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RESUMO

CASTRO, R. C. Avaliação da precisão de um sistema de condução autónoma baseada em

GPS em um veículo agrícola por métodos de visão computacional. 2017. 74 f. Tese
(Mestrado) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,

2016.

Avanços tecnológicos foram alcançados com sucesso na agricultura de precisão utilizando

sistemas de condução autónoma em veículos agrícolas. Entre esses avanços, destaca-se o

aumento da eficiência e da produtividade nas operações de campo. Alguns sistemas de

condução autónoma são implementados usando o sistema GPS RTK, que permite operações

com precisão centrimétrica. No entanto, os erros de posicionamento geográfico, a dinâmica do

veículo, os implementos agrícolas e ambiente de campo (encostas, condições do solo, etc.)

podem influenciar o desempenho dos veículos agrícolas autónomos. Desta forma, a avaliação

dos sistemas de condução autónoma toma-se essencial para a obtenção de altos níveis precisão.

Esta avaliação pode ser realizada medindo os deslocamentos usando sensores instalados no

veículo, tais como: câmeras, lasers, odômetro, sensores ultrassônicos, entre outros. Entre as

opções, o método de visão computacional permite a localização de qualquer sistema no espaço,

tomando-se uma alternativa técnica para esta avaliação. Desta forma, o objetívo desta pesquisa

é propor um método para a avaliação da precisão dos sistemas de auto-orientação em condições

reais de operação usando métodos de visão computacional. O veículo em estudo é um trator

equipado com um sistema de auto-orientação o qual é integrado por uma unidade GPS RTK e

por uma unidade de medição inercial (IMU). A instrumentação utilizada no desenvolvimento

do sistema de visão computacional consiste em duas câmeras Canon Rebel T5 com lente focal

de 50 e 18 milímetros, respectivamente. Foi utilizado o método de câmera pinhole para mapear

a localização do veículo no campo usando técnicas de visão computacional. No estudo foram

realizados múltiplos testes de campo, provando assim que o uso do método de visão

computacional é preciso para avaliar sistemas de auto-orientação se dispositivos,

procedimentos e parâmetros forem selecíonados corretamente.

Palavras-chave: Visão computacional. Processamento de imagem. Navegação GPS RTK.

Veículos inteligentes. Agricultura de precisão.





ABSTRACT

CASTRO, R. C. Precision Evaluation of a GPS based auto-guidance system in an

agriculturalvehiclebycomputatíonalvisionmethods. 2017. 74p. MSc. Thesis, São Carlos

School of Engineering -University of São Paulo, São Carlos, 2017.

Technologícal advances have been successfully achieved Ín precision agriculture usíng auío-

guidance systems in agricultural vehicles. Among these advances, the increase of effíciency

and the productivíty in field operations can be highlighted. Some auto-guidance driving systems

are implemented usmg the GPS RTK system, which allows operations to centimeter accuracy.

However, the geographic positioning errors, the vehicle dynamics, the agricultural devices and

the field environment (slopes, soil condition, etc.) may mfluence the performance ofGPS based

autonomous agricultural vehicles. In this way, the evaluatíon of the auto-guidance driving

systems becomes essential to the achievement ofhigh precision leveis in field operations. This

evaluation can be performed by measuring the displacements using precise sensors installed in

the vehicle, such as: cameras, lasers, odometer, and ultrasonic sensors, among others. Among

the local sensing optíons, it is well-know that computational vision methods allow the location

ofany system in the space, becoming it a technical altemative for this evaluation. In this way,

the objective of this research is to propose a methodology to assess the accuracy of auto-

guidance systems under real field conditions.by means ofcomputer vision methods. The vehicle

under study is a tractor equipped with an auto-guidance system, which is composed of a GPS

RTK unit and an inertial measurement unit (IMU). The instrumentation consisted oftwo Canon

Rebel T5 cameras with focal lens of 50 and 18 millímeters respectively. The pinhole camera

method was used to map vehicle location in the fíeld using computational vision techniques. In

the study, multiple field tests were performed, proving that the use of íhe computer vision

method is accurate to evaluate auto-guidance systems if devices, procedures, and parameters

are properly selected.

Keywords: Computational vision. Image processing. RTK GPS Navigation. Smart vehicles.

Precísion agriculture.
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l Ü^TRODUCTION

The emergence ofprecision agriculture (PA) hás bringing technological advances in

the modemization ofproduction practices by means ofthe use of sensors, actuators, and control

techniques. PA techniques have been explored since the 80's. At that time, the first map of

productívíty was elaborated in Europe using sensors and data acquisition techniques, and the

first fertilizer with varied doses was used in the field using control techniques in the USA

(MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO, 2009). The true

advances in PA were achieved with the exploitation of Global PosÍtionÍng System (GPS)

satellite signals. In fact, the ínstallation of receivers into harvesters enable the síorage of

Ínstantaneous production data. The first Global Navigation Satellite System (GNSS) was

proposed in the USA in 1978 and the system became commercíally available m the 90's.

In Brazil, the use ofPA began in 1995 when agricultural machinery equipped with

productivity monitors were imported. Researches on PA were launched in 1996 during the first

Symposium on PA held at ESALQ-USP (BALASTREIRE, 2000). In 1999, the program

Moderfrota promoted the introduction ofmodem technologíes m agricultural machinery. Since

then, the Brazílian agriculture hás had enormous benefits in the área ofsustainability and quality

by means of PA.

There are multiple techniques ofcomputer vision that can be applied in the agricultural

field, which hás encouraged the development ofseveral utilities m PA. In fact, image processing

Ín PA hás become essential. Among the main applications of image processing in PA, the

following ones can be mentioned:'•&

l. Remote sensing systems: is the most used application in PA. Aerial images ofcrops

taken by drenes may provide important infonnation about the field. By

implementing the appropriate image processing techj-úques, relevant information of

productivity can be extracted. ThÍs techaique can be also exploited to generate crop

maps aiding Íts management.

2. Diagnosis of planting lines: leaf pigmentation in plants may reveal important

information. In fact, the chlorophyll Ís a strong radiation absorber in visible spectra

(400 to 700 nm), and, plants are highly reflective near infrared (700 to 1300 nm)

(BRANDÃO et al., 2008). Using image processing techniques, the health

conditions ofplants can be assumed by monitoring the color oftheir leaves.



3. Vegetation indexes: with crop images and image processing techniques, dífferent

índices can be designed to determine the green patch of a land aad analyze the

vegetation properties. Among them, NDVI (Normalized Difference Vegetation

Index), SVI (Simple Vegetation Index) and EVI (Enhanced Vegetation Index) are

commonly used for the vegetation classification. A variety of indexes have also

been proposed for analyzing soil parameters, among them, it can be mentioned:

SAVI (Soil-Adjusted Vegetation Index), GSAVI (Green Sou Adjusted Vegetation

Index), OSAVI (Optimized Soil-Adjusted Vegetation Index), and GOSAVI (Green

Optimized Sou Adjusted Vegetation Index).

4. Auto-guídance systems in agricultural vehicles: vehicles with auto-guidance

systems are assisted by GPS systems to carry out operations in the crop áreas. In

addition, many vehicles integrate the GPS system with optical systems to perform

the control correction of the auto-guidance systems implementing different

techmques ofimage processing in real time.

Nowadays, the GPS is widely used in agricultural vehicles, being employed in the

implementation of auto-guidance dríving systems (also called auto-steering systems). The

auto-guidance driving systems present great advantages in agricultural production, among

them: the íncrease of working hours per machine, the greater amount of worked áreas, the

reduction ofthe machine's maintenance and the increase ofthe machine speed. In fact, auto-

guidance systems allow a greater conü-ol ofoperations m the field, a reduction of passes ofthe

vehicle through the terrain than expected, thereby reducing soil compaction.

Most of auto-guidance driving systems allow precise operations. However, the

geographic positioning errors, the vehicle dynamics, the agricultural equipment and the field

environment (slopes, soil condition, etc.) may influence the accuracy ofGPS based autonomous

agricultural vehicles. In this way, the agricultural vehicles are subjected to undesired errors.

Consequently, several methods have been proposed to reduce them.

The precision of the position data derived from satellite-based positioning systems,

such as GPS, can be Ímproved by means of Real Time KínematÍc (RTK) satellite navigation.

This methodology is capable of providing real-time corrections since it does not only rely on

the satellite signals but also on the data content of the measurements (phase, interpolations,

prediction, etc.). Due to the use ofthese techniques, GPS RTK technology allows centimeter-



levei accuracy. Nevertheless, the accuracy and robustness ofthis technology should be assessed

during field operations.

During field operation, the auto-guidance systems may present errors. Therefore, in

order to guarantee a satisfactory field coverage, the number of passes ofthe vehicle in a field

should be increased. However, the more the number of passes ofthe vehicle over an área, the

less economic efficiency is the agricultnral operation. This fact considerably Íncreases the costs

these operatíons. For that reason, the precision ofauto-guidance systems hás a great impact on

the optimization offield operations and their econonúc efficiency.

1.1 Objective

The agricultural vehicle under evaluation is equipped with a commercial auto-

guidance system assísted by a GPS RTK unit and an inertial measurement unit (IMU). The field

operations can be programmed and automatically executed using the auto-guidance system.

According to Íts technícal specifications, this sysíem hás centimeter-level accuracy. However,

it is well know that fíeld environment conditíons (such as slopes, sou condítion, etc.), the

vehicle dynamics, the agricultural equipment, among other issues may ínfluence the accuracy

ofthe auto-guidance system installed in the agricultural vehicle. It is a fact that each crop área

hás its own characteristics and conditions. Therefore, the auto-guidance system hás a certain

accuracy for those conditions ofthe terrain. In this way, the assessment ofthe accuracy ofthís

auto-guidance system under particular conditions may aíd the user/designer to Ínfer about the

auto-guidance system accuracy in a specífic crop área.

