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RESUMO

CASTRO, R. C. Avalia¢io da precisio de um sistema de conducio autonoma baseada em
GPS em um veiculo agricola por métodos de visio computacional. 2017. 74 f. Tese
(Mestrado) — Escola de Engenharia de Sédo Carlos, Universidade de Sdo Paulo, S&do Carlos,
2016.

Avancos tecnologicos foram alcancados com sucesso na agricultura de preciséo utilizando
sistemas de condugdo auténoma em veiculos agricolas. Entre esses avancgos, destaca-se o
aumento da eficiéncia e da produtividade nas operacdes de campo. Alguns sistemas de
conducdo autdnoma s3o implementados usando o sistema GPS RTK, que permite operagdes
com precisdo centrimétrica. No entanto, os erros de posicionamento geografico, a dindmica do
veiculo, os implementos agricolas e ambiente de campo (encostas, condi¢des do solo, etc.)
podem influenciar o desempenho dos veiculos agricolas autdnomos. Desta forma, a avaliagdo
dos sistemas de conducfo autdonoma torna-se essencial para a obtencéo de altos niveis precisdo.
Esta avaliacdo pode ser realizada medindo os deslocamentos usando sensores instalados no
veiculo, tais como: cameras, lasers, odometro, sensores ultrassOnicos, entre outros. Entre as
opg¢des, o método de visdo computacional permite a localizagéo de qualquer sistema no espaco,
tornando-se uma alternativa técnica para esta avaliacio. Desta forma, o objetivo desta pesquisa
€ propor um método para a avaliagéo da precisio dos sistemas de auto-orientacio em condi¢cGes
reais de operacio usando métodos de visdo computacional. O veiculo em estudo é um trator
equipado com um sistema de auto-orientacéo o qual € integrado por uma unidade GPS RTK e
por uma unidade de medico inercial (IMU). A instrumenta¢fo utilizada no desenvolvimento
do sistema de visdo computacional consiste em duas cdmeras Canon Rebel T5 com lente focal
de 50 e 18 milimetros, respectivamente. Foi utilizado o método de cdmera pinhole para mapear
a localizacdo do veiculo no campo usando técnicas de visdo computacional. No estudo foram
realizados multiplos testes de campo, provando assim que o uso do método de visdo
computacional € preciso para avaliar sistemas de auto-orientagdo se dispositivos,

procedimentos e pardmetros forem selecionados corretamente.

Palavras-chave: Visdo computacional. Processamento de imagem. Navegacio GPS RTK.

Veiculos inteligentes. Agricultura de precisgo.






ABSTRACT

CASTRO, R. C. Precision Evaluation of a GPS based auto-guidance system in an
agricultural vehicle by computational vision methods. 2017. 74 p. MSc. Thesis, Sdo Carlos
School of Engineering — University of Sdo Paulo, Séo Carlos, 2017.

Technological advances have been successfully achieved in precision agriculture using auto-
guidance systems in agricultural vehicles. Among these advances, the increase of efficiency
and the productivity in field operations can be highlighted. Some auto-guidance driving systems
are implemented using the GPS RTK system, which allows operations to centimeter accuracy.
However, the geographic positioning errors, the vehicle dynamics, the agricultural devices and
the field environment (slopes, soil condition, etc.) may influence the performance of GPS based
autonomous agricultural vehicles. In this way, the evaluation of the auto-guidance driving
systems becomes essential to the achievement of high precision levels in field operations. This
evaluation can be performed by measuring the displacements using precise sensors installed in
the vehicle, such as: cameras, lasers, odometer, and ultrasonic sensors, among others. Among
the local sensing options, it is well-know that computational vision methods allow the location
of any system in the space, becoming it a technical alternative for this evaluation. In this way,
the objective of this research is to propose a methodology to assess the accuracy of auto-
guidance systems under real field conditions.by means of computer vision methods. The vehicle
under study is a tractor equipped with an auto-guidance system, which is composed of a GPS
RTK unit and an inertial measurement unit (IMU). The instrumentation consisted of two Canon
Rebel T5 cameras with focal lens of 50 and 18 millimeters respectively. The pinhole camera
method was used to map vehicle location in the field using computational vision techniques. In
the study, multiple field tests were performed, proving that the use of the computer vision
method is accurate to evaluate auto-guidance systems if devices, procedures, and parameters

are properly selected.

Keywords: Computational vision. Image processing. RTK GPS Navigation. Smart vehicles.

Precision agriculture.
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1 INTRODUCTION

The emergence of precision agriculture (PA) has bringing technological advances in
the modermization of production practices by means of the use of sensors, actuators, and control
techniques. PA techniques have been explored since the 80's. At that time, the first map of
productivity was elaborated in Europe using sensors and data acquisition techniques, and the
first fertilizer with varied doses was used in the field using control techniques in the USA
(MINISTERIO DA AGRICULTURA, PECUARIA E ABASTECIMENTO, 2009). The true
advances in PA were achieved with the exploitation of Global Positioning System (GPS)
satellite signals. In fact, the installation of receivers into harvesters enable the storage of
instantaneous production data. The first Global Navigation Satellite System (GNSS) was
proposed in the USA in 1978 and the system became commercially available in the 90°s.

In Brazil, the use of PA began in 1995 when agricultural machinery equipped with
productivity monitors were imported. Researches on PA were launched in 1996 during the first
Symposium on PA held at ESALQ-USP (BALASTREIRE, 2000). In 1999, the program
Moderfrota promoted the introduction of modern technologies in agricultural machinery. Since
then, the Brazilian agriculture has had enormous benefits in the area of sustainability and quality

by means of PA.

There are multiple techniques of computer vision that can be applied in the agricultural
field, which has encouraged the development of several utilities in PA. In fact, image processing
in PA has become essential. Among the main applications of image processing in PA, the

following ones can be mentioned:

1. Remote sensing systems: is the most used application in PA. Aerial images of crops
taken by drones may provide important information about the field. By
implementing the appropriate image processing techniques, relevant information of
productivity can be extracted. This technique can be also exploited to generate crop

‘maps aiding its management.

2. Diagnosis of planting lines: leaf pigmentation in plants may reveal important
information. In fact, the chlorophyll is a strong radiation absorber in visible spectra
(400 to 700 nm), and, plants are highly reflective near infrared (700 to 1300 nm)
(BRANDAO er al, 2008). Using image processing techniques, the health

conditions of plants can be assumed by monitoring the color of their leaves.



3. Vegetation indexes: with crop images and image processing techniques, different
indices can be designed to determine the green patch of a land and analyze the
vegetation properties. Among them, NDVI (Normalized Difference Vegetation
Index), SVI (Simple Vegetation Index) and EVI (Enhanced Vegetation Index) are
commonly used for the vegetation classification. A variety of indexes have also
been proposed for analyzing soil parameters, among them, it can be mentioned:
SAVI (Soil-Adjusted Vegetation Index), GSAVI (Green Soil Adjusted Vegetation
Index), OSAVI (Optimized Soil-Adjusted Vegetation Index), and GOSAVI (Green
Optimized Soil Adjusted Vegetation Index).

4. Auto-guidance systems in agricultural vehicles: vehicles with auto-guidance
systems are assisted by GPS systems to carry out operations in the crop areas. In
addition, many vehicles integrate the GPS system with optical systems to perform
the control correction of the auto-guidance systems implementing different

techniques of image processing in real time.

Nowadays, the GPS is widely used in agricultural vehicles, being employed in the
implementation of auto-guidance driving systems (also called auto-steering systems). The
auto-guidance driving systems present great advantages in agricultural production, among
them: the increase of working hours per machine, the greater amount of worked areas, the
reduction of the machine’s maintenance and the increase of the machine speed. In fact, auto-
guidance systems allow a greater control of operations in the field, a reduction of passes of the

vehicle through the terrain than expected, thereby reducing soil compaction.

Most of auto-guidance driving systems allow precise operations. However, the
geographic positioning errors, the vehicle dynamics, the agricultural equipment and the field
environment (slopes, soil condition, etc.) may influence the accuracy of GPS based autonomous
agricultural vehicles. In this way, the agricultural vehicles are subjected to undesired errors.

Consequently, several methods have been proposed to reduce them.

The precision of the position data derived from satellite-based positioning systems,
such as GPS, can be improved by means of Real Time Kinematic (RTK) satellite navigation.
This methodology is capable of providing real-time corrections since it does not only rely on
the satellite signals but also on the data content of the measurements (phase, interpolations,

prediction, etc.). Due to the use of these techniques, GPS RTK technology allows centimeter-



level accuracy. Nevertheless, the accuracy and robustness of this technology should be assessed

during field operations.

During field operation, the auto-guidance systems may present errors. Therefore, in
order to guarantee a satisfactory field coverage, the number of passes of the vehicle in a field
should be increased. However, the more the number of passes of the vehicle over an area, the
less economic efficiency is the agricultural operation. This fact considerably increases the costs
these operations. For that reason, the precision of auto-guidance systems has a great impact on

the optimization of field operations and their economic efficiency.

