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Resumo 
 

CELINO, D. R. Modelos Compactos de Diodos de Tunelamento Ressonante.  2024.  
174 f. Tese de Doutorado – Escola de Engenharia de São Carlos, Universidade de São 
Paulo, São Carlos, 2024. 

Devido à crescente demanda por tecnologias capazes de operar na faixa de 

frequência de Terahertz (THz) o Diodo de Tunelamento Ressonante (RTD) teve seu 

interesse renovado por parte da comunidade acadêmica. O RTD é considerado um 

candidato promissor para aplicações digitais e analógicas, devido à sua característica 

intrínseca de resistência diferencial negativa (NDR), alta velocidade de comutação e 

requisitos de design flexíveis.     

Neste cenário, esta tese de doutorado trata da modelagem compacta e analítica da 

característica corrente-tensão (I-V) de diodos de tunelamento ressonante de dupla barreira 

de potencial. Com este propósito, é necessário inicialmente calcular os níveis de energia 

dos auto-estados do poço quântico de altura finita, presente nas estruturas semicondutoras 

de RTDs. Todavia, a determinação de níveis de energia, para poços quânticos finitos, 

somente é possível por meio da resolução de equações transcendentais ou por algum tipo 

de solução numérica, não permitindo, portanto, solução analítica exata. Desta forma 

foram desenvolvidas soluções aproximadas totalmente analíticas para o cálculo dos níveis 

de energia em poços quânticos retangulares de altura finita, simétricos e assimétricos, 

sendo verificada excelente concordância. 

Em seguida, tendo como ponto de partida o formalismo de Tsu-Esaki para 

descrever o transporte de portadores no RTD, considerou-se a distribuição geral do 

potencial elétrico no dispositivo semicondutor, incluindo a formação das regiões de carga 

espacial de acumulação no emissor, armazenamento de carga no poço quântico e 

formação de uma região depleção no coletor. Além disso, considerou-se o espalhamento 

experimentado pelos portadores durante o processo de tunelamento através da região de 

dupla barreira de potencial. 

O modelo I-V desenvolvido contempla dois casos distintos. O primeiro caso 

descreve o tunelamento ressonante de elétrons em RTDs, nos quais, devido as 

características físicas, paramétricas e geométricas do dispositivo, a região do emissor 

apresenta densidade de estados tridimensional (3D) para os elétrons. O segundo caso 
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ocorre especialmente em RTDs com camadas espaçadoras com baixo nível de dopagem. 

Neste caso, forma-se no RTD uma região de acumulação, adjacente a região de dupla 

barreira, na qual os elétrons no emissor estão sujeitos a uma densidade de estado 

bidimensional (2D).   

De posse do modelo analítico para o cálculo dos níveis de energia em poço 

quântico e do modelo desenvolvido para descrever a distribuição do perfil de potencial 

elétrico no RTD, foram desenvolvidos modelos compactos de característica I-V de RTDs 

3D-2D e 2D-2D. Desta forma, este trabalho contribui para a modelagem compacta dos 

RTDs, com vistas ao futuro projeto de circuitos empregando estes dispositivos e 

considerando os principais fenômenos físicos relevantes na descrição das suas 

características elétricas e obtendo modelos totalmente analíticos e explícitos. Os modelos 

desenvolvidos foram validados com dados experimentais e numéricos e fornecendo 

concordância muito boa. 

    Palavras-chave: diodo de tunelamento ressonante, modelo compacto, poço quântico, 

nanoeletrônica, RTD 2D-2D, RTD 3D-2D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvii 
 

Abstract 

CELINO, D. R. Compact Models of Resonant Tunneling Diodes.  2024.  174 p. 
Doctoral Thesis – São Carlos School of Engineering, University of São Paulo, São Carlos, 
2024. 

Due to the growing demand for technologies capable of operating in the Terahertz 

(THz) frequency range, the Resonant Tunneling Diode (RTD) has attracted renewed 

interest from the academic community. RTD is a promising candidate for digital and 

analog applications due to its intrinsic negative differential resistance (NDR) 

characteristics, high switching speed, and flexible design requirements. 

In this framework, this doctoral thesis deals with the compact modeling of the 

current-voltage (I-V) characteristics of double potential barrier resonant tunneling diodes. 

For this purpose, it is initially necessary to calculate the energy levels of the eigenstates 

for the quantum well of finite height present in the semiconductor structures of RTDs. 