The main objective ofthis work is to propose a methodology to assess the accuracy of

auto-guidance systems under real field conditions. This presents an important advance in

precision agriculture, as there is currently no standard procedure for assessing the accuracy of

auto-guidance systems under specific field conditions. In tiús research, the accuracy ofan auto-

guidance system mstalled on a ü-actor was evaluated using computational visíon. ThÍs

evaluation was performed by tracking the localizatíon ofthe vehicle using the extrinsic visual

method while the vehicle advanced on a straight Une programmed by the auto-guidance system.

This exü-insic visual method was implemented by means of a local visual sensing equipment

and image processmg techniques to map the localization ofthe vehícle in the field.



Two cameras Canon Rebel T5 with focal lens of 18 millimeters were mounted on the

rear síde of the tractor. These cameras were used to take several digital images of a

checkerboard placed on a fixed position on the working field at LANAPRE - Embrapa

Instrumentation São Carlos. These digital images were processed to identify the features ofthe

checkerboard pattem and calculate the parameters of the computational visual system. Using

the parameters of the visual system it was possible to track the location of the vehícle in the

field at each image. In this work, two computational visual systems were initially evaluated:

the stereo vision method and the camera piahole method.

The following objectives ofthis research can be described:

l. The proposal of a strategy based on local visual sensmg equipment and image

processing techniques for measuring the localization of an agricultural vehicle in

the working field.L&

2. The comparison between two computational vision techniques: the stereo vísíon

method and the camera pinhole method, for assessing the vehicle's localization.

3. The assessment of the localization of the vehicle during the execution of an

autonomous motion (a straight-line ü-ajectory).

4. The evaluation of the auto-guidance system at field operations velocities using as

metrics the average and maximum errors.''&'

5. The validation ofthe proposed methodology using the comparison with a proved

and established procedure using computational vision.

1.2 Text organization

The text hás been organized as follows:

Chapter 2. This chapter presents the required theoretical background to develop thís

research. In this chapter, the methods to map the position of vehicles in outdoor

environments, and the developed researches to evaluate the auto-guidance systems

using image processing are described.



Chapter 3. This chapter presents a short review of the basic concepts of ímage

processing. This chapter also presents the important design pattems and software tools

used for the construction of the stereo vision method and pinhole camera method

evaluated in this research. In addition, thís chapter presents a detailed explanation of

the methodology proposed in this work to evaluate auto-guidance systems using

computational vision.

Chapter 4. This chapter describes the tests to evaluate the accuracy of the visual

systems compared in this research (stereo vision method/ pinhole camera method). In

addition, this chapter explains the tests development in the fíeld and the experimental

procedure to evaluate the feasibility and quality ofthe proposaL

Chapter 5. The results are presenteei and discussed in tiüs chapter.

Chapter 6. Conclusions and future perspectives are presenteei in this chapter.





2 LITERATÜRE REVIEW

The self-management systems encourage an increase in the capacity to cultivate more

áreas with the same machinery because of the increase in hours worked, greater speed of

operation and reduction ofvehicle passes. The precision of self-management systems installed

m agricultiu-al vehicles is greatly related to the precisíon ofthe GPS components mounted on

the machinery. The assessment ofGPS errors in agricultural vehicles hás been the subject of

several research papers. It can be performed by measuring the displacements in outdoor

environment usíng precise sensors installed Ín the vehicle, such as: cameras, lasers, odometer,

and ultrasonic sensors.

There have been multiple research in which the accuracy ofGPS systems installed m

different mobile vehicles were evaluated in outdoor environment. Yang and Farrell (2013) used

a triple redundancy navigation system incorporating a magnetometer, inertial navigation system

(FNS), and a carrier phase diffèrential GPS to accurately estimate vehicle latitude (including

yaw). The system was designed to operate in any weather condítíon and work even in the

absence ofthe GPS. The navigation system provides vehicle position, velocíty, acceleration,

pitch and roll, yaw, and angular rates. Líu et al. (2005) developed a multi-aided mertial based

localizatíon system using odometry, an accurate gyroscope, and vehicle constraints. This

system is capable offinding the localization of an autonomous vehicle in the field. Cui and Xu

(2007) developed a method integrating GPS, INS and odometer data using a Kahnan filter to

compensate the errors ofnavigation in a moving vehicle in the field.

Among the local sensing options, it is well known that computer vision methods allow

the location of any system in the space. Advances in computational capacíty improve the

effectiveness of image processing methods mcreasing the accuracy of compuíational

calculations and reducing processing time. In this way, the use ofímage processing techniques

in PA hás steadily increased. Rovira-Más et al. (2005) implemented a stereo camera and Ímage

processing techniques to identífy planting lines. The authors proposed a control strategy for the

auto-guidance system usmg the identification ofthe plating lines. Chon et al. (2011) and Wei

et al. (2011) proposed the integratíon algorithms for using data obtained fi-om different sensors.

Chon et al. (2011) used data obtained from a stereo camera, a GPS and an FtSÍS to locate the

vehicle in the field. On the other hand, Wei et al. (2011) used data from a stereo camera, a laser

locator and a GPS to calculate the location ofa vehicle in the field.



Some authors, as Easterly et al. (2010) and Harbuck et al. (2006) were able to improve

considerably the accuracy of the GPS RTK to millimeter-level using computer vísion

techniques. Easterly et al. (2010) used a vísion sensing method to measure the trajectory errors

of a tractor with auto-guidance system. In this research, an optical vision sensor was rigidly

mounted at the rear ofthe ü-actor. The vision sensor measured a location ofa reference Une on

the paved surface located at the center ofthe drawbar. The deviation ofthe tractores actual

travei path from its desired path could be assessed from the measurement ofthe reference Une.

Harbuck et al. (2006) assess different auto-guidance systems, using fi-om WAAS to RTK

difíèrential correction, over various periods. A non-GPS-based surveying practice was used to

establish the absolute equipment traverse during testing. This informatíon was then used to

compute path deviations from the desíred traverse. In each test, the tractor was operated using

the auto-guidance system, and the relative position of the vehicle was continuously recorded.

The 5 mm measurement error ofthe total station was applicable under ideal conditions, but this

error íncreased to 20 mm during the test. Consequently, the order of magnitude required for

greater accuracy by the measurement method was no longer valíd.

This chapter presents a summary ofthe main methodologies used to track the location

ofvehicles at outdoor environments and a review ofthe previous researches done to evaluate

auto-guidance systems using computer vísíon.

2.1 Methodologies for locatíon mapping using computational vision

2.1.1 Stereo vision method

Stereo vision is an important technique in computer vision. This techmque allows the

calculations ofthe 3-D coordinates ofobjects in a field view by means oftwo alígned cameras.

The method consists of aligning horizontally two cameras and the difference between the views

produce a 3-D coordínate map. The idea of this method is based on how the human vision

perceíves the locatíon ofobjects Ín a field víew. In spite ofbemg a cheap method, it hás a high

computational cost since ít requires the implementation ofa considerable set of computational

vision processes. This is a common method in many fields of technology, such as robotics

(ROVIRA-MAS, WANG and ZHANG, 2009). In fact, a mobile robot must have accurate

Ínformaüon about the surrounding environment m order to operate safely. This method is used

in agricultural vehicles for correction ofautonomous driving systems by digital images captured

in real time. Rovira-Más et al. (2005) used a stereo system and computer vision methods for



the detection and location ofplanting Imes to perform the coirection ofauto-guidance systems

in real time. Chon et ai (2011) developed a vehicle location algorithm by stereo vision system

integrated to a GPS/TNS system. The stereo system miproved the location data ofthe vehicle in

an open enviromnent, since GPS/INS system do not guarantee accuracy and robustness of

localization due to their vulnerability to externai disturbances. Wei et al. (2011) used an

Unscented Information Filter (UIF) to integrate informatíon acquired from a stereo vísion

system, a laser range finder and a GPS receiver in order to provide robust vehicle localization

results. Section 3.3 presents the theoretical and mathematícal fundamentais for the technical

design ofthe stereo system developed in this work.

2.1.2 Pinhole camera method

The pinhole camera is implemented using a simple camera with no optical lenses and

a narrow viewing angle. The rays oflight pass through the viewing angle and project an inverted

image on the opposite síde ofthe camera, capturing an inverted image ofthe scene. By knowmg

the parameters ofthe lens ofthe camera and ofits optical sensor, the síze ofobjects in an image

and the location ofthe camera in the scene can be calculated. The method defines geometric

relatíonships between a 3-D point and its corresponding 2-D point on the plane ofthe image

scene. This mapping process from 3-D to 2-D is called perspective projection. This data is used

for the detectíon and measurement ofobjects in digital images. The pínhole camera method is

used in robotícs for navigation systems and reconstruction of3-D scenes. Royer et al. (2007)

presenteei a real-time localization system for a mobile robot. The research showed that

navigation in outdoor environment is possible using the pmhole camera method and natural

landmarks. To do fhat, a three-step approach was developed. In the first step, the robot was

manually guided on a path and a vídeo record the sequence. Then, a motion algorithm was used

to buíld a 3-D map ofthis path. Finally, the robot used the map to compute its locatíon in real-

time. Lin (2012) developed an algorithm that detects and ti'acks moving objects with a single

camera. The camera parameters were estímated using the camera pinhole method. Features of

pomts Ín a sequence of images captured by the camera were grouped usíng a hierarchical

clustermg algorithm. Then, the related groups between adjacent frames are linked and the

sequence built a 3-D map. Experimental tests showed that the method presents an excellent

performance to detect and track objects, and perfbrmed perfectly in complex environments.

