869	2			0,3646	0,1855
	1755	2,3004				1800	2,2833		
3			0,3759	0,1989	3			0,3891	0,1979
4			0,4121	0,2180	4			0,4327	0,2201
	1780	2,3947				1825	2,3704		
5			0,4098	0,2168	5			0,4309	0,2192

Qo (L/s)	= 2,0899		REY =	6,91E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1815	2,0666		
1			0,3695	0,1768
2			0,3808	0,1822
	1875	2,2517		
3			0,4303	0,2059
4			0,4624	0,2212
	1910	2,3596		
5			0,4469	0,2139

TABELA A.23 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 38,50mm), DIÂMETRO DO ORIFÍCIO (d = 14,53mm) e 10 ORIFÍCIOS ATIVOS (N = 10)

Qo (L	_/s) = 1,8	811	REY =	6,22E+04	Qo (L/s)	= 2,2201		REY =	7,34E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1290	2,20828				1350	2,241368		
1			0,1394	0,0741	1			0,1656	0,0746
2			0,1434	0,0762	2			0,1710	0,0770
	1300	2,36057				1360	2,350703		
3			0,1528	0,0812	3			0,1818	0,0819
4			0,1748	0,0929	4			0,2085	0,0939
	1305	2,43672				1372	2,481905		
5			0,1840	0,0978	5			0,2175	0,0980
6			0,1841	0,0979	6			0,2166	0,0976
	1323	2,71085				1396	2,744309		
7			0,2041	0,1085	7			0,2413	0,1087
8			0,2259	0,1201	8			0,2633	0,1186
	1334	2,87838				1403	2,820843		
9			0,2381	0,1266	9			0,2760	0,1243
10			0,2344	0,1246	10			0,2784	0,1254
	1337	2,92407				1417	2,973912		1

Qo (L	_/s) = 2,4	340	REY =	8,05E+04	Qo (L/s)	= 2,6242		REY =	8,68E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1395	2,2741				1437	2,2851		
1			0,1849	0,0760	1			0,2037	0,0776
2			0,1882	0,0773	2			0,2056	0,0783
	1412	2,4287				1460	2,4651		
3			0,2027	0,0833	3			0,2171	0,0827
4			0,2275	0,0935	4			0,2459	0,0937
	1425	2,5470				1470	2,5433		
5			0,2361	0,0970	5			0,2581	0,0983
6			0,2395	0,0984	6			0,2531	0,0964
	1455	2,8199				1517	2,9111		
7			0,2635	0,1082	7			0,2842	0,1083
8			0,2891	0,1188	8			0,3122	0,1190
	1475	3,0018				1530	3,0128		
9			0,3043	0,1250	9			0,3215	0,1225
10			0,2982	0,1225	10			0,3228	0,1230
	1480	3,0473				1536	3,0598		

Qo (L/s)	= 2,8413	REY =	9,40E+04	
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1490	2,3029		
1			0,2153	0,0758
2			0,2204	0,0776
	1517	2,4832		
3			0,2351	0,0827
4			0,2637	0,0928
	1535	2,6033		
5			0,2812	0,0990
6			0,2804	0,0987
	1580	2,9037		
7			0,3088	0,1087
8			0,3374	0,1188
	1600	3,0372		
9			0,3497	0,1231
10			0,3493	0,1229
	1610	3,1039		

TABELA A.23 - (CONTINUAÇÃO)

TABELA A.24 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 38,50mm), DIÂMETRO DO ORIFÍCIO (d = 14,53mm) e 15 ORIFÍCIOS ATIVOS (N = 15)

Qo (L/s) = 2,0009 REY = 6,62E+04					Qo (L/s) = 2,4697			REY = 8,17E+04	
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1240	2,8770				1295	2,9818		
1			0,0993	0,0496	1.			0,1246	0,0504
2			0,0981	0,0490	2			0,1232	0,0499
	1235	2,7255				1290	2,8824		
3			0,1017	0,0508	3			0,1264	0,0512
4			0,1154	0,0577	4			0,1423	0,0576
	1225	2,4227				1275	2,5842		
5			0,1190	0,0595	5			0,1458	0,0590
6			0,1033	0,0516	6			0,1252	0,0507
	1235	2,7255				1290	2,8824		
7			0,1220	0,0610	7			0,1483	0,0600
8			0,1342	0,0671	8			0,1650	0,0668
	1240	2,8770				1295	2,9818		
9			0,1392	0,0696	9			0,1652	0,0669
10			0,1442	0,0721	10			0,1791	0,0725
	1247	3,0890				1310	3,2799		
11			0,1468	0,0734	11			0,1822	0,0738
12			0, <mark>1</mark> 571	0,0785	12			0,1959	0,0793
	1255	3,3312				1317	3,4191		
13			0,1693	0,0846	13			0,2106	0,0853
14			0,1786	0,0892	14			0,2152	0,0871
	1258	3,4221				1325	3,5781		
15			0,1728	0,0864	15			0,2210	0,0895
	1258	3,4221				1325	3,5781		

Qo (L	_/s) = 2,7	577	REY =	9,12E+04	Qo (L/s)	= 2,9923		REY =	9,90E+04
ORIF	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1335	3,0293				1365	2,9793		
1			0,1418	0,0514	1			0,1533	0,0512
2			0,1401	0,0508	2			0,1521	0,0508
	1333	2,9974				1365	2,9793		
3			0,1440	0,0522	3			0,1548	0,0517
4			0, <mark>1</mark> 615	0,0586	4			0,1741	0,0582
	1315	2,7104				1345	2,7084		
5			0,1641	0,0595	5			0,1770	0,0592
6			0,1395	0,0506	6			0,1504	0,0502
	1335	3,0293				1370	3,0470		
7			0,1668	0,0605	7			0,1797	0,0600
8			0,1851	0,0671	8			0,2002	0,0669
	1345	3,1887				1380	3,1824		
9			0,1928	0,0699	9			0,2074	0,0693
10			0,1842	0,0668	10			0,2007	0,0671
		3,3481				1395	3,3855		
11	1355		0,2075	0,0752	11			0,2229	0,0745
12			0,2192	0,0795	12			0,2365	0,0790
	1360	3,4279				1410	3,5887		
13			0,2210	0,0801	13			0,2553	0,0853
14			0,2421	0,0878	14			0,2599	0,0868
	1380	3,7467				1425	3,7918		
15			0,2479	0,0899	15			0,2681	0,0896
	1382	3,7786				1425	3,7918		

TABELA A.24 - (CONTINUAÇÃO)

Qo (L/s) = 3,2498 REY = 1,07E+						
ORIF.	P(mm)	P / hteor.	qi (L/S)	qi / Qo		
	1400	2,9276				
1			0,1664	0,0512		
2			0,1644	0,0506		
	1400	2,9276				
3			0,1677	0,0516		
4			0,1879	0,0578		
	1380	2,6980				
5			0,1921	0,0591		
6			0,1640	0,0505		
	1410	3,0424				
7			0,1921	0,0591		
8			0,2152	0,0662		
	1420	3,1572				
9			0,2195	0,0675		
10			0,2349	0,0723		
	1435	3,3294				
11			0,2382	0,0733		
12			0,2607	0,0802		
	1450	3,5016				
13			0,2780	0,0855		
14			0,2806	0,0864		
	1475	3,7886				
15			0,2881	0,0886		
	1475	3,7886				