1.1 Objective

The agricultural vehicle under evaluation is equipped with a commercial auto-
guidance system assisted by a GPS RTK unit and an inertial measurement unit (IMU). The field
operations can be programmed and automatically executed using the auto-guidance system.
According to its technical specifications, this system has centimeter-level accuracy. However,
it is well know that field environment conditions (such as slopes, soil condition, etc.), the
vehicle dynamics, the agricultural equipment, among other issues may influence the accuracy
of the auto-guidance system installed in the agricultural vehicle. It is a fact that each crop area
has its own characteristics and conditions. Therefore, the auto-guidance system has a certain
accuracy for those conditions of the terrain. In this way, the assessment of the accuracy of this
auto-guidance system under particular conditions may aid the user/designer to infer about the

auto-guidance system accuracy in a specific crop area.

The main objective of this work is to propose a methodology to assess the accuracy of
auto-guidance systems under real field conditions. This presents an important advance in
precision agriculture, as there is currently no standard procedure for assessing the accuracy of
auto-guidance systems under specific field conditions. In this research, the accuracy of an auto-
guidance system installed on a tractor was evaluated using computational vision. This
evaluation was performed by tracking the localization of the vehicle using the extrinsic visual
method while the vehicle advanced on a straight line programmed by the auto-guidance system.
This extrinsic visual method was implemented by means of a local visual sensing equipment

and image processing techniques to map the localization of the vehicle in the field.



Two cameras Canon Rebel T5 with focal lens of 18 millimeters were mounted on the
rear side of the tractor. These cameras were used to take several digital images of a
checkerboard placed on a fixed position on the working field at LANAPRE - Embrapa
Instrumentation S&o Carlos. These digital images were processed to identify the features of the
checkerboard pattern and calculate the parameters of the computational visual system. Using
the parameters of the visual system it was possible to track the location of the vehicle in the
field at each image. In this work, two computational visual systems were initially evaluated:

the stereo vision method and the camera pinhole method.
The following objectives of this research can be described:

1. The proposal of a strategy based on local visual sensing equipment and image
processing techniques for measuring the localization of an agricultural vehicle in

the working field.

2. The comparison between two computational vision techniques: the stereo vision

method and the camera pinhole method, for assessing the vehicle’s localization.

3. The assessment of the localization of the vehicle during the execution of an

autonomous motion (a straight-line trajectory).

4. The evaluation of the auto-guidance system at field operations velocities using as

metrics the average and maximum errors.

5. The validation of the proposed methodology using the comparison with a proved

and established procedure using computational vision.

1.2 Text organization

The text has been organized as follows:

Chapter 2. This chapter presents the required theoretical background to develop this
research. In this chapter, the methods to map the position of vehicles in outdoor
environments, and the developed researches to evaluate the auto-guidance systems

using image processing are described.



Chapter 3. This chapter presents a short review of the basic concepts of image
processing. This chapter also presents the important design patterns and software tools
used for the construction of the stereo vision method and pinhole camera method
evaluated in this research. In addition, this chapter presents a detailed explanation of
the methodology proposed in this work to evaluate auto-guidance systems using

computational vision.

Chapter 4. This chapter describes the tests to evaluate the accuracy of the visual
systems compared in this research (stereo vision method/ pinhole camera method). In
addition, this chapter explains the tests development in the field and the experimental

procedure to evaluate the feasibility and quality of the proposal.
Chapter 5. The results are presented and discussed in this chapter.

Chapter 6. Conclusions and future perspectives are presented in this chapter.
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2 LITERATURE REVIEW

The self-management systems encourage an increase in the capacity to cultivate more
areas with the same machinery because of the increase in hours worked, greater speed of
operation and reduction of vehicle passes. The precision of self-management systems installed
in agricultural vehicles is greatly related to the precision of the GPS components mounted on
the machinery. The assessment of GPS errors in agricultural vehicles has been the subject of
several research papers. It can be performed by measuring the displacements in outdoor
environment using precise sensors installed in the vehicle, such as: cameras, lasers, odometer,

and ultrasonic sensors.

There have been multiple research in which the accuracy of GPS systems installed in
different mobile vehicles were evaluated in outdoor environment. Yang and Farrell (2013) used
a triple redundancy navigation system incorporating a magnetometer, inertial navigation system
(INS), and a carrier phase differential GPS to accurately estimate vehicle latitude (including
yaw). The system was designed to operate in any weather condition and work even in the
absence of the GPS. The navigation system provides vehicle position, velocity, acceleration,
pitch and roll, yaw, and angular rates. Liu et al. (2005) developed a multi-aided inertial based
localization system using odometry, an accurate gyroscope, and vehicle constraints. This
system is capable of finding the localization of an autonomous vehicle in the field. Cui and Xu
(2007) developed a method integrating GPS, INS and odometer data using a Kalman filter to

compensate the errors of navigation in a moving vehicle in the field.

Among the local sensing options, it is well known that computer vision methods allow
the location of any system in the space. Advances in computational capacity improve the
effectiveness of image processing methods increasing the accuracy of computational
calculations and reducing processing time. In this way, the use of image processing techniques
in PA has steadily increased. Rovira-M4s ef al. (2005) implemented a stereo camera and image
processing techniques to identify planting lines. The authors proposed a control strategy for the
auto-guidance system using the identification of the plating lines. Chon et al. (2011) and Wei
et al. (2011) proposed the integration algorithms for using data obtained from different sensors.
Chon et al. (2011) used data obtained from a stereo camera, a GPS and an INS to locate the
vehicle in the field. On the other hand, Wei ef al. (2011) used data from a stereo camera, a laser

locator and a GPS to calculate the location of a vehicle in the field.



Some authors, as Easterly ez al. (2010) and Harbuck et al. (2006) were able to improve
considerably the accuracy of the GPS RTK to millimeter-level using computer vision
techniques. Easterly et al. (2010) used a vision sensing method to measure the trajectory errors
of a tractor with auto-guidance system. In this research, an optical vision sensor was rigidly
mounted at the rear of the tractor. The vision sensor measured a location of a reference line on
the paved surface located at the center of the drawbar. The deviation of the tractor’s actual
travel path from its desired path could be assessed from the measurement of the reference line.
Harbuck er al. (2006) assess different auto-guidance systems, using from WAAS to RTK
differential correction, over various periods. A non-GPS-based surveying practice was used to
establish the absolute equipment traverse during testing. This information was then used to
compute path deviations from the desired traverse. In each test, the tractor was operated using
the auto-guidance system, and the relative position of the vehicle was continuously recorded.
The 5 mm measurement error of the total station was applicable under ideal conditions, but this
error increased to 20 mm during the test. Consequently, the order of magnitude required for

greater accuracy by the measurement method was no longer valid.

This chapter presents a summary of the main methodologies used to track the location
of vehicles at outdoor environments and a review of the previous researches done to evaluate

auto-guidance systems using computer vision.

2.1 Methodologies for location mapping using computational vision

2.1.1 Stereo vision method

Stereo vision is an important technique in computer vision. This technique allows the
calculations of the 3-D coordinates of objects in a field view by means of two aligned cameras.
The method consists of aligning horizontally two cameras and the difference between the views
produce a 3-D coordinate map. The idea of this method is based on how the human vision
perceives the location of objects in a field view. In spite of being a cheap method, it has a high
computational cost since it requires the implementation of a considerable set of computational
vision processes. This is a common method in many fields of technology, such as robotics
(ROVIRA-MAS, WANG and ZHANG, 2009). In fact, a mobile robot must have accurate
information about the surrounding environment in order to operate safely. This method is used
in agricultural vehicles for correction of autonomous driving systems by digital images captured

in real time. Rovira-Mas ef al. (2005) used a stereo system and computer vision methods for



the detection and location of planting lines to perform the correction of auto-guidance systems
in real time. Chon et al. (2011) developed a vehicle location algorithm by stereo vision system
integrated to a GPS/INS system. The stereo system improved the location data of the vehicle in
an open environment, since GPS/INS system do not guarantee accuracy and robustness of
localization due to their vulnerability to external disturbances. Wei ef al. (2011) used an
Unscented Information Filter (UIF) to integrate information acquired from a stereo vision
system, a laser range finder and a GPS receiver in order to provide robust vehicle localization
results. Section 3.3 presents the theoretical and mathematical fundamentals for the technical

design of the stereo system developed in this work.