Cherubmi et al., (20 13) designed and valídated an approach that detects obstacles in the vicínity

of a wheeled vehicle to achieve safe visual navigation in outdoor environments. The vehicle
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was guided by the camera pinhole method and a lidar, the vehicle followed a path represented

by key images, avoídmg collisions with the obstacles. Section 3.4 presents the theoretical axid

mathematical fundamentais for the technical design of the pinhole camera method to map the

localization ofthe vehicle in this research. The construction ofthe visual system is based in the

model developed by Bouguet (2004).

2.2 Evaluation of auto-guidance system by computational vision methods

An interesting and practícal approach to evaluate auto-guidance systems was proposed

by Easterly and Adamchuck (2008). This approach used a visual sensor mounted on the tractor

to visualize the lateral displacements ofthe vehicle in auto-guidance mode. The programmed

trajectory was a straight line. To test the performance ofan agricultural tractor equipped with

an auto-guidance system, one visual sensor was fixed to the chassis on the rear ofthe tractor.

This sensor was mounted on the central Une approximately 1.5 m above the ground and was

positioned directly downward. This scheme allowed less than 2 mm resolution for the acquíred

image. Figure l shows the position ofthe optical sensor mounted to the chassis ofthe tractor

with the lens pointed to the downward só that the fíeld of view was centered on íhe drawbar

hitch pivoting location.

Figure l - Visual sensor auto-guidance testing system

Visual
sensor with

internai

Une trackíng

Source — Easterly et al. (2010)

Once the sensor was calibrated, by means ofcomputer vísion methods, it was possible

to identify the parallel line to the direction ofthe programmed travei path and to detemúne its
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horizontal offset coordmate wiíh respect to the central reference position of the tractor. With

this approach, ít was possible measure the lateral displacement ofthe real travei path made by

the auto-guidance sysíem with respect to the programed path (EASTERLY and

ADAMCHUCK, 2008). Figure 2 shows the identificatíon ofthe Une using Intellect software.

The developed test procedure was based on a typical field of operation in whÍch a

series ofback and forth parallel passes across a certain distance were performed by the tractor

in auto-guidance mode. At the end ofeach pass, the vehicle was tumed around and retumed on

a path adjacent to the previous pass. The track consisted of two east-west oriented straight

passes 39.9 m (131 ffc) apart from each other. Both passes were equal, andthe total lengthofthe

central Une around the track was approximately 600 m. Only the northem and southem straight

passes ofthe track were used to measure auto-guidance system error. During tests, the tractor

operated on auto-guídance mode during its passage through the straight sectíons. Figure 3

shows the test track used.

Figure 2 — íntellect software interface locating a segment oftracked line
ll^l [,tti-tt~:tl-lWHFi*)níutic<(nbU*<.l,nlil-|Wite*atrttor;

t <; i* B í: - Q u--e/-v,-.1,». ,_S-.T.Ï.^ r

em^r.smttMBt^s •
Search área
4

f^*-' .. ^ \9 . ••'^Sï
Recognized line ^^.^ ^

a segment (blob) .,

EESHnultTabl*-Une

^ o-— ü

Horizontal coordinate

: ~'t ~H[3»7t»tf*«I 1-ïúïT^ <T^-~'Ï

Source - Easterly et al. (2010)
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Figure 3 - Test laboratory track for the research
"t

Turnaround área l

Source - Easterly et al. (2010)

The position of the tractor was detected for repeated passes; the track error was

calculated as the difference between the desired path on the lines in the straight sections and

the actual path performed by the auto-guidance system. The tractor traveled at speeds ranging

fi-om 0.5 m/s to 5.0 m/s. It was shown that relatively high travei speed (5 m/s) resulted in a

substantially hígher auto-guidance error as compared to the two slower speeds (l and 2.5 m/s).

For the slow and médium speeds, 95% values of errors were found comparable to the claims

published in the literature (less than 2.5 cm). It was concluded that, for high operating speeds

(5 m/s), the auto-guidance system had greater dífíiculty in aligning with the programmed

operating líne.

Visual systems for location mapping of vehicles in open environments are typically

used in combmation with ofher geo-referencing systems to provide accurate data. Visual

systems are currently used in integration with auto-guidance systems in agricultu-al vehicles to

correct the auto-guidance system on real-time (ROVIRA-MAS et al., 2005). However, they are

less used to evaluate the precision of auto-guidance systems due to their lack of precisíon at

millimeter levei. However, by building a visual system and adjusting íhe test parameters

correctly, ít is possible to achieve high leveis of precisÍon (ROVIRA-MÁS, WANG and

ZHANG, 2008). A visual system for location mapping hás the great advantage of being

applícable in variable field conditions due to its robustaess. Nevertheless, the construction of

the methodology represents a great challenge.
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3 METHODOLOGY

The methodology proposed in this work exploits the use of computational vision to

evaluate the auto-guidance systems. This is performed by mapping the position ofthe vehicle

in the field. Therefore, a summary ofthe most important concepts of computational vision is

presenteei hereafter. Thís research explores two computational vision techniques to map the

location of a vehícle in outdoor environments. Based on their accuracy and adequacy, one of

them is selected for accomplishing the research objectives. These techniques are the stereo

vision method and the pinhole camera method. Firstly, the procedure to identify and localize a

checkerboard pattem through ünage processíng is presented. This procedure is of vital

Ímportance for the calibration of the visual systems. Moreover, this chapter also presents a

review ofthe most important design pattems and software tools to develop the stereo camera

method and camera pinhole method.

The Computer Vision System Toolbox is available in Matlab and is exploited in this

research. This toolbox is used: (l) to detect the pattem ofa checkerboard, (2) to perfbnn the

calibration ofthe stereo camera method and the pmhole camera method and (3) to locate the

position ofthe checkerboard in a 3D environment. Details about the available techniques are

described hereaíter.

ThÍs chapter is divided mto 6 sections. Section 3.1 presents a summary ofthe most

ímportant concepts ofcomputational vision. Section 3.2 presents the methodology to recognize

and to locate a planar checkerboard pattera in the field. SectÍons 3 J and 3.4 summarize the

stereo camera method modelíng and the pinhole camera method modeling for this research,

respectively. Sectíon 3.5 presents the methodology to evaluate the accuracy of visual systems

for 3-D location mapping. Section 3.6 presents the methodology that serves as a validation

procedure ofthe proposal presenteei in this paper.

3.1 Image processing

ímage processing is the set of operations that can be applied to digital images. It is

important to note that a digital image is a set offinite values ofelements with coordinates x, y,

and an intensíty. These elements are defíned as pixels (GONZALEZ and WOODS, 2008).
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Many of the current applications of image processing are operations based on the

infonnatíon obtained from the image. These operations can be the classíficatíon of groups of

pixels, the detection ofan object, the encoding ofcharacters, among other fünctions that humans

intuitively perform. Image processing is applied in many fields that the main purpose is to

emulate human vision, including leaming and decísion making according to the perceived data

(GONZALEZ and WOODS, 2008). Image processing hás two purposes according to íts

applications: (l) improve the appearance of images for the user and (2) extraction of

characteristics and infonnation ofimages

The recognition ofcharacteristics is often the main purpose ofimage processing. There

are mnumerous methods for identifying characteristics. Those characteristícs can be color,

shape, texture, structures, lnminosity or a mixture ofthese.
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Fundamentais of digital image processíng

Image processing is a process that mvolves several steps of analysis. The diagram

depicted in Figure l illustrates the fundamental steps in digital image processíng.

Figure 4 - The fundamental steps in digital ímage processmg
Outputs ofthese processes generald/are images

Color hnage
processing

Problem
domain

Wavelets and
multiresolutíon

processing
Compression

Morptiotogical
processing

Image
fBteringand

enhancement

Representatron
&description

Source — Adapted from Gonzalez and Woods (2008)

In the Figure 4, the diagram shows ali operations that can be performed by means of

image processing. The blue boxes represent those operations where the purpose of image

processing is to improve the visual propertíes of the image, usually the outputs of these

operations are ímages with higher quality that the original image. On the other hand, the green

boxes represent the operations where the purpose ofimage processing is to extract information

from the image, usually the outpuís of these operations are vectors that describe the

characteristics and pattems ofthe Ímage.
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Representation and descriptíon ofobjects at digital images

Many applications in image processing are programs capable of recognize certain

features and pattems in images. Recognition of objects in digital images is part of many

purposes, such as facial recognition, biometi:ic identification, recogmtion of letters and

numbers, etc. (GONZALEZ and WOODS, 2008).

In a nutshell, the objects in images can be described in two ways:

l) By externai features (linúts)

2) By internai features (the pixels within a regíon)

In a digital image, the objects are represented by a set ofpixels. The characteristics of

an object in a digital ímage can be described through a descriptor vector. The descriptor vector

is constructed by a set of numeric data specific to a group of pixels, which is capable of

describing an object in any condition.

Usually, the externai features are described by boundary descriptors, that are used for

recognize the shape features of a group of pixels, and the internai features are described by

regional descriptors, that are used for recognize the internai feat.ires ofa region ofpixels such

as color, texture, appearance, etc. The most effective descriptors describe objects combining

two or more descriptors (GONZALEZ and WOODS, 2008). With the advances of

computatíonal power, new descriptors have been proposed, reducing the processing time for

feature extracüon. The identifícation process depends on the precision in the extraction of

invariant features. According to Gonzalez and Woods (2008), an effective descriptor hás the

following characteristics:

l) Must be defined by a complete group ofpixels

2) Be congruent

3) Must have invariant properties

4} Must have recognizable features regardless modifications m the images

5) Be compact

6) Having a setofexactfeatures
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Object recognition

Object recogmtion is performed for identifying pattems. A pattem is an arrangement

of some descriptors. The pattem classes are a set of descriptors that have common properties.

Computer-aided identification includes techniques for organizing the pattems in classes

automatically.