122
TABELA A.25 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 38,50mm), DIÂMETRO DO ORIFÍCIO (d = 20,22mm) e 5 ORIFÍCIOS ATIVOS (N = 5)

Qo (L	_/s) = 2,1	079	REY =	6,97E+04	Qo (L/s)	= 2,4334		REY =	8,05E+04
ORIF	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1310	1,8763				1365	1,8772		
1			0,3177	0,1507256	1			0,3658	0,150305
2			0,3565	0,1691266	2			0,4124	0,169494
	1370	2,5586				1450	2,6025		
3			0,4169	0,1977938	3			0,4831	0,198542
4			0,4795	0,2274812	4			0,5561	0,228524
	1410	3,0135				1500	3,0291		
5			0,5372	0,2548552	5			0,6159	0,253119

Qo (l	_/s) = 2,7	516	REY =	9,10E+04	Qo (L/s)	= 2,9866		REY =	9,88E+04
ORIF	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1435	1,9352				1485	1,9259		
1			0,4170	0,1515362	1			0,4542	0,152096
2			0,4702	0,1708884	2			0,5049	0,169057
	1535	2,6025				1610	2,6340		
3			0,5449	0,1980292	3			0,5970	0,19989
4			0,6215	0,2258552	4			0,6790	0,227348
	1605	3,0697				1685	3,0588		
5			0,6981	0,2536895	5			0,7514	0,251594

Qo (L/s)	= 3,5340	REY =	1,17E+05	
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1620	1,9216		
1			0,5366	0,1518459
2			0,5960	0,1686548
	1790	2,6094		
3			0,6962	0,1969869
4			0,8111	0,2295269
	1900	3,0544		
5			0,8940	0,2529807

TABELA A.26 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 38,50mm), DIÂMETRO DO ORIFÍCIO (d = 20,22mm) e 10 ORIFÍCIOS ATIVOS (N = 10)

Qo (L	_/s) = 3,8	3936	REY =	1,29E+05	Qo (L/s)	= 4,4161		REY =	1,46E+05
ORIF	P (mm	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1310	2,1997				1360	2,2281		
1			0,2294	0,0589	1			0,2606	0,0590
2			0,2325	0,0597	2			0,2631	0,0596
	1340	2,5996				1405	2,6944		
3			0,2550	0,0655	3			0,2873	0,0651
4			0,2662	0,0684	4			0,2991	0,0677
	1345	2,6662				1410	2,7462		
5			0,3142	0,0807	5			0,3570	0,0808
6			0,3798	0,0975	6			0,4288	0,0971
	1440	3,9327				1532	4,0105		
7			0,4505	0,1157	7			0,5083	0,1151
8			0,5009	0,1287	8			0,5696	0,1290
	1507	4,8259				1620	4,9225		
9			0,6157	0,1581	9			0,7104	0,1609
10			0,6493	0,1668	10			0,7319	0,1657
	1540	5,2658				1665	5,3888		

Qo (L	./s) = 4,9	631	REY =	1,64E+05	Qo (L/s)	= 5,2375		REY =	1,73E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1415	2,2152				1450	2,2471		
1			0,2891	0,0582	1			0,3036	0,0580
2			0,2932	0,0591	2			0,3110	0,0594
	1460	2,5844				1520	2,7628		
3		1	0,3179	0,0641	3			0,3388	0,0647
4			0,3332	0,0671	4			0,3507	0,0670
	1465	2,6255				1526	2,8070		
5			0,3946	0,0795	5			0,4217	0,0805
6			0,4777	0,0962	6			0,5123	0,0978
	1615	3,8562				1710	4,1626		
7			0,5625	0,1133	7			0,6084	0,1162
8			0,6508	0,1311	8			0,6780	0,1295
	1720	4,7176				1845	5,1572		
9			0,8006	0,1613	9			0,8259	0,1577
10			0,8436	0,1700	10			0,8871	0,1694
	1790	5,2920				1905	5,5992		

Qo (L/s)	= 5,6998		REY =	1,88E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1500	2,2084		
1			0,3360	0,0590
2			0,3431	0,0602
	1580	2,7061		
3			0,3750	0,0658
4			0,3901	0,0684
	1590	2,7683		
5			0,4602	0,0807
6			0,5485	0,0962
	1800	4,0746		
7			0,6696	0,1175
8			0,7363	0,1292
	1960	5,0700		
9			0,8947	0,1570
10			0,9462	0,1660
	2030	5,5054		

TABELA A.26 - (CONTINUAÇÃO)

TABELA A.27 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 38,50mm), DIÂMETRO DO ORIFÍCIO (d = 20,22mm) e 15 ORIFÍCIOS ATIVOS (N = 15)

Qo (L	/s) = 3,7	555	REY =	1,24E+05	Qo (L/s)	= 4,1709		REY =	1,38E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1270	4,0301				1288	3,7379		
1			0,1871	0,0498	1			0,1991	0,0477
2			0,1712	0,0456	2			0,1844	0,0442
	1280	4,3525				1295	3,9208		
3			0,1715	0,0457	3			0,1817	0,0436
4			0,1525	0,0406	4			0,1633	0,0392
	1220	2,4181				1230	2,2218		
5			0,1642	0,0437	5			0,1763	0,0423
6			0,1800	0,0479	6			0,1931	0,0463
	1257	3,6110				1275	3,3980		
7			0,1931	0,0514	7			0,2143	0,0514
8			0,1864	0,0496	8			0,2013	0,0483
	1265	3,8689				1285	3,6594		
9			0,2283	0,0608	9			0,2486	0,0596
10			0,2397	0,0638	10			0,2683	0,0643
	1287	4,5782				1310	4,3129		
11			0,2796	0,0745	11			0,3170	0,0760
12			0,3246	0,0864	12			0,3706	0,0889
	1330	5,9646				1360	5,6198		
13			0,3695	0,0984	13			0,4204	0,1008
14			0,4383	0,1167	14			0,4980	0,1194
	1370	7,2542				1406	6,8222		
15			0,4695	0,1250	15			0,5345	0,1281
	1373	7,3510				1410	6,9268		

Qo (L	√s) = 4,8	186	REY =	1,59E+05	Qo (L/s)	= 5,4391		REY =	1,80E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1345	3,9168				1395	3,8427		
1			0,2283	0,0474	1			0,2544	0,0468
2			0,2122	0,0440	2			0,2388	0,0439
	1348	3,9756				1401	3,9349		
3			0,2088	0,0433	3			0,2361	0,0434
4			0,1853	0,0385	4			0,2090	0,0384
	1260	2,2522				1295	2,3056		
5			0,2000	0,0415	5			0,2216	0,0407
6			0,2200	0,0457	6			0,2473	0,0455
	1325	3,5251				1376	3,5506		
7			0,2354	0,0489	7			0,2621	0,0482
8			0,2252	0,0467	8			0,2526	0,0464
1	1337	3,7601				1397	3,8734		
9			0,2892	0,0600	9			0,3211	0,0590
10			0,3137	0,0651	10			0,3532	0,0649
	1375	4,5043				1443	4,5804		
11			0,3673	0,0762	11			0,4295	0,0790
12			0,4326	0,0898	12			0,5028	0,0924
	1447	5,9144				1535	5,9945		
13			0,4908	0,1019	13			0,5521	0,1015
14			0,5843	0,1213	14			0,6592	0,1212
	1510	7,1482				1615	7,2242		
15			0,6255	0,1298	15			0,6993	0,1286
	1515	7,2461				1623	7,3472		

