
TRAVEL DEMAND MODELING IN A 
BUS TRANSIT NETWORK: AN 
APPROACH FOCUSING ON 
SPATIALLY DEPENDENT DATA

SAMUEL DE FRANÇA MARQUES



 
 

UNIVERSITY OF SÃO PAULO 

SÃO CARLOS SCHOOL OF ENGINEERING 

 

 

 

 

 

 

 

 

 

SAMUEL DE FRANÇA MARQUES 

 

  

 

 

 

Travel demand modeling in a bus transit network: an approach focusing on 

spatially dependent data 

 

 

 

 

 

 

 

 

 

 

 

São Carlos 

2024 



 
 

SAMUEL DE FRANÇA MARQUES 

 

 

 

 

 

 

 

Travel demand modeling in a bus transit network: an approach focusing on 

spatially dependent data 

 

 

 

 

 

Thesis presented to the São Carlos School of 

Engineering of the University of São Paulo in partial 

fulfillment of the requirements for the degree of 

Doctor of Science in Transportation Engineering. 

 

Subject area: Planning and Operation of Transport 

Systems 

Advisor: Prof. Cira Souza Pitombo. 

 

 

CORRECTED VERSION 

 

 

São Carlos 

2024 



 
 
 
 
 
 
 
 
 

I AUTHORIZE THE TOTAL OR PARTIAL REPRODUCTION OF 
THIS WORK, BY ANY CONVENTIONAL OR ELECTRONIC 
MEANS, FOR STUDY AND RESEARCH PURPOSES, PROVIDED 
THAT THE SOURCE IS CITED. 

 
Catalog card prepared by the Library Prof. Sérgio Rodrigues 

Fontes of EESC/USP 

 

 

 

 Marques, Samuel de França. 

M357t    Travel demand modeling in a bus transit network: an 

approach focusing on spatially dependent data. / Samuel 

de França Marques ; advisor Cira Souza Pitombo. São 

Carlos, 2024. 

 

 

    Thesis(Doctorate – Program in Transportation 

Engineering and Concentration area of the Planning and 

Operation of Transport Systems)-- Escola de Engenharia de 

São Carlos of Universidade de São Paulo, 2024. 

  

 

1. Transit ridership. 2. Kriging. 3. Geographically 

Weighted Regression. 4. Count data. 5. Bus stop. 6. 

Missing data. I. Title. 

 

 



FOLHA DE JULGAMENTO

Candidato: Bacharel SAMUEL DE FRANÇA MARQUES.

Título da tese: "Modelagem da demanda em rede de transporte público por

ônibus: uma abordagem com foco em dados espacialmente dependentes".

Data da defesa: 03/07/2023.

Comissão Julgadora Resultado

Profa. Associada Cira Souza Pitombo

(Orientadora)

(Escoia de Engenharia de Soo Carlos - EESC/USP)

Prof. Dr. Jaime Gomez Hernandez '_ ,\ .

(Universi+at Politécnica de ValèncÍa/UPV)

Profa. Dra. Mariana Abrantes Giannottí / i; r
T

(Escoia Poli+écnica/EP-USP)

Profa. Dra. Renata Lúcia Magalhães de Oliveira . • . .

(Centro Federal de Educação Tecnológica de Minas Gerais/CEFET-MG)

Prof. Titular António Nelson Rodrigues da Silva

(Escola de Engenharia de São Carlos - EESC/USP)

Coordenador do Programa de Pós-Graduaçâo em Engenharia de

Transportes:

Profa. Associada Ana Paula Camargo Larocca

Presidente da Comissão de Pós-Graduaçâo:

Prof. Titular Carlos De Marqui Júnior



 
 

DEDICATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

To God 

 

 

 

 

 

 

 

 



 
 

ACKNOWLEDGMENTS 

 

The evolution in research that can be seen throughout the papers I wrote overflowed 

into my personal life.  Over the last four years, I have been through many growing pains that 

contributed to disclosing the real me. The increasing level of commitment required to conduct 

my research could only be met by a whole me. Therefore, I imagine life knew what it was doing. 

Fortunately, I survived. The articles reflect my history. Their content embeds this maturity 

process. Now, I can only thank the beautiful souls that were part of this. 

My best friend, God, the architect of it all, always putting me on the right track. I shared 

with Him all moments of joy and sadness. He made me find real peace. Incidentally, connection 

with faith is what inspires me to adopt people-focused work when carrying out research. 

Doralice and Hadenízio, also known by their superhero names of mom and dad. They 

are my fist examples of hard workers, always supporting and inspiring me to do my best. Thank 

you for understanding my moments of absence. 

Sara, Débora and Daniela, my perfect sisters, and my precious nephew, André. They are 

the ones who root for me the most and I am deeply grateful for that. 

Cira, who is more than a supervisor, a real partner, someone who I can always count on. 

Jorge, Murilo, Godfred, Matheus R., Renata, Sara, Renan, Heber, Matheus F., people 

that made me believe one more time that everyone has a purpose in a friend’s life. 

To my friends from the Department of Transportation Engineering. It was six years 

(master’s degree plus Ph.D.) of happy encounters and productive conversations. 

To Professor Jaime, who kindly received me at the Universitat Politècnica de València. 

To the Christian Community Oikos, represented by pastor André Matheus. The message 

of being a positive influence in society is something that I will never forget. 

To all my masters since kindergarten. Their passion for teaching, despite not being 

properly appreciated sometimes, is what allows people like me to reach the position I am in 

today. 

To the University of São Paulo, the São Carlos School of Engineering and the 

Department of Transportation Engineering, for all the infrastructure provided for the research 

development.  

This study was supported by three funding agencies: the São Paulo Research Foundation 

(FAPESP, grant #2019/12054-4, Brazil), the National Council for Scientific and Technological 



 
 

Development (CNPq, grant #142082/2019-8, Brazil), and in part by the Coordination for the 

Improvement of Higher Education Personnel (CAPES, Brazil) – Grant Finance Code 001. 

To the São Paulo Transporte S.A. for providing the Boarding/Alighting survey data used 

in this study. 

This list is not exhaustive. I would like to thank all the people that, even in a small way, 

had a positive influence on my life. May you feel embraced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

EPIGRAPH 

 

 

 

 

 

 

 

 

 

 

 

“…sometimes I’ve believed as many as six impossible things before breakfast.” 

Alice in Wonderland by Lewis Carroll 

 

 

 

“Whatever you do, do it wholeheartedly as though you were working for your real master and 

not merely for humans” 

Colossians 3 23 

 

 

 

 

 

 

 



 
 

 

ABSTRACT 

MARQUES, S. de F. Travel demand modeling in a bus transit network: an approach 
focusing on spatially dependent data. 2024. Thesis (Doctor in Science) - São Carlos School of 
Engineering, University of São Paulo, São Carlos, 2024. 
 

Boarding and alighting per bus stop modeling, along bus lines, plays a fundamental role 

in Transport Public network planning, in addition to contributing to transit-oriented 

development. However, in this case, the variables of interest (boarding and alighting) show four 

characteristics that have implications for the modeling process and/or may affect the estimates’ 

results. They are: (1) spatial dependence; (2) asymmetry; (3) the trips occur along the transport 

network; and (4) limited sample. As these peculiarities are overlooked by classical modeling 

and the scientific literature has not addressed them so far simultaneously, the main objective of 

the present study was to model transit ridership at the bus stop level, including, in the estimating 

process, the four aforementioned characteristics. As specific objectives, we analyzed the effect 

of explanatory variables, the effects of using network or Euclidean distances, the amount of 

missing data, and the sampling type. The text is divided into seven chapters, and four of them 

are articles, whose contents address one or more specific objectives separately and/or 

simultaneously. Two classes of spatial models were proposed, geostatistical interpolators and 

geographically weighted regressions, and a database comprising eight lines in the city of São 

Paulo (Brazil) was used as a case study. The following conclusions were achieved: models that 

consider asymmetry and spatial dependence should be prioritized over the ones that overlook 

these characteristics, as well as the multivariate models over the univariate ones. Public policies 

toward increasing public transport usage should focus mainly on four groups of explanatory 

variables: sociodemographic characteristics, bus network coverage, street layout and land use. 

The spatial models proved to be able to estimate the volume of boardings and alightings in 

unsampled points accurately, solving the problem of a lack of stop-level transit ridership data. 

Despite the network distance approach not contributing significantly to improving the models’ 

prediction power, this type of distance may better represent the relationship between the transit 

ridership and its intervening factors. Prioritizing the use of network distances in the spatial 

modeling of boardings and alightings is recommended. In addition, a balanced sample on 

predictor data and well-spread in the geographic space might be preferred to accurately estimate 

missing stop-level ridership data. Therefore, the present research adds important 



 
 

methodological and practical contributions to the urban planning associated with sustainable 

transport.  

 

Keywords: Transit ridership. Kriging. Geographically Weighted Regression. Count data. Bus 

stop. Missing data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
RESUMO 

MARQUES, S. de F. Modelagem da demanda em rede de transporte público por ônibus: 
uma abordagem com foco em dados espacialmente dependentes. 2024. Tese (Doutorado) – 
Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2024. 
 

A modelagem de embarques e desembarques por ponto de parada, ao longo de linhas de 

ônibus, exerce uma importância fundamental no planejamento de redes de transporte público, 

além de contribuir para o desenvolvimento urbano orientado ao transporte sustentável. 

Contudo, as variáveis de interesse, nesse caso (embarques e desembarques) apresentam quatro 

características que trazem implicações ao processo de modelagem e/ou podem afetar o resultado 

das estimativas. São elas: (1) dependência espacial; (2) assimetria; (3) os deslocamentos 

acontecem ao longo da rede; e (4) amostragem limitada. Tendo em vista que tais peculiaridades 

são ignoradas pela modelagem clássica e que a literatura científica ainda não as aborda de forma 

simultânea, o presente trabalho teve o objetivo principal de modelar a demanda por transporte 

público no âmbito de pontos de parada, incluindo, no processo de estimativa, as quatro 

características supracitadas. Como objetivos específicos, foram analisados os efeitos de 

variáveis explicativas, da aplicação de distâncias em rede ou euclidianas, da quantidade de 

dados faltantes e do tipo de amostragem. O texto está dividido em sete capítulos, dos quais 

quatro são artigos científicos, cujo conteúdo aborda um ou mais objetivos específicos separada 

e/ou simultaneamente. Duas classes de modelos espaciais foram propostas, interpoladores 

geoestatísticos e regressões geograficamente ponderadas, e um banco de dados composto por 

oito linhas de ônibus da cidade de São Paulo (Brasil) foi utilizado como estudo de caso. As 

seguintes conclusões foram obtidas: modelos que consideram a assimetria e dependência 

espacial de embarques e desembarques devem ser priorizados frente aos que ignoram tais 

características, assim como os modelos multivariados em comparação aos univariados. 

Políticas públicas para o aumento do uso do transporte público devem focar principalmente em 

quatro grupos de variáveis explicativas: características sociodemográficas, cobertura da rede de 

ônibus, desenho viário e uso do solo. Os modelos espaciais provaram ser capazes de estimar o 

volume de embarques e desembarques em pontos não amostrados com acurácia, solucionando 

o problema da falta de dados de demanda por transporte público no âmbito de parada. Apesar 

da abordagem com distâncias em rede não ter contribuído significativamente para a melhoria 

do poder preditivo dos modelos, esse tipo de distância pode representar melhor a relação entre 

demanda por transporte público e seus fatores intervenientes. Recomenda-se priorizar o uso de 



 
 

distâncias em rede na modelagem espacial de embarques e desembarques. Além disso, uma 

amostra baseada em preditores e bem distribuída no espaço geográfico deve ser priorizada para 

estimar com precisão dados faltantes de demanda por transporte público no âmbito de pontos 

de parada. Dessa forma, o presente trabalho acrescenta importantes contribuições 

metodológicas e práticas para um planejamento urbano associado ao transporte sustentável.  

 

Palavras-chave: Demanda por transporte público. Krigagem. Regressão Geograficamente 

Ponderada. Dados de contagem. Ponto de parada. Dados faltantes. 
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1 INTRODUCING THE THESIS 

 

“What is the most resilient parasite? Bacteria? A virus? An intestinal worm? An idea. Resilient...highly 

contagious. Once an idea has taken hold of the brain, it’s almost impossible to eradicate. […] It’s not just about 

depth. You need the simplest version of the idea in order for it to grow naturally in your subject’s mind. It’s a 

very subtle art.” 

Inception by Christopher Nolan 

 

 

Travel demand modeling along bus lines is an important tool for Public Transport (PT) 

network planning, as well as for the promotion of Transit-Oriented Development (TOD). 

Information on boarding and alighting per bus stop is commonly used to define fleet size and 

composition, bus line capacity, trip scheduling, route design, decisions on whether to install a 

new bus stop or remove it and where to apply this, etc. (Ceder, 2007; Vuchic, 2005). In turn, 

the relationships between these data and the built environment features around bus stops, which 

are analyzed in the modeling, support decision-making on land use policies and transport 

system coverage (Cervero, 2006; Cervero and Dai, 2014; Taylor and Fink, 2013). 

However, boarding and alighting, which refer to the number of passengers entering the 

bus line and leaving the bus line, respectively, show some of the peculiarities concerning travel 

demand variables that ridership modeling has not accounted simultaneously for so far in 

literature. They are: 1) Spatial autocorrelation: which means that travel demand values at points 

located near each other in space tend to be more similar than at points distant from each other 

(Tobler, 1970); 2) Asymmetry: travel demand variables are often collected as a count data and, 

because of that, they are not normal, as assumed by traditional linear model; 3) Lack of data: 

information on boarding and alighting is hard to acquire as it often depends on expensive field 

surveys such as boarding and alighting count survey. Therefore, it is very difficult to collect 

these data for the entire PT network; and 4) Network distance measure: as the travel activity 

occurs along a road network, ridership modeling approaches, such as spatial ones, which depend 

on a distance measure, can also use, as an alternative option, the distance along the network. As 

the network distance reflects the real path taken by the traveler, using this metric could yield 

better results than the traditional straight-line distance measure, the Euclidean one (Eom et al., 

2006; Wang and Kockelman, 2009). 

When these characteristics are overlooked in travel demand modeling, the estimates 

may not be the best and, in some cases, such as the first two, there could be a misunderstanding 

in the models’ parameters, leading to wrong conclusions about the effect of external variables 
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on boarding, alighting and loading. In spite of that, ridership models at the bus stop level usually 

found in the literature do not account for these peculiarities (Chu, 2004; Dill et al., 2013; 

Kerkman et al., 2015; Pulugurtha and Agurla, 2012; Ryan and Frank, 2009), and even travel 

demand models at station level overlook one or more of them (Blainey and Mulley, 2013; 

Blainey and Preston, 2010; Cardozo et al., 2012; Choi et al., 2012; Gan et al., 2019; Liu et al., 

2018; Zhu et al., 2019). 

On the other hand, the boarding and alighting modeling at the bus stop level can be 

considered the most recent approach of bus ridership. In general, ridership modeling studies 

found in the literature can be divided according to the adopted spatial analysis unit: (1) 

systems/cities; (2) Traffic Analysis Zones (TAZs), neighborhoods and districts; (3) bus lines; 

(4) train stations, metro stations and bus stops; and (5) households/individuals, ranging from 

the most aggregated to the most disaggregated level.  

In this context, the bus stop level shows some advantages over the other spatial units: 

(a) it can analyze the effects of TOD on bus ridership at a scale finer than in the case of stations, 

as bus stops are separated by a distance smaller than that of stations; and (b) as the bus stop is 

situated in an intermediate level of aggregation, spatial approaches of bus ridership are likely 

to yield better results than in the case of the other units of analysis. In a more aggregated level, 

such as the TAZ one, some intrazonal variations cannot be captured by the modeling as the 

variables are considered uniform across each whole unit and, hence, ecological fallacy may 

occur. In turn, when the modeling is performed in the context of households or individuals, the 

high randomness associated to human behavior compromises the estimates’ performance. As 

spatial approaches rely on the assumption of spatial dependence, neighbor values must be 

similar, which is a situation that is not easy to achieve in the case of households/individuals. 

Thus, characteristics of data at the bus stop level not only have some advantages over 

features from the other units of analysis, but also show the four peculiarities aforementioned 

regarding the travel demand variables (Spatial autocorrelation; Asymmetry; Lack of data and 

Network distance measure). The variables considered in this study are boarding and alighting, 

which represent the transit ridership. As these characteristics have not been addressed in 

previous studies found so far, mainly at the bus stop level, and given the advantages arisen from 

this spatial unit of analysis, some research opportunities can be created.  
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1.1 RESEARCH HYPOTHESES 

 

The main hypotheses of this research are: 1) Spatial approaches of ridership modeling 

can yield better estimates than non-spatial models; 2) Ridership models considering the 

asymmetry of travel demand variables are more adequate than those based on the normality 

assumption; 3) Spatial interpolation modeling of ridership data can overcome the problem of 

data scarcity, regarding boarding and alighting per bus stop; and 4) The distances along the bus 

lines can yield better estimates than with the traditional Euclidean distance. Hence, the 

objectives of the thesis are outlined as follows: 

 

1.2 GENERAL OBJECTIVE 

 

To perform a transit ridership modeling along bus lines based on spatial approaches. 

 

1.3 SPECIFIC OBJECTIVES 

 

a) To investigate what factors affect the stop-level transit ridership. 

b) To assess the improvements in the estimates provided by the inclusion of explanatory 

variables in the geostatistical modeling of bus ridership. 

c) To compare the performance of spatial and local models of bus ridership with traditional 

approaches. 

d) To compare the performance of spatial approaches of bus ridership using network 

distances and Euclidean distances. 

e) To evaluate the performance of spatial and local models on predicting stop-level 

ridership data in unsampled stops.  

f) To analyze the effect of the sampling strategy on the prediction accuracy of stop-level 

ridership models. 

 

1.4 MATERIALS AND GENERAL METHOD OF THE THESIS 

 

The analyses carried out in the thesis used the city of São Paulo (Brazil) as a case study. 

São Paulo is the most populous city and main economic center in Brazil and South America. 
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Its Gross Domestic Product is mainly based on the sectors of services, industrial, public 

administration and agricultural (IBGE, 2021). 

The main reason for choosing São Paulo is the availability of data regarding stop-level 

ridership data and several variables that commonly serve as predictors for boardings and 

alightings. Data on the variables of interest were provided by São Paulo Transporte S.A. 

(SPTrans), the administrator of the São Paulo bus service. In turn, the GeoSampa website 

(<https://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_SBC.aspx> Accessed May 2023) 

was the source for most independent variables used.  

Two classes of predictor data were collected: 1) originating in the bus stop itself, such 

as bus frequency, number of lines, distance to nearest metro station etc.; and 2) from the bus 

stop catchment area, considered as the area covering a radius of 400m (Zhao et al., 2003) 

centered in the bus stop (for example: population, area of various land use categories, income 

etc.).  Predictors from the catchment area were calculated based on areal interpolation, for cases 

in which the source data had been given in areal units (Traffic Analysis Zones or blocks); or 

averaged values, in the cases whose original data was point-based (households sampled in an 

Origin and Destination survey). 

The boarding and alighting data corresponds to 2017 and covers 8 of the 1,355 bus lines 

São Paulo had that year. Together, these 8 lines serve 631 of 20,006 bus stops. SPTrans made 

the boarding and alighting data available for six time bands: 1st (04h to 04h59), 2nd (05h to 

08h59), 3rd (09h to 15h59), 4th (16h to 19h59), 5th (20h to23h59) and 6th (00h to 03h59). 

However, in the boarding and alighting survey that gave rise to the data of interest, only 

passengers boarding and alighting each line were counted. Therefore, for bus stops serving 

different bus lines, the transit ridership variable collected is likely to be different as well. 

Consequently, a better approach would be to work with each bus line separately. 

Based on this, the analyses carried out in the following chapters use different bus lines 

as a case study. Two main criteria supported the selection of bus lines for a case study: 1) 

number of bus stops (the higher the number of stops, the better); and 2) availability of data on 

the explanatory variables. 

Figure 1.1 characterizes the database used as a case study. It shows maps of the lines 

visited by the boarding and alighting survey, the transit ridership (boardings plus alightings 

during an entire day) along these lines, sociodemographic and transport system features.  
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Figure 1.1 - Database characterization. * 1 USD equals 5.21 BRL (Mar. 2023) 

 

Features such as income and number of jobs follow a similar pattern, which is more 

concentrated around the city center (which coincides with the geographic center of the city). 

On the other hand, population is more spread over the city. Overlapping these maps helps to 

understand the origin of the supposed spatial dependence on the ridership data: in a common 

urbanizing process, most people choose to live near the services and activities they need, which 

are usually located in the city center (Rodrigue et al., 2016). Therefore, the land use price starts 

to significantly increase in this area, allowing only wealthier families to continue living there. 

In the case of São Paulo, high population densities can be seen outside the main center, 

in areas that have, in general, low-to-middle levels of income. Spatial dependence is created 
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when this population needs to move every day from their borough to the city center to work, as 

most job positions are available in the center. Therefore, a usual pattern shows large flows of 

passengers boarding from the city periphery, gradually decreasing as the bus lines approach the 

center. For alightings, it is the opposite. Note that higher numbers of transit ridership are often 

visualized in regions with high population and employment density. 

In addition to the demographic and economic features, the availability of transport 

infrastructure also reveals the presence of spatial dependence on the bus patronage. This is due 

to the fact that the placement of a transit station or terminal is often associated to level of activity 

shown by a given area. In São Paulo, terminals and stations clearly follow the major 

employment axes. 

The travel demand variables referred in the thesis title are boarding and alighting per 

bus stop along bus lines. Also known as “transit ridership”, these variables are of great 

importance to bus network planning, but municipalities often face obstacles to their collection, 

as the surveys or devices required to acquire these data are highly expensive. However, as 

boarding and alighting per bus stop usually show spatial dependence, that is, points close to 

each other in space are more related than distant ones (Tobler, 1970), the main motivation of 

the thesis is to overcome the collection limitation by using spatial approaches, such as those of 

Geostatistics and Geographically Weighted regressions. 

Goestatistics covers a set of spatial interpolation techniques whose main objective is to 

use the information of interest collected in field samples to estimate its value along the entire 

space in which the variable of interest occurs. Therefore, the result is a continuous surface of 

interpolated values, covering both sampled and non-sampled points (Cressie, 1993; Matheron, 

1963, 1971; Wackernagel, 2003). 

On the other hand, Geographically Weighted regressions address not only the spatial 

dependence of variables of interest, but also the potential spatial heterogeneity of predictor data 

(explanatory variables). While traditional regressions, such as the linear one, assumes a single 

predictor parameter for all points in the database, Geographically Weighted regressions 

calibrate a different model for each point, allowing the explanatory variables’ coefficients to 

vary over space (Brunsdon et al., 1996; Fotheringham et al., 2003).  

The general objective of the thesis, namely “To perform a ridership modeling along bus 

lines based on spatial approaches” is motivated by the main research gap of addressing the 

spatial dependence in the modeling and estimation of boardings and alightings at the bus stop 

level. Figure 1.2 shows the general method involving the thesis structure, in which each model 

or treatment proposal is made to overcome problems found along the path to accomplish the 

26



 

general objective. Therefore, subsequent methods embrace the solutions previously established 

and the treatment evolves, becoming more refined, sophisticated and appropriate. 

  

 
Figure 1.2 - General method of the thesis. 

 

Although the database characterization (Figure 1.1) provides strong evidence for the 

presence of spatial dependence on the transit ridership data, we do not treat this fact as a rule in 

the thesis chapters, but as an assumption. Throughout the analyses carried out, spatial 

dependence on the data of interest is consistently attested by the Moran index (Moran, 1948). 
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travel demand modeling area. Chapter 6 briefly presents additional research developed during 

the doctoral period which had an impact on the thesis conclusions. The last chapter, in turn, 

concludes the thesis, summarizing the main results achieved and suggestions for future 

research.  

The first article (Chapter 2) is entitled “Applying Multivariate Geostatistics for Transit 

Ridership Modeling at the Bus Stop Level” and it mainly addresses the specific objective (b). 

The second one (Chapter 3) includes mostly the specific objective (c) and has the title of 

“Transit Ridership Modeling at the Bus Stop Level: Comparison of Approaches Focusing on 

Count and Spatially Dependent Data”. The third article (Chapter 4), entitled “Local Modeling 

as a Solution to the Lack of Stop-Level Ridership Data”, addresses the specific objectives (d) 

and (e). Finally, the fourth article (Chapter 5), entitled “Spatial Modeling of Travel Demand 

Accounting for Multicollinearity and Different Sampling Strategies: A Stop-Level Case Study”, 

addresses the specific objectives (e) and (f). Specific objective (a) is present in all articles. 

Figure 1.3 shows the structure of the thesis. The specific objectives associated with each 

chapter are also shown. 
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Figure 1.3 - Structure of the thesis. 

 

The current text is the corrected version of the thesis, which was defended on July 03rd, 

2023. The original version of the thesis comprised the published version of the first two articles 

and the accepted version of the third article. The fourth article (Chapter 5) had been only 

submitted to a journal. Based on the committee recommendations and the revisions carried out 

in the fourth article, a corrected version of the thesis was prepared. This corrected version 

includes the four articles in their published version. The São Carlos School of Engineering 

stablished that, in a thesis composed by an article collection, the published papers must appear 

as in their published format. Therefore, the four articles follow the layout of the journal where 

they were published. No author rights have been violated.
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Abstract:  

Travel demand models have been developed and refined over the years to consider a 
characteristic normally found in travel data: spatial autocorrelation. Another important feature of 
travel demand data is its multivariate nature. However, regarding the public transportation 
demand, there is a lack of multivariate spatial models that consider the scarce nature of travel 
data, which generally are expensive to collect, and also need an appropriate level of detail. Thus, 
the main aim of this study was to estimate the Boarding variable along a bus line from the city of 
São Paulo - Brazil, by means of a multivariate geostatistical modeling at the bus stop level. As 
specific objectives, a comparative analysis conducted by applying Universal Kriging, Ordinary 
Kriging and Ordinary Least Squares Regression for the same travel demand variable was proposed. 
From goodness-of-fit measures, the results indicated that Geostatistics is a competitive tool 
comparing to classical modeling, emphasizing the multivariate interpolator Universal Kriging. 
Therefore, three main contributions can be highlighted: (1) the methodological advance of using 
a multivariate geostatistical approach, at the bus stop level, on public transportation demand 
modeling; (2) the benefits provided by the models regarding the land use and bus network 
planning; and (3) resource savings of field surveys for collecting travel data. 

Keywords: Transit Ridership; Boarding per Bus Stop; Universal Kriging; Ordinary Kriging; Linear 
Regression; Spatial Statistics 

 

1. Introduction and Background 

 

Increasing concern about the environment and a discussion about sustainability have strongly 
influenced public policies around the world. In Brazil, law 12,587/2012, known as the Urban 
Mobility Law, points out that non-motorized and public transportation modes should be 

30



Applying multivariate geostatistics for transit ridership modeling at the bus stop level.                                                      2 

Bulletin of Geodetic Sciences. 27(2): e2021019, 2021. 

prioritized over motorized and individual ones, respectively. This determination recognizes Public 
Transportation (PT) as a promoter of sustainable development and social inclusion. However, in 
order to allow the supply and demand balance of this service, support of appropriate planning is 
needed to guarantee the properly work of the transportation system.  

Among the most traditional models that provide support to travel demand predictions are those 
that use classical linear regression (George and Kattor 2013; Pendyala, Shankar and McCullough 
2000; Varagouli, Simos and Xeidakis 2005). This technique, however, overlooks an important 
characteristic normally found in travel demand variables: spatial autocorrelation, i.e., the fact that 
trip data located near each other in space present similar values. Since the traditional linear model 
assumes independence between sample data (Yan and Su 2009), the outcomes of using it cannot 
be totally reliable when it refers to travel demand variables as such variables are, generally, 
spatially dependent.    

Thus, linear regression adaptations, seeking to include spatial autocorrelation, as well as new 
improved techniques, were developed in order to overcome classical model constraints regarding 
treating Regionalized Variables (RV). Attempts to include spatial dependence of travel demand 
observations have been made by Gutiérrez et al. (2011) and Pulugurtha and Agurla (2012) from 
decay functions. This approach represents an advance in the RV modeling, as it basically consists 
of assigning weights to predictor data according to the distance between the database points and 
their influence areas (also known as service or catchment areas). Nevertheless, as such models 
include space only as an attribute, and in a deterministic way, these approaches cannot yet be 
considered as completely spatial (Fotheringham et al. 2003).   

This limitation is overcome by the spatial regression models, which have already been used for 
travel demand forecasting (Gan et al. 2019; Lopes, Brondino and Rodrigues da Silva 2014; Sarlas 
and Axhausen 2016; Wang 2001). These models can consider the spatial autocorrelation by means 
of an explanatory variable, obtained from a spatially lagged dependent variable, or by the residual 
term of the model, and both of them include a spatial weight matrix normally based on the 
distance between the points of the database (Fotheringham et al. 2003).   

Moreover, when dealing with scarce data, spatial regression models include a new interpolation 
approach (Krige 1951; Matheron 1963; 1971) that treats Regionalized Variables as random and no 
longer deterministic functions, allowing the application of statistical inference on the estimates 
provided by these new techniques. In its application, this science field, known as Geostatistics, 
presents the advantage of not requiring, necessarily, information about ancillary variables, and 
the fact that its interpolators generate unbiased and minimum variance estimates. In addition, 
Geostatistics can use the maximum amount of information available about the variable of interest 
to estimate its value in non-sampled points, also eliminating the negative effect of using clustered 
samples (Matheron 1971).  

Unlike the traditional spatial regression models, in which spatial interaction is usually captured by 
a weight matrix based on the distance between points, Geostatistics uses the semivariogram 
function. This tool, which comes from a probabilistic approach of Regionalized Variables, enables 
us to model the spatial dependence of the data, and the results of this modeling provide a 
complete understanding of the spatial structure of the variable of interest, both in visual and 
numerical ways.   

Geostatistics covers different types of estimators. In this paper, we mention three of them: Simple 
Kriging (SK), Ordinary Kriging (OK) and Universal Kriging (UK). The search for the interpolator that 
demonstrates the best performance, in goodness-of-fit measures, has led to several studies in 
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which Simple Kriging results are compared to those of Ordinary Kriging (Daya and Bejari 2015; 
Taharin and Roslee 2017; Viswanathan et al. 2015), in which Ordinary Kriging is compared to 
Universal Kriging (Hiemstra et al. 2010; Kiš 2016; Liu et al. 2015; Mubarak et al. 2015; Nalder and 
Wein 1998; Wang and Zhu 2016), and in which the three techniques are simultaneously compared 
(Asa et al. 2012; Seo et al. 2015). In short, since UK includes explanatory variables in its 
formulation, it normally outperforms the other interpolators, especially when there is some large-
scale trend present in the interest variable structure. Afterwards, OK, which assumes that the 
interest variable mean is unknown and varies locally, demonstrates the best results compared to 
SK, whose mean is global, constant and known.   

In spite of several comparative studies already developed, the conclusion reported in these studies 
is not consensual. In the aforementioned articles, the interpolators´ performance varied 
substantially according to the type of data under analysis. Regarding the travel demand, not many 
studies were observed that compare the performance of geostatistical interpolators. In the case 
study proposed by Shamo, Asa and Membah (2015), the interest variable (Annual Average Daily 
Traffic) refers only to rural highway segments, which does not offer, a priori, a contribution to the 
urban public transportation planning. Besides this, the authors themselves reinforced the idea 
that the best kriging technique and semivariogram can only be obtained from the structure 
present in the available information about the interest variable.  

Regarding urban bus transportation planning, which is highly important to the supply and demand 
balance of the PT system, passenger flow along the bus lines is a valuable information and, often, 
hard to acquire. Marques and Pitombo (2021), Marques and Pitombo (2019) and Marques (2019) 
proved that Geostatistics, more specifically Ordinary Kriging, demonstrates an excellent potential 
in estimating the three variables, collected from a Boarding and Alighting counts survey, that 
express the passenger demand along a bus route. They are: Boardings and Alightings (number of 
passengers entering and leaving the bus line at each bus stop, respectively) and Loading 
(passenger volume inside the bus at each line segment contained between two consecutive bus 
stops). Since this survey demands high resources, the results found by those authors suggest that 
it is possible to perform the Boarding and Alighting counts only in some bus line segments and, by 
kriging, estimate, with relative accuracy, the demand variable for non-sampled bus stops and 
segments. This study, however, did not make any comparison between OK and other geostatistical 
interpolators to verify which one of them could best fit the passenger volume estimate along a 
public transport line.  

It is worthwhile mentioning that the spatial modeling of public transportation passengers at the 
bus stop level and train, metro or bus station is the most detailed treatment that can be applied 
to PT network planning. Due to this, this approach is the most recent among the techniques that 
seek to program supply and understand transportation and land use relationships. In the scientific 
literature, several studies of this kind can be found, most at the station level (Blainey and Mulley 
2013; Blainey and Preston 2010; Cardozo et al. 2012; Chakour and Eluru 2013; 2016; Chiou, Jou 
and Yang 2015; Choi et al. 2012; Chow et al. 2006; Gutiérrez et al. 2011; Sun et al. 2016) and a few 
at the bus stop level (Chu 2004; Dill et al. 2013; Kerkman, Martens and Meurs 2015; Pulugurtha 
and Agurla 2012; Ryan and Frank 2009). However, due to the difficulty in acquiring the variables 
to be modeled (Boardings and Alightings), in the case of the bus stop level, to the best of the 
authors´ knowledge, these studies have still not provided a spatial approach of ridership until the 
present moment. Even in the station level cases, the studies retrieved basically focus on applying 
Geographically Weighted Regression and generalized linear models to ridership data. Only the 
station level study of Zhang and Wang (2014), which applies Universal Kriging to the Boarding 
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variable, was found so far, meaning that approaches based on multivariate Geostatistics at the 
bus stop level were not yet observed.  

Thus, the aim of this study is to estimate a public transportation demand variable, along a bus line, 
by means of a multivariate geostatistical modeling at the bus stop level. As specific objectives, a 
comparative analysis conducted by applying Universal Kriging, Ordinary Kriging and Ordinary Least 
Squares Regression for the same variable under analysis is proposed.  

