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RESUMO 

SARTORATO, Murilo. Análises em micro e macro escala para o prognóstico de estruturas em 

material compósito: Uma nova metodologia baseada em mecanismos físicos. 2018. 78 

folhas. Tese (Doutorado em Engenharia Mecânica} - Escola de Engenharia de São Carlos, 

Universidade de São Paulo, São Carlos, 2018. 

Atualmente, um dos maiores desafios nas áreas de Ciências dos Materiais e Engenharia 

Estrutural é efetuar análises precisas de previsão de dano em materiais compósitos- evolução 

e falha. Embora diversos modelos e critérios de falha existam na literatura para a simulação 

de dano em materiais compósitos, a maior parte dos modelos não produzem resultados 

aceitáveis para projetos estruturais detalhados. Os modelos atualmente em uso 

costumeiramente sub ou superestimam as cargas necessárias para a degradação e falha de 

materiais. Esse fato ocorre, pois, esses modelos são baseados em dados experimentais e/ou 

semi-empíricos ou modelos fenomenológicos. Essa abordagem negligencia a anisotropia e 

heterogeneidade inerente de materiais compósitos, que causam diversos mecanismos de 

falha ocorrendo simultaneamente em diferentes fases e escalas do material. Uma possível 

solução para esse problema é a utilização e/ou desenvolvimento de novos modelos de dano 

e falha baseados em abordagens multiescala e mecanismos físicos de falha baseados em 

Mecânica da Fratura. Nesse cenário, o principal objetivo do presente trabalho consiste no 

estudo e desenvolvimento de modelos de dano baseados em abordagens multiescala 

aplicados aos materiais compósitos manufaturados via fibras unidirecionais para diferentes 

casos de carga: tração pura, flexão pura, tração-flexão e cargas multiaxiais. Para o 

desenvolvimento desses modelos, publicações foram avaliadas criteriosamente e novas 

formulações foram estudadas, adaptadas e melhoradas. A metodologia básica se baseia na 

utilização de técnicas de homogeneização para obter propriedades elástica degeneradas a 

partir de Volumes Elementares Representativos (VER}; o perfil de dano do VER é definido a 

partir de trincas intralaminares paralelas às fibras e calculadas através de uma abordagem 

multiescala. Essa abordagem compreende três modelos separados: um para a macro escala 

utilizado para o cálculo preciso de tensões e deformações em pontos críticos; e dois na 

microescala para previsão de dano intralaminar. Esses modelos interagem entre si, sendo que 



os resultados obtidos em alguns modelos são utilizados como condições de contorno em 

outros de forma iterativa. Esses modelos foram implementados utilizando códigos em 

linguagem Python independentes e de automatização, bem como sub-rotinas (UEL - User 

Element Subroutine) em linguagem Fortran vinculadas ao pacote comercial de elementos 

finitos Abaqus TM. 

Palavras Chave: Materiais Compósitos, Método dos Elementos Finitos, Mecânica da Fratura, 

Análise Multiescala. 



ABSTRACT 

SARTORATO, Murilo. Micro and macroscale analyses for prognosis of composite structures: 

A new physics based multiscale methodology. 2018. 78 sheets. Thesis (Ph.D. in Mechanical 

Engineering)- São Carlos School of Engineering, University of São Paulo, São Carlos, 2018. 

Currently, one of the greatest challenges for the areas of Material Sciences and Structural 

Engineering isto perform accurate analysis for prediction of damage in composite materiais, 

the evolution of damage and failure. Although several models and failure criterion already 

exist for the simulation of damage in composite materiais, most models do not produce 

acceptable results for detailed designs. The models currently in use often under or 

overestimate loads required for the degradation and failure. This occurs as most of these 

models is based upon phenomenological or semi-empirical data, which adjust failure surfaces 

or failure envelopes to experiments. This approach neglects the inherent anisotropy and 

heterogeneity of composite materiais, which cause several failure mechanisms to occur 

simultaneously in different materiais scales and phases. One possible solution to this problem 

isto use and/or develop new damage and failure models based on multiscale approaches and 

physical failure mechanisms based on Continuum Fracture Mechanic. In this scenario, the 

main objective of the present work consists on studying and developing multiscale based 

damage models applied to composite structures manufactured with unidirectional fibers 

under different load cases: pure tensile, pure bending, mixed tensile-bending and multiaxial. 

For the development of these models, works found in the literature were critically evaluated 

and new formulations were studied, adapted and improved upon. The basic methodology is 

based on using homogenization techniques to obtain degenerated elastic properties from 

damaged Representative Volume Elements (RVEs); the damage profile of the RVE is defined 

as intralaminar cracks parallel to the fiber directions and is calculated using a multiscale 

approach. The multiscale approach comprehends three separate models, one in the 

macroscale for the calculation of accurate stress/strain states in the criticai points, and two in 

the microscale for the prediction of intralaminar damage (matrix cracking). These models 

interact between themselves, as the results from each one are used as boundary conditions 

for the other in a computational analysis loop over load steps via an iterative process. The 



developed models were implemented either stand-alone Python codes or into the finite 

element analysis package Abaqus™ using its automatization capabilities with Python scripts, 

as well as subroutines in Fortran (UEL- User Element Subroutine) linked to commercial finite 

element package Abaqus™. 

Key words: Composite Materiais, Finite Element Method, Continuum Fracture Mechanics, 

Multiscale analysis. 

... 
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lntroduction, Motivation and Objectives 25 

1 INTRODUCTION, MOTIVATION AND ÜBJECTIVES 

1.1 Problem description and applications 

Since the introduction of composite materiais between the 1950 and 1960 decades, 

their use has been steadily increasing in areas with high structural demand and efficiency, 

such the high-end automobilist, rail transport, aeronautical and aerospace industries. In 

particular, in the aerospace industry, some recent projects incorporate composite materiais 

extensively through primary and secondary structural elements, such as the Boeing 787 and 

the Airbus 350 and 380 aircrafts (Figure 1). 

Figure 1- (a) Boeing 787; (b) Airbus 380; (c) Airbus 350 

(a) (b) (c) 

Source: (a) Boeing (2017); (b) Airbus (2017); (c) Airbus (2017) 

As such, both academia and industry dedicated extensive study and research time for 

the correct prediction and simulation of structures manufactured using composite materiais. 

While several categories and classifications of composite materiais exist, for most primary 

structural applications in the previously mentioned industries, composite materiais refer to 

laminated plates manufactured from two phases: a matrix embedded with continuous fiber 

reinforcements. These materiais in most applications are made of polymeric matrix- such as 

epoxy, Polyether Ether Ketone (PEEK), Polyphenylene Sulfide (PPS), and others - and 

continuous unidirectional fibers- such as more commonly used ones (carbon or glass fibers), 

or uncommon ones like organic fibers (cotton, sisal), metal fibers (boron, aluminum) or 

polymeric fibers (nylon, Kevlar, Nomex). This assemble creates a heterogeneous and 
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anisotropic medium that mechanically behaves in a complex matter, and introduces several 

design variables and optimization problems: the use of different fiber orientations lay-ups, 

constituents and thicknesses creates the possibility of controlling the anisotropy, and in turn 

mechanical properties, optimizing the structure behavior both in static and dynamic cases 

(Talreja and Singh, 2014). 

This inherent anisotropy and heterogeneity also cause different damage and failure 

mechanisms to occur simultaneously in different materiais scales and phases. This particular 

characteristic of composite materiais changes its mechanical behavior in ways that increases 

the complexity of damage and failure prediction. As such, damage and failure models that do 

not contemplate the fact that different mechanisms may occur simultaneously and interact 

may lead to inconsistent results, as these interactions may both advance or delay damage and 

failure (Talreja, 2014). Several researches observed this fact in the World-Wide Failure 

Exercises (WWFE - Hinton et ai., 2004; WWFE-11 - Kaddour and Hinton, 2012; Kaddour and 

Hinton, 2013; Hinton et ai., 2011; and WWFE-111 - Kaddour et ai., 2013). These were exercises 

in which different research groups around the World tried different models to predict the 

stress and/or strain leveis to failure in different laminates for known experiments and cases 

found in the literature. According to Hinton et ai. (2011), the general results up to the second 

edition of the exercises were that "There is no universal definition for what constitutes 'failure' 

of a composite structure [ ... ]" and "[ .. . ] none of the current predictive failure theories were 

considered to be credible for use in practical engineering applications". The third exercise 

showed similar results, while also showing that multiscale theories, while promising, still need 

more development and study to be used in practical applications (Kaddour et ai., 2013). In 

particular, this led to the belief that models based on metallic material behavior, such as Tsai

Wu and Tsai-Hill (Talreja, 2014), or that are based on semi-empirical damage and failure 

parameters, such as Hashin's, Puck's or Ladeveze's models, which are still common in the 

industrial environment, are outdated and unreliable in terms of physic meaning. 

This problem introduced some conceptual changes in the numerical and analytical 

modelling of damage and failure of composite materiais. Starting in the second half of the 

1990-decade, the damage and failure prediction models switched from analysis based only on 

homogenized materiais and stress states to problems based on the behavior of the material 

microstructure and the interaction between separate phases - different layers or fibers and 
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matrix (Talreja, 2016). For that, researchers started developing models and analysis that use 

or apply to two or more different materiais scales - macro and microscales - , which are 

referred to multiscale analysis. In addition, models and methodologies, as well as studies that 

better detailed severa! different mechanisms such as crack propagation and multiplication, 

delamination onset, propagation and fiber cracking started to appear in the literature. This 

view changes brought a shift on the focus from damage prediction based on 

phenomenological and semi-empirical models to models based on the actual physic-based 

failure mechanisms, thus moving to theories based upon thermodynamic consistent models 

(lemaitre, 1996; lemaitre and Desmorat, 2005; ladeveze and laDantec, 1996) or fracture 

mechanics (Varna and Berglund, 1991; Varna et ai., 1993; Varna et ai., 1999; Singh et ai., 2009; 

Singh and Talreja, 2010; Carraro and Quaresimin, 2014). However, those shifts introduced 

severa! challenges for the prediction analysis; above ali, the high computational cost required 

for multiscale analysis and the difficulty in obtaining design levei applicable damage and/or 

failure data from such models (Carraro and Quaresimin, 2014). 

In addition, beca use of the extensive research on the problem of finding homogenized 

properties in damaged materiais by using severa! known methods, such as finite element 

analysis of Representative Volume Elements (RVEs), holistic approaches, and different 

homogenization techniques, the problem of obtaining degraded elastic properties has 

become trivial, given that one knows the damage profile. As such, the main problem resides 

in how to predict the damage profile of a certain laminate for a certain load levei or history; 

and how to obtain ways to link macroscopic metrics - i.e. applied load, displacement, 

deformation energy- to microscopic metrics- i.e. crack density, local stress/strain states at 

criticai points, delaminated area. 

On the problem of ways to link the different scales, the literature shows a lack of works 

that approach the problem by using macroscopic computational mechanics, focusing for 

example in cinematic models, and material mechanics, focusing for example in damage and 

fracture prediction models. For example, Figure 2 shows a qualitative study counting the 

scientific papers found between 1988 and 2018 on the Web of Science database for 

combinations of keywords that deal with either sides of the problem, which clearly shows this 

gap. 
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Figure 2 - Qualitative study showing the lack o f scientific papers that link macro and microscale analysis. 

-
Articles that link micro and macro scales 

Source: Developed by the author 

In this manner, the aforementioned limitations observed in the existing damage 

models together with the consideration that multiscale damage models and methodologies 

are currently the state-of-the-art of studies found in the literature justify the study and 

development of multiscale models for damage and/or failure prediction in composite 

materiais. The present work, in particular, intends to apply multiscale damage models to 

specific load cases: quasi-static (cyclic and monotonic pure tensile tests), bending tests (3-

points and 4-points), tensile-bending and multiaxial load; also generalize these models in a 

way that they may encompass different laminates, such as angled-plies and asymmetricallay

ups. In particular, scientific studies of the problem for damage evolution on composite 

laminates under bending loads, both pure and mixed, are scarce and presents different and 

new challenges that are discussed in the following chapters of the present work. 

These models and methodologies are implemented computationally using stand-alone 

Finite Element Method (FEM) Python codes or linked to the commercial finite element 

package Abaqus, using modelling automatization Python scripts. In addition, the 
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aforementioned industries largely sought damage prediction analysis using numerical 

simulations via the FEM, because of the possibility of creating optimization routines and 

simulating virtual tests and structures. 

1.2 Objectives 

The general objective of the present thesis consists in contributing and adding to the 

study and development of intralaminar damage models applicable to composite materiais; i.e. 

the development of models that are based upon physic-based damage mechanisms using 

multiscale models and finite element analysis. In particular, the focus of the present study is 

in the analysis of composite laminated beams and plates manufactured from unidirectional 

(UD) plies under different types of loads: uniaxial pure tensile, bending, combined membrane

bending and multiaxial loads. 

As such, the present work as the following specific objectives: 

o lnvestigate, select and adapt computational multiscale models and methodologies from 

the literature for the prediction of intralaminar damage in composite materiais. 

o Develop new models and methodologies that applied to the load cases of interest: tensile, 

bending, combined tensile-bending, and that can be used for generalized laminates, 

including the angled-ply and asymmetric cases. 

o ldentify the limitations for the selected, adapted and/or developed models and 

methodologies and proposed solutions for these applications, modifying and improving 

these models and methodologies, discussing, validating and/or analyzing the limitations 

and potentialities of said solutions. 

o lmplement the models and methodologies in sub-routines, either using stand-alone 

Python codes or linked to the commercial FEM package Abaqus™, using modelling 

automatization Python scripts, as well as user subroutines in Fortran (UEL- User Element 

Subroutine) linked to Abaqus. 

o Validate the models using experimental and computationa l tests, as well as data and 

analytical solutions found in the literature. 
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1.3 Chapter organization 

In order to keep a better organization and help the reading of the work, the present 

thesis is divided into 7 (seven) chapters, which are summarized as follows: 

Chapter 1. lntroduction, Motivations and Objectives - the first chapter presents the 

introduction, motivation, objectives as well as the thesis organization. 

Chapter 2. On the Mechanisms of Damage and Failure on Composite Materiais- the 

second chapter presents a brief literature review of the history of the studies on damage and 

failure prediction on composite materiais and the current studies regarding damage initiation, 

evolution and failure. In addition, the chapter describes the different concepts and 

methodologies used on the present work, such as the concept of multiscale analysis and the 

logic used for the choice of this approach. 

Chapter 3. Multiscale Methodology - the third chapter discusses and details the 

multiscale methodology developed in the present work for the prediction of intralaminar 

damage evolution in composite materiais. The chapter proceeds to show the different phases 

and the iteration loop used in the computational simulations for this methodology, and their 

different implementations using stand-alone in-house Python codes and automation Python 

scripts interpreted using the finite element commercial software Abaqus. 

Chapter 4. Macroscale Mechanical Models: Shell Theories - the fourth chapter focus 

on the macroscale analysis phases of the developed methodology, showing a brief literature 

review on the history of shear deformation theories for shells, showing the differences 

between linear and high-order theories, as well as between equivalent single layer and layer

wise theories. Following that, the chapter shows the formulation used in the present work to 

obtain an accurate stress distribution over the thickness of the laminate, explaining an 

adapted Generalized Unified Formulation (GUF), which was first proposed by Demasi (2009). 

Thus, the main equations, its implementation through a finite element solution, discussions 

on open problems and proposed solutions for the formulation such as application of boundary 

conditions are presented. Then, the chapter shows an interactive algorithm for obtaining the 

least computational costly deformation theory for a given problem. Finally, the chapter ends 
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showing numerical experiments for validation of the adapted formulation and 

implementation via UEL linked to Abaqus, and other results. 

Chapter S. Microscale Mechanical Models: Damage Evolution and Homogenization

the fifth chapter describes the microscale models and simulations phases of the developed 

methodology, focusing on crack multiplication analysis, used to obtain the damage quantities, 

and the homogenization models. The f irst subsection presents a brief literature review of 

crack multiplication models based on Crack Opening Displacements (COD) and/or Crack Sliding 

Displacements (CSD), as we ll as its adaption and implementation by the present work. In 

addition, subsections present issues found in the original models regarding angled laminates 

and the generalizations and solutions developed in the present work. Following that, another 

subsection of the chapter shows the homogenization model used to obtain the degenerated 

properties of a damaged laminate. Finally, the chapter ends showing numerical experiments 

for validation of the adapted formulation using analytical solutions found on the literature and 

experimental results. 

Chapter 6. Final Discussions, Conclusions and Future Developments - the sixth 

chapter presents a brief discussion of the results presented on the previous chapters and the 

developed methodology, and summarizes the conclusions of the work presented on the thesis 

based on these resu lts, corre lating them with the established objectives. Finally, a f inal 

paragraph presents a brief discussion of issues and improvements over the developed 

methodology. 

Chapter 7. References - the last chapter presents the different references used to 

develop the present PhD Thesis, including scientific papers, books and technical manuais. 

-- - .-_- ___ ---;:- - --=-~ =-·-- ----- --
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2 ON THE MECHANISMS OF DAMAGE AND FAILURE ON COMPOSITE MATERIAL$ 

This chapter presents a brief literature review of the history of the studies on damage 

and failure prediction on composite materiais and the current studies regarding damage 

initiation, evolution and failure. In addition, the chapter describes the different concepts and 

methodologies used on the present work, such as the concept of multiscale analysis, 

Representative Volume Elements (RVE), Unit Cells {UC) and the logic used for the choice of 

this approach anda brief literature review on the topic. 

2.1 History ofthe study of damage in composite materiais 

The prediction of damage in composite materiais has an evolution throughout history. 

In general, the earlier criterions were based upon the premise that composite failure could be 

obtained from basic material rupture properties in the composite principal direct ions: aligned 

to the fibers, i.e. Xr and Xc - obtained from tensile and compression tests using a 

unidirectional laminate with ali fibers oriented at ao degree angle, transversal to the fiber 

direction, i.e. Yr and Yc- obtained from tensile and compression tests using a unidirectional 

laminate with ali fibers oriented at 90° angle and under maximum shear, i.e. 512 - obtained 

from tensile tests using a laminate with fibers oriented at +/-45° angle. lnitially, in the decades 

of 1950 and 1960 when orthotropic and anisotropic materiais were starting to be used in 

practical applications; laminated composite structures were calculated using simple models 

based upon maximum stresses and st rains criteria; using experimental data from tensile tests 

of laminates oriented with different angles as explained earlier. These models use simple 

comparisons between the stresses or strains over the laminate and the rupture values 

obtained from the experimental tests for a given orientation. 

For example, Equation 1 summarizes the Maximum Stress Criterion, which compares 

the in-plane stresses (u111 u22 and r 12 ) with the resistance values for a composite found in the 

fiber direction. By the same logic, Equation 2 shows the Maximum Strain Criterion, which can 

be constructed using the in-plane strains (t:11 , t:22 and y12 ) and the maximum strains values 

corresponding to the tests and directions mentioned in the Maximum Stresses Criterion 
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(X~1c, v;1c,S{2 ). These criterion can be understood as a failure surface with a parallelepiped 

shape shown in Figure 3. 

