• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.18.2019.tde-05042019-133552
Document
Author
Full name
Anabele Lindner
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2019
Supervisor
Committee
Pitombo, Cira Souza (President)
Alixandrini Junior, Mauro José
Manzato, Gustavo Garcia
Quintanilha, Jose Alberto
Silva, Antônio Nelson Rodrigues da
Title in Portuguese
Métodos heurísticos de desagregação de dados de demanda por transportes através de simulação geoestatística
Keywords in Portuguese
Análise espacial
Deconvolução de semivariogramas
Demanda por transportes
Escolha modal
Geoestatística
Simulação sequencial Gaussiana
Abstract in Portuguese
Informações desagregadas de demanda por transportes são recursos essenciais ao correto planejamento urbano, especialmente no que se refere ao transporte público. Contudo, o acesso a estes dados é limitado, devido ao alto custo para coleta de pesquisas domiciliares e à confidencialidade de informações individuais. A presente tese de doutorado aborda esta problemática ao propor dois métodos heurísticos de desagregação de dados, através de simulação geoestatística. Propõe-se empregar, como um input aos procedimentos, informações com alta disponibilidade, como, por exemplo, os microdados, coletados pelo censo demográfico. A diferença principal entre os métodos é que o primeiro não necessita de valores de dados provenientes de Pesquisa Origem/Destino do município de São Paulo, área de estudo deste trabalho. Ambas as abordagens, que podem ser aplicadas a outros diferentes estudos de caso, compreendem um procedimento alternativo para deconvolução de semivariogramas, Simulação Sequencial Gaussiana e validação, considerando malhas regulares de diferentes suportes. Os mapas e métricas estatísticas gerados comprovam que é possível desagregar dados, associados a Áreas de Ponderação de Setores Censitários (Método Proposto 1 – MP1) e a Zonas de Tráfego (Método Proposto 2 – MP2), através dos procedimentos aplicados. Além disso, este trabalho apresenta contribuições metodológicas ao viabilizar: a geração de diversos cenários que reproduzam o comportamento espacial da variável; e o estudo da incerteza associada às simulações.
Title in English
Heuristic methods to disaggregate travel demand data using geostatistical simulation
Keywords in English
Geostatistics
Semivariogram deconvolution
Sequential Gaussian simulation
Spatial analysis
Travel demand
Travel mode choice
Abstract in English
Disaggregated data for travel demand are essential resources towards good urban planning, especially with regard to public transportation. However, the access to such data is limited due to high costs of collecting household data and due to individual information confidentiality. The present PhD dissertation addresses this issue by introducing two heuristic methods to disaggregate data using geostatistical simulation. It is proposed to employ, as input to the procedures, information with high availability, such as census microdata. The main difference between both methods rely on the fact that the first does not require data values of any Origin/Destination Survey of the São Paulo city, study area of this research. Both approaches, which can be applied to other different study cases, comprise an alternative procedure for semivariogram deconvolution, Sequential Gaussian Simulation and validation, using regular grids of various spatial scales. The resulting maps and statistical metrics corroborate that is possible to disaggregate data associated with a set of Census Tracts (Proposed Method 1 – MP1) and Traffic Analysis Zones (Proposed Method 2 – MP2). Besides, this dissertation presents relevant contributions as it enables: creating different scenarios to reproduce the spatial behavior of the study variable; and assessing the associated uncertainty.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
LINDNER_2019.pdf (96.32 Mbytes)
Publishing Date
2019-04-09
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.