A pattem is represented as a vector as follows:

p = [^ <?2 : ^ ] (l)

wherep is the pattem, each component Ôn represents the n-th descriptor and n is the total number

ofdescriptors associated with the pattem. Figure 5 illustrates the process for the recognition of

pattems in digital images.

Digital Image

Figure 5 - Recognitíon by pattems

Image Processing Pattern Extraction

P=[5lS2 = Sn ]

Recognition

Identifícation:
ALEX

Source - Created by the author

The nature of the pattem depends on the approach used to describe the physical

features. The following example described in Gonzalez and Woods (2008) is presented to

illustrate this concept

Three types of flowers are presented: íris Setosa, íris Virginica, and íris Versicolor.

The characteristics ofthe widths and the lengths ofevery flower were extracted using boundary

descriptors by the computational vision method. The pattem used to recognize the flowers is

constructed using two descriptors: the length and width ofits petals, ai and 02, respectively:

P ^ [Si 8^ ] (2)
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The descriptors <5i and 02 allow the identification ofthe íris Setona from the other

types of flowers, as shown Ín the Figure 6. However, the íris Virginica and íris Versicolor

cannot be classified using only these two boundary descriptors. This identificatíon would

require a regional descriptor that identify the color, texture or appearance ofthe petals.

-ï?

Figure 6 - Types offlowers described by two descriptors
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3.2 Recognition and location of internai corners of planar checkerboard pattern

The recognition and location of a checkerboard pattem is an important task for the

calibration ofthe stereo camera method and the pinhole camera method. An effective proposal

was developed by WANG et al. (2007) to recognize automatically the comers of a

checkerboard. This approach is based on the local intensity and the grid line architecture ofthe

comers. The process requires the assessment ofthe planar checkerboard pattem (see Figure 7)

in different locations and positions.
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Figure 7 - Planar checkerboard pattem

Source — Created by the author

One approach to process the checkerboard is to fmd the edges and fit Unes. The comers

are detected as the intersection ofthe edges ofthe white and black squares. The disadvantage

ofthis method is that the edges are curved due to the radial distortíon ofthe Ímages. Bouguet

(2004) developed an mteresting approach to find the comers. The method had an automatic

mechanism to count the number of squares in the checkerboard. Wang et. al (2007) proposed

that the detection ofthe comers could be done by the identification ofthe intersections ofblack

and white squares. Both methodologies are implemented in Matlab and are described in

Sections 3.2.1 and 3.2.2, respectively.

The fírst step in the procedure is to load several images ofthe checkerboard pattem.

The soffcware automatically extract the internai comers from the ímages and match them ali

using the pattem of the comers. Knowing the physical dimensions of each square of the

checkerboard, a correspondence between the 2-D points in the images and the dimensions of

the checkerboard is establíshed. With this correspondence, the application calculates the

parameters of the stereo camera or the pinhole camera model by numerical procedures

(HARTLEY and ZISSERMAN, 2003, cap. 8). Figure 8 shows the detection ofthe checkerboard

in a digital Ímage. The green dots are the detected comers ofthe checkerboard. The yellow dot

is the origin point ofthe comers arrangement ofthe checkerboard.
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Figure 8 — Checkerboard pattem detectíon by internai comers using the single camera calibration

aDplication CMatlab'!

Source - Created by the author

3.2.1 Procedure to recognize a checkerboard pattern using Matlab

The procedure ofthe recognition ofthe intemal comers hás the following steps:

l) Detect ali the comers in the planar checkerboard by exploitíng the comer detector

developed by Harris and Stephens (1988).

2) RecognÍze the comers at the íntersections of black and white squares using the

intensity ofthe planar checkerboard (WANG et al., 2007, p. 5).

3) Recognize the comers at the intersectíons oftwo groups ofgrid Unes based on the

grid architecture (WANG et al., 2007,p.6).

3.2.2 Location ofthe internai corners of checkerboard pattern

The location ofthe internai comers of planar checkerboard Ís determmed by the row

and column ofthe comers in the array, and the origin point ofthe reference fi-ame attached to

the checkerboard. The process to localize the internai comers ofthe array hás two steps:

l) Arrange the internai comers ofthe checkerboard

2) Determine the origin point ofthe reference checkerboard
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Figure 9 íllustrates the detection of the comers of the checkerboard pattem with the

camera at an oblique angle.

Figure 9 - The arrangement ofmtemal comers and the origin point
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Source - Wang et al. (2007)

Wang et al. (2007) verified the pattem identífication and calíbration algorithms

available at Matlab for a set ofimages ofa checkerboard. The algorithms were applíed to a set

of20 images with resolution of 640x480 pixels, using a checkerboard pattem of 14x13 squares

that include 156 internai comers.

In Figure 10, the results and errors of the calibration are presented using the two

dífferent methods: an interactive method proposed by Wang et al. (2007) and image processíng

toolbox in Matlab.

Figure 10 — Results and errors ofcalibration
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Figure 11 shows the time cost to process the 20 ímages by using these two different

methods. The checkerboard identification using the Matlab toolbox took little computational

cost compared to an interactive method.
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Figure 11 - Computational time cost
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3.3 Stereo vision method

Stereo visíon systems have many applications. The most used is the infonnation

exb-action ofthe relative position ofobjects near ofautonomous systems Ín space. Figure 12

shows the stages for the construction ofa stereo system. Rectificatíon is the mitial process used

to project the stereo images into a plane parallel to a line between the optical centers ofimages.

Figure 12 - Stages of stereoj»ystem construction
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Stereo correspondence Ís the process of ascertaining which points in an image

corresponding to the points in the other miage. There are two main classes ofalgorithms using

computational vision to fïnd the correspondence between the stereo images.

• Correlation-based: establishes the correspondence by the intensity of the

images m certam regions.

• Feature-based: establishes the correspondence by matching a sparse set of

image features.'-&'

Triangulatíon and 3-D coordinates are the process offínding the 3D coordínates ofthe

poínts in a stereo scene. To solve this problem, Ít is necessary to know the parameters ofthe

stereo system. The transfonnation ofa scene in 2-D plane to a 3-D plane is perfbrmed by the

camera matrices foxmd during the calibration process.

3.3.1 Stereo geometry

The stereo vísion consists oftwo images, one image Ís considered as a reference image

and the other one as an objective image. Therefore, each pixel ofthe reference image hás its

corresponding in the target image (stereo correspondence). The distance (measured m pixels)

of a matching point between the reference image and the target image is known as disparity.

When ali the matching points are found, the disparity map hás been completed (MATTOCCIA,

2011).

Epipolar geometry is defined as the geometry of stereo vision when two cameras

observe a scene in different positions. There are a number of geometric relations between the

3-D points and their projections in 2-D images that lead to restrictíons between the pixels ofthe

stereo images. With two images, it can be sei the 3-D coordinates ofa point in a scene ifthe

matching process is performed correctly. Figure 13 shows a scheme ofthe epipolar geomeüy

between the images of a stereo system. The points Q and P are in the same red line of sight of

the plane ÏIR at the reference image. The epipolar constraints establish that the points Q and P

in the red líne ofsight corresponding to the points q and p in the green line ofthe plane JIT at

the target image.
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Figure 13 — EpÍpolar geometry
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When the search field for the matching points Ís known (by means of correspondence

methods), the search field can be reduced â-om 2-D to l-D. The images can be set in a

convement way (standard form, see Figure 14) and the matching pomts are constrained m the

same Ímage scanline. Figure 15 shows the correct alignment of stereo images when taken to

standard fonn.

Figure 14 — Stereo system in standard form
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Source - Mattoccía (2011)
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Figure 15 - Stereo ímages m standard form with cameras correctly aligned

Origmal stereo pair

Stereo pair in standard form

Source - Mattoccia (2011)

3.3.2 Map ofdisparity and depth

Figure 16 shows the variables for calculating disparity ofa point between the two

views ofa stereo image.

Figure 16 - Geometry ofa stereo system
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With the stereo system in standard fonn, the similar triangles POROr and Ppp' are

considered and the depth z is calculated for ali objects in the stereo image.

çb+X^-Xp

z-/
(3)

where:

b Baseline, horizontal distance between camera lenses (mm)

Perpendicular distance ofthe camera to the poínt ofperception (mm)

XR Side dístance ofobject in perception Ín the reference image (mm)

XT Side distance of object in perceptíon in the target image (mm)

/ Focal length ofthe stereo cameras (mm)

z =

In this way, the depth z can be calculated:

b * /

XR~XT
(4)

where d = X^ — X-p is the disparity.

Figure 17 shows the relationship between both views ofthe stereo image and a same

point in the scene.

Figure 17 - DÍsparity and depth in stereo vision

Source - Mattoccía (2011)
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The disparity is the difference in pixels in the x-coordmate ofthe corresponding poínts

between the stereo images. This dífference is the key to obtain the disparity map typically

encoded with grayscale images. Figure 18 shows the disparity map for a scene.

Figure 18 - Disparity map in stereo vision

Reference image Target image

Source - Mattoccia (2011)

The disparity is greater for points near the camera as shown in Fig. 19.

Disparity map

^
XR

0^<

Figure 19 - Baselíne between camera lenses
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Source - Mattoccia (2011)

The stereo system hás an operation field delimited by the parameters of the system.

The parameters that intervene in the operation field are the baseline (À), focal length (f) and

disparity values (dmin, dmax). Each matching point creates disparity value, each disparity value

creates a plane that represents the perpendicular distance of the matching point respect to the

stereo system. The operating distance ofthe stereo system is limited by a set ofparallel planes,

as shown in Fig. 20.
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Figure 20 - Parallel planes with mínimum and maximum distances ofperception
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Source - Mattoccía (2011)

3.3.3 Calculatíng 3~D coordinates

The 3-D coordmates of ali poínts in the disparity map are acquired through

triangulation calculations. The calculations ofthese coordinates are given by:

z'= b * /

d

x'=z'*xf

y = z' * ï?