(1) 

(2) 

Figure 3 - Maximum Stress Criterion Failure Surface 

Source: Developed by t he author 

One of the first failure criteria developed specifically for composite materiais was the 

Tsai-Hill criterion (Azzi and Tsai, 1965). This model was based upon the Hill criterion (Hill, 1948) 

for yielding of anisotropic metais, using hypothesis of plane state of stresses, and thus, altering 

Hill's original yielding resistances to the maximum resistances of each layer principal directions. 

Under this prerogative is implied the hypothesis that every failure in composite materiais is a 

brittle failure. This model generates a different conic failure surface for each of the quadrants 

for a (cr11 cr2) pai r for each stress state in the ply (cr11 cr2, Oü), shown in Equation 3 and Figure 

4. This happens because of the different resistance values for failure under traction and 

compression tests in the fiber and transverse directions, and a single shear resistance value. 
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Source: Developed by the author 

Figure 4- Tsai-Hill Failure Surface 
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(3) 

Years !ater, the same approach ofthe creation of a failure surface was used to develop 

the Tsai-Wu criterion (Tsai e Wu, 1971). This criterion uses a conic failure surface to bypass 

the plane stress state hypothesis, by using three quadratic inequalities, each one containing 

three of the six terms of a full stress tensor and five coefficients, which are obtained from an 

orthotropic material ultimate strengths in the principal directions. lts mathematical 

expression and schematic shape are found in Equations 4 and 5 and Figure 5 respectively. 

(4) 

F =2:.._+2:._ F t 1 1 F 1 F 1 
1 Xr Xc' 2 =Yr+ Yc'F66 = sf

2
' 11 =-XrXc' 22 =-YrYc (5) 
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Figure 5 - Tsai-Wu Criterion Failure Surface 

Source: Developed by the author 

In particular, one of these coefficients - F12 - related to the shear in the failure plane 

was not mathematically provento be unique, andas such, cannot be obtained experimentally. 

Several subsequent works, such as Wu e Stachurski (1984), Evans e Zhang (1987), 

Benzeggagha et ai., (1995) were published with a focus in finding a mathematical expression 

or an experimental methodology to obtain F12 . However, several methods use as an 

estimative approximation for F12 the half of the geometric average F11 and F22 , which is the 

module of the maximum values of F12 that may be obtained by experimental tests, as 

proposed by Hashin (1980) and found in Equation 6. 

(6) 

In the following years, several authors used the same approach of creating a 

mathematical failure surface based on the invariants of anisotropic materiais, altering the 

basic expression or adding new terms to include a given phenomenon of interest. As such, 

severa I works exist on the literature that adapt classic yielding failure surfaces for the use with 

composite materiais, such as the Ducker-Prager yield surface (Drucker e Prager, 1952} 

commonly used for the polymeric matrix phases, or Bresler-Pister yield surface (Bresler e 

Pister, 1985) used for foam core in sandwich composites. This approach culminates in the use 

of Altenbach-Bolchoun-Kolupaev yield surface (Aitenbach et ai., 2013), which tries to 
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generalize an expression for multiple material types. Nowadays, these three criteria are most 

commonly used in microscale analysis for which the failure of each different heterogeneous 

phase is considered and non-linear behavior, such as polymeric matrix plasticity, is modelled, 

and the mathematical representation can be found in Table 1. 

Criteria 

Ducker-

Prager 

Bresler-

Pister 

Altenbach 

Bolchoun-

Kolupaev 

Table I - Other failure surfaces based criteria 

Mathematical Formulation 

m-1 m+1 
-

2
-Coü + <Tzz) + -

2
-vflall<Tzzl 

Ct 

- Xc ::; O, 

Xc = vflall<Tzzl- Co- c1(<T11 + <Tzz) 

- Cz(<Tll + <Tzz) 2
, 

_ (Xr -Xc) (4X~ -X8 (Xc +Xr) +XcXr 

- Xr + Xc 4X~ + X8 (Xc + Xr)- XcXr 

Cz 

Failure Surface 

Figure 6 - Ducker-Prager failure 
surface 

~ ., 

Source: Adapted from Wikipedia (2017) 

I ,., 

.. -
(_ 1 ) ( X8 (3Xr -Xc)- 2XcXr ) 

- \XT + Xc 4X~ + 2X8cxr-Xc) - XcXr Source: Adapted from Wikipedia (2017) 

(lmpossible to represent in 

the plane stress space) 

Source: Developed by the author 
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Gradually, during the 1970s, the failure criteria for composite materiais started to grow 

more complex. Researches started to question the hypothesis used on the Tsai-Wu criterion 

and similar approaches of adapting anisotropic equations to create failure surfaces, in 

particular dueto their inability to correct simulate the behavior of unidirectional composites 

(UD). Then, in 1980, Hashin (Hashin, 1980) introduced the idea to separate the different failure 

modes existing for the different phases of composite materiais, altering Tsai-Wu's failure 

surface to a surface assembled "by parts", in which, for each different quadrant, and stress 

state values, different expressions and coefficients are used. This hypothesis is based on the 

fact that, for most common used fibers - glass and carbon - , the failure is brittle and in the 

direction normal to the fiber, as for the polymeric matrix, the failure may not occur in the 

direction of the fiber, but in a "criticai plane" that is aligned in any direction. 

This premise introduces different failure modes: failure of the polymeric matrix under 

compression and traction, and failure of the fibers under compression and traction. Even 

though severa I studies showed a good efficient and consistence for the Hashin criterion when 

used for UD composites (Paris, 2001), there are some problems with the criterion. In particular, 

the experimental results of the strength values of the polymeric matrix in the direction of the 

"failure plane", as this direction varies with the material stress state. Several methodologies 

exist to obtain these coefficients, however, even nowadays, this is still a problem that may 

hamper or even invalidate the use of Hashin's criterion (Tita, 2008). Following Hashin's work, 

several researchers tried to improve his modelling in particular (Tita, 2003). Because of the 

introduced complexity, Hashin's criterion do not have a simple mathematical expression or 

given failure surface shape, as those depend on the angle of the criticai plane, which by itself 

depends on the stress state of the material. 

Expanding Hashin's idea, Puck in a sequence of several works (Puck and Schürmann, 

1996; Puck et ai. 2002 and Puck and Schürmann, 2002) introduced the concept of inter-fiber 

failure, by proposing a process to identify the "criticai plane" of the polymeric matrix based 

upon the Cauchy stresses over this plane. Thus, the failure expressions for the polymeric 

matrix for Hashin's criterion were improved upon with the addition of four constants that 

describe the orientation of the matrix's failure plane. Using these constants, one may generate 

Puck's "master failure surface". Hence, Puck's full criterion is based on a quadratic expression 

containing seven constants - three strength values and four parameters for the orientation of 
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the failure plane - , and needs at least seven distinct experimental tests to obtain its 

parameters. The four constants used to obtain the failure plane are particularly difficult to 

obtain, demanding complex and low precision experimental tests (Angélico, 2009). Moreover, 

Puck's criterion along with ali the aforementioned criteria are binary, predicting only the 

material final failure, and not calculating the damage evolution over the load or life of the 

structure. Some studies exist that tried to introduce a degenerating law for the criteria 

parameters o r the material constants for Puck and/or Hashin for some specific load cases, for 

instance: 

• Chang and Chang (1987a and 1987b) (Hashin, bending) 

• Tita et ai. (2008) (Hashin -low energy impact and bending) 

• Daniel et ai. (2012) (Hashin- bending) 

• Batra et ai. (2012) (Hashin -low energy impact e shear) 

• Riccio et ai. (2014) (Hashin, general impact) 

• Angélico et ai. (2009) (Puck- bending) 

• Carraro e Quaresimin (2014) (Hashin - high energy impact and fatigue). 

However, no general model that works consistently for any load case, laminate lay-up 

and analysis condition exist. 

Trying to solve these problems, using an approach of different damage evolution 

occurring for different phenomena, Ladeveze (Ladeveze e leDantec, 1996) found expressions 

for the evolution of damage with the load mathematically, and based upon the definition of 

lemaitre (Lemaitre, 1996, lemaitre and Desmorat, 2005) of thermodynamic forces. Three 

damage modes exists for ladeveze's model: fiber brittle failure, matrix damage evolution and 

failure under either traction or compression, which evolve with the load, altering the 

constitutive matrix. These expressions are dependent on three damage constants - d1, d2, 

and d6 -, which may be obtained from specific experimenta l tests (more simple than Puck's 

identification process) and a failure surface obtained from a quadratic expression based on 

strength values measured in a direction normal to the fiber reinforcements and under pure 

in-plane shear, as well as the stress components u2 and O"tz. 
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Overall, the aforementioned criteria have some common limitations. First, the 

experiments to obtain the parameters need to generate the failure surfaces and/or 

expressions, which tend to be difficult to reproduce and shows low precision. Second, the 

separation of the severa! damage and failure mechanisms in different equations is not 

accounted for the simultaneity and interactions between these mechanisms. Finally, the use 

of failure surfaces adjusted from semi-empirical parameters, as severa! manufacturing and 

experimental errors may be carried over to the models (Tal reja, 2014). 

2.2 First damage threshold: Heterogeneous microscale 

In general, the existing problems in multiscale analysis are related to the difficulties in 

modelling materiais in the microscale due to its geometric complexity and the different 

damage mechanisms, which occur simultaneously and each needs a different mathematical 

model (Talreja, 2014). For instance, even for UD composites, the random dispersion of fibers 

inside the polymeric matrix introduces a numerical problem in the modelling dueto the need 

of complex algorithms to calculate the positioning of the fibers (Yang et ai., 2003). For weaved 

composite, bi or tridimensional, the challenge of obtaining precise information of the 

geometry of the fabric increases the problem. There are possible approaches that have been 

taken in works of the literature, which regard this issue (Huang, 2000; Barbero et ai., 2005; 

Ha-Minh et ai., 2011), but it is observed that this is still an open problem. 

However, after the modelling barrier is handled, severa I approaches exist for the usage 

of multiscale analysis to evaluate damage evolution and failure in composite materiais. Overall, 

the existing works in the literature uses multiscale analysis to include damage and failure 

mechanisms that are difficult or impossible to include in macroscale analysis. For instance: 

interface debonding between fiber and matrix, different constitutive behavior between each 

of the phases, the occurrence of different mechanisms in a simultaneous manner, and to 

model tridimensional effects that do not appear in a homogenized environment. 

In particular, two concepts widely spread in the literature for the use of multiscale 

analysis consists on Unit Cells (UC) and Representative Volume Elements (RVE).Unit Cells can 

be defined as the smallest repeating volume that has a geometry that, through symmetry and 

----------------------------------~-- -=-~--=--~==~---==================================== 
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periodic boundary conditions, represents the whole heterogeneous material. For 

unidirectional composite materiais this usually means repeating geometries containing a 

single or small amount of fibers, depending on the initial fiber distribution, that through the 

use of periodic boundary conditions may simulate the behavior of a material when repeated 

over a uniform grid (Figure 8), which shows uniform distributed singularities, such as fibers in 

a composite material (Asp et ai., 1996). Examples of square and hexagon UCs for uniform 

fibers distributed in a composite structure can be seen in Figure 8 and Figure 9, respectively. 

Figure 8 - Square Unit Cell 

Source: Adapted from Wikipedia (2017) 

Figure 9- Hexagonal Unit Cell 

Source: Adapted from Wikipedia (2017) 

Representative Volume Elements are volumes of realization of a material which 

statistically represent the material's thermomechanical behavior. For composite materiais this 

means a random generated distribution of fiber positions and radii that can be obtained from 
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a statistic distribution with properties found from experimental data, such as microscopy or 

scanning electron microscopes, or correlated to given desired properties, such as fiber volume 

fraction, fiber clustering intensity and fiber clustering occurrence. lt is important to note that 

RVEs do not necessarily need geometrical symmetry, repeating periodicity grids or be 

modelled with periodic boundary conditions as they, by definition, are already a statistical 

representation of a material volume. This fact however, only holds true provided that the 

statistical average behavior of the given area of the RVE that is being analyzed correctly 

simulates the physical behavior of the material and this areais not influenced by the boundary 

conditions of the model. Examples of RVEs for composite materiais are shown in Figure 10. 

Figure 10- Examples ofRVEs for composite materiais. 

Source: Adapted from Wikipedia (2017) 

Another approach isto use cohesive elements together with different types of damage 

and failure models to simulate locally damage evolution or crack propagation. These cracked 

or damaged microstructures are used within homogenization techniques or global-local 

criteria to find the effective degenerated elastic, elastoplastic properties and/or strength of a 

structure. Cohesive elements may be used in conjunction with layer-wise shell finite element 

formulations to model delamination. This approach is specially indicated for some specific 

cases, such as modelling adhesive joints. However, the ma in disadvantage of cohesive models 

is the difficulty to find the parameters for the traction-separation laws. 

In this context, some works are of interest to the present PhD Thesis. Prabhakar et ai. 

(2013} employed a mesoscale approach with cohesive elements and diffuse damage theories 

to predict and simulate kink bands in cross-ply laminates and laminates with ±45° layers under 
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compression. Vaughan and McCarthy (2011) used bi-dimensional analysis with plane-strain 

state elements and non-linear plastic constitutive laws to trace the crack path in 90° layers, 

and propagate these cracks via cohesive elements. In their work, the cracks could be nucleated 

from interface debonding failure between fiber and matrix, matrix failure or fiber failure. 

Murani and Upadhyad (2012) and Murari and Upadhyad (2013) used the same approach, but 

applying a Representative Volume Element (RVE), which contains a single fiber to obtain 

damage evolution over cyclic tensile loads. Shojaei et ai. (2014) used hypothesis from linear 

elastic CDM with cohesive elements to evaluate damage evolution under tensile loads in 

cruciform UD coupons, considering brittle failure of both matrix and fiber. Yang et ai. (2012) 

considered a similar approach, however including interface-debonding failure in the cracks 

nucleation. 

Another possible approach is to use full 3D simulations of the microstructures to 

generate stress or strain field that feed the damage nucleation, evolution and failure 

calculations. However, this is a computationally expensive approach and, in general, is outside 

the scope of models applicable to complex structures (Maimi et ai. 2010a). 

2.3 Continuum fracture mechanics first damage threshold: Homogeneous 
microscale 

In general, material models neglect the inherent heterogeneity of composite materiais, 

not in its formulations, but in the way damage metrics, such as local stress states are obtained 

and treated. This heterogeneity may cause several different failure mechanisms that occur 

simultaneously in different materiais scales and phases. 

One possible solution to this problem isto use and/or develop new damage and failure 

models based on multiscale analysis and physical failure mechanisms, as well as known 

continuum fracture and damage mechanics relations. Several works in this area already exist 

in the literature; however, most of them is focused in microstructural analysis, but the 

prediction and cause for the first failure phenomena. In particular, works that focus in the 

damage evolution of composites are dedicated on life analysis, including prediction of the 

fatigue limit and stress vs. number of cycles curves. 
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For the study of monotonic loads, the damage evolution models based upon 

continuous damage mechanics formulation are able to describe damage evolution in function 

of crack density and energy and/or displacement metrics from the cracks, such as energy 

needed to open new cracks and crack opening and sliding displacements. For instance, severa I 

works by the same group of researchers (Varna and Berglund, 1991; Varna et ai., 1993; Varna 

et ai., 1999) showed how damage caused by tensile loads in angle-ply composites -

[0°~9v/\lfo]r lay-ups- may be modelled as multiple matrix cracks parallel to the direction of 

the fibers using the crack opening, sliding and density as damage metrics. Afterwards, Joffe et 

ai. (2001) mathematically proved the hypothesis of reversibility in the damage modelled by 

matrix cracks, from which one can describe the energy necessary to double the amount of 

cracks from a given damaged state, and how to relate this energy with the average crack 

opening displacement for 90° layers. 

In addition, some works model either analytically or numerically the property 

degradation of composite materiais as function ofthe crack density, such as the works of Joffe 

and Varna (1999), Hajikazemi et ai. (2015), Barbero et ai. (2015) and Barbero et ai. (2016). 

Besides, the simplifications needed for an analytical solution implicate in specific kinds of lay

ups. In particular, existing analytical solutions uses either Navier or Leví's solution to solve the 

equilibrium equations of the laminate, andas such implicates that A16 = A26 = B16 = B26 = 

D16 = D26 = O (Reddy, 2004). This situation only occurs in antisymmetric balanced lay-ups, 

which would invalidate the method for UD off-axis analysis, and ±9 lay-ups, or angle-plies. In 

addition, these works focus on the damage evolution of laminates containing single damaged 

90° layer bundles. Benzerga et ai. (2009) and Singh et ai. (2010) improved upon the 

aforementioned works by combining both approaches, and applying it on some angle-ply 

laminates , [0° m/90° n/9o]s o r [0° m/9o n/90° o]s, using numerical solution for the degradation 

problem. 
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2.4 Damage evolution 

As Figure 11 shows, the damage and failure mechanisms in composite materiais follow 

a known evolution pattern. For example, delaminations tend to occur only after intralaminar 

damage is present and was already initiated. As such, a logical approach for the evolution of 

damage is important, as weiL Figure 11 also shows how the largest response change in the 

stress-stra in curve for composite materiais occurs in the initial part of damage evolution, 

which mainly compromises intralaminar damage. In addition, most structural projects that use 

composite materiais apply relatively large safety factors for structure designs, either from 

necessity originated from uncertainties in manufacture processes or from impositions given 

by different regulations and standards used in homologation processes. Together, these two 

factors can guarantee that designed structures will work in the first damage region of the 

curve. Thus, it makes sense for the present work to focus only on intralaminar damage. 

However, it is well known that some kinds of laminates and/or types of loadings (like impact) 

can show more delaminations and/or fiber breakage than intralaminar fai lures. 

The main difference between the pure bending and the pure tensile load case is the 

formation of a non-uniform displacement field over the thickness of the laminate, dueto the 

curvature imposed by bending loads (Maio et aL, 2013). This fact creates a distribution of 

stress field over the thickness that may results in a stress state in which both traction and 

compression are found in the materiaL As such, different leveis of stresses and strains exist 

over different layers of the composite, even those with the same orientation. Hence, layers 

closer to the bottom of a laminate under a right handed pure bending load display larger 

normal stresses and strains comparing to those closer to the middle, and layers closer to the 

top of the laminate display negative normal stresses and strain leveis. 
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Figure 11 -General behavior of damage evolution in composite materiais 
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Under pure tensile loads, layers with the same orientation fail at practically the same 

time, and this leads to premature failure of other layers, which in turn leads to catastrophic 

failure of the material. However, under bending loads, the non-uniform distribution of 

displacements leads to a behavior know as progressive failure, in which different layers fail at 

different load leveis (Batra et ai., 2012). The general behavior of a composite structure under 

progressive damage showed by Figure 12 is exemplified by Tita (2003), which consists of a 

bending test of a [0° /90°/0°/90° /0°]s carbon fiber-epoxy laminate. In this test, the damage and 

failure history of a laminate under bending can be seen clearly. The mechanical behavior of 

the laminate, as previously discussed, is complex beca use of the interaction between different 

damage progression and failure mechanisms. However, the progressive behavior of damage 

and failure is easily identifiable. At first, about the 0.75 kN/3.5 mm point, crack nucleation and 

multiplication started at the bottommost 90° layers, as shown by the non-linearity induced in 

the curve in this load levei. At the 0.85 kN/5.7 mm point, the first drop in force occurs, being 

characterized in the test by delamination close to the force applicator. The trend of increased 

non-linear response as more damage is accumulated in the 90° layers continues, until the 

second drop, corresponding to fiber failure of the bottommost oo layer. These trends of 

-------------------------------------- - -------~--=- ~-~--~~-=============================== 



On the mechanisms of damage and failure on composite materiais 47 

damage accumulation in 90° layers and failure, either by intralaminar fiber cracking in the oo 
layers or delamination between the oo and 90° layers continue until the final failure (Tita, 

2003). 

