• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.18.2008.tde-04032009-151307
Document
Author
Full name
João Marcelo Ribeiro
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2007
Supervisor
Committee
Gonzaga, Adilson (President)
Moreira, Jander
Rodrigues, Evandro Luis Linhari
Title in Portuguese
Segmentação de pele humana em imagens coloridas baseada em valores das médias da vizinhança em subimagens
Keywords in Portuguese
Média de vizinhança
Pele humana
Resolução de imagens
Segmentação
Subimagens
Abstract in Portuguese
A segmentação de pele humana, em imagens coloridas, tem sido largamente estudada nos últimos anos servindo de fundamento para muitos outros estudos como, por exemplo, a detecção de faces. Dentre as inúmeras aplicações de trabalhos relativos à segmentação de pele humana está a de se localizar uma determinada pessoa em locais de grande concentração humana tais como: avenidas, terminais de ônibus, aeroportos, shopping centers e estádios. Desta forma, a necessidade de se obter um sistema que classifique de forma adequada a pele humana tornou-se a principal motivação para o desenvolvimento deste trabalho. Desta forma, propõe-se uma metodologia para melhorar a segmentação de pele humana em imagens coloridas através de um algoritmo mais eficiente. O algoritmo é baseado na média de vizinhanças cujos valores limites, para definição do intervalo de cor equivalente à pele humana, são obtidos através de uma imagem padrão, gerada a priori, com amostras de pele humana. Esta imagem é chamada de "colcha de retalhos". A metodologia tem como base de comparação trabalhos anteriores similares, principalmente o desenvolvido por Kovac et al. (2003). Os resultados mostram um desempenho superior da metodologia proposta.
Title in English
Segmentation of human skin in colored images based on the average of neighborhoods in sub-images
Keywords in English
Human skin
Image resolution
Neighborhood average
Segmentation
Sub-images
Abstract in English
The segmentation of human skin, in colored images, has been studied broadly for the last years serving as foundation for many other studies as, for instance, the detection of faces. Among the countless applications of works related to the segmentation of human skin it is the one of localizing a certain person in places of great human concentration such as: avenues, bus terminals, airports, shopping centers and stadiums. Therefore, the need to obtain a system that classifies in an appropriate way the human skin became the main motivation for the development of this work. This way, a methodology to improve the segmentation of human skin in colored images through a more efficient algorithm is proposed. The algorithm is based on the average of neighborhoods whose limit values, for definition of the interval of equivalent color to the human skins, are obtained through an image pattern, generated in priori, with samples of human skin. This image is called "bedspread of remnants". The methodology has as base of comparison similar previous works, mainly the one developed by Kovac et al. (2003). The results show a superior performance of the proposed methodology.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Joao.pdf (11.12 Mbytes)
Publishing Date
2009-03-09
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.