However, determining energy levels for finite quantum wells is only possible through the 

resolution of transcendental equations using some numerical routine, thereby not 

allowing an exact analytical solution. Thus, fully analytical approximate solutions were 

developed to calculate energy levels in rectangular quantum wells of finite height, 

symmetric and asymmetric, with excellent agreement to exact solutions. 

Next, taking the Tsu-Esaki formalism as a starting point to describe carrier 

transport in the RTD, we consider the general distribution of the electrical potential in the 

semiconductor device, including the formation of the accumulation and depletion space 

charge regions, as well as the charge in the quantum well. Furthermore, the scattering 

experienced by the carriers during the tunneling process through the double potential 

barrier region was also considered. 

The I-V model developed encompasses two distinct cases. The first case describes 

RTDs, in which, due to the physical, parametric and geometric characteristics of the 

device, electrons in the emitter have a three-dimensional (3D) density of states. The 

second case occurs particularly in RTDs employing spacer layers with low doping levels. 

In this case, the accumulation layer formed in the RTD, adjacent to the double barrier 

region, is such that the electrons in the emitter have a two-dimensional (2D) density of 

states 
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With the analytical model to calculate energy levels in a quantum well and the 

model developed to describe the distribution of the electrical potential profile in the RTD, 

compact I-V characteristic models of RTDs 3D-2D and 2D-2D were proposed. In this 

way, this work contributes to the compact modeling of RTDs, aiming to help on the design 

of integrated circuits using these devices and taking into account the main physical 

phenomena relevant in the description of the electrical characteristics of the RTD, thus 

obtaining fully analytical and explicit models. The developed models were validated with 

experimental and numerical data, providing very good agreement. 

     Keywords: resonant tunneling diode, compact model, quantum well, nanoelectronics, 

RTD  2D-2D, RTD  3D-2D  
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Chapter 1

Introduction

1.1 Brief Historical Account

Quantum tunneling is a physical phenomenon described by quantum mechanics in which

a subatomic particle crosses a potential barrier despite having a kinetic energy lower than the

barrier height. Such a phenomenon is prohibited by the laws of classical mechanics, where

overcoming a potential barrier by a particle requires sufficient kinetic energy to do so, that is,

energy greater than the barrier height [1]­ [3].

Radioactivity, discovered in 1896 by H. Becquerel, was the basis for developing the theory

of quantum tunneling, mainly from the investigation of the decay of alpha particles [4]. As

early as 1900, Rutherford introduced the idea of the half­life of radioactive elements, that is, the

time it takes for a sample of radioactive material to have its atomic mass reduced by half [5].

In 1905, Schweidler demonstrated that the decay time of a nucleus of radioactive material can

only be estimated statistically [6].

In this context, the phenomenon of quantum tunneling was first observed in 1927 by F.

Hund [7]. When investigating the spectra of certain molecules, Hund observed that, in the

specific case of a double well of quantum potential, the superposition of even and odd states

results in a state that allows the tunneling of a subatomic particle from one well to the other [7].

This phenomenon was also observed in the same year independently by L. Mandelstam and M.

Leontovich when they analyzed the implications of the formalism proposed by Schrödinger for

a particle in a potential well with finite height [8].
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One of the first applications of the wave formalism developed by Schrödinger consisted of

the mathematical description for the decay of alpha particles, developed in 1928 by G. Gamow

[9]­ [10]. To explain the decay of alpha particles, Gamow solved the Schrödinger equation with

an effective continuous potential that contemplates the interior and exterior of the nucleus, to

which he imposed the boundary conditions for the outbound wave function [9]­ [10]. Thus,

in Gamow’s formalism, the alpha particle must tunnel through the effective potential barrier

to escape the nucleus. M. Born noted that the idea of tunneling presented by Gamow was not

only applicable to nuclear physics but also to an intrinsic, general characteristic that should be

present in other physical systems. Born realized that the cold emission of electrons from a metal

surface may be another example of this phenomenon. With this assumption, Born generalized

the phenomenon of quantum tunneling, not restricted to nuclear physics but a general result of

quantum mechanics that applies to many different systems [3], [11].

Independently of Gamow, R. Gurney and E. Condon formalized a quantum tunneling­

based explanation for alpha particle decay [12]. Gurney and Condon simultaneously solved

the Schrödinger equation for a nuclear potential model and derived a relationship between par­

ticle half­life and emission energy, which is directly dependent on the tunneling probability

coefficient.