Figure 12 - Three point bending test o f a [0°/90° /0°/90° /0°]s laminate showing progressive failure o f the 
layers, highlighted by the red circles. Force [kN] vs. deflection [mm]. 

Source: Tita (2003) 
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Another important aspect to be highlighted is that the most of multiscale analysis of 

composite materiais focus on fatigue life and in-plane loads where the damage can be induced 

by simpler and easier experimental setups. However, some works can be accounted for the 

progressive failure problem. Zhang and Zhang (2010) used the approach to alter the layer 

constitutive laws to include both an exponential and a "step function" property degeneration 

due to progressive failure under four point bending tests. Maio et ai. (2013) used some 

bending predictions during analysis via Hashin based criterion for low energy impact loads. 

lvancevié and Smojver (2014) used a multiscale approach via several failure criteria for 

different phases and scales - Tsa i-Hill, plane stress state Hashin, full 3D stress state Hashin 

and multi continuous theories - to simulate the damage caused by three point bending 

analysis. Meng et ai. (2015) expanded the hypothesis of the classical laminate theory in a 
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multiscale simulation of 3D bending and concluded that the influence of out-of-plane efforts 

cannot be neglected. Xu et ai. (2015) studied the fatigue life under bending problem, as well. 

Therefore, these are some scientific contributions about experimental observations and 

simulations of damage evolution in composite materiais. Thus, in the next chapter, it will be 

shown how the present author decided to approach the problem of damage evolution in 

composite materiais, focusing on intralaminar failures. 
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3 MULTISCALE METHODOLOGY 

Given the objectives shown in Chapter 1.2 - Objectives, this chapter presents an 

overview of the scientific methodology used in the present PhD Thesis to develop the models 

and procedures that predict the intralaminar damage evolution of a composite laminate with 

UD fibers. As such, the main objective ofthe present work isto develop a methodology based 

on a computational procedure, using physically consistent concepts, that links the externai 

loads applied to a given structure and the resulting damage is associated with this particular 

set of loads. This methodology is accomplished by the use of a multiscale approach. 

At first, it is emphasized that there is no universal definition of damage (Talreja and 

Singh, 2016). Hence, for the present work, damage is defined as a collection of irreversible 

changes in the material caused by either physical or chemical phenomena resulted from the 

presence of externai loads. Damage can happen in the nanostructure, as atomic bond 

breakage between polymer chains; in the microstructure, as severa l different mechanisms, 

such as fiber or matrix cracking. In the macroscale damage can be understood and modelled 

as a change in the material properties that dictates the material behavior, such as elastic 

properties, plasticity or residual resistance (Talreja and Singh, 2014). Damage by itself is a 

concept, and should not be confused with Damage Mechanics, which is the field of study of 

damage initiation and evolution, as well as its consequences on the response of a material 

and/or structural element to externalloads. 

The main premise of the present approach is that damage, based on Continuum 

Damage Mechanics (CDM) concepts, is modelled in the macroscopic scale by treating a 

damaged material as a homogenized material with degenerated elastic properties with lesser 

values than the ones found in the intact material (undamaged material). Meanwhile, in a 

microscale physically consistent, metrics such as crack density, crack profiles, crack opening 

and sliding displacements and different energy values, which are re lated to the externalload 

levei and subsequent damage, are calculated. 

Keeping that in mind, Figure 13 shows the general scientific methodology behind the 

creation of the computational procedure, clearly highlighting the different scales- macro and 

microscales -the multiscale approach and the iterative process between both scales. Figure 
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13 also highlights the main load cases of interest for the present work such as pure tensile 

loads, pure bending loads, mixed tensile-bending loads and multiaxial loads, which were 

studied in an increasing complexity manner. 

In particular, it should be noted that, at first, the different models and theories applied 

to both the macroscale and microscale analysis were based on works found in the literature, 

such as Demasi (2009a), Singh and Talreja (2009), Singh and Talreja (2010), Danielson et ai. 

(2006). However, due to the development of the present work, limitations of these theories 

were identified and studied. Consequently, these works were adapted and improved upon, 

generating new models, as some limitation of the original models prevented the integration 

with computational analysis or with the other models. The theoretical formulations, 

methodologies and results obtained for each model are shown in the following chapters. 

Likewise, it is of interest to say that the linking of these different models in a single 

multiscale procedure is not trivial (Ladeveze and LeDantec, 1996), and may be seen, by itself, 

as an innovation made in the present PhD Thesis. 

Figure 14 shows, schematically, the procedure developed in its current form. The basic 

premise of the methodology is that to evaluate the damage evolution of a given structure for 

a starting given levei of load, the first phase of the methodology performs a macroscale finite 

element analysis to obtain the stress field, strain field and elastic deformation energy available 

at different points of the structure. This phase of the procedure can be compared to a virtual 

test, where different kinds of loadings can be applied on the composite structure. With this 

information, the methodology proceeds to a microscale model of selected criticai points or 

regions on the structure, or points that are representative of the average stress state found in 

different materiais points in the macroscale analysis. The microscale model is used to obtain, 

through CDM, the damage characteristics of the criticai material point for that levei of applied 

loading. Thus, it is calculated crack density, crack profile, crack opening displacements, crack 

sliding displacements, work done by opening and closing new cracks, and energy released by 

the creation of new cracks in the microscale model. These damage characteristics are used 

with homogenization techniques in order to obtain the degenerated elastic properties of that 

particular material point. 
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Figure 13 - Scientific methodology used on the present PhD Thesis 
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For this reason, the proposed procedure is composed by two separate phases -

macroscale analysis and microscale analysis - with three different steps, each step utilizing 

different theoretical models: 

o Step 1: Macroscale analysis for obtaining the through the thickness stress and stra ins 

distributions of a given point and the accumulated elastic deformation energy; 

o Step 2: Microscale analysis for obtaining damage parameters, such as crack density, for 

that lay-up under the current load conditions (described by the stress distributions); 

o Step 3: Microscale analysis for obtaining homogenized degenerated properties (layer-by

layer), given a certain levei of damage described by the previously found damage 

parameters. 

These three steps, while independent and having each its own development interact 

and supplement each other with information for every iteration of the methodology loop. For 

that, the procedure is separated into macroscale analysis for the prediction of accurate stress 

states, microscale analysis for the initiation and evolution of intralaminar damage (matrix 

crackst and homogenization of the damaged material points for obtaining the degenerated 

homogenized elastic properties (layer-by-layer). For each of these analyses, the loads cases of 

pure tensile loads, pure bending loads, mixed tensile-bending loads and multiaxialloads, and, 

as such, are studied in a progressive order from the simplest (pure tensile load) to the more 

complexes. 

3.1 Macroscale analysis methodology 

As shown in Figure 14, the computational procedure is a closed iterative loop on the 

applied load and behaves as a predictor-corrector algorithm that is always one load step 

behind the solution. As such, for the loop to converge to accurate and satisfying results, the 

computational loop must be carried out in smallload steps, even if individual steps converge 

for larger load steps. 

In this computationalloop, for every load step, a virtual test of a given laminate - the 

macroscale model - is made to obtain the stress and strain states at the most criticai region 



Multiscale Methodology 53 

of the structure. For the uniaxial tensile and bending tests, this usually means the center 

region. For the pure tensile cases; the stress and strain tensors are usually uniform over the 

coupon, however, depending on the geometry of the structure and the applied loads, this 

stress and strain states are not be simple to predict. This fact occurs as, for most laminates, 

dueto the lay-up the stress and/or strain states cannot be uniform, or not even purely tensile 

or in plane loading. Even unidirectional composites show a mixture of tensile and shear in

plane stresses for off-axis cases o r angled-plies (non oo or 90° layer). In particular, angled-plies 

show varying out-of-plane stresses and non-symmetrical laminates generally have a full 3D 

stress tensor due to the coupling of membrane and bending loads. In addition, damage 

incorporates asymmetry and unbalancing to the materia l, creating a full coupling of 

membrane, bending and shearing loads, further complicating the correct prediction of 

stresses, strains and accumulated elastic deformation energy. Besides, laminates with holes 

or tapered structures present full 3D stress state close to the stress concentration regions. 

Moreover, the fact that the computational loop intrinsically needs small load 

increments to accurate predict damage can generate a large number of load steps per analysis. 

This makes computationally heavy simulations an issue. In light of ali these facts, the 

macroscale step demands some particular characteristics for the model implemented for its 

si mu lations: 

o Requires accurate prediction of the through the thickness distribution of stresses inside 

each layer, including the out-of-plane normal and shear stresses and strains; 

o Requires correct simulation and prediction of general laminates, including angled-plies 

and asymmetric lay-ups; 

o Requires relative low computational time, at least on the same arder of magnitude of the 

time used in the microscale analysis phase; 

o Dueto the simple tests that are relevant to the load cases of interest for the present work, 

the implemented formulation can be simplified to only be applicable to flat rectangular 

and/or circular laminated plates. 

For these reasons, given the costly computational of full 3D analysis that obtain 

accurate through the thickness stresses distributions, especially over bending (Reddy, 2004}, 

and the limitations of most analytical solutions - i.e. antisymmetric laminates - the author 
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decided on the use of shell finite elements implemented using mapped rectangular and/or 

circular meshes. 

In particular, the main problem with existing analytical solutions is twofold. First, the 

existing analytical solutions for shell problems are usually obtained from either Navier's or 

Leví's type solution to solve the equilibrium equations ofthe laminate through trigonometrical 

series. These solutions exist only for the cases in which the laminate matrixes parameters 

A16, A26, 8 16,8 26 , D16 , D26 are nu li (Reddy, 2004). The ma in problem arising from this fact is 

that on ly anti-symmetric lay-ups can be solved. As previously discussed, the progressive failure 

of different damage found in different layers due to bending or the lay-up may introduce 

asymmetry in problem. In addition, in general, analytical solutions are only possible for simple 

geometry like rectangular and radial ones. Finally, in future works, the present methodology 

could be expanded to include interlaminar damage, such as delaminations, to simulate low

energy non-penetrative impact load cases, which easier to be implemented and encompass 

broader boundary condition solutions using numerical approaches such as the FEM. 

Shell finite elements are a family of "quasi-30" finite elements (Figure 15). They are 

three-dimensional finite elements in the sense of being surfaces freely distributed in the space 

and having the capacity possessing tri-axial displacements and full stress/strain tensors 

compatibility. However, they are less computationally heavy than brick elements as the 

thickness characteristics degenerated into surfaces by the use of pre-described through the 

thickness displacement distribution functions (Bathe, 1996). These functions are called 

deformation theories, a huge amount existing on the literature, some being shown in Table 2. 

In addition, this type of elements is more suitable to be model more complex surfaces 

and structures as usually applied in aircrafts. They are easily connected to beam elements, 

which normally represent reinforcements- such as stringers, ribs and spars- in more complex 

geometries. Moreover, shell elements are particularly well suited for simulating simple or 

double curved geometries, often found in the automobilist, aeronautical and aerospace 

industries 
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Figure 15- Shell finite element 

Source: Developed by the author 

Table 2- Shell deformation theories 

Formulation Oeformation Theory 

Classic Laminate Theory u1(x,y,z) = u~(x,y) - zu3,2 (x,y) 

(Reddy and Ochoa, 1996) 
u2 (x,y,z) = ug(x,y) - zu3,1(x,y) 
u3(x,y, z) = ug(x,y) 

First Order Shear Theory 
u1 (x,y,z) = u~(x,y)- zui(x,y) 

u2 (x,y,z) = u~(x,y) - zu}(x,y) 
(Reddy and Ochoa, 1996) 

u3 (x,y,z) = u~(x,y) 

u1 (x,y,z) = u~(x,y) +z[l-~(~)
2

] [u}(x,y) + 

Reddy's Plate (Reddy and 
zu3,1 (x, y)] 

u2 (x,y,z) = u~(x,y) + z [ 1- ~(~)
2

] [u}(x,y) + Ochoa, 1996) 

zu3,2 (x,y)] 

u 3 (x,y,z) = u~(x,y) 

Murakami Zig-zag Theory 
u 1(x,y,z) = u~(x,y) + zui(x,y) + ( -l)ku~(x,y)zk 

u 2 (x,y,z) = u~(x,y) + zu}(x,y) + ( -l)ku~(x,y)zk 
(Reddy and Ochoa, 1996) 

u 3 (x,y,z) = u~(x,y) 
Ferreira Sine Theory (Ferreira 

uicx,y,z) = uPcx,y) + zuf(x,y) + sin e:) u[cx,y) 
et ai., 2005) 

Soldatos Hyperbolic Theory 
u1 (x,y,z) = u~(x,y) + [zcosh G)- hsinh (~)] ui(x,y) 

(Soldatos, 1992) 
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Soldatos Unified Theory 

(Soldatos, 1993) 

Carrera's Unified Theory 

(Carrera and Ciuffreda, 2005) 

Demasi's Generalized Unified 

Theory (Demasi, 2009a) 

Caliri's Generalized Unified 

Theory (Caliri et ai. 2017) 

Source: Developed by the author 
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u2 (x,y,z) = u~(x,y) + [zcosh G)- hsinh (~)] u}(x,y) 

u3 (x,y,z) = u~(x,y) 

u1 (x,y,z) = uf(x,y)- zu~.1 (x,y) + Ff(z)u~(x,y) 

u2 (x,y,z) = u~(x,y)- zu~.2 (x,y) + Ff(z)u~(x,y) 
u 3 (x,y,z) =u~(x,y) 

ui(x,y,z) = Fki(z)uik(x,y) + Gki(z)uikJ(x,y) + 

Hki(z)uikJL (x, y) 

Given the necessary accuracy of the stresses for the correct use of boundary conditions 

on the microscale phase of the methodology, severa I shell deformations theories were studied, 

and the unified formulations (Carrera and Ciuffreda, 2005, Demasi, 2009a, Caliri et ai. 2017) 

were chosen as the optimal candidates basis for the implemented macroscale formulation. 

The unified formulation describe the main variables of the problem - displacements in the 

case of classic solutions, displacements and out-of-plane stresses in the case of mixed 

solutions- mathematically through a sum of linear-independent terms, multiplied by generic 

functions over the thickness. They are called unified formulations for having procedures to 

change these functions and variables at will, generalizing the deformation functions (Ferreira 

et ai., 2011). 

In particular, unified formulations exist in the literature for both Equivalent Single 

Layer (ESL) and Layer-Wise (LW) formulations (Qatu et ai., 2010). ESL formulations threat the 

laminated shells as a single homogeneous equivalent material, whose displacement 

distributions are homogenized through the thickness in a single function. These distributions 

of displacements and secondary variables (such stresses and strains) are obtained from 

variables that describe the quantities as they appear in a given reference surface, usually taken 

as the top, bottom or mid-surfaces of the laminate. LW formulations, on the other hand, 

describe the through the thickness distributions using severa I degrees of freedom for the top 
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and bottom boundaries of each layer of the laminate, using pre-determined functions only to 

interpolate the variables inside each layer. Figure 16 schematically shows the differences 

between ESL and LW formulations. 

Figure 16- Schematic difference between ESL theories (left) and L W theories (right) 

/ I 

Source: Cal i ri et ai., 2016 

Given that the distribution of stresses, strains and elastic deformation energy through 

the thickness of the laminate are requirements for the macroscale analysis of the damage 

evolution procedure. Based on recommendations and studies found on the literature of 

several authors (Carrera and Ciuffreda, 2005, Demasi, 2009, Qatu, 2010, Ferreira, 2011, Caliri, 

2017}, LW formulations were chosen for the present work. Another advantage of LW 

formulations is that the boundary conditions are more generalized than their counterpart in 

ESL formulations. For example, for tensile loads, the application of pressures can be made 

such as they exist only in the top or bottom layers, simulating claws (Figure 17a), through the 

whole thickness, simulating forces from externai bodies (Figure 17b), and with different 

distributions, simulating the working internai stresses of different layers (Figure 17c}. These 

different possibilities for the application of loads are schematized in Figure 17 and represent 

the potentialities of LW formulations regarding externai load application and boundary 

conditions. 
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Figure 17 - Different types o f applied loads in laminates compatible with unified theories 

(a) (b) (c) 

Source: Developed by the author 

Another approach about the macroscale analysis, that was chosen, regards the use of 

mixed shell finite element formulations. Mixed formulation expand the problem variables 

from only using the displacements to include the out-of-plane stresses. That is, while the 

variables describing the mechanical behavior of a shell in the classic formulations are the u11 

u2 and u3 displacements, in mixed formulations the out-of-plane stresses CT23 , CT13 and CT33 

are also taken as variables of the problem (Demasi, 2009b). This is made as, due to the 

boundary conditions of null out-of-plane shear stresses in the top and bottom of shells, these 

stresses are usually the ones, which need higher-order polynomials to be correctly predicted, 

avoiding numerical problems such as Shear Locking (Bathe, 1996). In particular, depending on 

the problem parameters, such as the structure and element dimension per thickness aspect 

ratio and the type of integration methods used for the thickness direction, a good choice of a 

high-order theory may mitigate o r negate the Shear Locking problem. However, depending on 

different factors, it may still occur and techniques such as reduced or selective integration 

may still be needed. 

By setting the stresses as independent variables and using Reissner's Mixed Variational 

Theorem (RMVT) as the main equilibrium equations, it is possible to pick high-order 

polynomials for only these stresses, using Jess computational costly functions for the 

displacements. Furthermore, these formulations avoid the need of making derivates in 

relation to the thickness direction. These facts contribute to the computational effectiveness 

of these theories and, under some circumstances, creates faster simulations than its classic 

counterparts, even considering the increased number of variables in the final system of 

equations. 
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For these reasons, both classic and mixed formulations were used in the macroscale 

analysis, considering studies over which one held the most advantages being made. The 

adapted Unified Formulations were coded using an in-house Python code. In fact, Python was 

chosen as the programming language dueto the capacity of being interpreted within Abaqus, 

which could be used to link with the microscale analysis. 

3.2 Microscale analysis methodology 

Based on data obtained for the macroscale analysis of stresses, strains and elastic 

deformation energy for a given point and a given load levei, the microscale analysis should 

predict the damage associated to the calculated metrics, and homogenize this damage in 

degenerated elastic properties layer-by-layer. 

