• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.18.2016.tde-29072016-164415
Documento
Autor
Nome completo
Antonio Henrique Figueira Louro
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2016
Orientador
Banca examinadora
Gonzaga, Adilson (Presidente)
Cruvinel, Paulo Estevão
Ferrari, Ricardo José
Neves, Luiz Antônio Pereira
Rodrigues, Evandro Luis Linhari
Título em português
A suavização Gaussiana como método de marcação de características de fronteira entre regiões homogêneas contrastantes
Palavras-chave em português
Campos receptivos
Curvatura
Diferença de Gaussianas
Difusão
Entropia
Percepção de formas
Pontos dominantes
Visão
Resumo em português
Este trabalho mostra que a suavização Gaussiana pode exercer outra função além da filtração. Considerando-se imagens binárias, este processo pode funcionar como uma espécie de marcador, que modifica as feições das fronteiras entre duas regiões homogêneas contrastantes. Tais feições são pontos de concavidades, de convexidades ou de bordas em linha reta. Ou seja, toda a informação necessária para se caracterizar a forma bidimensional de uma região. A quantidade de suavização realizada em cada ponto depende da configuração preto/branco que compõe a vizinhança onde este se situa. Isto significa que cada ponto sofre uma quantidade particular de modificação, a qual reflete a interface local entre o objeto e o fundo. Então, para detectar tais feições, basta quantificar a suavização em cada ponto. No entanto, a discriminação pixel a pixel exige que a distribuição Gaussiana apresente boa localização, o que só acontece em escalas muito baixas (σ≅0,5). Assim, propõe-se uma distribuição construída a partir da soma de duas Gaussianas. Uma é bem estreita para garantir a boa localização e a outra possui abertura irrestrita para representar a escala desejada. Para confirmar a propriedade de marcação dessa distribuição, são propostos três detectores de corners de contorno, os quais são aplicados à detecção de pontos dominantes. O primeiro utiliza a entropia de Shannon para quantificar a suavização em cada ponto. O segundo utiliza as probabilidades de objeto e de fundo contidos na vizinhança observada. O terceiro utiliza a diferença entre Gaussianas (DoG) para determinar a quantidade suavizada, porém com a restrição de que uma das versões da imagem tenha suavização desprezível, para garantir a boa localização. Este trabalho se fundamenta na física da luz e na visão biológica. Os ótimos resultados apresentados sugerem que a detecção de curvaturas do sistema visual pode ocorrer na retina.
Título em inglês
The Gaussian smoothing as a method for marking boundary features between contrasting homogeneous regions
Palavras-chave em inglês
Curvature
Difference of Gaussians
Diffusion
Dominant points
Entropy
Receptive fields
Shape perception
Vision
Resumo em inglês
This work shows that the Gaussian smoothing can have additional function to filtration. Considering the binary images, this process can operate as a kind of marker that changes the features of the boundaries between two contrasting homogeneous regions. These features are points of concavities, convexities or straight edges, which are all the necessary information to characterize the two-dimensional shape of a region. The amount of smoothing performed at each point depends on the black/white configuration that composes the neighborhood where the point is located. This means that each point suffers a particular modification, which reflects the local interface between object and background. Thus, to detect such features, one must quantify the smoothing at each point. However, pixel-wise discrimination requires that the Gaussian distribution does not suffer flattening, which occurs in very low scales (σ≅0.5), only. Thus, it is proposed a distribution built from the sum of two Gaussians. One must be very narrow to ensure good localization, and the other is free to represent the desired scale. To confirm the property of marking, three boundary based corner detectors are proposed, which are applied to the detection of dominant points. The first uses the Shannon's entropy to quantify the smoothing at each point. The second uses the probabilities of object and background contained in the local neighborhood. The third uses the difference of Gaussians (DoG) to determine the amount of smoothing. This Work relies on the physics of light and biological vision. The presented results are good enough to suggest that the curvature detection, in visual system, occurs in the retina.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Louro.pdf (6.97 Mbytes)
Data de Publicação
2016-08-03
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.