TABELA A.27 - (CONTINUAÇÃO)

Qo (L/s)	= 5,8900		REY =	1,95E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1435	3,8011		
1			0,2680	0,0455
2			0,2519	0,0428
	1440	3,8667		
3			0,2479	0,0421
4			0,2220	0,0377
	1312	2,1889		
5			0,2389	0,0406
6			0,2634	0,0447
	1410	3,4734		
7			0,2774	0,0471
8			0,2705	0,0459
	1435	3,8011		
9			0,3472	0,0589
10			0,3774	0,0641
	1490	4,5220		
11			0,4523	0,0768
12			0,5345	0,0907
	1600	5,9638		
13			0,6507	0,1105
14			0,7270	0,1234
	1690	7,1435		
15			0,7609	0,1292
	1700	7,2746		

TABELA A.28 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 38,50mm), DIÂMETRO DO ORIFÍCIO (d = 26,20mm) e 5 ORIFÍCIOS ATIVOS (N = 5)

Qo (L	_/s) = 2,5	630	REY =	8,48E+04	Qo (L/s)	= 2,7259		REY =	9,01E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1210	1,4093				1217	1,3801		
1			0,2703	0,1055	1			0,2842	0,1043
2			0,3583	0,1398	2			0,3873	0,1421
	1276	2,8403				1295	2,8751		
3			0,4945	0,1929	3			0,5286	0,1939
4			0,6693	0,2611	4			0,7095	0,2603
	1350	4,4447				1380	4,5043		
5			0,7706	0,3007	5			0,8163	0,2995

Qo (L	_/s) = 3,2	703	REY =	1,08E+05	Qo (L/s)	= 3,6841		REY =	1,22E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1250	1,3983				1278	1,3956		
1			0,3478	0,1064	1			0,3892	0,1056
2			0,4673	0,1429	2			0,5249	0,1425
	1355	2,7966				1430	2,9906		
3			0,6329	0,1935	3			0,7116	0,1932
4			0,8415	0,2573	4			0,9556	0,2594
	1490	4,5944				1590	4,6696		
5			0,9808	0,2999	5			1,1028	0,2993

Qo (L/s)	= 3,9223		REY =	1,30E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1295	1,389		
1			0,4161	0,1061
2			0,5670	0,1446
	1465	2,962		
3			0,7637	0,1947
4			1,0079	0,2570
	1640	4,583		
5			1,1676	0,2977

TABELA A.29 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 38,50mm), DIÂMETRO DO ORIFÍCIO (d = 26,20mm) e 10 ORIFÍCIOS ATIVOS (N = 10)

Qo (l	_/s) = 3,0	459	REY =	1,01E+05	Qo (L/s)) = 4,1061		REY =	1,36E+05
ORIF	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P(mm)	P / hteor.	qi (L/S)	qi / Qo
	1185	2,4562				1210	2,1963		
1			0,1511	0,0496	1			0,2038	0,0496
2			0,1408	0,0462	2			0,1995	0,0486
	1185	2,4562				1222	2,6018		
3			0,1387	0,0455	3			0,1925	0,0469
4			0,1625	0,0534	4			0,2187	0,0533
	1160	0,9211				1185	1,3516		
5			0,1819	0,0597	5			0,2477	0,0603
6			0,2480	0,0814	6			0,3323	0,0809
	1210	3,9914				1280	4,5616		
7			0,3411	0,1120	7			0,4549	0,1108
8			0,4364	0,1433	8			0,5894	0,1435
	1250	6,4477				1370	7,6027		
9			0,5523	0,1813	9			0,7507	0,1828
10			0,6931	0,2276	10			0,9166	0,2232
	1295	9,2109				1440	9,9680		

Qo (l	_/s) = 4,3	3505	REY =	1,44E+05	Qo (L/s)) = 4,6967		REY =	1,55E+05
ORIF	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1212	2,0167				1223	2,0144		
1			0,2126	0,0489	1			0,2302	0,0490
2			0,2102	0,0483	2			0,2196	0,0468
	1227	2,4682				1245	2,5826		
3			0,2018	0,0464	3			0,2181	0,0464
4			0,2285	0,0525	4			0,2493	0,0531
	1188	1,2943				1200	1,4204		
5			0,2665	0,0613	5			0,2821	0,0601
6			0,3426	0,0787	6			0,3750	0,0798
	1290	4,3645				1322	4,5712		
7			0,4914	0,1130	7			0,5163	0,1099
8			0,6115	0,1406	8			0,6713	0,1429
	1390	7,3745				1451	7,9028		
9			0,7946	0,1826	9			0,8585	0,1828
10			0,9908	0,2277	10			1,0763	0,2292
	1470	9,7825				1535	10,0722		

Qo (L/s)	= 5,1704		REY =	1,71E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1235	1,9180		
1			0,2499	0,0483
2			0,2412	0,0467
	1265	2,5573		
3			0,2402	0,0465
4			0,2740	0,0530
	1211	1,4065		
5			0,3133	0,0606
6			0,4232	0,0819
	1360	4,5818		
7			0,5674	0,1097
8			0,7355	0,1423
	1530	8,2046		
9			0,9438	0,1825
10			1,1819	0,2286
	1617	10,0586		

TABELA A.29 - (CONTINUAÇÃO)

TABELA A.30 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 38,50mm), DIÂMETRO DO ORIFÍCIO (d = 26,20mm) e 15 ORIFÍCIOS ATIVOS (N = 15)

Qo (L	./s) = 5,1	337	REY =	1,70E+05	Qo (L/s)	= 5,6742		REY =	1,88E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1235	4,3773				1257	4,4590		
1			0,2400	0,0467	1			0,2621	0,0462
2			0,2220	0,0432	2			0,2441	0,0430
	1250	5,1069				1225	3,9812		
3			0,2059	0,0401	3			0,2272	0,0400
4			0,2104	0,0410	4			0,2295	0,0404
	1105	0,7296				1160	0,5972		
5			0,1965	0,0383	5			0,2137	0,0377
6			0,2077	0,0405	6			0,2253	0,0397
	1217	3,5018				1235	3,5831		
7			0,2214	0,0431	7			0,2441	0,0430
8			0,2131	0,0415	8			0,2259	0,0398
	1215	3,4046				1242	3,8618		
9			0,2196	0,0428	9			0,2409	0,0425
10			0,2619	0,0510	10			0,2887	0,0509
	1245	4,8637				1273	5,0960		
11			0,3239	0,0631	11			0,3597	0,0634
12			0,4389	0,0855	12			0,4914	0,0866
	1320	8,5114				1370	8,9578		
13			0,5607	0,1092	13			0,6229	0,1098
14			0,7422	0,1446	14			0,8123	0,1432
	1422	13,4724				1500	14,1333		
15			0,8695	0,1694	15			0,9864	0,1738
	1435	14,1047				1515	14,7305		