Finally, the following main research gaps associated to this study can be enumerated: (1) 
Multivariate modeling of public transportation demand at the bus stop level by means of a 
geostatistical approach; (2) Lack of spatial approaches of transit ridership at the bus stop level; (3) 
The need for assessing the improvement, in goodness-of-fit measures, caused by the inclusion of 
explanatory variables to the geostatistical modeling; and (4) Passenger volume modeling at the 
bus stop level as they are the most appropriate elements for performing this analysis.  

This article contains 5 sections, including this introduction. The next section summarizes the few 
studies that perform ridership modeling at the bus stop level. Section 3 introduces the materials 
used in the case study and the method applied to them. Then, the results, as well as discussions 
about them, are presented in Section 4. Lastly, Section 5 draws the conclusions and also proposes 
suggestions for future research.  

 

2. Ridership models at the bus stop level 

 

While the traditional transportation planning (Ortúzar and Willumsen 2011) is done by means of 
Traffic Analysis Zones and continues as the most popular method for mobility diagnosis and 
solution proposal, Cervero (2006) argues that ridership modeling at the local level can provide 
demand estimates quickly and economically. Moreover, in spite of a regional approach, which uses 
averaged values of data for each Traffic Analysis Zone, boarding and alighting modeling per bus 
stop, train, metro or bus station can capture the effect of transit-oriented development on public 
transport demand, i.e., the influence of built environment variables on transit usage.  

From smart card data, boarding and alighting per train or metro station are readily available. On 
the other hand, bus ridership at the stop level is not easy to collect. Concerning this, cities often 
depend on expensive surveys, such as boarding and alighting surveys, or automatic counters, 
which are not widely popularized yet. It may be possible to obtain boarding and alighting per bus 
stop from smart card data and GPS information, but some assumptions have to be made that 
affect the accuracy of the results, especially in the case of Alighting. Therefore, boarding and 
alighting surveys remain the only way to collect ridership at the bus stop level accurately. Table 1 
shows studies that perform ridership modeling at the bus stop level. 

Table 1: Ridership models at the bus stop level 

Reference Dependent variable Model 
Independent variables 

Supply Demand 

Chu (2004) Boarding Poisson Transit level of service 
within 1 to 2-5 min of 
walking 

Income, No-vehicle households, 
Female (%), Hispanic (%), White 
(%), Age, No. of inhabitants, No. 
of jobs, Pedestrian factor 
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Reference Dependent variable Model 
Independent variables 

Supply Demand 

Ryan and Frank 
(2009) 

Boarding + alighting 
(logarithm) 

OLS (log-linear) Level of service (no. of 
routes/average waiting 
time) 

Income, No-vehicle households, 
Female (%), Hispanic (%), White 
(%), Youth (%), Walkability index 

Pulugurtha and 
Agurla (2012) 

Boarding Negative 
binomial with 
log-link 

On-network characteristics Household income, No-vehicle 
households, Asian population, 
Residential area 

Dill et al. (2013) Boarding + alighting 
(logarithm) 

OLS (log-linear) Transit service variables, 
Transportation 
infrastructure variables 

Households below poverty (%), 
No-vehicle households (%), 
White (%), Youth (%), elderly 
(%), Education level, Job 
accessibility, Employment (no.), 
Population (no.), Land use area 
(single-family, multifamily, 
commercial), Area parks, 
Pedestrian destinations, Land 
use mix index, Distance to city 
center 

Kerkman, 
Martens and 
Meurs (2015) 

Boarding + alighting 
(logarithm) 

OLS (log-linear) Stop frequency (logarithm), 
Directions, Frequency per 
direction, Direct 
connections, Competitive 
bus stops, Bus terminus, 
Transfer stop, Bus station, 
Dynamic information, 
Benches, Supply-demand 
index 

Potential travelers (logarithm), 
Income, Elderly (%), Distance to 
urban center (km), Land use: 
residential, Land use: 
agriculture, Land use: 
sociocultural facilities, Supply-
demand index 

Source: adapted from Kerkman, Martens and Meurs (2015) 

 

From Table 1, it can be seen that the models used are limited to ordinary least squares regressions 
with logarithmic transformation to correct the asymmetry of the interest variable. Models for 
count data were also applied, but none of them present a spatial approach of bus ridership. 
Pulugurtha and Agurla (2012) tried to include spatial dependence of boarding through a weighting 
function, but only in a deterministic way. 

Moreover, explanatory variables used in the boarding and alighting modeling can be divided into 
two groups: demand and supply variables. Demand independent variables intend to capture the 
effect of sociodemographic and land use features around bus stops on ridership. On the other 
hand, infrastructure and public transport service characteristics are addressed by the supply 
independent variables. In order to minimize the amount of information needed for the spatial 
modeling, the present study proposed a simple method for selecting the best predictors, as 
described in Section 3.   

  

3. Materials and Method 

 

The dataset used in this case study refers to the Boarding per bus stop data (number of passengers 
entering the bus line at each bus stop) over line 856R-10 from the city of São Paulo – Brazil. The 
results, from a Boarding and Alighting count survey performed along this line on a typical day 
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(Tuesday) in 2017, as well as the geographic coordinates of its 57 bus stops, were provided by São 
Paulo Transporte S.A. (SPTrans). Boarding and Alighting per bus stop were available for six times 
bands: 1st (04h to 04h59), 2nd (05h to 08h59), 3rd (09h to 15h59), 4th (16h to 19h59), 5th (20h 
to 23h59) and 6th (00h to 03h59). This information was then spatialized in the ArcGIS 10.2 
software using the SIRGAS 2000 UTM 23S projection system.  

In order to compose the group of explanatory variables to be included in Universal Kriging and 
Ordinary Least Squares Regression, both features from bus stops themselves and from their 
influence area were collected. From a catchment area of radius 400m centered in the bus stops 
(Zhao et al. 2003), the following variables were calculated: population (inhabitants) and population 
density (inhabitants per hectare), based on the 2017 Origin and Destination Survey (Metrô 2019) 
shapefile, which is given in Traffic Analysis Zones; and averaged values of household income and 
car ownership, female (%), population with no complete higher education (%), households with 
no private vehicles (%), percent of people aged up to 14, up to 17, aged between 18 and 22, 18 
and 29, 18 and 39 and above 60 years old. These data were obtained from the sampled households 
of the 2017 O/D Survey that were within the catchment area; area, in hectares, of the 16 
predominant land use classes according to the shapefile of predominant land use in 2016 
(GeoSampa), which is disaggregated at the block level; and number of roads and intersections, 
length (meters) and road density (meters per hectare) inside each catchment area, based on the 
São Paulo road system (Open Street Map) shapefile. The number of points of interest (POI), also 
given by OSM shapefile, inside each influence area, was also considered. Overlapping catchment 
areas were prevented by using Thiessen polygons, similar to the method adopted by Zhang and 
Wang (2014) and Sun et al. (2016), in a GIS environment. 

Besides the road system variables collected from Open Street Map, other indicators were adopted 
as a proxy of accessibility as well. Together with the Boarding/Alighting count survey results, 
SPTrans also made the General Transit Feed Specification (GTFS) data, from the São Paulo PT 
network, available. Knowing the code of the 57 bus stops covered by line 856R-10, the following 
was calculated from GTFS data: the number of bus lines that passed by each of these stops, and 
the average frequency of those lines; Euclidean and network distance between each bus stop and 
the nearest bus terminal, nearest metro station and nearest train station. Two intermodal 
proximity measures considering the shortest Euclidean and network distance between each bus 
stop and the nearest metro or train station were also included. While Euclidean distance is based 
on a straight line, network distance is calculated along the road system. These distance measures 
were obtained from the 57 bus stop shapefiles along with the São Paulo bus terminals, metro 
stations and train stations shapefiles, and Open Street Map road system. Versions of the 
populational, road system and accessibility variables, transformed by the natural logarithm, were 
also considered, and, in the cases where the raw data contained zeros, it was added to 1 before 
applying the transformation (Bartlett 1947). In order to include only the attributes encompassed 
by the bus stops´ influence area, the attributes of the original shapefiles went through an aerial 
interpolation. As stated in Table 1, the data collected for the modeling procedure covers both 
supply and demand independent variables.    

Afterwards, dependent and independent variables were selected using a joint analysis of linear 
correlation and spatial autocorrelation. In order to choose the variable of interest, the Moran 
index (Moran 1948) was calculated for the Boarding and Alighting data in the six time bands 
mentioned above. After that, the degree of association between the cases with the highest and 
statistically significant values of Moran’s index and all explanatory variables was tested by the 
Pearson linear correlation coefficient (R). In order to eliminate multicollinearity, at this stage, the 
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R value between two potential predictors was limited to 0.60. Therefore, when a pair of 
independent variables had a high correlation with the variable of interest, but R with each other 
above 0.60, the variable with the least correlation with the dependent variable was discarded. This 
threshold was considered acceptable to avoid the omitted variable bias as well, since a pair of 
highly correlated variables does not always represent a cause-effect relationship. Other criteria 
for choosing dependent and independent variables were: expected correlation signal and 
presence of independent variables from both supply and demand groups. Thus, the number of 
Boardings, transformed by the natural logarithm in the 5th time band, also known as Night Peak 
(NP, from 20h to 23h59), was chosen as the dependent variable. As potential predictors, the 
following variables were kept: population, number of POIs, number of road intersections, road 
length, number of other bus lines, mean household income and average frequency of other bus 
lines in the same time band as Boardings, all transformed by natural logarithm; also, population 
with no complete higher education (%), residential, commercial and services area (ha), and 
network distance, in meters, between each bus stop and the nearest metro station, were 
considered. 

The modeling step started by initially calibrating a linear regression model. To select the best 
predictors among those considered, a stepwise method was applied, in which only three 
independent variables remained. Regarding the modeling area, in general, there is a trade-off 
between the prediction power of the technique and the number of explanatory variables used in 
the model, whose data source might be hard to access. The desirable scenario is to have a 
minimum number of explanatory variables (that are preferably easy to acquire) associated to a 
satisfactory performance of the model. Based on this, the following procedure was adopted: 
initially, a simple linear regression model was calibrated with each one of the three explanatory 
variables, separately; then, three linear regressions were estimated using two predictor 
combinations; afterwards, a third model considering the three variables as predictors was 
generated. This approach was repeated in the geostatistical modeling by means of UK as this 
estimator also includes explanatory variables in its formulation. The purpose of this analysis was 
to verify whether the models with the least explanatory variable are also competitive in terms of 
minimizing errors between real and estimated values, and how much the spatial approach 
improves bus ridership estimates compared to traditional linear regression.  

All linear regression models were calibrated using the Ordinary Least Squares method (Yan and Su 
2009). Considering only the cases in which all predictors were statistically significant in linear 
regression (p < 0.10), the geostatistical modeling steps were performed. They are: (1) Empirical 
semivariogram calculation and model fitting; (2) Cross validation; and (3) Estimation by OK and 
UK.  

The semivariogram 𝛾(ℎ), or variogram 2𝛾(ℎ), is the main graphical tool of Geostatistics as it 
visualizes the spatial structure of the variable under analysis. The calculation of the empirical, or 
experimental, semivariogram is given by Equation (1) (Cressie 1993; Matheron 1971). 

𝛾(ℎ) =
1

2𝑁
∑[𝑍(𝑥𝑖 + ℎ) − 𝑍(𝑥𝑖)]

2

𝑁

𝑖=1

 (1) 

𝑍(𝑥): value of the Regionalized Variable Z in the sampled geographical position 𝑥; 
𝑁: number of pairs situated at distance ℎ. 
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Equation 1 refers to Ordinary Kriging, in which the semivariogram is calculated straight based on 
the RV information. Concerning UK, this calculation is applied to the residual term, in which a 
spatial structure is assumed. Then, a theoretical model is adjusted to the empirical semivariogram 
values. The process of fitting a well-defined function to the empirical semivariogram points 
consists of obtaining three main parameters, the nugget effect, partial sill and range, from a pre-
established method (Cressie 1993). In the present case study, geostatistical modeling was 
performed by means of the three main theoretical semivariogram models: Exponential (Exp), 
Gaussian (Gau) and Spherical (Sph) (Olea 2006), in order to verify if one of them demonstrates a 
much better adjustment compared to the others. 

The process of kriging a Regionalized Variable basically consists of obtaining the optimum weights 
for the linear combination of weights and neighboring values that results in a continuous surface 
of estimated points, which also covers the non-sampled locations. The kriging estimator is given 
by Equation (2) (Cressie 1993; Matheron 1971). 

𝑍∗(𝑥0) = ∑𝜆𝑖𝑍(𝑥𝑖)

𝑛

𝑖=1

 (2) 

𝑍∗(𝑥0): estimated value of Regionalized Variable at the geographic position 𝑥0; 
𝜆𝑖: optimum weight assigned by kriging to the neighbor 𝑖 value. 

 

Although both OK and UK are linear combinations, the first one assumes a constant and local, but 
unknown mean (𝜇) of the dependent variable observations (Equation (3)), while the latter relaxes 
this assumption by considering the presence of a large-scale trend over the response variable 
structure (Equation (4)). 

𝑍 = 𝜇 + 𝜀 (3) 
 

𝑍 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2+. . . +𝛽𝑛𝑥𝑛 + 𝜀 (4) 
 

in which 𝜀  is the error term of the model, 𝑥𝑘  represents the explanatory variables, and 𝛽𝑘+1 

expresses the linear function parameters to be calibrated. Thus, Universal Kriging assumes that 
the Regionalized Variable values are affected not only by their neighbors (small range variation), 
but also that there is a systematic component in their structure, caused by the influence of the 
built environment around the treatment elements, which are, in this case, the bus stops. Besides 
this, UK allows this large-scale variation to be modeled through the inclusion of explanatory 
variables to the kriging estimator. Thus, instead of considering the errors completely as white 
noise, it is assumed that the RV spatial structure is present in the residual term oscillation, where 
the semivariogram function is calculated (Cressie 1993).  

Ordinary Kriging weights 𝜆𝑖 are obtained from a matrix operation, represented in Equation (5). 
The resulting nonlinear equations system takes into account three constraints: the (1) non bias, 
(2) minimum variance, and (3) weight sum equal to 1, in order to guarantee the best linear 
unbiased estimator (Cressie 1993; Goovaerts 1997; Matheron 1971). 

[
 
 
 
 
𝛾(ℎ1−1)

𝛾(ℎ2−1)
⋮

𝛾(ℎ𝑛−1)
1

   

𝛾(ℎ1−2)

𝛾(ℎ2−2)
⋮

𝛾(ℎ𝑛−2)
1

  

…
…
⋱…
1

   

𝛾(ℎ1−𝑛)

𝛾(ℎ2−𝑛)
⋮

𝛾(ℎ𝑛−𝑛)
1

   

1
1
⋮
1
0]
 
 
 
 

  

[
 
 
 
 
𝜆1

 𝜆1

⋮
𝜆𝑛

𝜇 ]
 
 
 
 

=

[
 
 
 
 
𝛾(ℎ0−1)

𝛾(ℎ0−2)
⋮

𝛾(ℎ0−𝑛)
1 ]

 
 
 
 

 (5) 
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The matrix on the left corresponds to the theoretical semivariance between sample points [𝐾]; 
vector [𝜆] in the middle contains the kriging weights; and the vector on the right expresses the 
theoretical semivariance between the sample points and the point to be estimated [𝑀] . 
Therefore, OK weights are calculated according to Equation (6) for each point to be estimated. 

[𝜆] = [𝐾]−1[𝑀] (6) 
 

On the other hand, Universal Kriging formulation deals with parameters in linear function, which 
is similar to classical regression, and residual semivariogram. Therefore, its calibration process is 
complex and must be performed in an iterative way. First, the linear model is calibrated and, after 
the residual term is calculated, the nugget effect, partial sill and range are obtained. Other values 
for these parameters, nearby the original ones, are tested until there is some convergence to an 
optimum error between the observed and estimated value criteria (Cressie 1993; Selby and 
Kockelman 2013; Zhang and Wang 2014). In short, UK estimates are given by Equation (7). 

𝑍∗(𝑥0) = [𝑋𝑜][𝛽] + [𝑉𝑠0
𝑇][𝑉𝑠

−1][𝜀] (7) 

 

Where 𝑋0 is the matrix of explanatory variable observations of point 𝑥0, 𝛽 is the vector of linear 
parameter estimates, 𝑉𝑠0

 represents the vector of estimated covariances between sample points 

and point 𝑥0, while 𝑉𝑠 expresses the matrix of estimated covariances between sample points. It is 
worth remembering that covariance (𝑉) and semivariogram (𝛾) functions are related according 
to Equation (8). 

𝑉(ℎ) = 𝑐0 + 𝑐1 − 𝛾(ℎ) (8) 
 

Where 𝑐0 and 𝑐1 stand out, respectively, for the nugget effect and partial sill parameters from the 
theoretical semivariogram. 

Concerning geostatistical estimates, cross validation is performed by the leave-one-out method 
(Cressie 1993). This technique consists of removing the database points one by one and calculating 
their value from the remaining points and theoretical semivariogram parameters (and also the 
linear function, when it refers to UK). Therefore, from the observed value at the points and 
respective estimated value, several goodness-of-fit measures can be established to assess the 
performance of the applied spatial statistics tool.  Regarding the linear regression, the estimate 
considered in this study was the number of Boarding predicted by the model equation. Thus, some 
of the goodness-of-fit measures suggested by Hollander and Liu (2008) were calculated, which 
are: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage 
Error (MAPE) and Pearson linear correlation coefficient between the observed and predicted 
values (R).  

The cited goodness-of-fit measures were applied to the results of each estimate and, hence, it was 
possible to assess and compare the accuracy of results found from such techniques, and to select 
those that demonstrated the best performance. In the UK cases, results from the semivariogram 
that provided the smallest errors were selected to compare them with the respective linear 
regression estimates. The computational resources that gave support to the method stages were: 
ArcGIS 10.1, QGIS 3.0.3 and GRASS GIS 7.4.0 (Bundala, Bergenheim and Metz 2014) to collect the 
potential predictors; GeoDa (Anselin 2004; Anselin, Syabri and Kho 2005) for Moran’s index 
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calculation; IBM SPSS 24.0 (IBM 2016) for correlation analysis; and R (R Core Team 2020; Ribeiro 
Jr and Diggle 2016; Papritz 2020a; Papritz 2020b) for linear regression, Ordinary Kriging and 
Universal Kriging.  

 

4. Results and Discussion 

 

Figure 1 shows thematic maps for the dependent variable, Boardings, i.e., the number of 
passengers entering each bus stop on a typical day (Tuesday) in 2017, in the aggregated set of bus 
trips made from 20:00 to 23:59; and for the three explanatory variables selected by the stepwise 
method. They are: (1) natural logarithm of population (lnpop); (2) residential, commercial and 
services area, in hectares (res_com_serv area); and (3) network distance, in meters, between each 
bus stop and the nearest metro station (metrodist_net). As lnpop and res_com_serv area belong 
to the demand variable group, and metrodist_net to the supply one, this result was deemed 
satisfactory. 

As expected, bus stops located at regions with more inhabitants tend to have a higher number of 
Boardings. This pattern can also be noted in the case of residential, commercial and service area, 
meaning that the higher the land use mixture, the higher Boardings will be. Pearson’s correlation 
coefficient between ln_boarding and ln_pop and between ln_boarding and res_com_serv area 
was, respectively, 0.68 and 0.45. On the other hand, despite some bus stops located near metro 
stations are showing less passenger flow, there are many points nearer metro stations that do 
present a high number of Boardings. This relationship resulted in a R value of -0.26 between 
ln_boarding and metrostation_net. Thus, it can be stated that most 856R-10 line users, in the 
period from 20:00 to 23:59, come from metro lines, probably returning from work to home. 

Figure 1 also reveals that the number of Boardings per bus stop in line 856R-10 shows, in general, 
five volume peaks: the first one is next to the beginning of the route, the second and third are 
halfway, and the last two are near the end of the line. Such peaks interlay with lower passenger 
flow points, starting at the first bus stops of the line, which present a reduced number of 
Boardings. This pattern resulted in a Moran’s index of about 0.26, which increased to 0.48 with 
the logarithmic transformation. In both cases, the index value was statistically significant (pseudo 
p-value < 0.05), proving the presence of spatial dependence in Boardings per bus stop data.  

Descriptive statistics of dependent and independent variables are presented in Table 2. Travel 
demand variables, in general, are given as count data and show asymmetry very often. Thus, their 
relationship with explanatory variables may not be linear. In this case, logarithmic transformations 
contribute to linearizing the model equation, addressing the real nature of the data and, hence, 
improving results.  

As shown in Table 2, mean and median measures for ln_boardings and ln_pop are similar, given 
their normality. Standard deviation for all variables, as well as minimum and maximum values, 
reveal the presence of a wide range of values, meaning the inclusion of more diversified data in 
the modeling, thus making it possible to use the models to estimate ridership for various 
conditions. Moreover, it is important to mention that Boardings and res_com_serv_area were zero 
for three and five bus stops, respectively. In the case of Boardings, some points at the end of the 
route did not have any passengers entering the bus line in the period from 20:00 to 23:59, 
probably because at this time most users are returning home from work and, hence, at the end of 
the line, most passengers are leaving the vehicle rather than entering it.   
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Figure 1: Patterns of (from top to bottom) Boardings; Population; Residential, commercial and 
services area; and distance to the nearest metro station along the bus line 856R-10  
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Table 2: Descriptive statistics 

  ln_boarding ln_pop 
res_com_serv area  

(ha) 
metrostation_net  

(m) 

N 57 57 57 57 

Mean 2.51 7.81 3.23 1319.60 

Std. Deviation 0.95 0.61 3.16 909.20 

Minimum 0.00 6.23 0.00 35.90 

25% 2.20 7.43 1.14 490.64 

50% 2.64 7.76 2.21 1136.44 

75% 3.11 8.34 4.64 2089.06 

Maximum 4.13 8.75 16.76 3046.28 

 

4.1 Univariate step: Ordinary Kriging 

 

Results of Ordinary Kriging are displayed in Table 3. In spite of the low percentages of nugget effect 
relative to the sill (nugget effect plus partial sill), goodness-of-fit measures are not quite 
satisfactory. Comparing the three theoretical models, the exponential one provided the best 
estimates. Experimental semivariogram for ln_boarding and the fitted exponential model are 
shown in Figure 2. 

Table 3: Ordinary Kriging results 

Measure\Model Gaussian Exponential Spherical 

Nugget effect 37.26% 25.24% 35.09% 

Partial sill 0.933 1.155 0.813 

Range (m) 10000 10000 15000 

MAE 9.138 8.308 8.413 

RMSE 13.551 12.684 12.870 

MAPE 117.25% 96.27% 100.13% 

R 0.057 0.296* 0.256* 

Note: * statistically significant at the 0.05 level (one-tailed). MAE, RMSE, MAPE and R are, respectively, Mean Absolute 
Error, Root Mean Square Error, Mean Absolute Percentage Error and Pearson Linear Correlation Coefficient between 
predicted and observed values. 

 

Figure 2: Semivariogram of Boardings with logarithmic transformation 
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The exponential model had a good fit to the experimental ln_boardings semivariogram. On the 
other hand, the experimental semivariogram seems to increase without bound as the lag distance 
increases, which could indicate the presence of a large-scale trend in the interest variable that is 
not being modeled (Oliver and Webster 2015). This might be the reason why Ordinary Kriging 
estimates are almost twice the observed values, given a Mean Absolute Percentage Error of 96%. 
It is worth remembering that, although geostatistical and traditional modeling were performed 
based on the values of Boardings with logarithmic transformation, goodness-of-fit measures were 
calculated using the estimates with inverse transformation, so they could be directly compared to 
the real values.  

 

4.2 Multivariate step: Universal Kriging and linear regression 

 

According to the method, 25 different estimates were obtained. They are:  Ordinary Kriging with 
exponential (1), Gaussian (2) and spherical (3) semivariograms, which have already been showed 
in subsection 4.1; simple linear regression with ln_pop (4), res_com_serv area (5), and 
metrodist_net (6) as the predictor; multiple linear regression with ln_pop and res_com_serv area 
(7); with ln_pop and metrodist_net (8); and with res_com_serv area and metrodist_net (9); then 
with ln_pop, res_com_serv area and metrodist_net (10); UK with ln_pop and the three 
semivariograms (11-13); UK with res_com_serv area and the three semivariograms (14-16); UK 
with ln_pop and res_com_serv area, and the three semivariograms (17-19); UK with ln_pop and 
metrodist_net, and the three semivariograms (20-22); and finally UK with ln_pop, res_com_serv 
area and metrodist_net as predictors, and the three semivariograms (23-25). The 
metrodistance_net variable was not statistically significant in the simple linear regression (6) 
neither when coupled with the res_com_serv area (9). Thus, these combinations were not 
repeated in the geostatistical modeling and will not be presented here, for brevity.  

Table 4 shows the resulting parameters from Universal Kriging and linear regression. As for 
Ordinary Kriging, the best semivariogram model, i.e., the theoretical semivariogram that yielded 
the best goodness-of-fit measures, in all predictor combination cases, was the exponential one. 
Therefore, for the sake of brevity, Universal Kriging results shown in Table 4 correspond only to 
those from the exponential model.  

Table 4: Results from spatial interpolators and classical linear regression 

Model\Parameters Intercept ln_pop 
res_com_serv 

area (ha) 
metrodist_net 

(m) 
Nugget 
effect 

Partial 
sill 

Range (m) 

Universal Kriging -6.0460*** 1.1040***   47.54% 0.3090 1229.0990 

Linear regression -5.8260*** 1.0670***      

Universal Kriging 2.1490***  0.1025*  46.69% 0.4350 1365.1720 

Linear regression 2.0762***  0.1352***     

Universal Kriging -5.7216*** 1.0207*** 0.0864**  68.48% 0.1510 2238.5980 

Linear regression -5.3115*** 0.9615*** 0.0965**     

Universal Kriging -5.5912*** 1.1012***  -0.0003* 54.75% 0.2380 1288.6310 

Linear regression -5.4770*** 1.0700***  -0.0003**    

Universal Kriging -5.3772*** 1.0234*** 0.0715* -0.0002(.) 69.26% 0.1420 2058.5110 

Linear regression -5.1560*** 0.9829*** 0.0789** -0.0002*       

Note: ***, **, * and (.) are statistically significant at the 0.001, 0.01, 0.05 and 0.1 level, respectively. 
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As expected, from the linear correlation analysis, population and residential, commercial and 
service area have a positive effect on ridership. Although the signal of metrodist_net is negative, 
it means that the closer a bus stop is from a metro station, the higher the number of Boardings at 
it will be. Moreover, it should be noted that all parameter estimates show little variation across 
the models (except for the intercept in the second model), which suggests that some factors, such 
as multicollinearity, that could cause misunderstanding in the coefficient’s values, are not present.    

Based on statistical significance, one can assume that the order of importance of predictors used 
might be: ln_pop, res_com_serv area and metrodist_net, which was also the sequence of 
predictors entering in the stepwise selection method. The percentage of the nugget effect in 
relation to the sill increased compared to the univariate case. In spite of that, in two of the five 
models, this parameter remains below 50%. According to Cambardella et al. (1994), variables with 
nugget-to-sill ratio of 25% up to 75% can still be considered as spatially dependent, in a moderate 
way. Conversely, range was significantly reduced, showing values from 1.2km to 2.2km, 
approximately.  

Table 5 presents the goodness-of-fit measures applied to models shown in Table 4. Ordinary 
Kriging results, based on exponential semivariogram, are also displayed. 

Table 5: Goodness-of-fit measures 

Case Predictors Model MAE RMSE MAPE R 

0 - Ordinary Kriging 8.308 12.684 96.27% 0.296* 

1.1 Ln_pop 
Universal Kriging 5.211 8.117 42.03% 0.800** 

Linear regression 7.820 11.028 72.51% 0.537** 

1.2 Res_com_serv area 
Universal Kriging 5.758 9.500 50.43% 0.703** 

Linear regression 8.686 13.830 81.89% 0.309** 

2.1 Ln_pop and res_com_serv area 
Universal Kriging 6.071 9.434 48.10% 0.683** 

Linear regression 7.424 10.694 62.36% 0.586** 

2.2 Ln_pop and metrodist_net 
Universal Kriging 5.437 8.460 43.89% 0.772** 

Linear regression 7.981 11.341 68.58% 0.502** 

3 
Ln_pop, res_com_serv area and 
metrodist_net 

Universal Kriging 5.926 9.355 46.39% 0.690** 

Linear regression 7.409 10.782 60.44% 0.571** 

Note: ** and * are statistically significant at the 0.01 and 0.05 level, respectively (one-tailed). 

 

Based on the goodness-of-fit measures, Universal Kriging models can be ranked, from the best to 
the worst, as follows: 1.1, 2.2, 3, 1.2 and 2.1. The best models for linear regression, in turn, were 
3 and 2.1, followed by 1.1, 2.2 and 1.2. Comparing all eleven models simultaneously, UK estimates 
outperformed all other models, meaning that even the UK cases with only one or two predictors 
showed better results than linear regression with three predictors. Ordinary Kriging, which is a 
univariate technique, presented a MAE and RMSE lower than those of linear regression with 
res_com_serv area as the predictor.   

Although models with more predictors may better explain the variance of interest variable, 
estimates can show no or little improvement when a new explanatory variable is added to the 
model, even a statistically significant one. The best results, from both Universal Kriging and linear 
regression, are highlighted in bold in Table 5. In the case of Universal Kriging, the model with only 
ln_pop as the predictor yielded the best estimates, while for linear regression, the best results are 
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those from models 2.1, which use ln_pop and res_com_serv area, and 3, which uses all three 
predictors. 

The reason for that could be the fact that when multiple predictors are added to the linear 
combination part of UK, spatial structure of residuals starts to get blurred. As shown in Table 4, 
the nugget effect of cases 2.1 and 3 are the highest ones, corresponding to 70% of sill, 
approximately. However, even in these cases, estimates can still be improved through 
geostatistical modeling as Universal Kriging do not overlook the remaining spatial dependence on 
residuals.  

Table 5 also proves that kriging estimates can, in fact, be improved by including explanatory 
variables in geostatistical modeling. Comparing Ordinary Kriging results with those of the UK last 
ranked case (model 2.1), there is a reduction in MAE, RMSE and MAPE of about 27%, 26% and 
50%, respectively, while R increased 131%. Considering the best model of UK (1.1), these numbers 
increase to 37%, 36%, 56% and 170%, respectively. Moreover, ridership estimates can also be 
significantly improved by geostatistical modeling compared to linear regression: the most subtle 
improvements were for model 2.1, which showed reductions of 18%, 12% and 23% in MAE, RMSE 
and MAPE, respectively, and an increase of 17% in R. On the other hand, MAE and RMSE reduced 
34% and 31%, respectively, in model 1.2, and R increase reached 128%. The best MAPE 
improvement corresponded, in turn, to model 1.1, with a reduction of 42%. These results indicate 
that not only geostatistical modeling can provide the best ridership estimates, but also that 
improvements will depend on what predictors are being used.   

Finally, linear regression models from Table 1 exhibited the following adjusted coefficients of 
determination (adjusted R²): 0.328 and 0.330 (Ryan and Frank 2009), 0.69, 0.62 and 0.53 (Dill et 
al. 2013), and 0.772 and 0.762 (Kerkman, Martens and Meurs 2015). Meanwhile, adjusted R² for 
linear regression models in Table 5 was: (1.1) 0.453, (1.2) 0.188, (2.1) 0.545, (2.2) 0.518, and (3) 
0.572. It should be noted that despite using much less information, some linear regression results 
obtained in the present study, which were outperformed by UK, are similar or slightly better than 
the first two, which suggests that the three predictors used were correctly specified, as they can 
explain a significant part of the ridership variance, show little variation when a new predictor is 
added to the model, and are statistically significant.  

In order to provide a disaggregated analysis of errors and allow a comparison between models, 
Figure 3 shows maps of error ratios for Ordinary Kriging (a); Linear regression and Universal Kriging, 
both with all predictors, which was considered the best result of linear regression (b and c, 
respectively); Linear regression and Universal Kriging, both with the ln_pop as the predictor, which 
is the best result of UK (d and e, respectively).  
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Figure 3: Error ratios of (from left to right) Ordinary Kriging (a), Linear Regression and Universal 
Kriging with all three predictors (b and c), and Linear Regression and Universal Kriging with 

ln_pop (d and e).  

 

Three bus stops had an observed Boarding value equal to zero. Therefore, the error ratio could 
not be calculated for these cases, which is the reason why they do not appear in Figure 3. From 
the minimum and maximum error ratios, as well as the limits for each error group and the amount 
of bus stops in each group, the following conclusion can be drawn: the best estimates come from 
UK with ln_pop, then UK with all the predictors, followed by linear regression with three 
predictors, linear regression with ln_pop, and lastly Ordinary Kriging. 

Despite the fact that Ordinary Kriging showed some very high errors, a detailed analysis of 
percentiles reveals that OK and linear regression with all predictors had the same amount of bus 
stops with an error ratio between -30% and 30%, approximately, which corresponds to 37% of the 
total data. Linear regression with ln_pop, UK with three predictors and UK with ln_pop showed, 
respectively, 34%, 45% and 50% of bus stops with an error rate between -30% to 30%, which was 
considered a satisfactory range of error. 

As Ordinary Kriging assumes the interest variable mean is a constant, OK modeling of variables 
that present a wide range of variation usually yields high errors. Conversely, the same amount of 
bus stops showed error ratios ranging from -30% and 30% in both OK, which is a univariate 
technique, and linear regression with all predictors. On the other hand, as it does not include any 
explanatory variable, OK can only be applied to short-term public transportation planning, in which 
all built environment and transportation system variables are assumed to remain constant. 