2.1.2 Pinhole camera method

The pinhole camera is implemented using a simple camera with no optical lenses and
a narrow viewing angle. The rays of light pass through the viewing angle and project an inverted
image on the opposite side of the camera, capturing an inverted image of the scene. By knowing
the parameters of the lens of the camera and of its optical sensor, the size of objects in an image
and the location of the camera in the scene can be calculated. The method defines geometric
relationships between a 3-D point and its corresponding 2-D point on the plane of the image
scene. This mapping process from 3-D to 2-D is called perspective projection. This data is used
for the detection and measurement of objects in digital images. The pinhole camera method is
used in robotics for navigation systems and reconstruction of 3-D scenes. Royer ef al. (2007)
presented a real-time localization system for a mobile robot. The research showed that
navigation in outdoor environment is possible using the pinhole camera method and natural
landmarks. To do that, a three-step approach was developed. In the first step, the robot was
manually guided on a path and a video record the sequence. Then, a motion algorithm was used
to build a 3-D map of this path. Finally, the robot used the map to compute its location in real-
time. Lin (2012) developed an algorithm that detects and tracks moving objects with a single
camera. The camera parameters were estimated using the camera pinhole method. Features of
points in a sequence of images captured by the camera were grouped using a hierarchical
clustering algorithm. Then, the related groups between adjacent frames are linked and the
sequence built a 3-D map. Experimental tests showed that the method presents an excellent
performance to detect and track objects, and performed perfectly in complex environments.
Cherubini et al., (2013) designed and validated an approach that detects obstacles in the vicinity

of a wheeled vehicle to achieve safe visual navigation in outdoor environments. The vehicle
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was guided by the camera pinhole method and a lidar, the vehicle followed a path represented
by key images, avoiding collisions with the obstacles. Section 3.4 presents the theoretical and
mathematical fundamentals for the technical design of the pinhole camera method to map the
localization of the vehicle in this research. The construction of the visual system is based in the

model developed by Bouguet (2004).

2.2 Evaluation of auto-guidance system by computational vision methods

An interesting and practical approach to evaluate auto-guidance systems was proposed
by Easterly and Adamchuck (2008). This approach used a visual sensor mounted on the tractor
to visualize the lateral displacements of the vehicle in auto-guidance mode. The programmed
trajectory was a straight line. To test the performance of an agricultural tractor equipped with
an auto-guidance system, one visual sensor was fixed to the chassis on the rear of the tractor.
This sensor was mounted on the central line approximately 1.5 m above the ground and was
positioned directly downward. This scheme allowed less than 2 mm resolution for the acquired
image. Figure 1 shows the position of the optical sensor mounted to the chassis of the tractor
with the lens pointed to the downward so that the field of view was centered on the drawbar

hitch pivoting location.

| Visual

sensor with
| internal
| _processor

Direct rigid
mounting
to chassis

[

Source — Easterly et al. (2010)

Once the sensor was calibrated, by means of computer vision methods, it was possible

to identify the parallel line to the direction of the programmed travel path and to determine its
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horizontal offset coordinate with respect to the central reference position of the tractor. With
this approach, it was possible measure the lateral displacement of the real travel path made by
the auto-guidance system with respect to the programed path (EASTERLY and
ADAMCHUCK, 2008). Figure 2 shows the identification of the line using Intellect software.

The developed test procedure was based on a typical field of operation in which a
series of back and forth parallel passes across a certain distance were performed by the tractor
in auto-guidance mode. At the end of each pass, the vehicle was turned around and returned on
a path adjacent to the previous pass. The track consisted of two east-west oriented straight
passes 39.9 m (131 ft) apart from each other. Both passes were equal, and the total length of the
central line around the track was approximately 600 m. Only the northern and southern straight
passes of the track were used to measure auto-guidance system error. During tests, the tractor
operated on auto-guidance mode during its passage through the straight sections. Figure 3

shows the test track used.

Flgure 2— Intellect software interface locatmg a segment of tracked line
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Figure 3 — Test laboratory
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The position of the tractor was detected for repeated passes; the track error was
calculated as the difference between the desired path on the lines in the straight sections and
the actual path performed by the auto-guidance system. The tractor traveled at speeds ranging
from 0.5 m/s to 5.0 m/s. It was shown that relatively high travel speed (5 m/s) resulted in a
substantially higher auto-guidance error as compared to the two slower speeds (1 and 2.5 m/s).
For the slow and medium speeds, 95% values of errors were found comparable to the claims
published in the literature (less than 2.5 cm). It was concluded that, for high operating speeds
(5 m/s), the auto-guidance system had greater difficulty in aligning with the programmed

operating line.

Visual systems for location mapping of vehicles in open environments are typically
used in combination with other geo-referencing systems to provide accurate data. Visual
systems are currently used in integration with auto-guidance systems in agricultural vehicles to
correct the auto-guidance system on real-time (ROVIRA-MAS et al., 2005). However, they are
less used to evaluate the precision of auto-guidance systems due to their lack of precision at
millimeter level. However, by building a visual system and adjusting the test parameters
correctly, it is possible to achieve high levels of precision (ROVIRA-MAS, WANG and
ZHANG, 2008). A visual system for location mapping has the great advantage of being
applicable in variable field conditions due to its robustness. Nevertheless, the construction of

the methodology represents a great challenge.
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3 METHODOLOGY

The methodology proposed in this work exploits the use of computational vision to
evaluate the auto-guidance systems. This is performed by mapping the position of the vehicle
in the field. Therefore, a summary of the most important concepts of computational vision is
presented hereafter. This research explores two computational vision techniques to map the
location of a vehicle in outdoor environments. Based on their accuracy and adequacy, one of
them is selected for accomplishing the research objectives. These techniques are the stereo
vision method and the pinhole camera method. Firstly, the procedure to identify and localize a
checkerboard pattern through image processing is presented. This procedure is of vital
importance for the calibration of the visual systems. Moreover, this chapter also presents a
review of the most important design patterns and software tools to develop the stereo camera

method and camera pinhole method.

The Computer Vision System Toolbox is available in Matlab and is exploited in this
research. This toolbox is used: (1) to detect the pattern of a checkerboard, (2) to perform the
calibration of the stereo camera method and the pinhole camera method and (3) to locate the
position of the checkerboard in a 3D environment. Details about the available techniques are

described hereafter.

This chapter is divided into 6 sections. Section 3.1 presents a summary of the most
important concepts of computational vision. Section 3.2 presents the methodology to recognize
and to locate a planar checkerboard pattern in the field. Sections 3.3 and 3.4 summarize the
stereo camera method modeling and the pinhole camera method modeling for this research,
respectively. Section 3.5 presents the methodology to evaluate the accuracy of visual systems
for 3-D location mapping. Section 3.6 presents the methodology that serves as a validation

procedure of the proposal presented in this paper.

3.1 Image processing

Image processing is the set of operations that can be applied to digital images. It is
important to note that a digital image is a set of finite values of elements with coordinates x, y,

and an intensity. These elements are defined as pixels (GONZALEZ and WOODS, 2008).
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Many of the current applications of image processing are operations based on the
information obtained from the image. These operations can be the classification of groups of
pixels, the detection of an object, the encoding of characters, among other functions that humans
intuitively perform. Image processing is applied in many fields that the main purpose is to
emulate human vision, including learning and decision making according to the perceived data
(GONZALEZ and WOODS, 2008). Image processing has two purposes according to its
applications: (1) improve the appearance of images for the user and (2) extraction of

characteristics and information of images

The recognition of characteristics is often the main purpose of image processing. There
are innumerous methods for identifying characteristics. Those characteristics can be color,

shape, texture, structures, luminosity or a mixture of these.
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Fundamentals of digital image processing

Image processing is a process that involves several steps of analysis. The diagram

depicted in Figure 1 illustrates the fundamental steps in digital image processing.

Figure 4 — The fundamental steps in digital image processing
Outputs of these processes generally are images
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In the Figure 4, the diagram shows all operations that can be performed by means of
image processing. The blue boxes represent those operations where the purpose of image
processing is to improve the visual properties of the image, usually the outputs of these
operations are images with higher quality that the original image. On the other hand, the green
boxes represent the operations where the purpose of image processing is to extract information
from the image, usually the outputs of these operations are vectors that describe the

characteristics and patterns of the image.
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Representation and description of objects at digital images

Many applications in image processing are programs capable of recognize certain
features and patterns in images. Recognition of objects in digital images is part of many
purposes, such as facial recognition, biometric identification, recognition of letters and

numbers, etc. (GONZALEZ and WOODS, 2008).
In a nutshell, the objects in images can be described in two ways:

1) By external features (limits)

2) By internal features (the pixels within a region)

In a digital image, the objects are represented by a set of pixels. The characteristics of
an object in a digital image can be described through a descriptor vector. The descriptor vector
is constructed by a set of numeric data specific to a group of pixels, which is capable of

describing an object in any condition.

Usually, the external features are described by boundary descriptors, that are used for
recognize the shape features of a group of pixels, and the internal features are described by
regional descriptors, that are used for recognize the internal features of a region of pixels such
as color, texture, appearance, etc. The most effective descriptors describe objects combining
two or more descriptors (GONZALEZ and WOODS, 2008). With the advances of
computational power, new descriptors have been proposed, reducing the processing time for
feature extraction. The identification process depends on the precision in the extraction of
invariant features. According to Gonzalez and Woods (2008), an effective descriptor has the

following characteristics:

1) Must be defined by a complete group of pixels

2) Be congruent

3) Must have invariant properties

4) Must have recognizable features regardless modifications in the images
5) Be compact

6) Having a set of exact features
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Object recognition

Object recognition is performed for identifying patterns. A pattern is an arrangement
of some descriptors. The pattern classes are a set of descriptors that have common properties.
Computer-aided identification includes techniques for organizing the patterns in classes

automatically.

