• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.18.2012.tde-09052013-145839
Document
Author
Full name
Rodrigo Antonio Faccioli
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2012
Supervisor
Committee
Silva, Ivan Nunes da (President)
Ambrósio, Paulo Eduardo
Araújo, Alexandre Suman de
Caliri, Antonio
Delbem, Alexandre Cláudio Botazzo
Title in Portuguese
Implementação de um framework de computação evolutiva multi-objetivo para predição Ab Initio da estrutura terciária de proteínas
Keywords in Portuguese
Algoritmos evolutivos multi-objetivo
Framework
Predição da estrutura terciária de proteínas
Abstract in Portuguese
A demanda criada pelos estudos biológicos resultou para predição da estrutura terciária de proteínas ser uma alternativa, uma vez que menos de 1% das sequências conhecidas possuem sua estrutura terciária determinada experimentalmente. As predições Ab initio foca nas funções baseadas da física, a qual se trata apenas das informações providas pela sequência primária. Por consequência, um espaço de busca com muitos mínimos locais ótimos deve ser pesquisado. Este cenário complexo evidencia uma carência de algoritmos eficientes para este espaço, tornando-se assim o principal obstáculo para este tipo de predição. A optimização Multi-Objetiva, principalmente os Algoritmos Evolutivos, vem sendo aplicados na predição da estrutura terciária já que na mesma se envolve um compromisso entre os objetivos. Este trabalho apresenta o framework ProtPred-PEO-GROMACS, ou simplesmente 3PG, que não somente faz predições com a mesma acurácia encontrada na literatura, mas também, permite investigar a predição por meio da manipulação de combinações de objetivos, tanto no aspecto energético quanto no estrutural. Além disso, o 3PG facilita a implementação de novas opções, métodos de análises e também novos algoritmos evolutivos. A fim de salientar a capacidade do 3PG, foi então discorrida uma comparação entre os algoritmos NSGA-II e SPEA2 aplicados na predição Ab initio da estrutura terciária de proteínas em seis combinações de objetivos. Ademais, o uso da técnica de refinamento por Dinâmica Molecular é avaliado. Os resultados foram adequados quando comparado com outras técnicas de predições: Algoritmos Evolutivo Multi-Objetivo, Replica Exchange Molecular Dynamics, PEP-FOLD e Folding@Home.
Title in English
Implementation of multi-objective evolutionary framework for Ab Initio protein structure prediction
Keywords in English
Ab initio protein structure prediction
Framework
Multi-objective evolutionary algorithms
Abstract in English
The demand created by biological studies resulted the structure prediction as an alternative, since less than 1% of the known protein primary sequences have their 3D structure experimentally determined. Ab initio predictions focus on physics-based functions, which regard only information about the primary sequence. As a consequence, a search space with several local optima must be sampled, leading to insucient sampling of this space, which is the main hindrance towards better predictions. Multi-Objective Optimization approaches, particularly the Evolutionary Algorithms, have been applied in protein structure prediction as it involves a compromise among conicting objectives. In this paper we present the ProtPred-PEO-GROMACS framework, or 3PG, which can not only make protein structure predictions with the same accuracy standards as those found in the literature, but also allows the study of protein structures by handling several energetic and structural objective combinations. Moreover, the 3PG framework facilitates the fast implementation of new objective options, method analysis and even new evolutionary algorithms. In this study, we perform a comparison between the NSGA-II and SPEA2 algorithms applied on six dierent combinations of objectives to the protein structure. Besides, the use of Molecular Dynamics simulations as a renement technique is assessed. The results were suitable when comparated with other prediction methodologies, such as: Multi-Objective Evolutionary Algorithms, Replica Exchange Molecular Dynamics, PEP-FOLD and Folding@Home.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2013-05-16
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.