• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.18.2016.tde-29072016-164050
Documento
Autor
Nombre completo
Gerson Bessa Gibelli
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2016
Director
Tribunal
Oleskovicz, Mário (Presidente)
Fernandes, Ricardo Augusto Souza
Ferreira Filho, Anésio de Leles
Silva, Ivan Nunes da
Vasconcellos, Arnulfo Barroso de
Título en portugués
Metodologia para diagnóstico e análise da influência dos afundamentos e interrupções de tensão nos motores de indução trifásicos
Palabras clave en portugués
Correlação cruzada
Função densidade de probabilidade
Motor de indução trifásico
Qualidade da energia elétrica
Rede neural artificial
Sistema elétrico industrial
Transformada Wavelet
Resumen en portugués
Nesta pesquisa, é proposta uma metodologia para detectar e classificar os distúrbios observados em um Sistema Elétrico Industrial (SEI), além de estimar de forma não intrusiva, o torque eletromagnético e a velocidade associada ao Motor de Indução Trifásico (MIT) em análise. A metodologia proposta está baseada na utilização da Transformada Wavelet (TW) para a detecção e a localização no tempo dos afundamentos e interrupções de tensão, e na aplicação da Função Densidade de Probabilidade (FDP) e Correlação Cruzada (CC) para a classificação dos eventos. Após o processo de classificação dos eventos, a metodologia como implementada proporciona a estimação do torque eletromagnético e a velocidade do MIT por meio das tensões e correntes trifásicas via Redes Neurais Artificiais (RNAs). As simulações computacionais necessárias sobre um sistema industrial real, assim como a modelagem do MIT, foram realizadas utilizando-se do software DIgSILENT PowerFactory. Cabe adiantar que a lógica responsável pela detecção e a localização no tempo detectou corretamente 93,4% das situações avaliadas. Com relação a classificação dos distúrbios, o índice refletiu 100% de acerto das situações avaliadas. As RNAs associadas à estimação do torque eletromagnético e à velocidade no eixo do MIT apresentaram um desvio padrão máximo de 1,68 p.u. e 0,02 p.u., respectivamente.
Título en inglés
Methodology for the diagnosis and analysis of influence of voltage sags and interruptions in three-phase induction motors
Palabras clave en inglés
Artificial neural network
Cross correlation
Industrial electrical system
Power quality
Probability density function
Three-phase induction motor
Wavelet transform
Resumen en inglés
This study proposes a methodology to detect and classify the disturbances observed in an Industrial Electric System (IES), in addition to, non-intrusively, estimate the electromagnetic torque and speed associated with the Three-Phase Induction Motor (TPIM) under analysis. The proposed methodology is based on the use of the Wavelet Transform WT) for the detection and location in time of voltage sags and interruptions, and on the application of the Probability Density Function (PDF) and Cross Correlation (CC) for the classification of events. After the process of events classification, the methodology, as implemented, provides the estimation of the electromagnetic torque and the TPIM speed through the three-phase voltages and currents via Artificial Neural Networks (ANN). The necessary computer simulations of a real industrial system, as well as the modeling of the TPIM, were performed by using the DIgSILENT PowerFactory software. The logic responsible for the detection and location in time correctly detected 93.4% of the assessed situations. Regarding the classification of disturbances, the index reflected 100% accuracy of the assessed situations. The ANN associated with the estimation of the electromagnetic torque and speed at the TPIM shaft showed a maximum standard deviation of 1.68 p.u. and 0.02 p.u., respectively.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Gerson.pdf (6.48 Mbytes)
Fecha de Publicación
2016-08-03
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.