A classic work on tunneling was published in 1928 by Oppenheimer, in which the author

proposes a probabilistic quantum explanation for certain aperiodic phenomena, such as the

scattering of alpha particles [13]. At the same time, Gurney formulated resonant tunneling,

trying to explain how a particle with energy equal to one of the nucleus’s self­energies can

easily penetrate the potential barrier [14].

As far as solid­state devices are concerned, from the 1920s to the 1940s, there were many

attempts to relate the electrical current in a metal­semiconductor rectifier device to the phe­

nomenon of electron tunneling in solids [3]. In 1928, Fowler and Nordheim [15] developed a

theory, based on the cold emission model, to describe the electron emission from the metal in

a vacuum at low temperatures and subjected to intense electric fields. Later, Fowler and Nord­

heim derived an accurate expression for current density considering the probability of electrons

tunneling through the potential barrier between the metal surface and the vacuum [15]. An

excellent historical review of the earliest days of quantum tunneling can be found in [8].
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After the invention of the transistor in 1947, electron tunneling returned to attract the interest

of many researchers. By 1950, the fabrication of thin layers of semiconductors such as Ge and

Si had advanced to the point where it was possible to manufacture semiconductor devices with

satisfactory electric output characteristics [16].

In 1957, Esaki proposed the so­called tunnel diode, also known as the Esaki diode [17]. The

tunnel diode is named after the inter­band tunneling between the valence and conduction bands.

The device is composed of a heavily doped PN­junction. When investigating the proposed

tunnel diode, Esaki and coworkers observed a physical phenomenon called negative differential

resistance (NDR). Basically, as the applied bias increases, the current density decreases, which

characterizes the NDR. The Esaki diode has applications in microwave technology and can be

used as a frequency converter, oscillator and receiver [18]. However, its low power output limits

the applications of the device.

Next, in 1964, Iogansen [19] theoretically investigated the control of resonant quantum tun­

neling by applying voltage in double potential barrier structures formed by layers of dielectrics

in a metallic conductor [19]. In addition, throughout the 1960s, there was great research interest

in quantum tunneling between superconductors and metals [20] and between superconductors

separated by thin insulating layers [21].

Later, in 1970, Esaki and Tsu [22] proposed a novel type of one­dimensional periodic poten­

tial – an artificial superlattice. This structure consists of alternating sequence potential barriers

and quantum wells formed by the successive deposition of different semiconductor layers or

by the periodic variation of the alloy composition, such as the alloy Al Ga1¡ As. In the arti­

cle [22], the authors demonstrated that, when biasing the structure, the current­voltage (I–V)

characteristics show an NDR similar to the one observed in the tunnel diodes [22]. However, un­

like the tunnel diode, the negative resistance in superlettice originates from intra­band resonant

tunneling.

During the 1970s, advances in epitaxial growth technologies such as MBE (Molecular Beam

Epitaxy) and MOCVD (Metalorganic Chemical Vapor Deposition) increasingly allowed the

growth of semiconductor heterostructures with a high level of precision and low density of un­

wanted impurities [23]. Thus, it became feasible to manufacture semiconductor structures with

one or more dimensions comparable to the de Broglie wavelength, giving rise to quantization
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phenomena. As a consequence, the physical properties of these reduced dimensionality struc­

tures are governed by quantum mechanics. In general, features associated with the carrier’s

wave nature reveal many macroscopic quantum effects [24]. With technological maturity, it

was possible to manufacture structures based on III­V semiconductors and their respective al­

loys, since there are many material systems with compatible lattice parameters, for instance,

GaAs/AIGaAs, InGaAs/InP, and InGaAs/AlInAs.

L. Esaki, I. Giaever and B. Josephson were awarded with the Nobel Prize, in 1973, because

of their work on quantum tunneling [25]. Since then, many devices based on quantum tunneling

have been proposed in the literature: a prominent example is the Double Barrier Resonant

Tunneling Diode (DB­RTD).

1.2 The Resonant Tunneling Diode (RTD)

By using the current technology fabrication process, it is possible to manufacture semicon­

ductor structures with characteristic features of a few tens of Angströns. One of these popular

structures is the quantum wire. Theoretically, the concept of a quantum wire was pioneered by

Sakaki in 1980 [26], but, only in the 1990s, did these structures become technologically feasi­

ble, due to the improvement in material growth techniques. In these structures, the electronic

confinement is two­dimensional, while, the carriers are free to move in the remaining dimen­

sion, reducing the scattering effects and allowing the production of ultra­fast devices [27]­ [30].