(5)

(6)

(7)

where X\ Y', and Z' are the coordinates ofthe points in the image respect to the stereo system.

Figure 21 shows the transformation of ali points of a 2-D scene into a 3-D fíeld from the

disparity map calculations.
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Figure 21 — 2-D space to 3-D space conversion

2-D space 3-D space

Source - Created by the author

3.4 Pinhole camera method

The parameters ofthe camera include intrinsic and extrinsic parameters, and distortion

coeffícients. The parameters are presented in a 4x3 matrix called the camera matrix (P). This

matrix maps the 3-D scene in a two-dimensional plane. The extrinsic parameters ofthe camera

are represented by the local coordinates ofthe camera in the 3-D scene. These parameters are

rotation (Ã) and translation (t). The intrmsíc parameters are represented by the focal center of

the camera and the focal length ofthe lens, represented by the matrix K (see equation 8).

P = [R t]K

w[xyl]=[XYZl]P

(8)

(9)

where:

w

[xyl]

[X Y Z l ]

Scale factor

Image poínts

World points

The 3-D points ofthe scene are transformed to local coordinates ofthe visual system

using the exírinsic parameters. Then, the camera locatíon is mapped by using the ímage plane

usíng the intrinsic parameters (as illustrated in Figure 22).
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Figure 22 - Camera location mapping
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3.4.1 Calibratíon parameters

The calibration algorithm Ímplemeníed in Matlab uses the extrinsic and intrmsic

parameters and lens distortion to perform the calibration ofa single camera (BOUGUET, 2004).

The calíbration algorithm also calculates the camera matrix. The extrínsic factors perform the

transformation from the 3-D world coordinate system to the 3-D camera's coordinate system.

Consequently, the intrinsic parameters represent a projective transfomiation from the 3-D

camera's coordinates into the 2~D image coordinates. This process is illusti-ated in Figure 23.

Figure 23 - Camera location mapping process
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Source - Mathworks (1994)

3.4.2 Extrinsic parameters

The extrinsic parameters consist of a rotation (R) and a translation (/). The origin of

the global 3-D coordinate system is the focal center (x, y) define by the checkerboard plane.
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Knowing the checkerboard plane, and the parameters of rotation and translation of the visual

system Ít is possible to know the location ofthe camera in the space.

Figure 24 — Extrinsíc parameters ofthe camera
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Source - Mathworks (1994)

3.4.3 Intrmsic parameters

The intrinsic parameters ofthe camera are the focal length, the optical center, and skew

coefficient. The matrÍx ofthe intrinsic parameters (K) is defmed as:

K^

]x ~

__L

f.
s

Cx

F

Px

o
fy
Cy

o
o
l

Py

S = /y £an oc

where:

[Cx Cy ]

[f.fyï

/
[Px Py ]

s

Optical center (pixels)

Focal length (pixels)

Focal length Ín measurement system (mm)

Pixel size in measurement system (mm)

Skew coefficient

(10)

(11)

(12)

(13)
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The skew coefficient is defined as illustrated in Figure 25, where Px and Py are the

pixel lengíhs in the x on.dy coordinates, respectively, and a is the pixel dístortion angle between

the x and the y axis, and is often 0.

Figure 25 - Skew coefficient
cx
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Source - Mathworks (1994)

3.4.4 Distortíoa in camera

The camera matrix (P) does not include optical lens distortion because a pinhole

camera does not have lenses. To perform a simple camera approach, the calíbration model

developed by Bouguet (2004) includes the radial and tangential distortion of the lenses. The

objective is to Íncrease the accuracy of calÍbration and reduce errors due to lens distortion.

Radial distortion occurs when líght rays curl closer to the edges than they do from its optical

center ofthe lens. Figure 26 shows this type of distortion.

Figure 26 - Types of radial distortions of lenses

Source - Mathworks (1994)

The distorted pomts are defined as:

^Dis = x(l + kl * r2 + fe2 * r4 + ^3 * ^6)

YDÍS = Y(l + ^i * r2 + ^2 * ^ + ^3 * ^6)

(14)

(15)
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where:

x, y Locatíon ofthe distorted pixels. x, y are nonnalized in coordinates ofthe

images.

kí, k-i, k^ Radial distortion coefficients

In the equations 14 and 15, the variable r is defmed as:

r = ^/x2 + y: (16)

Tangential dístortíon occurs when the lens and the plane ofthe image are not parallel.

Figure 27 Ulustrates this type of distortion.

Figure 27 - Tangential distortion oflenses
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The tangential distortion points are defmed as:

^Dis =^+[2 * Çi *x*y+q2 * (r +2 * x )]

YDÍS = y + [<?i * (r +2 * y2) +2 * ^ * x * y]

(17)

(18)

where:

x, y Location ofundistorted pixels. x, y are normalized in coordinates ofthe miages

q-^, q-^ Tangential distortion coefficients
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In the equations 23 and 24, the variable r is defmed as:

r = ^jx2 + y: (19)

3.5 Evaluatíon of visual systems

The best way to evaluate the accuracy of a visual system is to perform an efficiency

test which is a standard procedure. The test consists in measuring physically the coordinates of

the checkerboard pattem with respect to the visual system (stereo visíon or pinhole camera

method) and then perfbrm a comparison with the coordinates calculated using computational

vision. With the Matlab calibration application this test can be done.

The Matlab application follows the following procedure:

l) Several images taken with the visual systems (stereo vision/ pinhole camera model)

are inserted to the application ofthe toolbox ofMatlab.

2) Detectíon ofthe checkerboard pattem in ali the images.

3) Calculation and calibration ofthe parameters ofthe visual systems.

4) Calculation ofthe positiomng coordinates ofthe visual system with respect to the

checkerboard pattem.

The test scheme is shown in Figure 28. In this figure, X, Y, and Z are the real

coordinates measured physically ofthe visual system respect to the checkerboard pattem, and

X', Y' and Z' are the coordinates calculated by the software.

Figure 28 - System coordmates applied in the efFiciency evaluation
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Source - ROVIRA-MÁS, WANG and ZHANG (2008)
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There are many ways to compare the coordinates calculated by the software and the

real coordinates. Rovira-Más, Wang and Zhang (2008) indicates that the most efficient way is

to calculate error percentages at each coordinate as established in the followmg expressions:

^=1^-11*100 (20)

£y= 1^-11*100 (21)

Sz= 1^-11*100 (22)

Equations 20, 21 and 22 show the percentage errors in each coordinate. The values are

positive and pró vides precísion information Ín one direction. The main objective is to determine

the accuracy of visual systems at different ranges of dístance up to the checkerboard pattem.

The value T]-^Q, denoted as planar efficiency, calculates the accuracy ofthe visual systems at the

coordinates X, and Z. The value 7730, denoted as stereo efficiency, calculates the accuracy of

the visual systems at the three coordinates (ROVIRA-MAS, WANG and ZHANG, 2008). Both

índices are provided in percentages and are calculated as follows:

q^ = (l - 0.01 * £^) * (l - 0.01 * S^) * 100 (23)

r^, = (l - 0.01 * S^) * (l - 0.01 * £y) * (l - 0.01 * £j) * 100 (24)

3.6 Evaluation of auto-guidaace system

Once detemiining which visual system is the most accurate to accomplish our research

objectives. The system was installed on the tractor, and using computational visíon the position

ofthe vehicle in the field was mapped taking as reference the checkerboard pattem fixed in the

fíeld. Multiple images were processed to validate the vehiclefs position. For each frame, a vector

with the 3-D coordmates relative to the tractor's location wíth respect to the reference

checkerboard pattem was calculated. This vector was denoted as location vector VL (XL, YL, ZL).

The vectors obtained from the digital frames were mathematícally compared with their previous

frames to calculate the motion ofthe vehicle at each coordmate. The Canon Rebel T5 camera

iscapable ofacquiring30framesper secondwith a resolutionof 1920x1088 pixels. Asaresult,
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the method offered 30 tractor's location data per second. Translations in the coordinates at the

n-th frame were presented by the vector T (Tx, Ty, T:):

^xn = ^Ln ~ ^L(n-l) (25)

Tyn = ^Ln ~ ^(n-l) (26)

^zn = ^Ln ~ 27LÇn-l) (27)

The absolute tractores position was computed by taking the absolute coordinate as the

location ofthe vehicle wíth respect to the checkerboard pattem. The local coordinate (0, 0, 0)

ofthe visual system was located at the positíon ofthe checkerboard m the field. The coordinates

of the position calculated using computational vision and requested to the GPS-RTK were

transferred to UTM (Universal Transverse Mercator) coordínates in order to evaluate the auto-

guidance system. The UTM uses a two-dimensional Cartesian coordinate system to fLimish the

posítions on the surface of the earth. This coordínate system proves to be favorable to the

methodology since the coordinates ofthe vehicle position are given by an own 3-D coordínate

system when using the Image Processing Toolbox in Matlab.

The coordinates ofthe points A/B ofthe programmed Une in the auto-guidance system

were given in geographic coordinates. Then, the coordinates ofthe points A/B were transformed

to UTM coordinates and the equation of the programmed Ime was calculated as a Une on a

Cartesian plane. According to the manufacturer, the geographic coordinates of points A/B

provided by the auto-guidance system have a precision of25 mm in UTM coordinates.