A microscale model containing physically consistent damage is created for each 

material point identified in the macroscale as a candidate for damage initiation or propagation. 

For the base model that is proposed, ali intralaminar damage contained in a given layer is 

modelled as trespassing cracks through a homogenized orthotropic material that follows the 

fiber directions. In the Chapter 5, there will be highlights and discussions about the reasons 

for this way of modelling. However, in summary, other damage modes, such as fiber-matrix 

debonding and fiber bridging contribute only to the earliest stages of damage initiation, and 

not damage evolution. 

This argument is especially important to discard inelastic effects in the matrix. In the 

most commonly used polymeric matrixes in composite materiais, such as epoxy, PPS and PEEK, 

which are the focus of the present work, the maximum hydrostatic energy supported by the 

material is higher than the maximum deviatory energy. This fact summed with the geometry 

and constraints implied by the fibers, inelastic effects in the matrices may only contribute to 

the first incidence of damage in "matrix rich areas", where dueto non-uniform distribution of 

fibers, some fibers are far away from each other in an enough distance that the shear effects 

are dominant (Einekhaily and Talreja, 2017). However, in composite with high volume fraction 

of fibers (>40%), "matrix rich areas" are rare. Also, after this contribution occurs and initiates 

damage, cracks will grow, multiply and dominate the composite behavior, and further 
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incidences of inelastic behavior may be ignored. So, intrinsically, inelastic effects with damage 

evolution is low, and they can be disregarded in these kinds of matrices. As such, for simplicity 

sake, ali intralaminar damage inside a given lamina is taken as cracks without inelastic effects 

(Talreja and Singh, 2014). 

The selection of candidate points for damage depends on the current situation of the 

analysis, which is related if the current load levei initiates damage at some point of the 

structure or not. In the cases when no previous damage is found, the candidate points are 

taken as the group that shows the highest deformation energy. More than one point may be 

taken candidates for damage as, depending on the geometry and boundary conditions of the 

problem, a set of points over the whole structure may present the same, or approximately the 

same levei of deformation energy. Once the first set of points taken as damage candidates 

nucleates damage by having absorbed to a set levei of deformation energy that leads to 

damage initiation, this set of points is taken to be permanently damaged and enters an 

evolution phase. During this evolution phase, the elastic properties for this groups of points in 

the structure degenerates as damage progresses. This degeneration of properties rebalances 

the stress distribution in the neighborhood, which may lead to a different group of points to 

get to an energy deformation levei that in itiates damage, as such a loop analysis has to be 

made until ali the possible damaged points are identified. lf no new points are identified to 

nucleate damage due to the stress redistribution, the current load step, and as such the 

externai applied load, increases. 

The stress state for these points is used as boundary conditions to a finite element 

analysis of a full 3D model, which considers homogenized layers and trespassing cracks. This 

microscale model can be seen as a RVE (Representative Volume Element) for that particular 

material point, depending on the definition for RVE used . However, it is nota representation 

of the whole material or structure, but actually a model of that particular material point 

immediate vicinity as it would be if the whole structure was subjected to uniform damage. In 

this regard, each microscale model associated to a macroscale point can be understood as a 

representation of the physica l behavior of damage of a material that h as uniformly distributed 

damage. In actuality, this microscale model does not follow the formal concept of a RVE- a 

model that statistically represents the macroscale material behavior - , but can be interpreted 

as a material point f rom which the stresses tensors are able to be represented into Cauchy 
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Stress Vectors over the model faces, and homogenized damage modelled as intralaminar 

cracks are observed. In this way, the model will create RVEs that represent the behavior of 

that single point, no matter its dimension, and its neighbor points will h ave different RVEs that 

represent themselves. Figure 18 schematically clarifies this approach. 

A second way of understanding this concept is through the comparison to the 

equilibrium of a free body cuts. Each 3D model of what is called in the present work as RVE is 

an expanded volumetric representation of a "Free Point" ora "Representative Point" of the 

structure ata material levei in that given point. The reason that point needs to be expanded 

in a representative volume is so that the stress state can be correctly applied using different 

polyhedral faces as Navier type boundary conditions for different Cauchy stress vectors acting 

in those faces. 

At first, this approach ignores that damage cannot be uniformly distributed in the 

structure and the interaction of the different damage modes of neighboring regions. However, 

due to the boundary conditions of each RVE being the stress/strain distributions for that 

particular material point, each point is actually being modelled with ali the influences of its 

neighboring region. A simple way to understand this fact is to interpret this approach as if 

each "RVE" is actually the differential representation of that point used in Cauchy's Stresses 

definitions, but given a large enough dimension that damage is physically incorporated in this 

model. 
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Figure 18 - Approach o f modelling each material point with a different "RVE" considering different 

amounts of damage, dependent on the deforrnation energy available at the material point 

Point 3- High Energy 

Point 2 - M edium Energy 

Point 1- Low Energy 

Source: Developed by the author 

The proposed RVE is used to feed damage metrics such as crack opening displacements, 

crack sliding displacements and energy released by the formation of new cracks into models 

based on Continuum Damage Mechanics (COM) such as the ones proposed by (Varna and Joffe, 

1999, Singh and Talreja, 2010). These theories model intralaminar damage as only matrix 

cracks, andare used as a base to obtain the levei of damage that particular point will show for 

the given load step. With the damage profile of the laminate obtained - i.e. crack density for 

each layer of the laminate - a homogenization algorithm for this particular damage instance 

is used to obta in degenerated elastic properties of each layer (i.e. layer-by-layer), which is 

then used to feed the next load step in the macroscale analysis. 

The methodology implementation, including the integration between Python stand

alone (macroscale analysis) and Abaqus™ (microscale analysis), is shown in the flowchart in 

Figure 19. 
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Figure 19 - Methodology implementation flowchart 
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4 MACROSCALE MECHANICAL MODELS: SHELL THEORIES 

This chapter presents the models and formulations used in the macroscale analysis 

phase of the proposed methodology, as well as details about its implementation. That is the 

finite element formulations used and implemented in stand-alone Python scripts for the 

simulation of accurate stress and strain distribution through the thickness of general 

laminates under different types of loads of interest. As previously discussed in Chapter 3. 

Multiscale Methodology, the author decided to use implementations for normal and mixed 

shell element formulations based on Demasi's GUF (Generalized Unified Formulation) and 

compare the results obtained for both. An important note is that the results obtained from 

such models do not need to be validated, as the general model was previously validated in the 

literature, neither it needs to be able to simulate edge cases such as extreme aspect ratios, as 

that falls outside the scope of the objective of the present work. 

With this in mind, this chapter starts by presenting the constitutive equations for 

laminas of composite material used in both normal and mixed formulations, an overview of 

different classic shell deformation theories and its relation to the unif ied formulations. 

Following that, the adapted GUF for both normal and mixed formulations . Thereupon, the 

chapter shows the adaptations for the solution through the FEM for the formulations, which 

were implemented in the present work, including studies of different boundary conditions 

applications and the algorithm for f inding the optimal deformation theory for a given case. 

Finally, the chapter ends with validation and results, comparing different formulations. 

4.1 Composite constitutive equations 

For most applications and structural analysis, a structural lamina manufactured f rom 

unidirectional fibers may be modeled as a transversal isotropic material, i.e. a material which 

behaves the same way in the 1 and 3 directions than in the 2 direction (orientations according 

to Figure 20). Equation 7 gives the constitutive equation for a transversal isotropic material. 
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Oü Cu C12 o o o c13 Eu 

()22 c12 C22 o o o C23 E22 

()12 o o c66 o o o Y12 (7) 
()13 o o o Css o o Y13 

()23 o o o o C44 o Y23 

()33 c13 C23 o o o C33 E33 

Figure 20 -Transversal Isotropic Material 
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Source: Adapted from Wikipedia (2017) 

Due to the anisotropy of the material, the fiber orientation may not be aligned to the 

axis of the coordinate system, which results in the rotation of the matrix found in Equation 7 

to the one found in Equation 8, with its explicit elements described in Equation 8 to 21. In the 

following equations, S represents sin e 1 C represents cose and e represents the angle of 

rotation of the fiber orientation for a given layer in relation to the global axis (x-y-z), as shown 

in Figure 21. 

Figure 21 - Larnina coordinate system rotation 

Source: Ribeiro et ai., 2012 
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CTxx cll c12 c16 o o c13 fxx 

CTyy c12 c22 c26 o o <=23 E:yy 

CTxy c16 c26 c66 o o c36 Yxy (8) = CTxz o o o Css c4s o Yxz 
CTyz o o o C4s c44 o Yyz 
CTzz 

c13 c23 c36 o o c33 
E:zz 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

- 2 2 
Css = c Css + s C44 (18) 

(19) 

- 2 2 C44 = s C55 +c C44 (20) 

(21) 
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Composite lamina constitutive equations can be written in different forms depending 

on the chosen independent and dependent variables. For a mixed formulation, both the 

constitutive and equilibrium are changed from the aforementioned commonly used ones. The 

constitutive equation must be manipulated such as the membrane stresses -()xx' ()YY and ()xy 

- and out-of-plane strains and distortions- Ezz, Yxz and Yyz- are obtained in function of its 

counterparts. To use this approach for composite materiais, one must start with the rotated 

orthotropic constitutive equation found in Equation 8. This equation can be written in a 

condensed form, found in Equation 22, by separating membrane (represented by subscript m) 

and out-of-plane terms (represented by subscript s). From this, it is possible to write the 

"mixed formulation constitutive equation" (Demasi 2009} as shown in Equation 23 to 25. For 

simplicity, the terms are renamed using the letter Q as shown in Equation 26. 

{(Jm} = [~mm ~ms] {Em} 
()s CT C Es ms ss 

()m = {()xx ()YY 

Em = {Exx Eyy 

()xy )T, ()
5 
= {()xz ()yz ()zz}T 

Yxy Y, Es = {Yxz Yyz Yzz Y 

-2 c c13c23 c c13c36 C c13 11 --::- 12---- 16 - - - -
C33 C33 c33 

c t13c23 
-2 c c23c36 C c23 

()XX 12 ---- 22- -::- 26- - --
C33 c33 c33 

(jyy c c13c36 c c23c36 - c2 

()xy 16 --- - 26 - --- c66 - _36 
C33 C33 C33 

Yxz o o o 
Yyz 

Ezz o o o 
- c13 c23 _ c36 

c33 c33 c33 

(22) 

(23) 

(24) 

o o c13 

c33 

o o t23 

c33 Exx 

o o c36 Eyy 

c33 Yxy 

Css C4s 

c44Css-Cts C44Css-Cts 
o ()xz 

()yz 

C4s c44 

CHCss-Cts C44Css-Cts 
o ()zz 

o o 1 -
c33 

(25) 
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CJxx Qu Q12 Q16 o o Q13 Exx 
ayy Q12 Qzz Q26 o o Q23 Eyy 

CJxy Q16 Q26 Q66 o o Q36 Yxy (26) 
Yxz o o o Qss Q45 o (Jxz 

Yyz o o o Q45 Q44 o CJyz 
Ezz -Q13 -Q23 -Q36 o o Q33 (Jzz 

4.2 Overview of shell deformation theories and shear locking 

For the macroscale model, as previously discussed on Chapter 3, the desired output 

are accurate distributions of stresses and strains through the thickness of the laminate and 

accumulated elastic deformation energies, different authors from the literature Reddy and 

Ochoa (2000), Carrera and Ciuffreda (2005), Qatu (2010) and Ferreira (2009) recommend 

higher order theories. In particular, unified formulations such as Soldatos' Unified Formulation 

(1993), Carrera's Unified Formulation (Carrera and Ciuffreda, 2005), Demasi's Generalized 

Unified Formulation (Demasi, 2009) or Caliri's Generalized Formulation (Caliri et ai., 2016, 

Caliri et ai., 2017) offer a simple way to generate high order theory in a fast and systematically 

way for both ESL and LW formulations. However, most of these formulations, as found in the 

literature, are based on axiomatic deformation theories. Thus, by only having polynomials as 

through the thickness functions, this offers limitat ions to the cases where shear locking may 

happen (Bathe, 1996) and to implement the boundary condition of nu li out-of-plane stresses 

over the top and bottom of the shell boundary conditions. Shear locking is the virtua l increase 

of shear stiffness that may occur in plate and shell elements dueto the incapacity of low-order 

displacement based elements to correctly simulate the shear strains behavior. As Bathe (1996, 

p. 424-425) put: 

''[. .. ] the basic difficulty is that spurious shear stresses are predicted with the 
displacement bosed elements. These spurious sheor stresses result in a strong 
artificial stiffening of the elements os the thickness/length ratio decreoses. 
This effect of shear locking is more pronounced for low-order element 
beca use, simply, the errar in the sheor stresses is larger. To arrive in reliable 
plote bending elements, the pure displocement-bosed formulotion must be 
extended, and a successful opprooch is to use a mixed interpolation of 
transverse displacement, section rototion ond transverse shear." 

These limitations emerge due to the incapacity of unified formulations to use the 

variables in different order terms. For example, for Reissner-Mindlin shells Equation 27 and 
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28, the shear locking and out-of-plane stresses boundary conditions are usually forced either 

though reduced integration, selective integration, or by including a parabolic distribution for 

the out-of-plane distortions Equation 29 (Bathe, 1996). From the author's previous experience 

with unified formulations, these three solutions are both hard to implement in a unified 

formulation, and may introduce numerical instability in the problem solution. 

(27) 

H· . = fl, if (i,j) = (1,2); (2,1) 
LJ t O, otherwise 

(28) 

Yij(x,y,z) = ( 1- ~:) Yij(x, y , z) , (i,j) = (1,3), (2,3)(2) (29) 

Another example can be seen in Reddy's shell theory (Reddy and Ochoa, 2000). The 

basic deformation theory used is shown in Equation 30, and is reproducible using unified 

theories. However, when the out-of-plane shear boundary conditions are included, the theory 

is changed to its mathematical final form in Equation 31 to 33. This form, due to have C1 

characteristic and linear variables (8) appearing in multiple terms, it is not usable with unified 

formulations, if it is considered in their axiomatic forms. 

(30) 

o 3 (e* ow) u1 = u 1 + ze1 + z 1 - oy (31) 

o 3 (e* ow) U2 = U2 + ze2 + z 2 - ox (32) 

o e 2e* Ut = ut + z 1 + z 3 (33} 
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Two different solutions may solve this problem: either by the use of high order 

polynomials in the formulation, at least cubic, which guarantee quadratic out-of-plane 

displacements; or by the use of mixed formulations, in which the out-of-plane stresses are 

variables to the problem. Furthermore, for LW formulations, the introduction ofthe boundary 

conditions only in the top and bottom for the most layers may be applied. This, however, can 

introduce unrealistic solutions, for which the displacements in the top and bottom layers can 

be discontinuous, or nu li, even in cases when they should not be. Section 4.6 will present more 

details about these facts. 

4.3 Unified formulations 

One of the first researchers to do work with unified formulations for laminate 

composite materiais was Soldatos, who in a series of papers (Soldatos, 1992; Soldatos, 1993; 

Soldatos and Tomarei, 1993) introduced a simple expansion based deformation theory to use 

in pressure vessels and cylindrical geometries. These works considered that the normal 

Kirchhoff plate theory could be expanded in the plane directions by adding a variable number 

of degrees of freedom multiplied by pre-defined thickness functions. lt should be noted that 

these functions could take any form, polynomial, axiomatic, trigonometric. Results for these 

theories were found analytically to test which expansions were more advantageous. However, 

as the first works on the field, the approach was still limited, not considering kernels or that 

the constant and linear terms could be also included within the unified formulation. 

Years later, using a similar deformation theory than the one used in the works by 

Soldatos, but identifying patterns that are created from such expanded approach, Carrera and 

Ciuffreda (2006) first presented unified formulations for composite laminated materiais by 

introducing Carrera's Unified Theory (CUF). These formulations have the premise that, when 

using axiomatic functions to describe the displacement distribution through the thickness of 

the plate, the stiffness and mass matrixes as well as the load vectors may be mathematically 

described by immutable sub-matrices called kernels. These kernels follow a pattern 

dependent only on the order of the polynomials used for describing the displacements, and 

as such, may be mathematically described through unique single equations. That way, the 
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unified formulations can generate any kind of axiomatic deformation theory, using the order 

of the expansion as an input. 

This particular approach derived in severa! subsequent studies with different 

improvements for the formulations in the following years, such as investigations about 

cylinders, single and double-curved shell elements (Cineffra et ai., 2014a), delamination 

(Kumar et ai., 2014), modal analysis (Cineffra et ai., 2014b), and including different effects 

such as thermal and damping effect. 

Demasi (2009) introduced the Generalized Unified Formulation (GUF). The difference 

from Carrera's Unified Formulation being that the functions that generate each displacement 

now is independent and may be any function that follows some mathematical restrictions. 

Demasi published GUF for axiomatic polynomials and mixed formulations. 

Caliri et ai. (2016) made further improvements creating Caliri's Generalized 

Formulation (CGF), which includes the derivatives of displacements as variables, turning the 

formulation into a true C1 formulation, which provides improvements for the simulation of 

thick laminated structures or ones with huge elastic property difference between layers, such 

as sandwich structures. 

Due to the reasons discussed in Chapters 3 and herein, for the current work, an 

adapted GUF formulation was chosen as the basic formulation. 

4.4 Classic "classic" formulation 

The basic expansion for the displacement and out-of-plane stress fields, using GUF for 

a LW theory is found in Equation 34. In this equation: u are the displacements; k = 1.. Nk 

represents a counter for the layer of the composite, and Nk is the number of layers in the lay

up; í = 1 . .3 is the coordinate versor direction counter; aui = 1 .. Nui + 1 defines the order 

counter for a given displacement. Nui gives maximum the order of the axiomatic polynomial 

that describes the ui distribution through the thickness of the layer. For example, if Nu1 = 3, 

au
1 

varies between 1 and 4, and there are four different F polynomials with the maximum 

order being cubic. 
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(34) 

Where the F functions that discretize the displacements through the thickness of each 

layer need to have the following properties for the compatibility between layers to be 

possible: 

o The functions must guarantee that at the top and bottom edges of each lamina, the 

displacements correspondent to only that point, i.e. uk(z = Zcop) = ui
1 

and u k(z = 
zboc) = ui . As such, the F functions must be such that: 

nu i 

( 
k 

) { 
1, i f au. = 1 

Fa Z = Z = t 
ui top O, otherwise (35) 

r. ( k ) {1, i f au· = Nu· + 1 r, Z - Z - t t 
aui - bot - O, otherwise (36) 

The following group of equations summarizes these conditions: 

(37) 

o As per Demasi et ai (2006) polynomial functions of the type zn create ill conditioned 

through the thickness distributions for the shear stresses and strains, as well as 
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discontinuities on the derivatives ofthe distributions, it is recommended to use orthogonal 

polynomials. 