Another structure in which quantum effects can be macroscopically observed is the super­

lattice [22], [31]. Theoretically, the superlattice is formed by an infinite periodic structure of

barriers and quantum wells, with a period shorter than the electron mean free path [31]. How­

ever, realistic structures comprise a finite number of periods with alternating semiconductor

layers. Also, the electron mean free path in these realistic structures is relatively short. More­

over, heavily doped interfaces between the superlattice and terminal electrodes, including ohmic

contacts, are unavoidable [31]. Under these circumstances, the transport properties between the

terminal electrodes through the undoped periodic structure can be determined by considering

the multi­barrier tunneling under bias voltage application [31]. This formalism takes into ac­

count two important quantum effects: quantum confinement and quantum tunneling. Also, the
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superlattice form coupled electronic states inducing numerous quantum effects, such as quan­

tum Hall effect, Bloch oscillations and negative resistance [32].

Among these heterostructure devices are resonant tunneling devices, such as RTD [33],

which are characterized by the non­linearity in the current­voltage characteristic. In this con­

text, the negative differential resistance of RTDs allows its deployment as an oscillator circuit.

There are also applications in logic circuits and memory devices. Currently, resonant tunneling

structures have a high degree of technological maturity, in which a large number of fabricated

devices operate at room temperature [27]­ [30], [34]­ [47]. Fig. (1.1) shows a schematic il­

lustration of a double potential barrier RTD composed of the GaAs/AlGaAs heterostructure,

containing the different semiconductor layers and the conduction band profile.

Figure 1.1: A schematic illustration of a typical bulk resonant tunneling diode structure depicting the

different semiconductor layers that compose the device. The figure also contains a schematic illustration

of the conduction band, depicting the double potential barrier region. The term, , refers to the resonant

energy in the quantum well.

From a historical point of view, one of the factors that boosted nanoelectronics in the mid­

1980s was the work on resonant tunneling and semiconductor bandgap engineering with quan­

tumwells and low­dimensional superlattices. The scientific community committed a great effort

to developing these devices, which resulted in rapid progress in the physical understanding of

the charge transport of mesoscopic structures. As a result, the RTD has become a focus of re­
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search in nanoelectronics for analog and digital applications. Progress in epitaxial growth has

improved the Peak­to­Valley Current ratio (PVCR) at room temperature beyond what is needed

for many circuit applications. This temperature requirement is one of the most important char­

acteristics any new technology must satisfy, and it distinguishes the RTD from other proposed

interesting quantum devices, which demand cryogenic temperatures [34].

The increasing demand for high bandwidth services, such as 5G applications, artificial in­

telligence (AI), augmented reality (AR), virtual reality (VR), online gaming, IoT (Internet of

Things), and stream platforms, is driving mobile communications towards the use of terahertz

waves. In this context, 5G technology has been standardized to offer data rates up to tens of Gb/s

operating in the millimeter­wave range (24.25 GHz to 52.6 GHz) [35]. However, despite the

high spectral efficiency modulation formats employed, it is generally not possible to obtain data

rates above 100 Gbps in this range. Since 6G mobile networks are expected to support peak data

rates of 1 Tb/s, academia and industry turn their attention to the unlicensed and under­explored

band from 300 GHz to 3 THz, as it provides a contiguous bandwidth of tens and up to hundreds

of gigahertz [36], [37].

For this purpose, however, it is necessary to develop compact and low­cost THz transceivers,

providing high enough output power. Among the available semiconductor technologies, trans­

ceivers based on RTDs are among the most efficient contenders for 6G applications [38], [43].

It is worth noting that the present record for the highest oscillation frequency of 1.92THz was

obtained by an RTD oscillator [29]. Additionally, tunable RTDs were obtained by integrating a

varactor with the resonant element [45]. Furthermore, the RTD demonstrated great versatility

as a resonator across the entire frequency spectrum, with relatively high output power, 420 W

at a frequency of 550 GHz [46], 1 mW at 300 GHz and 5 mW at 160 GHz [47].

In particular, resonant tunneling devices in combination with silicon transistors are interest­

ing for the semiconductor industry as they offer a way to extend the performance of existing

technologies by increasing switching speed and decreasing power dissipation [48]. In this way,

silicon RTTs (Resonant Tuneling Transistors) may be integrated with CMOS technology [49].

In short, RTDs and RTTs offer a wide range of applications in ADC (Analog­to­Digital Con­

verter), frequency divider or multiplier, oscillator, and digital circuits with more than 2 bits [50].

The ongoing effort in modeling RTD quantum transport is motivated by the necessity to
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fully understand its the main electrical characteristics. Furthermore, the modeling provides

valuable knowledge of the quantum aspects of electron transport in mesoscopic systems [51].

