• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.18.2018.tde-25052018-095947
Document
Author
Full name
Ivan Carlos Perissini
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2018
Supervisor
Committee
Caurin, Glauco Augusto de Paula (President)
Kato, Edilson Reis Rodrigues
Vieira, Marcelo Andrade da Costa
Title in Portuguese
Análise experimental de algoritmos de constância de cor e segmentação para detecção de mudas de plantas
Keywords in Portuguese
Agricultura de precisão
Detecção de plantas
Invariância luminosa
Processamento de imagens
Segmentação por cor
Abstract in Portuguese
O uso da visão computacional vem ganhando espaço no contexto agrícola, especialmente com a evolução do conceito da agricultura de precisão. Aplicações como irrigação, fertilização e controle de pragas são apenas alguns dos cenários que essa tecnologia pode atender. Entretanto, a demanda por sistemas acessíveis e eficientes aliada às inconstâncias e ruídos visuais de um ambiente externo, apresentam desafios a estes processos. Foi proposto neste trabalho uma análise da literatura e uma série de investidas experimentais de técnicas de processamento de imagens, para buscar melhores relações entre custo computacional e desempenho da detecção de mudas de plantas, visando atingir operações em tempo real com o uso de hardwares comuns e de baixo custo. Para tanto o trabalho investiga a composição de estratégias de segmentação a partir de diferentes espaços de cor e métodos de constância de cor, de forma a reduzir a variação luminosa, uma das maiores fontes de instabilidade nas aplicações de visão na agricultura. Os experimentos propostos foram divididos em duas fases; na primeira o sistema de medidas foi avaliado, definindo as métricas e condições experimentais adequadas para a segunda fase, composta de uma sequência de experimentos comparativos entre estratégias de segmentação sob diferentes condições de iluminação. Os resultados mostraram que as soluções são muito dependentes das condições da cena e uma série de alternativas promissoras de segmentação foram obtidas. Sua elegibilidade, porém, depende de considerações sobre a disponibilidade computacional e contexto de aplicação.
Title in English
Experimental analysis of color constancy and segmentation algorithms for plant seedlings detection
Keywords in English
Color segmentation
Image processing
Invariant Iluminant
Plant detection
Precision agriculture
Seedlings detection
Abstract in English
The use of computer vision has been gaining ground in the agricultural context, especially with the evolution of the concept of precision agriculture. Applications such as irrigation, fertilization and pest control are just some of the scenarios that this technology can be used. However, the demand for accessible and efficient systems together with the variations and visual noise from an external environment presents challenges to these processes. It was proposed in this study an analysis of the literature and a series of experimental investigations of image processing techniques, to search for better relations between computational cost and performance in the detection of seedlings, aiming to achieve real time operations with the use of common and low cost hardware. For this, the work investigates the composition of segmentation strategies from different color spaces and color constancy methods, in order to combat light variation, one of the major sources of instability in agricultural vision applications. The proposed experiments were divided into two phases; in the first the measurement system was evaluated, defining the metrics and suitable conditions for the experiments at second phase, composed of a sequence of comparative experiments of segmentation strategies under different lighting conditions. The results showed that the solutions are very dependent on the conditions of the scene and a series of promising segmentation alternatives were obtained. Their eligibility, however, depends on considerations about the computational availability and context of the application.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-07-13
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.