As such, even if any function may be chosen, Demasi et ai (2006) recommends the use 

of sums of Legendre polynomials defined by the following Equations 38 to 40. In these 

equations Çk E [ -1, + 1] is the local coordinate system for the k-th layer, z~op and z~ot are 

the thickness coordinates of the top and bottom of the k-th layer and Pn is the Legendre 

polynomial of order n, given by Bonnet's recursion (Kreyszig, 1999) found in Equations 41 to 

43: 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

Given a n doma in of a shell finite element with mechanical virtual work ôL being done 

in ft and with prescribed boundary conditions in fw schematized in Figure 22, the Principie of 

Stationarity establish equilibrium as a system of equations that contains the equilibrium 

between the internai virtual deformation energy and externai virtual work done in each layer 

k (Zienkwics and Taylor, 2000). 
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Figure 22 - Shell finite element domain representation 

Source: Developed by the author 

(44) 

The virtual work of the externai loads ôLk can be described in terms of body forces 

over the whole n- ru domain, surface loads over the rt domain and concentrated loads 

located over specific x points. 
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(45) 

Simplifying the virtual work of externalloads oLk to just done by distributed pressure 

components Pi working on the top and bottom of each layer over n, and internai tractions t i 

working over the thickness of each layer over rt, it is possible to written Equation 46. 

(46) 

Which may be expanded using the constitutive Equations previous presented in 

Equation 7 to: 

(47) 

Using the strain definition found in Equation 48 and applying it to Equation 47, then it 

is possible to obtain 9 immutable kernels for stiffness matrices for each layer, and three 

identical kernels for the load vector. As such, a final equilibrium equation is found in Equation 

49 and 50. 

E= {Exx Eyy (48) 
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(49) 

(50) 

For simplicity sake, the terms indicating the integration of the product of two different 

F functions, its derivatives in relation to the thickness direction, and/or a corresponding 

au·tPu·m 
elastic property Cij are grouped together in a single variable kzij t · 

1' shown in Table 3. The 

same was made for the load vector and with the D variables, explained in Equation 51 and 52. 

Table 3 - Z meaning for classic formulation 

Symbol Meaning 
k 

kz.~umPun fZtop 
Cij Fa Fp dz 

1) k um un 
Zi>n• 
k 

kzaumPun fZtop 
Fa Fp dz 

k um un 
Zi)ot 

k 

kz~um .3Pun•3 f Ztop 
C. · F F. dz 

1) t} aum•3 Pun•3 
~ot 

k 

kz~um,3Pun fZtop 
Cij Fa 3Fp dz 

1) k Um• un 
Ziiot 

k 

kz~umPun.3 fZtop 
Cij Fa Fp 3dz 

1) k um Un• 
Zi>n• 

k 

kzaum .3Pun•3 
fZtop 

Faum•3FPun•3dz 
Z~ot 

k 

kzaum,3Pun fZtop 
F F. dz 

k a um•3 Pun 
z;;nt 

k 

kzaumPun,3 fZtop 
Faum Fpun•3dz 

Z~nt 
Source: Developed by the author 
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(51) 

(52) 

Using these simplifications, Equations 53 to 62 shows the nine stiffness matrix kernels 

and the load vector kernels. 

(53) 

(54) 

(55) 

(56) 
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(57) 

(58) 

(59) 

Kk - kza3f3uz,3 f. ô d~"'~ kzau3f3uz,3 f. ô d~"'~ 
2 3 - 55 "u3 lu2p ~t+ 44 "u3 zUzp H+ ,, ~· ~ ,, ~· ~ 

(60) 

(61) 

(62) 

By taking 5Um5 of normalized Legendre polynomia ls as the functions for the 

deformations over the thickness of each layer, and functions with the properties previous 

mentioned, the compatibility of displacements and stresses between layers is automatically 

imposed, and as such, can be applied by a simple summation of the matrix kernels and vectors 

of each layer. 
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This compatibility is accomplished by making sure the terms in each matrix and vector 

kernels for each layer is summed to term corresponding to the same degree o f freedom, which 

corresponds to the matrices and vector kernels for the next layer. For example, in a laminate 

with three layers (stacked from top to bottom), the bottom degrees of freedom of the first 

layer correspond to the top degrees of freedom of the second layer, and the bottom degrees 

of freedom of the second layer correspond to the top degrees of freedom of the third layer. 

This can be mathematically described as: ui~u · = ud and ufNu· = u~1 • As such, laminate 
t t 

kernels Kij and Rj may be assembled using the layer kernels as shown in the Figure 23 for 
aul 

the K13 kernel in the case of Nu
1 

= 2 and Nu
3 
= 3. Notice that each individual Kf3 layer 

matrix has 3 lines (Nu
1 
= 2 so there are 3 variables that compose u~), 4 columns (Nu

3 
= 3 so 

there are 4 variables that com pose u~). Also, in this case the terms 34 from the k-th layer and 

11 from the k+l-th layer are summed, as compatibility is imposed by guaranteeing that the 

displacements at the top of the k-th layer (34) is equal to the bottom displacements at the 

k+l-th layer (11), andas such receive stiffness contributions from both layers. 

Figure 23 - Compatibility imposition between layers. Example for the K13 matrix, Nu
1 

= 2 and Nu
3 

= 3 

~ 1 Compatibility imposition 

Kk n Kk 12 Kk 13 Kk 14 I o o o 13 13 13 13 
Kk 21 K k 22 K k 23 K k 24 o o o 13 13 13 13 

K k 31 
13 

Kk 32 
13 

J(,k 33 
13 

K k 34 + K k+ lu 
13 13 

K.k+ll2 
1.3 

K k+t 13 
13 

K k+1t4. 
13 

o o o Kk.+t21 
13 

K k+t 22 
13 

K k+123 
H 

K k+124 
13 

o o o K k+t31 
13 

Kk+1.3z 
13 

K k +133 
13 

K k + t34 
13 

Source: Developed by the author 

Which forms the system of equations shown in Equation 63. Where each element 

Kij• Ui and Ri represents a one of the nine stiffness kernels K, displacements U or loads R, 

------------------------------==========~~~--~-=~=====================-------~==== 
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which compromise ali the different degrees of freedom corresponding to the different orders 

of Nu., as shown in Equation 64. 
l 

(63) 

(64) 

An important note about the assemble of laminate kernels from layer kernels when 

using the sum of legendre polynomials is that, as some researchers showed (Kumar et ai. 

2014), using these type of formulations, delaminations may be easily simulated by, in the 

delaminated area, inserting additional degrees of freedom between the delaminated layers, 

and completely separating the matrices kernels. Figure 24 shows this procedure. This 

approach will address in future works (See Chapter 7. Final Discussions, Conclusions and 

Future Works), for which the delamination models may interact with the macroscale analysis. 

Figure 24- Compatibility imposition between layers in the presence of delamination, example between 
Layers 2 and 3 

Source: Kumar et ai. (2014) 
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4.5 Mixed formulation 

The formulation for the mixed shell elements is similar to the previous formulation for 

the classic element, andas such, when applicable, some steps will be skipped for brevity. The 

basic expansion for the displacement and out-of-plane stress fields, using Demasi's GUF for 

LW, is found in Equations 65 and 66. In the following equations si corresponds to Oü for i = 

1. .3 for simplicity of notation. 

(65) 

(66) 

where, in a similar manner to the classic formulation previously discussed, i are local 

directional indexes; k = 1.. Nk represents a counter for the layer of the composite, and Nk is 

the number of layers in the lay-up. As for variables: u~ are the displacements at the bottom 

and top of each layer; st are the out-of-plane stresses at the top and bottom of each layer; 

Nu. and Na .. are the order of the desired discretization of each variable, following the same 
t t} 

logic as the one for the classical theory. 

In particu lar, the functions F and G are picked in such a way that compatibility is 

imposed between layers, following the same logic and requirements as the classic formulation, 

but now also applied to the out-of-plane stresses, which incur additional boundary conditions: 

( 
k 

) {
1, if au. = 1 

F: z=z = t 
aui top O, otherwise 

(67) 

( 
k 

) {
1, i f au. = Nu. + 1 

F: z=z = l t 
aui bot O, otherwise 

(68) 

(69) 



----------------------------------~=--=- -- -

Macroscale Mechanical Models: Shell Theories 83 

(70) 

The following group of equations summarizes these conditions. Again, by taking F and 

G as sums of Legendre polynomials defined the same way as for the classic formulation in 

Equations 71 to 74, these boundary conditions are satisfied (Demasi et ai, 2006). 

(71) 

(72) 

(73) 

(74) 

As for the equilibrium equation, instead of the classic one, an adapted equilibrium 

expression is needed to ensure the continuity of stresses through the thickness and to 

guarantee the strains compatibility through the deformable body (Fung, 1994). For that to 

happen, additional terms appear dueto the mixed terms. 

One such way to write the equilibrium equation considering these problems consists 

on using Reissner's Mixed Variational Theorem (RMVT) (Reissner, 1984; Reissner, 1986). This 

formulation defines that the variational of the deformation energy that comes from the out

of-plane must be taken into account from both its geometric effect (E5c) and from the work 

generated from the out-of-plane stresses (o-55). As such, the strains are calculated as Equation 
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75 to 77, and the equilibrium equation is found in Equation 78, in weak form, where oL is the 

variationa l of the work of the externai loads, which is the same as the one for the classic 

formulation, found in Equations 46. A final note is that the out-of-planes stresses, even as 

degrees of freedom, do not generate compatible external loads. 

Em= {Exx êyy YzzY = eul auz aul + auz}T 
axl axz axz axl 

(75) 

êsG = {Yxz Yyz é"zz}t = eul + au3 
G ax3 ax1 

auz + au3 
ax3 axz 

au3}t 
ax3 

(76) 

Ess = {Yxz Yyz EzzH = 

(78) 

Using this notation, the terms of the equilibrium equation are shown in explicit form 

in Equation 79 to 82. 

(79) 

(80) 

(81) 

(82) 

-----------~~----·----=-===-=---=-==~===...:=o-----~==== 
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Similarly to the classic formulation, given the domains of a shell element O and 

boundaries r defined in Figure 25, the externai load work can be separated into body loads 

(b), boundary loads (t) and concentrated forces (F) as shown by Equation 83 (Bathe, 1996). 

Figure 25 - Shell finite element domain representation 

Source: Developed by the author 

(83) 
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Where i are local directional indexes; and k is an index counting every layer in the 

laminate. Simplifying the virtual work of externai loads oLk to just done by distributed 

pressure components Pi working on the top and bottom of each layer over n, and internai 

tractions ti working over the thickness of each layer over ft, it is possible to obtain Equation 

84 and 85. 

k 

f. Jz t op k t k k t k k t ( k k ) J. k I k I n k O Em (Jm + OEsG (JsG + O(Jss Ess- Ess dz dfl = no ui - pi - dD. + 
Zbot •• Z-Ztop Z-Ztop 

(84) 

(85) 

For simplicity sake, the same way as for the classic formulation, the terms of the 

integration for the product of two different F functions multiplied by the elastic property Qij 

au-Pu -
are grouped together in a single variable kzij 

1 1, where the meaning is shown by Table 4. 

The same was made for the load vector and for the D variables as shown by Equations 86 and 

87. The difference to the classic formulation is that, as the mixed-formulation does not require 

through the thickness derivatives, the definitions are simpler. 

(86) 

(87) 
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Table 4- Z meaning for mixed formulations 

Symbol Meaning 

k 

l
Ztop 

Fa F.p dz 
k um un 

ZbnL 
Source: Developed by the author 

Using these simplifications, Equations 88 to 111 show twenty-two stiffness matrix 

kernels and load vector kernels. 

(88) 

(89) 

(90) 

(91) 

(92) 

(93) 

(94) 

(95) 
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(96) 

(97) 

(98) 

(99) 

(100) 

(101) 

(102) 

k k t 
Ksz = Kzs (103) 

(104) 

(105) 

(106) 

(107) 

(108) 

(109) 

(110) 

(111) 
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Demasi's work showed that, using this formulation, the elemental equilibrium 

equation may be written as the system of equations found in Equation 106. Where each 

element Kij' Ui, Si and Ri represent one of the nine stiffness kernels K , displacements U, out

of-plane stresses S or loads R , which compromise ali different degrees of freedom 

corresponding to the different orders of Nu . as shown in Equations 113 and 114. 
t 

The difference from the classic theory is that the out-of-plane stresses do not have 

associated externai work loads, and as such do not produce extra load kernels, including the 

extra zero vectors on the right-hand vector. 

Ku K12 o K14 o K16 u1 R1 
K22 o o K2s K26 U2 R2 

o K34 K 3s K 36 u3 R 3 (112) 
K44 K4s o s1 o 

sym K ss o 52 o 
K66 53 o 

Ui = 

{u~ u~ 1 u? u? 2 u? u~ Nk r UiN UiN u. 
t1 ta ui ui t1 ta ui ui tl ta u i tNui 

(113) 

Si = 

{s~ s~ 1 s? s? 2 s~ s!' Nk r SiN 5 iN .. . SiNui ( t1 ta ui Ui t1 taui u i tl ta u i 

114) 

4.6 Boundary conditions implementation 

Over the studies of the GUF, one problem was detected with the formulation on the 

application of boundary conditions: the correct application of boundary conditions of 



90 Chapter 4 

displacements over justa line ora single layer of the laminate, and the correct application of 

pin (simply supported) or encastre (fixed) of a complete side of the laminate. 

lt is possible to find unstable static solutions that increase the non-linear terms of the 

F and G functions unnecessarily when using penalization (Zienkiewicz and Taylor, 2000) or 

substitution techniques (Zienkiewicz and Taylor, 2000} to introduce the boundary conditions 

to the problem. This can happen because of the nature of the auto-generation F and G 

functions as sums of Legendre polynomials due to the imposition of the boundary and 

compatibility conditions. In the case of laminates, it can be considered structures under high 

shear stresses such as angled-plies simulated via high-order deformation theories. Figure 26 

schematizes this problem, showing possible solutions found by the formulation for angled

plies of the type [±9n]. 

Figure 26- Representation o f possible problem o f unified formulations with boundary conditions applied 
through penalty or substitution methods 

1 

Source: Developed by the author 

The solution developed for this problem isto use Lagrange Multipliers (Kreyszig, 1999} 

for the application of boundary conditions. However, due to the nature of the GUF, the 

introduced Lagrange multipliers must have a distribution through the thickness of at least the 

same order as the displacement, because they need to force a given boundary. As such, 

Lagrange multipliers Àau. and Àa
5

. are introduced as functions of the thickness using the same 
t L 

F and G functions as the displacements and stresses as shown in Equation 115. 
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(115) 

This change expands the equilibrium expression as shown in Equation 116, the first 

expression being the equilibrium for the classic formulation and the second for mixed 

formulation. In addition, it changes the final system of equations to the ones found in Equation 

117 and 118 for classic and mixed formulation respectively. In these equations, Ai is the vector 

that contains every single Lagrange multiplier used over the boundary conditions sub-doma in 

for the i-th degree of freedom. 

K11 K12 K13 L1 O O U1 
Kzl Kzz Kz3 O Lz O Uz 
K31 Kz3 K33 O O L3 U3 
L~ O O O O O A1 

O L~ O O O O A2 

O O L~ O O O 3 

K11 K12 O K14 O 
Kzz O O Kzs 

sym 

O K34 K3s 
K44 K4s 

Kss 

K16 L1 O O 
K26 O L2 O 
K36 O O L3 
o o o o 
o o o o 

K66 O O O 
o o o 

o o 
o 

(116) 

(117) 

(118) 

The L matrices are assembled as kernels in the same way as the stiffness matrices, 

based upon the layer kernels Lk found in the Equation 119, with the difference that they exist 
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only in the layers where exist a boundary condition. For example, if the selected boundary 

cond ition for a plate is simply supported, one may choose to introduce Lagrange multipliers 

only for the bottom most layer, wh ich means only L k=Nu i+
1 exist. 

(119) 

This procedure guarantees that the boundary conditions are applied uniformly 

through the whole thickness of the laminate, or only over chosen layers or lines in the 

macroscale model. 

4. 7 Finite element implementation 

A stand-alone implementation of th is theory using a classic finite element solution, 

exemplified for one of the kernels in Equation 120. The element coordinate, displacements 

and out-of-plane shear degrees of freedom, as well as possible Lagrange multipliers, are 

discretized into nodal values per layer using cpn shape functions. While these do not need to 

be the same for the coordinates, displacements, stresses and Lagrange multipliers, they are 

taken as that for simplicity sake. For the FEM code, three possible elements were 

implemented: classical Hermite polynomials shape functions for linear four-node elements or 

quadratic nine node elements and Legendre polynomials shape functions, in which Ç11 Ç2 and 

Ç3 are local parametric coordinates varying from -1 to +1 (Bathe, 1996). 

(120) 

.,__ ... - ---
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Using this discretization, each stiffness matrix and force vector kernel is easily 

calculated by its definitions from Equations 53 to 62 and 88 to 111 applying appropriate 

derivatives when necessary. Gauss integration over the plane was used with a varying order, 

which depends on the orders necessary for exact integration, depending on the number of 

nodes per element used. Equation 121 gives an example of the Kf6 kernel assembly and 

integration for the au
2

, {353 position terms of the u2 and s3 degrees of freedom. In this 

equation f is the jacobian matrix of the coordinate transformation from global to local h i = 

fJxdfJ(i , and ng is the Gauss integration order and w is the corresponding Gauss weight. 

kz;;zfls3 L~~=tL;~=l <Pn,z((9v (gz)<f>n((9v (9z)l detfl w(~gl)w(~gz ) + 

kz;;zfls3 L~~=tL;~=l <Pn,l((9v (9z)<f>n((9v(gz) l detfl w(~gl)w(~gz) 

4.8 Order optimization implementation 

(121) 

Different from the general implementation of unified theories found in the literature, 

in which the wanted order for a given variable is an input of the problem, and the kernels are 

preemptively generated, in the present work, a subroutine for f inding t he optimal orders for 

each case being simulated was implemented. 

For that, an internalloop at the start of the damage model analysis was implemented 

that uses the orders Nui and N5 i as variables, and this procedure generates t he kernels. 

For the classic formulations, the discretization orders start at linear Nu
1 
= Nu

2 
= 

Nu
3 

= 1. Then, inside a loop, each k-th order Nuk may increase when the relative difference 

between stresses fii , found in Equation 122, is found to be higher than a given tolerance, 

when either i=k or j=k. For example, if [ 13 does not get lesser than a given tolerance for the 

current step, then Nu
1 

and Nu
3 

would be incremented by one. For the mixed-formulation, 



94 Chapter 4 

analogously, the discretization orders start from linear Nu
1 

= Nu
2 

= Nu
3 

= Ns
1 

= Ns
2 

= 

N53 = 1 and increase inside a loop until providing the same objective function in Equation 122, 

when the values are lower than a given tolerance. The difference lies in the fact that now, the 

transversal stress orders increase when the out-of-plane stresses O''tJ, a23 and cr33 functions 

do not meet the criteria. Meanwhile, the displacement orders are changed when the in-plane 

stresses cr111 cr22, and cr12 do not meet the criteria, or when the out-of-plane stresses do not 

meet the criteria, and the increment of the out-of-plane stresses orders does not change the 

relative error found by more than a given tolerance. 

