• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.18.2016.tde-16112016-155901
Documento
Autor
Nome completo
Felipe José de Carvalho
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2016
Orientador
Banca examinadora
Altafim, Ruy Alberto Corrêa (Presidente)
Carneiro, AntÔnio Adilton Oliveira
Chinaglia, Dante Luis
Título em português
Circuitos elétricos equivalentes para polímeros piezoelétricos termo-formados
Palavras-chave em português
Circuitos elétricos equivalentes
Piezoeletretos
Polímeros piezoelétricos
Transdutores piezoelétricos
Resumo em português
Os circuitos ou modelos elétricos equivalentes destinam-se à modelagem de transdutores piezoelétricos, incluindo todo seu comportamento eletromecânico. Os modelos elétricos convencionais e clássicos foram elaborados inicialmente para materiais cerâmicos e cristalinos e só posteriormente adaptados para a simulação de polímeros piezoelétricos. Seguindo estes estudos, este trabalho apresenta um circuito elétrico equivalente para transdutores construídos com a tecnologia dos piezoeletretos termo-formados, desenvolvida no Grupo de Alta Tensão e Materiais da Escola de Engenharia de São Carlos (EESC-USP). Este circuito, baseado em um modelo proposto por Fiorillo (2000) para simular um transdutor curvo de fluoreto de polivinilideno (PVDF), foi aprimorado para melhor representar o comportamento em baixas frequências. Nele existem dois ramos: um mecânico e um elétrico. Os parâmetros do ramo mecânico foram calculados nas proximidades da frequência de ressonância das amostras, enquanto que os componentes do ramo elétrico foram determinados pelos ajustes das curvas de condutância e de susceptância para frequências distantes da ressonância. Esta etapa compreendeu o desenvolvimento de um algoritmo baseado na taxa de variação da condutância pela frequência, o qual permitiu determinar um método para separação do espectro de frequência em uma região próxima e outra distante da frequência de ressonância. Após a determinação de todos os parâmetros do modelo elétrico, circuitos para simulação no software Pspice foram elaborados para cada transdutor. Os resultados das simulações da condutância, da susceptância, do módulo da impedância e do ângulo de fase dos circuitos mostraram relevante concordância com as medições quando comparados grafica e numericamente. Esta última análise foi feita através da expressão de erro relativo percentual médio. Neste trabalho, empregou-se a metodologia fundamentada nas medidas da condutância e da susceptância de diferentes amostras, incluindo filmes de polipropileno (PP), de PVDF e de piezoeletretos de canais tubulares abertos de Teflon®FEP.
Título em inglês
Equivalent electric circuits for thermo-formed piezoelectric polymers
Palavras-chave em inglês
Equivalent electric circuits
Piezoelectrets
Piezoelectric polymers
Piezoelectric transducers
Resumo em inglês
Equivalent electric circuits or models are regularly employed in piezoelectric transducers modeling, including its electromechanical behavior. Conventional and classic electric models were initially developed for ceramic and crystalline materials and later adapted for simulating piezoelectric polymers. Following these studies, this work presents an equivalent electric circuit for transducers built with the piezoelectret thermo-formed technology, developed by the High Voltage and Materials Group of São Carlos Engineering School (EESC-USP). This circuit, based on a model proposed by Fiorillo (2000) for simulating a curved polyvinylidene fluoride (PVDF) transducer, was improved to represent the behavior at low frequencies. There are two branches in this circuit: a mechanical and an electrical branches. The mechanical branch parameters were calculated in the vicinity of the resonance frequency, whereas the components of the electrical branch were determined by conductance and susceptance curves fittings for frequencies far from resonance. This stage included the development of an algorithm based on the rate of change of conductance, which allowed determining a method to separate the frequency spectrum in near resonance and far from resonance. After determining all parameters, electrical circuits were designed to perform simulations using Pspice software. The results for conductance, susceptance, impedance magnitude and phase angle simulations presented relevant agreement with measurements when compared graphically and numerically. This latter analysis was done by error relative expression. In this work, the methodology was based on conductance and susceptance measurements for different samples, including porous polypropylene (PP), PVDF and Teflon®FEP piezoelectrets with open-tubular channels films.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Felipe.pdf (2.72 Mbytes)
Data de Publicação
2016-11-18
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2021. Todos os direitos reservados.