Following the bus stop sequence from top to bottom in Figure 3, extreme error ratios occurred at 
bus stops 32, in all cases, and 42, in Ordinary Kriging estimates. The main reason for that might be 
the size of catchment areas devoted to these points, which are the smallest ones due to high 
proximity to neighboring bus stops. This problem could be solved by running an alternative 
modeling in which all catchment areas would have the same size, overlapping each other, and 
then include some explanatory variable that could control the occurrence of competitive bus 
stops, as performed by Kerkman, Martens and Meurs (2015).  
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5. Conclusions and Final Remarks 

 

Public Transportation plays an important role in the sustainable development of cities and social 
inclusion. In order to promote the proper functioning of this system, travel demand models have 
been developed and refined over the years, seeking to consider a characteristic normally found in 
travel data: spatial autocorrelation. Another important feature of travel demand data is its 
multivariate nature. However, regarding the bus transit demand, there is a lack of multivariate 
spatial models that consider the scarce nature of travel data, which are expensive to collect, and 
also need an appropriate level of detail. Thus, the main aim of this study was to estimate the 
Boarding variable along a bus line from the city of Sao Paulo - Brazil, by means of a multivariate 
geostatistical modeling at the bus stop level. As specific objectives, a comparative analysis 
conducted by applying Universal Kriging, Ordinary Kriging and Ordinary Least Squares Regression 
to the same travel demand variable was proposed.  

In general, results showed that the inclusion of explanatory variables to the kriging estimator 
contributes, in fact, to increasing the prediction power of the technique. However, the 
performance of the models with only one predictor did not follow the same pattern in both 
geostatistical and traditional modeling. This reinforces the opportunity to investigate what would 
be the best predictors to be used in transportation demand spatial approaches to avoid those that 
would not bring significant improvements, but whose acquisition would require additional costs. 
Results also suggested that Ordinary Kriging, which does not require additional information about 
explanatory variables, can be competitive to linear regression with only one predictor. This comes, 
probably, from the fact that OK already considers the spatial autocorrelation present in the 
Boarding variable. However, this interpolator has the disadvantage of not being able, from only 
the available data about the interest variable, to predict its values for other scenarios, including 
future ones. This capacity is observed only in Universal Kriging and Linear Regression. In addition, 
estimates from all geostatistical cases revealed a better adjustment of exponential 
semivariograms to Boarding data.  

Although the results from Universal Kriging may suggest that the lower the number of predictors, 
the better the estimates will be, we do not encourage ignoring additional information when it is 
available and contributes, in fact, to explaining interest variables. However, when detailed data is 
not provided, which is the case of various cities, in development countries, especially the small 
and medium-sized ones, spatial models with little information available could also yield good 
estimates. In general, results showed that traditional modeling can always be improved by 
geostatistical multivariate interpolators, not only in cases where there is only one predictor, but 
also when a large amount of information is used. Best results from UK showed 50% of bus stops 
with error between -30% and 30%. In turn, regarding the best results from linear regression, only 
37% of bus stops had errors within this range.     

Therefore, three main contributions are highlighted: the methodological advance of using a 
detailed geostatistical approach, the bus stop level, on bus ridership modeling; the benefits 
provided by the models regarding the land use and bus network planning; and resource savings of 
field surveys for collecting travel data. In order to compare the achieved results with another 
spatial method that, similar to the geostatistical interpolators, also creates a surface of estimated 
values, Geographically Weighted Regression is recommended for the same dataset used in the 
present study. Nevertheless, it is opportune to compare the OK and UK results to those of 
generalized linear models (Poisson and Negative Binomial regressions), which consider the 
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positive asymmetry of count data, and those of geographically weighted models with count 
distributions for the response variable.  
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Abstract
Boarding and alighting modeling at the bus stop level is an important tool for operational 
planning of public transport systems, in addition to contributing to transit-oriented develop-
ment. The interest variables, in this case, present two particularities that strongly influence 
the performance of proposed estimates: they demonstrate spatial dependence and are count 
data. Moreover, in most cases, these data are not easy to collect. Thus, the present study 
proposes a comparison of approaches for transit ridership modeling at the bus stop level, 
applying linear, Poisson, Geographically Weighted and Geographically Weighted Poisson 
(GWPR) regressions, as well as Universal Kriging (UK), to the boarding and alighting data 
along a bus line in the city of São Paulo, Brazil. The results from goodness-of-fit measures 
confirmed the assumption that adding asymmetry and spatial autocorrelation, isolated and 
together, to the transportation demand modeling, contributes to a gradual improvement in 
the estimates, highlighting the GWPR and UK spatial estimation techniques. Moreover, the 
spatially varying relationships between the variables of interest (boardings and alightings) 
and their predictors (land use and transport system features around the bus stops), shown 
in the present study, may support land use policies toward transit-oriented development. In 
addition, by using an approach with little information, the good results achieved proved that 
satisfactory boarding and alighting modeling can be done in regions where there is a lack of 
travel demand data, as in the case of emerging countries.
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Introduction and Background

Alignment between urban planning and transport is one of the pillars of sustain-
able city development. Associations between land use and urban mobility support 
the development of sustainable public policies, which are essential for encouraging 
Transit Ridership (TR), an important instrument for social inclusion and accessibil-
ity. In this context, transport modeling is one of the tools that by quantifying and 
explaining the effects of urban practices concerning the displacement of people and 
goods, provide support to urban policies at the most diverse geographic scales.

Generally conditioned by data availability, urban travel modeling encompasses 
different approaches, which can be differentiated by the spatial unit of analysis used. 
Regarding Public Transport, studies can be found at the system level (Cervero & 
Dai, 2014; Hensher & Golob, 2008; Hensher et al., 2014; Joonho et al., 2019; Taylor 
et al., 2009), on Traffic Analysis Zones (TAZs), neighborhoods or districts (Chiou 
et al., 2015; Kalaanidhi & Gunasekaran, 2013; Ma et al., 2018; Siddiqui et al., 2015; 
Tu et al., 2018), bus lines (Kyte et al., 1985; Peng et al., 1997), train stations, metro 
stations and bus stops (Gan et  al., 2019; Pulugurtha & Agurla, 2012; Sun et  al., 
2016; Zhu et al., 2019), and individual or household (Ewing et al., 2014; Siddiqui 
et al., 2015) ranging from the most aggregated to the most disaggregated level. In a 
simplified way, the adopted spatial unit of analysis strongly influences the interven-
ing factors, or explanatory variables, which can be considered in the study.

The urbanized area or system approach allows, for example, the inclusion of 
covariates such as population, jobs, age and color distribution, regional, meteoro-
logical and topographic characteristics, Gross Domestic Product (GDP), income, 
fleet, fare, capacity, number of Public Transport (PT) stations, modal split, PT net-
work mileage, frequency, characteristics of the road system, etc. Models that analyze 
only an urbanized area, segmented into Traffic Analysis Zones, neighborhoods or 
districts, are able to refine the socioeconomic, land use and transportation system 
covariates, compared to previous approaches. In this case, however, fare variations 
cannot be analyzed, for situations where it is unique in the city, as well as fleet, cli-
mate and other factors.

Research carried out on bus lines, in turn, maintains the aggregated characteris-
tics of the Traffic Analysis Zones, however, considering that they are usually based 
on time series, the effect of the variation in the fare can be analyzed once more. 
In addition, covariates related to the type of line are also liable to be included in 
the models. The more disaggregated approaches (individual and household), on the 
other hand, in addition to further refining the socioeconomic characteristics of previ-
ous treatments, add to the set of factors assessed in the Traffic Analysis Zones, trip 
characteristics, such as time, distance and cost, and user perception.

Finally, between the most disaggregated level and bus lines, some studies 
address train, metro stations and bus stops as spatial aggregation units. These 
models, which consist of one of the most recent approaches of Transit Rider-
ship, can efficiently quantify the benefits of transit-oriented development, that is, 
from urban policies applied in neighborhoods, which converge with urban plan-
ners´ needs. Traditional Traffic Analysis Zones modeling, in contrast, assumes 
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an average value of the explanatory variables in each spatial unit, which prevents 
capturing variations at the local level and can lead to ecological fallacy. On the 
other hand, considering the bus stop as a unit of analysis, boarding and alighting 
volume estimates can be obtained using models, quickly and economically, sup-
porting the planning of the PT network (Cervero, 2006). This modeling is carried 
out based on socioeconomic variables, land use and the transport system around 
the stops.

The travel data, however, which consist of the variable of interest in these mod-
els, show two characteristics of fundamental importance for the performance of the 
estimates, which are: they refer to counts, that is, they can assume only non-nega-
tive integer values   and have asymmetry (they are heteroscedastic); and present spa-
tial autocorrelation, which means that travel demand values   close to each other in 
space tend to demonstrate similar behavior. Thus, travel demand models have been 
improved over the years so as to account for these unique characteristics in the mod-
eling process. Concerning the spatial units of interest for sustainable urban plan-
ning (bus stops and stations), studies can be found regarding the modeling of Transit 
Ridership at the bus stop or station level based on classical linear regression (Cer-
vero, 2006; Gutiérrez et al., 2011; Ryan & Frank, 2009). This traditional model, also 
known as Ordinary Least Squares (OLS), is appropriate for continuous variables and 
its residuals cannot be dependent on each other, in which case the OLS assumptions 
are violated (Yan & Su, 2009) and the statistical inference is compromised, that is, 
the estimator is no longer the one with the least variance. Solutions such as variable 
transformations and decay functions were adopted by some authors to avoid such 
problems, although the real nature of the data has not been considered.

In the 1980s, an expansion of the linear model to other probability distributions 
introduced Poisson and Negative Binomial regressions that, unlike the normal dis-
tribution, model count data. These models, which have also been used to address 
Transit Ridership at the bus stop and station level (Choi et  al., 2012; Chu, 2004; 
Pulugurtha & Agurla, 2012), can demonstrate a better performance than the tradi-
tional OLS. Despite this, these approaches still overlook the spatial autocorrelation 
found in the response variable.

Attempts to solve this limitation culminated in the emergence of spatial regres-
sions, which can consider autocorrelation based on inclusion, as a covariate, of the 
spatially lagged dependent variable (Spatial Lags Model - SLM), or through model 
residuals (Spatial Error Model - SEM), and in both cases, the spatial interaction is 
captured through a spatial weight matrix, usually based on the distance between the 
points of the database (Fotheringham et al., 2003). These techniques have also been 
used in ridership models at the station level (Gan et  al., 2019), although, accord-
ing to Fotheringham et  al. (2003), these models do not reflect the spatial hetero-
geneity of the database on a local level because the autocorrelation is expressed in 
terms of only one parameter. Geographically Weighted Regression (GWR), which 
generates a different model for each geographic coordinate, would be more appro-
priate, in this case, to address the autocorrelation and spatial heterogeneity of the 
estimated parameters (Brunsdon et al., 1996). In GWR applications to Transit Rider-
ship (Blainey & Mulley, 2013; Blainey & Preston, 2010; Cardozo et al., 2012), the 
results always demonstrate a better performance than the global models.
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Despite being able to deal satisfactorily with the database’s spatial dependence, 
GWR has limitations that, similar to the OLS model, also assumes normality of 
the variable of interest, which, in the case of Transit Ridership, is not observed. 
Thus, geographically weighted models for count data have recently been developed, 
called Geographically Weighted Poisson Regression (GWPR) and Geographically 
Weighted Negative Binomial Regression (GWNBR). Although these models can be 
easily found in traffic accident modeling (Bao et al., 2018; Gomes et al., 2017, 2019; 
Liu et al., 2017; Obelheiro et al., 2020; Xu et al., 2017; Xu & Huang, 2015), using it 
for ridership forecasting is still rare, and it is restricted to the application of GWPR 
in the scope of metro stations (Liu et  al., 2018) and GWNBR for train ridership 
(Zhu et al., 2019), which again points to a better performance of local models com-
pared to their global version, Poisson regression and Negative Binomial regression, 
respectively.

Another multivariate spatial model that, similar to GWR, also addresses spatial 
dependence and is capable of generating a continuous surface of estimated values, 
refers to the Geostatistics interpolator known as Universal Kriging (UK). The great-
est benefit of this technique is to be able to use the maximum available informa-
tion on the response and explanatory variables when forecasting the values of inter-
est in non-sampled sites, which makes it highly recommended for dealing with the 
lack of data, a situation often found in travel demand variables along bus lines. In 
the context of Transit Ridership, few studies have been found to date: Zhang and 
Wang (2014) applied UK to estimate the number of Boardings in metro stations. On 
the other hand, Marques and Pitombo (2021a) tested the suitability of UK to model 
Boardings at the bus stop level, using different groups of predictors. Although the 
results were satisfactory, the authors compared UK results only with Linear Regres-
sion, and did not account for the potential spatial heterogeneity of the predictors. 
Models for count data were overlooked as well. The main differences between previ-
ous transit ridership studies and the present article are outlined in Table 1.

Based on the studies cited above, the following research gaps can be highlighted: 
(1) Application of spatial models in the context of bus stops: the approaches found 
so far are restricted to addressing the asymmetry shown by bus stop travel data, 
overlooking the spatial autocorrelation potentially found in the models, as well as 
both characteristics simultaneously. (2) Ridership modeling at the bus stop level: 
although the approaches by train and metro stations also represent a contribution 
to sustainable urban planning, bus stops are densely distributed within cities (as 
opposed to rail stations), allowing the incorporation of characteristics from a higher 
number of  neighborhoods into the modeling. Furthermore, it cannot be said that 
such data fall into the group of scarce variables, since the information on station 
boarding and alighting is obtained relatively easily. Bus transit, on the other hand, is 
a much more popular system than rail transit, which is found only in large cities. (3) 
In most of the studies whose spatial unit of analysis is bus stops (Dill et al., 2013; 
Kerkman et al., 2015; Ryan & Frank, 2009), the authors apply only the traditional 
linear model. Although Chu (2004) applied both the OLS and Poisson regressions, 
only the results of the count data model are shown. Thus, no comparison is made 
between the two types of models, which prevents the visualization of the gains pro-
vided by using the most appropriate regression. Even in other studies, which address 
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the transit demand at the station level and in which more than one type of model is 
applied (Blainey & Mulley, 2013; Blainey & Preston, 2010; Cardozo et al., 2012; 
Choi et al., 2012; Gan et al., 2019; Liu et al., 2018; Zhu et al., 2019), the regressions 
address only one of the characteristics previously mentioned, sometimes asymmetry, 
sometimes spatial autocorrelation, or the authors do not compare it with the tradi-
tional linear model. Thus, improvements can be observed provided by including one 
or the other particularity in ridership modeling, but never both.

Therefore, the present article aims to model the bus stop boarding and alighting 
volume from GWR for count data and multivariate spatial interpolators. In addition, 
we aimed to compare different models from classical linear regression to GWPR 
and UK, using Poisson global regressions, and traditional GWR as well. This pro-
posal intends to allow the visualization of the gradual gains achieved by addressing 
asymmetry and spatial autocorrelation separated and, later, together. This analysis 
will be carried out based on a real case study, based on line 6045-10 in the city of 
São Paulo, Brazil.

This paper has four sections. “Materials and Method” section describes the 
proposed method and the database used, dividing it into the description of the 
dependent variables, independent variables and modeling procedure. The results 
and discussions are detailed in “Results and Discussion” section, which is organ-
ized as follows: first, the results referring to Boarding are presented and then those 
of Alighting. Afterward, goodness-of-fit results from all models of Boardings and 
Alightings are compared. Still in “Results and Discussion” section, a subsection 
is presented to compare the results and characteristics of the present study with 
previous ones. Finally, “Conclusions, Main Constraints and Final Recommenda-
tions” section outlines the main conclusions reached and suggests themes for future 
research.

Materials and Method

The database to be used in the present study is based on the results of a boarding and 
alighting survey carried out on 8 bus lines in the city of São Paulo, São Paulo State, 
Brazil. For each direction of the lines (inbound and outbound, resulting in 16 cases), 
a spreadsheet was made available by São Paulo Transporte SA (SPTrans), containing 
the number of boardings and alightings per bus stop, encoded by an identifier, in 6 
different time bands, covering 24 h of a Tuesday in 2017. Having identified the bus 
stops and their respective geographic coordinates, also provided by SPTrans, it was 
possible to proceed with the spatialization of this database.

Dependent Variables

The 16 unidirectional lines underwent an exploratory spatial dependence analysis 
by calculating the Moran index (Moran, 1948) for the number of boardings and 
alightings per bus stop in the Morning Peak Hours (MPH, from 5 a.m. to 8.59 am), 
Between Peak Hours (BPH, from 9 a.m. to 3.59 p.m.), Afternoon Peak Hours (APH, 

282 S. d. F. Marques, C. S. Pitombo

57



1 3

from 4 p.m. to 7.59 p.m.), Evening Peak Hours (EPH, from 8 pm to 11.59 p.m.) and 
the total number of Boarding and Alighting passengers from 5 a.m. to 11.59 p.m. 
The Moran index was calculated in the R environment (Paradis et al., 2004; R Core 
Team, 2020), using weight matrices based on the inverse of the Euclidean distance 
between the bus stops of the database.

As we are focusing on spatially dependent data, the line to be chosen should be 
the one whose boarding and alighting volume demonstrates a strong and significant 
spatial dependence, that is, higher numbers of the Moran index, (when compared to 
the other lines and time bands) associated with pseudo p-values smaller than 0.05. 
In this context, within the 8 lines considered by the Boarding and Alighting counts 
survey, the 6045-10-1 line (inbound trip of the 6045-10 line) with 47 bus stops stood 
out in relation to Boardings in the total number of trips from 5 a.m. to 11.59 p.m. 
The Alighting volume in that same period showed high and significant spatial auto-
correlation in the outbound trip, line 6045-10-2 with 49 bus stops. Thus, the number 
of Boardings on line 6045-10-1 and Alightings on line 6045-10-2 were established 
as dependent variables, both referring to the set of trips made from 5 a.m. to 11.59 
p.m. Figure 1 shows both directions of line 6045-10 and respective bus stops in the 
city of São Paulo.

From the bus stop numbering, it can be seen that the inbound trip, line 6045-10-
1, starts in the southwest region of the map and ends in the northeast portion. The 
outbound trip, in turn, line 6045-10-2, originates in the northeast and ends its itiner-
ary in the southwest corner.

Independent Variables

As mentioned in “Introduction and Background” section, transit ridership modeling 
at the bus stop level basically covers three groups of explanatory variables: socioec-
onomic, land use and the transport system variables. Table 2 summarizes the board-
ing and alighting models at the bus stop level found in the literature.

As can be observed, the independent variables that model the boarding and 
alighting volume can also be classified as variables related to Transit Ridership 
supply or demand. Supply variables include those related to the transport system, 
while socioeconomic and land use predictors fall into the category of independ-
ent variables related to potential demand. Based on this, in the case of the present 
study, potential predictors were collected both related to bus stops and referring to 
their area of influence, comprising a 400 m radius buffer centered on the bus stops 
(Zhao et al., 2003). Overlapping catchment areas were prevented by using Thiessen 
polygons, similar to the method adopted by Zhang and Wang (2014) and Sun et al. 
(2016), in a Geographic Information System (GIS) environment. Table 3 consoli-
dates the potential predictors raised, as well as the database on the basis of which 
they were calculated.

The potential predictor collection was carried out in a GIS environment. The 
population variable was calculated based on the areal interpolation of the shapefile 
of the 2017 Origin/Destination (O/D) Survey (Metrô, 2019), given in Traffic Anal-
ysis Zones. The area, in hectares, of the 16 predominant land use categories was 
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obtained through the shapefile available on the GeoSampa website, which details the 
land use in São Paulo, in blocks, in 2016. Among the land use categories available, 
the following can be found: horizontal and vertical residential, commerce and ser-
vices, industry and warehouses, public facilities, schools etc. All 16 land use types 
are cited in Table  3. These data were also used together to calculate the entropy 
index (Song et al., 2013) around the bus stops, which reflects the mix of land uses 
found in the region. The other independent variables of potential demand, which 
include socioeconomic information surrounding the bus stops, were collected from 
the average of the households sampled by the O/D survey that were covered by the 
buffer, and, in areas that did not contain any households, the results of the areal 
interpolation of the aggregated data by Traffic Analysis Zone were used.

To avoid multicollinearity and parameter redundancy, as well as to identify the 
variables with the greatest potential to explain Boardings and Alightings, Pearson’s 
linear correlation coefficient (R) among all the variables in the database was calcu-
lated. When a pair of potential predictors had a value of R equal to or greater than 

Fig. 1  Map showing lines 6045-10-1 and 6045-10-2 with their 47 and 49 bus stops, respectively
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0.60, the variable with the lowest correlation with Boardings and Alightings was 

Table 3  Potential predictors for Boarding and Alighting modeling

* BRL 1.00 is equivalent to USD 0.18 (Feb. 2021)

Predictor(s) Originated from Variable type Source

Distance, in meters, to the nearest bus 
terminal

Bus stop Supply GeoSampa shapefile

Distance, in meters, to the nearest train or 
metro station (station distance)

Distance, in meters, to the nearest bus 
terminal, train or metro station (intra/
intermodal dist)

Number of bus lines passing by the bus 
stop, except the 6045-10 line

2017 GTFS data provided by 
SPTrans

Average frequency, in trips per hour, of 
the bus lines, except the 6045-10 line 
(frequency)

Population, in inhabitants (population) Catchment area Demand 2017 Origin and Destination 
survey shapefile, given 
in Traffic Analysis Zones 
(Metrô, 2019)

Area, in hectares, of the following land 
uses: no information; low standard 
horizontal residential; medium/high 
standard horizontal residential; low 
standard vertical residential; medium/
high standard vertical residential; com-
merce and services (com serv area); 
industry and warehouses; residential, 
commerce and services; residential, 
industry and warehouses; commerce, 
services, industry and warehouses; 
public facilities; schools; empty land; 
and without predominance

GeoSampa shapefile, given 
in blocks

Entropy Index -
Average household income, in BRL 

(income)*
Household data from the 

2017 Origin and Destina-
tion survey (Metrô, 2019)Average car ownership

Female (%)
Population with no complete higher 

education (%)
Workers and students (%)
Households with no private vehicles (%)
Percent of people aged up to 14, up to 17, 

aged between 18 and 22, 18 and 29, 18 
and 39 and above 60 years old

Number of roads Supply Open Street Map
Road length, in meters
Number of intersections
Number of intersections per meter of road
Number of Points of Interest
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discarded. As R values up to 0.60 indicate only a moderate correlation (Profillidis & 
Botzoris, 2019), this threshold was deemed acceptable in order to combat the omit-
ted variable bias. It is worth mentioning that the variables listed in Table 3 were col-
lected for the bus stops and areas of influence of both lines separately as the inbound 
and outbound trips are not exactly coincident.

Modeling

After completing the Boarding and Alighting database with its predictors, we pro-
ceeded to the modeling stage. At this stage, for each type of model, we sought to 
find the combination of explanatory variables that optimized the estimates by mini-
mizing the sum of squares of the differences between the real and estimated values, 
known as Squared Error (SE, Eq. 1) (Hollander & Liu, 2008). Thus, for each type of 
regression, all the possibilities resulting from the combinations between the covari-
ates selected in “Independent Variables” subsection were considered. The modeling 
step was performed in the R environment (R Core Team, 2020), an open and free 
programming interface, and in the GWR4.09 free software.

Where yi and y*i are the real and estimated values of the dependent variable in 
geographical position i; and n is the number of bus stops. Initially, the traditional 
linear model was calibrated, whose structure is shown in Eq. 2 (Yan & Su, 2009).

Where the response variable y comprises the linear combination of explana-
tory variables xk added to a random error ε. The β parameters to be estimated are 
numbers that reflect the contribution of each covariate to explaining the variance of 
y. From the Ordinary Least Squares estimator, which, in the case of linear regres-
sion, coincides with the Maximum Likelihood estimator, the β coefficients can be 
obtained according to Eq. 3 (Yan & Su, 2009).

Where X and Y are, respectively, the explanatory variable matrix and the vector 
of observations of the dependent variable. In R, the traditional linear regression was 
generated and optimized using the “olsrr” package (Hebbali, 2020). Then, the non-
normal count data were analyzed using the Poisson regression, represented by Eq. 4 
(Myers et al., 2010).

Where µ is the expected value of the response variable. The Poisson regres-
sion, unlike the linear one, admits that the variance of the information to be mod-
eled is not constant, but that this variance varies as a function of µ (Hilbe, 2014), 

(1)SE =

n∑
i=1

[
yi − y∗

i

]2

(2)y = �0 + �1x1 + �2x2 +…+ �kxk + �

(3)� =
(
XtX

)−1
XtY

(4)ln (�) = �0 + �1x1 + �2x2 +⋯ + �kxk
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converging with the nature of the count data. Afterward, the isolated treatment of 
autocorrelation and spatial heterogeneity was addressed by the traditional GWR 
model (Eq. 5) (Brunsdon et al., 1996; Fotheringham et al., 2003).

Where (ui,vi) represent the coordinates of the i-th point in space and βk(ui,vi) 
refers to the realization of the continuous function βk(u,v) at point i (Fothering-
ham et al., 2003). In the case of GWR, the spatial interaction between the point 
at which the model will be estimated and other points in the database is given by 
a weight that varies depending on the distance between these points and a maxi-
mum radius (bandwidth - b) outside of which it is assumed zero spatial depend-
ence. Equation 6 (Brunsdon et al., 1996) shows how β parameters are calculated 
in traditional GWR.

Where Wi refers to the weight assigned to the remaining points in the database 
at the time of the calibration of the geographically weighted model in point i. 
Finally, the local spatial model that also considers the non-normal count data is 
structured in Eq. 7 (da Silva & Rodrigues, 2014; Nakaya et al., 2005).

As in the global model, two probability distributions for the response variable 
are allowed: Poisson and Negative Binomial. Within the scope of GWR, GWPR 
and GWNBR, the model can be optimized by selecting the weighting function 
(kernel) and respective bandwidth that minimize the Akaike Information Crite-
rion (AIC) (Sakamoto et al., 1986) of the regression or a Cross-Validation (CV) 
metric. Based on this, in a simplified preliminary analysis, the Gaussian and bi-
square kernels were analyzed, both with adaptive distance. The second was the 
one that showed the lowest AIC values   and, consequently, comprised all the geo-
graphically weighted models. In turn, the adaptive bandwidth was chosen over the 
fixed one because it allows both points located in a region with a high density of 
bus stops and those located in areas with a lack of bus stops to receive the same 
amount of data when the model is calibrated. In this case, b corresponds to the 
distance between each bus stop where the model will be estimated and the most 
distant neighbor to be considered in the calibration, that is, in areas with a high 
density of points, b will be small, whereas regions with a lack of bus stops will 
receive a greater bandwidth. Thus, for each of the possible Boarding and Alight-
ing models, two different bandwidths were obtained: the first minimizing the CV 
criterion, which is based on the Squared Error; and the second, minimizing the 
AIC. Afterward, the model was generated from these two optimal bandwidths and 
the bi-square kernel, structured in Eq. 8 (Fotheringham et al., 2003).

(5)yi = �0(ui, vi) +
∑
k

�k(ui, vi)xik + �i

(6)�i =
(
XtWiX

)−1
XtWiY

(7)ln
(
�i

)
= �0(ui, vi) +

∑
k

�k(ui, vi)xik
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Where Wij refers to the weight assigned to point j at the time of calibration of 
the model in i; dij is the distance between points i and j; and b is the optimal band-
width. Finally, we selected the model whose combination of covariates and band-
width resulted in the smallest SE. This procedure was carried out according to codes 
available in the “sp” packages (Bivand et al., 2013; Pebesma & Bivand, 2005) and 
“GWModel” (Gollini et al., 2015; Lu et al., 2014) of R.

The last model to be applied to the database refers to Universal Kriging (UK). As 
this technique is not commonly used to address spatially discrete variables, the fol-
lowing subsection brings a more detailed discussion about it.

Universal Kriging

Universal Kriging is one of the spatial interpolators from Geostatistics, a tool that 
deals with spatial autocorrelation using a probabilistic approach of regionalized var-
iables (Matheron, 1971). Inspired by the work of Krige (1951) Geostatistics was first 
created to model spatially continuous variables, that is, variables that can assume 
a value at each geographic coordinate within the field in which they occur. As it is 
impossible to collect the real value of these variables throughout the whole spatial 
field, geostatistical interpolators seek to use the maximum information from col-
lected samples to generate a continuous surface of estimated values covering both 
sampled and non-sampled points. Based on a probabilistic approach, geostatistical 
interpolators are unbiased and with minimum variance, providing uncertainty meas-
ures as well (variance of estimate), features not present in deterministic interpola-
tors. Because of the convenience of Geostatistics to estimate in non-sampled loca-
tions, studies addressing spatially discrete variables started to apply geostatistical 
interpolators to overcome the lack of data caused by obstacles in the field collection 
(cost, access, topography). In this context, applications can be found in epidemi-
ology, aquiculture, agriculture, forest sciences (Carvalho et  al., 2015; Goovaerts, 
2009; Kerry et al., 2016; Stelzenmüller et al., 2005), and, more recently, in the trans-
portation engineering area, including accidents/road safety and travel demand mod-
eling (Gomes et al., 2018; Klatko et al., 2017; Majumdar et al., 2004; Marques & 
Pitombo, 2021a, b; Pinto et al., 2020; Selby & Kockelman, 2013; Wang & Kockel-
man, 2009; Yang et al., 2018).

The bibliographic review by Marques and Pitombo (2020) highlighted the sig-
nificant contributions from Geostatistics to various studies involving travel demand 
variables, which are usually spatially discrete. Research addressing the modal choice 
in the context of households/individuals (Chica-Olmo et al., 2018; Pitombo et al., 
2015), trip generation in Traffic Analysis Zones (Lindner et al., 2016), traffic volume 
in road segments (Selby & Kockelman, 2013; Yang et al., 2018) and boardings and 
alightings at stations or bus stops (Marques & Pitombo, 2021a, b; Zhang & Wang, 
2014) can be found. Most methods (field surveys, automatic counters, sensors etc.) 

(8)Wij =

⎧
⎪⎨⎪⎩

�
1 −

�
dij

b

�2
�2

if dij < b

0 otherwise
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that support the exhaustive collection of this information require high financial 
resources, which may not be available for emerging countries like Brazil.

Unlike some geostatistical models that depend only on the variable of interest, 
Universal Kriging allows the inclusion of external explanatory variables. Accord-
ing to Fotheringham et al. (2003), it fits into the group of spatial regressions, how-
ever, unlike the SLM and SEM models, the spatial interaction between bus stops in 
the database, in the case of kriging, occurs in terms of the semivariogram function 
(Eq. 9) (Matheron, 1971; Cressie, 1993; Goovaerts, 1997).

In this case, Z(xi) expresses the residual between the real and predicted values at 
point i; and N is equivalent to the number of pairs located at a distance h. If the resid-
uals show spatial autocorrelation, their values will be similar to each other at close 
bus stops in space and less similar as the distance between the bus stops increases. 
Thus, the semivariogram function graph presents an increasing form, from the ori-
gin or in its neighborhood, until reaching a sill, which refers to the maximum pos-
sible difference between the residuals and occurs at a distance beyond which there is 
no more spatial dependence between the database points.

The UK structure is similar to that of linear regression (Eq. 2), that is, the esti-
mates are calculated both through the linear combination parameters of explanatory 
variables, known as large-scale variation, and the theoretical semivariogam model, 
which reflects the short-range variation (spatial dependence) and is part of the krig-
ing error term (Cressie, 1993). Regarding the theoretical semivariogram, the adjust-
ment of three models typically used was tested: exponential (exp), Gaussian (gau) 
and spherical (sph) (Olea, 2006). Using the restricted maximum likelihood estima-
tor, Universal Kriging estimates are given by Eq. 10 (Cressie, 1993; Selby & Kock-
elman, 2013; Zhang & Wang, 2014).

Where X0 is the matrix of explanatory variable observations of point x0; β is the 
vector of linear parameter estimates; Vso represents the vector of estimated covari-
ances between sample points and point x0, while Vs expresses the matrix of esti-
mated covariances between sample points. It is worth remembering that covariance 
(V) and semivariogram (γ) functions are related according to Eq. 11, where co and 
c1 stand out, respectively, for the nugget effect and partial sill parameters from the 
theoretical semivariogram.

UK estimates were calculated in R using the “georob” package (Papritz, 2020a, 
b).

Although the explanatory variables used in the modeling stage showed a 
good correlation with Boardings and Alightings, not all of them had statistically 

(9)�(h) =
1

2N

N∑
i=1

[
Z(xi + h) − Z

(
xi
)]2

(10)y∗
(
x0
)
=
[
Xo

]
[�] +

[
VT
s0

][
V−1
s

]
[�]

(11)V(h) = c0 + c1 − �(h)
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significant parameters in all the models in which they participated. Thus, in the 
case of global models (linear and Poisson regressions), it was established that, in 
addition to presenting the lowest Squared Error among the models analyzed in 
each category, the model with the best performance should also contain only vari-
ables whose parameters were statistically significant for a level of at least 90% 
confidence interval (p < 0.10).

Figure 2 illustrates the modeling structure adopted in this article, from a sim-
pler to a more complex approach. The figure summarizes the formulations previ-
ously described, illustrating the disadvantages and advantages in each stage of the 
sequence of models tested here.

The comparison between the best models in each category was performed 
using various goodness-of-fit measures, namely: Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE) (Hollander & Liu, 2008) and percentage of 
error, which must be close to 0 to reflect a good performance of the technique. 
To verify the best fit of local models over the global ones, the Akaike weight 
(Fotheringham et al., 2003) was calculated for the following pairs of models: (1) 
GWR and Linear Regression; and (2) GWPR and Poisson regression. Based on 
the AIC, which helps to choose the most parsimonious model from a set of com-
peting models, the Akaike weight (w) for model i is given by Eq. 12.

As the Akaike weights of models being compared sum to 1, this measure rep-
resents the likelihood that each model is the best. So, the greater the weight, 
the greater the probability of the respective model being the best (Fothering-
ham et  al., 2003). The results and discussion about these points are described 
in “Results and Discussion” section.