A pattern is represented as a vector as follows:

where p is the pattern, each component d, represents the n-th descriptor and # is the total number
of descriptors associated with the pattern. Figure 5 illustrates the process for the recognition of

patterns in digital images.

Figure 5 — Recognition by patterns
Digital Image Image Processing Pattern Extraction Recognition
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Source — Created by the author

The nature of the pattern depends on the approach used to describe the physical
features. The following example described in Gonzalez and Woods (2008) is presented to

illustrate this concept.

Three types of flowers are presented: Iris Setosa, Iris Virginica, and Iris Versicolor.
The characteristics of the widths and the lengths of every flower were extracted using boundary

descriptors by the computational vision method. The pattern used to recognize the flowers is

constructed using two descriptors: the length and width of its petals, d; and d2, respectively:

p=1[6,06;] (2)
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The descriptors d1 and d» allow the identification of the Iris Setona from the other
types of flowers, as shown in the Figure 6. However, the Iris Virginica and Iris Versicolor
cannot be classified using only these two boundary descriptors. This identification would

require a regional descriptor that identify the color, texture or appearance of the petals.

Figure 6 — Types of flowers described by two descriptors
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3.2 Recognition and location of internal corners of planar checkerboard pattern

The recognition and location of a checkerboard pattern is an important task for the
calibration of the stereo camera method and the pinhole camera method. An effective proposal
was developed by WANG et al (2007) to recognize automatically the corners of a
checkerboard. This approach is based on the local intensity and the grid line architecture of the
corners. The process requires the assessment of the planar checkerboard pattern (see Figure 7)

in different locations and positions.
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Figure 7 — Planar checkerboard pattern

Source — Created by the author

One approach to process the checkerboard is to find the edges and fit lines. The corners
are detected as the intersection of the edges of the white and black squares. The disadvantage
of this method is that the edges are curved due to the radial distortion of the images. Bouguet
(2004) developed an interesting approach to find the corners. The method had an automatic
mechanism to count the number of squares in the checkerboard. Wang et. al (2007) proposed
that the detection of the corners could be done by the identification of the intersections of black
and white squares. Both methodologies are implemented in Matlab and are described in

Sections 3.2.1 and 3.2.2, respectively.

The first step in the procedure is to load several images of the checkerboard pattern.
The software automatically extract the internal corners from the images and match them all
using the pattern of the corners. Knowing the physical dimensions of each square of the
checkerboard, a correspondence between the 2-D points in the images and the dimensions of
the checkerboard is established. With this correspondence, the application calculates the
parameters of the stereo camera or the pinhole camera model by numerical procedures
(HARTLEY and ZISSERMAN, 2003, cap. 8). Figure 8 shows the detection of the checkerboard
in a digital image. The green dots are the detected comers of the checkerboard. The yellow dot

is the origin point of the corners arrangement of the checkerboard.
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Figure 8 — Checkerboard pattern detection by internal corners using the single camera calibration
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3.2.1 Procedure to recognize a checkerboard pattern using Matlab

The procedure of the recognition of the internal corners has the following steps:

1) Detect all the corners in the planar checkerboard by exploiting the corner detector
developed by Harris and Stephens (1988).

2) Recognize the corners at the intersections of black and white squares using the
intensity of the planar checkerboard (WANG et al., 2007, p. 5).

3) Recognize the corners at the intersections of two groups of grid lines based on the

grid architecture (WANG et al., 2007, p. 6).

3.2.2 Location of the internal corners of checkerboard pattern

The location of the internal corners of planar checkerboard is determined by the row
and column of the corners in the array, and the origin point of the reference frame attached to

the checkerboard. The process to localize the internal corners of the array has two steps:

1) Arrange the internal corners of the checkerboard

2) Determine the origin point of the reference checkerboard
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Figure 9 illustrates the detection of the corners of the checkerboard pattern with the

camera at an oblique angle.

Figure 9 — The arrangement of internal corners and the origin point
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Wang et al. (2007) verified the pattern identification and calibration algorithms
available at Matlab for a set of images of a checkerboard. The algorithms were applied to a set
of 20 images with resolution of 640x480 pixels, using a checkerboard pattern of 14x13 squares

that include 156 internal corners.

In Figure 10, the results and errors of the calibration are presented using the two
different methods: an interactive method proposed by Wang ef al. (2007) and image processing
toolbox in Matlab.

Figure 10 — Results and errors of calibration
Results and errors of calibration
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Source — Wang et al. (2007)

Figure 11 shows the time cost to process the 20 images by using these two different
methods. The checkerboard identification using the Matlab toolbox took little computational

cost compared to an interactive method.
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Figure 11 — Computational time cost

Time |5}

Interactive method Proposed approach
Time spent in extracting the comers of the 20 frames 106454 192.21
Total time 1572.06 233.38

Source — Wang et al. (2007)

3.3 Stereo vision method

Stereo vision systems have many applications. The most used is the information
extraction of the relative position of objects near of autonomous systems in space. Figure 12
shows the stages for the construction of a stereo system. Rectification is the initial process used

to project the stereo images into a plane parallel to a line between the optical centers of images.

Figure 12 — Stages of stereo system construction
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Stereo correspondence is the process of ascertaining which points in an image
corresponding to the points in the other image. There are two main classes of algorithms using

computational vision to find the correspondence between the stereo images.

e Correlation-based: establishes the correspondence by the intensity of the

images in certain regions.

e Feature-based: establishes the correspondence by matching a sparse set of

image features.

Triangulation and 3-D coordinates are the process of finding the 3D coordinates of the
points in a stereo scene. To solve this problem, it is necessary to know the parameters of the
stereo system. The transformation of a scene in 2-D plane to a 3-D plane is performed by the

camera matrices found during the calibration process.

3.3.1 Stereo geometry

The stereo vision consists of two images, one image is considered as a reference image
and the other one as an objective image. Therefore, each pixel of the reference image has its
corresponding in the target image (stereo correspondence). The distance (measured in pixels)
of a matching point between the reference image and the target image is known as disparity.
When all the matching points are found, the disparity map has been completed (MATTOCCIA,
2011).

Epipolar geometry is defined as the geometry of stereo vision when two cameras
observe a scene in different positions. There are a number of geometric relations between the
3-D points and their projections in 2-D images that lead to restrictions between the pixels of the
stereo images. With two images, it can be set the 3-D coordinates of a point in a scene if the
matching process is performed correctly. Figure 13 shows a scheme of the epipolar geometry
between the images of a stereo system. The points Q and P are in the same red line of sight of

the plane 7tr at the reference image. The epipolar constraints establish that the points Q and P

in the red line of sight corresponding to the points q and p in the green line of the plane 7t at

the target image.
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Figure 13 — Epipolar geometry
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Source — Mattoceia (2011)

When the search field for the matching points is known (by means of correspondence
methods), the search field can be reduced from 2-D to 1-D. The images can be set in a
convenient way (standard form, see Figure 14) and the matching points are constrained in the

same image scanline. Figure 15 shows the correct alignment of stereo images when taken to

standard form.

Figure 14 — Stereo system in standard form
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Figure 15 — Stereo images in standard form with cameras correctly aligned

Stereo pair in standard form

Source — Mattoccia (2011)
3.3.2 Map of disparity and depth
Figure 16 shows the variables for calculating disparity of a point between the two

views of a stereo image.

Figure 16 — Geometry of a stereo system
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With the stereo system in standard form, the similar triangles POrOr and Ppp’ are

considered and the depth z is calculated for all objects in the stereo image.

E = (b+X1)—XR (3)
z z—f

where:

b Baseline, horizontal distance between camera lenses (mm)

Perpendicular distance of the camera to the point of perception (mm)

N

Xr Side distance of object in perception in the reference image (mm)
Xt Side distance of object in perception in the target image (mm)

f Focal length of the stereo cameras (mm)

In this way, the depth z can be calculated:

__ _bxf
Z= P ()

where d = X — X7 is the disparity.

Figure 17 shows the relationship between both views of the stereo image and a same
point in the scene.

Figure 17 — Disparity and depth in stereo vision

Source — Mattoccia (2011)
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The disparity is the difference in pixels in the x-coordinate of the corresponding points
between the stereo images. This difference is the key to obtain the disparity map typically

encoded with grayscale images. Figure 18 shows the disparity map for a scene.

Figure 18 — Disparity map in stereo vision

Reference image Targetimage Disparity map

Source — Mattoccia (2011)

The disparity is greater for points near the camera as shown in Fig. 19.

