• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.18.2012.tde-26092012-093155
Document
Author
Full name
Marcelo Patricio de Santana
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2012
Supervisor
Committee
Monteiro, José Roberto Boffino de Almeida (President)
Oliveira Junior, Azauri Albano de
Serni, Paulo José Amaral
Title in Portuguese
Estratégias para identificação de faltas externas e controle do gerador de indução duplamente alimentado
Keywords in Portuguese
Controle em condições de falta
Gerador de indução duplamente alimentado
Identificação de faltas
Redes neurais artificiais
Sistemas inteligentes
Transformada rápida de Fourier
Abstract in Portuguese
O presente trabalho desenvolve uma topologia de controle para o gerador de indução duplamente alimentado (GIDA) em condições normais e em condições de falta monofásica. O sistema de controle é dividido em três partes principais: sistema de identificação de faltas, controle em condições normais e controle em condições de falta monofásica. A primeira parte, o sistema de identificação (SI) de faltas, é responsável pela seleção da topologia de controle da máquina. O SI é composto por uma combinação entre redes neurais artificiais (RNA) e a Fast Fourier Transform (FFT). As RNA são responsáveis pela identificação do estado atual da rede, se possui falta ou não. Os dados de entrada das RNA são as correntes de linha do estator que passam por um pré-processamento por meio da FFT. Alguns conteúdos harmônicos de saída da FFT irrelevantes no processo de identificação são eliminados por um método similar ao Principal Components Analysis (PCA). A segunda parte do trabalho é o controle em condições normais, sendo ativado quando o SI aponta a ausência de faltas. A topologia de controle vetorial é utilizada nesta condição para manter a tensão e frequência constante com a velocidade mecânica do eixo variável. A última parte do trabalho é o controle em condições adversas, que é ativado quando o SI detecta uma falta monofásica. A topologia de controle nesta condição utiliza as transformações ortogonais para reduzir o fluxo concatenado no enrolamento do estator com falta. A utilização deste novo controle reduz a corrente do estator quando comparado com o controle vetorial em condições de falta, sendo que a tensão do estator nas fases sem falta é mantida dentro de uma faixa de operação. O trabalho possui resultados de simulação das três principais partes do sistema de controle. Primeiramente, resultados do controle vetorial de tensão e frequência do GIDA sob condições de velocidade do eixo variável e cortes de carga são apresentados. Logo após, apresenta-se os resultados do SI na identificação de faltas monofásicas na fase B e o seu comportamento sob condições adversas como desequilíbrio de carga e cortes de cargas. Finalmente, alguns resultados do controle em condições de falta sobre uma falta fase-neutro na fase B são apresentados.
Title in English
Strategies for fault intentification and control of the doubly fed induction generator
Keywords in English
Control under fault conditions
Doubly-fed induction machine
Fast Fourier Transform
Fault identification
Inteligent system
Neural artificial networks
Abstract in English
This paper presents a control topology for doubly fed induction generator (DFIG) in normal and single fault conditions. The control system is divided into three main parts: fault identification system, control in normal condition and control in single fault conditions. In the first part, the system of identification (SI) is responsible for selecting the topology of the control. The SI is composed by a combination of artificial neural networks (ANN) and Fast Fourier Transform (FFT). The ANN is responsible for identifying the current state of the grid, if has fault or not. The inputs of the ANN are stator currents line through of a pre-processing by means of FFT. Some harmonic contents are irrelevant in the identification process and they are eliminated by a method similar to Principal Components Analysis (PCA). The second part of the paper is the control under normal conditions, activated when the SI indicates the absence of faults. The topology of vector control in this condition is used to maintain the voltage and frequency constant, where the speed of the mechanical axis variable. The last part of the work is the control in adverse conditions, which is activated when the SI detects a singlephase fault. The control topology in this condition uses the orthogonal transformations to reduce the mutual flux in the stator winding with fault. The use of this new control reduces the stator current as compared to vector control in fault conditions, and the stator voltage in the stages without fault is maintained within an operating range. The paper has simulation results of three main parts of the control system. First, the results of the vector control voltage and frequency of DFIG under conditions of variable shaft speed and load sections are provided. Soon after, the results of the SI in identifying faults in the phase B under conditions such as load imbalance and cutting loads are shown. Finally, some results of control in fault condition in the phase B are shown.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2012-09-28
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.