• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.18.2018.tde-06072018-112756
Document
Author
Full name
Ellen Cristina Ferreira
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2018
Supervisor
Committee
Asada, Eduardo Nobuhiro (President)
Alberto, Luís Fernando Costa
Alves, Antônio César Baleeiro
Costa, Geraldo Roberto Martins da
Romero Lázaro, Rubén Augusto
Title in Portuguese
Fluxo de potência ótimo multiobjetivo com restrições de segurança e variáveis discretas
Keywords in Portuguese
DEEPSO
Discretização
EPSO
Fluxo de potência ótimo
Metaheurísticas
Restrições de segurança
Abstract in Portuguese
O presente trabalho visa a investigação e o desenvolvimento de estratégias de otimização contínua e discreta para problemas de Fluxo de Potência Ótimo com Restrições de Segurança (FPORS) Multiobjetivo, incorporando variáveis de controle associadas a taps de transformadores em fase, chaveamentos de bancos de capacitores e reatores shunt. Um modelo Problema de Otimização Multiobjetivo (POM) é formulado segundo a soma ponderada, cujos objetivos são a minimização de perdas ativas nas linhas de transmissão e de um termo adicional que proporciona uma maior margem de reativos ao sistema. Investiga-se a incorporação de controles associados a taps e shunts como grandezas fixas, ou variáveis contínuas e discretas, sendo neste último caso aplicadas funções auxiliares do tipo polinomial e senoidal, para fins de discretização. O problema completo é resolvido via meta-heurísticas Evolutionary Particle Swarm Optimization (EPSO) e Differential Evolutionary Particle Swarm Optimization (DEEPSO). Os algoritmos foram desenvolvidos utilizando o software MatLab R2013a, sendo a metodologia aplicada aos sistemas IEEE de 14, 30, 57, 118 e 300 barras e validada sob os prismas diversidade e qualidade das soluções geradas e complexidade computacional. Os resultados obtidos demonstram o potencial do modelo e estratégias de resolução propostas como ferramentas auxiliares ao processo de tomada de decisão em Análise de Segurança de redes elétricas, maximizando as possibilidades de ação visando a redução de emergências pós-contingência.
Title in English
Multiobjective security constrained optimal power flow with discrete variables
Keywords in English
DEEPSO
Discretization
EPSO
Metaheuristics
Optimum power flow
Security constraints
Abstract in English
The goal of the present work is to investigate and develop continuous and discrete optimization strategies for SCOPF problems, also taking into account control variables related to in-phase transformers, capacitor banks and shunt reactors. Multiobjective optimization model is formulated under a weighted sum criteria whose objectives are the minimization of active power losses and an additional term that yields a greater reactive support to the system. Controls associated with taps and shunts are modeled either as fixed quantities, or continuous and discrete variables, in which case auxiliary functions of polynomial and sinusoidal types are applied for discretization purposes. The complete model is solved via EPSO and DEEPSO metaheuristics. Routines coded in Matlab were applied to the IEEE 14,30, 57, 118 and 300-bus test systems, where the method was validated in terms of diversity and quality of solutions and computational complexity. The results demonstrate the robustness of the model and solution approaches and uphold it as an effective support tool for the decision-making process in Power Systems Security Analysis, maximizing preventive actions in order to avoid insecure operating conditions.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Ellen.pdf (8.99 Mbytes)
Publishing Date
2018-07-17
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.