• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.18.2010.tde-24062010-153212
Document
Author
Full name
Milene Arantes
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2010
Supervisor
Committee
Gonzaga, Adilson (President)
Batista, Leonardo Vidal
Mascarenhas, Nelson Delfino D'Ávila
Rodrigues, Evandro Luis Linhari
Saito, José Hiroki
Title in Portuguese
Método de reconhecimento da marcha humana por meio da fusão das características do movimento global
Keywords in Portuguese
Análise da marcha
Biometria
Fusão de característica
Marcha humana
Movimento global
Reconhecimento da marcha
Abstract in Portuguese
Este trabalho propõe um novo enfoque em visão computacional aplicado a sequências de vídeo, de pessoas em movimento, para reconhecê-las por meio da marcha. O movimento humano carrega diferentes informações, considerando-se diferentes maneiras de analisá-lo. O esqueleto carrega as informações do movimento global de articulações do corpo humano e como se comportam durante a caminhada e a silhueta carreia informações referentes ao comportamento global do contorno do corpo humano. Além disso, imagens binárias e em escala de cinza possuem diferentes informações sobre o movimento humano. O método proposto considera o conjunto de frames segmentados de cada indivíduo como uma classe e cada frame como um objeto desta classe. A metodologia aplica o Modelo de Mistura de Gaussianas (GMM) para subtração de fundo, redução de escala realizada por meio de técnicas de multiresolução baseadas na Transformada Wavelet (TW) e a extração dos padrões por meio da Análise dos Componentes Principais (PCA). São propostos e ensaiados quatro novos modelos de captura de movimentos globais do corpo humano durante a marcha: o modelo Silhouette-Gray-Wavelet (SGW) captura o movimento baseado nas variações em nível de cinza; o modelo Silhouette-Binary-Wavelet (SBW) captura o movimento baseado nas informações binárias da silhueta; o modelo Silhouette-Edge-Wavelet (SEW) captura o movimento baseado nas informações contidas na borda das silhuetas e o modelo Silhouette-Skeleton-Wavelet (SSW) captura o movimento baseado do esqueleto humano. As taxas de classificações corretas obtidas separadamente a partir destes quatro diferentes modelos são então combinadas utilizando-se uma nova técnica de fusão. Os resultados demonstram excelente desempenho e mostraram a viabilidade para reconhecimento de pessoas.
Title in English
Recognition method of human gait by fusion of features of the global movement
Keywords in English
Biometry
Fusion of characteristics
Gait analysis
Gait recognition
Global motion
Abstract in English
This paper proposes a novel computer vision approach that processes video sequences of people walking and then recognises those people by their gait. Human motion carries different information that can be analysed in various ways. The skeleton carries motion information about human joints, and the silhouette carries information about boundary motion of the human body. Moreover, binary and gray-level images contain different information about human movements. Our proposed method considers the set of the segmented frames of each individual as a distinct class and each frame as an object of this class. The methodology applies background extraction using the Gaussian Mixture Model (GMM), a scale reduction based on the Wavelet Transform (WT) and feature extraction by Principal Component Analysis (PCA). We propose four new schemas for motion information capture: the Silhouette-Gray-Wavelet model (SGW) captures motion based on grey level variations; the Silhouette-Binary-Wavelet model (SBW) captures motion based on binary information; the Silhouette-Edge-Binary model (SEW) captures motion based on edge information and the Silhouette-Skeleton-Wavelet model (SSW) captures motion based on skeleton movement. The classification rates obtained separately from these four different models are then merged using a new proposed fusion technique. The results suggest excellent performance in terms of recognising people by their gait.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Milene.pdf (6.48 Mbytes)
Publishing Date
2010-07-14
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.