The data locations acquired by the visual system were translated to UTM coordinates

using the following rotation and translation operators:

Ç^UTM' ^UTM.) = Xn=i
fcos 6 -sme-\\X^^\Txn-\\\\\ox-^
lsi'nâ cos7JKJ+CT +loyJ (28)

where:

XfjTM' ^UTM Tractor location in UTM coordinates, relative to longitide and latitude

coordinates respectívely

N Total numbers offrames
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6 The rotation angle 2-D

Vxn T?n ] T^e translation in X and Z coordinates at each frame

[ox oy ]T The location ofthe checkerboard in the field measured in UTM coordinates

(was set as the location ofpoínt A ofthe programmed AB Une obtained by

the auto-guídance system)

[Xn Zn ] The position coordinate ofthe n-th frame relative to the initial fi-ame

Figure 29 illustrates the comparison between the GPS coordinate and the Camera

coordinate for sake ofcomparison.

Figure 29 - Comparison and contrasting oflocation data ofboth systems
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The auto-guidance system error is defined as the lateral distance of the vehicle's

locatíon wíth respect to the line programmed by the auto-guidance system. The auto-guidance

system error was obtained calculatmg the distance between the tractor coordinates and the

programmed Une AB usmg the following equation:

\A^XuTM(n)+B*YUTMÇn)+C\
-Jn-^w

where:

£^ Auto-guidance error calculated in the n-th frame

A, B, C Coefficients ofthe equatíon ofthe programmed line AB.

Ax + 5y + C = O

(,^UTM(n)' ^UTMCn)) Location coordinates ofthe ta-actor at n-th frame
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The average errors of the auto-guídance system were calculated at every operation

speed to determine the precision ofthe auto-guidance system to the specific soil conditions of

the fíeld tests. In addition, the maximum amplitude oflocation ofthe tractor with respect to the

programmed Ime AB was also calculated.
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4 DESCRIPTION OF EXPERIMENTS

In this section, the experimental campaign is detailed. Firstly, the modeling ofthe visual

systems are described. This description includes the modeling ofboth methods: the stereo vísion

and the pinhole camera. Secondly, the strategy for mapping the vehicle locatíon in the field is

explained. Thirdly, the vehicle's specifications are given for sake ofcompleteness. Finally, the

test and validation procedures are fülly explained.

4.1 Modeiïng ofthe visual systems

4.1.1 Stereo vision method modeling

in this research, the stereo camera (also called stereo system) Ís built using two Canon

Rebel T5 cameras with 50 mm focal lenses. The cameras are horizontally alígned to create a

stereo image based by two views of a scene captured by the cameras. The parameters of the

stereo system are described in Table l.

Table l - Stereo system specifications

Cameras

Maximum baseline

Minimal baseline

Focal length

Camera sensor

ímage resolution

Horizontal view angle

Vertical view angle

Image processíng rate

Canon Rebel T5

955 mm

130 mm

50 mm

CMOS APS-C, 22.3 mm x 14.9 mm

5184x3456pixels

26°

17°

30 frames/s

Source - Created by the author

The stereo camera calibration algorithm available in Matlab is used to calculate the

parameters ofthe stereo system. In addítion, the algorithm calculates the 3-D position ofthe

stereo camera relative to the position of a checkerboard pattem. A large set of stereo images

was used to calibrate the stereo system parameters and to calculate its position with respect to
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the checkerboard m any stereo pair. Figure 30 shows the stereo ünages taken at different

dístances fi-orn the checkerboard to perfonn the calibration ofthe stereo system m this research.

Figure 30 - Examples ofstereo pairs loaded Íntothe stereocamera calibratíon application (Matlab).

A)

B)

C)

10 meters 015 meters

Source - Created by the author

In this research, a maximum allowed error of50 mm ofthe stereo system was defined.

The error ofthe location in the stereo camera method is defmed as:

^•SV = (7^)^mín (30)

where:

£^y average location error (mm)

2 perpendicular distance to the perception point (checkerboard pattem, mm)

/ focal length (pixels)

b Baselme (mm)

ámin minimum dísparity value (pixels, usually ámm = l)
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Usíng the stereo camera calibration application of Matlab, the focal length of the

Canon Rebel T5 camera with the 50 mm focal lens was 13235.88 pixels. The stereo system

error is directly related to the perpendicular distance to the checkerboard pattem. Figures 31,

32,33, and 34 depicts the average error vs. baseline at dífferent distances. This determine which

baseline Ís appropriate to calculate the location of the vehicle respect to the checkerboard

pattem with a maxímum error of50 mm.

Figure 31 - Accuracy error vs baseline at l O meters
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Source — created by the author

At 10 meters, for ali the values ofbaseline allowed by the stereo system (between 130

and 955 mm) the system error remains under 50 mm. However, 10 meters is a short distance

for testing the auto-guidance system.

Figure 32 — Accuracy error vs baseline at 15 meters
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Source - Created by the author
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At 15 meters, the stereo system error remains below 50 mm for baselíne values between

350 and 955 mm. However, 15 meters remains being a short distance for testing the auto-

guídance system.

Figure 33 — Accuracy error vs baselíne at 20 meters
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Source - Created by the author

At 20 meters, the stereo system error remains below 50 mm for baseline values between

620 and 955 mm.

Figure 34 - Accuracy error vs baseline at 25 meters
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Source — Created by the author

At 25 meters, the stereo system error exceeds 50 mm for ali the values of baseline

allowed by the specifications ofthe system. However, a baseline of 950 mm allows the stereo

system to have a 50 mm error (as shown in Figure 27).
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Based on the theoretícal calculations, the conclusion is that the stereo systems have a

field of operation with high precision until 25 meters, after that, the system error exceeds the

maximum permit in this research (50 mm). It is a fact that the stereo system error grows as íhe

distance ofperception mcreases. As a consequence, in order to increase fhe field ofperception,

a baseline of 950 mm was used with lenses of 50 mm. These choices resulted in a field of

perception of25 meters with a theoretical maximum error of50 mm.

4.1.2 Pinhole camera method modelmg

In this research, the síngle camera calibration available in Matlab was used to calíbrate

the parameters ofthe camera Canon Rebel T5 with 18mm focal lens. This calibratíon technique

was proposed by Bouguet (2004) and includes the camera pinhole model and lens distortion. In

addition, this application calculates the camera's positíon with respect to the checkerboard

pattem. Figure 35 illustrates the pinhole camera model.

Figure 35 - Pinhole camera model

^-Dimage Image plane F&cai point yirtual im-age plan-e 3-Dobject

Source - Mathworks (1994)



44

The details ofthe camera pinhole method are in Table 2.

Table 2 - Camera pinhole method specifícations

Camera

Focal length

Camera sensor

Image resolution

Horizontal view angle

Vertical view angle

Image processing rate

Canon Rebel

18 mm

CMOS.

1920 x

64°

45°

Rebel T5

APS-C,22.3mmxl4.9mm

1088píxels

30 frames/s

Source - Created by the author

In the procedure, a set of ímages of the checkerboard in different posítions and

distances were uploaded to the software (as depicted in Figure 37). These images were used in

the pattem detection algorithm, and then, to calculate the parameters of the camera. Once the

parameters were assessed, it was possible calculate the position ofthe camera with respect to

the checkerboard in any image.

Several images in the different positions of an arrangement of 40 x 40 centimeters

(shown in Figure 36) were taken at distances of5, 10, 15,20,25, 30, 35, and 40 meters respect

to the checkerboard (shown in Figure 37), the objective was to assess the accuracy ofthe method

aí different distances. The comers are located at 100 mm frorn each other in the arrangement.

Figure 36 - Arrangement positioning for accuracy test

Source — Created by the author
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Figure 37 — Sei of images for the accuracy test (Camera pinhole method).
A) 5meters B)10meters C)15meters D) 20 meters E) 25 meters F) 30 meters

A)

D)

Bï C)

E) ^^^^——1 F)
Source — Created by the author

An image ofthe checkerboard pattem was taken at each comer at different distances.

This set of images was used to perform the calibration in Matlab and calculate the parameters

ofthe camera. Then, the location ofeach image was calculated using the pinhole camera method

and evaluate the accnracy ofthe method using the equatÍons 23 and 24.

4.2 Mappmg ofthe vehicle locatíon in the field

The evaluation ofauto-guidance systems requires a mefhod for measurmg the system s

accuracy. Moreover, this method should be easy to use and reliable in any terrain sitiations.

The relative posítion ofthe tractor with respect to the checkerboard ínstalled in the field along

a test track can be measured installing a visual system in the vehicle. Thís measurement was

performed during the motion of the agricultural vehicle m auto-guidance mode. During this

motion, several ímages of the checkerboard were acquired using a visual system installed on

the back ofthe vehicle, as illustrated in Fígs. 38 and 39. AfEer performing íhe field tests, the

ünage frames were loaded in Matlab and the data was treated using the Image Processing

Toolbox. These images were used for calibrating the parameters of the visual system and

assessing the location ofthe vehicle wíth respect to the checkerboard pattem. The camera vídeo

provides a high acquisition of images per second, reaching 30 frames per second with a

resolution of 1920x1088 pixels.
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Figure 38 — Single camera mounted on the test tractor

Source — created by the author

Figure 39 — Single camera mounted on the rear ofthe tractor
L'c~"'L,~?3BQHNÜr'~Ü-

Source - Created by the author
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4.3 Specifícatíons of the tractor and auto-guidance system tested

Details ofthe vehicle and the auto-guidance system under study are given in Table 3,

Table 3 — Auto-guidance system specifications

Weight

Tractor power

Nominal motor rotation

Direction system

Dimensions (Length, Ext. Width, Height)

GPS Receiver

Satellite navigation system

GPS correction source

Inertial correction source

RTK protocol

Antenna type

GPS output maximum rate

Geographic coordinate system

Precísíon

8250 kg

159 hp

2200 rpm

Hydrostatícs

5365 mm, 2574 mm, 3210 mm

AGI-3

GLONASS

RTK

IMU system

CMR

Externai

5 Hz

WGS84

25 mm

Source — Created by the author

4.4 The test procedure

The test procedure was carried out using a typical field operation. Firstly, the operator

of the vehicle programmed an operation path (defined as a straight line AB). This path was

programmed settíng the poínts A/B using the auto-guidance system. Subsequently, the auto-

guidance system replíed this path repeatedly using the autonomous control system. The test

path consisted ofa 25-meter long straight Une. During the tests, the maximum distance between

the GPS RTK receiver in the tractor and the RTK base in the field was 100 meters. The error

ofthe auto-guidance system was defíned as the lateral difference between the programmed path

and the real path performed by the vehicle in the auto-guidance mode. Figure 40 shows the test

scheme used in this research.
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Figure 40 - Desired programmed path and error ofauto-guidance system
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Source — Created by the author

An appropriate test location should be a realistic terrain regardmg the field conditions.