1	3	0

Qo (L	/s) = 5,7	9687	REY =	1,92E+05	Qo (L/s)	= 5,8738		REY =	1,94E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1265	4,5775				1277	4,9041		
1			0,2665	0,0460	1			0,2715	0,0462
2			0,2502	0,0432	2			0,2531	0,0431
	1280	5,1497				1283	5,1270		
3			0,2322	0,0401	3			0,2354	0,0401
4			0,2342	0,0404	4			0,2371	0,0404
	1160	0,5722				1160	0,5573		
5			0,2167	0,0374	5			0,2196	0,0374
6			0,2291	0,0395	6			0,2342	0,0399
	1240	3,6239				1245	3,7152		
7			0,2483	0,0428	7			0,2463	0,0419
8			0,2334	0,0403	8			0,2356	0,0401
	1245	3,8146				1249	3,8639		
9			0,2454	0,0423	9			0,2465	0,0420
10			0,2931	0,0506	10			0,2949	0,0502
	1276	4,9971				1280	5,0156		
11			0,3612	0,0623	11			0,3661	0,0623
12			0,4946	0,0853	12			0,5024	0,0855
	1378	8,8880				1385	8,9166		
13			0,6308	0,1088	13			0,6445	0,1097
14			0,8430	0,1454	14			0,8569	0,1459
	1515	14,1140				1525	14,1179		
15			1,0181	0,1756	15			1,0297	0,1753
	1530	14,6862				1540	14,6752		

TABELA A.30 - (CONTINUAÇÃO)

Qo (L/s)	= 7,2715		REY =	2,41E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1307	3,9273		
1			0,3281	0,0451
2			0,3043	0,0418
	1345	4,8485		
3			0,2827	0,0389
4			0,2841	0,0391
	1165	0,4849		
5			0,2624	0,0361
6			0,2773	0,0381
	1290	3,5152		
7			0,2933	0,0403
8			0,2889	0,0397
	1296	3,6606		
9			0,2987	0,0411
10			0,3616	0,0497
	1355	5,0909		
11		-	0,4537	0,0624
12			0,6129	0,0843
	1516	8,9940		
13			0,7842	0,1078
14			1,1625	0,1599
	1730	14,1819		
15			1,2766	0,1756
	1750	14,6667		

TABELA A.31 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 26,00mm), DIÂMETRO DO ORIFÍCIO (d = 05,30mm) e 5 ORIFÍCIOS ATIVOS (N = 5)

Qo (L	_/s) = 0,2	340	REY =	1,14E+04	Qo (L/s)	= 0,2802		REY =	1,37E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1805	2,8806				2110	2,9313		
1			0,0456	0,1951	1			0,0544	0,1942
2			0,0457	0,1957	2			0,0556	0,1985
	1805	2,8806				2110	2,9313		
3			0,0466	0,1993	3			0,0557	0,1988
4			0,0495	0,2117	4			0,0594	0,2118
	1805	2,8806				2110	2,9313		
5			0,0463	0,1982	5			0,0551	0,1966

Qo (l	_/s) = 0,3	480	REY =	1,70E+04	Qo (L/s)	= 0,3689		REY =	1,81E+04
ORIF	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	2660	2,9909				2880	3,0399		
1			0,0681	0,1959	1			0,0722	0,1956
2			0,0694	0,1996	2			0,0736	0,1996
	2660	2,9909				2880	3,0399		
3			0,0685	0,1972	3			0,0734	0,1991
4			0,0736	0,2118	4			0,0764	0,2071
	2660	2,9909				2880	3,0399		
5			0,0680	0,1955	5			0,0733	0,1986

Qo (L/s)	= 0,4032		REY =	1,97E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	3210	3,0300		
1			0,0787	0,1952
2			.0,0798	0,1979
	3215	3,0374		
3			0,0802	0,1989
4			0,0852	0,2114
	3220	3,0447		
5			0,0792	0,1965

TABELA A.32 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 26,00mm), DIÂMETRO DO ORIFÍCIO (d = 05,30mm) e 10 ORIFÍCIOS ATIVOS (N = 10)

Qo (L	_/s) = 0,3	459	REY =	1,69E+04	Qo (L/s)	= 0,5073		REY =	2,48E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1490	2,7508				1940	2,9467		
1			0,0320	0,0926	1			0,0483	0,0952
2			0,0321	0,0927	2			0,0481	0,0949
	1490	2,7508				1940	2,9467		
3			0,0330	0,0953	3			0,0503	0,0991
4			0,0340	0,0982	4			0,0504	0,0994
- 1	1490	2,7508				1940	2,9467		
5			0,0337	0,0973	5			0,0490	0,0966
6			0,0353	0,1021	6			0,0508	0,1001
	1490	2,7508				1940	2,9467		
7			0,0363	0,1051	7			0,0516	0,1018
8			0,0378	0,1092	8			0,0548	0,1080
	1490	2,7508				1940	2,9467		
9			0,0358	0,1035	9			0,0521	0,1028
10			0,0360	0,1040	10			0,0519	0,1024
	1490	2,7508				1940	2,9467		

Qo (L	_/s) = 0,5	776	REY =	2,83E+04	Qo (L/s)	= 0,6600		REY =	3,23E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	2200	3,0165				2510	2,9894		
1			0,0550	0,0953	1			0,0630	0,0955
2			0,0552	0,0956	2			0,0634	0,0960
	2200	3,0165				2510	2,9894		
3			0,0573	0,0992	3			0,0662	0,1002
4			0,0571	0,0988	4			0,0649	0,0984
	2200	3,0165				2510	2,9894		
5			0,0555	0,0962	5			0,0642	0,0972
6			0,0581	0,1006	6			0,0660	0,1001
	2200	3,0165				2510	2,9894		
7			0,0587	0,1016	7			0,0672	0,1019
8			0,0622	0,1077	8			0,0715	0,1083
	2200	3,0165				2510	2,9894		
9			0,0595	0,1030	9			0,0670	0,1015
10			0,0590	0,1021	10			0,0666	0,1009
	2200	3,0165				2515	3,0004		

Qo (L/s)	= 0,7109		REY =	3,48E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	2755	3,0392		
1			0,0682	0,0959
2			0,0683	0,0961
	2755	3,0392		
3			0,0708	0,0996
4			0,0700	0,0985
	2755	3,0392		
5			0,0690	0,0971
6			0,0713	0,1002
	2755	3,0392		
7			0,0723	0,1017
8			0,0766	0,1078
	2755	3,0392		
9			0,0720	0,1013
10			0,0723	0,1017
	2760	3,0487		

TABELA A.32 - (CONTINUAÇÃO)

TABELA A.33 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 26,00mm), DIÂMETRO DO ORIFÍCIO (d = 05,30mm) e 15 ORIFÍCIOS ATIVOS (N = 15)