(12)wi =
exp

�
−AICi∕2

�
∑

j exp
�
−AICj∕2

�
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• Simple structure

• Easy 

interpretation

• Easy calibration

Linear 
Regression

Geographically
Weighted Poisson 

Regression

Limitations:

• More appropriate 

for continuous 

variables

• Independence of 

errors

• Constant 

variance

Advantages:

• Count data 

model

• Variance varies 

as a function of 

the mean

• Predicts only non-

negative values

Poisson 
Regression

Limitations:

• Do not account 

for spatial 

dependence of 

data

Advantages:

• Accounts for spatial 

autocorrelation

• Accounts for spatial 

heterogeneity of 

parameters 

Limitations:

• Assumes data 

normality

• Constant variance

Advantages:

• Count data model

• Accounts for spatial 

autocorrelation

• Accounts for spatial 

heterogeneity of 

parameters 

Limitations:

• May require an

expressive amount of

data

Geographically
Weighted

Regression
Advantages:

• Appropriate for 

cases when little 

information is 

available

• Accounts for spatial 

autocorrelation

• Robust estimators 

of the variogram 

reduce the effect of 

outliers from non-

normal data

Universal 
Kriging

Limitations:

• Assumes data 

normality

• Do not account for

spatial 

heterogeneity of 

parametersGradual improvements

Fig. 2  Comparison of models focusing on count and spatially dependent data
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Results and Discussion

Table  4 consolidates the descriptive measures of the data used in the present 
study. Figure  3, in turn, shows the spatial variation of the variables of interest, 
and of population, income, land use and stations around the 6045-10 bus line. 
From the linear correlation analysis, five predictors went to the Boarding mod-
eling stage: population; commerce and service area (com serv area); distance 
to the nearest train or metro station (station distance); distance to the nearest 
bus terminal, train or metro station (intra/intermodal dist), replacing the previ-
ous variable; and average family income (income). For Alightings, the following 
predictors were selected: population; average frequency (frequency); distance to 
the nearest train or metro station (station distance); and average family income 
(income). For the sake of brevity, only the explanatory variables that were main-
tained in the final models of each of the categories described in the previous sec-
tion are shown, as well as the dependent variables.

Despite the effort to collect the other variables, many pairs of potential predictors 
showed a statistically significant (p < 0.10) Pearson coefficient correlation greater 
than 0.60. Bearing in mind that, in the presence of multicollinearity, the addition 
of more covariates does not significantly improve the performance of the model but 
can lead to misunderstandings in the value of the parameters, several covariates of 
Table 3 were discarded. In addition, adding more information to the modeling can 
lead to high costs due to data collection, making it difficult to apply the equations. 
However, even though several predictors were discarded, the set of variables chosen 
has both data related to potential demand and supply, that is, information regarding 
land use, socioeconomic features and the transport system around bus stops.

It is observed that both dependent variables demonstrate the positive asymme-
try commented in “Materials and Method” section: their median is less than the 
mean and, in the case of Alightings, this difference is even more substantial. The 
null number of users boarding and alighting occurs only once in the set of trips 
made from 5 a.m. to 11.59 p.m.; at the last bus stop for Boardings, and at the first 
one, for Alightings, as expected.

Moran’s I results for Boardings and Alightings were 0.34 and 0.26, respec-
tively. Both of them had associated p-value equal to 0. The spatial autocorrela-
tion of Boardings and Alightings is illustrated by Fig. 3, which reveals that most 
passengers enter the 6045-10-1 line at its first bus stops, in the southwest region 
of the map. However, there are other peaks along the route until it reaches its last 
bus stops, in the northeast portion of the map. The inverse direction (6045-10-2 
line) shows the opposite, as the number of passengers alighting is low in its first 
stops and starts to increase as the line runs along its route.

Despite there being some spatial correlation between the two variables of 
interest, the authors decided to perform the modeling separately as a way to 
compensate for the small number of bus stops with Boarding and Alighting data 
available. Therefore, it would be possible to verify the consistence of the mod-
els’ results. In addition, as the 6045-10-1 and 6045-10-2 lines share only one bus 
stop, adding Boardings and Alightings was not an option.
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Figure  3c  shows that the case study lines are situated in a densely populated 
area in the southwest region of São Paulo, whose main center also corresponds to 
the city´s geographic center. This area is characterized by households with low-to-
medium income (Fig. 3d), however high-income households are present at the end 
of the inbound trip (Boardings) and the beginning of the outbound trip (Alightings). 
In the case of the commerce and service area variable, which explained Boardings 
only, there is a preponderance of null values   in its distribution of approximately 
60%. In fact, as shown in Fig. 3e, the 6045-10 line runs through a predominantly 
residential area, with a few blocks of commercial or residential and commercial 
related use.

The following subtopics detail the results of Boarding and Alighting modeling. 
As defined in “Materials and Method” section, for each type of model, all possible 
combinations of covariates were considered, in order to find the set of predictors that 
generated the smallest Squared Error. Thus, for Boardings, there were 23 possible 
models in each category; and for Alightings, there were 15. The 8 surplus Board-
ing models refer to cases in which the station distance variable was replaced by the 
intra/intermodal dist variable, which showed a better performance in some situa-
tions. Since, in the case of geographically weighted models, the bandwidth can be 
optimized in two different ways, within the scope of GWR and GWPR, the number 
of possible models was twice that of the other categories.

 Trip direction  Trip direction 

a) 

d) 

c)b)

e) f) 

Fig. 3  Maps of a Boardings along 6045-10-1 line; b Alightings along 6045-10-2 line; c Population den-
sity at the TAZ level; d Average household income at the TAZ level; e Predominant land use at the block 
level; and f Bus, train and metro stations in the vicinity of the lines of interest
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Boardings

Table  5 shows the results of the sequence of calibrated models for the Boarding 
dependent variable. In a preliminary analysis, the Negative Binomial regression, 
which can model the overdispersion phenomenon, that is, when the variance of 
the data exceeds its mean, was also considered. However, their results were worse 
than those of the Poisson regression, both in the case of Boarding and Alighting. 
Thus, only the Poisson model, among the models for count data, will be shown in 
the present study. Bearing in mind that, in the generalized global model analysis, 
the Poisson regression performed better than the Negative Binomial, we did not use 
GWNBR in the modeling stage, which is why this model does not appear in the 
results.

The linear regression model for Boardings is 
Boardings = −47.43 + 0.02 ∗ Population + 34.17 ∗ Comservarea + 0.04 ∗ Stationdistance . The sign obtained for 
the predictors’ coefficients, positive in the three cases, reveals that the greater the 
number of inhabitants and the provision of commerce and services around the bus 
stops, the greater the number of Boardings at them. For example, for each 1 new 
hectare of commerce and services area, the Boardings volume is likely to increase 
by 34 passengers, if the other attributes are held constant. In the case of popula-
tion, an increase of one passenger boarding is expected to occur only if the number 
of inhabitants increases by 1∕0.02 = 50 , ceteris paribus. Recall that the set of trips 
embedded in the dependent variable covers a typical full day (from 5 a.m. to 11.59 
p.m.), therefore users who may have jobs along the 6045-10-1 line may have used 
any of its 47 bus stops to return home at the end of the day. In addition, consider-
ing that this line departs from a distant region of train and metro stations, slowly 

Table 5  Global and local models for Boardings along the 6045-10-1 line (N = 47)

* Number of neighbors corresponding to the optimal bandwidth. In local models GWR and GWPR, the 
bus stop where the model is calibrated does not participate in the calibration. GWR: Geographically 
Weighted Regression; GWPR: Geographically Weighted Poisson Regression; UK: Universal Kriging

Model/Predictor Intercept Population Com serv 
area

Station 
distance

Intra/inter-
modal dist

Income

Linear regression -47.43522 0.02357 34.17471 0.03721
Poisson regression 3.55100 0.00021 0.07332 0.00058 -0.00010
GWR 
(N* = 19)

Min -5.95226 -0.02893 -33.92728
25% -2.46590 0.01392 -31.05199
50% 68.28957 0.02083 7.94510
75% 105.03428 0.04605 46.72116
Max 278.22104 0.05380 89.67780

GWPR
(N* = 19)

Min 1.93027 -0.00013 -0.72354 -0.00236 -0.00018
25% 2.51549 0.00012 -0.56295 -0.00027 -0.00016
50% 3.22689 0.00029 0.01206 0.00011 -0.00003
75% 4.15367 0.00034 0.14317 0.00103 0.00001
Max 5.61469 0.00036 0.56053 0.00120 0.00016

UK -112.90000 0.03755 0.05203
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approaching some of them as it travels the route, the sign of the third explanatory 
variable is also plausible, that is, the largest volumes of Boardings are observed in 
the most distant areas of the central regions, and it is in these environments where 
the train and metro stations are usually located.

The resulting model for Poisson regression is 
Boardings = exp(3.55 + 0.00021 ∗ Population + 0.07332 ∗ Comservarea + 0.00058 ∗ Intra∕interdistance − 0.00010 ∗ income) . 
Income, as expected, appears with a negative sign, that is, bus stops with areas 
of influence characterized by a population with lower income, tend to generate a 
greater number of Boardings than those located near high-income regions. There-
fore, if the household income increases by BRL 100.00 (USD 18.00 (Feb. 2021)) 
and the other attributes are held constant, the associated decrease in the number of 
Boardings is of 

[
exp(−0.00010 ∗ 100) − 1

]
= 1.00%.

The maps in Fig. 4 show the spatial variation of the estimated parameters of the 
GWR and respective p-values. It can be seen that the parameters of certain bus stops 
were negative. The resulting conclusion would be that the larger the population 
around these bus stops, the lower the number of Boardings. Probably, increasing 

Com serv area
-33.93 - -26.99
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4.72 - 26.34
38.96 - 59.97
66.41 - 89.68

Population p-value
> 0.10
< 0.10

Com serv p-value
> 0.10
< 0.10

Population
-0.029 - -0.001
0.006 - 0.009
0.013 - 0.029
0.044 - 0.046
0.049 - 0.054

0 21
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Intercept p-value
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< 0.10

Intercept
-5.95 - -2.44
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0 21
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Fig. 4  Estimated Boarding GWR parameters and respective statistical significance

296 S. d. F. Marques, C. S. Pitombo

71



1 3

the population in these regions would stimulate the use of other travel modes. The 
negative sign may also reflect the fact that, for these bus stops, the model lacks other 
explanatory variables. However, both in the case of population and area of com-
merce and services, all negative parameters were not statistically significant, which 
means that these variables probably do not contribute to explaining the variation of 
Boardings at these bus stops. The local R² ranged from 0.569 to 0.972, with 70% of 
the models calibrated for each bus stop showing a determination coefficient greater 
than 0.700.

The parameters estimated in the Boarding GWPR and respective p values   
are shown in Fig.  5. When comparing the map of population coefficients and 
Fig. 3c (population density), it can be seen that negative signs of population occur 
in densely populated regions but with a relatively small Boardings volume. On the 
other hand, the first and last bus stops of the inbound trip correspond to high and 
low density areas, respectively, showing proportionately bigger and smaller values 
of Boardings, which justifies the positive coefficient of the population for these bus 
stops. In addition, while the Poisson regression indicates an increase of only 7.61% 
in the number of Boardings if the commerce and services area increases by 1 hec-
tare, there are points with an associated increase ranging from 60 to 70% in GWPR 
(the last category in Fig. 5), if the other attributes are held constant.

In the case of the intra/intermodal distance variable, the negative coefficients can 
be explained as follows: some bus stops located very far from bus terminals, metro 
or train stations may have their Boarding volume negatively impacted as they are 
unable to serve as elements of intra and intermodal integration. Stronger positive 
impacts of the proximity to stations can be seen at bus stops situated near the end of 
the inbound trip, densely supplied by stations (Fig. 3f), and where there is a peak in 
the Boardings volume. In the case of income, positive signs indicate bus stops with 
a Boardings volume proportional to the surrounding average income, while negative 
effects can be seen in areas with high Boardings volume, but low income, and in 
areas with low Boardings volume, but high income. Statistically significant positive 
coefficients belong to bus stops surrounded by low-to-medium income areas, and 
where an intermediate Boardings volume occurs, as shown in Fig. 3.

Figure 5 shows that there is a much larger number of bus stops with statistically 
significant parameters in GWPR compared to GWR. Bearing in mind that, in the 
calibration of both models, the data used was the same, this result may suggest that 
GWPR is more suitable for Boarding modeling at the bus stop level than GWR. 
Based on the number of bus stops whose parameters were statistically significant 
(p < 0.10), the covariates can be ranked by degree of importance as follows: popula-
tion, intra/intermodal distance, area of commerce and services, and income. Another 
important observation is that all explanatory variables have bus stops with statis-
tically significant positive and negative coefficients, which corroborates the spa-
tial heterogeneity of the parameters estimated in the stop-level Transit Ridership 
modeling.

Afterward, the UK model is presented. Note that the UK with the lowest SE 
retained only two explanatory variables: population and station distance, both with 
expected signs. This result emerges from the formulation of this regression itself: 
comprising a linear combination of predictors and β coefficients to be estimated, UK 
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Fig. 5  Estimated Boarding GWPR parameters and respective statistical significance
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assumes that the spatial autocorrelation of the database is present in the residuals of 
the model. Thus, the best fit for the UK occurs in cases where the explanatory vari-
ables are able to clearly discriminate this spatial dependence on residuals, and the 
inclusion of too many predictors may compromise this function.

Alightings

Table 6 consolidates the models calibrated for Alightings.
The optimal linear regression for Alightings contained, in a similar way to that of 

Boardings, three explanatory variables, two of which exactly coincide with those of 
the previous model: population and intermodal distance. While the intensity of the 
distance effect remains similar to the case of Boardings, the impact of the population 
variable is greater regarding Alightings. If the population increases by 50 inhabit-
ants, the number of Alightings is expected to increase by 1.5, ceteris paribus.

The negative sign of the average frequency variable reveals that regions with a 
dense coverage of the PT network present a volume of passengers alighting less 
than areas less supplied by the system. This conclusion shows that most trips on 
the 6045-10-2 line are attracted to places with less accessibility to PT than in the 
central regions. This destination may refer to the household of PT users, indicating 
that, probably, the return line 6045-10-2 serves a considerable portion of work-home 
trips. Assuming that on line 6045-10-2, return trips from work prevail, it can be 
stated that the sign of the income coefficient in the Poisson regression is also con-
sistent with that expected.

The spatial variability of the parameters estimated in GWR and GWPR, together 
with their statistical significance, is shown in Figs. 6 and 7, respectively. The local 
R² for GWR ranges from 0.265 to 0.996, in which 70% of the bus stops have an R² 
value above 0.600.

Following the same pattern of Boardings, GWPR also maintained the same 
predictors that appeared in the final Poisson regression. As both 6045-10-1 and 
Table 6  Global and local models for Alightings along the 6045-10-2 line (N = 49)

Model\Predictor Intercept Population Frequency Station distance Income

Linear regression 228.42797 0.03072 -64.70247 0.03009
Poisson regression 5.33800 0.00019 -0.37750 0.00020 -0.00007
GWR 
(N = 17)

Min -96.91727 -0.02829 -0.02806
25% -22.90870 0.01017 -0.01540
50% -3.88202 0.04913 -0.00006
75% 13.60073 0.06111 0.00055
Max 303.72456 0.09157 0.04025

GWPR
(N = 20)

Min 1.17558 -0.00016 -0.49110 -0.00090 -0.00023
25% 1.55685 0.00027 -0.19205 -0.00023 -0.00007
50% 2.79466 0.00030 -0.00026 0.00017 -0.00003
75% 4.39613 0.00034 0.15553 0.00030 0.00005
Max 7.68902 0.00058 0.35559 0.00035 0.00007

UK -159.20000 0.04209 0.06845
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6045-10-2 lines have itineraries close to each other in space, similar relationships 
between Boardings and Alightings and their predictors are expected.

The expected effects of the frequency variable on Alightings vary from − 38.80% 
to + 42.70% if the frequency increases by 1 trip/hour and the other attributes are 
held constant. This impact is only − 31.44% in the global Poisson model. Bus stops 
whose average frequency of the other lines that pass through them positively impacts 
the volume of Alightings possibly serve as intramodal integration nodes.

The p values found suggest the following classification of the degree of impor-
tance of the parameters to explain Alightings: population, intermodal distance, fre-
quency and average household income. An interesting result is that the two most 
important explanatory variables for Boardings and Alightings were the same in 
GWPR: population and distance to the nearest station, or to the nearest station or 
bus terminal. It is important to note that population is part of the group of inde-
pendent variables of potential demand, and intermodal or intra/intermodal distance 
comprises the group of supply variables. Therefore, the local modeling that also 
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Fig. 6  Estimated Alighting GWR parameters and respective statistical significance
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Fig. 7  Estimated Alighting GWPR parameters and respective statistical significance
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accounts for the asymmetry of the travel demand variables, contains explanatory 
variables with statistically significant parameters from both categories of predictors.

The best performing Alighting UK, in turn, presents the same explanatory vari-
ables as its Boarding counterpart, but with slight differences in the estimated coef-
ficients. In both cases, the theoretical semivariogram with the best performance was 
also the same: the exponential model.

Goodness‑of‑fit Comparison of All Models

Table 7 summarizes the results of the goodness-of-fit measures applied to the global 
and local models of Boardings and Alightings.

In general, the techniques can be ranked, from the weakest to the strongest per-
formance, as follows: (1) traditional linear regression; (2) Poisson regression; (3) 
GWR; (4) GWPR; and (5) UK. Note that, in the case of Boardings, the Poisson 
regression was better than the linear regression only regarding the MAE. However, 
the classic linear model, which assumes continuous variables of interest, has the 
drawback of allowing the prediction of negative values for Boardings and Alight-
ings, which does not occur in the Poisson regression.

Based on this and using the MAE results for Alightings, the advantages, that is, 
relative reductions in error arising from the incorporation of asymmetry and auto-
correlation, in isolation and together, to the process of modeling, can be illustrated 
as follows: -17.11% in the Poisson regression; -40.86% in GWR; -42.58% in GWPR; 
and − 92.27% in the UK with the best performance. In Boardings, the following 
sequence is verified: -1.14%, -27.50%, -38.02% and − 92.41%, using, as a reference, 
in both cases, the absolute mean error of the linear regression.

Basically, the global models differ from the local ones in that, in the second type 
of regression, bus stops with equal values   of the explanatory variables are unlikely 
to have an identical predicted value for Boardings and Alightings, since, in this case, 
the result also depends on the spatial arrangement of the bus stops. However, while 
GWR and GWPR are considered local models because they allow, among other con-
veniences, the discrimination of the spatial heterogeneity of the model parameters, 
the local character of UK comes from the semivariogram function, which presents 
advantages in the case of data that are difficult to acquire. Thus, when comparing the 
two best performing methods, it can be seen that GWPR contributes to the knowl-
edge of the way in which the Transit Ridership in each region would respond locally 
to changes in land use and in the transport system, guiding the transit-oriented urban 
development. As shown in Tables 5 and 6, the range of variation of the parameters 
in the GWR and GWPR corroborates the existence of this spatial heterogeneity. UK, 
in turn, provides accurate estimates with a small amount of information.

When it refers to goodness-of-fit measures based on the log-likelihood, the AIC 
of local models was lower in comparison with global models. The Poisson and Lin-
ear Regression for Boardings had an AIC of 2,332 and 552, respectively, while the 
AIC for GWPR and GWR was, respectively, 773 and 520. For Alightings, the results 
showed the same pattern: AIC of 579 and 542 for Linear Regression and GWR, 
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respectively; and 2,186 and 992, respectively, for Poisson Regression and GWPR. 
As the linear and Poisson models come from different probability distributions, the 
AIC results must not be used to compare all models simultaneously, but they con-
firm once again the better fit of local models over their global counterparts. The 
Akaike Information Criteria for the UK Boardings and Alightings was, respectively, 
554 and 580. Although these values are higher than those for LR, the AIC from LR 
does not take into account the semivariogram part of UK, which is nonlinear. There-
fore, the comparison between UK and its non-spatial counterpart (LR) should be 
made by the measures shown in Table 7.

Table 8 displays the Akaike weights from the comparison between local, GWPR 
and GWR, and global models, PR and LR, respectively. Based on these weights of 
evidence, GWR and GWPR are certainly better options than their global counterpart.

Comparison with Previous Studies

Table 9 summarizes the characteristics of the models for Boarding and Alighting at 
the bus stop level already developed, together with their respective goodness-of-fit 
measures. The models presented in the present study were also included, for com-
parison purposes.

Attention is drawn to the fact that most of the models are from the USA, with 
only one representative in the Netherlands. This is probably due to the difficulty 
of acquiring reliable data on the movement of passengers along bus lines, that is, 
Boarding and Alighting per bus stop. The traditional Boarding and Alighting counts 
survey, which supports the collection of such information, is quite expensive and 
few municipalities have resources for this purpose. Automatic passenger counters, 
which could replace Boarding and Alighting survey, have not yet been popularized, 
especially in less developed countries. An alternative would be to synchronize the 
smart card data with the GPS of the buses, however, even in this case, some assump-
tions would have to be made to estimate the Boarding and Alighting bus stops, 
which could end up affecting the accuracy of the results. Thus, the present research, 
by providing Boarding and Alighting models per bus stop in a developing country, 
contributes to knowledge of how the relations between land use and transit ridership 
on a bus stop level take place in these regions.

It can also be observed that the studies address, as a dependent variable, only the 
number of Boardings or the sum of Boardings and Alightings. Although it is not 
wrong to assume that there is some correlation between Boardings and Alightings, 

Table 8  Akaike weights Model Boardings Akaike weights Alightings 
Akaike 
weights

LR 0.000 0.000
GWR 1.000 1.000
PR 0.000 0.000
GWPR 1.000 1.000

304 S. d. F. Marques, C. S. Pitombo

79



1 3

Ta
bl

e 
9 

 F
ea

tu
re

s a
nd

 re
su

lts
 o

f r
id

er
sh

ip
 m

od
el

s a
t t

he
 b

us
 st

op
 le

ve
l

* 
B

es
t m

od
el

 sh
ow

n 
in

 th
e 

re
sp

ec
tiv

e 
stu

dy

Re
fe

re
nc

e
C

ou
nt

ry
D

ep
en

de
nt

 v
ar

ia
bl

e
M

od
el

N
um

be
r o

f 
bu

s s
to

ps
N

um
be

r o
f 

pr
ed

ic
to

rs
G

oo
dn

es
s-

of
-fi

t m
ea

su
re

s

C
hu

 (2
00

4)
U

SA
B

oa
rd

in
g

Po
is

so
n

2,
56

8
15

Lo
g-

lik
el

ih
oo

d 
=

 -1
8,

07
2

Ry
an

 a
nd

 F
ra

nk
 (2

00
9)

U
SA

B
oa

rd
in

g +
 al

ig
ht

in
g 

(lo
ga

rit
hm

)
O

LS
 (l

og
-li

ne
ar

)
3,

58
2

7
A

dj
us

te
d 

R
² =

 0
.3

28
3,

58
2

8
A

dj
us

te
d 

R
² =

 0
.3

30
Pu

lu
gu

rth
a 

an
d 

A
gu

rla
 (2

01
2)

U
SA

B
oa

rd
in

g
N

eg
at

iv
e 

bi
no

m
ia

l 
w

ith
 lo

g-
lin

k*
2,

85
7

12
C

or
re

ct
ed

 q
ua

si
-li

ke
lih

oo
d  =

 4,
43

1

D
ill

 e
t a

l. 
(2

01
3)

U
SA

B
oa

rd
in

g +
 al

ig
ht

in
g 

(lo
ga

rit
hm

)
O

LS
 (l

og
-li

ne
ar

)
7,

21
4

29
A

dj
us

te
d 

R
² =

 0
.6

9
1,

40
0

29
A

dj
us

te
d 

R
² =

 0
.6

2
35

0
29

A
dj

us
te

d 
R

² =
 0

.5
3

K
er

km
an

 e
t a

l. 
(2

01
5)

N
et

he
rla

nd
s

B
oa

rd
in

g  +
 al

ig
ht

in
g 

(lo
ga

rit
hm

)
O

LS
 (l

og
-li

ne
ar

)
1,

23
2

18
A

dj
us

te
d 

R
² =

 0
.7

72
1,

28
4

18
A

dj
us

te
d 

R
² =

 0
.7

62
Th

e 
au

th
or

s
B

ra
zi

l
B

oa
rd

in
g

O
LS

47
3

A
dj

us
te

d 
R

² =
 0

.5
55

Po
is

so
n

47
4

Lo
g-

lik
el

ih
oo

d 
=

 -1
,1

61
G

W
R

 
19

2
A

dj
us

te
d 

R
² =

 0
.7

17
G

W
PR

19
4

Ps
eu

do
 R

² =
 0

.8
47

U
K

47
2

A
IC

 =
 55

4.
45

9
A

lig
ht

in
g

O
LS

49
3

A
dj

us
te

d 
R

² =
 0

.6
02

Po
is

so
n

49
4

Lo
g-

lik
el

ih
oo

d 
=

 -1
,0

88
G

W
R

 
17

2
A

dj
us

te
d 

R
² =

 0
.7

60
G

W
PR

20
4

Ps
eu

do
 R

² =
 0

.8
32

U
K

49
2

A
IC

 =
 58

0.
24

2

305Transit Ridership Modeling at the Bus Stop Level: Comparison…

80



1 3

the present study shows that the variables that explain Boardings and Alightings can 
be different and, even those that are repeated in both cases, result in different coef-
ficients. Thus, the effect of such variables on Boardings and Alightings may vary 
from case to case.

As described in  “Introduction and Background” section, the studies found had 
not yet provided a spatial approach to Boardings and Alightings. Table 9 also shows 
that the number of bus stops used in previous studies is considerably greater than 
that of the present case study, which reveals the availability of variables of interest 
for almost all or the whole bus network in such cities. This coverage, however, is dif-
ficult in regions that have a lack of technology or resources for this purpose.

Regarding the number of predictors, on the other hand, the present study had 
an extensive set of possible explanatory variables. However, the multicollinearity 
analysis reduced this group to only four predictors, both in the case of Boardings 
and Alightings, which did not prevent us from achieving good results. In fact, as the 
available database has a small number of points (47 and 49), the inclusion of more 
predictor data into the modeling would cause the parameters from these predictors 
to have statistical significance issues (p-value > 0.10), especially in the case of GWR 
and GWPR, as they use only part of the database for calibration. Because the main 
focus of the modeling was to predict well Boardings and Alightings, we decided to 
test all possible combinations of predictors (considering only those without or with 
low correlation between them) that could achieve the best performance in goodness-
of-fit measures. Bearing in mind that each model has its own characteristics, the set 
of predictors was different for the five models compared. When it refers to the spa-
tial models (GWR, GWPR and UK), for example, the group of predictors selected 
would be the one that highlights the spatial dependence remaining in the residuals of 
the model, which is an issue that can be found when a small number of specific pre-
dictors is used (in the present case study, the resulting set of predictors was not able 
to control the spatial dependence of Boardings/Alightings in the non-spatial mod-
els). Thus, following this method enabled us to address a problem faced by munici-
palities with a lack of data on travel demand and its intervening factors. However, 
even when more predictor data is included in the model, testing for spatial depend-
ence on residuals of the non-spatial models must not be overlooked, and if autocor-
relation is present, spatial/local models are preferred.

We also recognize that a fairer comparison between the five approaches would 
be possible only if all models had the same set of explanatory variables. However, 
the decision to improve the goodness-of-fit measures for each type of model, as a 
method to achieve the best boarding and alighting estimates, could not retain the 
restriction of the same predictors for all models. This analysis can be tested in future 
studies.

Finally, the UK results are surprising: using only two explanatory variables, the 
Boarding and Alighting UK generated estimates with the median absolute error of 
3.20% and 4.34%, respectively (Table  7). The goodness-of-fit measures obtained 
in the present study indicate that, even though there is not a considerable number 
of predictors, it is possible to develop models with satisfactory prediction perfor-
mance. Although it is recognized that several of the potential predictors shown in 
Table 3 influence the passenger demand, the excess of information embedded in the 
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model makes it difficult to use it to forecast the number of Boarding and Alight-
ing in hypothetical and/or future scenarios or in other cities/regions, since, for this, 
all predictors would also need to be estimated for the same condition. In addition, 
transit ridership models with many explanatory variables are only possible when the 
number of bus stops considered is also large, otherwise problems arise in the statisti-
cal significance of the estimated parameters. Thus, the present study also contributes 
to Boarding and Alighting modeling in cases in which only a small number of bus 
stops have data on the variables of interest and the amount of data on land use and 
transport is scarce.

Conclusions, Main Constraints and Final Recommendations

The aim of the present study was to assess the gains provided by addressing asym-
metry and spatial autocorrelation of stop-level transit ridership in its modeling. 
Global and local models for continuous and discrete data were applied to the Board-
ing and Alighting variables along a bus line in the city of São Paulo, Brazil. The 
results showed that, in fact, there is a gradual improvement in estimates as the two 
peculiarities of transit ridership are accounted for by the modeling.

In this context, the following topics summarize the research contributions of the 
present study:

• The solidification and methodological advancement of Boarding and Alight-
ing at the bus stop level, through a comparison of models that consider specific 
aspects of such variables: asymmetry and spatial autocorrelation.

• The methodological procedure accounts for the lack of data usually faced by 
developing countries. Even though only a few predictors are used, the proposed 
models were able to provide good ridership estimates.

• Spatial dependence plays an important role to improve goodness-of-fit measures 
of stop-level ridership modeling.

• The predictors’ effects on Boarding and Alighting can significantly vary from 
one bus stop to another.

The proposed models (GWPR and UK, for instance) have potential applications 
to urban and bus network planning. Based on the results achieved, the following rec-
ommendations are highlighted:

• The decision on whether to use a local model (GWPR, for instance) or UK for 
ridership prediction may be a matter of availability of data or policy. Coefficients 
from local models can be used to guide urban planning towards increasing transit 
patronage. However, if the main objective is only to achieve accurate ridership 
predictions, UK may be preferred.

• Results suggest that population and station distance (poxy for accessibility) are 
important predictors for Boarding and Alighting and, as such, they should not be 
overlooked in a transit ridership modeling by either GWPR or UK.
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• The proposed models can support the analysis of ridership change in future or 
hypothetical scenarios, based on variations in the predictor information. In addi-
tion, they can provide Boarding and Alighting estimates for bus stops that lack 
these data.

• When ridership estimates are required for an exhaustive number of bus stops, the 
predictor data can be interpolated by means of kriging (or any other method). 
Therefore, a continuous surface of estimated ridership values, covering all the 
bus stops, can be obtained from the spatial models.

• Boarding and Alighting estimates for all bus stops of a route will provide munici-
palities with sufficient information to carry out the bus fleet sizing, as well as the 
bus frequency.

The main constraints of the present study can be outlined as follows:

• Given the small sample available for performing the modeling, the results can 
hardly be generalized. However, the proposed method had the former intention 
of stimulating the use of spatial and local models in the bus stop context, making 
it possible for forthcoming studies with bigger Boarding and Alighting datasets 
to use them and contribute to strengthening the results achieved.

• The dependent variable covers only passengers entering or leaving each specific 
line. However, the desired scenario would be to have the sum of passengers who 
enter or leave all bus lines that pass through the sampled bus stops so we could 
use the models to predict the total ridership in any bus stop.

• Only one of the eight lines was used as a case study. However, the proposed 
method can be easily applied to the remaining lines as well, separately.

In order to stimulate the consolidation of the appropriate transit ridership mod-
eling at the bus stop level, some topics may be recommended for future work, such 
as:

• Calculating the goodness-of-fit measures based on a validation sample apart 
from the calibration sample used in the present analysis. This procedure would 
enable us to verify if the techniques of better performance in the calibration 
would also stand out in the validation.

• To address the cases with more than one line, including the analysis of overlap-
ping between lines.

• To test semiparametric geographically weighted models, which admit both pre-
dictors of fixed and spatially varying parameters.

• Bearing in mind that UK was the only geostatistical model used, future research 
could also benefit from the comparison between UK and another multivariate 
interpolator from Geostatistics, such as Cokriging.

• To address the boarding and alighting data from multiple time bands in a dis-
aggregated way, using geographically weighted models for panel data and spa-
tio-temporal Geostatistics. In this case, the temporal autocorrelation of travel 
demand could be accounted for by the modeling, together with the already 
addressed factors: asymmetry and spatial autocorrelation.
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A B S T R A C T   

Transit ridership modeling at the bus stop level is an important tool for bus network planning and transit- 
oriented development. However, many cities, especially in developing countries, face a lack of boarding and 
alighting data due to the high costs of collection. Solutions based on smartcards often rely on assumptions that 
negatively affect the data accuracy. Noting that previous studies suggest the existence of spatial heterogeneity 
and dependence in factors affecting stop-level ridership, the present paper proposes the application of 
Geographically Weighted Negative Binomial Regression (GWNBR) to modeling the transit ridership along bus 
lines in São Paulo – SP (Brazil) under missing data conditions. Four important topics are analyzed: 1) whether the 
spatial variation of predictors’ effects is statistically significant; 2) the consistency of parameter estimates; 3) the 
prediction power sensitivity to missing data scenarios; and 4) the use of network distances replacing the tradi-
tional Euclidean ones. Of the five predictors that explained the transit ridership better, overlapping and fre-
quency proved to have coefficients with statistically significant spatial variation. Goodness-of-fit measures 
indicated that GWNBR is an effective tool to the transit ridership estimation in uncounted bus stops, even when 
the availability of data is low. GWNBR in missing data scenarios could, in fact, reproduce the spatial pattern of 
effects shown in the complete database model, for some explanatory variables. Network distances may better 
represent the spatial relationship between transit ridership and some of its predictors. In addition, GWNBR 
models were able to address the spatial dependence found in the Negative Binomial Regression.   

1. Introduction and background 

Passengers boarding and alighting from bus lines at each bus stop of 
a transit system is valuable information for transit-oriented develop-
ment and bus transit network planning (Ceder, 2007). In this context, 
transit ridership (boarding plus alighting) modeling at the bus stop level 
is an important tool to measure relationships between bus patronage and 
built environment characteristics around bus stops, giving support to 
urban policies, and providing estimates of boarding and alighting 
quickly and economically (Cervero, 2006). 