In the test, the track was initíally worked in order to perform a surface decompression, with the

purpose that the wheels ofthe vehicle had a better adhesíon. The terrain test track was located

in the National Reference Laboratory for Precísion Agriculture (LANAPRE, Embrapa

Instrumentation) and is depicted in Fig. 41.
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Figure 41 - The checkerboard pattem on the fíeld at LANAPRE — Embrapa Instmmentation São
Carlos

Source - Created by the author

For the test, the visual system was rigidly mounted at the rear ofthe vehicle chassis

with the optical lens pomting towards the planar checkerboard pattem at the back ofthe vehicle.

The accuracy of tiie auto-guidance system aí real condítions were assessed at several usual

speeds of operations. The vehicle was driven by the auto-guidance system in the track three

times at each speed, although more tests could be performed, three tests were sufficient to

determine an accurate estimate of the auto-guidance system evaluation. Table 4 describes the

test conditions.

Table 4 — Field test specifícations

Sp.

m/s

1,1

1,25

1,39

1,53

;ed

km/h

4

4,5

5

5,5

Tractor gear

9

9

10

10

RPM

1500

1650

1550

1650

Number

ofTests

3

3

3

3

Source — Created by the author

Ali the frames were processed and the relative location of the tractor with respect to

the reference checkerboard were measured. For each frame, the displacement ofthe vehicle was

mapped and the error of the auto-guidance system was calculated using the mathematical

calculations presenteei in the section 3.6.
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4.5 Validatíon ofthe proposed methodology

This validation test aims to measure the accuracy of the auto-guidance system in a

controlled environment where the surface conditions minimally affect the accuracy of the

system. The second objective of this test is to validate the methodology proposed m this

research by making a comparison with a standard methodology proposed by Easterly et al.

(2010).

Easterly et al. (201 0) proposed the use of a camera vertically located at the rear of the

vehicle to capture the position ofa síraight Une placed in the center ofthe drawbar hitch pinpomt

when the tractor was moving in auto-guidance mode. Wíth this method, it was possible to

measure the deviation ofthe ti:actor's actual travei path fi-om its desired path. The same strategy

was performed in LANAPRE using a vídeo. A rope was carefülly stretched on a paved suríace

at a distance of 50 meters. The position ofthe camera and the rope are shown in Fíg. 42.

Figure 42 - Camera vertically located at the rear ofthe tractor (validation test)

Source - Created by the author

Each frame of the vídeo was processed using a segmentation method to identify the

rope in each image. Then, the rope position was identifíed calculating the center ofmass ofthe

bínary image, as depicted in Fig. 43.
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Figure 43 - Detectíon ofrope on the paved surface. A) Original image B) Processed image

Source — Created by the author

The vídeo acquires 30 frames per second. Since the lateral locatíons ofthe vehicle are

given in millimeters, a calibration was required in order to assess the equivalence ofa pixel to

millimeters. To do this, an image of a checkerboard on the paved snrface with the camera

vertically positioned was taken (as depicted in FÍg. 44). The dístance between each comer of

the checkerboard pattem was 29 mm and the number ofpixels between each vertex was 56. In

this way, each pixel was equívalent to 0.52 míllimeters approximately. The size ofthe frames

taken by the camera was 1920x1088 pixels.

Figure 44 - Checkerboard pattem using to calibrate the vertical located camera

Source - Created by the author

A line was precisely programmed with the auto-guidance system setting the points

A/B at two points along the rope. Subsequently, tests were performed with the auto-guidance

system at speeds of 4.0 km/h, 4.5 km/h, 5.0 km/h, and 5.5 km/h comparing fhe methodology

developed in this work with this validation methodology. During the tests, the maximum
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distance between the GPS RTK receiver in the tractor and the RTK base in fhe field was 100

meters.
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5 RESULTS AND DISCUSSION

In this sectíon, the results are presenteei and discussed. Firstly, a comparison between

the stereo vision and the pinhole camera methods is performed. From this comparison, one can

conclude that the stereo vísion may not be fully adequate for this applicatíon. Therefore, the

mapping ofthe vehicle' s location in fíeld operation is done by using the pinhole camera method.

Finally, the validation ofthis proposed strategy is done by comparing it with a well-established

meíhodology.

5.1 Accuracy evaluatíon Stereo Vision Method - Camera Piahole Method

5.1.1 Stereo vision method

Several images were taken to detect the checkerboard and calculate its 3-D coordínates

respect to the stereo system at distances between 5 and 10 meters. Figure 45 shows the results

ofthis test, the planes ofdifferent colors represem the location ofthe stereo system respect to

the checkerboard pattem.

Figure 45 - Accuracy tests with stereo vision method untÍl l O meters

Z fmmi

X (n~n~)

Source — Created by the author

The test evidenced the lack ofaccuracy ofthe stereo system developed in this research.

By performing multiple field tests with the stereo vision system, it was concluded that the

method was not appropriated for the objectives ofthis research. Although stereo systems are

efficient in machine vision applications, the avaílable resources for this research are not suitable
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to build a precise stereo system. Firstly, the used optical lenses have a narrow viewing angle.

For precision applicatíons in machine vision, lenses with wide viewmg angle are usually used.

A wide viewing angle certifies a higher qualíty disparity map. Second, the con-espondence

process of stereo ünages is a complicated task. The ímproper image matching affects the

accuracy ofthe method.

5.1.2 Pinhole camera method

The errors and the accuracy ofthe method were calculated up to a distance of25 meters

using the Eq. 23 and 24. The results ofaccuracy ofthe method are shown at Table 5.

Table 5 — Accuracy ofpinhole camera method at dífferent dístances

Distance (m)

5

10

15

20

25

i

X (mm)

4,20

3,35

2,29

14,29

24,02

^.verage erro

Y (mm)

2,43

1,95

19,04

6,85

20,35

Z (mm)

1,25

0,52

0,37

0,10

0,13

Accu

Planar (%)

94,58

96J4

97,33

85,63

75,88

racy

Stereo (%)

92,31

94,27

78,88

79,87

61,47

Source — Created by the author

For distances exceeding 25 meters, the average error exceeds the 50 mm.

Consequently, the field ofoperation with high accuracy ofthe pinhole camera method was 25

meters. Figure 46 shows the location mapping ofthe visual system in ali the images taken to

perform the visual accuracy test up until 25 meters.

As shown in this analysis, the accuracy error íncreased proportionally as the distance

from the vision systems to the checkerboard pattem. With the accuracy calculations of the

pínhole camera method, it was concluded that the method is effective to map the position ofthe

tractor in the field. The method obtains a maxünum error of24 mm untíl 25 meters. Therefore,

this method was selected to perform the tesís development ofthis research, mstallíng the visual

system Ín the vehicle.
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Figure 46 - Locatíon mappÍng ofcalíbration images for the pinho lê camera method until 25 meters

Z {mm) 200;

J'^'^'

X (mm)

Source - Created by the author

5.2 Mapping ofthe vehicle's location m field conditions

As mentíoned previously, three tests were performed at each speed ofoperatíon using

the visual system ínstalled in the vehicle. Table 6 shows the number offrames processed in

each test by the pinhole camera method. These fi-ames were used to obtain the locatíon ofthe

vehicle in the test field and calculate the auto-guidance system error. The frames captured m

the fírst 5 meters were rejected since the vehicle was not stabilized in the auto-guidance mode

during this distance interval. Figure 47 shows the detection ofthe checkerboard m the test fíeld

and its positíon (0, 0, 0) in the local coordinate system.

Table 6 —Number offrames processed at each operating speed

Speed of operation (km/h)

4.0

4.5

5.0

5.5

Number offrames

1223

1179

1099

905

Source — Created by the author
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Figure 47 - Planar checkerboard pattem detection in field test
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Source - Created by the author

Figures 48, 49, 50 and 5 show the tractor location mapping during field tests at speeds

of 4.0 km/h, 4.5 km/h, 5.0 km/h and 5.5 km/h respectively. The location ofthe vehicle was

mapped to each vide frame, and then the vehicle's trajectory was constructed by sequentially

ordering ali vídeo frames. At ali operating speeds, the vehicle moves oscillating usíng the

programmed Ime AB.

Figure 48 - Mapping ofü-actor trajectory in auto-guidance mode at 4.0 km/h
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o
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Source - Created by the author
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Figure 49 - Mappíng of tractor trajectory m auto-guidance mode at 4.5 km/h
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Source — Created by the author

Figure 50 - Mapping of tractor trajectory in auto-guidance mode at 5.0 km/h
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Source — Created by the author
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Figure 51 -Mapping of tractor trajectory m auto-guidance mode at 5.5 km/h
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Source — Created by the author

Figures 52, 53, 54, and 55 show the auto-guidance system errors (using Eq. 29) along

the path until 25 meters at different operatmg speeds. In the graphs, it is possible to observe

that the tractor made an oscíllating movement through fhe programmed line. As the tractor

increased the operating speed the wavelength increased also, which means that the auto-

guidance system had greater dífficulties to follow the programmed line AB at greater operating

speeds. This behavíor corroborates with the results reported by Easterly et al. (2010) and

Harbuck et al. (2006).