Qo (L	./s) = 0,6	029	REY =	2,95E+04	Qo (L/s)	= 0,6720		REY =	3,29E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1710	3,3364				1820	3,2086		
1			0,0396	0,0657	1			0,0423	0,0630
2			0,0388	0,0643	2			0,0422	0,0628
	1695	3,2478				1800	3,1135	5	
3			0,0404	0,0671	3			0,0441	0,0657
4			0,0398	0,0660	4			0,0432	0,0642
	1685	3,1888				1785	3,0422		
5			0,0394	0,0653	5			0,0427	0,0636
6			0,0414	0,0686	6			0,0440	0,0654
	1675	3,1297				1780	3,0185		
7			0,0423	0,0702	7			0,0424	0,0631
8			0,0392	0,0650	8			0,0475	0,0707
	1670	3,1002				1770	2,9709		
9			0,0387	0,0642	9			0,0456	0,0679
10			0,0401	0,0665	10			0,0457	0,0680
	1670	3,1002				1770	2,9709		
11			0,0400	0,0663	11			0,0454	0,0675
12			0,0387	0,0641	12			0,0445	0,0662
	1670	3,1002				1770	2,9709		
13			0,0450	0,0747	13			0,0516	0,0768
14			0,0395	0,0656	14			0,0453	0,0673
	1670	3,1002				1770	2,9709		
15			0,0401	0,0664	15			0,0455	0,0677
	1670	3,1002				1770	2,9709		

Qo (L	/s) = 0,8	538	REY =	4,18E+04	Qo (L/s)	= 1,0021		REY =	4,91E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	2255	3,2684				2680	3,2809		
1			0,0535	0,0627	1			0,0633	0,0631
2			0,0531	0,0622	2			0,0631	0,0630
	2225	3,1801				2640	3,1954		
3			0,0556	0,0651	3			0,0659	0,0657
4			0,0541	0,0633	4			0,0638	0,0637
	2200	3,1065				2610	3,1313		
5			0,0539	0,0632	5			0,0640	0,0638
6			0,0563	0,0660	6			0,0659	0,0657
	2195	3,0918				2605	3,1206		
7			0,0575	0,0673	7			0,0673	0,0672
8			0,0595	0,0696	8			0,0694	0,0693
	2190	3,0770				2605	3,1206		
9			0,0577	0,0676	9			0,0675	0,0673
10			0,0575	0,0673	10			0,0673	0,0672
	2190	3,0770				2605	3,1206		
11			0,0575	0,0674	11			0,0662	0,0661
12			0,0568	0,0666	12			0,0666	0,0665
	2190	3,0770				2605	3,1206		
13			0,0658	0,0771	13			0,0772	0,0770
14			0,0576	0,0674	14			0,0677	0,0676
	2190	3,0770				2605	3,1206		
15			0,0574	0,0672	15		10	0,0669	0,0668
	2190	3,0770				2605	3,1206		

TABELA A.33 - (CONTINUAÇÃO)

Qo (L/s)	= 1,0850		REY =	5,31E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	2965	3,3184		
1			0,0687	0,0633
2			0,0681	0,0628
	2920	3,2364		
3			0,0708	0,0653
4			0,0690	0,0636
	2885	3,1725		
5			0,0690	0,0636
6			0,0714	0,0658
	2880	3,1634		
7			0,0722	0,0665
8			0,0750	0,0691
	2880	3,1634		
9			0,0733	0,0675
10			0,0715	0,0659
	2880	3,1634		
11			0,0743	0,0685
12			0,0724	0,0667
	2880	3,1634		
13			0,0817	0,0753
14			0,0741	0,0683
	2880	3,1634		
15			0,0735	0,0677
	2880	3,1634		

TABELA A.34 - MEDIDAS DE DISTRIBUIÇAO DE PRESSAO E DE VAZAO REALIZADAS NO LABORATORIO PARA DIAMETRO DO TUBO (D = 26,00mm), DIAMETRO DO ORIFICIO (d = 10,35mm) e 5 ORIFICIOS ATIVOS (N = 5)

Qo (L	_/s) =0,51	153	REY =	2,52E+04	Qo (L/s)	= 0,5779		REY =	2,83E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1350	2,6778				1420	2,8557		
1			0,0920	0,1785	1			0,1026	0,1776
2			0,0954	0,1851	2			0,1084	0,1876
	1357	2,7692				1430	2,9595		
3			0,1045	0,2029	3			0,1169	0,2022
4			0,1104	0,2142	4			0,1230	0,2128
	1365	2,8737				1440	3,0634		
5			0,1130	0,2193	5			0,1270	0,2198

Qo (L	_/s) = 0,7	343	REY =	3,60E+04	Qo (L/s)	= 0,9014		REY =	4,41E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1630	3,1202				1835	2,9454		
1			0,1321	0,1800	1			0,1665	0,1847
2			0,1384	0,1884	2			0,1715	0,1903
	1650	3,2488				1860	3,0521		
3			0,1487	0,2026	3			0,1817	0,2016
4			0,1536	0,2091	4			0,1879	0,2084
	1660	3,3132				1885	3,1588		
5			0,1615	0,2199	5			0,1939	0,2151

Qo (L/s)	= 1,0150		REY =	4,97E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	2010	2,9122		
1			0,1892	0,1864
2			0,1942	0,1913
	2050	3,0469		
3			0,2074	0,2043
4			0,2086	0,2055
	2075	3,1311		
5			0,2157	0,2125

TABELA A.35 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 26,00mm), DIÂMETRO DO ORIFÍCIO (d = 10,35mm) e 10 ORIFÍCIOS ATIVOS (N = 10)

Qo (L	_/s) = 0,8	348	REY =	4,09E+04	Qo (L/s)) = 1,0662		REY =	5,22E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1335	3,7826				1427	3,4418		
1			0,0692	0,0829	1			0,0883	0,0828
2			0,0677	0,0811	2			0,0880	0,0826
	1315	3,3845				1405	3,1733		
3			0,0722	0,0865	3			0,0903	0,0847
4			0,0758	0,0908	4			0,0959	0,0900
	1310	3,2849				1395	3,0512		
5			0,0828	0,0992	5			0,1006	0,0944
6			0,0886	0,1061	6			0,1088	0,1020
	1320	3,4840				1407	3,1977		
7			0,0937	0,1123	7			0,1142	0,1071
8			0,0987	0,1183	8			0,1194	0,1120
	1325	3,5835				1415	3,2953		
9			0,1073	0,1285	9			0,1308	0,1226
10			0,1016	0,1217	10			0,1299	0,1219
	1330	3,6831				1420	3,3563		

Qo (L	/s) = 1,6	508	REY =	8,08E+04	Qo (L/s)	= 1,7081		REY =	8,36E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1920	3,9456				1965	3,8993		
1			0,1367	0,0828	1			0,1418	0,0830
2			0,1379	0,0835	2			0,1446	0,0847
	1880	3,7419				1930	3,7329		
3			0,1430	0,0866	3			0,1483	0,0868
4			0,1472	0,0891	4			0,1537	0,0900
	1850	3,5892				1900	3,5902		
5			0,1579	0,0957	5			0,1634	0,0957
6			0,1675	0,1015	6			0,1692	0,0990
	1895	3,8183				1950	3,8280		
7			0,1732	0,1049	7			0,1788	0,1047
8			0,1867	0,1131	8			0,1928	0,1128
	1920	3,9456				1980	3,9707		
9			0,1992	0,1207	9			0,2062	0,1207
10			0,2015	0,1221	10			0,2095	0,1226
	1935	4,0219				1990	4,0182		