Ridership models at the bus stop level found in the literature can be 
grouped by their main motivation and the type of model used. Most bus 
ridership studies have the main intention of identifying the factors 
affecting the stop-level passenger demand, while assuring good rider-
ship estimates (Chu, 2004; Dill et al., 2013; Kerkman et al., 2015; 
Rahman et al., 2021). Measuring the impact of built environment and 
transport system characteristics on bus ridership contributes to devel-
oping urban policies towards sustainable development. At the same 

time, boarding and alighting estimates provide municipalities with 
enough information for a solid bus network planning, especially in cases 
of a lack of ridership data. In addition to these main contributions, 
recent articles have used the statistical modeling as a tool to measure the 
impact of other travel modes on bus ridership (Rahman et al., 2019) and 
to analyze how the passenger demand behaves from extreme weather 
events, considering the infrastructure provided by the bus stop (Lanza 
and Durand, 2021; Miao et al., 2019; Ngo, 2019). Table 1 consolidates 
some main characteristics from all studies found so far. 

Previous studies have modeled boarding and alighting, separately, 
but also the total transit ridership, and, depending on the availability of 
data, different time bands are used. Table 1 reveals that the number of 
bus stops is a feature of great variability throughout the models, 
although most cases are concentrated in the United States of America. A 
reason for this might be the high cost for collecting boarding and 
alighting data, making their modeling hard to carry out in developing 
countries. While most case studies use Automatic Passenger Count (APC) 
data, which provided boarding and alighting information for all or most 
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bus stops, the Brazilian ones (Marques and Pitombo, 2021a,b, 2022) 
relied on data from a boarding and alighting count survey, whose var-
iables of interest were available only for 0.6% of the bus lines from São 
Paulo. 

A document from São Paulo Mobility and Transport Secretary 
highlighted its interest in installing APCs on the São Paulo public buses 
in 2018 (São Paulo, 2018). The document presented a cost per APC unit 
of BRL 3750.51 and 1308 APCs would be bought, resulting in a total of 
BRL 5 million, approximately (in 2018, BRL 1.00 varied from USD 
0.2388 to USD 0.3129). Despite the affordable cost related to this 
acquisition, it would cover only 1.5% of the São Paulo bus fleet and was 
eventually cancelled in 2018. An announcement made in 2022 states 
that a new Operations Center for SPTrans (the administrator of the São 
Paulo bus system) is under construction and must be finished until the 
end of 2023 (São Paulo, 2022). According to the announcement, an 
investment of BRL 63.7 million will provide new onboard technologies 
such as cameras, APCs, wi-fi, traffic control and service measures. If we 
consider the installation of APCs in 15% of the São Paulo bus fleet, such 

as the case of Chakour and Eluru (2016), the cost would be BRL 49 
million (with no correction for inflation from 2018 to 2023), which is 
almost all the resources to implement the new Operations Center and 
Monitoring System. 

Even in developed countries, APC availability often does not cover 
all bus fleets. In our literature review, 9 studies, carried out in developed 
countries, were based on APC data (Chakour and Eluru, 2016; Chu, 
2004; Cui et al., 2022; Dill et al., 2013; Lanza and Durand, 2021; Miao 
et al., 2019; Mucci and Erhardt, 2018; Ngo, 2019; Shi et al., 2021). 
Depending on the coverage of the counters, an estimate of cross- 
sectional boarding and alighting can be made for all bus stops, by 
replacing the devices from one vehicle to another in a short-time period. 
However, in some of the studies cited, the ridership variable is not 
available for all bus stops (Miao et al., 2019) or a method is used to 
expand the ridership from sampled buses to the whole system (Erhardt 
et al., 2017; Mucci and Erhardt, 2018), which does not account for 
spatial dependence. Chakour and Eluru (2016) reported to work with 
estimates coming from a representative sample of trips. There are also 

Table 1 
Ridership studies at the bus stop level.  

Reference Case study location N. bus 
stops 

Dependent variable Regression model 

Johnson (2003) Minneapolis - St. Paul, 
USA 

2568 Weekday boarding Linear Regression 

Ryan and Frank 
(2009) 

San Diego, USA 3582 Daily boarding + alighting 
(logarithm) 

Linear Regression (log-linear)      

Cui et al. (2022) Portland, USA 6261 Daily boarding Linear Regression (log-linear)      

Dill et al. (2013) Portland, USA 7214 Weekday average boarding +
alighting (logarithm) 

Linear Regression (log-linear)  
Lane County, USA 1400  
Rogue Valley, USA 350 

Kerkman et al. 
(2015) 

Arnhem–Nijmegen, 
Netherlands 

1232 Average daily boarding + alighting 
(logarithm) 

Linear Regression (log-linear)  

1284      

Mucci and Erhardt 
(2018) 

San Francisco, USA 6261 Average of the number of passengers 
boarding and alighting at each route- 
stop 

Linear Regression (log-linear) 

Frei and 
Mahmassani 
(2013) 

Chicago, USA 11,000+ Number of boardings at half hour Linear Regression (log-log)      

Chu (2004) Jacksonville, USA 2568 Weekday total boarding Poisson Regression      

Pulugurtha and 
Agurla (2012) 

Charlotte, USA 2857 Average daily boarding Linear, Poisson, Gamma, and Negative Binomial      

Ngo (2019) Lane County, USA 1500 Boarding + alighting from 5 am to 11 
pm 

Negative Binomial 

Lanza and Durand 
(2021) 

Austin, USA 1610 Boardings per day (13 h to 18 h) Multilevel Negative Binomial      

Shi et al. (2021) King County, USA 96 Weekday boarding / Weekday 
alighting 

Negative Binomial (with conditional tree inference for grouping 
predictors)      

Chakour and Eluru 
(2016) 

Montreal, Canada 8000 Boarding / Alighting (AM Peak; PM 
Peak; Off Peak Day; Off Peak Night) 

Ordered probit model 

Rahman et al. 
(2019) 

Orlando, USA 3745 Weekday boarding / Weekday 
alighting 

Joint panel mixed grouped ordered logit model 

Miao et al. (2019) Salt Lake City, USA 5879 Average boardings per bus trip at an 
individual bus stop for weekdays (ln) 

Panel regression fixed-effects model  

5854 Average boardings per bus trip at an 
individual bus stop for weekends (ln) 

Marques and 
Pitombo (2021a) 

São Paulo, Brazil 57 Boarding from 20 h to 23 h59 in a 
typical day (logarithm) 

Universal Kriging and Linear Regression 

Marques and 
Pitombo (2021b) 

São Paulo, Brazil 96 Boarding from 20 h to 23 h59 on a 
typical day 

Linear Regression with Ordinary Kriging of residuals 

Rahman et al. 
(2021) 

Orlando, USA 3495 Weekday boarding / Weekday 
alighting 

Spatial error model / Spatial lag model and Linear Regression 

Marques and 
Pitombo (2022) 

São Paulo, Brazil 47 Weekday boarding Universal Kriging, GWPR, GWR, Poisson regression and Linear 
RegressionUniversal Kriging, GWPR, GWR, Poisson regression and 
Linear Regression  49 Weekday alighting  
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cases in which faulty APC recordings caused trips to be removed from 
the database (Cui et al., 2022). 

Based on the type of model used, the stop-level ridership studies can 
be divided into four categories. The first group uses the traditional 
Linear Regression (LR) (Cui et al., 2022; Dill et al., 2013; Frei and 
Mahmassani, 2013; Johnson, 2003; Kerkman et al., 2015; Mucci and 
Erhardt, 2018; Ryan and Frank, 2009). In most LR cases, the positive 
asymmetry of the dependent variable is dealt with by taking the natural 
logarithm of the data. The second one consists of studies addressing 
asymmetry and/or overdispersion of transit ridership by applying count 
data models: Poisson Regression and/or Negative Binomial Regression 
or a variation of it (Chu, 2004; Lanza and Durand, 2021; Ngo, 2019; 
Pulugurtha and Agurla, 2012; Shi et al., 2021). The third group falls into 
the framework of categorical variable modeling, by using transit rider-
ship data divided into classes (Chakour and Eluru, 2016; Rahman et al., 
2019). Finally, the last group covers spatial regression models to address 
spatial dependence of transit ridership (Marques and Pitombo, 2021a,b, 
2022; Rahman et al., 2021). Within the third and fourth groups, some 
studies have also accounted for temporal autocorrelation of their panel 
dataset, by using appropriate models for panel data (Miao et al., 2019; 
Rahman et al., 2019), or adding spatiotemporal lagged variables as 
predictors (Rahman et al., 2021). 

Selecting the most appropriate modeling routine has been condi-
tioned by important characteristics usually present in transit ridership 
data. Boarding and alighting are count data, they present asymmetry, 
and often overdispersion as well, if the variance of the dependent vari-
able exceeds its expected mean (Hilbe, 2014). Spatial dependence, 
which is the fact that points close to each other in space are more related 
than distant ones (Tobler, 1970), has also been found in ridership data 
(Marques and Pitombo, 2021a,c, 2022). Under these circumstances, 
traditional models, such as Linear Regression and Poisson Regression, 
result in biased standard errors, as their basic assumptions are violated 
(Hilbe, 2014; Yan and Su, 2009). Hence, the interpretation of resulting 
coefficients can be misleading. In addition, passenger flow is a variable 
that occurs along the bus network. As such, proximity measures based 
on the Euclidean distance between points, aiming to incorporate the 
spatial dependence of the variable of interest, can be a rough simplifi-
cation of the analyzed phenomenon (Lu et al., 2014a). 

Although boarding and alighting modeling has been increasingly 
evolving over time, studies found do not account for some of the 
important features of transit ridership variables aforementioned. 
Research using spatial approaches overlook the network distance factor 
and overdispersion. The remaining studies do not address potential 
spatial dependence of transit ridership, and, hence, the network distance 
as well. However, research comparing multiple modeling techniques has 
shown that addressing these features can provide a better fit of transit 
ridership data: Negative Binomial Regression, which incorporates 
overdispersion of transit ridership, proved to perform better than Linear 
Regression and Poisson Regression in the case study by Pulugurtha and 
Agurla (2012). Spatial regressions have also improved goodness-of-fit 
measures of bus ridership modeling compared to the LR case (Marques 
and Pitombo, 2021a,b; Rahman et al., 2021). Incorporating asymmetry 
and spatial dependence, isolated and together, was fundamental to 
improve boarding and alighting estimates in the case study by Marques 
and Pitombo (2022). 

A thorough analysis of all cited studies allowed the extraction of the 
main predictors of transit ridership, which were the ones appearing 
multiple times with statistical significance in different models. Table 2 
shows these explanatory variables, and the sign of their respective effect 
on boarding, alighting and/or transit ridership. 

From the percentage of no-vehicle households to the distance to the 
nearest station, it can be observed that all predictors showed both pos-
itive and negative signs in different case studies. Cases where the same 
dependent variable had predictors with opposite signs (in the same 
study) refer to different cities (Dill et al., 2013), different years (Kerk-
man et al., 2015), or different time band and ridership category 

Table 2 
Main predictors of transit ridership.  

Predictor Positive sign Negative sign 

No-vehicle households 
(%) 

Frei and Mahmassani 
(2013)1*, Ryan and Frank 
(2009)3, Marques and 
Pitombo (2021b)1, Chu 
(2004)1 

Dill et al. (2013)3 

Youth (%) Johnson (2003)1, Dill 
et al. (2013)3, Frei and 
Mahmassani (2013)1,  
Rahman et al. (2019)1/2,  
Rahman et al. (2021)1/2 

Ryan and Frank (2009)3,  
Chu (2004)1 

Population Johnson (2003)1, Dill 
et al. (2013)3, Kerkman 
et al. (2015)3, Marques 
and Pitombo (2021c)1, Cui 
et al. (2022)1, Marques 
and Pitombo (2022)1/2 

Frei and Mahmassani 
(2013)1, Marques and 
Pitombo (2021b)1,  
Marques and Pitombo 
(2022)1/2 

Residential area Johnson (2003)1, Dill 
et al. (2013)3, Frei and 
Mahmassani (2013)1,  
Chakour and Eluru 
(2016)1/2, Mucci and 
Erhardt (2018)3**,  
Marques and Pitombo 
(2021c)1 

Johnson (2003)1,  
Pulugurtha and Agurla 
(2012)1, Frei and 
Mahmassani (2013)1,  
Chakour and Eluru 
(2016)1/2; Rahman et al. 
(2021)2** 

Distance to city center Dill et al. (2013)3 Dill et al. (2013)3,  
Chakour and Eluru 
(2016)1/2, Rahman et al. 
(2019)1/2, Rahman et al. 
(2021)1/2 

Elderly (%) Dill et al. (2013)3, Frei and 
Mahmassani (2013)1 

Dill et al. (2013)3, Frei 
and Mahmassani (2013)1,  
Kerkman et al. (2015)3,  
Rahman et al. (2021)1/2,  
Cui et al. (2022)1 

Employment Dill et al. (2013)3, Frei and 
Mahmassani (2013)1,  
Chakour and Eluru 
(2016)2, Mucci and 
Erhardt (2018)3, Chu 
(2004)1 

Frei and Mahmassani 
(2013)1, Rahman et al. 
(2021)1, Chakour and 
Eluru (2016)1 

Bus stops in a buffer 
(overlapping) 

Chakour and Eluru 
(2016)1/2 

Dill et al. (2013)3,  
Kerkman et al. (2015)3,  
Marques and Pitombo 
(2021b)1, Mucci and 
Erhardt (2018)3, Rahman 
et al. (2019)1/2, Rahman 
et al. (2021)1/2, Cui et al. 
(2022)1, Chu (2004)1 

Number of lines through 
stops or bus route 
length within buffer 

Ryan and Frank (2009)3,  
Chakour and Eluru 
(2016)1/2, Lanza and 
Durand (2021)1, Shi et al. 
(2021)2, Marques and 
Pitombo (2021b)1,  
Rahman et al. (2019)1/2,  
Rahman et al. (2021)1/2 

Chakour and Eluru 
(2016)1/2 

Bike lanes Dill et al. (2013)3,  
Chakour and Eluru 
(2016)1/2 

Chakour and Eluru 
(2016)2 

Highway length Chakour and Eluru 
(2016)2, Rahman et al. 
(2021)1 

Chakour and Eluru 
(2016)1/2 

Metro stations Chakour and Eluru 
(2016)1/2 

Chakour and Eluru 
(2016)1 

Park area Chakour and Eluru 
(2016)1/2 

Dill et al. (2013)3 

Land use (education) Frei and Mahmassani 
(2013)1, Marques and 
Pitombo (2021b)1 

Frei and Mahmassani 
(2013)1 

Rail transit Dill et al. (2013)3 Frei and Mahmassani 
(2013)1; Rahman et al. 
(2021)2 

Headway Marques and Pitombo 
(2022)2*** 

Ryan and Frank 
(2009)3***, Dill et al. 

(continued on next page) 
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(Chakour and Eluru, 2016). Even though some opposite signs may be 
due to different time periods or another dependent variable, various 
cases with reverse effects of the same predictor come from different 
geographic regions. Therefore, in addition to the characteristics previ-
ously listed, we hypothesize that the effect of predictor data on transit 
ridership can vary spatially, a feature called spatial heterogeneity. 

Two main observations arise from the bibliographic review carried 

out: 1) transit ridership and its relationships with the built environment 
and transport system variables are fundamental to transit-oriented 
development and bus network planning. However, there is a lack of 
stop-level boarding and alighting information, especially in developing 
countries, due to the high costs for collecting these data. Within the 
scope of our literature review, only the research from Marques and 
Pitombo (Marques and Pitombo, 2021a,b, 2022) provides case studies in 
a developing country (Brazil). However, they mainly focus on predicting 
the variables of interest well, lacking a more explanatory point of view 
of the phenomenon and identification of the main variables affecting 
transit ridership in a developing country context. 2) Spatial dependence 
and spatial heterogeneity have been overlooked in previous bus rider-
ship studies. Since the spatial heterogeneity theory assumes different 
effects of explanatory variables along the database bus stops, 
geographically weighted regressions can be proposed as a solution to the 
lack of stop-level ridership data, as all bus stops (sampled and non- 
sampled) receive a different parameter value and a ridership estimate, 
following the concept of spatial dependence. 

Therefore, the main objective of the present article is to model transit 
ridership using Geographically Weighted Negative Binomial Regression 
(GWNBR) with distances along the bus network. As specific objectives, 
we aim to compare the results of this model to the traditional case, in 
which Euclidean distances are used. GWNBR will also be compared to 
the global Negative Binomial Regression, and the statistical significance 
of the assumed spatially varying relationships will be attested. In addi-
tion, to explore the potential of local models to generate accurate 
parameter and ridership estimates in situations of missing data, a set of 
scenarios will be stablished, from which we aim to analyze the following 
topics: parameters’ sensitivity, sensitivity of the model’s prediction 
power and sensitivity to the use of network distances. 

This paper has five sections. The next one presents a brief review on 
the application of spatial and local models in the scope of travel demand 
modeling, considering the use of network distances. Section 3 describes 
the case study dataset and the sequence of steps from the proposed 
method. Section 4 displays and discusses the results, and Section 5 
provides a synthesis of the conclusions achieved, in addition to sug-
gestions for future research. 

2. Spatial models and network distances in travel demand 
modeling 

Recognizing the existence of spatial dependence in travel demand 
variables, many researchers started to apply spatial and local models in 
their case studies. In this context, spatial models can be found in Annual 
Average Daily Traffic (AADT) studies (Eom et al., 2006; Mathew and 
Pulugurtha, 2021; Selby and Kockelman, 2013), urban travel demand by 
traffic analysis zones (Chiou et al., 2015; Ma et al., 2018; Tu et al., 
2018), stations (Cardozo et al., 2012; Liu et al., 2018; Zhu et al., 2019), 
bus stops (Marques and Pitombo, 2021a, 2022; Rahman et al., 2021) and 
at the pedestrian level (Kim et al., 2019). Spatial dependence is tradi-
tionally incorporated into the modeling by means of a spatial weights 
matrix, which is commonly based on the distance between the database 
points, or by a semivariogram function, which also depends on the 
distance between pairs of points in the database. However, both 
modeling approaches, encompassing the Spatial Lags Model, Spatial 
Error Model and Kriging, adopt a single predictor parameter for the 
entire database (known as global models). 

The emergence of geographically weighted regressions (Brunsdon 
et al., 1996) addressed the concept of spatial heterogeneity, from which 
each geographic unit in the database has its own parameter estimate, 
obtained from neighbor weighted data. Therefore, the closer a neighbor 
is from the point where the model is being estimated, the bigger the 
weight assigned to it. In case studies using geographically weighted 
regressions, they have proven to provide a better understanding of the 
impact of factors affecting the travel demand at a local level, in addition 
to achieving more accurate estimates, when compared to non-spatial 

Table 2 (continued ) 

Predictor Positive sign Negative sign 

(2013)3, Kerkman et al. 
(2015)3***; Chakour and 
Eluru (2016)1/2, Mucci 
and Erhardt (2018)3***,  
Rahman et al. (2019)1/2,  
Rahman et al. (2021)1/2,  
Cui et al. (2022)1***,  
Marques and Pitombo 
(2022)2*** 

Land use (commercial) Johnson (2003)1,  
Pulugurtha and Agurla 
(2012)1, Dill et al. 
(2013)3, Chakour and 
Eluru (2016)1/2, Marques 
and Pitombo (2021c)1,  
Marques and Pitombo 
(2022)1 

Marques and Pitombo 
(2022)1 

Income Marques and Pitombo 
(2022)1 

Ryan and Frank (2009)3,  
Pulugurtha and Agurla 
(2012)1, Dill et al. 
(2013)3, Kerkman et al. 
(2015)3, Mucci and 
Erhardt (2018)3, Rahman 
et al. (2019)1/2, Rahman 
et al. (2021)1/2, Cui et al. 
(2022)1, Chu (2004)1,  
Marques and Pitombo 
(2022)1/2 

Distance to the nearest 
station 

Marques and Pitombo 
(2022)1/2 

Marques and Pitombo 
(2021c)1, Marques and 
Pitombo (2022)1/2 

Land use (institutional) Pulugurtha and Agurla 
(2012)1, Chakour and 
Eluru (2016)2, Marques 
and Pitombo (2021b)1  

Land use (industrial)  Dill et al. (2013)3, Frei 
and Mahmassani (2013)1,  
Chakour and Eluru 
(2016)1/2 

White (%)  Ryan and Frank (2009)3,  
Dill et al. (2013)3, Chu 
(2004)1 

Land use mix Johnson (2003)1, Dill 
et al. (2013)3, Rahman 
et al. (2019)1/2, Rahman 
et al. (2021)1/2  

Shelter Lanza and Durand 
(2021)1, Shi et al. (2021)1, 
Rahman et al. (2021)1/2  

Education level  Dill et al. (2013)3,  
Rahman et al. (2019)1/2 

Street connectivity Dill et al. (2013)3, Frei and 
Mahmassani (2013)1****,  
Marques and Pitombo 
(2021b)1, Cui et al. 
(2022)1****  

Bus station Kerkman et al. (2015)3,  
Mucci and Erhardt (2018)3  

Female (%) Ryan and Frank (2009)3,  
Chu (2004)1  

1, 2, 3 represent the cases where the dependent variable was Boarding, Alighting 
and Transit Ridership, respectively. 1/2 are the cases where the authors 
addressed both Boarding and Alighting, but separately. *, **, ***, **** the 
reference predictor was represented by the number of vehicles (with a negative 
sign), housing density, frequency (with a positive sign) and Walk Score, 
respectively. 
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models (Liu et al., 2018; Marques and Pitombo, 2022; Pulugurtha and 
Mathew, 2021; Tu et al., 2018; Zhu et al., 2019). Although geographi-
cally weighted regressions have been consistently used to analyze transit 
ridership data at the station level (Blainey and Mulley, 2013; Blainey 
and Preston, 2010; Cardozo et al., 2012; Liu et al., 2018; Zhu et al., 
2019), applications of local models in the context of bus stops are still 
rare. 

In short, three main factors remain underexplored: 1) Most research 
does not attest the statistical significance of the parameters’ spatial 
variation. If the effect of a predictor does not have significant spatial 
variation, public policies may be applied equally to the whole system 
under analysis, resulting in a simpler decision-making. 2) Previous 
studies do not consider missing data situations. 3) Most spatial models 
found in the travel demand literature use, as a proximity measure, the 
Euclidean distance between the database points. 

To verify the best suitability of network distance over the Euclidean 
one in the travel demand modeling, scholars have compared the pre-
diction accuracy of spatial models using both types of distance. The 
performance improvement provided by network distances was not 
remarkable in some case studies (Marques and Pitombo, 2021b,c; Sarlas 
and Axhausen, 2015; Selby and Kockelman, 2013; Zhang and Wang, 
2014). Nevertheless, Wong and Kwon (2021) showed that network 
distances’ results are, in fact, better than those of Euclidean distances. 
However, all cited studies used network distances only in a global 
model, and local models found so far are restricted to the Euclidean 
distance approach. 

2.1. Contributions, research questions and hypotheses 

Based on the comments made before, the contributions of this article 
reach not only the scope of bus ridership, but also the broader context of 
the travel demand modeling. In short, the objectives are to evaluate the 
importance of distance type, the potential of GWNBR, and the impact of 
missing data. Aligned to these objectives are the following research 
questions and associated hypotheses.  

a) What are the factors affecting stop-level transit ridership?  
b) Is the spatial variation of predictors’ effects statistically significant?  
c) Is GWNBR capable of providing good predictions of stop-level ridership in 

missing data scenarios? 

Associated hypothesis 1: taking the complete database model (the base 
model) as the result closest to reality, the higher the number of available 
data, the closer the predictors’ effects in missing data scenarios will be to 
the base model. 

Associated hypothesis 2: increasing the percentage of missing data 
reduces the GWNBR prediction accuracy, compared to the base model.  

d) Can network distances improve the prediction accuracy of GWNBR 
compared to the traditional Euclidean distances? 

Associated hypothesis 3: since the transit ridership variable occurs 
along a bus network, network distances may better represent the phe-
nomenon under analysis, providing more accurate predictions than 
Euclidean distances. 

Associated hypothesis 4: by increasing the percentage of missing data, 
the difference between network and Euclidean distances also increases. 
Therefore, higher levels of missing data will lead to more significant 
differences between results from network and Euclidean GWNBR, with a 
better performance of the network case. 

3. Materials and method 

São Paulo – SP is the most populated city in Brazil, having an esti-
mated population of 12 million in 2021, according to the Brazilian 
Institute of Geography and Statistics (IBGE, 2021). The 2017 Origin and 

Destination Survey revealed that bus transit remains as the most used 
travel mode among the public ones, sharing a percentage of 21% of all 
produced trips in the city (Metrô, 2019). 

General Transit Feed Specification (GTFS) data, provided by the 
manager of the São Paulo bus system (SPTrans), points out that the bus 
network comprised a total of 1355 lines (each line corresponding to a 
round trip) and 20,006 bus stops in 2017. However, as the São Paulo 
buses do not have APCs yet, the boarding and alighting data used hereby 
was collected through a boarding and alighting count survey. The survey 
was performed in 2012 only along eight lines, and, based on smart card 
data, SPTrans carried out an extrapolation of the survey results for 2017. 

3.1. Dependent variable 

The database used corresponds to the 2017 boarding and alighting 
data for two bus lines: line 856R-10-2 (outbound trip of line 856R-10) 
and line 6913-10-1 (inbound trip of line 6913–10), which, together, 
have 97 bus stops in the same direction (from south to north). These bus 
lines have an overlapping section with 16 bus stops. SPTrans also pro-
vided information on boarding and alighting for the other six lines, but 
not all of them present spatial contiguity with the others. Therefore, 
solely a few points from one line would be likely to affect the calibration 
of a local model in stops from another line. Another reason for choosing 
only lines 856R-10 and 6913–10 for the case study refers to the limi-
tation present in the transit ridership data from SPTrans: only passengers 
boarding and alighting from the respective line were counted, while the 
ideal scenario would be the one in which the survey covers all passen-
gers boarding and alighting at each bus stop. Since each bus line has its 
own characteristics, the transit ridership measurement is not the same 
from one line to another. Therefore, the resulting variable of interest is 
likely to be different for each line. As lines 856R-10 and line 6913–10 
have route sections close to each other in space and belong to the same 
category (radial/regional), the limitation regarding the variable of in-
terest was relaxed, so we could increase the number of points available 
for calibrating the models and their spatial coverage. Hence, the case 
study only covers these two bus lines. However, the proposed method 
can also be replicated to the remaining bus lines, separately. The vari-
able of interest is the total transit ridership (boardings plus alightings) 
for the 97 bus stops of the case study lines in a weekday (from 5h to 
23h59). Fig. 1 shows the case study lines, and the other bus lines for 
which information on boarding and alighting was also available. 

3.2. Independent variables 

Based on Table 2, predictor data were collected from both the 
catchment area and the bus stop itself. In the case of the catchment area, 
a network distance of 400 m (Zhao et al., 2003) from the bus stop was 
considered, using the Open Street Map (OSM) road network. Table 3 
consolidates all the information obtained, and respective sources. 

An overlapping analysis was also conducted, seeking to calculate the 
percentage of area from neighboring catchment areas that overlap with 
the catchment area of the bus stop of reference (Peng et al., 1997). As 
multiple catchment areas can overlap with a single one, this variable 
could range from 0 to a ratio higher than 1 (percentage higher than 
100%). In addition, area shapefiles went through aerial interpolation for 
extracting only the data inside the bus stops’ catchment area. 

Potential multicollinearity in the models was prevented by an 
exploratory analysis of linear correlation. If a pair of predictors exhibi-
ted high correlation (Pearson linear correlation coefficient higher than 
0.60) (Profillidis and Botzoris, 2019), the predictor with the lowest 
correlation with the variable of interest was discarded. After completing 
the database with the transit ridership variable and potential predictors, 
the modeling step was started. 
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3.3. Modeling 

The modeling procedure consisted of the following steps: 1) Poisson 
Regression (PR); 2) Overdispersion test in the PR model; 3) Negative 
Binomial Regression (NBR); 4) Spatial dependence and dispersion tests 
in the NBR model; 5) Geographically Weighted Negative Binomial 
Regression (GWNBR); 6) Stationarity test in the GWNBR parameters; 7) 
Spatial dependence test in GWNBR residuals; and 8) Sensitivity analysis 
and validation. Fig. 2 illustrates the flowchart of the method steps, 
which are described in the next four subsections. 

3.3.1. Global count data models: Poisson and negative binomial regressions 
In the first modeling step, the predictor data kept from subsection 3.2 

was used to model transit ridership by means of Poisson Regression (PR). 
After that, the overdispersion test of Cameron and Trivedi (Cameron and 
Trivedi, 1990) was applied to the resulting Poisson model. Having 
confirmed the presence of overdispersion in the Poisson Regression, a 
Negative Binomial Regression (NBR, Eq. 1) (da Silva and Rodrigues, 
2014; Hilbe, 2014) was calibrated using the same set of predictors from 
PR. In order to achieve a parsimonious model, only the explanatory 
variables with statistically significant coefficients (p < 0.10) were kept 
in the final NBR model. 

yj ∼ NB

[

tjexp

(
∑

k
βkxjk

)

,α
]

(1) 

Where yj is the dependent variable for point j; NB expresses Negative 
Binomial distribution; tj is an offset variable; xjk stands out for the 
explanatory variable k with associated parameter β; and α is the over-
dispersion parameter. As both Poisson and Negative Binomial re-
gressions use, traditionally, an exponential link function, PR is also 
expressed by Eq. 1, except for the assumed probability distribution, 
which is the Poisson one in the case of PR (Hilbe, 2014), and the over-
dispersion parameter. 

The overdispersion test of Cameron and Trivedi is commonly used 

only in the Poisson Regression context. However, a dispersion test 
described by Hilbe (2014) was applied to both PR and NBR models. The 
statistic of this test is based on the Pearson residuals, which account for 
the variance function imposed by the model. In the PR case, the variance 
equals the expected mean, while the variance modeled by NBR increases 
as a squared function of the mean. Assuming that this statistic follows a 
Chi-square distribution (Hilbe, 2014), one can say whether the variance 
accounted for by the chosen model appropriately fits the data variance. 
Rejecting the null hypothesis of dispersion equal to 1 indicates the 
presence of overdispersion in the Poisson model, if the test statistic is 
higher than 1. 

Spatial dependence in the NBR model was attested by applying the 
Moran Index (Moran, 1948) to its residuals. In this step, the spatial 
weights matrix for calculating the Moran’s I was based on the network 
distances between bus stops, using, as the network, the route of line 
856R-10-2 and line 6913-10-1. 

3.3.2. Local count data model incorporating overdispersion: Geographically 
weighted negative binomial regression 

The next step was to calibrate the Geographically Weighted Negative 
Binomial Regression (GWNBR, Eq. 2) (da Silva and Rodrigues, 2014), 
using, as explanatory variables, the same data from NBR. GWNBR, in 
addition to accounting for the overdispersion of transit ridership, can 
address spatial dependence and spatial heterogeneity of estimated pa-
rameters. As a local model, it consists of calibrating a NBR model at each 
point of the database, by using weighted neighbor data, both of 
dependent and independent variables. However, the information from 
the point where the model is being calibrated is omitted. 

yj ∼ NB

[

tjexp

(
∑

k
βk
(
uj, vj

)
xjk

)

,α
(
uj, vj

)
]

(2) 

Where (uj, vj) are the geographic coordinates of point j. 
The weighting scheme of geographically weighted regressions, called 

kernels, is based on the distance between point j at which the model is 

Fig. 1. Case study lines within the São Paulo bus network.  

S.F. Marques and C.S. Pitombo                                                                                                                                                                                                              

94



Journal of Transport Geography 112 (2023) 103682

7

being calibrated and its neighbors i. Eq. 3 (Fotheringham et al., 2003) 
shows the bisquare kernel, the weighting function adopted for the pre-
sent study. 

Wj(i) =

⎧
⎨

⎩

(
1 − d2

ij

/
b2
)2
, if dij ≤ b

0, if dij > b
j = 1, 2,…n,

(3) 

Where W is the weight assigned to neighbor i for calibrating GWNBR 
in j; dij is the network or Euclidean distance between i and j; and b is the 

bandwidth distance. Fig. 3 illustrates the importance of using network 
distances in the current case study. 

The Euclidean distance between bus stops 2 and 3 is smaller than 
between 2 and 1, but 2 and 1 belong to the same bus line (line 1). 
Following the concept of spatial dependence, points close to each other 
belonging to the same bus line are assumed to be more related than 
points from different bus lines. However, according to Eq. 3, if we use 
Euclidean distances, point 3 from line 2 will have more influence than 
point 1 on the calibration of GWNBR in point 2, but this inconvenience is 
prevented when network distances are applied. 

Eq. 3 also shows that, unlike NBR and PR, GWNBR does not use all 
points for calibration. Instead, only points spatially correlated to a point 
where the model is being calibrated participate in the calibration pro-
cess, and the point itself is not included to avoid overfitting. The auto-
correlation range is controlled by the bandwidth, which can be either a 
fixed or an adaptive distance. In cases where the distance between 
database points varies significantly, the adaptive case is preferable, as it 
uses the same number of neighbors for all points. 

To achieve the model with best results, this bandwidth can be opti-
mized by meeting some well-defined criterion, such as to minimize the 
cross-validation error (CV, (Fotheringham et al., 2003)) or the corrected 
Akaike Information Criterion (AICc). In the case of GWNBR, AICc de-
pends on the effective number of parameters due to β and α. As the 
effective number of parameters due to α remains undefined (Gomes 
et al., 2017), the authors opted to minimize the CV (Eq. 4) as the cri-
terion to obtain the optimum bandwidth. 

CV =
∑n

j=1

[
yj − ŷ∕=j(b)

]2 (4) 

Where ŷ∕=j is the estimated value of y using the bandwidth b, and n is 
the total number of points (96). Subscript ∕=j recalls that the real value of 
y in j is not used in the estimation process. 

3.3.3. Stationarity test 
Finally, the better fit of GWNBR over global models was attested by 

two means: 1) applying the Moran’s I to the residuals of GWNBR to 
verify if the model was able to address the spatial dependence found in 
NBR; 2) by a stationarity test, to assess whether or not the hypothesized 
spatially varying relationships are statistically significant. In this 
context, the test hypotheses are outlined as follows (Leung et al., 2000): 

H0 : β1k = β2k = … = βnk, for a given k,

H1 : not all βjk (j = 1, 2,…, n) are equal.

