• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.18.2014.tde-13052014-110534
Documento
Autor
Nombre completo
Sergio Luis Yoneda
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2014
Director
Tribunal
Flauzino, Rogério Andrade (Presidente)
Kurokawa, Sérgio
Ulson, José Alfredo Covolan
Título en portugués
Análise hidrológica utilizando redes neurais para previsão de séries de vazões
Palabras clave en portugués
Estações fluviométricas
Inventários de rios
Redes neurais artificiais
Séries de vazões
Usinas hidrelétricas
Resumen en portugués
O estudo de inventário tem por objetivo estimar o potencial hidroelétrico de rios ou bacias, analisando várias alternativas propostas de partição de quedas, sendo que cada alternativa contém um conjunto de aproveitamentos hidroelétricos. Essas alternativas são então estudadas individualmente para definição da alternativa ótima, ou seja, a que tem melhor custo beneficio e ao mesmo tempo cause menos danos ambientais. Para essa análise necessitamos calcular a potência de cada aproveitamento específico, assim como a energia gerada, para isso então precisamos conhecer a vazão do rio em estudo, no local desses aproveitamentos. Como a vazão dos rios varia com o tempo, pois depende de variáveis como clima, geologia dos solos, desmatamento, entre outras, se recomenda usar nos cálculos séries longas de vazões médias com no mínimo 30 anos de dados, o problema é que em muitos casos não temos essas séries ou temos séries menores e incompletas, nesse caso então necessitamos estimar os valores ausentes e ruidosos utilizando os dados de estações fluviométricas próximas, para depois transportá-las para o aproveitamento em estudo, para isso utilizamos de técnicas estatísticas de correlação. A ideia nesse trabalho é de utilizarmos redes neurais artificiais ao invés das técnicas convencionais e comparar os resultados obtidos.
Título en inglés
Hydrologic analysis using Artificial Neural Networks for time series forecasting streamflow
Palabras clave en inglés
Artificial neural network
Hydroelectric power plants
Inventories of rivers
Stream flow series
Stream gauged stations
Resumen en inglés
The inventory study aims to estimate the hydropower potential of rivers or basins, analyzing several alternative proposals for partition of falls, each of which contains a set of alternative hydroelectric developments. These alternatives are then individually analyzed to define the optimal alternative, namely that which has the best cost benefit while causing less environmental damage. For this analysis we need to calculate the power of each specific use, as well as the energy generated for that then we need to know the flow of the river under study, the location of these usages. As the river flow varies with time because it depends on variables such as climate, geology, soils, deforestation, among others, we recommend using the long series of calculations mean flow at least 30 years of data, the problem is that in many cases we do not have these series or have smaller and incomplete series, in this case then we need to estimate the missing values and noisy data using next gauged stations, and then transport them to use in the study, for this we use statistical correlation techniques. The idea is that we use work instead of the conventional Artificial Neural Network techniques and compare the results.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Sergio.pdf (5.95 Mbytes)
Fecha de Publicación
2014-05-14
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.