Figure 19 — Baseline between camera lenses
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The stereo system has an operation field delimited by the parameters of the system.
The parameters that intervene in the operation field are the baseline (b), focal length (f) and
disparity values (dmin, dmax). Each matching point creates disparity value, each disparity value
creates a plane that represents the perpendicular distance of the matching point respect to the

stereo system. The operating distance of the stereo system is limited by a set of parallel planes,
as shown in Fig. 20.
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Figure 20 — Parallel planes with minimum and maximum distances of perception
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3.3.3 Calculating 3-D coordinates

The 3-D coordinates of all points in the disparity map are acquired through

triangulation calculations. The calculations of these coordinates are given by:

I_b*f

Z = = (5)
I __ ozl XR

X =2 *—f 6)
! 7l YR

Y =2 *_f (7

where X°, Y’, and Z’ are the coordinates of the points in the image respect to the stereo system.
Figure 21 shows the transformation of all points of a 2-D scene into a 3-D field from the

disparity map calculations.
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Figure 21 — 2-D space to 3-D space conversion
2-D space 3-D space

Source — Created by the author

3.4 Pinhole camera method

The parameters of the camera include intrinsic and extrinsic parameters, and distortion
coefficients. The parameters are presented in a 4x3 matrix called the camera matrix (P). This
matrix maps the 3-D scene in a two-dimensional plane. The extrinsic parameters of the camera
are represented by the local coordinates of the camera in the 3-D scene. These parameters are
rotation (R) and translation (#). The intrinsic parameters are represented by the focal center of

the camera and the focal length of the lens, represented by the matrix K (see equation 8).

P=[Rt]K (8)
wxyl]=[XYZ1]P ®)
where:
w Scale factor
ey i] Image points
[XYZ1] World points

The 3-D points of the scene are transformed to local coordinates of the visual system
using the extrinsic parameters. Then, the camera location is mapped by using the image plane

using the intrinsic parameters (as illustrated in Figure 22).
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Figure 22 — Camera location mapping
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3.4.1 Calibration parameters

The calibration algorithm implemented in Matlab uses the extrinsic and intrinsic
parameters and lens distortion to perform the calibration of a single camera (BOUGUET, 2004).
The calibration algorithm also calculates the camera matrix. The extrinsic factors perform the
transformation from the 3-D world coordinate system to the 3-D camera’s coordinate system.
Consequently, the intrinsic parameters represent a projective transformation from the 3-D

camera's coordinates into the 2-D image coordinates. This process is illustrated in Figure 23.

Figure 23 — Camera location mapping process
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Source — Mathworks (1994)

3.4.2 Extrinsic parameters

The extrinsic parameters consist of a rotation (R) and a translation (#). The origin of

‘the global 3-D coordinate system is the focal center (x, y) define by the checkerboard plane.
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Knowing the checkerboard plane, and the parameters of rotation and translation of the visual

system it is possible to know the location of the camera in the space.

Figure 24 — Extrinsic parameters of the camera

Source — Mathworks (1994)

3.4.3 Intrinsic parameters

The intrinsic parameters of the camera are the focal length, the optical center, and skew

coefficient. The matrix of the intrinsic parameters (K) is defined as:

f. 0 0
K=|S f © (10)
8 Ty 1
F
_F 11
Jx = (11)
f
= - 12
Iy =%, (12)
S =f, tan « (13)
where:

[cxcy]  Optical center (pixels)

[ty ] Focal length (pixels)
¥ Focal length in measurement system (mm)

[p«py]  Pixel size in measurement system (mm)

S Skew coefficient
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The skew coefficient is defined as illustrated in Figure 25, where Px and Py are the
pixel lengths in the x and y coordinates, respectively, and a is the pixel distortion angle between

the x and the y axis, and is often 0.

Figure 25 — Skew coefficient
oL

Source — Mathworks (1994)

3.4.4 Distortion in camera

The camera matrix (P) does not include optical lens distortion because a pinhole
camera does not have lenses. To perform a simple camera approach, the calibration model
developed by Bouguet (2004) includes the radial and tangential distortion of the lenses. The
objective is to increase the accuracy of calibration and reduce errors due to lens distortion.
Radial distortion occurs when light rays curl closer to the edges than they do from its optical

center of the lens. Figure 26 shows this type of distortion.

Figure 26 — Types of radial distortions of lenses
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The distorted points are defined as:
Xpis =x(L+ kg *12 + ky x1* + kg +7°) (14)

Ypis = V(1 + ky x72 + ky * 1% + kg x17°) (15)
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where:

X,y Location of the distorted pixels. x, y are normalized in coordinates of the
images.

ki, ko, ks Radial distortion coefficients

In the equations 14 and 15, the variable r is defined as:

r= yx?+y? (16)

Tangential distortion occurs when the lens and the plane of the image are not parallel.

Figure 27 illustrates this type of distortion.

Figure 27 — Tangential distortion of lenses
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Source — Mathworks (1994)

The tangential distortion points are defined as:

Xpis=x+[2%g xx*xy+q, % (r*+2*x2)] (L7
Yois =Y+ g1 * (2 +2xy*) +2x g xxxy] (18)
where:

X,y Location of undistorted pixels. x, y are normalized in coordinates of the images

q.,q9, Tangential distortion coefficients
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In the equations 23 and 24, the variable r is defined as:

r= 3ifx2 + y? (19)

3.5 Evaluation of visual systems

The best way to evaluate the accuracy of a visual system is to perform an efficiency
test which is a standard procedure. The test consists in measuring physically the coordinates of
the checkerboard pattern with respect to the visual system (stereo vision or pinhole camera
method) and then perform a comparison with the coordinates calculated using computational

vision. With the Matlab calibration application this test can be done.
The Matlab application follows the following procedure:

1) Several images taken with the visual systems (stereo vision/ pinhole camera model)
are inserted to the application of the toolbox of Matlab.

2) Detection of the checkerboard pattern in all the images.

3) Calculation and calibration of the parameters of the visual systems.

4) Calculation of the positioning coordinates of the visual system with respect to the

checkerboard pattern.

The test scheme is shown in Figure 28. In this figure, X, Y, and Z are the real
coordinates measured physically of the visual system respect to the checkerboard pattern, and

X', Y' and Z' are the coordinates calculated by the software.

Figure 28 — System coordinates applied in the efficiency evaluation

Source — ROVIRA-MAS, WANG and ZHANG (2008)
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There are many ways to compare the coordinates calculated by the software and the
real coordinates. Rovira-Més, Wang and Zhang (2008) indicates that the most efficient way is

to calculate error percentages at each coordinate as established in the following expressions:

sX=|%—1|*100 (20)
€ = |57 — 1] * 100 @1)
€7 =|=— 1] *100 (22)

Equations 20, 21 and 22 show the percentage errors in each coordinate. The values are
positive and provides precision information in one direction. The main objective is to determine
the accuracy of visual systems at different ranges of distance up to the checkerboard pattern.
The value n,p, denoted as planar efficiency, calculates the accuracy of the visual systems at the
coordinates X, and Z. The value 713p, denoted as stereo efficiency, calculates the accuracy of
the visual systems at the three coordinates (ROVIRA-MAS, WANG and ZHANG, 2008). Both

indices are provided in percentages and are calculated as follows:
Nop = (1 —0.01%xEy) x (1 —0.01%EZ) =100 (23)

Nap = (1 —0.01 xE) x (1 —0.0Lx &) * (1 —0.01xE;) =100 (24)

3.6 Evaluation of auto-guidance system

Once determining which visual system is the most accurate to accomplish our research
objectives. The system was installed on the tractor, and using computational vision the position
of the vehicle in the field was mapped taking as reference the checkerboard pattern fixed in the
field. Multiple images were processed to validate the vehicle's position. For each frame, a vector
with the 3-D coordinates relative to the tractor’s location with respect to the reference
checkerboard pattern was calculated. This vector was denoted as location vector Vi (X1, Y1, Z1).
The vectors obtained from the digital frames were mathematically compared with their previous
frames to calculate the motion of the vehicle at each coordinate. The Canon Rebel TS5 camera

is capable of acquiring 30 frames per second with a resolution of 1920x1088 pixels. As a result,
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the method offered 30 tractor’s location data per second. Translations in the coordinates at the

n-th frame were presented by the vector T (7%, T3, T%):

Ten = X — XL(n—l) (25)
Tyn = YLn - YL(n—l) (26)
Ton =Zin— ZL(n—l) (27)

The absolute tractor’s position was computed by taking the absolute coordinate as the
location of the vehicle with respect to the checkerboard pattern. The local coordinate (0, 0, 0)
of the visual system was located at the position of the checkerboard in the field. The coordinates
of the position calculated using computational vision and requested to the GPS-RTK were
transferred to UTM (Universal Transverse Mercator) coordinates in order to evaluate the auto-
guidance system. The UTM uses a two-dimensional Cartesian coordinate system to furnish the
positions on the surface of the earth. This coordinate system proves to be favorable to the
methodology since the coordinates of the vehicle position are given by an own 3-D coordinate

system when using the Image Processing Toolbox in Matlab.

The coordinates of the points A/B of the programmed line in the auto-guidance system
were given in geographic coordinates. Then, the coordinates of the points A/B were transformed
to UTM coordinates and the equation of the programmed line was calculated as a line on a
Cartesian plane. According to the manufacturer, the geographic coordinates of points A/B

provided by the auto-guidance system have a precision of 25 mm in UTM coordinates.