(122) 

These optimization iteration loops are summarized in Figure 27 and Figure 28 for 

classic and mixed formulations, respectively. 

This procedure guarantees that the stress/strain states calculated for the criticai points, 

as well as its distribution over the thickness of the laminate were accurate enough to be used 

as boundary conditions in the microscale models. Specifically, for most of the studied cases, 

the in-plane displacements and out-of-plane shears were found to be needed as at least cubic 

per layer (Nu1 = Nu2 = N513 = N523 = 3), and the out-of-plane displacements and in-plane 

stresses were taken as linear per layer (Nu3 = N512 = 1), which in Demasi's nomenclature is 

the LWlN theory. Demasi's nomenclature for different deformation theories, which were 

created using the LW GUF, is given by: LW: 51
:

52Z53
, so for example, a theory in which the in-

u1 u 2 u 3 

plane displacements is taken as cubic through the thickness, and everything else is linear 

would be LWfN . 

This was done from verifications with full 3D models using solid brick elements and 

from observations made on different works in the literature about stresses accuracy in layer

wise generalized formulations (Carrera and Ciuffreda, 2005; Qatu et ai., 2010). 

--=------h·----------------------------------===== 
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Figure 27- Iterative loop for optimization of displacement orders for classic formulations 

Source: Developed by the author 

Nui=Nui+l 
NtJi=Nuj+l 
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Figure 28 - lterative loop for optimization of displacement orders for mixed formulations 

Source: Developed by the author 

Nul;:l ~ 
~u2=l f(s2:l 

Nld=l f'{s:3=J. 

Calculate .sz:resses 
éistrit:uticrs"" 
a-itiralpcir:s 

Calculam fiilnl 
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4.9 Results 

To study the behavior, potentialities and limitations of the proposed model, in 

particular the deformation theory order optimization algorithm, three numerical tests with 

increasingly complex geometries and loads were conducted. Four possible different lay-ups 

were used in the test: 

• A simple unidirectional composite [0°s] to test the orthotropic problem; 
• A cross-ply [0°J90°2]s and quasi-isotropic composite [0°/90°/±45°4]5 to test the model 

in simple behavior, but to check for differences in stress distributions; 

• A laminate unbalanced and asymmetric [(+30°/-60°}4] to test the limitations of the 
model. 

Ali tests were made with a material containing properties as shown by Table 5, and in 

the results ali cases were compared for severa( deformation theories, which are represented 

as such: 

Property 

Value 

• three digits correspond to a classical theory, which represent the orders of u1 , u2 and 
u3 respectively (for example, 324 means a cubic deformation theory for u11 quadratic 
for u2 and fourth arder for u 3 }; 

• six digits correspond to a mixed formulation, which represents the orders of u11 u2, 

u3, s11 s2 and s3 (for example, 332331 means a cubic deformation theory for u1, u 2 , 

s1 and s2, quadratic for u3 and linear for s3}. 

Table 5 - Geometric and material properties for the numerical tests 

E1 E2 G12 G23 Lx Ly h 
[GPa] [GPa] [GPa] [GPa] v12 Vz3 [mm] [mm] [mm] 

127 10.3 5.4 3.05 0.34 0.306 100 100 0.8 
Source: Developed by the author 

Ali tests were evaluated using Abaqus™ tridimensional brick elements considering a 

fine mesh that passed in convergence tests with at least 8 (eight) C3D20 quadratic elements 

through the thickness of each layer. Results were also compared to Abaqus™ 58 bidimensional 

shell elements and, when possible, to analytical solutions given by Reddy and Ochoa (1996}. 

lt should be noted Abaqus™ 58 elements use an equivalent single layer formulation, andas 

such, may not display a complete stress distribution through the thickness of the laminate. 
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The meshes were chosen to be sparse enough so that the deformation theories would 

influence the results, but still within a mesh convergence range. This was chosen for both 

Classic and Mixed Model showing the effects of the high order theories on the accuracy of the 

solutions, and to check the possibility of using the minimum discretized possible mesh, mainly 

for the case that the FEM cede run within the multiscale methodology f or computational 

efficiency sake. 

4.9.1 First Test: Flat rectangular plate under pure tensile loads 

The first numerical tests consisted of a simple case to validate the model against 

Abaqus: a flat rectangular plate with dimensions 175 x 25 mm, following ASTM 3039 testing 

parameters for 90° unidirectional composite tensile tests, however with a total thickness of 

50 mm to test the capabilities of the model for thick plates. The plate was fully encastred in 

the x=O edge and a uniform distributed normal tensile load of 1 N/mm was applied to the 

x=175 mm top edge as shown in Figure 29. The mesh used was 16 x 4 elements, which 

generated an L/ h elemental ratio of 4.571. This plate is regarded as a thick plate (L/h < 10), 

but still away from extreme edge cases (L/ h= 1). Only a single center (A) point was chosen 

as a possible optimization point due to the almost uniform behavior of the structure, ignoring 

some Poisson effects. The results for the displacement at the center of the plate, as well as 

the maximum normal stress value at the 90° upper layer in the fiber direction are found from 

Table 6 to Table 9. 

Table 6 - Results for First Numerical Test - Classic Model. Max.imum normal stress value at criticallayer 
in MPa. Simple lay-ups. 

Oiscretization Lay-up 

Orders [O]s [021902]5 

111 1.1262 0.1844 
221 1.1262 0.1844 
222 1.0904 0.1929 
331 1.1232 0.1844 

333 1.1876 0.1705 
Optimal - 332 1.1262 0.1844 
Abaqus™ 20 1.2260 0.1836 
Abaqus™ 30 1.1208 0.1674 

Source: Developed by t he author 
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Figure 29- First numerical test 

Source: Developed by the author 

Table 7- Results for First Numerical Test - Classic Model. Maximum normal stress value at criticai 
layer in MPa. Complex lay-ups. 

Oiscretization Lay-up 
Orders [0/90/+-45]5 [(30/-60}4h 

Order 
u [10- s [10-

Dofs 
Time u [10- s [10-

Order 
u [10-

5mm] 2MPa] [s] 5mm] 2MPa] 5mm] 
111 4.0034 1.1178 2,040 2.57 8.9750 7.7295 111 4.0034 
221 4.0305 1.1254 3,230 9.12 9.0357 7.7817 221 4.0305 
222 4.0380 1.1275 3,825 13.28 9.0525 7.7963 222 4.0380 
331 4.0410 1.1283 4,420 17.86 9.0592 7.8020 331 4.0410 
332 4.0480 1.1303 5,015 24.75 9.0750 7.8156 332 4.0480 
333 4.0481 1.1303 5,610 30.40 9.0752 7.8158 333 4.0481 
555 4.0836 1.1402 9,180 91.66 9.1548 7.8844 555 4.0836 

OptA- 331 4.0480 1.1303 9.0750 7.8156 
OptA-

4.0480 - - 331 

Abaqus™ 20 4.1760 1.1326 4,429 3.17 8.975 7.7295 
Abaqus™ 

4.1760 
20 

Abaqus™ 30 3.9450 1.1318 44,800 474.20 9.0870 7.8260 
Abaqus™ 

3.9450 
30 

Source: Developed by the author 
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Table 8 - Results for First Numerical Test - Mixed Model. Maximum normal stress value at criticallayer 
in MPa. Simple lay-ups. 

Oiscretization Lay-up 

Orders [O]s [Ozl90z]s 

111111 1.1262 0.1358 
111221 1.1262 0.1358 

111331 1.1262 0.1252 

222111 1.0886 0.1815 

222222 1.0893 0.1929 

221331 1.1231 0.1891 

333111 1.2203 0.1733 

333333 1.1876 0.1695 

555555 1.1954 0.1682 
Optimal - 332112 1.1262 0.1855 

Abaqus™ 20 1.2260 0.1836 
Abaqus™ 30 1.1208 0.1674 

Source: Developed by the author 

Table 9 - Results for First Numerical Test - Classic Model. Maximum normal stress value at criticallayer 
in MPa. Complex lay-ups. 

Oiscretization Lay-up 

Orders [0/90/+-45]s [(30/-60)4h 
u [1 0- s [10- Time u [10- s [10-

Order 5mm] 2MPa] Dofs [s] 5mm] 2MPa] Dofs Time [s] 
111111 4.4438 1.1178 4,590 2.57 8.9750 7.7295 4,590 1.164536706 
111221 4.3832 1.0975 8,223 19.59 8.8119 7.5890 8,223 8.881497267 
111331 4.3931 1.0825 9,753 25.72 8.6917 7.4855 9,753 11 .66079905 
222111 4.3936 1.0850 11,283 23.92 8.7114 7.5025 11 ,283 10.84386797 
222222 4 .6296 1.0851 12,813 29.56 8.7123 7.5033 12,813 13.39902006 
221331 4 .1868 1.1434 14,343 36.91 9.1 804 7.9064 14 ,343 16.73175166 
333111 4.2840 1.0341 23,523 130.41 8.3023 7.1502 23,523 59.11726123 
333333 4.1798 1.0580 34,594 291 .22 8.4950 7.3161 34,594 132.0110476 
555555 4.1868 1.0323 56,734 840.73 8.2883 7.1381 56,734 381 .1 063556 

OptA- 331 4.1798 1.0341 - - 8.3023 7.2703 - -
Abaqus™ 20 4.1760 1.0635 4,429 6.10 8.975 7.7295 4,429 6.10 
Abaqus™ 30 3.9450 1.0736 44,800 474.20 8.6199 7.4237 44,800 474.20 

Source: Developed by the author 

The results showed good accuracy between the proposed model optimal deformation 

theory and both Abaqus™ solutions. For lower orders displacements - such as the linear 

111xxx - the change in the order of the out-of-plane stresses did not change the result much. 

This is expected due to the nature of the lay-ups and load cases chosen for this preliminary 
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study, and future research will investigate this problem under harsher loads and with lay-ups 

that incurs higher shear loads. 

Another relevant result was that for higher order in the displacements, starting with 

quadratic 222xxx theories, but more noticeable in cubic 333xxx theories, is that, for such 

powerful description of the deformation, a better description of the out-of-plane stresses did 

not change the results. This can be explained dueto Reissner Mixed Variational Theory, due 

to the geometric and constitutive terms of the out-of-plane deformations may cancel each 

other in the virtual out-of-plane shear terms, if the geometric deformation is precise enough 

by itself. 

Finally, for the three studied lay-ups, the found optimized theory has in-plane cubic 

displacements and quadratic transversal displacement 332xxx with full integration. These 

theories are analogous to Reddy's plate theory. And this result may indicate that cubic 

deformation theories are enough for obtaining accurate shear distributions of the thickness 

for the proposed load cases in LW theories. Future studies are required to verify if this 

hypothesis holds true for harsher load cases, equivalent single layer theories and classic 

theories. 

4.9.2 Second Test: Flat square plate under transversal pressure 

The second numerical tests consisted of a flat square plate with dimensions 250 x 250 

mm with a total thickness of 50 mm to test the capabilities of the model for thick plates. The 

plate was simple supported in the x=O, x=250, y=O and y=250 edges as shown in Figure 30. At 

first, the plate was simulated under a uniform pressure load and then under a bisinoidal 

pressure load with maximum ampl itude of 1 N/mm2• Both pressure cases were applied to the 

top surface. The mesh used was 16 x 16 elements, which generated an L/h elemental ratio of 

3.2, on the same L/h range as the First Test. Four points were chosen for the optimization 

process: (A) at the center ofthe plate, (B) at (L/4,L/4), (C) at (L/8,L/4) and (D) at (3L/4,L/4) 

to study the influence of the control point over the algorithm. Points {Bt and {O) were tested 

beca use, even with the symmetry of the geometry, unbalanced laminates such as the [(+30°/-

600)4] cases may generate different results. The results for the transversa l displacement at the 
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center of the plate as well as computational times and number of degrees of freedom 

generated for each case are shown in Table 10 to Table 13. 

Figure 30- Second numerical test 

Table 1 O - Results for Second Numerical Test - Bisinoidal Case- Classic Model. Transversal 
displacement at the center o f the plate. 

Discretization Lay-up 

Orders [0/90/+-45]s [(+30/-60)4]T 

Formulation w [10-2mm] Dofs Time [s] w [10-2mm] Dofs Time [s] 
111 4.1571 6936 12.16 4.0159 7803 19.80 
221 4.1852 10982 43.15 4.0483 12427 57.90 
222 4.1930 13005 62.86 4.0553 14739 76.79 
331 4.1961 15028 84.52 4.0505 17051 104.97 
332 4.2034 17051 117.13 4.0574 19363 147.83 
333 4.2035 19074 143.88 4.0576 21675 196.51 
555 4.2404 31212 433.86 4.0576 35547 333.99 

A332 4.2034 - - 4.05614 - -
B323 4.2120 - - 4.05675 - -
C233 4.2120 4.05675 - -
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Abaqus™ 2D 4.3700 1734 15 4.5579 1734 15 
Abaqus™ 3D 4.2470 63291 907 4.4399 63291 907 

Analytical 4.2248 - - 4.0159 - -
Source: Developed by the author 

Table 11 - Results for Second Numerical Test- Bisinoidal Case- Mixed Model. Transversal 
displacement at the center of the plate. 

Discretization Lay-up 

Orders [0/90/+-4S]s [(+30/-60)4h 
Formulation w [10-2mm] Dofs Time [s] w [10-2mm] Dofs Time [s] 

111111 4.59458 7020 15.12 4.65811 7020 16.10 
111221 4.51106 9100 26.81 4.57344 9100 27.18 
111331 4.44956 11180 39.27 4.51108 11180 39.81 
222111 4.45964 10140 32.48 4.52130 10140 32.93 
222222 4.46012 13260 54.39 4.52179 13260 55.14 
221331 4.69972 13260 55.18 4.76470 13260 55.94 
333111 4.25022 13260 56.00 4.30899 13260 56.77 
333333 4.34885 19500 125.05 4.40898 19500 126.78 
555555 4.24306 31980 361.01 4.30173 31980 366.00 

A331331 4.25022 - - 4.30899 
B321331 4.37142 - - 4.43186 
(321331 4.41281 - - 4.47383 
D231331 4.41281 - - 4.47383 

Abaqus™ 2D 4.37000 1734 15 4.43042 1734 15 
Abaqus™ 3D 4.24700 63291 907 4.30572 63291 907 

Analytical 4.22480 - - 4.28322 - -
Source: Developed by the author 
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Table 12- Results for Second Numerical Test - Uniform Case- Classic Model. Transversal displacement 
at the center of the plate. 

Discretization Lay-up 
Orders [0/90/+-4S]s [(+30/-60)4h 

Formulation w [10-2mm] Dofs Time [s] w [10-2mm] Dofs Time [s] 
111 2.40339 6936 18.40 2.58696 6936 16.10 
221 2.41963 10982 32.63 2.60783 10982 33.08 
222 2.42414 13005 47.79 2.61234 13005 48.45 
331 2.42593 15028 39.53 2.60924 15028 40.07 
332 2.43015 17051 66.19 2.61369 17051 67.10 
333 2.43021 19074 67.15 2.61379 19074 68.08 
555 2.45155 31212 68.15 2.61383 31212 69.09 

A331 2.43015 - - 2.61577 -
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8321 2.43513 - - 2.62112 -
C321 2.43513 - - 2.62112 
D231 2.52647 - - 2.71944 

Abaqus™ 2D 2.52647 1734 15 2.71944 1734 15 
Abaqus™ 3D 2.45536 63291 907 2.64290 63291 907 

Source: Developed by the author 

Table 13 - Results for Second Nurnerical Test- Unifonn Case - Mixed Model. Transversal displacement 
at the center of the plate. 

Discretization Lay-up 
Orders [0/90/+-45]s [(+30/-60)4h 

Formulation w [10-2mm] Dofs Time [s] w [10-2mm] Dofs Time [s] 
111111 7.54635 7020 14.00 7.67623 7020 16.10 
111221 7.40917 9100 38.95 7.53669 9100 44.79 
111331 7.30816 11180 57.05 7.43394 11180 65.61 
222111 7.32472 10140 47.19 7.45078 10140 54.26 
222222 7.32550 13260 79.02 7.45159 13260 90.87 
221331 7.71903 13260 80.17 7.85189 13260 92.19 
333111 6.98075 13260 81.36 7.10090 13260 93.56 

333333 7.14275 19500 181.67 7.26569 19500 208.92 

555555 6.96899 31980 524.47 7.08894 31980 603.14 
A331331 6.98075 - - 7.10090 - -
8321331 7.17982 - - 7.30339 - -
C321331 7.24780 - - 7.37254 - -
D231331 7.24780 - - 7.37254 - -

Abaqus™ 2D 7.17749 1734 15 7.30102 1734 15 

Abaqus™ 3D 6.97547 63291 907 7.09552 63291 907 
Source: Developed by the author 

For the Second test the results also presented a good correlation between the 

proposed model, Abaqus™ and analytical solutions when applicable. As predicted, both the 

uniform and bisinoidal cases showed similar results for both the classic and mixed formulation 

models. The number of degrees of freedom through the evolution of the models can be seen, 

and its impact on the solution time. One thing to noteis that even in the most extreme case 

studied, the 555, which had about half the number of degrees of freedom ofthe 3D Abaqus™ 

model (31212 against 63291 respectively), but it had a computational time 72.16% lower on 

average than the Abaqus™ model. This shows that the Python implementation did fulfill the 

efficiency objective criteria. 
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For the classic model, the results showed a trend of converging for Abaqus™ 3D 

solution with the increase in order, most notably the increase in the plane displacements u1 

and u2, but the u 3 is not influenced. 

For the mixed model, the results are more complex to analyze and also more relevant. 

There was no clear convergence between the increase of orders in the shear stresses and the 

comparison to Abaqus™ or analytical results, and again the u1 and u 2 displacement orders 

seemed to be mandatory on the answer. However, the increase in the shear stresses order 

created a minor convergence towards the 3D result, and when both occurred at the same time, 

the end results, especially for the non-symmetrical optimization points (B), (C) and (D}, 

happened faster and if not more accurately than the classic results. However, given the small 

difference between the displacement results for ali models when comparing to Abaqus™'s 3D 

solution, the faster convergence of the mixed optimization may be preferred. To better 

evaluate this proposition, the stress distribution for the bisinoidal case, for different models 

and optimization point C was gathered and shown in Figure 31 and Figure 34. 

