• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
Document
Author
Full name
Guilherme Serpa Sestito
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2018
Supervisor
Committee
Brandão, Dennis (President)
Lugli, Alexandre Baratella
Mossin, Eduardo André
Silva, Maíra Martins da
Spatti, Danilo Hernane
Title in Portuguese
Método para detecção de anomalias em tráfego de redes Real Time Ethernet aplicado em PROFINET e em SERCOS III
Keywords in Portuguese
Real Time Ethernet
Support Vector Machine
Extração de características
Otimização
PROFINET
Redes Neurais Artificiais
Seleção de características
SERCOS III
Abstract in Portuguese
Esta tese propõe uma metodologia de detecção de anomalias por meio da otimização da extração, seleção e classificação de características relacionadas ao tráfego de redes Real Time Ethernet (RTE). Em resumo, dois classificadores são treinados usando características que são extraídas do tráfego por meio da técnica de janela deslizante e posteriormente selecionadas de acordo com sua correlação com o evento a ser classificado. O número de características relevantes pode variar de acordo com os indicadores de desempenho de cada classificador. Reduzindo a dimensionalidade do evento a ser classificado com o menor número de características possíveis que o represente, são garantidos a redução do esforço computacional, ganho de tempo, dentre outros benefícios. Posteriormente, os classificadores são comparados em função dos indicadores de desempenho: acurácia, taxa de falsos positivos, taxa de falsos negativos, tempo de processamento e erro relativo. A metodologia proposta foi utilizada para identificar quatro diferentes eventos (três anomalias e o estado normal de operação) em redes PROFINET reais e com configurações distintas entre si; também foi aplicada em três eventos (duas anomalias e o estado normal de operação) em redes SERCOS III. O desempenho de cada classificador é analisado em suas particularidades e comparados com pesquisas correlatas. Por fim, é explorada a possibilidade de aplicação da metodologia proposta para outros protocolos baseados em RTE.
Title in English
Method for detecting traffic anomalies of Real Time Ethernet networks applied to PROFINET and SERCOS III
Keywords in English
Artificial Neural Networks
Feature Extraction
Feature Selection
Optimization
PROFINET
Real Time Ethernet
Support Vector Machine
Abstract in English
This thesis proposes an anomaly detection methodology by optimizing extraction, selection and classification of characteristics related to Real Time Ethernet (RTE) network traffic. In summary, two classifiers are trained using features which are extracted from network traffic through the sliding window technique and selected according to their correlation with the event being classified. The number of relevant characteristics could vary according to performance indicators of each classifier. Reducing the dimensionality of the event to be classified using the smallest number of characteristics which represent it, guarantees reduction in computational effort, processing time, among other benefits. The classifiers are compared according to performance indicators: accuracy, false positive rate, false negative rate, processing time and relative error. The proposed methodology was used to identify four different events (three anomalies and normal operation) in real PROFINET networks, using different configurations. It was also applied in 3 events (two anomalies and normal operation) in SERCOS III networks. The results obtained are analyzed in its particularities and compared with related research. Finally, the possibility of applying the proposed methodology for other protocols based on RTE is explored.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Guilherme.pdf (4.70 Mbytes)
Publishing Date
2019-10-03
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.