For conventional devices, such as the MOSFET and the BJT (Bipolar Junction Transistor) with

geometric dimensions in the micrometers range, the carrier transport models based on Boltz­

mann semi­classical formalism, in its simplest formulation, the drift­diffusion formulation, sat­

isfactorily describe their electrical characteristics. However, Boltzmann formalism becomes

inadequate with the downscaling of semiconductor devices reaching the nanometric scale. The

formalism becomes invalid since the classical concepts of charge carrier transport neglect the

effects of quantum interference which arise from the wave treatment of the physical principle

of operation of the device. Thus, a device model which can adequately treat quantum trans­

port phenomena between macroscopic and microscopic scales is necessary for nanostructures.

In this sense, even in bulk RTDs, because the thickness of the barriers and the quantum well

layers is of in a few nanometers, it becomes necessary to employ Schrödinger wave quantum

formalism to describe carrier transport dynamics [51].

Compact models can be summarized into basically three types:

1. Table­based models, where empirical models are obtained from tabulated data arising

from experimental characterizations or more complex simulations, such as atomistic sim­

ulations

2. Semi­empirical models, in which one or more physical parameters are adjusted to fit

experimental data

3. Physics­based models

Considering the above discussion, compact models are employed over other numerical ap­

proaches for circuit simulators due to the lower computational effort, which allows a quick eval­

uation of the circuit electrical characteristics [51]. Physics­based compact models are widely

used to describe semiconductor devices in electrical circuit simulators. The objective of such

models is to relate the device parameters, such as the thickness of the semiconductor layers, the

potential profile, and its semiconductor material composition, among others, to the output elec­

trical characteristics. Unlike sophisticated numerical methods, compact models quickly evalu­

ate the output characteristics of the device while keeping most of the physical insights required
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for optimization. Therefore, they fashion an essential instrument to enable the development of

next­generation devices applications.

As a requirement, compact models must allow a wide range of input parameters, to provide

versatility, take into account the main physical characteristics of the device and have a fast con­

vergence in circuit simulators [51], [52]. In this sense, the accuracy of a compact model depends

mainly on the number of physical parameters used and on the simplifications and assumptions

used to reach the compact expressions. For instance, modeling the I­V characteristic of RTDs

requires a formalism based on quantum mechanics. Therefore, accurate compact models must

include several physical effects, such as charge quantization, coherent resonant tunneling, se­

quential resonant tunneling, and quantum scattering effects, among other mechanisms, which

influence the electrical characteristics of the device.

The number of parameters used in the model must be small but sufficient to represent the

main physical phenomena of the device. Usually, a compact model is characterized by a deter­

mined validity interval. However, in many cases, it is possible to extend the validity interval

through additional equations. Also, a compact analytical model based on device physics can

also be useful for selecting suitable materials for device design.

1.3 Objective

The goal is to develop robust analytical models allowing the analysis and design of RTD

devices. Specifically, we aim to develop compact, analytical physics­based models to describe

RTDs electrical characteristics. In order to achieve a fully analytical model it is necessary to

analytically describe the eigenergies of a finite quantum well present in RTDs. However, to de­

termine these energy levels requires solving transcendental equations, which do not have exact

analytical solutions. Therefore, the first step is to develop analytical expressions to calculate the

energy levels in rectangular quantum wells of finite height.

Next, the thesis deals with two distinct cases. In short, the first case describes the resonant

tunneling of electrons in an RTD, in which, due to the device characteristics, electrons in the

emitter have a 2D density of states. The second one occurs in RTDs where tunneling carriers

from the emitter side possess a 3D density of states.
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1.4 Thesis Outline

In Chapter 2, we review useful analytical expressions to compute the quantum tunneling

transmission coefficient across rectangular potential barriers, with and without applied

bias. These expressions are valuable for a fully analytical RTD model.

Chapter 3 presents original, accurate analytical expressions to compute the eigenenergies

for finite rectangular quantum wells. We derived useful analytical expressions for nano­

electronics and optoelectronics design purposes. The expressions are validated against

numerical solutions of the energy levels transcendental equations. As a result, an agree­

ment greater than 99% is achieved for the solution space investigated.

Chapter 4 presents the physical principles of charge transport in RTDs and the origin

of the negative differential resistance (NDR). Then, Tsu and Esaki pioneering work on

electronic charge transport in RTDs is discussed. Also, we outline the relevant scattering

mechanisms present in RTD. Finally, some numerical and analytical models found in the

literature are analyzed.