The data locations acquired by the visual system were translated to UTM coordinates

using the following rotation and translation operators:

[cose —sina] [Xn] _[_[TXn]

X Y = i [Ox 28
Xyt Yyrm) = Xn=1 sinB  cosB |7, T (28)

oy.

where:

Xyrm, Yyrm Tractor location in UTM coordinates, relative to longitude and latitude

coordinates respectively

N Total numbers of frames
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0 The rotation angle 2-D
[Ty T & The translation in X and Z coordinates at each frame
[ox oy ]T The location of the checkerboard in the field measured in UTM coordinates

(was set as the location of point A of the programme.d AB line obtained by
the auto-guidance system)

X, Z.TF The position coordinate of the n-th frame relative to the initial frame

Figure 29 illustrates the comparison between the GPS coordinate and the Camera

coordinate for sake of comparison.

Figure 29 — Comparison and contrasting of location data of both systems
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Source — Chon et al. (2011)

The auto-guidance system error is defined as the lateral distance of the vehicle's
location with respect to the line programmed by the auto-guidance system. The auto-guidance
system error was obtained calculating the distance between the tractor coordinates and the
programmed line AB using the following equation:

_ 1A XyTMm)TB*YuTMn) TCI

e 29
n VAZ+B? 29)
where:

<Py Auto-guidance error calculated in the n-th frame

A B,C Coefficients of the equation of the programmed line AB.

Ax+By+C=0

(Xyrmeny Yurmeny) Location coordinates of the tractor at n-th frame
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The average errors of the auto-guidance system were calculated at every operation
speed to determine the precision of the auto-guidance system to the specific soil conditions of
the field tests. In addition, the maximum amplitude of location of the tractor with respect to the

programmed line AB was also calculated.
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4 DESCRIPTION OF EXPERIMENTS

In this section, the experimental campaign is detailed. Firstly, the modeling of the visual
systems are described. This description includes the modeling of both methods: the stereo vision
and the pinhole camera. Secondly, the strategy for mapping the vehicle location in the field is
explained. Thirdly, the vehicle’s specifications are given for sake of completeness. Finally, the

test and validation procedures are fully explained.

4.1 Modeling of the visual systems

4.1.1 Stereo vision method modeling

In this research, the stereo camera (also called stereo system) is built using two Canon
Rebel T5 cameras with 50 mm focal lenses. The cameras are horizontally aligned to create a
stereo image based by two views of a scene captured by the cameras. The parameters of the

stereo system are described in Table 1.

Table 1 — Stereo system specifications

Cameras Canon Rebel T5

Maximum baseline 955 mm

Minimal baseline 130 mm

Focal length 50 mm

Camera sensor CMOS APS-C, 22.3 mm x 14.9 mm
Image resolution 5184 x 3456 pixels

Horizontal view angle | 26°

Vertical view angle 17°

Image processing rate 30 frames/s

Source — Created by the author

The stereo camera calibration algorithm available in Matlab is used to calculate the
parameters of the stereo system. In addition, the algorithm calculates the 3-D position of the
stereo camera relative to the position of a checkerboard pattern. A large set of stereo images

was used to calibrate the stereo system parameters and to calculate its position with respect to
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the checkerboard in any stereo pair. Figure 30 shows the stereo images taken at different

distances from the checkerboard to perform the calibration of the stereo system in this research.
Figure 30 — Examples of stereo pairs loaded into the stereo camera calibration application (Matlab).

A) 5 meters B) 10 meters C) 15 meters

Source — Created by the author

In this research, a maximum allowed error of 50 mm of the stereo system was defined.

The error of the location in the stereo camera method is defined as:
ZZ
&v = () Amin (30)

where:

€sy  average location error (mm)
perpendicular distance to the perception point (checkerboard pattern, mm)
focal length (pixels)

Baseline (mm)

ST

min DMinimum disparity value (pixels, usually dpin = 1)
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Using the stereo camera calibration application of Matlab, the focal length of the
Canon Rebel TS5 camera with the 50 mm focal lens was 13235.88 pixels. The stereo system
error is directly related to the perpendicular distance to the checkerboard pattern. Figures 31,
32,33, and 34 depicts the average error vs. baseline at different distances. This determine which
baseline is appropriate to calculate the location of the vehicle respect to the checkerboard
pattern with a maximum error of 50 mm.

Figure 31 — Accuracy error vs baseline at 10 meters
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At 10 meters, for all the values of baseline allowed by the stereo system (between 130
and 955 mm) the system error remains under 50 mm. However, 10 meters is a short distance

for testing the auto-guidance system.

Figure 32 — Accuracy error vs baseline at 15 meters
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At 15 meters, the stereo system error remains below 50 mm for baseline values between
350 and 955 mm. However, 15 meters remains being a short distance for testing the auto-

guidance system.

Figure 33 — Accuracy error vs baseline at 20 meters
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At 20 meters, the stereo system error remains below 50 mm for baseline values between

620 and 955 mm.

Figure 34 — Accuracy error vs baseline at 25 meters
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At 25 meters, the stereo system error exceeds 50 mm for all the values of baseline
allowed by the specifications of the system. However, a baseline of 950 mm allows the stereo

system to have a 50 mm error (as shown in Figure 27).
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Based on the theoretical calculations, the conclusion is that the stereo systems have a
field of operation with high precision until 25 meters, after that, the system error exceeds the
maximum permit in this research (50 mm). It is a fact that the stereo system error grows as the
distance of perception increases. As a consequence, in order to increase the field of perception,
a baseline of 950 mm was used with lenses of 50 mm. These choices resulted in a field of

perception of 25 meters with a theoretical maximum error of 50 mm.

4.1.2 Pinhole camera method modeling

In this research, the single camera calibration available in Matlab was used to calibrate
the parameters of the camera Canon Rebel T5 with 18mm focal lens. This calibration technique
was proposed by Bouguet (2004) and includes the camera pinhole model and lens distortion. In
addition, this application calculates the camera’s position with respect to the checkerboard

pattern. Figure 35 illustrates the pinhole camera model.

Figure 35 — Pinhole camera model
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Source — Mathworks (1994)



44

The details of the camera pinhole method are in Table 2.

Table 2 — Camera pinhole method specifications

Camera Canon Rebel T5

Focal length 18 mm

Camera sensor CMOS APS-C, 22.3 mm x 14.9 mm
Image resolution 1920 x 1088 pixels

Horizontal view angle | 64°
Vertical view angle 45°

Image processing rate 30 frames/s

Source — Created by the author

In the procedure, a set of images of the checkerboard in different positions and
distances were uploaded to the software (as depicted in Figure 37). These images were used in
the pattern detection algorithm, and then, to calculate the parameters of the camera. Once the
parameters were assessed, it was possible calculate the position of the camera with respect to

the checkerboard in any image.

Several images in the different positions of an arrangement of 40 x 40 centimeters
(shown in Figure 36) were taken at distances of 5, 10, 15, 20, 25, 30, 35, and 40 meters respect
to the checkerboard (shown in Figure 37), the objective was to assess the accuracy of the method

at different distances. The corners are located at 100 mm from each other in the arrangement.

Figure 36 — Arrangement positioning for accuracy test

Source — Created by the author
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Figure 37 — Set of images for the accuracy test (Camera pinhole method).
A) 5 meters B) 10 meters C) 15 meters D) 20 meters E) 25 meters F) 30 meters

B)

E)

Source — Created by the author

An image of the checkerboard pattern was taken at each corner at different distances.
This set of images was used to perform the calibration in Matlab and calculate the parameters
of the camera. Then, the location of each image was calculated using the pinhole camera method

and evaluate the accuracy of the method using the equations 23 and 24.

4.2 Mapping of the vehicle location in the field

The evaluation of auto-guidance systems requires a method for measuring the system’s
accuracy. Moreover, this method should be easy to use and reliable in any terrain situations.
The relative position of the tractor with respect to the checkerboard installed in the field along
a test track can be measured installing a visual system in the vehicle. This measurement was
performed during the motion of the agricultural vehicle in auto-guidance mode. During this
motion, several images of the checkerboard were acquired using a visual system installed on
the back of the vehicle, as illustrated in Figs. 38 and 39. After performing the field tests, the
image frames were loaded in Matlab and the data was treated using the Image Processing
Toolbox. These images were used for calibrating the parameters of the visual system and
assessing the location of the vehicle with respect to the checkerboard pattern. The camera video
provides a high acquisition of images per second, reaching 30 frames per second with a

resolution of 1920x1088 pixels.
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Figure 38 — Single camera mounted on the test tractor
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Source — created by the author

Figure 39 — Single camera mounted on the rear of the tractor
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Source — Created By the author
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4.3 Specifications of the tractor and auto-guidance system tested

Details of the vehicle and the auto-guidance system under study are given in Table 3.