999 permutations of the original database were carried out, by 
replacing the geographic coordinates of the 96 bus stops for the co-
ordinates of another point of the database. Therefore, from the 999 
GWNBR models generated, a measure of the βs variance could be 
calculated, in which the test statistic is based. The statistic follows an F- 
distribution, which provides the critical value for rejecting or accepting 
H0, given an adopted significance level (Leung et al., 2000). GWNBR 
modeling, including the search for optimum bandwidth, the stationarity 
test, and Moran’s I verification, were carried out for both types of dis-
tance (network and Euclidean), and therefore their results could be 
compared. 

3.3.4. Sensitivity analysis and validation 
In the sensitivity analysis, the GWNBR model was calibrated for five 

scenarios with an increasing percentage of missing data: 15%, 30%, 
45%, 60% and 75%. From scenario 0, in which all 97 bus stops are used, 
five calibration samples were stablished containing the following 
number of bus stops: 82, 68, 53, 39 and 24. Hence, the validation 
samples (missing data) had 15, 29, 44, 58 and 73 bus stops, respectively. 

The sample selection was based on the density of points in the 
original database. A kernel density function is calculated for each point 

Table 3 
Potential predictor collection.  

Predictor(s) Originated 
from 

Source 

Network distance, in meters, to 
the city center Praça Sé (Sé 
Square)1 

bus stop GeoSampa2 shapefile and 
Open Street Map 

Network distance, in meters, to 
the nearest bus terminal 

Network distance, in meters, to 
the nearest metro station 

Network distance, in meters, to 
the nearest train station 

Number of bus lines passing by 
the bus stop, except the line(s) 
of interest 

2017 GTFS data provided by 
SPTrans 

Average frequency, in trips per 
hour, of the bus lines passing by 
the bus stop, except the line(s) 
of interest 

Number of shelters SPTrans 
Presence/absence (1/0) of shelter 

and seat 
Population, in inhabitants catchment 

area 
2017 Origin and Destination 
survey shapefile, given in 
Traffic Analysis Zones (Metrô, 
2019) 

Area, in hectares, of the following 
land uses: no information; low 
standard horizontal residential; 
medium/high standard 
horizontal residential 
(MHSHR); low standard vertical 
residential; medium/high 
standard vertical residential; 
commerce and services; 
industry and warehouses; 
residential, commerce and 
services; residential, industry 
and warehouses; commerce, 
services, industry and 
warehouses; public facilities; 
schools; empty land; and land 
with no predominant use 

2016 GeoSampa shapefile, 
given in blocks 

Entropy index (Song et al., 2013) – 
Employment 2018 Annual List of Social 

Information 
Average household income Household data from the 2017 

Origin and Destination survey 
(Metrô, 2019) 

Female (%) 
Population with a bachelor’s 

degree or higher (%) 
Households with no private 

vehicles (%) 
Youth (up to 17 years) (%) 
Elderly (65+) (%) 
Park area, in hectares GeoSampa shapefiles 
Sidewalk length, in meters 
Arterial length, in meters 
Bus lanes length, in meters 
Bicycle path length, in meters 
Number of intersections Open Street Map 
Overlapping area ratio –  

1 Praça Sé is a public space considered as the geographic center of São Paulo. 
2 http://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_SBC.aspx 

[Accessed in June 2022]. 
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in the database. Higher values of the function are assigned to points 
located in high-point-density areas. From this method, points with 
higher values of the density function have a higher probability of being 
selected. We assumed that regions with high density of stops are served 
by a higher number of bus lines. Therefore, the higher the number of 
lines, the higher the probability of having information on boarding and 
alighting at bus stops located within these regions. 

As geographically weighted regressions can obtain a different model 
for all geographic units in the database, the GWNBR model was cali-
brated for the 97 bus stops in all scenarios using the same set of pre-
dictors defined in 3.3.1 and the two types of distance. Therefore, for 
each scenario, all bus stops had estimates of both β parameters and the 
variable of interest. Taking the GWNBR results for the entire database as 
the estimates closest to reality, the βs’ sensitivity to missing data was 
assessed by applying the non-parametric Wilcoxon test (Wilcoxon, 
1945) to the following pair of parameters: βs from scenario 0 versus βs 
from the scenario with missing data. The analyses were carried out for 
the network and Euclidean distances separately, and results from cali-
bration and validation samples were also analyzed separately. After-
ward, the Wilcoxon test was also applied to comparing β estimates from 

GWNBR using network and Euclidean distances in all the scenarios 
stablished. 

The prediction power’s sensitivity to the increasing percentage of 
missing data was assessed by the following goodness-of-fit measures: 
Median of Absolute Percentage Error, Root Mean Squared Error and 
Mean Absolute Error (Hollander and Liu, 2008). Once more, calibration 
and validation samples were analyzed separately. 

3.3.5. Computational tools 
The Poisson Regression, overdispersion test, Negative Binomial 

Regression, and the Moran Index were calculated using the open source 
programming language R (Kleiber and Zeileis, 2008; Paradis et al., 2004; 
R Core Team, 2021; Venables and Ripley, 2002). The GWNBR calibra-
tion, search for the optimum bandwidth and stationarity test were car-
ried out through the code provided by da Silva and Rodrigues (2016) in 
the Statistical Analysis Software (SAS® 9.4). The original routine was 
slightly modified to accommodate the network distances, which were 
obtained in GRASS GIS 7.4.0, using, as the network, the route of line 
856R-10-2 and line 6913-10-1. Euclidean distances were obtained in 
QGIS 2.18.12. 

Fig. 2. Method flowchart. * Geographically Weighted Poisson Regression.  

Fig. 3. Comparison between network and Euclidean distances.  
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The calibration samples for the sensitivity analyses were randomly 
selected from the original database using the R library “spatialEco” 
(Evans, 2021). The non-parametric Wilcoxon test for matched pairs was 
run in the software IBM SPSS Statistics 22. 

4. Results and discussion 

Fig. 4 shows the spatial variation of transit ridership (boardings plus 
alightings from 5h to 23h59 of 2017-11-07) along the case study lines, 
together with some characteristics of the surrounding area. The location 
of the bus lines within São Paulo is also shown. 

The maximum value of transit ridership occurs in the first stop of line 
6913-10-1, the Varginha Terminal, situated in a predominantly resi-
dential area. Travelling from south to north, the case study lines 
approach areas with high employment densities, which might be the 
destination of most users by the morning and their origin point at the 
end of the day. Therefore, high volumes of passengers can be seen even 
at bus stops outside the overlapping section, as they are closer to the city 
center Praça Sé (Sé Square), which concentrates the highest employment 
densities in São Paulo. 

Table 4 shows the measures of central tendency and dispersion for 
the dependent variable and independent variables associated to statis-
tically significant parameters (p < 0.10) kept from Negative Binomial 
Regression, which include some features presented in Fig. 4. 

As expected, the median of transit ridership is lower than its mean, 

causing the distribution of the data to be skewed to the right. In addition, 
the standard deviation is much higher than the mean, pointing out to the 
wide range of variation and overdispersion of the dependent variable. 
Due to the relatively small size of the catchment areas, variables such as 
the MHSHR area and area with no predominant land use are not present 
in the influence region of all bus stops. However, the first two variables 
show significant variation over the case study bus lines. The remaining 
variables also show great amplitude of variation. The overlapping var-
iable, for example, reveals that most bus stops have neighboring bus 
stops located within a distance smaller than 400 m along the road 
network. As the catchment area depends on the street layout, some of 
them can be very small compared to the Euclidean-distance buffer. In 
the current case study, catchment area overlapping reaches a percentage 
of almost 200%. 

For the sake of brevity, Poisson Regression results will not be shown. 
However, the Cameron and Trivedi’s test rejected the null hypothesis of 
equidispersion in the Poisson model in favor of the alternative hypoth-
esis of true dispersion >1 (p-value = 0.000062). Following the proposed 
method, the NBR model was calibrated after this. The next subsection 
presents the results from NBR and GWNBR. 

4.1. Factors affecting the stop-level transit ridership 

Estimated coefficients of NBR and GWNBR are presented in Table 5. 
In turn, Fig. 5 shows the spatially varying parameters of GWNBR. Maps 

Fig. 4. Map of transit ridership along the case study lines and their location within São Paulo.  
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of coefficients from both types of distance are shown, highlighting the 
non-statistically significant ones for a 90% confidence level. 

Five predictors explained the transit ridership variable better: me-
dium/high standard horizontal residential area, area with no predomi-
nant land use, overlapping, intersections and frequency. Table 5 
confirms the better fit of GWNBR over NBR. The best model is the 
network case of GWNBR. 

The optimum bandwidth obtained by minimizing the CV error was 
77 and 83 neighbors, considering network and Euclidean distances, 
respectively. Fig. 5 shows that all variables had a majority of coefficients 
with a sign equal to the NBR result. However, there are clear differences 
between the results from NBR, network GWNBR and Euclidean GWNBR. 
As the MHSHR area refers to families with medium/high income, the 
prevailing negative effects are understandable. Conversely, areas with a 
higher mixture in the land use have a strong tendency to contribute to 
increasing transit ridership at bus stops. 

In the case of the overlapping area variable, the bus stops in the north 
part of Fig. 5 are under the highest rates of expected decrease in transit 
ridership if new bus stops are added to their surrounding area. Consid-
ering only statistically significant coefficients and network distances, the 
GWNBR results state that a 1-unit increase in the overlapping area ratio 
is associated with a decrease varying from − 31.20% to − 39.49% if the 
other attributes are held constant. However, this effect is under-
estimated to − 7.69% in the global Negative Binomial Regression. 

Together with the intercept, all coefficients from the intersection 
variable were statistically significant (p < 0.10). We recall that the 
greater the number of intersections, the greater the number of possible 
paths to be taken, which affects the walking distance to the bus stop and 
to possible users’ destinations. In addition, in the linear correlation 
analysis (subsection 3.2), the intersection variable was positively 
correlated (with statistical significance) to the number of jobs, per-
centage of no vehicle households, and length of sidewalks, arterial 
roads, bus lanes and bike lanes. Therefore, neighborhoods with high 
density of intersections are richly supplied by the transport infrastruc-
ture, of both motorized and active modes. 

Regarding the frequency variable, Euclidean results yielded only 
positive statistically significant coefficients, whose effects vary from 

27.07% to 35.57% if the average frequency of lines passing though the 
bus stop increase by 1 trip/h, ceteris paribus. However, in the network 
approach, this range is from − 18.37% to 35.72%. While positive im-
pacts refer to potential intramodal integration, the negative ones may 
occur in areas with high bus frequency, but relative low transit ridership. 
Table 6 consolidates a comparison between the results found in the 
present case study and Table 2. 

Except for the frequency variable, all explanatory variables showed 
only positive or negative statistically significant coefficients in the 
GWNBR models, which coincides with most results found in the litera-
ture. This suggests that, in spite of showing great spatial variability, the 
explanatory variables of transit ridership tend to show only one type of 
impact: positive or negative. In turn, negative statistically significant 
effects of frequency have already been seen in Marques and Pitombo 
(2022). A predictor correlated to frequency, the number of lines through 
stops, was also negatively related to boardings and alightings in Chakour 
and Eluru (2016). However, in local models, coefficients’ extreme signs 
may be caused by the criterion for finding the optimum bandwidth. 
Minimizing the cross-validation error can yield small bandwidths, which 
usually provide the highest levels of spatial variability in the estimated 
parameters (Farber and Páez, 2007). 

4.2. Statistical significance of the spatial variation 

Table 7 shows the p-values for each estimated parameter in the sta-
tionarity test, highlighting, in bold and italic, the statistically significant 
ones (p < 0.10). 

By adopting a 90% level of confidence, the intercept, overlapping 
area ratio and frequency had a statistically significant spatial variation. 
The conclusion is that the estimated parameters showed enough evi-
dence to reject the null hypothesis of the same value throughout all bus 
stops, as imposed by global models. 

4.3. Impact of missing data 

The spatial distribution of the calibration samples defined in sub-
section 3.3.4 are shown in Fig. 6. Six scenarios were analyzed: scenario 

Table 4 
Descriptive statistics of dependent and independent variables (N = 97).  

Variable Mean Std. Dev. Min. 25% 50% 75% Max. 

Transit ridership (pass) 495.103 702.495 35.000 200.500 356.000 553.000 6232.000 
MHSHR* area (ha) 1.928 2.562 0.000 0.000 0.655 3.347 10.317 
No predominance area (ha) 0.749 1.079 0.000 0.000 0.093 1.221 4.611 
Overlapping area ratio 0.716 0.572 0.000 0.224 0.578 1.148 1.966 
Intersections 2639.340 1446.784 576.000 1750.000 2326.000 2970.000 8232.000 
Frequency (trips/h) 3.306 1.232 0.000 2.915 3.081 3.521 9.344  

* Medium/High Standard Horizontal Residential. 

Table 5 
Summary of results for NBR and GWBR.  

Variable NBR Network GWNBR Euclidean GWNBR 

Min 25% 50% 75% Max Min 25% 50% 75% Max 

Intercept 4.96 4.33 4.36 5.75 5.90 6.10 4.31 4.34 5.82 5.87 5.91 
MHSHR area − 0.08 − 0.10 − 0.09 − 0.07 − 0.06 − 0.05 − 0.08 − 0.07 − 0.07 − 0.06 − 0.05 
No predominant land use 0.11 0.06 0.07 0.18 0.22 0.22 0.06 0.07 0.19 0.19 0.20 
Overlapping area ratio − 0.21 − 0.50 − 0.50 − 0.43 0.06 0.10 − 0.42 − 0.41 − 0.40 0.05 0.08 
Intersections (10e-3) 0.27 0.26 0.28 0.29 0.30 0.30 0.26 0.27 0.27 0.30 0.31 
Frequency 0.17 − 0.20 − 0.10 − 0.05 0.28 0.31 − 0.11 − 0.10 − 0.09 0.28 0.30 
Alpha 0.35 0.23 0.24 0.27 0.31 0.34 0.27 0.28 0.28 0.30 0.33 
AIC 1330.60 1312.26* 1313.18* 
MedAPE 42.99% 36.22% 36.56% 
RMSE 687.20 271.96 285.01 
MAE 289.09 184.59 186.86 

Note: MHSHR, AIC, MedAPE, RMSE and MAE stands for Medium/High Standard Horizontal Residential, Akaike Information Criterion, Median of Absolute Percentage 
Error, Root Mean Squared Error and Mean Absolute Error; * considering the number of effective parameters due to α as 1. 
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Fig. 5. NBR global coefficients and maps of estimated GWNBR coefficients (distance in parenthesis).  
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0, consisting of the complete database with no missing data (N = 97). 
Scenarios 1, 2, 3, 4 and 5 have an increasing percentage of missing data 
(from 15% to 75% with intervals of 15%). 

Table 8 summarizes the Wilcoxon-test p-values for the comparison 
between β parameters from the scenario 0 GWNBR model and the sce-
narios with missing data. Network cases with missing data are compared 
to the GWNBR model with network distances from scenario 0, and 
Euclidean cases with missing data are compared to the complete 
GWNBR model with Euclidean distances. The null hypothesis of the 
Wilcoxon test for matched pairs stablishes that the median of the dif-
ferences between the distributions being compared equals zero. There-
fore, Table 8 highlights the cases where the test identified no statistically 
significant differences between the β parameters for a 90% confidence 
level. 

Table 8 shows that the β parameters of the intersections, overlapping 
and frequency variables of some models with missing data had no sta-
tistically significant differences from the βs in the complete GWNBR 
model. Surprisingly, the calibration and validation samples from the 
scenario with the highest percentage of missing data (scenario 5) were 
the only cases where two explanatory variables (overlapping and fre-
quency) had effects similar to those of the original GWNBR model, 
considering both types of distance. This result may be due to the fact 
that, despite being the scenario with the least number of bus stops, their 
spatial distribution was able to replicate the same spatial pattern of the 
scenario 0, regarding these two variables. Noting that overlapping and 
frequency showed statistically significant spatial variation, this outcome 
suggests that local models with missing data can reproduce the whole 
spatial pattern of impacts from some factors on transit ridership. 

Therefore, we cannot confirm the hypothesis that the results worsen 
as the percentage of missing data increases, at least for some predictors. 
However, there is a strong impact of missing data in the predictors’ ef-
fects. Most cases analyzed had statistically significant differences be-
tween the scenarios with missing data and the complete database model. 
This might be due, among other factors, to the bandwidth obtained for 
each analysis. The Euclidean bandwidth in scenarios 0, 1, 2, 3, 4 and 5 
was 83, 78, 35, 22, 37 and 23 neighbors, respectively, while in the 
network case it was 77, 73, 27, 52, 37 and 23. The bandwidth is strongly 
associated to the degree of spatial dependence found in each database 
(Fotheringham et al., 2022), and this factor was modified in the missing 
data scenarios, causing the β parameters to vary from one scenario to 

another. Despite that, variables such as frequency still had coefficients 
similar to the complete GWNBR model in almost 50% of the cases 
analyzed. 

The prediction power’s sensitivity to missing data and type of dis-
tance is shown in Fig. 7, in which three goodness-of-fit measures are 
presented: Median of Absolute Percentage Error, Root Mean Squared 
Error and Mean Absolute Error. Results from calibration and validation 
samples are displayed on the left and right, respectively. 

As expected, errors are smaller in the calibration samples than in the 
validation ones, pointing to a negative impact of missing data on the 
prediction accuracy. However, errors do not increase monotonically by 
increasing the percentage of missing data, as previously hypothesized. 
Scenario 5 tended to present the worst validation estimates, followed by 
scenarios 2 and 3 (30% and 45% of missing data, respectively). 
Conversely, scenario 4 (60% of missing data) showed consistently good 
estimates in both calibration and validation samples. 

Considering the MedAPE results, errors are limited to 40% in the 
calibration samples, and to 50% in three of the five validation scenarios 
stablished. This assures that GWNBR is capable of estimating the transit 
ridership for uncounted locations with relative accuracy. Mucci and 
Erhardt (2018) found a validation error of − 11% comparing the total 
observed transit ridership (for a year other than the one used for cali-
bration) with the value estimated by their model. In our case study, this 
error metric for the network approach was 31.15%, − 19.01%, 1.45%, 
3.58% and − 9.23%, from the first to the fifth scenario. 

4.4. Impact of network distances 

From Fig. 7, network distances performed better than the Euclidean 
ones in the calibration sample of scenarios 0, 1, 2 and 4. This could 
partially confirm the hypothesis of better performance from network 
distances as the percentage of missing data increases. Considering the 
validation samples, the network case yields better results only until 
scenario 3. Higher differences between goodness-of-fit measures from 
network and Euclidean distances occur in scenarios 2 and 3. 

Similar outcomes from network and Euclidean distances might be 
due the kernel formulation (Eq. 3), responsible for assigning weights to 
the neighboring data: when the network distance between the database 
points is divided by the bandwidth network distance, the resulting 
number is similar to the one obtained by Euclidean distances, given that 
the bandwidth is also a distance. In addition, as the biggest weights are 
commonly assigned to the nearest bus stops, the difference between 
network and Euclidean distances for these pairs of points might not be 
great enough to cause significant disparities in outcomes from both 
types of distance. However, network distances could, in fact, provide 
better transit ridership estimates in some cases from Fig. 7. Table 9 
presents the results of the comparison between coefficients from the 
network and Euclidean approaches. 

Statistically significant differences were observed in most cases 
shown in Table 9. On the other hand, for each explanatory variable, at 
least three cases had similar effects from network and Euclidean dis-
tances. Regarding the frequency variable, network and Euclidean co-
efficients were alike in more than half of the conditions analyzed. In 
these cases, using network distances would yield parameters with no 

Table 6 
Comparison with previous studies.  

Predictor Equivalent predictor in Table 2 Number of previous studies from Table 2 Sign of statistically significant coefficients in the current study 

Positive effect Negative effect Euclidean Network 

MHSHR* area Income 1 10 − −

No predominant land use Land use mix 4 0 + +

Overlapping area ratio Bus stops in a buffer 1 8 − −

Intersections Street connectivity 9 1 + +

Frequency Headway (inverse) 4 0 + +/−

* Medium/High Standard Horizontal Residential. 

Table 7 
Stationarity test p-values.  

Parameter P-value 

Euclidean Network 

Intercept 0.006 0.011 
MHSHR* area 0.846 0.629 
No predominant land use 0.177 0.173 
Overlapping area ratio 0.026 0.026 
Intersections 0.870 0.989 
Frequency 0.003 0.001 
Alpha 0.780 0.503  

* Medium/High Standard Horizontal Residential. 
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Fig. 6. Calibration samples for sensitivity analysis: scenarios 0 (a), 1 (b), 2 (c), 3 (d), 4 (e) and 5 (f).  
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statistically significant differences from the Euclidean ones. 
Recalling the results shown in Fig. 7, the better suitability of network 

or Euclidean distances may depend on the explanatory variable 
considered. As stated by Ver Hoef (2018), some spatial relationships are 
linked to processes that operate more in the Euclidean space than in the 
linear one, and vice-versa. Therefore, the best modeling option for these 
cases would be a geographically weighted model with parameter- 

specific distance metrics (Lu et al., 2017). 

4.5. Summary of results 

Fig. 8 illustrates how the limitation each model addresses is identi-
fied. Results and conclusions from the dispersion and spatial dependence 
tests are also provided, guiding the decision for adopting another 

Table 8 
Coefficients’ sensitivity to missing data.  

Scenario Sample Dist. MHSHR No predominant land use Intersections Overlapping Frequency 

1 Calibration Euc 0.000 0.000 0.574 0.000 0.713   
Net 0.000 0.000 0.037 0.000 0.766  

Validation Euc 0.011 0.001 0.733 0.011 0.865   
Net 0.011 0.001 0.733 0.011 0.003 

2 Calibration Euc 0.000 0.000 0.000 0.000 0.004   
Net 0.000 0.008 0.951 0.000 0.053  

Validation Euc 0.000 0.005 0.000 0.000 0.405   
Net 0.000 0.016 0.393 0.000 0.315 

3 Calibration Euc 0.087 0.051 0.611 0.032 0.000   
Net 0.000 0.000 0.001 0.044 0.000  

Validation Euc 0.004 0.552 0.018 0.815 0.000   
Net 0.000 0.000 0.001 0.852 0.000 

4 Calibration Euc 0.812 0.000 0.686 0.015 0.001   
Net 0.006 0.000 0.900 0.000 0.089  

Validation Euc 0.005 0.000 0.005 0.000 0.000   
Net 0.000 0.000 0.010 0.000 0.000 

5 Calibration Euc 0.000 0.007 0.000 0.841 0.819   
Net 0.000 0.015 0.000 0.648 0.648  

Validation Euc 0.000 0.000 0.000 0.453 0.266   
Net 0.000 0.000 0.000 0.547 0.858  

Fig. 7. Prediction power’s sensitivity to missing data and type of distance (scenario in parenthesis). Calibration results on the left and validation on the right.  
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Table 9 
Coefficients’ sensitivity to the type of distance.  

Scenario Sample MHSHR No predominant land use Intersections Overlapping Frequency 

0 Calibration 0.001 0.000 0.000 0.000 0.140  
Validation – – – – – 

1 Calibration 0.389 0.000 0.072 0.000 0.000  
Validation 0.011 0.001 0.776 0.001 0.427 

2 Calibration 0.006 0.413 0.006 0.000 0.271  
Validation 0.002 0.018 0.045 0.000 0.991 

3 Calibration 0.001 0.000 0.787 0.794 0.008  
Validation 0.000 0.000 0.030 0.161 0.023 

4 Calibration 0.000 0.081 0.012 0.000 0.706  
Validation 0.000 0.016 0.187 0.001 0.001 

5 Calibration 0.110 0.977 0.009 0.092 0.179  
Validation 0.140 0.179 0.000 0.006 0.080  

Fig. 8. Flowchart of results from addressing each model limitation.  

Table 10 
Synthesis of the results from each method step.  

Method step Results 

Overdispersion test on Poisson Regression The data is overdispersed. Therefore, the Negative Binomial distribution is more appropriate than the Poisson 
distribution to model the transit ridership variable 

Negative Binomial Regression Five predictors had statistical significance: medium/high standard horizontal residential area, area with no predominant 
land use, overlapping area ratio, intersections, and frequency 

Dispersion test on Negative Binomial Regression The NBR model properly accounted for the overdispersion found in the Poisson Regression 
Moran’s I on residuals from Negative Binomial Regression Statistically significant spatial dependence detected in the NBR model 
Moran’s I on residuals from Geographically Weighted 

Negative Binomial Regression 
The spatial dependence was completely incorporated in both GWNBR approaches. 

Comparison between GWNBR and NBR Goodness-of-fit results from GWNBR were better than those of NBR. GWNBR had a MedAPE of 36%, meaning that half of 
the database underestimated or overestimated from 0% up to 36% the real number of riders per day. The remaining 
points underestimated or overestimated the real number of riders per day in a percentage higher than 36%. MedAPE for 
NBR was 42%. Comparing these two percentages, the improvement is of 14%. 

Stationarity test on GWNBR results Parameters from the intercept, overlapping area ratio and frequency variables had statistically significant spatial 
variation 

Parameters’ sensitivity to missing data Intersections and frequency were the variables with more prevailing coefficients. No pattern of sensitivity was identified 
based on the number of available points for calibration. The spatial sampling strategy may be fundamental to the 
parameter consistency under missing data conditions. 

Prediction power sensitivity to missing data Some scenarios with high percentage of missing data presented errors close to the results from the model using the entire 
database 

Comparison between network and Euclidean distances Frequency was the variable with more occurrences of similar coefficients between network and Euclidean approaches. 
No pattern of the best approach was found based on goodness-of fit measures. The more appropriate distance metric may 
vary from one explanatory variable to another  
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modeling approach. 
Table 10 summarizes all results achieved. 

5. Conclusions and final considerations 

To tackle the lack of transit ridership data and some other issues, the 
present paper proposed the application of Geographically Weighted 
Negative Binomial Regression to six data scenarios, in which five of 
them had an increasing percentage of missing data. GWNBR can provide 
an adequate modeling routine for transit ridership at the bus stop level 
by accounting for some characteristics that have been overlooked in 
previous studies: asymmetry, overdispersion, spatial dependence, 
spatial heterogeneity, and network distances. The case study covered 
two bus lines from the city of São Paulo – SP (Brazil). 

Results showed that the GWNBR model was able to address the 
spatial dependence found in the global Negative Binomial Regression. In 
addition, by confirming the hypothesis of overdispersion, NB distribu-
tion is considered a better modeling option for ridership data. 

Four questions were addressed. The following topics summarize the 
questions and respective conclusions.  

a) What are the factors affecting stop-level transit ridership? 
Five variables were found to better explain transit ridership in this 

Brazilian context: medium/high standard horizontal residential area, 
area with no predominant land use, intersections, overlapping area 
ratio and frequency.  

b) Is the spatial variation of predictors’ effects statistically significant? 
The spatially varying relationships from overlapping area ratio 

and frequency proved to be statistically significant, in both distance 
approaches. The stationarity test can be used for municipalities to 
decide whether the spatial variation of predictors’ effects on transit 
ridership justifies the application of urban policies at the local level. 
In our case study, solutions regarding the land use and intersections 
variables could be developed based on the global model results, if 
simpler approaches are to be prioritized.  

c) Is GWNBR capable of providing good predictions of stop-level ridership in 
missing data scenarios? 

GWNBR is an effective tool to the transit ridership estimation in 
uncounted bus stops, even when the availability of data is low. This 
may facilitate the transit ridership modeling in cities whose bus lines 
do not have Automatic Passenger Counters (APCs) and the ones with 
APCs installed only in a limited number of lines. As expected, missing 
data negatively affects the prediction accuracy and parameter esti-
mates. However, based on our case study, we cannot confirm the 
existence of a clear relationship between percentage of missing data 
and the results consistency.  

d) Can network distances improve the prediction accuracy of GWNBR 
compared to the traditional Euclidean distances? 

Positive effects of network distances on the prediction accuracy 
were seen mostly in the calibration results. Increasing the percentage 
of missing data led to higher differences between prediction results 
from network and Euclidean distances in the calibration cases. 
However, this pattern could not be confirmed for the validation 
samples. Network distances also had an impact on the coefficients 
estimates. A better approach would be to adopt parameter-specific 
distance metrics. 

Although the consistency of parameters’ estimates was not as good as 
the prediction power consistency, GWNBR in missing data scenarios 
could, in fact, reproduce the spatial pattern of effects shown in the 
complete database model, for some explanatory variables. The similarity 
between coefficients might be conditioned by the spatial arrangement of 
bus stops, which must be able to replicate the same spatial dependence 
pattern of the whole system under analysis. Thus, the sampling strategy 
may play a fundamental role in the sensitivity of parameter estimates 
and should be further investigated in future studies. 

The increasing availability of the GWR routines in free software 
provides analysts with enough material to apply the local modeling in a 
municipal project. The GWmodel library in R (Gollini et al., 2015; Lu 
et al., 2014b; R Core Team, 2021) has computational routines for 
various possibilities of geographically weighted analyses. The free 
software GWR4.0 is an example of interface that needs no programming 
knowledge for running the GWR modeling. Therefore, consultants have 
free and easy access to carry out analyses based on GWR. We hope that 
forthcoming studies, provided with robust databases, can help to 
consolidate the conclusions achieved. In addition, as modeling routines 
are increasingly evolving over time, future alternatives to transit rider-
ship modeling would be a mixed GWNBR model, allowing some co-
efficients to vary spatially and others to be fixed; a GWNBR model with 
parameter-specific distance metrics; and geographically and temporally 
weighted regressions, for the cases where panel data is available, and it 
exhibits temporal nonstationarity. 

Availability of data and material 

The transit ridership dataset analyzed during the current study is not 
publicly available due to the fact that the data is held by SPTrans but can 
be requested from it through the Electronic Citizen Information System 
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Stop-level ridership data serve as a basis for various studies toward increasing bus patronage and promoting sustainable land use
planning. To address limitations found in previous studies, this study proposes a novel approach based on Geographically
Weighted Principal Component Analysis (GWPCA) and Ordinary Kriging to predict the stop-level boarding or alighting data
along bus lines in São Paulo (Brazil), considering four diferent sampling methods. Te main contributions are as follows: by
accounting for the spatial heterogeneity of the predictor dataset, the GWPCA can identify the most important factor afecting
transit ridership even in bus stops with no information on boarding and alighting; the spatial modeling of stop-level ridership data
using GWPCA components as explanatory variables allows visualizing the spatially varying efects from predictors on ridership,
supporting the land use planning at a local level; GWPCA coupled with kriging simultaneously addresses the multicollinearity of
predictor data, its spatial heterogeneity, and the spatial dependence of the stop-level ridership variable, thus enhancing the
goodness-of-ft measures of the transit ridership prediction in unsampled stops; and a balanced sample on predictor data and well-
spread in the geographic space might be preferred to accurately estimate missing stop-level ridership data. In addition to solve the
lack of stop-level ridership data, supporting a reliable bus system planning, the proposed method indicates what predictors should
be addressed by policymakers to stimulate a transit-oriented development. Te method can be successfully applied to other travel
demand variables facing a lack of data such as trafc volume in road segments and mode choice at the household level.

1. Introduction

Stop-level boarding and alighting data are important pieces
of information for decisions regarding land use and bus
network planning. Decisions on selecting the best location to
place a new bus stop, which bus stop could be removed along
a bus line and adjustments in the bus routes often rely on
stop-level ridership data [1]. In addition, optimal feet sizing
can be achieved based on the route-segment-level loading
information, which is obtained from boarding and alighting
data [2]. Stop-level ridership data have also been used to
analyze stops’ level of service and sizing [3], as an exposure

variable for crime research [4, 5], and to support decisions
on where amenities, such as shelter, for example, should be
installed [6].

However, previous studies reveal that municipalities
often face limitations when collecting boarding and alighting
data [7–9]. To solve this problem, authors have relied on
various modeling approaches, but only a few of them
assessed the model performance when predicting the rid-
ership data in a nonsampled point [10–12]. Unlike some
travel demand information, data on explanatory variables
may be not so difcult to obtain, given the gradual advances
in geographic information systems and the relatively easy
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access to it. However, in addition to the low representativity
of missing data evaluations in stop-level research, these
studies face another problem: predictor data multi-
collinearity. Te potential presence of high-correlated in-
dependent variables has been a matter of concern in most
ridership studies at the bus stop level [6–11, 13–18].
Detecting the existence of multicollinearity in predictor
datasets has also been carried out in the context of road
segments [19–21], trafc analysis zones [22, 23], rail stations
[24–26], and pedestrians [27].

Multicollinearity is often disclosed by analyzing the
variance infation factor or the Pearson linear correlation
coefcient. Given a specifed threshold, one of the variables
in a pair of high-correlated variables is eliminated from the
model [10, 11, 14–17, 23, 26]. Maintaining pairs of correlated
predictors can result in misleading interpretations of the
estimated parameters. For example, Kerkman et al. [9] re-
ported the efect from population in their case study to be
underestimated probably because of a high correlation be-
tween population and residential areas. In turn, Mucci and
Erhardt [28] found a potentially overestimated efect from
frequency on the ridership, which could be due to the
correlation between frequency and other predictors, such as
employment. At the same time, excluding a predictor that
has proven to afect the variable of interest may not be a wise
solution. When dealing with a lack of stop-level ridership
data, using all information available to predict boarding and
alighting at an unsampled point is fundamental to achieve
reliable estimates.

Te main goal of this study is to perform the spatial
modeling and prediction of a stop-level ridership variable,
which has proven to be spatially dependent in previous
studies [10, 12, 15, 16, 29], accounting for multicollinearity
and the infuence of the sampling strategy. As the predictor
data may present multicollinearity and spatial variation of
efects simultaneously, we propose a conjoint approach
based on Geographically Weighted Principal Component
Analysis (GWPCA) and Ordinary Kriging to improve the
ridership prediction. To the best of our knowledge, this is the
frst paper applying GWPCA coupled with Ordinary
Kriging. In the literature, we have already found the com-
bination between the standard PCA and kriging [30], and
GWPCA as a single model or combined with other tech-
niques, such as clustering [31–36]. However, we have not yet
found the combined approach between GWPCA and Or-
dinary Kriging.