Figure 52 - Auto-guidance system error at 4.0 km/h
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104

Source — Created by the author

At 4.0 km/h, the tractor movement oscillated through the programmed line with a half

wavelength of 5.0 meters. At the end ofthe path, the vehicle stabilized in the programmed path.
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Figure 53 — Auto-guidance system error at 4.5 km/h
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At 4.5 km / h, the tractor kept the oscillatory movement through the programmed line

with a halfwavelength of 8.5 meters and soft wave peaks in the correction ofthe auío-guidance

system.

Figure 54 — Auto-guidance system error at 5.0 km/h
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At 5.0 km / h, the tractor kept the oscíllatory movement through the programmed líne

with a halfwavelength of 9.0 meters and soft wave peaks in the correction ofthe auto-guidance

system.

At 5.5 km / h, the tractor kept the oscillatory movement through the programmed line

with a half wavelength of 8.0 meters but with greater and pronounced wave peaks in the

correctíon ofthe auto-guidance system.
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Figure 55 — Auto-guidance system error at 5.5 km/h
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There is a 5% offrames seriously affected by the vibration ofthe vehicle, generating

lack ofquality and a wrong calculatíon ofthe vehicle localization, therefore, this percentage of

frames was discarded. Table 7 summarizes the auto-guidance system errors at different

operating speeds. The table shows the auto-guidance system errors for the specific field

conditions on the fíeld at LANAPRE - Embrapa ïnstrumentaüon São Carlos. The standard

deviation and the maximum error were also calculated. The maximum error is defíned as the

maximum error calculated by 95% ofthe frames processed.

Table 7 — Auto-guidance system errors

Speed of operaíion

(km/h)
4.0

4.5

5.0

5.5

Average error

(mm)

332

349

447

462

Standard devíation

(mm)

214

206

271

256

Maximum error

(mm)

653

727

886

942

Source - Created by the author

Table 7 shows that the auto-guidance system accuracy decreases at higher operating

velocities. This behavior is in accordance to the literature. Neverthless, the accuracy of the

system is also affected by the conditions and characteristics ofthe test terrain at LANAPRE -

Embrapa Instrumentation São Carlos. For this reason, it is necessary to test the auto-guidance

system on a paved suríáce where the soil conditions do not affect the accuracy ofthe system.
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5.3 VaUdatíon ofthe proposed methodology

This section presents the results ofcomparison between the method developed in this

research and the methodology developed by Easterly et al. (2010) on a paved surface. Table 8

shows the number of firames processed at each test using the validation methodology in the

different speeds ofoperatíon.

Table 8 - Number of frames processed using the validatíon methodology

Speed of operation (km/h)

4.0

4.5

5.0

5.5

Number of frames

1820

1674

1455

1376

Source - Created by the author

In the evaluatíon methodology, a percentage of trames are also discarded because are

affected by the vibration of the vehicle, which generate enratic calculations of the vehicle

locatíon. Those díscarded frames reach a percentage of5% ofthe total trames Ín each test. Table

9 shows the auto-guidance system errors using the validation methodology proposed by

Easteüyetal. (2010).

Table 9 — Auto-guidance system errors usíng the validation methodology

Speed of operation

(km/h)

4.0

4.5

5.0

5.5

Average error

(mm)

71

73

75

64

Standard deviation

(mm)

39

48

53

40

Maxímum error

(mm)

128

163

177

148

Source — Created by the author

As expected, the auto-guidance system error íncreased as the operating speed of the

vehicle increased. However, with values lower than obtained on the ground surface since Ít is

possible to minimize the errors caused by the conditions ofthe terrain.
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Using the same trajectory, the computational vision using the pínhole camera method

was tested to calculate the errors ofthe auto-guidance system on the paved surface. The pinhole

camera method was only tested at a distance of 25 meters towards the checkerboard pattem.

The results obtained by the pínhole camera method are shown in Table 10.

Table 10 - Auto-guidance system errors usmg the pinhole camera method on flat surface

Speed of operation

(km/h)

4.0

4.5

5.0

5.5

Average error

(mm)

74

85

94

84

Standard deviation

(mm)

41

47

53

43

Maximum error

(mm)

159

182

197

160

Source — Created by the author

The error values calculated by the pinhole camera method were slightly higher than

obtained by the valídation methodology developed by Easterly et al. (2010). The comparison

between the validation methodology and the pinhole camera method developed in this research

is shown in the Table 11.

Table 11 — Auto-guidance system errors usmg validation methodology vs pinhole camera method

Speed of operation

(km/h)

4.0

4.5

5.0

5.5

Error by validation

methodology
(mm)

71

73

75

64

Error by pinhole
camera method

(mm)
74

85

94

84

Source - Created by the author

It can be noted that the average errors values by both methodologies had a constant

growth as the operating speed increased. The results shown in table 11 prove that the auto-

guidance system complies with the manufactureis specifications, which specifies that the

system error is under 100 mm. The graphs in Figures 56, 57,58,and 59 show the cumulative
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errors distribution for both methodologies at operating speeds of 4.0 km/h, 4.5 km/h, 5.0 km/h,

and 5.5 km/h respectively.

Figure 56 - Auto-guÍdance system errors, validation method vs pinhole camera method (4.0 km/h)
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Source — Created by the author

Figure 57 — Auto-guidance system errors, validation method vs pinhole camera method (4.5 km/h)
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Figure 58 - Auto-guidance system errors, validation method vs pinhole camera method (5.0 km/h)

100

90

*p
o'

aj
Q.

70

60

50

4: 40

30

20

10

o

•Validation Method

Pinhole Camera Method

50 100 150 200

Auto-guidance error (mm)

250

Source - Created by the author

Figure 59 — Auto-guidance system errors, validation method vs pinhole camera method (5.5 km/h)
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For both methodologies, the auto-guidance system error values presenteei a constant

distribution. In these results, ít can be observed that the results extracted by using the

methodology developed Ín this work had a significant correlation with the results obtained by

using the validation methodology. With the exception of the test períbrmed at 4 km/h, the

validation methodology presents results slightly higher than the results obtained by the

methodology developed in this research. However, both methodologíes do not differ more than
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20 mm in their results. This indicates that the accuracy of the proposed methodology m this

research can reach 24 mm, as was shown in Section 5.1.2.
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6 CONCLUSIONS

The use of computer vision method can be an altemative to evaluate the accuracy of

the auto-guidance system under real field conditions. However, the selection ofthe appropriate

msírumentation parameters to achieve high accuracy is an important challenge.

The stereo vision method is widely used in the mapping oftrajectory ofa vehicle at

outdoor environment. However, in this research, the method reached low leveis ofaccuracy due

the design constraints. The precision ofthe stereo vision method is affected by the complexity

ofthe construction using two single cameras. Another factor that influences the accuracy ofthe

stereo vision method is the complex process of defming íts parameters as the focal lens of

cameras, the baseline and the alignment between cameras.

The computational vísíon using the pinhole camera method proved to be highly

accurate being capable of calculating the tractor location at millimeter accuracy levei. This

method made possible the accuracy evaluation ofthe auto-guidance system implemented in the

tractor under real fíeld conditions. An important point to consider is that 5% of the frames

processed have low quality because they are affected by the vibration ofthe vehicle caused by

the dynamics ofthe vehicle in the field, those frames are rejected to ímprove the accuracy of

the visual system. The approach developed in this research reaches an accuracy of24 mm until

25 meters to the checkerboard, for smaller distances the accuracy íncreases considerably.

The average errors ofthe auto-guidance system m the field tests were 332 mm, 349

mm, 447 mm, and 462 mm at speeds of 4.0 km/h, 4.5 km/h, 5.0 km/h, and 5.5 kin/h respectively.

The maximum auto-guidance system error is defined in this research as the maximum error

perceíved by 95% of the errors calculated by the pinhole camera method. Therefore, the

maximum errors ofthe auto-guidance system were 653 mm, 727 mm, 886 mm. and 942 mm at

speeds of 4.0 km/h, 4.5 km/h, 5.0 km/h, and 5.5 km/h respectively. It is highlighted that these

errors were the auto-guidance system errors for the specific terrain condítion in the fíeld tests

developed in this research.

The methodology proposed Ín this research was validated by the methodology

developed by Easterly et al. (2010). The results were satisfactory, obtainíng a remarkable

corre spondence in the data obtained by both methods in ali tests performed. Wíth the validatíon

test, ít was concluded that the proposed methodology is highly accurate and reliable to evaluate

auto-guidance systems under real fíeld conditions.
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With the tests camed out on the paved surface it was possible to prove that the auto-

guídance system is highly accurate, the error of the auto-guidance system complies with the

specifications given by the manufacturer (under 100 mm). The auto-guidance system error rates

are considerably low, considering the tractor and the auto-guidance system implemented

reliable for automated agrícultural operations.

6.1 Future perspectives

The developed approach can be applicable to real field conditions being robust to

errors due to geographic positÍoning GPS errors, low data acquísition rate, vehicle dynamics

and field environment (slopes, sou condition, etc.). Despite having these advantages, the

approach also hás certain restrictions. The main restriction is the short test field that reaches

only 25 meters. That distance was selected sínce the frames taken after 25 meters respect to the

checkerboard pattem were distorted due to the vibration of the tractor. In addition, 5% of the

processed trames have low quality sínce they are affected by the vibration ofthe vehicle caused

by the dynamics ofthe vehicle Ín the field. A possible solution for both problems is the use of

optical lens ofwide focal length and an image stabilízer. This solution may improve the method

by mcreasing the test distance and by improving the precision of calíbration of the camera

parameters.
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