• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.18.2011.tde-06062011-171853
Document
Author
Full name
Victor Frazão Barreto Alves
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2011
Supervisor
Committee
Silva, Antonio Nelson Rodrigues da (President)
Pitombo, Cira Souza
Sanches, Suely da Penha
Title in Portuguese
Explorando técnicas para a localização e identificação de potenciais usuários de transporte público urbano
Keywords in Portuguese
Mapas potenciais
Marketing do transporte público
Modelos de escolha discreta
Redes neurais artificiais
Transporte público
Abstract in Portuguese
Um dos objetivos dos projetos e estudos na área de transporte público é atrair o maior número possível de viagens. Um primeiro passo para estimular uma maior utilização do transporte público pode ser a captação de pessoas que já têm predisposição para utilizá-lo, mas que não o fazem por alguma deficiência específica no serviço. Este é o contexto no qual mapas que representam o potencial de utilização dos transportes públicos podem desempenhar um papel importante, como discutido neste estudo. A pesquisa tem como objetivo principal a aplicação e avaliação de duas técnicas destinadas a identificar potenciais usuários de transporte público e como estes se distribuem geograficamente em uma cidade brasileira selecionada para o estudo. Nas técnicas aqui exploradas, o município em análise é dividido em áreas em função do código de endereçamento postal. Estas áreas são caracterizadas pelos atributos socioeconômicos da sua população e do sistema de transporte. Diante da hipótese de melhoria na qualidade do transporte público, dois segmentos de usuários de automóvel foram determinados: usuários que trocariam para ônibus e usuários que ainda preferem o carro. Com isso, foi construído um modelo capaz de representar o comportamento de escolha dos usuários de cada área. A metodologia proposta envolve quatro passos: i) comparação de modelos Logit elaborados com dados de São Carlos (Brasil) e Wageningen (Holanda), ii) ajustes no modelo de São Carlos, iii) elaboração de um modelo de escolha modal por redes neurais artificiais e iv) elaboração dos mapas potenciais. As duas últimas etapas foram concebidas tanto para análises independentes, como também para comparação com o modelo Logit. Assim, a construção de cenários futuros permitiu identificar e localizar espacialmente os potenciais usuários de transporte público. Foi possível verificar também qual a influência de alguns atributos sobre a escolha do modo de transporte urbano. Por exemplo, usuários de domicílios com três ou quatro pessoas têm menor probabilidade de vir a utilizar o ônibus regularmente. Por fim, um cenário futuro tornou possível destacar áreas onde é esperado um aumento do potencial de uso do transporte público devido a mudanças nos valores de densidade populacional.
Title in English
Exploring techniques for the location and identification of potential users of urban public transportation
Keywords in English
Artificial neural networks
Discrete choice models
Potential maps
Public transportation
Public transportation marketing
Abstract in English
One of the objectives of projects and studies on public transport is to attract the largest possible number of trips. A first step for increasing transit ridership may be the attraction of those individuals who already have a predisposition to use the service, but do not use it because of any specific inadequacies. This is the context in which maps displaying the potential use of public transport may play an important role, as discussed in this study. The research aims at the application and evaluation of two techniques used to identify potential users of public transport and to show how they are geographically distributed in a Brazilian city selected for the study. In the techniques discussed here, the municipality under analysis is divided into areas according to the postal codes of the streets. These areas are characterized by socioeconomic attributes of the population and of the transport system. Two segments of automobile users were determined, under the assumption that the quality of public transport would be improved: users who would switch to buses and users who still prefer the car. Based on that, a model designed to represent the choice behavior of users in each urban area was built. The proposed methodology involved four steps: i) the comparison of Logit models built with data of São Carlos (Brazil) and Wageningen (The Netherlands), ii) adjustments in the model of São Carlos, iii) the development of a mode choice model based on artificial neural networks, and iv) construction of potential maps. The third and fourth steps were meant for both independent analysis, and also for comparison with the Logit model. Thus, the construction of future scenarios allowed the identification and spatial location of potential users of public transport. It was also possible to learn about the influence of some attributes on urban transportation choice. For example, users living in households with three or four persons are less likely to become bus riders. Finally, a future scenario was able to highlight the areas where the potential for public transport could be increased due to changes in population density values.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
MestVFBA.pdf (4.17 Mbytes)
Publishing Date
2011-07-04
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.