Figure 31 - Oú Stress distribution over the thickness for different theories, Classic Case, Point C, [(+30/-
60)4h lay-up 

---~ 

Source: Developed by the author 
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Figure 32- Oú Stress distribution over the thickness for different theories, Classic Case, Point C, [(+30/-
60)4 h Iay-up 

---=-

--

Source: Developed by the author 

Figure 33 - O"tJ Stress distribution over the thickness for different theories, Classic Case, Point C, [0/90/+-
45]s lay-up 

Source: Developed by the author 

--------------------------------~- --- --=-======~==================----------~=== 
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Figure 34 - cr23 Stress distribution over the thickness for different theories, Classic Case, Point C, [0/90/+-
45]s lay-up 

- - --
-----~ 

Source: Developed by the author 

The influence of the order of the deformation theory over the stress distributions can 

be seen. In particular, the higher order theories influence is greater on the [(+30/-60)4h lay

up, even if it exists on both. One thing to notice is when the higher order was used then the 

higher stress concentration over the interface between layers was found, as well as higher 

maximum stress values. 

4.9.3 Third Test: Half cylinder under uniform pressure 

The third numerical tests consisted of a half cylinder shell with dimensions 150 x 162 

mm with a radius of 75 mm and a total thickness of 50 mm to test the capabilities of the model 

for thick plates. The cylinder was simple supported in the edges as shown in Figure 35. The 

cylinder was simulated under a uniform pressure load of 1 N/mm2 on the top surface. The 

mesh used consisted of 16 x 16 elements, which generated an Lfh elemental ratio of 

approximately 4.0, on the same L/h range as the First and Second Tests. Three points were 

chosen for the optimization process: (A) at the center of the cylinder, (B) and (C) at the same 

line and radially distance ±30°, respectively to study the influence of the control point over 
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the algorithm. Again, like the flat plate under pressure, Points (B) and (C) were tested beca use, 

even with the symmetry of geometry, unbalanced laminates such as the [(+30°/-60°)4] cases 

may generate different resu lts. The results for the transversal displacement at the center of 

the plate as well as computational time and number of degrees of freedom generated for each 

case are shown in Table 14 and Table 15. These results showed a similar response from the 

plane ones, and show the capacity of the implemented formulation to simulate curved 

surfaces. 

Figure 35 - Third numerical test 

,' . ,'' :< , .·.: ~ . 
, , , , , . 

Source: Developed by the author 

------------------------------------~----------- -- -
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Table 14- Results for Third Numerical Test- Uniform Case- Mixed Model. Transversal displacement at 
the center of the plate. 

Discretization lay-up 
Orders [0/90/+-4S]s [(+30/-60)4h 

Formulation w [mm] Dofs Time [s] w [mm] Dofs Time [s] 

111 0.397340 3960 119.3 0.397340 3960 1.16E+02 

221 0.397554 7095 909.821 0.400026 7095 4.12E+02 
222 0.397938 8415 1194.53 0.400771 8415 6.01E+02 
331 0.397650 9735 1110.85 0.585143 9735 551.789 
332 0.397939 11055 1372.5959 0.401765 11055 1.12E+03 
333 0.397942 12375 1714 0.585708 12375 915.07599 
555 0.397942 20295 6055.986 0.585708 20295 3115.302 

A332 0.401765 - - 0.401765 - -
B333 0.402587 - - 0.402587 - -
C233 0.402301 - - 0.402301 - -

Abaqus™ 2D 0.417689 16574 143.372 0.417689 16574 143.37 
Abaqus™ 3D 0.405933 604942 8669.202 0.405933 604942 8669.20 

Source: Developed by the author 

Table 15 - Results for Third Numerical Test- Uniform Case - Mixed Model. Transversal displacement at 
the center o f the plate. 

Discretization lay-up 
Orders [0/90/+-45]s [(+30/-60)4h 

Formulation w[mm] Dofs Time [s] w[mm] Dofs Time [s] 
111111 0.439155 2004 60.37 0.446713 2004 58.82 
111221 0.431172 3590 460.42 0.438593 3590 208.71 
111331 0.425294 4258 604.50 0.432614 4258 304.05 
222111 0.426257 4926 562.15 0.433594 4926 279.24 
222222 0.426303 5594 694.61 0.433640 5594 566.55 
221331 0.449204 6262 867.38 0.456936 6262 463.08 
333111 0.406241 10270 3064.66 0.413232 10270 1576.52 
333333 0.415668 15104 6843.50 0.422822 15104 3520.41 
555555 0.405556 24770 19756.69 0.412536 24770 10163.17 

A331331 0.406241 - - 0.413232 - -

8321331 0.417825 - - 0.425016 - -

C321331 0.421781 - - 0.429040 - -
Abaqus™ 2D 0.417689 16574 143.372 0.424878 16573.75478 143.3715812 
Abaqus™ 3D 0.405933 604942 8669.202 0.412919 604942.0495 8669.201607 

Source: Developed by the author 
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5 MICROSCALE MECHANICAL MODELS: DAMAGE EVOLUTION AND 

HOMOGENIZATION 

111 

This chapter presents the models and methodologies used in the microscale analysis 

phase of the proposed methodology, as well as its detailed implementation. That is, the 

concepts, models and simulations used and implemented using automated Python scripts 

within the commercial finite element package Abaqus™ v6.14-1 for obtaining damage 

parameters and homogenized elastic properties. As previously discussed in Chapter 3. 

Multiscale Methodology, the author used the general approach presented by Singh and 

Talreja (2010). With this in mind, this chapter presents the concepts, equations and 

methodology for numerically obtaining damage parameters, as well as adaptations and new 

solutions to problems found during analysis. 

First, defining a crack as two separate traction free surfaces that appear in a material 

because of damage effects, crack propagation can occur in three different ways defined as 

called Mode I, Mode 11 and Mode 111 failures, and schematized in Figure 36a, Figure 3Gb, and 

Figure 36c respectively. Mode I, or opening mode, happens when a crack propagates because 

the applied externalloads opens the crack through the work of tensile stresses normal to the 

crack surface planes. Mode 11, or sliding mode, happens when a crack propagates because of 

the work of shear stresses parallel to the plane of the crack surfaces and perpendicular to the 

crack front, "sliding" the two crack surfaces away from each other. Mode 111, o r tearing mode, 

happens dueto the work of shear stresses parai lei to both the crack surfaces and crack front, 

distorting and twisting each crack surface in different directions. 
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Figure 36 - Crack propagation Modes 

Mode I - Opening 
Mode 111 - Out-of-plane 

Mode I I - In-plane Shear Shear 

Source: Developed by the author, adapted from Wikipedia (2017) 

Two studied problems were the influence of Crack Sliding Displacements (CSD) and 

subsequent crack multiplication under shear (Mode 11) and problems that arose from the 

microscale models geometry. At first, and during preliminary studies and the CSD analyses, 

hexahedral RVEs were used. However, their usage with angled-plies and some specific cases 

of crack geometries created boundary conditions problems that will be addressed in the 

chapter. As a solution for these problems, a new geometry generation methodology for the 

RVE was proposed. lnstead of hexahedra, prismatic polyhedrons were implemented, created 

from cutting planes aligned to the direction of the principal direction of fibers of the laminate 

layers. Furthermore, a new approach to the imposition of the boundary conditions for this 

new geometry was needed, especially for the case of homogenization analysis. This new 

approach was based upon the works of Danielsson et ai. (2002) over periodic boundary 

conditions applied to polyhedral generated from pairs of parallel planes. 

Following that, the chapter shows the homogenization techn ique used for damaged 

materia is and how the degenerated elastic properties are linked to the macroscale analysis. 

After, results for validation of the model for both the homogenization technique and the 

damage evolution algorithm are presented. And, the validation process is based on data found 

in the literature, which are analytical solutions or experimenta l tests. 
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5.1 COD damage evolution model overview 

For the prediction and simulation of damage evolution of composite laminates under 

tensile loads, a methodology based on continuum fracture mechanics, and using the general 

idea found in severa! different works (Varna et ai. 2009, Joffe and Varna, 2001; Singh and 

Talreja, 2010; Maimí et ai. 2011a and Maimí et ai. 2011b) is proposed. These methodologies 

focus on the use of damage metrics based on Continuum Fractures Mechanics (CFM) concepts, 

in particular, crack density and work to open and/or dose cracks for the intralaminar damage 

prediction, and energy release rates for delamination propagation. 

In addition, due to the extensive research on the problem of finding homogenized 

properties in damaged materiais by using severa! known methods, such as finite element 

analysis of RVEs, holistic approaches, and asymptotic homogenization, the problem of 

obtaining degraded elastic properties has become trivial, given that one knows the crack 

profile in a hexahedron, which represents the RVEs. As such, the main problems resides in 

how to obtain ways to link the macroscopic metrics - such as applied load or displacement

to the microscopic damage metrics- such as crack spacing, crack density, delaminated area, 

and local stress and/or strain state. 

For the present work, the methodology used for the evaluation of intralaminar damage 

evolution in composite materiais will, mainly, be based upon the methodology proposed 

(Varna et ai. 2009, Joffe and Varna, 2001; Singh and Tal reja, 2010}, with some new adaptations 

and generalizations for both bending loads and general laminates, such as angled-plies and 

asymmetricallay-ups never incorporated in previous work. 

This methodology proposes that every single intralaminar failure mechanism, which 

creates and evolves damage, but do not generate failure or loss of cohesion in the material, 

for composites materiais manufactured from unidirectional layers may be modelled as 

trespassing matrix cracks parallel to the orientation of the fibers in a given layer. Moreover, 

the number of cracks for each layer and its multiplication is not directly dependent of the 

damage in other layers. The only influence damage in a neighbor layer may have in another 

layer is the local change in stress/strain states that the second layer displays, andas such, the 

energy available to that layer to create new cracks. As such, the crack density À, which is the 

number of cracks found in a given layer per length, characterizes the damage in a given layer. 
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The use of trespassing cracks over the model incurs the hypothesis that, after the 

formation of a crack over the thickness of a whole bundle of layers of the same direction, the 

crack grows unstably in the direction parallel to the fiber directions. This behavior has been 

shown both analytically (Pupurs et ai., 2013) and numerically (Zhuang et ai., 2016). 

These microscale models are used to calculate different damage metrics. Specifically, 

a two-state approach is introduced, in which damage evolves from a state with a crack density 

o f À1- state 1-to a state with a crack density o f .i!.2 = 2.i!.1 - state 2. This process is exemplified 

for a 60° layer in Figure 37. 

Figure 37- Example ofprocess of damage evolution through increase in crack density in the microscale 
model for a [±60°4]s laminate 

) 

Source: Developed by the author 

This approach has been used for some decades in CFM analysis, and is based on the 

premise that intralaminar damage evolution occurs in two distinct phases. In the first phase, 

the cracks are formed more or less randomly over the layer area, dueto the nun-uniformity 

of fibers, and presence of defects, but far away from each other that two cracks do not interact. 

This happens as, statistically, there is a greater area way from the influence previous cracks 

that may have a microscopic region, which is beneficiai to the creation of a new crack, for 

example, containing a cluster of fibers, a resin rich area, or an abundancy of voids. This first 

phase of crack multiplication evolution is shown in Figure 38. As damage progresses and more 

cracks are formed, the material follows the second phase of damage multiplication, in which 

the cracks are abundant enough, but their region of influence over the stress state is small 

enough, that statically, the area with the higher probability of new crack formation is the area 

in the middle of two existing cracks. Maimi et ai. (2010a) showed that the low distance of crack 

influence was found analytically by several researchers, and was verified numerically in the 

-----------------------=-- --- ·- ----=-=---------------~==== 
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present work. Figure 39 show the distribution of the principal strain value against distance 

away from a crack in a cross-ply, normalized by the thickness of the layer. lt shows how the 

influence of the crack quickly goes to the nominal value about 50% of the layer thickness. 

Figure 38- (a) Schema ofthe first phase of crack multiplication; (b) Experimental results showing 
periodicity in multiple cracks 

li 

I I li I I 
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(a) (b) 

Source: Singh and Talreja, 2014 

Figure 39 - Principal strain at the center of a cracked layer o ver the distance away from the crack in a 
[0°/90°2]s laminate 

0o·L-------o.~s-------L-------1~.5------~2 

Distance 'J'Nay from the crack 

Source: Developed by the author 

Analytically, Hajikezami et ai. (2015) also found similar results for bending loads, 

shown in Figure 40, that dose to the distance equal to the thickness of the layer, the normal 

stresses recover stabilization ata nominal value. These two phases of crack multiplication lead 

to a crack profile with periodic distance between layers, which was found experimentally by 
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severa I distinct researchers using damaged glass-fiber/epoxy composites under a background 

light as shown in Figure 38b. 

Figure 40- Analytical stresses away from the crack center under bending for a (90°/0°]5 laminate 
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The work required to open the existing cracks in each state is calculated for varying 

crack densities (À) and applied load (P). The energy required to open N new cracks from a state 

containing N new cracks can be calculated from the energy required to open N and 2N cracks 

respectively - Equation 123, based on the stresses transversal to the fiber directions on a given 

layer bundle (0'2 ) and the crack opening displacements obtained (u2 ) from the microscale 

models- Equation 124. 

Figure 41 shows schematics how COD is calculated for an internai crack in a given 

laminate. This figure shows a normal cut view of a crack in the process of opening. The COD is 

then given by the distribution of this opening over the thickness of that layer. Also, it should 

be noted that the load P is used in this work in a general sense, as different kinds of metrics 

may be taken as an externai load, i.e. applied externai force, moment, deflection, strains, 

stresses, elongation, deformation energy or work. 

---------------------------------------------~~~~c=-~-=--=~--------------~=================== 
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Figure 41- Schematics ofthe COD definition 

' 

' 

Source: Developed by the author 

WzN-+N = WzN-+o- wN-+o = W(À,P)- w G,P) = LlW(À,P) (123) 

(124) 

The crack multiplication occurs when the energy required to open N new cracks from 

a state already containing N cracks (W2N-+N) is equal the energy to open 2N cracks from zero 

cracks minus N cracks from zero cracks o r greater than the energetic resistance of the material 

against the opening of new cracks (Wc). Mathematically, this occurs when Equation 125 is 

satisfied. The value of Wc can be obtained by using an inverse analysis, comparing results of 

the present methodology with results of well-behaved laminates under tensile monotonic 

tests, such as cross-plies or and ±9 lay-ups. 

LlW(À, P) ;::: Wc (125) 
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Equation 126 implies that the material behaves in such a way that intralaminar cracks 

grow mainly under Mode I, and even if there is sliding present - and thus work shearing 

stresses- the sliding is completely reversible. This happens as both the sliding parcel of the 

work, Equation 125, and the energy resistance to the creation of cracks through shear, which 

is analogous to growth under Mode 11, were neglected. Singh and Tal reja (2010) observed that 

this hypothesis is valid as because of two different behaviors. The first is that, for most 

polymer matrixes in use, the resistance for crack growth under Mode 11 is much greater than 

under Mo de I (that is G1e ~ G2, ). The second is that for the cases where the shear stresses 

would be more relevant, in the same levei than the normal stresses (oü=cr2 ), layers oriented 

less than 45° over the load direction, the failure is abrupt, and damage evolution can be 

neglected. 

(126) 

Even so, the present work proposes a numerical verification of this hypothesis, by 

simulating a crack propagation of the center crack of laminates with [On/9m/On], [9n/(90°-

9)m/8n] and [±9m] lay-up under tensile and bending loads. For both laminates, the case of 

center cracks and edge cracks, until the crack grows the whole dimension of a coupon, were 

investigated. During the propagation, the energy release ratios G1 and G2 , as well as the crack 

opening displacement and crack sliding displacement of the cracks will be monitored, as the 

hypothesis may be numerically verified by comparing these values. Examples of the models 

used for this proposed analysis are shown in Figure 42. For the bending case, due to the 

progressive failure of different layers, failed layers are taken into account for the analysis of 

unbalancing of the laminate dueto damage. Results of this analysis, considering the models 

with the center crack under bending loads, were obtained, and they are shown in Sections 5.3 

and 5.4. Though these analysis are still not completed, it can be seen that before the 

unbalancing of the laminates, the sliding is practically nu li, and after the first layer failure, and 

introduction of strong unbalancing, the sliding parcel is still ten times lower than the opening, 

numerically verifying the supposition. 

--- --- ,__ _______________ _ 
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Figure 42- Exarnple of geometry ofthe proposed model for a [0°/90°/0°] larninate to verify the 
hypothesis to neglect sliding. Center crack (left). Edge Crack (right). 

Source: Developed by the author 
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Using Equation 125, a surface containing the energy released by the crack 

multiplication as function of crack density and externai applied load (6W vs. À (or p) vs. P (or 

cp)) is constructed through severa l simulations of a given RVE. For each RVE and stress state 

profile obtained from the macroscale analysis, different models are constructed on Abaqus™ 

using automated Python scripts for a different number of cracks per layer of interest. Using 

the previous equations and for a linear step increase in this stress profile and the number of 

cracks the work for crack multiplication, !1 W ís calculated. 

Figure 43 - Exarnple o f a D. W vs. À ( or p) vs. P ( or 4>) surface 
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Source: Developed by the author 
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Finally, the curve found by the intersection of this surface and the plane of Wc height 

is the damage evolution behavior of a given layer for a given lay-up (crack density vs. load 

curve). An example of this surface is shown in Figure 43, where the crack density is being 

represented by p instead of ít and the load is represented by elongation cf> instead of P. As 

previously discussed, the methodology let severa! different metrics to be employed as 

externalloads. 

5.2 Unbalancing and opening vs. sliding studies 

To study the influence of the CSD damage mode under bending loads four glass-epoxy 

laminates with material properties found in Table 16 are considered, an unbalanced 

[0°/+93/-9]s and balanced [0/±82]s for 9=45°,60°,90°. The elastic modulus and Poisson 

constant were taken as dose to the typical glass-epoxy va lues. The energy resistance to crack 

multiplication were taken from Singh and Talreja (2010}, and the ultimate strength, strain and 

elastic modulus degradation due to layer progressive fa ilure were taken from Belingardi and 

Cavatorta (2006}. 

Table 16 - Material properties used for the CSD damage mode evaluation tests 

E1 [GPa] E2 [GPa] G12 [GPa] V12 W1c [J/m2] XT [MPa] E at failure [%] 

45.0 12.0 4.80 0.280 232(l) 50912J 1.712) 

Source: (li Singh and Tal reja (2010); 121 Belingardi and Cavatorta (2006) 

The damage evolution was evaluated for every layer per normal using the proposed in 

Chapter 3. The results for the COD vs. crack density curves are used to place the number and 

position of the cracks in the model. 

Then, the damaged RVEs related to the different lay-ups was modelled and analyzed 

by the finite element method, using a non-uniform displacement distribution over the 

th ickness to simulate pure bending calculated via GUF as shown in Chapter 4. This simulation 

was carried out in steps of strain load until any layer presented a levei of stress or strain 

----------~=======-=-=..,...~-.--·--- -- __ __,. _____________ _ 
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corresponding to failure by the maximum strength or maximum strain failure criteria 

respectively. The models were simulated for a range of imposed axial strain loads between 

0.1% and 3% with a 0.1% step. When this threshold occurs, the cracks of the layer are erased 

from the model, and its elastic properties are degenerated to a value found experimentally by 

Belingardi and Cavatorta (2006). During the simulation, the CSD of the first nucleated crack 

for the first and second damaged layers and average shearing stress in this crack surface are 

recorded. This data is used as a metric to study the influence of CSD damage mode in the 

damage evolution of the composite by comparing the results obtained from unbalanced and 

balanced lay-up, due to the simple progressive failure model, where the balanced laminate 

tends to the behavior of an unbalanced. 