Tis study has fve sections. Te bibliographic review
that supported the main goal of the study is presented in
Section 2. Section 3 provides a detailed description of the
database used as a case study and the method steps applied.
Results are discussed in Section 4. Section 5 summarizes the
conclusions, some practical recommendations, limitations,
and topics for future research.

2. Research Background

Among the methods for collecting stop-level ridership data,
three can be cited: Automatic Passenger Counter (APC),
smart cart data, and boarding and alighting count survey.

Table 1 summarizes stop-level ridership studies found in the
literature which have reported the collection method used.
Some limitations described by the authors regarding the
collection methods are also presented.

Te collection method most available among published
studies is the APC. Limitations regarding this technology
refer mainly to the APC coverage and accuracy. As the APC
is not commonly installed in all buses at the same time,
authors have reported working with a sample of trips, with
extrapolated data (not accounting for the spatial dependence
of ridership data), or with data coming from a short period
of days, in which the APCs were assigned to all bus routes.
Regarding accuracy, the APC device is more efcient in
counting alightings than boardings, as some passengers may
bunch when entering the bus [13].

Smart card data, coupled with a Global Positioning
System (GPS) in the vehicles, can provide information of
interest at a lower cost. However, in this case, the accuracy
problem is inverted. If the passengers do not tap the card
when leaving the bus, assumptions have to be made to
estimate the alighting stop. Moreover, users that do not have
the card are not counted in either way.

Together with the smart card method, the boarding and
alighting survey had only one representative among the
cities used as a case study (São Paulo, Brazil). As the col-
lection is performed manually, the accuracy may not be
a problem in the case of the boarding and alighting survey.
Conversely, the need for a qualifed team of researchers, and
the high cost and time required for performing the survey
are the main problems faced by this type of collection. In São
Paulo, only 8 lines out of more than 1 thousand routes were
visited.

From the limitations faced by municipalities in gath-
ering a comprehensive stop-level ridership dataset, the
boarding and alighting modeling has been used as a solu-
tion to predict missing ridership data. However, only a few
studies [11, 12, 28] have carried out a validation analysis,
using a validation sample aside from the calibration one.
Even when the research performs a missing data evalua-
tion, it tests only one type of sampling approach, ignoring
the efect that the selection of the calibration/validation
samples may have on the models’ prediction power. Table 2
summarizes a bibliographic review on validation analyses
over several studies addressing the spatial modeling of
a travel demand variable. Geographic units other than the
bus stop were also included. Stop-level studies shown in
Table 1 that have not performed a validation analysis are
omitted in Table 2.

In general, a validation step is found only at the bus stop,
road segment, and household levels. In the road segment
case, the trafc volume is only obtained directly in segments
provided with counting devices (sensors, radar), survey
stations, tolls, cameras, and others. Te household level is
mostly related to mode choice issues. However, as
household-based surveys usually cover only a predefned
sample, these studies often face a lack of data on the variable
of interest. In short, the availability of travel demand data at
the bus stop, road segment, and household levels is defned
by budget constraints.
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In Table 2, there is a clear predominance of a single
sampling method: the random sampling. However, this type
of sampling may not be the best representation of the
phenomenon under analysis as the spatial distribution of
travel demand cannot be considered as purely random.
Often, higher passenger fows are concentrated around some
points in the spatial feld considered [10, 44, 46]. Te spatial
distribution of bus stops and sampled road segments, for
collecting travel demand data, is also concentrated
[22, 39, 41, 42, 46], following the main activity centers.
However, the selection of a sample for validation using
a random method may overlook the spatial distribution of
the geographic units under analysis.

Eforts to account for the spatial variation of collected
data can be found in Table 2. Eom et al. [39] used a sys-
tematic sampling method based on a 10-mile squared grid
system to select counting locations in a trafc volume case.
Marques et al. [46] and Marques and Pitombo [10] applied
a sampling method based on the density of points in the
original dataset to selecting trafc counting locations and
bus stops, respectively. Both methods were able to reproduce
the spatial concentration of data in the original dataset. In
addition, the method based on density of points does not
require dividing the spatial feld into regular areas and is
more convenient to point-based data than the systematic
sampling.

Moreover, Wang and Kockelman [40] reported that
installing a counting device in a road segment can be
infuenced, among other features, by level of congestion and
road design, which are intervening factors of trafc volume
[19, 20, 39, 41, 42]. In this case, a more accurate repre-
sentation of the phenomenon under analysis would be
a sampling method accounting for the spatial distribution of
both counted points and predictors of the travel demand
variable of interest. Another situation emerges when the
collected data are used to calculate a travel demand variable
in points outside the original spatial feld; that is, the initial
data are extrapolated. Zhang and Wang [54], for example,
modeled the transit ridership data from one metro line in
New York and estimated this variable for another line to be
implemented. However, as real transit ridership data on the
new line were still not available, the authors could not assess
the prediction accuracy of the extrapolation carried out
by them.

Te representativity and prediction power of the sam-
pling conditions discussed above have not been addressed in
the transportation engineering area so far. Another issue
related to travel demandmodeling, but which has been given
little attention in the stop-level literature is the spatial
heterogeneity of predictors’ efects, discussed in
Subsection 2.1.

2.1. Spatial Heterogeneity of Predictors’ Efects. Spatially
varying impacts of predictors on travel demand variables
have already been explored in various spatial scales: trafc
volume in road segments [19, 41], passenger demand at the
TAZ level [22, 23, 49], stations [25, 26, 51], pedestrian [27],

and bus stop [10, 15]. Explanatory variables such as road
density [19, 22, 23, 26], residential land use [22, 27], com-
mercial land use [22, 26, 27], income [15, 23, 49], em-
ployment [22, 23], population [15, 19], trip frequency
[10, 15, 49], station distance [15, 22, 26, 27], and land use mix
[23, 27] have shown both positive and negative impacts in
more than one spatial scale. Although only a few authors
provided results on the statistical signifcance of the esti-
mated parameters [10, 15, 49], there are studies that tested
whether or not a great spatial variation of coefcients was
detected in the geographically weighted models
[10, 22, 23, 26, 27]. Tese authors consistently reported
a great variability in the efects from intervening factors,
indicating that spatial heterogeneity is, in fact, an important
feature of travel demand predictors.

Regarding the bus stop level, Marques and Pitombo [10]
found a statistically signifcant spatial variation in two
(overlapping bus stops and frequency) of the fve predictors
used by them to model a transit ridership variable. A sig-
nifcant spatial variation was detected even in a predictor
showing only negative efects, pointing out that spatial
heterogeneity does not necessarily mean the presence of
reverse signs.

2.2. Research Gaps. Based on the literature review con-
ducted, the following research gaps can be enumerated: (1)
in the scope of our literature review, no study was found
addressing the potential efect of the sampling method when
predicting a travel demand variable in a missing data point;
(2) only a few stop-level studies perform a validation
analysis, making it difcult to assess the performance of
proposed models when predicting the transit ridership in
a nonsampled stop; (3) the spatial variation of predictors’
efects on stop-level ridership has been little explored; and
(4) no method has been proposed to treat multicollinearity
of spatial predictor data without having to exclude highly
correlated predictors.

Tis study tackles all cited research gaps by proposing
the application of a Geographically Weighted Principal
Component Analysis (GWPCA) on transit ridership pre-
dictor data and using its components as predictors to stop-
level boardings and alightings. Four diferent sampling
strategies are considered, and the model performance is
assessed in both calibration (available data) and validation
(missing data) samples. Te convenience of GWPCA in the
transportation engineering area relies on the fact that it
incorporates not only the predictor data multicollinearity
but also its spatial heterogeneity into the modeling. By doing
so, a novel contribution of GWPCA is to identify the most
important predictor to the travel demand variable of interest
at each point of the database, even the nonsampled ones.

3. Materials and Method

Figure 1 illustrates the research workfow followed in this
study. Except for the literature review, the remainder text
details each one of the highlighted blocks.
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Te case study takes place in São Paulo (Brazil), the most
populous city in South America [55] and main economic
center of Brazil. Although there is a high representativity of
the individual motorized travel mode in São Paulo, bus
transit remains as the most used public travel mode in the
city [56].

Two datasets compose the analyses carried out in the
study: First, a database containing 19,900 bus stops in São
Paulo, and second, a database comprising 207 stops of four
bus lines in São Paulo for which information on boarding
and alighting was available. SPTrans, the administrator of the
São Paulo bus service, made available the 2017 results of
a boarding and alighting count survey along 8 lines of São
Paulo, which, separated by direction, comprise 16 unidi-
rectional lines. Among them, four lines were selected for
a case study: line 6045-10-2 with 49 bus stops, line 6913-10-1
with 52 bus stops, line 809L-10-2 with 45 bus stops, and line
577T-10-1 with 61 bus stops. Two main criteria guided the
line selection: availability of data regarding all independent
variables and a reasonable number of bus stops. Figure 2
shows the location map of São Paulo, the lines visited by the
survey, and the lines chosen for our case study.

3.1. Dependent Variables. For each bus line, the original
variable of interest was the number of boardings or
alightings at its bus stops from 5 h to 23h59 in a typical day
(Tuesday, 2017-11-07). After verifying that boardings and
alightings had a right-skewed distribution, a Box–Cox
transformation [57] was applied to their raw data. Tus, for
modeling purposes, the dependent variable was the
Box–Cox-transformed number of boardings, for some lines,
and alightings, for others (more details in Subsection 3.5).

3.2. Independent Variables. Based on a thorough biblio-
graphic review by Marques and Pitombo [10], we collected
predictor data from each bus stop in São Paulo using, as

a catchment area, the region defned by a radius of 400m
centered in the bus stops [58]. Table 3 summarizes the
independent variables collected, their source, and some
descriptive measures.

Although the original dataset contained 19,900 bus
stops, 571 of them did not have information related to some
of the predictors listed in Table 3. Terefore, the method
steps described as follows were carried out using the
remaining 19,329 bus stops. Te predictor data for these
19,329 stops can be accessed through the fle provided in the
supplementary material section.

3.3. Principal Component Analysis. Before proceeding to
the data dimensionality reduction, two tests were
applied to confrm the suitability of the predictor dataset
(Table 3) to the principal component analysis: the Kai-
ser–Meyer–Olkin (KMO) measure of sampling adequacy
[60] and the Bartlett test of sphericity [61]. A good ad-
equacy of the dataset is achieved when the independence
hypothesis of Bartlett’s test is rejected [62] and the KMO
measure reaches a value close to 1 [63]. After confrming
that a data dimensionality reduction technique would be
useful to the predictor dataset, a traditional PCA [64] was
applied to it, and only components with eigenvalue
greater than 1 were retained.

3.4. Geographically Weighted Principal Component Analysis:
Addressing the Multicollinearity of Spatial Data. Te Geo-
graphically Weighted Principal Component Analysis
(GWPCA) corresponds to a local version of the traditional
PCA [65]. In this case, a diferent PCA is carried out at each
point of the database, using weighted neighbor data. An
underlying assumption is that the principal component
structure follows a spatial pattern, as closer points are more
similar than distant ones [66]. Terefore, the loading values
vary from one geographic coordinate to another, and it is
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Figure 1: Research workfow.
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possible to map the predictor having the highest absolute
loading value for all PCs, commonly called the winning
variable.

In theGWPCA (local PCA), the variance-covariancematrix
Σ of a dataset X varies as a function of the location i, with
coordinates (u,v), as shown in the following equation [65]:

(u, v) � X′W(u, v)X, (1)

where W(u, v) is a weight matrix representing the spatial
interaction between the database points. In this study, the
elements of W are given by the bisquare kernel (2) [65].

Wj(i) �
1 − d

2
ij/b

2
 

2
, if dij ≤ b,

0, if dij > b,

⎧⎪⎨

⎪⎩
j � 1, 2, . . . n, (2)

where dij is the Euclidean distance between the neighbors i
and j and b is the bandwidth. Te bandwidth can be thought
as the region in space within which the points are spatially
dependent. In our case study, this bandwidth is the number
of nearest neighbors. Using the same number of components
retained in the traditional PCA, the bandwidth was opti-
mized by a cross-validation goodness-of-ft measure as
described by Harris et al. [65].

Finally, the geographically weighted PCs can be written
as (3), in which each location i has its own loading L and
variance values V for the defned principal components [65].

Both spatial and nonspatial PCAs were based on correlation
matrices.

LVL′ | ui, vi(  �  ui, vi( . (3)

Comparisons between GWPCA and PCA in this study
were based on the percentage of variance extracted by the
retained PCs and the bandwidth obtained in the GWPCA. If
the database spatial pattern yields a large bandwidth (e.g.,
close to the total number of points minus 1), results from
both approaches will be similar. Terefore, using GWPCA
may not be justifed in this case. Conversely, a smaller
bandwidth would indicate the presence of a clear spatial/
local structure in the predictor dataset.

3.5. Modeling. In the modeling step, the GWPCs retained
from GWPCA and the Box–Cox-transformed boarding
and alighting variables went through a linear correlation
analysis using the Pearson correlation coefcient. Ini-
tially, a correlation analysis was conducted on all possible
combinations of dependent variable (boarding or
alighting) and geographically weighted principal com-
ponents (scores) using the complete line databases. Based
on an inspection of the highest correlations in the
complete line databases, only one interest variable
(boarding or alighting) was adopted for each bus line.
However, the most correlated GWPC could vary from one
sampling method to another as the GWPC most corre-
lated to each specifc sample was always selected.

Line 6045-10-2

Line 6913-10-1

Line 809L-10-2

Line 577T-10-1

Lines visited by the survey

São Paulo city

Location of São Paulo
within São Paulo state

Location of São Paulo
state within Brazil 

10
km

540
km

160
km

N

Figure 2: Case study databases.
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Preliminary results including other correlated compo-
nents did not show a signifcant improvement in the
prediction accuracy. Terefore, only one component was
used for each case.

Having found the pairs of dependent variable and most
correlated GWPC, a Transformed Liner Regression (TLR)
was calibrated for each bus line. Afterward, spatial de-
pendence on the transformed regression was disclosed by
applying the Moran index [67] on its residuals. To calculate
Moran’s I, we adopted a weight matrix based on the distance
between points along the bus line, which is termed “network
distance.” Spatial dependence on residuals from the trans-
formed linear regression was addressed by a spatial in-
terpolator called Ordinary Kriging (OK) [68–70], in which
the data spatial variance was modeled using network dis-
tances and the exponential model [71]. Te fnal estimates of
the conjoint approach between GWPCA and OK were
obtained through the following equation:

Z
∗
x0

� α + βS + 

n

i�1
λi e xi( , (4)

where α and β are parameters from the transformed re-
gression, S represents the scores of the most correlated
component, λ are the OK optimum weights, e(xi) is the TLR
residual for the neighbor xi, and n is the number of sampled
neighbor points. Predictions from the nonspatial model
include only the frst two terms on the right side of (4)
Coupling a regression model with the kriging interpolation
of residuals has been referred by some authors as “Re-
gression Kriging (RK)” [72, 73]. Tis is the term we use
hereby to refer to the estimates from (4).

3.6. Validation and Cross-Validation. Te calibration
sample of previous studies varied from a minimum of 10% up
to 99% of the total data (Table 2). Percentages between 60%
and 90% represent half of the case studies. Based on this, we
selected a percentage of 70% for the calibration samples and
the remaining 30% for the missing data. Ridership estimates
were obtained for both calibration and validation samples.

Estimated values were back-transformed, so they could
return to the same scale as the observed values. Ten, we
compared the performance of the transformed regression
with the Regression Kriging approach using three goodness-
of-ft measures: Root mean squared error, median of ab-
solute percentage error, and mean absolute error [74]. Te
modeling and cross-validation/validation steps were re-
peated for diferent types of sample collection, which are
detailed in Subsection 3.7.

3.7. Sampling Strategies. Four sampling methods were
considered in the validation step: simple random sampling,
density of points, balanced sampling with geographical
spreading, and sample for extrapolation. Tey are described
as follows.

3.7.1. Simple Random Sampling. Considering a simple
random sampling, all points in the dataset have the same
probability of being chosen [75].

3.7.2. Density of Points. In the sampling strategy based on
the density of points, bus stops located in regions with a high
density of bus stops have a higher probability of being se-
lected [76]. An assumption underlying this method is that
areas with a high concentration of bus stops are also richly
served by bus lines. Te higher the number of lines, the
higher the chance of having information on boarding and/or
alighting available.

3.7.3. Balanced Sampling with Geographical Spreading.
Tis method involves two concepts: balanced and well-
spread sampling. Knowing the population mean of a co-
variate that is related to the variable of interest, a balanced
sample on this covariate will choose points whose mean is
equal to the population mean [75]. Terefore, points are
selected in such a way that the variation of the covariate is
well-represented by the sample.

However, a balanced sample can result in a poor geo-
graphical spreading. To avoid clustering of points and assure
a good balancing on both the covariate values and geographic
coordinates, the balanced sampling with geographical spreading
accounts for these two factors simultaneously. Tis sampling
method was performed using, as a covariate, the principal
component most correlated to the Box–Cox transit ridership
variable. As it is required to knowwhich component is themost
correlated prior to generating the sample, we initially used the
componentmost correlated to the transformed ridership data in
the complete line dataset. If the ridership data in the resulting
sample had a weak correlation with the component considered
(absolute value of Pearson correlation coefcient lower than 0.3
[77]), another sample was generated using the component most
correlated to the ridership data in the sample based on the
density of points or the simple random sample, which are
methods more usual in practice than the extrapolation one.

3.7.4. Extrapolation. Te sample for extrapolation seeks to
reproduce an extreme scenario in which the ridership data
from one line are intended to be used in the ridership
prediction for points from neighboring lines. In our case
study, the calibration sample in the extrapolation strategy
was generated as follows: 15% of points in the beginning and
15% of points in the end of each line were regarded as the
validation sample (missing data); the remaining 70% of bus
stops, belonging to the more internal segments of the case
study lines, were used as a calibration sample. Te sequence
of method steps is illustrated in Figure 3.

3.8. Computational Tools. Table 4 summarizes the compu-
tational tools that supported each method step. Most of the
procedures were carried out in the open-source software R,
making it easier for the method to be replicated in other
databases.

4. Results and Discussion

Tis section is divided into fve subsections: results from the
traditional and the geographically weighted PCA are pre-
sented in Subsection 4.1; afterward, we discuss the spatial
and nonspatial modeling outcomes. Subsection 4.3
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illustrates an example of how coefcients from a geo-
graphically weighted principal component can be inter-
preted. Subsection 4.4 provides insights into the best
modeling approach and sampling strategy. A comparison
between results from this study and previous studies is
presented in Section 4.5.

4.1. Global and Local PCA. As shown in Table 5, the KMO
measure and Bartlett’s test confrmed the adequacy of the
predictor dataset to the principal component analysis.

In the PCA, 10 components were retained, which had an
eigenvalue greater than 1. Tese 10 PCs extracted 62.52% of
the variance in the original database. Nonrotated loading
values are presented in Table 6, highlighting the highest
absolute values of the loadings for each component.

PC1 contrasts high accessibility bus stops. Negative
loading values for the distances to the center, to the nearest
bus terminal, train, andmetro stations, reveal that the higher
the distance between the bus stops and these elements is, the
lower the PC1 score will be. Te educational level and in-
come are also important variables composing PC1. In turn,
PC2 represents commercial areas, with large amounts of jobs
and transport infrastructure, from both motorized and
active modes. Terefore, PC1 and PC2 could be named as
intra/intermodal proximity and central areas, respectively.
In short, PC3, PC4, PC5, PC6, PC7, PC8, PC9, and PC10 are
measures of population, industrial land use, age, bus net-
work spatial coverage, bus network temporal coverage, in-
stitutional areas (or areas with a low occupation density),
lower-income female population, and bus stop facilities,
respectively.

Although maximum loadings in Table 6 assume only
moderate values, this is not rare in PCA (see, for example,
Jollife [64]). Loading values depend on factors such as the
restriction adopted for maximizing the variance extracted by
each component and rotation [64]. Rules for discriminating
maximum loadings among moderate loading values, as the
one applied in Table 6, can be consulted in Jollife [64].

Figure 4 shows the winning variables for the frst and
second principal components in the GWPCA. Te winning
variable is the predictor with the highest absolute value in
the local PCA. All 19,900 stops have information on the
highest loading value and respective winning variable.
Loading values for each variable in the ten retained com-
ponents have been provided as supplementary material (see
supplementary material section).

In the global PCA, the frst component was mainly
represented by eight variables (Table 6). Tis number in-
creases to 14 in the local PCA. While most variables
comprising PC1 are measures of intramodal and intermodal
integration, 20% of bus stops had the number of jobs as the
winning variable of GWPC1. An interesting result is that
these stops are concentrated in the center of São Paulo
(orange), which shows the highest employment densities in
the city.

Tree other variables represented 10% ormore of the bus
stops in GWPC1: the educational level, low standard hor-
izontal residential area, and entropy index. Te education
level is highlighted in bus stops from the northwest and
southeast regions (green), while low standard horizontal
residential areas characterize stops in the south of São Paulo
(light blue). Bus stops in the extreme south had a higher
importance of the variable entropy, probably because they
refer to areas with a high variation in the land use mix index.

In the GWPC2, 54.39% of the bus stops were mainly
characterized by a land use category (low standard vertical
residential area, or commercial, services, industrial, and
warehouse area) or by a variable related to the bus system
(number of bus stop shelters or bus lane length). Of these
predictors, only the length of bus lanes appears as one of the
main features composing the second component of the
global PCA. Figure 5 presents the percent of variance
extracted by GWPC1 and GWPC1 plus GWPC2.

Te frst two components were able to account for more
than 30% of the variance in the original dataset for some bus
stops in the center and extreme south of São Paulo. GWPC1

Predictor data 
treatment

KMO and Bartlett’s
test of sphericity Traditional PCA Box-Cox dependent

variable

Linear correlation
analysis

Geographically
Weighted PCA

Transformed linear 
regression

Moran index on
residuals

Regression Kriging

Is the data 
spatially

dependent?

NO
YES

Estimates
calculation

Cross-validation/ 
Validation

Goodness-of-fit
measures

ANALYSES WITH DIFFERENT LINES 
AND SAMPLING METHODS

Moran index on
residuals

Figure 3: Flowchart of method steps.
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alone could extract a portion of variance higher than 22% for
stops in the extreme south of the city. Recall that the da-
tabase with 32 predictors was collected based on a thorough
bibliographic review on factors afecting the stop-level
transit ridership. Terefore, overall, the winning variables
shown in Figure 4 may represent the most important fea-
tures infuencing the bus patronage at each stop of São
Paulo. Although information on boarding and alighting is
available only for a few bus stops, decisions regarding the
land use and bus network planning toward increasing the
number of passengers might beneft from the GWPCA
results.

Together, the 10 retained GWPCs managed to extract
from 64.94% to 76.36% of the variance in the original da-
tabase, surpassing the unique value of 62.50% obtained for
all bus stops in the traditional PCA. In addition, the

bandwidth of GWPCA covered the nearest 5,830 neighbors,
which means that only 30%, approximately, of all points
were used to calculate the local PCs at each bus stop. Tis
result confrms the existence of a spatial structure in the
predictor dataset and suggests the better adequacy of
GWPCA over PCA for addressing the multicollinear nature
of stop-level ridership predictors.

4.2. Nonspatial and Spatial Modeling. One major concern
addressed by this study is whether the sampling strategy
afects the spatial prediction of a transit ridership variable at
the bus stop level.Temodeling step was carried out for four
diferent lines, separately, and considering calibration
samples based on four samplingmethods. Figures 6, 7, 8, and
9 present the spatial variation of the transit ridership variable

Table 5: Suitability of the dataset for PCA.

Measure Value
Kaiser–Meyer–Olkin measure of sampling adequacy 0.776

Bartlett test of sphericity
Approx. χ2 257281.195

df 496
Sig. 0

Table 6: Principal component analysis on stop-level ridership predictor data (N� 19,329).

Predictor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
tot_lines 0.09 0.22 −0.02 0.12 −0.21 0.38 −0. 3 0.05 0.06 −0.09
headway 0.03 −0.07 −0.22 −0.13 −0.05 −0.09 −0.3 0.23 −0.02 −0.14
pop −0.02 0.03 0. 3 0.32 0.32 0.02 0.06 0.04 0.08 0.06
low_standard_h_res −0.2 0.05 0.20 0.11 0.11 0.04 −0.05 −0.03 −0.03 0.22
medhigh_standard_h_res 0.08 −0.39 0.15 0.05 −0.28 −0.01 −0.06 −0.05 −0.28 −0.03
low_standard_v_res −0.07 0.05 0.13 0.11 0.09 0.29 0.23 −0.18 0.  0.02
medhigh_standard_v_res 0.21 −0.17 −0.09 0.16 0.33 0.02 0.01 0.20 0.22 −0.10
com_serv 0.12 0.32 −0.02 0.00 0.02 −0.18 −0.12 0.00 −0.19 0.09
res_com_serv 0.15 0.14 0.14 0.27 −0.02 −0.16 −0.08 0.11 0.02 −0.20
res_ind_wareh 0.07 −0.04 0.22 −0.27 −0.25 0.09 0.2 0.21 0.05 −0.37
comserv_indwareh 0.09 0.13 0.03 −0.  −0.19 0.07 0.16 0.17 0.25 −0.03
institutional 0.10 0.08 −0.16 −0.06 −0.01 0.18 0.14 −0. 7 −0.01 0.16
no_predominancy 0.09 0.13 0.01 −0.13 0.05 0.06 −0.07 −0.32 0.10 0.08
entropy 0.19 0.10 0.35 0.03 −0.18 0.21 0.21 −0.04 0.11 −0.09
employment 0.18 0.27 −0.01 0.08 0.17 −0.24 −0.08 0.15 0.03 0.04
fem 0.01 −0.05 0.07 0.07 −0.10 −0.24 −0.29 −0.12 0. 0 −0.13
educ_level 0.28 −0.14 −0.22 0.22 0.10 0.07 0.02 0.05 0.05 −0.03
youth −0.16 0.11 0.07 −0.26 0.27 0.23 −0.04 0.21 −0.13 −0.08
older_adults 0.13 −0.14 −0.03 0.18 −0. 3 −0.29 0.03 −0.23 0.20 0.09
perc_noveh −0.15 0.2 0.20 −0.14 0.03 −0.3 −0.20 −0.10 0.11 0.10
income 0.2 −0.19 −0.25 0.19 0.1 0.18 0.05 0.06 −0.02 0.01
bus_dist −0.29 0.11 −0.16 0.28 −0.17 0.02 0.16 0.11 0.03 −0.09
metro_dist −0.33 0.09 −0.16 0.16 −0.17 0.01 0.08 0.10 0.02 −0.07
train_dist −0.32 0.09 −0.13 0.26 −0.09 0.02 0.11 0.05 0.03 −0.09
center_dist −0.33 0.05 −0.14 0.09 −0.11 0.07 −0.02 0.06 0.06 −0.04
buslanes_length 0.18 0.36 −0.04 0.15 −0.13 0.00 0.14 −0.02 −0.14 −0.13
bikenet_length 0.18 0.23 −0.06 0.12 0.01 −0.08 0.22 0.04 −0.13 −0.11
arterial_length 0.22 0.3 −0.08 0.04 −0.12 0.03 0.09 0.03 −0.18 0.09
park_area −0.10 0.07 −0.23 −0.09 0.13 0.10 −0.03 −0.38 −0.21 −0.17
intersections −0.01 −0.13 0.31 0.16 −0.19 0.10 −0.03 0.12 −0.39 0.35
sameline_overlap −0.01 0.02 0.20 0.14 0.01 0.23 −0.39 −0.26 −0.13 −0. 6
n_shelters 0.07 0.12 −0.09 0.01 −0.17 0.3 −0.30 0.20 0.22 0. 6
Proportion of variance (%) 20.89 7.48 6.57 5.27 4.40 4.05 3.72 3.53 3.45 3.17
Bold values highlight the highest values in each column.
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selected for modeling along calibration and validation
samples of lines 6045-10-2, 6913-10-1, 809L-10-2, and 577T-
10-1, respectively. Calibration samples are shown on the left
and validation samples on the right.

Calibration samples of lines 6045-10-2, 6913-10-1, 809L-
10-2, and 577T-10-1 had 35, 36, 31, and 43 bus stops, re-
spectively. On the other hand, validation samples covered
14, 16, 14, and 18 stops, respectively. Based on a linear

GWPC1 winning variable
arterial_length (417)

bikenet_length (148)

buslanes_length (1978)

educ_level (3183)

employment (3983)
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income (1809)

intersections (2)

low_standard_h_res (3110)
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5

km
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arterial_length (332)

bikenet_length (195)
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educ_level (141)

older_adults (222)

employment (328)
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income (1622)

institutional (339)

low_standard_h_res (719)
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medhigh_standard_h_res (678)
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youth (138)
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Figure 4: GWPC1 and GWPC2 winning variables (N� 19,900).
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correlation analysis, the number of alightings was the var-
iable of interest for lines 6045-10-2 and 809L-10-2, whereas
lines 6913-10-1 and 577T-10-1 had the number of boardings
as the dependent variable. As both boardings and alightings
correspond to data from an entire day (from 05 h to 23 h59),
higher passenger fows occur near activity centers and
densely populated areas. However, activity centers usually
have a higher concentration of the transit system, that is,
higher bus stop and bus line densities than residential areas.

It can be observed that each sampling method repro-
duced, in fact, their main objective, as described in Sub-
section 3.7. Table 7 summarizes the results from the
modeling step.

As the kriging interpolation was applied only on the
residuals from the Transformed Linear Regression, the
parameters of intercept and the GWPCs are identical for
both TLR and RK. Tese two parameters were statistically
signifcant in all scenarios analyzed (p value <0.05). Te
GWPCs comprise information on 32 scaled predictors.
Terefore, interpretation of their efect on the corresponding
ridership variable is not straightforward. Subsection 4.3
discusses what insights can be drawn from a GWPC co-
efcient using the line 6045-10-2 results as an example.

4.3. Interpreting the Efect of a Geographically Weighted
Principal Component on Stop-Level Transit Ridership. To
assist the interpretation of the GWPC5 efects on alightings,
Figure 10 presents the variable of interest along line 6045-10-
2, the scores, and the frst and second winning variables of
GWPC5. Te spatial pattern of GWPC1, GWPC3, GWPC7,

and GWPC9 along the remaining case study lines is pro-
vided in Figures 11, 12, and 13. Score values for the 19,329
bus stops used in the case study were provided in the
supplementary material section.

A negative value for the parameter associated with
GWPC5 (Table 7) reveals that stops with lower values of the
GWPC5 scores show higher volumes of alightings. Te
number of alightings along line 6045-10-2 is low at its frst
bus stops and increases as the bus travels the itinerary (from
northeast to southwest) until reaching a maximum value of
746 passengers in the last stop. A clear spatial dependence
can be visualized in this variable of interest. Tis pattern is
inverted when it comes to the GWPC5 scores, which show
negative values in points with high passenger demand and
positive values in stops with a lower number of users.
Terefore, a negative parameter for GWPC5 is
understandable.

Four predictors appear as the winning variable of
GWPC5 along line 6045-10-2, with a high representativity of
the no predominant land use feature. Te second winning
variable (i.e., the variable with the second highest absolute
loading value) was more diverse than the frst. Tis time,
three predictors prevailed: intersections, low standard ver-
tical residential area, and population. Given the negative
parameter obtained for GWPC5, predictors having a nega-
tive loading probably exert a positive efect on alightings,
while those showing a positive loading are likely to decrease
the number of alightings. Intersections and sameline_o-
verlap showed negative loading values in both frst and
second winning variables. Te number of intersections
characterizes walkable neighborhoods, while higher

Variance accounted for
GWPC1 (%)

13.01 - 16.98 (8373)

16.99 - 22.16 (10825)

22.17 - 30.78 (702)

5
km

Variance accounted
for GWPC1 and
GWPC2 (%)

23.49 - 27.45 (8297)

27.46 - 31.45 (9563)

31.46 - 39.87 (2040)

5
km

N

Figure 5: Local percent of variance (N� 19,900).
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concentrations of bus stops indicate a higher coverage of the
bus network. Other predictors with negative loadings in the
frst winning variable are as follows: no predominant land
use area and low standard vertical residential area, pointing
to the positive contribution of a diverse land use and the low-
income population to the transit ridership.

4.4. Performance Evaluation of the Models and Sampling
Strategies. Te decision of adopting a spatial approach was
attested by two methods: Moran’s I and goodness-of-ft
measures. Recalling the results summarized in Table 7,
Moran’s I confrmed the presence of a statistically signifcant
spatial dependence on residuals from the transformed linear

1
km
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746 (1)

Trip direction
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Figure 6: Alightings along calibration and validation samples of line 6045-10-2.
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regression in most combinations of bus lines and sampling
strategies. However, after the kriging interpolation, the null
hypothesis of no autocorrelation was accepted.

Table 8 presents the goodness-of-ft measures results,
which are separated by calibration and validation samples,
sampling strategy, and bus line. Te cases where Regression

4
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381 - 637 (7)
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Figure 7: Boardings along calibration and validation samples of line 6913-10-1.
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Kriging performed better than the Transformed Linear
Regression are highlighted in bold. Blank spaces in the RK
columns refer to the cases where no spatial dependence was
detected in the TLR model.