Qo (L/s)	= 1,8245		REY =	8,93E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	2080	3,8969		
1			0,1513	0,0829
2			0,1517	0,0832
	2040	3,7302		
3			0,1577	0,0865
4			0,1632	0,0894
	2005	3,5843		
5			0,1739	0,0953
6			0,1816	0,0995
	2065	3,8344		
7			0,1937	0,1062
8			0,2049	0,1123
	2100	3,9803		
9			0,2203	0,1208
10			0,2263	0,1240
	2115	4,0428		

TABELA A.35 - (CONTINUAÇÃO)

TABELA A.36 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 26,00mm), DIÂMETRO DO ORIFÍCIO (d = 10,35mm) e 15 ORIFÍCIOS ATIVOS (N = 15)

Qo (L	/s) = 0,9	24	REY =	4,53E+04	Qo (L/s)	= 1,0098		REY =	4,95E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1300	5,6669				1340	5,9693		
1			0,0542	0,0586	1			0,0606	0,0600
2			0,0523	0,0566	2			0,0588	0,0583
	1265	4,3873				1300	4,7448		
3			0,0526	0,0569	3			0,0589	0,0584
4			0,0533	0,0576	4			0,0571	0,0566
	1235	3,2905				1265	3,6734		
5			0,0562	0,0608	5			0,0597	0,0591
6			0,0579	0,0627	6			0,0619	0,0613
	1230	3,1077				1260	3,5204		
7			0,0593	0,0641	7			0,0629	0,0623
8			0,0603	0,0652	8			0,0647	0,0640
	1225	2,9249				1250	3,2142		
9			0,0624	0,0676	9			0,0676	0,0669
10			0,0632	0,0684	10			0,0690	0,0684
	1225	2,9249				1250	3,2142		
11			0,0624	0,0675	11			0,0693	0,0686
12			0,0670	0,0725	12			0,0739	0,0732
	1225	2,9249				1260	3,5204		
13			0,0691	0,0748	13			0,0767	0,0760
14			0,0760	0,0822	14			0,0828	0,0820
	1225	2,9249				1260	3,5204		
15			0,0781	0,0845	15			0,0858	0,0850
	1225	2,9249				1260	3,5204		

Qo (L	/s) = 1,3	843	REY =	6,78E+04	Qo (L/s)	= 1,6338		REY =	8,00E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1510	5,9457				1650	5,9055		
1			0,0829	0,0599	1			0,0964	0,0590
2			0,0805	0,0582	2			0,0978	0,0599
	1450	4,9683				1575	5,0284		
3			0,0796	0,0575	3			0,0981	0,0600
4			0,0781	0,0564	4			0,0927	0,0568
	1383	3,8769				1485	3,9760		
5			0,0807	0,0583	5			0,0932	0,0571
6			0,0819	0,0591	6			0,0962	0,0589
	1380	3,8280				1485	3,9760		
7			0,0810	0,0585	7			0,0945	0,0579
8			0,0848	0,0613	8			0,0985	0,0603
	1365	3,5837				1470	3,8005		
9			0,0922	0,0666	9			0,1043	0,0638
10			0,0970	0,0701	10			0,1104	0,0676
	1365	3,5837				1470	3,8005		
11			0,0960	0,0694	11			0,1145	0,0701
12			0,1057	0,0764	12			0,1267	0,0776
	1375	3,7466				1485	3,9760		
13			0,1079	0,0780	13			0,1288	0,0789
14			0,1183	0,0854	14			0,1396	0,0854
	1390	3,9909				1500	4,1514		
15			0,1177	0,0850	15			0,1420	0,0869
	1390	3,9909				1500	4,1514		

TABELA A.36 - (CONTINUAÇÃO)

Qo (L/s)	= 1,8816	REY =	9,21E+04	
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1830	6,0398		
1			0,1138	0,0605
2			0,1109	0,0589
	1730	5,1581		
3			0,1095	0,0582
4			0,1069	0,0568
	1615	4,1441		
5			0,1084	0,0576
6			0,1091	0,0580
	1620	4,1882		
7			0,1084	0,0576
8			0,1124	0,0597
	1600	4,0118		
9			0,1190	0,0632
10			0,1293	0,0687
	1600	4,0118		
11			0,1340	0,0712
12			0,1444	0,0767
	1630	4,2764		
13			0,1487	0,0790
14			0,1626	0,0864
	1645	4,4086		
15			0,1644	0,0874
	1645	4,4086		

TABELA A.37 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 26,00mm), DIÂMETRO DO ORIFÍCIO (d = 14,63mm) e 5 ORIFÍCIOS ATIVOS (N = 5)

Qo (L	/s) = 0,5	888	REY =	2,88E+04	Qo (L/s)	= 0,8452		REY =	4,14E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1210	2,5962				1295	2,9076		
1		Ì	0,0797	0,1354	1			0,1161	0,1374
2			0,0915	0,1554	2			0,1360	0,1609
	1215	2,7959				1310	3,1983		
3			0,1144	0,1943	3			0,1687	0,1996
4	ĺ		0,1375	0,2335	4			0,1956	0,2314
	1225	3,1953				1335	3,6829		
5			0,1657	0,2814	5			0,2288	0,2707

Qo (L/s) = 0,9705 REY = 4,75E+04					Qo (L/s)	= 1,1632		REY =	5,70E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1345	2,9403				1435	2,9679		
1			0,1433	0,1477	1			0,1736	0,1492
2			0,1577	0,1625	2			0,1900	0,1633
	1363	3,2049				1470	3,3261		
3			0,1923	0,1981	3			0,2311	0,1987
4			0,2206	0,2273	4			0,2647	0,2276
	1397	3,7048				1520	3,8378		
5			0,2566	0,2644	5			0,3038	0,2612

Qo (L/s)	REY =	6,07E+04		
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1475	2,9742		
1			0,1847	0,1490
2			0,2050	0,1654
	1515	3,3348		
3			0,2469	0,1992
4			0,2807	0,2265
	1570	3,8305		
5			0,3222	0,2599

TABELA A.38 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 26,00mm), DIÂMETRO DO ORIFÍCIO (d = 14,63mm) e 10 ORIFÍCIOS ATIVOS (N = 10)

Qo (L	/s) = 1,2	2549	REY =	6,15E+04	Qo (L/s)	= 1,5062		REY =	7,38E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1307	5,6979				1380	5,7374		
1			0,0863	0,0688	1			0,1037	0,0688
2			0,0811	0,0646	2			0,0988	0,0656
	1260	4,0448				1325	4,3946		
3			0,0850	0,0677	3			0,1038	0,0689
4			0,0960	0,0765	4			0,1157	0,0768
	1243	3,4469				1305	3,9063		
5			0,1017	0,0810	5			0,1209	0,0803
6			0,1200	0,0956	6			0,1425	0,0946
	1248	3,6227				1315	4,1505		
7			0,1371	0,1093	7			0,1638	0,1088
8			0,1672	0,1332	8			0,2008	0,1333
	1270	4,3965				1345	4,8829		
9			0,1848	0,1473	9			0,2204	0,1463
10			0,1957	0,1559	10			0,2358	0,1566
	1280	4,7482				1365	5,3712		

