• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.18.2012.tde-16032012-152801
Document
Auteur
Nom complet
Antonio José Homsi Goulart
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2012
Directeur
Jury
Maciel, Carlos Dias (Président)
Guido, Rodrigo Capobianco
Shinoda, Ailton Akira
Titre en portugais
Classificação automática de gênero musical baseada em entropia e fractais
Mots-clés en portugais
Classificação automática de gênero musical
Entropia baseada em wavelet
GMM
Lacunaridade
SVM
Resumé en portugais
A classificação automática de gênero musical tem como finalidade o conforto de ouvintes de músicas auxiliando no gerenciamento das coleções de músicas digitais. Existem sistemas que se baseiam em cabeçalhos de metadados (tais como nome de artista, gênero cadastrado, etc.) e também os que extraem parâmetros dos arquivos de música para a realização da tarefa. Enquanto a maioria dos trabalhos do segundo tipo utilizam-se do conteúdo rítmico e tímbrico, este utiliza-se apenas de conceitos da teoria da informação e da geometria de fractais. Entropia, lacunaridade e dimensão do fractal são os parâmetros que treinam os classificadores. Os testes foram realizados com duas coleções criadas para este trabalho e os resultados foram proeminentes
Titre en anglais
Automatic music genre classification based on entropy and fractals
Mots-clés en anglais
Automatic music genre classification
GMM
Lacunarity
SVM
Wavelet based entropy
Resumé en anglais
The goal of automatic music genre classification is givingmusic listeners ease and confort when managing digital music databases. Some systems are based on tags of metadata (such as artist name, genre labeled, etc.), while others explore characteristics from the music files to complete the task. While the majority of works of the second type analyse rhytmic, timbric and pitch content, this one explores only information theoretic and fractal geometry concepts. Entropy, fractal dimension and lacunarity are the parameters adopted to train the classifiers. Tests were carried out on two databases assembled by the author. Results were prominent
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Agoulart.pdf (2.85 Mbytes)
Date de Publication
2012-03-27
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.