• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.18.2018.tde-29052018-110550
Documento
Autor
Nombre completo
Alex Antonio Affonso
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2018
Director
Tribunal
Rodrigues, Evandro Luís Linhari (Presidente)
Boaventura, Maurilio
Gonzaga, Adilson
Marana, Aparecido Nilceu
Traina, Agma Juci Machado
Título en portugués
Reconhecimento facial em ambientes não controlados por meio do High-boost Weber Descriptor na região periocular
Palabras clave en portugués
HBWD
HBWLF
Localização dos olhos
MHBWLF
Reconhecimento facial
Visão computacional
Resumen en portugués
O reconhecimento facial automático é uma tarefa muito importante para a sociedade moderna, pois possibilita o desenvolvimento de diversas aplicações, tais como o controle de imigração em aeroportos, a autenticação de documentos, etc. Muitas destas aplicações ocorrem em ambientes não controlados, onde as fotos são obtidas com grandes variações de poses e expressões faciais, de iluminação, no uso de maquiagem e acessórios, etc. A tarefa de reconhecimento facial automático em ambientes não controlados é ainda muito desafiadora e tem sido alvo de muitas pesquisas no mundo todo nos últimos anos. Dentro deste contexto, esta tese propõe e implementa um conjunto de novos métodos que visam contribuir para o avanço do estado da arte relacionado a este tema de pesquisa. Inicialmente foi proposto o HBWLF, um filtro para enfatizar as componentes de alta frequência da imagem, sem eliminar as de baixa, realçando assim os diversos detalhes das imagens faciais. Em seguida foi proposta uma versão mais geral deste filtro, o MHBWLF, que considera uma vizinhança circular, ao invés de uma grade regular de 3x3 pixels. O MHBWLF foi aplicado em conjunto com um filtro MOSSE no desenvolvimento de um método para a localização precisa dos centros dos olhos. Aproveitando as características do MHBWLF e inspirado em outros descritores foi proposto um novo descritor, o HBWD. Por fim, foi introduzido um novo método de reconhecimento facial, baseado no HBWD. O método proposto emprega o HBWD para descrever densamente a região periocular e, a fim de reduzir a dimensão dos dados, foi proposto um algoritmo de mapeamento baseado no método de agrupamento k-Means++. Os métodos propostos foram todos avaliados utilizando-se imagens das bases LFW, FGLFW e BioID e os resultados experimentais obtidos mostram que os métodos propostos tem desempenho superior a vários outros métodos estado da arte.
Título en inglés
Face recognition under uncontrolled scenarios using the new High-Boost Weber Descriptor in the periocular region
Palabras clave en inglés
Computer vision
Eye localization
Face recognition
HBWD
HBWLF
MHBWLF
Resumen en inglés
The task of automatic face recognition is very important for modern society and very useful for many kind of applications, such as automatic recognition of credit card users, document authentication, security in big events and others. Further, this is a challenging task when performed in uncontrolled scenarios, which involve great variations in imaging conditions such as illumination, poses and facial expressions, partial occlusion due to hair or glasses, makeup, etc. This thesis first introduces the new High-Boost Weber Local Filter (HBWLF) that emphasizes high-frequency components, without eliminating the low-frequency ones, and thus enhances the details of a face. It is also introduced the new MHBWLF (Multiscale High-Boost Weber Local Filter), which is a multiscale version of HBWLF. A new method for precise eye localization is presented, where a MOSSE filter is used for learning the features enhanced by MHBWLF. This thesis also introduces a new local descriptor called HBWD (High-Boost Weber Descriptor) which combines some features of MHBWLF, SIFT and CS-LMP. Finally, a new method of face recognition is presented. The proposed method basically detects the faces, localizes their eyes and performs a face alignment. After that the region of interest (ROI) is more accurately cropped and described using the new HBWD in a dense sampling scheme (sampling each pixel). A new algorithm, based on the known clustering method k-Means++, reduces the dimensionality of the HBWD descriptors densely applied on each ROI, and produces a signature for the image pair being compared. Finally, a SVM is used to classify the images as a matched or mismatched pair. The proposed methods were evaluated using images from the well-known LFW, FGLFW and BioID databases and the experimental results show that the proposed methods outperform other state-of-the-art approaches.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Alex.pdf (6.59 Mbytes)
Fecha de Publicación
2018-07-13
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2019. Todos los derechos reservados.