In Chapter 5, we develop a fully analytical model for the I­V characteristics of 2D­2D and

3D­2D RTD. We consider the overall electrical potential distribution in the device layer

structure, including the quantized space charge region in the emitter layer, and account

for the scattering effects. The developed model is validated against experimental and

numerical data gathered from technical literature and TCAD simulation performed in this

work.

In Chapter 6, the contributions and perspectives offered by this work are discussed. Also,

the scope for future work is outlined.

In the Appendix, we provide on how to employ the approach, referred here as the mapping

function, derived in Chap. 3, to obtain approximate solutions of transcendental equations.
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Chapter 2

Quantum Tunneling

In this chapter, we review useful analytical expressions to compute the quantum tunneling

transmission coefficient across rectangular potential barriers, with and without applied bias.

Specifically, we analyze the double barrier quantum well (DBQW) structure present in RTD

in which the phenomenon of resonant tunneling occurs. For the DBQW, the exact analytical

expression and the Breit­Wigner Lorentzian approximation are also demonstrated [53]. We

should highlight that the expressions provided, in this chapter, comprise the key ingredients

toward a fully analytical model to describe RTD electrical output characteristics.

2.1 Rectangular Potential Barrier

From quantum mechanics, it is known that when the energy of an incident particle is less

than the barrier height, its wavefunction decays exponentially within the barrier region [54]­

[56]. As a consequence, for a barrier of infinite extension, no probability current density flows

through the interface [18], i.e., the entire probability current density is reflected to the inci­

dent region. However, considering a narrow enough barrier width, the wavefunction does not

completely decay to zero before reaching the second interface. In other words, the probability

wavefunction has a non­zero value after passing through the barrier. Classically, there is no

difference in whether the potential barrier is finite or infinite spatial extent. In both cases, the

particle must be reflected by the barrier [57]. However, wavefunction transmission is possible

in the quantum mechanics framework, referred to as quantum tunneling [3].
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Figure 2.1: Schematic illustration of the wavefunction transmission through a symmetric rectangular

potential barrier. The terms +, ¡, +, ¡, + and ¡ are the wavefunctions amplitudes of incident

and reflected plane waves in each region.

Fig. (2.1) contains a schematic illustration of wavefunction transmission through the one­

dimentional potential barrier. The potential energy profile can be written as

( ) =

0

0

0

(2.1)

As usual, the one­dimensional Schrödinger equation is

2

2 ¤

2ª ( )
2

+ ( )ª ( ) = ª ( ) (2.2)

where ¤ is the carrier effective mass in region , is the reduced Planck constant, ª ( )

is the wave function in region and is the energy of the carrier. For most practical cases in

microelectronics, the carrier effective mass is the same in regions I and III and distinct in region

II, i.e., different in the barrier region. Thus, for the three regions, we obtain

ª1( ) = + + ¡
¡ (2.3)

ª2( ) = +
¡ + ¡

ª3( ) = + + ¡
¡
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where +, ¡, +, ¡, + and ¡ are the wavefunctions amplitudes of incident and reflected

plane waves in each region (see Fig. (2.1)).

The wave vectors and are defined as

=
2 ¤

1
2

(2.4)

=
2 ¤

2( 0 )
2

The boundary conditions at the interfaces are given by [1]:

ª ( ) = ª ( ) (2.5)
1
¤ ª ( ) =

1
¤ ª ( )

Applying the boundary conditions at the interfaces = and = , and setting =

¤
2

¤
1 yields

+

¡
=

1
2

+ ( + ) 1
2

¡ + ( ¡ )

1
2

¡ + ¡ ( ¡ ) 1
2

+ ¡ ( + )
(2.6)

1
2

¡ ( + ) 1
2

+ ¡ ( ¡ )

1
2

+ ( ¡ ) 1
2

¡ ¡ ( + )

+

¡

writing Eq. (2.6) in the form

+

¡
=

11 12

21 22

M

+

¡
(2.7)

whereM is defined as the transfer matrix. This approach is best known in the literature as the

Transfer Matrix Method (TMM) and can be generalized for multiple barriers structures [18],

[56].

