• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.18.2014.tde-14032014-080118
Documento
Autor
Nombre completo
Regiane Denise Solgon Bassi
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2013
Director
Tribunal
Silva, Ivan Nunes da (Presidente)
Guido, Rodrigo Capobianco
Traina, Agma Juci Machado
Título en portugués
Identicação inteligente de patologias no trato vocal
Palabras clave en portugués
Distância Euclidiana
Patologias da laringe
Processamento de sinais
Redes neurais RBF
Resumen en portugués
Com base em exames como a videolaringoscopia, que é considerado um procedimento médico invasivo e desconfortável, diagnósticos têmsido realizados visando detectar patologias na laringe. Geralmente, esse tipo de exame é realizado somente com solicitação médica e quando alterações na fala já são marcantes, ou há sensação de dor. Nessa fase, muitas vezes a doença está em grau avançado, dificultando o seu tratamento. Com o objetivo de realizar um pré-diagnóstico computacional de tais patologias, este trabalho apresenta uma técnica não invasiva na qual são testados e comparados três classificadores: a Distância Euclidiana, a Rede Neural RBF com o kernel Gaussiano e a Rede Neural RBF com o kernel Gaussiano modificado. Testes realizados com uma base de dados de vozes normais e aquelas afetadas por diversas patologias demonstram a eficácia da técnica proposta, que pode, inclusive, ser implementada em tempo-real.
Título en inglés
Intelligent detection of pathologies in the vocal tract
Palabras clave en inglés
Euclidian distance
Larynx pathologies
RBF neural networks
Signal processing
Resumen en inglés
Based on examinations such as laryngoscopy, which is considered an invasive and uncomfortable procedure, diagnosis have been performed aiming at the detection of larynx pathologies. Usually, this type of test is carried out upon medical request and when the speech changes are notable or are causing pain. At this point, the disease is possibly at an advanced degree, complicating its treatment. In order to perform a computational pre-diagnosis of such conditions, this work proposes a noninvasive technique in which three classifiers are tested and compared: the Euclidean distance, the RBF Neural Network with the Gaussian kernel and RBF Neural Network with a modified Gaussian kernel. Tests carried out with a database of normal voices and those affected by various pathologies demonstrate the effectiveness of the technique that may even be implemented to work in real time.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Regiane.pdf (570.30 Kbytes)
Fecha de Publicación
2014-03-25
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.