As a non-uniform distribution of load over the thickness is used, even though the 

laminates studied are symmetric, the load is not; as such, the whole laminate is modelled in 

the RVE. This away the RVE may be modelled with a different number of cracks per layer. The 

load in the simulation is increased quasi-statically, increasing the crack density of each layer 

systematically, according to the aforementioned damage evolution. This process is 

exemplified for the [0°/±60°2]5 laminate in Figure 44. 

Figure 44 - Crack evolution under bending for the proposed analyses o f a [0° /±60°2]s laminate 

Source: Developed by the author 

An example of the RVEs created is shown in Figure 45a and b. In this case, the evolution 

for the fourth layer of a [0° /±60°2]s laminate is being calculated. The symmetry o f the laminate 

and load are used to reduce computational time, as such only half of the laminate is modelled. 

Figure 4Sc shows an example of the averaged displacement of a crack obtained by the 

implemented methodology on Abaqus® for both the balanced laminate [0°/±60°2]s and 

unbalanced laminate [0°/+60°3/ -60°]5. lt shows the premises that unbalancing the laminate 
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creates sliding displacements within the cracks, as well as that the methodology obtained the 

typical shape for crack opening for both crack modes. 

Figure 45- Example ofRVE used for the Mode II influence verification on a [0°/90°/±60°]5 Iay-up. (a) 
Geometrical model and cracks. (b) Mesh. (c) Example ofa nonnalized displacement distribution over 

the thickness 
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Source: Developed by the author 

Figure 46a and Figure 46b shows the evolving CSD and the shear stress in the 

neighborhood of the crack for the first nucleated crack of the first and second failing layers 

found by both the balanced and unbalanced laminates for 60°. For the balanced case, as 

expected, the first layers to fail were the ninth, followed by the eighth layers. However, for 

the unbalanced case, the ninth layer was the first to fail, followed by the sixth layer, the first 

layer with the negative aligned angle. This fact can be explained by the increased maximum 

tensile stresses found in the sixth layer dueto its boundary conditions. The unbalancing of the 

lay-up increases the shear stresses and influence of the top and bottom layers over a sudden 

negative angle, which, by nature of the boundary conditions of the laminate increases the 

working normal stresses this layer has to support. 

lt can be seen for the unbalanced laminate that the cracks start sliding as soon as the 

first crack is nucleated, around 0.613% remete maximum strain forthe ninth layer, Figure 47a, 

and around 1.023% remete maximum strain for the eighth layer, Figure 47b. However, for the 

studied case, it is about one order of magnitude lower than the crack opening. For the 

balanced case, the crack start sliding only when the first layer fails, unbalancing the laminate. 

------------------------~--------------= =----
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Moreover, as the sliding begins, it quickly increases to the leveis observed in the unbalanced 

case. Comparing Figure 46 and Figure 47, it can be observed that the progressive failure of the 

layers, found in the points where the behavior of the shear stress changes (increases or rema in 

stable), had a greater impact in the COD of the balanced case than the unbalanced one. For 

the balanced case, during the steps that occurred layer failure, the COD remained stable, 

unlike for the unbalanced case in which it grew practically for the whole simulation. 

Finally, from the results shown, it can be seem that the analysis were not completely 

successful, especially in the shear stress, in particular dueto the step range in the applied 

strain used. A linear step over the applied strain evolution was chosen, when a more correctly 

way to evolve the load isto calculate the strain step so that in each step an equal amount of 

damage is considered. For that, one solution isto use an are length algorithm with the damage 

evolution curves, so that a given damage step, that will be set equal to the are length radius 

parameter is covered in each step. 

Figure 46- Evolution ofthe analysis for crack displacements for 60°. a. First cracked and failed layer 
(ninth layer); b. Second cracked and failed layer (eighth layer for balanced, sixth layer for unbalanced) 
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Figure 47 - Evolution ofthe analysis for shear stress near the cracks for 60°. a. First cracked and failed 
layer (ninth layer); b. Second cracked and failed layer (eighth layer for balanced, sixth Iayer for 

unbalanced) 
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lt is important to highlight that the shear stress evolution shown in Figure 48 and Figure 

49 is not precisely calculated due, in the time of the simulations, the algorithm to 

automatically calculate the shear stresses was not yet implemented, andas such, they were 

made by manually picking some nades around the cracks and using this data to calculate the 

average. 

5.3 Geometric Convergence TestsJ Adaptations and Solutions 

The finite element model used to simulate the intralaminar model was tested for 

convergence relating to both mesh density and RVE dimensions. Figure 48 and Figure 49 show 

the convergence tests for mesh density for respectively tensile and bending load cases for 

different types of laminates. Figure 50 shows the convergence tests for different laminates for 

the RVE dimensions. At some angles for the cracked layers orientation, some discrepancies 

were found. 
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Figure 48 - Mesh densities convergence tests for tensile loads for various laminates 
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Figure 49 - Mesh densities convergence tests for bending loads for a [0°/90° J0°] laminate 
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Figure 50- RVE dimension convergence tests for bending loads for various laminates 
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These discrepancies, highlighted at Figure Sla, were obtained because, at first, the 

microscale was modelled using simple parallelepipeds for the calculation energy released by 
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the multiplication of cracks at different crack density values. In particular, for damaged layers 

in angled direction where the cracks are angled in relation to the faces of the RVE, the cases 

in which the crack ends near or over the corner of the RVE were problematic as shown in 

Figure Slb and c. This was due to the incorrect opening of the cracks near the edges dueto 

the boundary conditions applied to the microscale model. To solve this problem, a hexagonal 

prism microscale model was used for non 90° layers as shown in Figure Sld. In the angled cut

out faces, stresses rotated using the classic rotation theory for in-plane stresses are applied, 

as such each face works using the rotated Cauchy stresses. The out-of-plane stresses remain 

the same dueto no rotation in the theta-axis occurring. 

Figure 51- (a) Problematic points found in the [0°/±75°z]s laminate; (b) Example of crack behavior near 
the comer in the problematic model; (c) Example of crack problematic comer in the parallelepiped 

model; ( d) Hexagonal prism model solution. 

(a) (b) (c) (d) 

Source: Developed by the author 

Figure 52 shows these boundary conditions, which were developed and implemented 

by the present author using the basic premise and definition of Cauchy stresses as a base. 

These boundary conditions may be understood as the stresses that are applied over a single 

point in the macroscale that is being modeled in the microscale as a thickness line that 

represents the laminate, but expanded to its immediate vicinity that receives stresses from 

the neighborhood. These stresses are the stresses distribution over the thickness obtained 

from the macroscale analysis, separated per face and rotated using the appropriate plan. 



Microscale Mechanical Models: Damage Evolution and Homogenization 127 

Figure 52 - Boundary conditions for the hexagonal prism model 

Source: Developed by the author 

Figure 53, Figure 54 and Figure 55 shows different geometries that may be created. 

Figure 53 - Example ofRVE geometry used for a cross-ply Iay-up with only 90° damaged layers 
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Figure 54- Example ofRVE geometry used for an angled-ply lay-up with: (a) only 60° damaged layers; 
(b) only -30° damaged layers 
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Figure 55- Example of RVE geometry used for a generic lay-up with damaged layers oriented at -45°, 
30°, 60° and 90° 

Source: Developed by the author 

5.4 Homogenization model 

The degraded elastic properties as function of the crack density curves were obtained 

using a homogenization methodology based on finite element analysis and damaged RVEs. 

First, an automated Python code creates an RVE containing a given, pre-calculated amount of 

damage, characterized by a crack density for each bundle of layers with the same orientation. 

Figure 56 summarizes the load cases and boundary conditions used. The proposed model uses 

the six simplest boundary conditions that create linear independent stress states in the RVE: 

uniaxial traction in each of the three principal directions and shear in each of the three 

principal planes. 

In homogenization process of a heterogeneous solid such as a composite ply, the RVE 

size must be large enough to contain sufficiently many fibers to provide average properties. 

With fibers of typically 0.01 mm in diameter, and a ply thickness of typically 0.125 mm, the 

RVE extending across a ply thickness may or may not be enough, depending on the fiber 

volume fraction and fiber distribution irregularity, but it is implicitly assumed to suffice in the 

classicallaminate theory. However, when cracks appear within a ply, the local stress gradients 

increase sharply, leading to a breakdown of the homogenized ply properties. Away from the 

cracks, nevertheless, the properties hold. In obtaining the overall (average) composite 

properties with multiple cracks, the RVE size must be large enough to contain a representation 

of the cracks. To satisfy this requirement the RVE must be extended in the laminate length 

direction while it is limited in the thickness direction by the laminate thickness. 
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For each load case, the volumetric average of the engineering stress state ?J i j and the 

strain E;.j fields over the RVE are obtained, following Equation 127 and 128. In these equations, 

ãij and Eij are the volumetric averages of the stresses and strains over the single n-th 

tridimensional element in the RVE; ngp is the number of integration points used on the 

element; vn is the volume of the n-th element; and CJijk and EDk are the ij component of 

stress and/or strain on the k-th integration point in the n-th element. Using these average 

stresses and strains, an orthotropic constitutive equation is written, as in Equation 129. The 

volumetric average constitutive relation is written with the elastic coefficients as variables. 

Thus, each load case generates six equations. Combining the six load cases, thirty-six 

equations are found. The final 36 equations per 13 variables linear system is solved using a 

least square method per layer. In other words, the procedure is performed layer-by-layer. This 

is made as the different membrane properties is what mathematically creates the physical 

behavior of traction-bending coupling in the case of asymmetric lay-ups (Reddy and Ochoa, 

1996). 

Figure 56 - Load Cases and Boundary Conditions for the homogenization procedure 
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Due to problems already explained in the previous Section 5.2, for laminates that 

feature damage in layers with an orientation different from O o r 90°, a hexagonal prism is used 

as an RVE instead of a parallelepiped. As such, the common way for the imposition of stresses 

in the faces, as well as the classical implementation of periodic boundary conditions and 

parallelism between faces could not be implemented. The problem was solved by adapting 

the boundary conditions used in the work of Danielsson et ai. 2002. In this work, the first Piola

KirchhoffS stress tensor- Equations 130 and 131- and the deformation tensor F -from which 

the logarithmic strains E are calculated as in Equation 132- are used to apply the load cases 

directly as stresses using. 

(130) 

F =RU (131) 

E= ln(U) (132) 

The periodicity and parallelism conditions are applied for any given polyhedron with 

parallel faces using Equation 133 and 134 (see Figure 56). In these equations, Pb is the 

barycenter of a given face, P1 and P2 represent every pair of points over the face that are 

reflection of each other over the normal axis n that passes over Pb, u are displacements of a 
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given point, x are its coordinates and Q(n) is the reflection operator tensor over n. Figure 57 

represents schematically these relationships. 

(133) 

(134) 

Figure 57- Representation ofthe periodicity boundary conditions 

Source: Developed by the author 

The intralaminar damage evolution and homogenization were validated using 

analytical solutions developed by Barbero et ai. (2015) and Barbero et ai. (2016) for cross-ply 

laminates under pure tensile and pure bending loads respectively. After the validation for 

homogenization, found in Figure 59 and Figure 60, the analytical solutions were used to 

calculate the values of Wc considering the energy surface found in Figure 58, which gave a 

value of W1c = 638.72 J/mm2
• 
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Figure 60- Results for a laminate [0°2/90°4]s property degradation under bending loads 
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5.5 Results 
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Two material types were analyzed using the implemented Python scripts. A glass

epoxy composite with a known value of W1c with properties found in the literature (Singh and 

Talreja, 2010) as shown in Table 17. And, a carbon-epoxy composite characterized by the G EA 

(Aeronautic Structures Group of Sao Carlos School of Engineering/USP), similar to the material 

studied by Tita et ai. (2008}, with properties shown in Table 17. 

Table 17 - Properties fo the analyzed materiallayers 

El Ez,E3 V1z, V13 Vz3 G1z, G13 Gz3 W1c t 

[GPa] [GPa] [] [] [GPa] [GPa] [Jjm2] [mm] 

Glass/Epoxy 46 12 0.3 0.4 5 4.3 232 0.5 

Carbon/Epoxy 127 10.3 0.340 0.306 5.40 3.05 0.18 

Source: Developed by the author 

Figure 61 shows the normalized COD for the 90° layers evolution found for [Oo/90o]s 

and [0°/90°/±45°]5 laminates, using the glass-epoxy material, as well as the damage evolution 
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curves calculated. This shows the successfully implemented methodology discussed in 

Chapter 3, as the results found in the literature could be reproduced. Figure 62 shows the 

corresponding damage evolution curves. However, the comparison to the literature cannot 

be made as the data is not available. 

Figure 62 shows the normalized COD for the 90° layers evolution found by a [90°s]s 

laminate using the carbon-epoxy material. Using experimental data available for tensile tests 

of the same laminate. These results were used in conjunction to the Python algorithms to 

estimate the W1c ofthe material. Results for W1c varied, depending on the used experimental 

data set, from 581 to 643 J/m2
• 

Figure 61 - Normalized average COD for a [0° /90°]s glass-epoxy larninate, present work vs. Iiterature 
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Figure 62- Damage evolution for [0°/90°]s and [0°/90°/±45°]s glass-epoxy Iaminate 
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However, the W1c as not accurate as the experimental tests, which showed coupons 

that failed before damage nucleation. This probably occurred due to problems with the 

experimental data, as the coupons suffered a fast failure near the clamps of the testing 

machine, suggesting that the thickness was not enough to obtain the real stress-stra in curves 

of the material (Tita, 2003). In fact, experiments can be made to generate more reliable data 

to test the W1c optimization/calcu lation algorithm. 

Figure 63 - COD vs. crack density and damage evolution for a [90s]s carbon-epoxy laminate 
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Figure 64 and Figure 65 show the crack density vs. normalized averaged COD for the 

90° layers in [0°/90°/0o/90°/0o]s laminate, manufactured by using carbon-epoxy material f rom 

Ribeiro et ai. (2012) . Figure 64 shows the curves for the top most and middle 90° layers under 

tensile loads, which were calculated using uniform displacements in the RVEs. Figure 65 shows 

the curves for the same layers under pure bending loads, which were calculated via non

uniform displacements. lt can be seen that under the tensile loads, the behavior for the same 

oriented layers is practica lly the same, as the theory predicts. However, for the bending 

simulations, as closer layer isto the bottom of the laminate as greater the damage absorbed 

by that layer. The similar shape of the curves of the two layers for the bending load requ ires 

third order deformation theory, which makes it so that the distributed displacement over both 

layers is similar. 

Figure 64- COD vs. crack density for the two bottommost 90° layers in [0°/90°/0°/90°/0°]s lay-up under 
pure bending load. 
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Figure 65 -COD vs. crack density and damage evolution for the two bottommost 90° layers in a 
[0°/90°/0°/90°/0°]5 lay-up under pure bending load 
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The model was applied to two different laminates: the first with [90°10] lay-up and the 

second with [±67.5°10]5 lay-up. The values of Wc = 638.72 J/mm2 were obtained using 

Barbero et ai. (2015) and Barbero et ai. (2016) analytical solution for the [0°2.190°4]5 laminate. 

This specific lay-up was chosen for both being solvable by the aforementioned solution, and 

dueto recommendations made by Singh et ai. (2010). The experimental data for the [90°10] 

and [±67.5°10]5 laminate under tension loading were obtained from the works of Ribeiro et ai. 

(2012). For each laminate the damage evolution curve (crack density vs. load), property 

degradation (Eu vs. crack density) and experimental validation (force vs. displacement under 

a tensile test) calculated using the proposed methodology are shown in Figure 66 and Figure 

67. lt is important to highlight that for [±67.5°10]s laminate under tension, the damage is 

promoted by a combination of normal and shear stresses . 
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Figure 66- Comparison between present methodology and experimental results for a [90°IO] laminate 
under tension 
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Figure 67 - Comparison between present methodology and experimental results for a [±67.5°10] 5 laminate 
under tension 
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6 FINAL DISCUSSIONS, CONCLUSIONS AND FUTURE DEVELOPMENTS 

Regarding the methodology for the calculation of intralaminar damage in composite 

materiais based on multiscale analysis, it is possible to conclude that the objective of creating 

a computational efficient physically consistent procedure was accomplished. Both the 

macroscale and microscale analysis implemented in the methodology followed modern and 

new approaches for the simulation of laminated materiais. In particular, from the new 

approaches developed, it is worth noting the use of the Generalized Unified Theories applied 

into the Finite Element Method for shell theories for the calculation of externai loads, the 

intralaminar damage evolution modelled through matrix crack multiplication, and 

homogenization theories adapted to non-uniform prismatic Representative Volume 

Elements. 

Concerning the macroscale analysis, the implementation and adaptation of the 

Generalized Unified Formulations (GUF) into stand-alone python codes was deemed a success. 

The final scripts showed both a good performance and good results that were validated by 

different criteria, such as comparison with full 3D models and analytical solutions. Moreover, 

the algorithm for generation of GUF's kernels inside the codes instead of needing them as 

inputs. The optimization of deformation theories in relation to stresses and strains 

distributions through the thickness was also successful. In particular, through this algorithm, 

the author was able to conclude that the advantages of mixed formulations do not offer 

enough gains for its justifications, and the fact that cubic deformation Layer-Wise theories are 

enough for the studied load cases. However, considering other laminates, this approach can 

provide more accuracy results, mainly for investigation about delamination 

Regarding the microscale analysis, both the intralaminar damage evolution analysis 

and the homogenization analysis were deemed satisfactory as they were validated within 

experimental data and analytical solutions, which were found in the literature. In particular, 

the implementation of non-uniform RVEs, prismatic polyhedrons that change the number of 

faces depending of the lay-up of the composite laminate, proved to be successfully. And, in 

fact, this is a new approach not yet found in the literature. The results for the procedure 
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showed consistence with experimental data found in the literature, further validating the 
I 

developed multiscale methodology. 

Based on the conclusions, it is possible to highlight some perspect ives for future works 

by: 

o Expand the methodology to include more complex loads cases, like quasi-static 

indentations tests, dynamic cases such as low-energy impacto r fatigue cyclic loads; 

o Expand the methodology to combined and/or multiaxial loads in a way that leaves the 

microscale analysis independent of the externalload types. This may be accomplished by 

changing the externai load metric from strains found in the materia l points to elastic 

deformation energy accumulated on the material points and energy release through the 

opening and sliding of cracks dueto its creation or multiplication. 

o Study the model by using Energy metrics instead strains in the surface defined by the crack 

multiplication as function of crack density and externai applied load (!J.W vs. À (or p) vs. P 

(or <f>)). 
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Macroscale Code flowchart (GUF) 

APPENDIX 1- MACROSCALE CODE FLOWCHART (GUF} 
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Microscale code flowchart (Damage evolution) 

APPENDIX 11 - MICROSCALE CODE FLOWCHART (DAMAGE EVOLUTION) 
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