Qo (L	Js) = 1,7	088	REY =	8,37E+04	Qo (L/s)	= 1,9385		REY =	9,49E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
4	1450	5,7854				1540	5,8223		
1			0,1173	0,0686	1			0,1332	0,0687
2			0,1132	0,0662	2			0,1295	0,0668
	1380	4,4576				1455	4,5694		
3			0,1184	0,0693	3			0,1351	0,0697
4			0,1330	0,0778	4			0,1483	0,0765
	1360	4,0782				1432	4,2304		
5			0,1370	0,0802	5			0,1548	0,0799
6			0,1605	0,0939	6			0,1834	0,0946
	1375	4,3628				1455	4,5694		
7			0,1843	0,1079	7			0,2100	0,1083
8			0,2262	0,1324	8			0,2564	0,1323
	1417	5,1594				1510	5,3801		
9			0,2502	0,1464	9			0,2823	0,1456
10			0,2687	0,1572	10			0,3055	0,1576
	1440	5,5957				1540	5,8223		

Qo (L/s)	Qo (L/s) 2,0969 REY = 1,03E+05									
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo						
	1600	5,7315								
1			0,1451	0,0692						
2			0,1404	0,0670						
	1510	4,5978								
3			0,1464	0,0698						
4			0,1603	0,0764						
	1485	4,2829								
5			0,1672	0,0797						
6			0,1957	0,0933						
	1510	4,5978								
7			0,2257	0,1076						
8			0,2764	0,1318						
	1580	5,4796								
9			0,3088	0,1473						
10			0,3309	0,1578						
	1602	5,7567								

TABELA A.38 - (CONTINUAÇÃO)

TABELA A.39 - MEDIDAS DE DISTRIBUIÇÃO DE PRESSÃO E DE VAZÃO REALIZADAS NO LABORATÓRIO PARA DIÂMETRO DO TUBO (D = 26,00mm), DIÂMETRO DO ORIFÍCIO (d = 14,63mm) e 15 ORIFÍCIOS ATIVOS (N = 15)

Qo (L	Js) = 1,4	407	REY =	7,06E+04	Qo (L/s)	= 1,6220		REY =	7,94E+04
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1350	12,3085				1400	12,0792		
1			0,0920	0,0639	1			0,1017	0,0627
2			0,0816	0,0566	2			0,0918	0,0566
	1280	8,1056				1320	8,2896		
3			0,0795	0,0552	3			0,0906	0,0559
4			0,0859	0,0596	4			0,0958	0,0591
	1240	5,7039				1270	5,9212		
5			0,0754	0,0523	5			0,0841	0,0518
6			0,0838	0,0582	6			0,0915	0,0564
	1210	3,9027				1235	4,2632		
7			0,0857	0,0595	7			0,0929	0,0573
8			0,0919	0,0638	8			0,1005	0,0620
	1200	3,3023				1225	3,7895		
9			0,0834	0,0579	9			0,0909	0,0560
10			0,0880	0,0611	10			0,0982	0,0605
	1200	3,3023				1225	3,7895		
11			0,0866	0,0601	11			0,0989	0,0610
12			0,0975	0,0677	12			0,1130	0,0697
	1210	3,9027				1235	4,2632		
13			0,1155	0,0802	13			0,1322	0,0815
14			0,1345	0,0934	14			0,1600	0,0986
	1225	4,8033				1255	5,2106		
15			0,1594	0,1106	15			0,1799	0,1109
	1225	4,8033				1245	4,7369		

Qo (L	./s) = 1,8	486	REY =	9,05E+04	Qo (L/s)	= 2,0626		REY =	1,01E+05
ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo	ORIF.	P (mm)	P / hteor.	qi (L/S)	qi / Qo
	1480	12,2168				1560	12,1567		
1			0,1151	0,0623	1			0,1284	0,0623
2			0,1052	0,0569	2			0,1176	0,0570
	1380	8,5699				1440	8,6415		
3			0,1023	0,0553	3			0,1138	0,0552
4			0,1077	0,0583	4			0,1200	0,0582
	1320	6,3819				1360	6,2981		
5			0,0948	0,0513	5			0,1030	0,0499
6			0,1026	0,0555	6			0,1113	0,0540
	1275	4,7408				1315	4,9799		
7			0,1038	0,0562	7			0,1128	0,0547
8			0,1122	0,0607	8			0,1222	0,0592
	1260	4,1938				1295	4,3940		
9			0,1025	0,0554	9			0,1119	0,0543
10			0,1129	0,0611	10			0,1290	0,0625
	1260	4,1938				1295	4,3940		
11			0,1152	0,0623	11			0,1290	0,0625
12			0,1345	0,0728	12			0,1520	0,0737
	1272	4,6314				1315	4,9799		
13			0,1553	0,0840	13			0,1774	0,0860
14			0,1774	0,0960	14			0,2013	0,0976
	1300	5,6525				1350	6,0051		
15			0,2071	0,1120	15			0,2329	0,1129
	1290	5,2879				1340	5,7122		

TABELA A.39 - (CONTINUAÇÃO)

Qo (L/s)	= 2,1901	REY =	1,07E+05	
ORIF.	P(mm)	P / hteor.	qi (L/S)	qi / Qo
	1615	12,2115		
1			0,1353	0,0618
2			0,1228	0,0561
	1480	8,7039		
3			0,1196	0,0546
4			0,1262	0,0576
	1400	6,6254		
5			0,1088	0,0497
6			0,1172	0,0535
	1340	5,0665		
7			0,1182	0,0540
8			0,1302	0,0594
	1315	4,4169		
9			0,1171	0,0535
10			0,1377	0,0629
	1315	4,4169		
11			0,1360	0,0621
12			0,1614	0,0737
	1335	4,9366		
13			0,1890	0,0863
14			0,2224	0,1015
	1380	6,1057		
15			0,2482	0,1133
	1383	6,1837		

APÊNDICE "<u>B</u>"

MODELOS TEÓRICOS UTILIZADOS PARA COMPARAÇÃO COM OS DADOS EXPERIMENTAIS

Os dados de vazão obtidos em laboratório foram comparados com o modelo Hudson (qi / Qo Hudson) e com o modelo levando em consideração o efeito de contração proposto por Chaudhry e Cardona (qi / Qo contração).

1) MODELO PROPOSTO POR HUDSON

HUDSON et. al. (1980) analisaram ao dados de perda de carga Δ Hi na entrada às laterais observados por diversos pesquisadores e verificam que a relação a seguir melhor descrevia tais dados:

$$\underline{\Delta H_{i}}_{2g} = \phi \quad (V_{m} / V_{li})^{2} + \theta \qquad (B.1)$$

$$\underline{V_{li}}_{2g}^{2}$$

Onde $\phi \in \theta$ dependem do tipo das saída lateral. Para laterais de comprimento maior que três diâmetros chamadas laterais compridas, os valores $\phi \in \theta$ segundo os autores são (0.4; 0.9) e para laterais curtas os valores são (0.7; 1.5). Os termos V_m e V_{li} referem-se às velocidades médias no tubo principal e saídas laterais respectivamente.