Table 3 — Auto-guidance system specifications

Weight 8250 kg
Tractor power 159 hp
Nominal motor rotation 2200 rpm
Direction system Hydrostatics
Dimensions (Length, Ext. Width, Height) | 5365 mm, 2574 mm, 3210 mm
GPS Receiver AGI-3
Satellite navigation system GLONASS
GPS correction source RTK
Inertial correction source IMU system
RTK protocol CMR
Antenna type External
GPS output maximum rate 5Hz
Geographic coordinate system WGS84
Precision 25 mm

Source — Created by the author

4.4 The test procedure

The test procedure was carried out using a typical field operation. Firstly, the operator
of the vehicle programmed an operation path (defined as a straight line AB). This path was
programmed setting the points A/B using the auto-guidance system. Subsequently, the auto-
guidance system replied this path repeatedly using the autonomous control system. The test
path consisted of a 25-meter long straight line. During the tests, the maximum distance between
the GPS RTK receiver in the tractor and the RTK base in the field was 100 meters. The error
of the auto-guidance system was defined as the lateral difference between the programmed path
and the real path performed by the vehicle in the auto-guidance mode. Figure 40 shows the test

scheme used in this research.
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Figure 40 — Desired programmed path and error of auto-guidance system
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Source — Created by the author

An appropriate test location should be a realistic terrain regarding the field conditions.
In the test, the track was initially worked in order to perform a surface decompression, with the
purpose that the wheels of the vehicle had a better adhesion. The terrain test track was located
in the National Reference Laboratory for Precision Agriculture (LANAPRE, Embrapa

Instrumentation) and is depicted in Fig. 41.
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Figure 41 — The checkerboard pattern on the field at LANAPRE — Embrapa Instrumentation Sdo
Carlos

Source — Created by the author

For the test, the visual system was rigidly mounted at the rear of the vehicle chassis
with the optical lens pointing towards the planar checkerboard pattern at the back of the vehicle.
The accuracy of the auto-guidance system at real conditions were assessed at several usual
speeds of operations. The vehicle was driven by the auto-guidance system in the track three
times at each speed, although more tests could be performed, three tests were sufficient to
determine an accurate estimate of the auto-guidance system evaluation. Table 4 describes the

test conditions.

Table 4 — Field test specifications

Speed Number
Tractor gear RPM
m/s km/h of Tests
1,1 = 9 1500 3
1,25 4,5 9 1650 3
1,39 3 10 1550 3
1.53 55 10 1650 3

Source — Created by the author

All the frames were processed and the relative location of the tractor with respect to
the reference checkerboard were measured. For each frame, the displacement of the vehicle was
mapped and the error of the auto-guidance system was calculated using the mathematical

calculations presented in the section 3.6.
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4.5 Validation of the proposed methodology

This validation test aims to measure the accuracy of the auto-guidance system in a
controlled environment where the surface conditions minimally affect the accuracy of the
system. The second objective of this test is to validate the methodology proposed in this
research by making a comparison with a standard methodology proposed by Easterly et al.
(2010).

Easterly et al. (2010) proposed the use of a camera vertically located at the rear of the
vehicle to capture the position of a straight line placed in the center of the drawbar hitch pinpoint
when the tractor was moving in auto-guidance mode. With this method, it was possible to
measure the deviation of the tractor’s actual travel path from its desired path. The same strategy
was performed in LANAPRE using a video. A rope was carefully stretched on a paved surface

at a distance of 50 meters. The position of the camera and the rope are shown in Fig. 42.

Figure 42 — Camera vertically located at the rear of the tractor (validation test)

Source — Created by the author

Each frame of the video was processed using a segmentation method to identify the
rope in each image. Then, the rope position was identified calculating the center of mass of the

binary image, as depicted in Fig. 43.



51

Source — Created by the author

The video acquires 30 frames per second. Since the lateral locations of the vehicle are
given in millimeters, a calibration was required in order to assess the equivalence of a pixel to
millimeters. To do this, an image of a checkerboard on the paved surface with the camera
vertically positioned was taken (as depicted in Fig. 44). The distance between each corner of
the checkerboard pattern was 29 mm and the number of pixels between each vertex was 56. In
this way, each pixel was equivalent to 0.52 millimeters approximately. The size of the frames

taken by the camera was 1920x1088 pixels.

Figure 44 — Checkerboard pattern using to calibrate the vertical located camera

Source — Created by the author

A line was precisely programmed with the auto-guidance system setting the points
A/B at two points along the rope. Subsequently, tests were performed with the auto-guidance
system at speeds of 4.0 km/h, 4.5 km/h, 5.0 km/h, and 5.5 km/h comparing the methodology

developed in this work with this validation methodology. During the tests, the maximum
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distance between the GPS RTK receiver in the tractor and the RTK base in the field was 100

meters.
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5 RESULTS AND DISCUSSION

In this section, the results are presented and discussed. Firstly, a comparison between
the stereo vision and the pinhole camera methods is performed. From this comparison, one can
conclude that the stereo vision may not be fully adequate for this application. Therefore, the
mapping of the vehicle’s location in field operation is done by using the pinhole camera method.
Finally, the validation of this proposed strategy is done by comparing it with a well-established
methodology.

5.1 Accuracy evaluation Stereo Vision Method - Camera Pinhole Method
5.1.1 Stereo vision method

Several images were taken to detect the checkerboard and calculate its 3-D coordinates
respect to the stereo system at distances between 5 and 10 meters. Figure 45 shows the results
of this test, the planes of different colors represent the location of the stereo system respect to

the checkerboard pattern.

Figure 45 — Accuracy tests with stereo vision method until 10 meters
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The test evidenced the lack of accuracy of the stereo system developed in this research.
By performing multiple field tests with the stereo vision system, it was concluded that the
method was not appropriated for the objectives of this research. Although stereo systems are

efficient in machine vision applications, the available resources for this research are not suitable
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to build a precise stereo system. Firstly, the used optical lenses have a narrow viewing angle.
For precision applications in machine vision, lenses with wide viewing angle are usually used.
A wide viewing angle certifies a higher quality disparity map. Second, the correspondence
process of stereo images is a complicated task. The improper image matching affects the

accuracy of the method.

5.1.2 Pinhole camera method

The errors and the accuracy of the method were calculated up to a distance of 25 meters

using the Eq. 23 and 24. The results of accuracy of the method are shown at Table 5.

Table 5 — Accuracy of pinhole camera method at different distances

) Average error Accuracy
Distance (m)
X (mm) Y (mm) Z (mm) Planar (%) Stereo (%)
5 4,20 2,43 1,23 94,58 9231
10 3,35 1,95 0,52 96,14 94,27
15 2,29 19,04 0,37 97.33 78,88
20 14,29 6,85 0,10 85,63 79.87
25 24,02 20,35 0,13 75,88 61,47

Source — Created by the author

For distances exceeding 25 meters, the average error exceeds the 50 mm.
Consequently, the field of operation with high accuracy of the pinhole camera method was 25
meters. Figure 46 shows the location mapping of the visual system in all the images taken to

perform the visual accuracy test up until 25 meters.

As shown in this analysis, the accuracy error increased proportionally as the distance
from the vision systems to the checkerboard pattern. With the accuracy calculations of the
pinhole camera method, it was concluded that the method is effective to map the position of the
tractor in the field. The method obtains a maximum error of 24 mm until 25 meters. Therefore,
this method was selected to perform the tests development of this research, installing the visual

system in the vehicle.
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Figure 46 — Location mapping of calibration images for the pinhole camera method until 25 meters

Y (mm)

0
U

Source — Created by the author

5.2 Mapping of the vehicle’s location in field conditions
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As mentioned previously, three tests were performed at each speed of operation using

the visual system installed in the vehicle. Table 6 shows the number of frames processed in

each test by the pinhole camera method. These frames were used to obtain the location of the

vehicle in the test field and calculate the auto-guidance system error. The frames captured in

the first 5 meters were rejected since the vehicle was not stabilized in the auto-guidance mode

during this distance interval. Figure 47 shows the detection of the checkerboard in the test field

and its position (0, 0, 0) in the local coordinate system.

Table 6 — Number of frames processed at each operating speed

Speed of operation (km/h) | Number of frames
4.0 1223
4.5 1179
5.0 1099
5.5 905

Source — Created by the author
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Figure 47 — Planar checkerboard pattern detection in field test
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Figures 48, 49, 50 and 5 show the tractor location mapping during field tests at speeds
of 4.0 km/h, 4.5 km/h, 5.0 km/h and 5.5 km/h respectively. The location of the vehicle was
mapped to each vide frame, and then the vehicle's trajectory was constructed by sequentially

ordering all video frames. At all operating speeds, the vehicle moves oscillating using the

programmed line AB.

Figure 48 — Mapping of tractor trajectory in auto-guidance mode at 4.0 km/h
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Figure 49 — Mapping of tractor trajectory in auto-guidance mode at 4.5 km/h
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Figure 50 — Mapping of tractor trajectory in auto-guidance mode at 5.0 km/h
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Figure 51 — Mapping of tractor trajectory in auto-guidance mode at 5.5 km/h
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Figures 52, 53, 54, and 55 show the auto-guidance system errors (using Eq. 29) along
the path until 25 meters at different operating speeds. In the graphs, it is possible to observe
that the tractor made an oscillating movement through the programmed line. As the tractor
increased the operating speed the wavelength increased also, which means that the auto-
guidance system had greater difficulties to follow the programmed line AB at greater operating
speeds. This behavior corroborates with the results reported by Easterly et al. (2010) and
Harbuck et al. (2006).