Considering the three goodness-of-ft measures
(MedAPE, RMSE, and MAE), there are 78 pairs of com-
parison between TLR and RK, as not all cases involved the
application of RK. RK performed better than TLR in more

2
km

Simple random calib
alightings (pass)

0 - 40 (12)
43 - 83 (10)
100 - 156 (6)
327 - 437 (2)
1372 (1)

2
km

Simple random valid
alightings (pass)

7 (1)
17 - 31 (4)
39 - 57 (3)
68 - 80 (4)
114 - 153 (2)

2
km

Density of points calib
alightings (pass)

0 - 21 (8)
25 - 39 (7)
57 - 100 (10)
110 - 156 (5)
327 (1)

2
km

Density of points valid
alightings (pass)

7 - 23 (2)
40 - 77 (8)
107 - 114 (2)
437 (1)
1372 (1)

2
km

Balanced_spread calib
alightings (pass)

0 - 31 (8)
35 - 83 (15)
100 - 153 (6)
327 (1)
1372 (1)

2
km

Balanced_spread valid
alightings (pass)

17 - 25 (4)
27 - 33 (2)
57 - 81 (5)
152 - 156 (2)
437 (1)

2
km

Extrapolation calib
alightings (pass)

7 - 27 (7)
31 - 46 (8)
57 - 83 (9)
100 - 153 (5)
327 - 437 (2)

2
km

Extrapolation valid
alightings (pass)

0 - 1 (2)
17 - 23 (3)
42 - 77 (5)
110 - 156 (3)
1372 (1)

Trip direction

N

Figure 8: Alightings along calibration and validation samples of line 809L-10-2.
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than half of these 78 cases. Te improvements of RK over
TLR, measured as the reduction in the error provided by
RK compared to TRL, vary from 0.27% (MAE of the line
577T-10-1 calibration sample in the extrapolation case) to

48.59% (MedAPE of the line 6045-10-2 validation sample
in the balanced and well-spread case). Improvements
provided by RK reach higher values in the validation
samples.
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Figure 9: Boardings along calibration and validation samples of line 577T-10-1.
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Te reason why RK did not perform better than TLR in
some spatially dependent cases may be the uncertainty in the
calculation of empirical and theoretical semivariograms. As
no optimization procedure was used to obtain the param-
eters from these semivariograms, RK results may not be the
optimum ones. Optimization techniques applied to kriging
with network distances emerge as an interesting topic for
future research.

As an efort to identify the sampling strategy having the
best performance, we initially searched for the smallest error
in each numeric column in Table 8, separated by the type of
sample (calibration and validation). Tis procedure yielded
24 cases for calibration samples and 24 for validation ones.
However, some of these cases had a number of elements
lower than 4 due to the absence of RK results (blank spaces
in Table 8). Te RK modeling was not carried out for cases
with no autocorrelation detected in the residuals from TLR.
Maintaining only the 4-element comparisons, to allow a fair
comparison among cases, 36 comparison groups (18 from

calibration samples and 18 from validation ones) were listed.
Afterward, we identifed the sampling strategy corre-
sponding to the smallest error in each group and summed
the number of times each sampling method had the smallest
error. Simple random, density of points, and extrapolation
had the best performance in fve calibration cases each, and
the balanced and well-spread sampling stood out in three
cases. Regarding the validation samples, the balanced and
well-spread sampling showed the lowest error values in nine
cases, that is, half of the analyzed cases. Te simple random
and extrapolation methods had the best performance in four
cases each, and the density of points in only 1 case. In
general, the balanced and well-spread sampling had con-
sistently good results in both calibration and validation
samples.

Splitting the comparison groups by bus line, it is more
difcult to fnd a pattern of the best samplingmethod in both
calibration and validation simultaneously. In most cases,
some sampling strategies performed better in calibration and
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Figure 10: Spatial pattern of alightings and GWPC5 along line 6045-10-2.
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others in validation. However, analyzing the standard de-
viation of goodness-of-ft measures, we found that results
from calibration samples of diferent sampling methods
tended to show much less variation than validation samples.
Tis reveals that the sampling strategy had a higher infuence
in the prediction accuracy of missing data compared to
calibration data. In line 6045-10-2, the balanced and well-
spread sample had the best validation results. Te simple
random sampling stood out in the validation results from
lines 6913-10-1 and 809L-10-2. In line 577T-10-1, the ex-
trapolation and balanced and well-spread sampling were the
best ones in an equal number of times.

Although the sampling based on the density of points
is able to reproduce the spatial concentration of data in the
complete bus line dataset, one issue may arise from it:
missing data points located in regions with a low density
of calibration points will have no or a low number of
sampled neighbors inside the autocorrelation range to be
used in the estimation process (see, for example, Figure 6).

Another problem refers to the spatial variation of transit
ridership data: in our case study, all bus stops with
available data on both independent and dependent var-
iables were used in the analysis, including points repre-
senting bus terminals. Terminals often have a passenger
volume much higher than the adjacent neighbors. In the
sample based on the density of points, this “outlier” point
fell in the validation sample of the frst three lines (Fig-
ures 6, 7, and 8), making it difcult for both RK and TLR
to perform well as a large portion of variation in the
dependent variable had not been accounted for when
calibrating the models’ parameters. Tis problem is also
seen in the extrapolation sample of the frst three lines,
which are lines with a clear identifcation of the bus
terminal, located at the beginning or the end of the route.
However, the extrapolation sample had the best validation
results in the last bus line (Figure 9), probably because
large amounts of transit ridership are distributed along
more than one bus stop on this route.

4
km

score GWPC1
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-2.02 - 0.00 (12)
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-0.57 - 0.00 (17)
0.01 - 0.42 (21)
0.43 - 0.62 (7)

4
km
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Figure 11: Spatial pattern of GWPC1 and GWPC3 along line 6913-10-1.
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4.5. Comparison with Previous Studies. Comparison of this
study with previous research can be done based on three
main topics: dimensionality reduction, spatially varying
efects, and goodness of ft. PC1, PC2, and PC3, from
Lindner et al. [30], gather features from PC3, PC1, and PC2
from the present study, respectively. Tey used the frst
component (low-income population) as a predictor to
model the transit ridership at a TAZ level based on Kriging
with External Drift. However, as only sociodemographic
features were included in the original dataset, the efect of
bus service and transport system variables could not be
accommodated. On the other hand, the winning variables
fromGWPCs in Table 7 (Figures 10, 11, 12, and 13) reveal an
important infuence of predictors, such as intersections,
headway, and number of bus stop shelters on the transit
ridership at some stops.

Varying the most important predictor from one point to
another, as in GWPCA, is like having spatially varying efects
in a geographically weighted regression. Winning variables
in Figure 10, such as population, no predominant land use,
intersections, medium-high standard horizontal residential
area and overlapping, corroborates previous stop-level
studies [10, 15], which have shown that efects from these
predictors on transit ridership can vary spatially. However,
the need to exclude highly correlated predictors resulted in
a MedAPE of 33.72% and 34.45% from geographically
weighted regressions applied to the alighting variable along
line 6045-10-2 [15]. Both values are higher than the one from
the current study (33.20%).

In addition, averaged MedAPE results in validation
samples of the balanced and well-spread cases were lower
than a 30% missing data scenario from Marques and
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Figure 12: Spatial pattern of GWPC7 and GWPC9 along line 809L-10-2.

22 Journal of Advanced Transportation

128



2
km

score GWPC1
-3.92 - -2.38 (15)
-2.37 - -0.85 (10)
-0.84 - 0.00 (8)
0.01 - 2.20 (16)
2.21 - 4.10 (12)

2
km

score GWPC3
-4.21 - -3.05 (6)
-3.04 - -1.46 (9)
-1.45 - 0.00 (11)
0.01 - 1.59 (25)
1.60 - 3.92 (10)

2
km

GWPC1 winning variables
educ_level (41)
employment (20)

2
km

GWPC3 winning variables
institutional (42)
n_shelters (12)
res_ind_wareh (7)

2
km

loading GWPC1 winning var
-0.61 - -0.50 (12)
-0.49 - 0.00 (23)
0.01 - 0.49 (22)
0.50 - 0.61 (4)

2
km

loading GWPC3 winning var
-0.76 - -0.68 (12)
-0.67 - -0.61 (21)
-0.60 - 0.00 (4)
0.01 - 0.48 (3)
0.49 - 0.76 (21)

N

Figure 13: Spatial pattern of GWPC1 and GWPC3 along line 577T-10-1.

Table 8: Performance of four sampling methods in predicting transit ridership at the bus stop level.

Line Sampling method Sample MedAPE (%) MedAPE (%) RMSE RMSE MAE MAE
TLR RK TLR RK TLR RK

6045-10-2

Simple Calibration 52.55 5 .07 82.83 7 .86 65.91 5 .67
Simple Validation 91.14 57.89 172.03  59. 9 106.07 76. 2
Density Calibration 56.96 57.80 89.14 8 .73 69.29 56.58
Density Validation 67.09 50.98 165.66    .7 97.20 6 .0 

balanced_spread Calibration 63.29 52.3 118.76  02.86 75.28 55.9 
balanced_spread Validation 64.58 33.20 104.03 77. 5 77.38  5.9 
Extrapolation Calibration 56.63  5. 7 82.85 6 .53 65.59  5.3 
Extrapolation Validation 70.15 6 .0 180.10  76.23 107.77  0 .9 

6913-10-1

Simple Calibration 75.03 53.85 1033.96 1216.37 350.30 437.18
Simple Validation 56.36  5.6 175.46 189.76 153.62   6.90
Density Calibration 56.33 164.45 135.01
Density Validation 52.28 1524.79 576.33

balanced_spread Calibration 47.80 137.34 117.06
balanced_spread Validation 75.61 1521.23 611.19
Extrapolation Calibration 41.16 38.7 173.46  39.97 135.57   2.77
Extrapolation Validation 39.46 51.90 1525.11 1526.19 530.93 542.54
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Pitombo [10], which used a geographically weighted re-
gression and a sample based on the density of points. Tese
outcomes were also better than the validation MedAPE
results from one of the 30% missing data scenarios analyzed
by Marques et al. [46], which, again, applied the point-
density sampling method, but used Ordinary Kriging for
prediction. Tis indicates a good performance of both RK
(GWPCA coupled with OK) and the balanced and well-
spread sampling over other modeling approaches and
sampling methods, respectively.

5. Conclusions and Final Considerations

Tis study proposed a two-step method based on Geo-
graphically Weighted Principal Component Analysis and
kriging interpolation to predict the number of boardings and
alightings in uncounted bus stops, considering the efect of
the sampling strategy. GWPCA was carried out using all bus
stops in São Paulo (Brazil), and the outcomes of it served as
an input to a regression modeling accounting for the spatial
dependence of the stop-level ridership data.

Outcomes from the spatial PCA can be useful to travel
demand modeling in two ways: (1) by highlighting the most
important intervening variables even in points with no
ridership data, and (2) by acting as a predictor to the travel
demand estimation in unsampled points. In our case study,
the contribution of spatial interpolation was higher in the
missing points than in the calibration ones. In addition,
validation results were more sensitive to the sampling
strategy compared to the calibration results. When selecting
the most appropriate sampling design, the spatial pattern of
transit ridership data may play an important role. Te
balanced sampling with geographic spreading had the best
validation results in bus lines with diferent spatial distri-
butions of stop-level passenger volume. Te simple random

sampling appears as a possible solution when no knowledge
on the most correlated predictor is available. In turn, ex-
trapolation could be recommended for cases where extreme
data values are not highly concentrated in the spatial feld
considered. Although only four lines could be selected to the
case study, they were able to reproduce spatial patterns of
transit ridership common to various bus lines in the city.

Te method proposed is not restricted to stop-level
ridership cases. It can successfully support predicting
missing data in other geographic units and travel demand
variables. An advantage of GWPCA is the fact that, once it is
generated, it can be used as a basis for various additional
analyses, such as classifcation, clustering, and creation of
indexes. Exploring other contributions of GWPCA is rec-
ommended in future research.

Data Availability

Te datasets used to support the fndings of this study are
included in supplementary materials. Te datasets used to
collect the predictors can be found on the GeoSampa website
(https://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_
SBC.aspx), the 2017 Origin and Destination Survey website
(https://transparencia.metrosp.com.br/dataset/pesquisa-
origem-e-destino), and the SPTrans website (https://www.
sptrans.com.br/desenvolvedores/). Te transit ridership
dataset analyzed during the current study is not publicly
available due to the fact that the data are held by SPTrans but
can be requested from it through the Electronic Citizen
Information System (https://esic.prefeitura.sp.gov.br/
Account/Login.aspx).
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Table 8: Continued.

Line Sampling method Sample MedAPE (%) MedAPE (%) RMSE RMSE MAE MAE
TLR RK TLR RK TLR RK

809L-10-2

Simple Calibration 50.83 72.33 243.47 286.44 90.44 121.80
Simple Validation 75.13 6 . 8 44.99 82.01 40.55 48.66
Density Calibration 48.94 57.72 62.78 63.09 40.72 38.88
Density Validation 46.02 63.46 368.53 362.67 147.13 168.35

balanced_spread Calibration 44.79 53.31 240.52 23 .03 78.05 79.55
balanced_spread Validation 54.83  8.  93.73 258.87 51.30 111.64
Extrapolation Calibration 47.11 87.42 44.87
Extrapolation Validation 52.65 350.42 124.44

577T-10-1

Simple Calibration 41.18 39. 2 51.13  9.3 39.01 36.37
Simple Validation 50.14  0.06 84.96 75.89 71.29 60.38
Density Calibration 34.66 3 .00 52.72  9.2 41.54 37. 8
Density Validation 40.83 54.92 60.18 65.66 45.62 45.88

balanced_spread Calibration 38.55 45.73 58.54 55.97 44.74   .66
balanced_spread Validation 35.79 40.07 47.11 47.25 37.66 39.16
Extrapolation Calibration 43.04 53.10 59.37 60.09 43.74  3.62
Extrapolation Validation 33.55 34.80 48.47  6.67 40.76 39.63

Note. MedAPE, RMSE, MAE, TLR, and RK are, respectively, median of absolute percentage error, root mean squared error, mean absolute error, transformed
linear regression, and regression kriging. Te best results are in bold.
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6 COMPLEMENTARY RESEARCH 

 

“Curiouser and curiouser!” 

Alice in Wonderland by Lewis Carroll 

 

 

This section presents additional research, developed during the doctoral period, which 

had an impact on the thesis conclusions. Four complementary papers were published, 

addressing some of the thesis objectives and other variables of interest. Following the ordering 

of the main articles, the additional papers are listed as follows and briefly explained in the next 

paragraphs. 

 

V. Marques, S. de F., and Pitombo, C. S. (2020) Intersecting Geostatistics with transport demand 

modeling: a bibliographic survey. Revista Brasileira de Cartografia, 72, 1028-1050. doi: 
10.14393/rbcv72nespecial50anos-56467 

 

VI. Marques, S. de F., and Pitombo, C. S. (2021b) Spatial modeling of transit ridership along bus 

lines with overlapping sections. Proceedings of the 35o Annual Conference of the Brazilian 

National Association for Transportation Research and Teaching (p. 1568–1580). Brazilian 

National Association for Transportation Research and Teaching, 100% Virtual. Available at: 

https://www.researchgate.net/publication/357517939_SPATIAL_MODELING_OF_TRANSI

T_RIDERSHIP_ALONG_BUS_LINES_WITH_OVERLAPPING_SECTIONS. Accessed 

April 2023. 

 

VII. Marques, S. de F., and Pitombo, C. S. (2022) Spatially varying relationships of transit 

ridership at the bus stop level. Proceedings of the 36o Annual Conference of the Brazilian 

National Association for Transportation Research and Teaching (p. 152517). Brazilian 

National Association for Transportation Research and Teaching, Fortaleza, Brazil. Available 

at: https://proceedings.science/anpet-2022/trabalhos/spatially-varying-relationships-of-transit-

ridership-at-the-bus-stop-level. Accessed April 2023. 

 

VIII. Marques, S. de F., Favero, R., and Pitombo, C. S. (2023) Should we account for network 

distances or anisotropy in the spatial estimation of missing traffic data? Transportes, 31(1), 

e2822. doi:10.58922/transportes.v31i1.2822 

 

 

Article V presents the state-of-art of Geostatistics applications to the travel demand 

modeling along four geographic units of analysis: Traffic Analysis Zones; road segments; 

stations, bus stops and bus lines segments; and households/individuals. This bibliographic 
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review identified research gaps in applying Ordinary Kriging and Universal Kriging in 

the context of bus stops. In addition, using network distances was considered as an 

underexplored topic in the bus stop and road segment levels. 

Article VI analyzes two main issues in the stop-level ridership modeling: overlapping 

of bus stops’ catchment areas and network distances. In this case, dummy variables 

characterized the overlapping problem in a regression modeling that accounted for the spatial 

dependence of residuals though Ordinary Kriging, comparing Euclidean and network distances. 

The variable of interest was the number of boardings from 20h to 23h59 over lines 856R-10-2 

and 6913-10-1, the same lines from Article III. Results showed that addressing the overlapping 

issue significantly contributed to improve the models’ goodness-of-fit measures, but few 

differences were seen between the network and Euclidean approaches. 

Article VII is a preliminary version of Article III proposing the application of 

Geographically Weighted Negative Binomial Regression only in a complete database case. 

Missing data analyses and comparisons between network and Euclidean distances were not 

carried out in this paper. The variable of interest was the number of boardings plus alightings 

from 20h to 23h59 along lines 856R-10-1 and 6913-10-2, the opposite direction of lines in the 

Article III. Nine predictors explained the transit ridership variable better: the Medium/High 

Standard Horizontal Residential (MHSHR) area, no predominancy area, employment, park 

area, overlapping area ratio, distance to the center, distance to the nearest train station, number 

of lines through stops and number of shelters. Of them, only the MHSHR area, employment, 

and number of shelters did not have significant spatial variation in their coefficients. 

The absence of significant differences between the interpolation results from network 

and Euclidean distances in the Article VI moved the author to explore another travel demand 

variable (the traffic volume along road segments) that occurs in a broader context than the urban 

variables analyzed so far (stop-level ridership). In article VIII, the entire state of São Paulo was 

used as a case study and two scenarios were considered: the first one with a low density of data 

and the second with a higher number of collected samples. Improvements provided by network 

distances were significant only in the first scenario, which, by having a low density of sampled 

data, reached higher differences between network and Euclidean distances. When the 

availability of data was increased (the second scenario), network and Euclidean distances 

started to be similar, approximating the interpolation results from both types of distances. 

The next chapter summarizes the conclusions achieved on each specific objective of the 

thesis. The comments made in Section 7 include all articles from I to VIII
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7 CONCLUSIONS AND FINAL CONSIDERATIONS FROM THE 

THESIS 

 

“Perfection is not just about control. It’s also about letting go. Surprise yourself so you can surprise the 

audience. Transcendence!  

[…] I felt it…it was perfect…” 

Black Swan by Darren Aronofsky 

 

 

This chapter synthetizes the conclusions provided by articles I to VIII on the specific 

objectives outlined in Subsection 1.3. The specific objectives are presented as questions in the 

next four subsections. A summary of conclusions is provided in subsection 7.5. The last 

subsection (7.6) outlines limitations and suggestions for future research. The articles are 

referred to in citation form, as listed in Table 7.1.  

 

Table 7.1 – Article reference 
Article Reference 

I Marques and Pitombo (2021a) 

II Marques and Pitombo (2023a) 

III Marques and Pitombo (2023b) 

IV Marques et al. (2024) 

V Marques and Pitombo (2020) 

VI Marques and Pitombo (2021b) 

VII Marques and Pitombo (2022) 

VIII Marques et al. (2023) 

 

7.1 WHAT ARE THE INTERVENING FACTORS OF THE STOP-LEVEL 

TRANSIT RIDERSHIP? 

 

This question reproduces the specific objective (a) “To investigate what factors affect 

the stop-level transit ridership”. The transit ridership predictors whose parameters appeared 

with statistical significance in different case studies are summarized in Table 7.2.
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Table 7.2 – Factors affecting the stop-level ridership throughout the thesis articles 

Predictor Dependent variable(s) Positive sign Negative sign 

Population Boardings / Alightings Marques and Pitombo (2021a)¹, 

Marques and Pitombo (2023a)¹/² 

Marques and Pitombo (2023a)¹/², 

Marques and Pitombo (2021b)¹ 

Commerce and service 

area 

Boardings Marques and Pitombo (2023a)¹ Marques and Pitombo (2023a)¹ 

Distance to the nearest 

metro station 

Boardings Marques and Pitombo (2021a)¹ Marques and Pitombo (2021b)¹ 

Distance to the nearest 

metro or train station 

Boardings / Alightings Marques and Pitombo (2023a)¹/² Marques and Pitombo (2023a)² 

Distance to the nearest 

bus terminal, metro or 

train station 

Boardings Marques and Pitombo (2023a)¹ Marques and Pitombo (2023a)¹ 

Income Boardings / Alightings Marques and Pitombo (2023a)¹ Marques and Pitombo (2023a)¹/² 

Frequency Boardings / Alightings / 

Boardings plus 

alightings 

Marques and Pitombo (2023a)², 

Marques and Pitombo (2021b)¹, 

Marques and Pitombo (2023b)³ 

Marques and Pitombo (2023a)², 

Marques and Pitombo (2023b)³ 

Lines through stops Boardings / Boardings 

plus alightings 

Marques and Pitombo (2021b)¹ Marques and Pitombo (2022)³ 

Residential, commerce 

and service area 

Boardings Marques and Pitombo (2021a)¹ 
 

School area Boardings Marques and Pitombo (2021b)¹ 
 

MHSHR area Boardings / Boardings 

plus alightings 

 
Marques and Pitombo (2021b)¹, 

Marques and Pitombo (2022)³, 

Marques and Pitombo (2023b)³ 

Intersections Boardings / Boardings 

plus alightings 

Marques and Pitombo (2021b)¹, 

Marques and Pitombo (2023b)³ 

 

No car households (%) Boardings Marques and Pitombo (2021b)¹ 
 

Bus stops within buffer 

(overlapping) 

Boardings / Boardings 

plus alightings 

 
Marques and Pitombo (2021b)¹, 

Marques and Pitombo (2022)³, 

Marques and Pitombo (2023b)³ 

No predominant land use Boardings plus 

alightings 

Marques and Pitombo (2022)³, 

Marques and Pitombo (2023b)³ 

 

Employment Boardings plus 

alightings 

Marques and Pitombo (2022)³ 
 

Park area Boardings plus 

alightings 

 
Marques and Pitombo (2022)³ 

Distance to the center Boardings plus 

alightings 

Marques and Pitombo (2022)³ 
 

Distance to the nearest 

train station 

Boardings plus 

alightings 

Marques and Pitombo (2022)³ 
 

Number of shelters Boardings plus 

alightings 

Marques and Pitombo (2022)³   

1, 2, 3 represent the cases where the dependent variable was Boarding, Alighting and Transit Ridership, respectively. 1/2 are the 

cases where the authors addressed both Boarding and Alighting, but separately. 

 

Population was the explanatory variable most visualized throughout the case studies, 

followed by frequency, Medium-High Standard Horizontal Residential (MHSHR) area and an 

overlapping measure. While population is a demographic indicator, the MHSHR area represents 

the combined influence of population and income on the bus patronage, characterizing the 

socioeconomic condition around bus stops.  

In turn, frequency is a service measure, often associated with the transit accessibility. 

The overlapping variable reflects the competition between stops, but, together with frequency, 

they reflect the importance of the bus network coverage to increasing the passenger demand.  
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As the regression modeling results from Article IV are based on the Geographically 

Weighted Principal Component Analysis and not on the isolated predictors, they were not 

included in Table 7.2. However, this paper pointed to a strong contribution of intersections, 

which characterizes the walkability in the bus stops’ vicinity, and the area with no predominant 

land use, a measure of land use mix. 

The first eight predictors in Table 7.2 (from population to lines through stops) had 

reverse signs in different case studies. A statistically significant spatial variation was detected 

in coefficients from the following variables: overlapping, frequency, no predominancy area, 

park area, center distance, distance to the nearest train station and lines through stops.  

In short, results show that urban and transport planners should concentrate their efforts 

on four groups of factors: sociodemographic, bus network coverage, street layout and land use. 

Accounting for local characteristics when making a decision on these factors has been shown 

to be necessary to optimize their impacts on the sustainable transport. 

 

7.2 WHAT IS THE BEST MODELING APPROACH FOR STOP-LEVEL 

RIDERSHIP DATA? 

 

Specific objectives (b) “To assess the improvements in the estimates provided by the 

inclusion of explanatory variables in the geostatistical modeling of bus ridership”; and (c) “To 

compare the performance of spatial and local models of bus ridership with traditional 

approaches” are addressed by this question. In addition, this question is associated to two of the 

hypotheses described in Subsection 1.1: 1) Spatial approaches of ridership modeling can yield 

better estimates than non-spatial models; and 2) Ridership models considering the asymmetry 

of travel demand variables are more adequate than those based on the normality assumption. 

The first hypothesis was confirmed in the articles I, II, III, IV, VI and VII, while the second one 

was mainly attested by articles II and III. 

Spatial dependence of transit ridership was consistently detected throughout the 

research papers. Therefore, spatial approaches should be preferred over the non-spatial ones as 

they provide better ridership predictions and a correct interpretation of the effects from 

intervening factors. In addition, including explanatory variables proved to significantly improve 

goodness-of-fit measures of stop-level ridership modeling as the related dependent variables 

usually have a wide range of variation that cannot be fully accounted for by univariate 

approaches.  
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Results have shown that checking for asymmetry and overdispersion is also an 

important step in the stop-level ridership modeling. Addressing these factors, together with the 

spatial dependence of boardings and alightings, proved to have a positive impact on the models’ 

outcomes. 

An instigating question would be whether prioritize a local spatial approach (the 

Geographically Weighted Regressions) over the spatial methods with a single coefficient for 

each explanatory variables (the multivariate interpolators). The answer to this question may 

depend on the purpose of the modeling: if the intention is focused on achieving the best 

ridership estimates with a low number of predictors, the interpolators might be preferred; 

however, if the main concern is about the effect and spatial heterogeneity of explanatory 

variables, a GWR approach has shown to be a better alternative.  

On the other hand, the combination of GWR and kriging interpolation (Marques et al., 

2024) could meet both requirements: good predictions and spatially varying relationships. A 

drawback of this method is perhaps the need for a larger predictor dataset. 

 

7.3 WHAT IS THE BEST TYPE OF DISTANCE FOR STOP-LEVEL 

RIDERSHIP MODELING? 

 

The current subsection is dedicated to the specific objective (d) “To compare the 

performance of spatial approaches of bus ridership using network distances and Euclidean 

distances”. The title question is linked to the following hypothesis: the distances along the bus 

lines can yield better estimates than with the traditional Euclidean distance. Conclusions on this 

issue are not simple. 

Throughout the doctoral period, the comparison between spatial approaches using 

network and Euclidean distances was gradually evolved. In the first analysis, the two types of 

distances were used in the Ordinary Kriging of residuals from a regression model (Marques and 

Pitombo, 2021b); a more comprehensive investigation was provided by considering different 

densities of sampled data, which could increase the difference between network and Euclidean 

distances (Marques and Pitombo, 2023b). Finally, a third piece of research (Marques et al., 

2023) covered another variable of interest, the traffic volume, along a rural road network 

significantly larger than the previous ones, which were based on urban bus lines. 

Regarding the prediction power of proposed models, the two first articles reported a 

better performance of the network approach in some cases. However, in general, results from 
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network and Euclidean distances were comparable. When addressing the traffic volume over 

the entire state of São Paulo, network distances yielded better results only in a scenario with a 

low density of collected data. 

However, a consensual conclusion from the three analyses is that, by considering the 

real path taken by the traveler, estimated parameters from the network approach are more 

appropriate than those from the Euclidean distance. In the case of spatial interpolators, this 

parameter refers to the autocorrelation range, while for GWR, the parameters refer to the 

coefficients from each explanatory variable and the bandwidth. The sensitivity analysis carried 

out in Marques and Pitombo (2023b) showed that, although some predictors may be represented 

similarly by both types of distance, the network approach is more appropriate for others. 

Nevertheless, when dealing with large datasets, the use of network distances may 

become computationally expensive. If there are no resources available to calculate the network 

distances, an alternative approach would be to incorporate the data anisotropy into the modeling 

to improve the prediction accuracy (Marques et al., 2023). However, this solution can be applied 

only in the context of geostatistical interpolators, and for cases with availability of sampled data 

in multiple spatial directions.  

 

7.4 ARE THE SPATIAL MODELS CAPABLE OF PROVIDING GOOD 

RIDERSHIP ESTIMATES IN UNSAMPLED STOPS? 

 

This question analyzes the last two specific objectives: (e) “To evaluate the performance 

of spatial and local models on predicting stop-level ridership data in unsampled stops”; and (f) 

“To analyze the effect of the sampling strategy on the prediction accuracy of stop-level ridership 

models”. The thesis hypothesis serving as a basis to this question is: spatial modeling of 

ridership data can overcome the problem of data scarcity, regarding boarding and alighting per 

bus stop. Articles III and IV confirmed this hypothesis. 

The detailed missing data analysis of Marques and Pitombo (2023b) proved that a local 

spatial model is able to achieve satisfactory performance when predicting a stop-level ridership 

data in unsampled stops. Some missing data samples had goodness-of-fit measures close to the 

calibration samples. Best results were seen in scenarios 1 and 4, with validation samples equal 

to 15% and 60% of the dataset, respectively. Scenario 4 showed the lowest Median Absolute 

Percentage Error (MedAPE): 40%, approximately. 
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The prediction power of the spatial interpolation was attested in the fourth article. The 

best result refers to a MedAPE of 33% on a 30% validation sample. The contribution of spatial 

interpolation was higher in estimating missing data than calibration data. 

Confirming the hypothesis mentioned above has implications to the field collection of 

stop-level ridership data. Transit agencies are provided with evidence that allows them to carry 

out the counting of boardings and alightings only for a pre-defined number of stops and then 

apply a spatial model to predict the ridership data in the remaining bus stops. This may 

encourage municipalities that face a lack of stop-level ridership data, mainly due to budget 

constraints, to perform the collection of boarding and alighting, supporting an optimized bus 

network planning and promoting the transit-oriented development. The first approach to the 

possible sampling strategies is shown in Marques et al. (2024), pointing to a better performance 

of the balanced sampling with geographical spreading.  

 

7.5 SUMMARY OF CONCLUSIONS 

 

Table 7.3 summarizes the main conclusions on the specific objectives and hypotheses 

outlined in Section 1. 

 

Table 7.3 – Summary of the main conclusions 
Specific objectives Hypotheses Main conclusions 

(a) “To investigate what factors 

affect the stop-level transit 

ridership” 

 
Four groups of factors gather the most 

important predictors: sociodemographic, 

bus network coverage, street design and 

land use 

(b) “To assess the improvements 

in the estimates provided by the 

inclusion of explanatory variables 

in the geostatistical modeling of 

bus ridership” 

 
Multivariate models should be preferred 

over the univariate ones 

(c) “To compare the performance 

of spatial and local models of bus 

ridership with traditional 

approaches” 

1) Spatial approaches of ridership 

modeling can yield better estimates 

than non-spatial models;  

2) Ridership models considering the 

asymmetry of travel demand variables 

are more adequate than those based on 

the normality assumption 

Models that consider asymmetry and 

spatial dependence should be prioritized 

over the ones that overlook these 

characteristics 
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Specific objectives Hypotheses Main conclusions 

(d) “To compare the performance 

of spatial approaches of bus 

ridership using network distances 

and Euclidean distances” 

The distances along the bus lines can 

yield better estimates than with the 

traditional Euclidean distance 

Despite the network distance approach 

not contributing significantly to 

improving the models’ prediction power, 

this type of distance may better represent 

the relationship between the transit 

ridership and its intervening factors. 

Prioritizing the use of network distances 

in the spatial modeling of boardings and 

alightings is recommended 

(e) “To evaluate the performance 

of spatial and local models on 

predicting stop-level ridership 

data in unsampled stops” 

Spatial modeling of ridership data can 

overcome the problem of data scarcity, 

regarding boarding and alighting per 

bus stop 

The spatial models proved to be able to 

estimate the volume of boardings and 

alightings in unsampled points accurately, 

even in some cases with low availability 

of calibration data 

(f) “To analyze the effect of the 

sampling strategy on the 

prediction accuracy of stop-level 

ridership models” 

  The balanced sampling with geographical 

spreading showed the best performance in 

estimating a transit ridership variable in 

an unsampled bus stop 

 

 

7.6 LIMITATIONS AND FUTURE DEVELOPMENTS 

 

The main limitation of the thesis is probably the low coverage of the stop-level ridership 

database. In addition, for bus stops serving each sampled line, the boarding and alighting survey 

counted only passengers using that specific line. Therefore, the transit ridership measurement 

was not the same for all lines visited during the survey. These facts prevented the possibility of 

including the 16 unidirectional lines in a case study, which would allow a higher spatial 

representativity of the dependent variables. 

However, this observation confirmed the urgency of proposing solutions to the lack of 

stop-level ridership data, which was one of the main motivations of the thesis. Therefore, other 

municipalities facing this problem can benefit from the conclusions achieved. Despite the 

limitations, we believe that the research carried out was successful in extracting all the 

information available in an efficient way to assure strong contributions.  

Nevertheless, there are still non-explored topics, which can provide excellent material 

for forthcoming studies. One of them refers to the concept of loss function in the geostatistical 

framework. It consists of a way to penalize the prediction errors of kriging and is based on the 

squared differences between real and estimated values. However, when dealing with stop-level 

ridership data, the common loss function embedded in kriging might not be the best 

representation of the errors’ shortcomings. Calculating a more appropriate loss function and 

adjusting the kriging weights from it is an exciting path for future research. 
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This suggestion converges with exploring the sequential simulation methods for stop-

level ridership prediction. This type of modeling relaxes the smoothed pattern of kriging 

predictions, allowing the wide variation of boardings and alightings to be better captured in the 

estimation process. 

Analyzing the sensitivity to missing data of different sampling strategies is also an 

interesting topic to be investigated. It is possible that the best sampling method varies according 

to the percentage of points in the calibration samples. Testing several sampling methods in the 

context of Geographically Weighted Regressions is also a recommended topic. 

Although we have investigated only the variables of boardings and alightings, an 

alternative research line could focus on the loading variable, which is given at the route-segment 

level. The loading information (number of passengers inside the bus) is derived from boardings 

and alightings and its maximum value is often applied for an optimized fleet sizing. Analyzing 

this variable from a spatial perspective can provide useful insights to the transit-oriented 

development. 

One final suggestion is to address the potential anisotropy of stop-level ridership data in 

cases where sampled bus stops are available for multiple spatial directions in the city. As shown 

by Marques et al. (2023), this approach is a lower cost alternative to using network distances 

when the data on the variable of interest is densely distributed over the spatial field under 

analysis. 
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