Knowing that cosh = ( + ¡ ) 2 and sinh = ( ¡ ) 2 after some algebraic

work, one obtains
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11 = cosh (2 )
2

2 2¡ 2

sinh (2 ) 2

21 =
2

2 2+ 2

sinh (2 )

22 = ¤
11

12 = ¤
21

(2.8)

The transmission coefficient is defined as the ratio between the transmitted probability cur­

rent density, emerging from the right­side of the barrier, and the incident current density to the

left­side of the barrier [1], [18]. Using Eq. (2.9), the current density for the incident wavefunc­

tion, , and transmitted, , is obtained assuming a zero incident current density to the

barrier right­side, which means ¡ = 0. Then, knowing that the current density can be written

as [1]:

!
=

2 ¤ ª¤!ª ª
!
ª¤ (2.9)

we have , , and the current density reflected by the barrier, , as

= ¤
1

2
+ = ¤

1

2
+ = ¤

1

2
¡

One can write the transmission, T , and reflection,R, coefficients as

T = =
2
+
2
+

R = =
2
¡
2
+

(2.10)

from Eq. (2.7) since ¡ = 0, one gets

+

+

=
1

11

¡

+

=
21

11

(2.11)

Next, by using the identity cosh2 = 1 + sinh2 to simplify 11, combining Eq. (2.11) with

Eq. (2.10), we have:
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T =
1

11
2 = 1 +

2 2 + 2 2

4 2 2 2
sinh2 (2 )

¡1

(2.12)

R =
21

2

11
2 =

2 2 + 2 2
sinh2 (2 )

2 2 + 2 2
sinh2 (2 ) + 4 2 2 2

For the particular case in which ¤
1 =

¤
2, replacing Eq. (2.4) in Eq. (2.12) yields:

T = 1 +
2
0 sinh2 (2 )

4 ( 0 )

¡1

R = 1 +
4 ( 0 )
2
0 sinh2 (2 )

¡1

(2.13)

From Eq. (2.13), when the term sinh2 (2 ) vanishes, the transmission coefficient becomes

equal to 1 and the reflection coefficient becomes equal to 0. As an example, consider a potential

barrier with 0 = 1 0 eV and width 20 Å. The electron effective mass in regions I and III

is ¤
1 = 0 065 0, and in region II is ¤

2 = 0 15 0 where 0 is the resting mass. Fig. (2.2)

shows the transmission coefficient as a function of electron kinetic energy for both classical and

quantum particles.

As it can be seen from Fig. (2.2), the transmission coefficient reaches its maximum value

when the kinetic energy is approximately 1 632 eV. In addition, the transmission coefficient,

although small, is non­zero for an incident electron with kinetic energy below 0, thus, en­

abling quantum tunneling. It is interesting to note that the value of T drops significantly for

1 632 eV. This demonstrates that, even for electrons with kinetic energy greater than the

barrier height there are specific values of in which T = 1. This is due to the transmission

coefficient oscillatory behavior, tending to one for incident electrons with kinetic energy greater

than barrier height. On the other hand, for a particle described by classical mechanics, whenever

0 the transmission will occur [54].

2.2 Rectangular Barrier Under Applied Bias

Fig. (2.3) shows a schematic illustration of a rectangular potential barrier under applied bias.

From Fig. (2.3) it is possible to notice potential slope ( ) due to the application
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Figure 2.2: Transmission coefficient for a rectangular potential barrier as a function of incident kinetic

energy.

of the external bias, = . The applied electric potential modifies the solutions of the

Schrödinger equation in regions II and III which become a function of the applied voltage.

As done in the previous section, for the region I, we have

2ª1( )
2

+ 2
1ª1( ) = 0, 1 =

2 ¤
1
2

(2.14)

with the solution given by

ª1( ) = + exp( 1 ) + ¡ exp( 1 ) (2.15)

For the region II, we assume a constant electric field distribution as schematically illustrated

in Fig. (2.3). Then, the electric potential in region II as a linear equation given by

( ) = 0
2

+ =
2

Setting 2 as

2 ( ) =
2 ¤

2

1 3

( + ) (2.16)
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Figure 2.3: Schematic of a rectangular potential barrier under applied bias.

where = 0 2 , the Schrödinger equation can be written as

2ª2( )
2

2 ¤
2
2

2 3
2 ¤

2
2

1 3

( + ) ª2( ) = 0 (2.17)

One can write the relation

2

2

2
2 2

2
2

=
2 ¤

2
2

2 3 2

2
2

(2.18)

Thus, the Schrödinger equation becomes an Airy­type differential equation:

2 ¤

2

2 3 2ª2

2
2

2 ¤

2

2 3

2ª2 = 0 (2.19)

The solution of the above equation is a linear combination of the Airy functions, and :

ª2( ) = + [ 2( )] + ¡ [ 2( )] (2.20)