Figure 52 — Auto-guidance system error at 4.0 km/h
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At 4.0 km/h, the tractor movement oscillated through the programmed line with a half
wavelength of 5.0 meters. At the end of the path, the vehicle stabilized in the programmed path.
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Figure 53 — Auto-guidance system error at 4.5 km/h
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At 4.5 km / h, the tractor kept the oscillatory movement through the programmed line

with a half wavelength of 8.5 meters and soft wave peaks in the correction of the auto-guidance

system.
Figure 54 — Auto-guidance system error at 5.0 km/h
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At 5.0 km / h, the tractor kept the oscillatory movement through the programmed line
with a half wavelength of 9.0 meters and soft wave peaks in the correction of the auto-guidance

system.

At 5.5 km / h, the tractor kept the oscillatory movement through the programmed line
with a half wavelength of 8.0 meters but with greater and pronounced wave peaks in the

correction of the auto-guidance system.
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Figure 55 — Auto-guidance system error at 5.5 km/h
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There is a 5% of frames seriously affected by the vibration of the vehicle, generating
lack of quality and a wrong calculation of the vehicle localization, therefore, this percentage of
frames was discarded. Table 7 summarizes the auto-guidance system errors at different
operating speeds. The table shows the auto-guidance system errors for the specific field
conditions on the field at LANAPRE — Embrapa Instrumentation S&o Carlos. The standard
deviation and the maximum error were also calculated. The maximum error is defined as the

maximum error calculated by 95% of the frames processed.

Table 7 — Auto-guidance system errors

Speed of operation | Average error | Standard deviation | Maximum error
(km/h) (mm) (mm) (mm)
4.0 332 214 653
4.5 349 206 727
5.0 447 271 886
5.5 462 256 942

Source — Created by the author

Table 7 shows that the auto-guidance system accuracy decreases at higher operating
velocities. This behavior is in accordance to the literature. Neverthless, the accuracy of the
system is also affected by the conditions and characteristics of the test terrain at LANAPRE —
Embrapa Instrumentation S&o Carlos. For this reason, it is necessary to test the auto-guidance

system on a paved surface where the soil conditions do not affect the accuracy of the system.
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5.3 Validation of the proposed methodology

This section presents the results of comparison between the method developed in this
research and the methodology developed by Easterly ef al. (2010) on a paved surface. Table 8
shows the number of frames processed at each test using the validation methodology in the

different speeds of operation.

Table 8 — Number of frames processed using the validation methodology

Speed of operation (km/h) | Number of frames
4.0 1820
4.5 1674
5.0 1455
33 1376

Source — Created by the author

In the evaluation methodology, a percentage of frames are also discarded because are
affected by the vibration of the vehicle, which generate erratic calculations of the vehicle
location. Those discarded frames reach a percentage of 5% of the total frames in each test. Table

9 shows the auto-guidance system errors using the validation methodology proposed by

Easterly et al. (2010).

Table 9 — Auto-guidance system errors using the validation methodology

Speed of operation Average error Standard deviation Maximum error
(km/h) (mm) (mm) (mm)
4.0 74| 39 128
4.5 v 48 163
5.0 75 53 177
§.5 64 40 148

As expected, the auto-guidance system error increased as the operating speed of the

vehicle increased. However, with values lower than obtained on the ground surface since it is

Source — Created by the author

possible to minimize the errors caused by the conditions of the terrain.
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Using the same trajectory, the computational vision using the pinhole camera method
was tested to calculate the errors of the auto-guidance system on the paved surface. The pinhole
camera method was only tested at a distance of 25 meters towards the checkerboard pattern.

The results obtained by the pinhole camera method are shown in Table 10.

Table 10 — Auto-guidance system errors using the pinhole camera method on flat surface

Speed of operation Average error | Standard deviation | Maximum error
(km/h) (mm) (mm) (mm)
4.0 74 41 159
4.5 85 47 182
5.0 94 53 197
5.5 84 43 160

Source — Created by the author

The error values calculated by the pinhole camera method were slightly higher than
obtained by the validation methodology developed by Easterly ez al. (2010). The comparison
between the validation methodology and the pinhole camera method developed in this research

is shown in the Table 11.

Table 11 — Auto-guidance system errors using validation methodology vs pinhole camera method

. Error by validation Error by pinhole
Speed of operation
methodology camera method
(km/h)
(mm) (mm)

4.0 1 74

4.5 73 85

5.0 75 94

3.5 64 84

Source — Created by the author

It can be noted that the average errors values by both methodologies had a constant
growth as the operating speed increased. The results shown in table 11 prove that the auto-
guidance system complies with the manufacturer's specifications, which specifies that the

system error is under 100 mm. The graphs in Figures 56, 57, 58, and 59 show the cumulative
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errors distribution for both methodologies at operating speeds of 4.0 km/h, 4.5 km/h, 5.0 km/h,
and 5.5 km/h respectively.

Figure 56 — Auto-guidance system errors, validation method vs pinhole camera method (4.0 km/h)
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Figure 57 — Auto-guidance system errors, validation method vs pinhole camera method (4.5 km/h)
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Figure 58 — Auto-guidance system errors, validation method vs pinhole camera method (5.0 km/h)
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Figure 59 — Auto-guidance system errors, validation method vs pinhole camera method (5.5 km/h)
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For both methodologies, the auto-guidance system error values presented a constant
distribution. In these results, it can be observed that the results extracted by using the
methodology developed in this work had a significant correlation with the results obtained by
using the validation methodology. With the exception of the test performed at 4 km/h, the
validation methodology presents results slightly higher than the results obtained by the

methodology developed in this research. However, both methodologies do not differ more than
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20 mm in their results. This indicates that the accuracy of the proposed methodology in this

research can reach 24 mm, as was shown in Section 5.1.2.



[E3
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6 CONCLUSIONS

The use of computer vision method can be an alternative to evaluate the accuracy of
the auto-guidance system under real field conditions. However, the selection of the appropriate

instrumentation parameters to achieve high accuracy is an important challenge.

The stereo vision method is widely used in the mapping of trajectory of a vehicle at
outdoor environment. However, in this research, the method reached low levels of accuracy due
the design constraints. The precision of the stereo vision method is affected by the complexity
of the construction using two single cameras. Another factor that influences the accuracy of the
stereo vision method is the complex process of defining its parameters as the focal lens of

cameras, the baseline and the alignment between cameras.

The computational vision using the pinhole camera method proved to be highly
accurate being capable of calculating the tractor location at millimeter accuracy level. This
method made possible the accuracy evaluation of the auto-guidance system implemented in the
tractor under real field conditions. An important point to consider is that 5% of the frames
processed have low quality because they are affected by the vibration of the vehicle caused by
the dynamics of the vehicle in the field, those frames are rejected to improve the accuracy of
the visual system. The approach developed in this research reaches an accuracy of 24 mm until

25 meters to the checkerboard, for smaller distances the accuracy increases considerably.

The average errors of the auto-guidance system in the field tests were 332 mm, 349
mm, 447 mm, and 462 mm at speeds 0f 4.0 km/h, 4.5 km/h, 5.0 km/h, and 5.5 km/h respectively.
The maximum auto-guidance system error is defined in this research as the maximum error
perceived by 95% of the errors calculated by the pinhole camera method. Therefore, the
maximum errors of the auto-guidance system were 653 mm, 727 mm, 886 mm, and 942 mm at
speeds of 4.0 km/h, 4.5 km/h, 5.0 km/h, and 5.5 kmv/h respectively. It is highlighted that these
errors were the auto-guidance system errors for the specific terrain condition in the field tests

developed in this research.

The methodology proposed in this research was validated by the methodology
developed by Easterly ef al. (2010). The results were satisfactory, obtaining a remarkable
correspondence in the data obtained by both methods in all tests performed. With the validation
test, it was concluded that the proposed methodology is highly accurate and reliable to evaluate

auto-guidance systems under real field conditions.
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With the tests carried out on the paved surface it was possible to prove that the auto-
guidance system is highly accurate, the error of the auto-guidance system complies with the
specifications given by the manufacturer (under 100 mm). The auto-guidance system error rates
are considerably low, considering the tractor and the auto-guidance system implemented

reliable for automated agricultural operations.

6.1 Future perspectives

The developed approach can be applicable to real field conditions being robust to
errors due to geographic positioning GPS errors, low data acquisition rate, vehicle dynamics
and field environment (slopes, soil condition, etc.). Despite having these advantages, the
approach also has certain restrictions. The main restriction is the short test field that reaches
only 25 meters. That distance was selected since the frames taken after 25 meters respect to the
checkerboard pattern were distorted due to the vibration of the tractor. In addition, 5% of the
processed frames have low quality since they are affected by the vibration of the vehicle caused
by the dynamics of the vehicle in the field. A possible solution for both problems is the use of
optical lens of wide focal length and an image stabilizer. This solution may improve the method
by increasing the test distance and by improving the precision of calibration of the camera

parameters.
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