O modelo proposto por HUDSON et. al. Supõe que a perda total de energia Δ H no escoamento do manifold para lateral é a mesma em todas as saídas ou seja:

Introduzindo ($V_{li} = qi / a$) e ($V_m = Q_{i-1} / A$), onde "a" e "A" são respectivamente áreas das laterais individuais e do tubo principal, e substituindo a equação (B.1) na equação (B.2) tem-se :

$$\Delta H = K_1 Q_{i-1}^2 + K_2 q_i^2$$
 (B.3)

sendo:

$$K_1 = \phi / 2 g A^2 \qquad (B.4)$$

$$K_2 = (1 + \theta) / 2 g a^2$$
 (B.5)

A equação de continuidade em qualquer nó pode ser expressa como:

$$q_i = Q_{i-1} - Q_i$$
 $i = 1, 2, 3, \dots, N$ (B.6)

As equações (B.3) e (B.6) constituem a formulação dada por CHAUDHRY e REIS (1986).

A substituição da equação (B.6) na equação (B.3) fornece a equação de diferenças,

$$\Delta H = K_1 Q_{i-1}^2 + K_2 (Q_{i-1} - Q_i)^2 \qquad i = 1, 2, ..., N \qquad (B.7)$$

sujeita às condições de contorno a seguir:

$$Q_{\rm N} = 0$$
 (B.9)

O conjunto de N equações não-lineares representado pela equação (B.7) deve ser resolvido para determinar N desconhecidos, ou seja, Q₁, Q₂, ..., Q_{N-1} e Δ H. A equação (B.7) junto com as condições (B.8) e (B.9) foi adimensionalizada e expressa em forma das seguintes relações de recorrência: (Kr = K₁ / K₂)

Progressiva:

$$Q_{i}^{i} = Q_{i-1}^{i} - (\Delta H^{i} - Kr \ Q_{i-1}^{2})^{1/2}$$
 $i = 1, 2,, N$ (B.10)
 $Kr = K_{1} / K_{2}$

146

Regressiva:

$$Q'_{i-1} = (Kr + 1)^{-1}Q'_{i} + ((Kr + 1)^{-1}\Delta H' - Kr(Kr + 1)^{-2}Q'_{i}^{2})^{1/2} (B.11)$$

i=1, 2,, N

Sujeitas às condições;

$$Q'_{N} = 0$$
 (B.13)

Nestas equações definem-se os parâmetros adimensionais da seguinte forma:

$$\Delta H' = \underline{\Delta H}_{K_2 O^2 o}; \qquad Q_i = Q_i / Q_0; \quad Kr = K_1 / K_2 \quad (B.14)$$

A solução universal expressa em forma de:

$$\Delta H' = F(Kr, N)$$
(B.15)

Utilizando a relação progressiva da equação (B.10) e a equação de continuidade no nós (B.6), gerou-se distribuição de vazões ao longo do manifolds. (qi / Qo Hudson).

147

2) MODELO PROPOSTO POR CHAUDHRY e CARDONA

CHAUDHRY e CARDONA (1986), Reformularam a expressão, para a perda de carga total na equação (B.2) no que diz respeito ao termo relativo à carga cinética expressa como ($V_{li}^2 / 2g$), onde V_{li} é a velocidade média e não a velocidade real, VC, velocidade do jato contraído, permitindo rescrever a equação (B.2) como:

$$\Delta H = \Delta H_i + \frac{VC_i^2}{2g}$$
 $i = 1, 2, 3, ..., N$ (B.16)

Introduzindo o coeficiente de contração do jato $CC_{\rm i}$, pode expressar $V_{\rm li}$ como:

$$V_{li} = CC_i VC_i$$
 $i = 1, 2, 3, ..., N$ (B.17)

Cuja substituição na equação (B.16) fornece

$$\Delta H = \Delta H_{i} + \frac{1}{CC_{i}^{2}} \frac{V_{li}^{2}}{2g} \qquad i = 1, 2, 3, ..., N \qquad (B.18)$$

Efetuando a substituição da equação (B.1) e das definições de V_m e V_{li} na equação (B.18), tem-se:

$$\Delta H = (\phi / 2 g A^2) Q_{i-1}^2 + (\theta / 2 g a^2) [1 + (1 / \theta CC_i^2)] q_i^2 \qquad (B.19)$$

Definindo

$$K_2' = \theta / 2 g a^2$$
 (B.20)

e

$$P_{i} = 1 + (1/\theta CC_{i}^{2})$$
 (B.21)

a equação equivalente à equação (B.7) é,

$$\Delta H = K_1 Q_{i-1}^2 + K_2' P_i (Q_{i-1} - Q_i)^2 \qquad i = 1, 2, ..., N \qquad (B.22)$$

Dividindo a equação (B.22) por $K_2{}^{\prime}$ $Q_0{}^2$ e introduzindo parâmetros adimensionais:

$$\Delta h' = \underline{\Delta H}$$
(B.23)
$$K_2' Q^2 o$$

$$Kr' = \underline{K_1}_{K_2'}$$
(B.24)

Obtém - se a equação:

$$\Delta h^{2} = Kr^{2} Q^{2}_{i-1} + P_{i} (Q^{2}_{i-1} - Q^{2}_{i})^{2}$$
(B.25)

Finalmente as novas relações de recorrência são:

Progressiva:

$$Q'_{i} = Q'_{i-1} - \left(\Delta h' / P_{i} - Kr / P_{i} Q'^{2}_{i-1}\right)^{1/2}$$
(B.26)

Regressiva:

$$Q'_{i-1} = (Kr'/P_i+1)^{-1}Q'_i + ((Kr'+1)^{-1}\Delta h'/P_i - Kr'/P_i (Kr'/P_i+1)^{-2}Q'_i^2)^{1/2}$$
(B.27)

Sujeitas às condições das equações (B.12) e (B.13).

A formulação requer especificação da contração variável incluída no termo $\label{eq:pine} P_{i.}$

McNOWN e HSU (1950) apresentaram uma relação direta entre a perda de carga na entrada às laterais ΔH_i e CC_i como a seguir :

$$(1/CC_i - 1)^2 = \Delta H_i / (Vli^2 / 2g)$$
 (B.28)

Substituindo a Equação (B.1) e as definições de $V_{li}\,$ e V_m na equação (B.28), recupera-se $CC_i\,$ como:

$$CC_{i} = \left[1 + \left(\theta K_{2}^{2} \left(Q_{i-1}^{2} / q_{i}^{2} \right)^{2} + \theta \right)^{1/2} \right]^{-1}$$
(B.29)

OBSERVAÇÕES: 1) O processo iterativo é representado por meio do diagrama da figura B.1. Estabeleceu-se a precisão de 10^{-5} para $\Delta h'$ com a finalidade de encerrar a busca da solução final . O cálculo $\Delta h'$ foi efetuado para diversos pares dos parâmetros Kr' e N.

2) a solução universal para $\Delta h'$ na forma,

$$\Delta h' = F(Kr'eN)$$
(B.30)

é apresentada na figura B.2. Para dado problema, tem-se Kr' e N, portanto, pode – se obter $\Delta h'$ desta figura. A aplicação da relação de recorrência progressiva na equação (B.26) requer conhecimento do fator P_i.

FIGURA B.1 – PROCESSO ITERATIVO PARA O CÁLCULO DE Ah' E Q i

152

FIGURA B.2 – SOLUÇÃO UNIVERSAL PARA OBTENÇÃO DE Δ h'. [Δ h' = F (Kr', N)] 153