As usual, for region III, we have

2ª3( )
2

+ 2
3ª3( ) = 0 3 =

2 ¤
3

2
( + ) (2.21)
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The solution of Eq. (2.21) can be written as ª3( ) = + exp( 3 ) + ¡ exp( 3 )

By applying the boundary conditions, one can establish a relationship between the ampli­

tudes of the incident and transmitted wave functions as

+

¡
=

1
2
exp( 1 )

¤
1

2 1
exp( 1 )

1
2
exp( 1 ) 1

¤
1
exp( 1 )

[ 2( )] [ 2( )]

1
¤
2

0
[ 2( )] 1

¤
2

0
[ 2( )]

1
W( [ 2( )] [ 2( )])

0
[ 2( )]

¤
2

W( [ 2( )] [ 2( )])
[ 2( )]

1
W( [ 2( )] [ 2( )])

0
[ 2( )]

¤
2

W( [ 2( 2)] [ 2( 2)])
[ 2( )]

exp( 3 ) exp( 3 )

3
¤
3
exp( 3 ) 3

¤
3
exp( 3 )

+

¡
(2.22)

whereW ( [ 2( )] [ 2( )]), is the Wronskian of the Airy functions [58]­ [59]:

W ( [ 2( )] [ 2( )]) = [ 2( )]
0
[ 2( )]

0
[ 2( )] [ 2( )]

Assuming that the amplitude ¡ is equal to zero, i.e., there is no reflection on the second

interface ( = ), we have

+

¡
=

11 12

21 22

+

0
(2.23)

The transmission coefficient is given by

T =
3

¤
1

1
¤
3

+
2

+
2 =

3
¤
1

1
¤
3

1
¤
11 11

(2.24)

After performing the matrix multiplications in Eq. (2.22) it is necessary to compute the

matrix element 11. After some algebraic manipulations and simplifications, one can write

11 as

11 =
exp [ ( 3 + 1 )]

2W ( [ 2( )] [ 2( )])

1
3

1

¤
1
¤
3

4 +
3

¤
3

¤
2 3

1

1

¤
1
¤
2

2 (2.25)
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where the constants are given by

1 = [ 2( )]
0
[ 2( )] [ 2( )]

0
[ 2( )]

2 =
0
[ 2( )]

0
[ 2( )]

0
[ 2( )]

0
[ 2( )]

3 = [ [ 2( )] [ 2( )] + [ 2( )] [ 2( )]]

4 =
0
[ 2( )] [ 2( )]

0
[ 2( )] [ 2( )] (2.26)

besides, we haveW ( [ 2( )] [ 2( )]) = ¡1 [60].

Finally, the transmission coefficient is obtained by replacing Eq. (2.25) in Eq. (2.24):

T ( ) =
3

¤
1

1
¤
3

2

4
(2.27)

1
3

1

¤
1
¤
3

4

2

+
3

¤
3

¤
2 3

1

1

¤
1
¤
2

2

2 ¡1

Therefore, assuming a constant electric field distribution in the barrier, the transmission

coefficient is expressed in terms of a linear combination of Airy functions. Because of the

difficulties imposed by utilizing special functions such as Airy, in this work, aiming to derive,

as simple as possible, analytical models, the exact solution given by Eq. (2.27) is used in our

work to validate more simplified approximations.

2.3 Multiple Barriers Under Applied Bias

The multiple barrier structure is formed by alternating potential barriers separated by quan­

tum wells, commonly referred to as superlattice [53], [61]. Superlattices are generally semicon­

ductor structures consisting of a layers sequence composed of different semiconductor materials

arranged periodically [53].

As a first step to compute the transmission coefficient for a multiple barrier structure, the

electric potential energy profile ( ) must be outlined. To do so, we assume a constant electric

field distribution throughout the structure. Fig. (2.4) contains a schematic illustration of a

multiple barrier structure composed of barriers and 1 quantum wells, under applied bias

.
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The potential drop over the barriers and quantum well can be expressed as

= ¢ 1 +¢ 2 + +¢ =
=1

¢ (2.28)

where represents the elementary charge. The terms ¢ in Eq. (2.28) accounts for the elec­

trical potential energy drop over the barrier when is even, and under the quantum well when

is odd, as illustrated in Fig. (2.4).

Figure 2.4: Schematic illustration of the electrical potential energy profile of an artificial superlat­

tice composed of n­barriers and n­1 quantum wells, under an applied bias .

Throughout the calculations, and represent the dielectric constants for the barriers

and quantum well regions, respectively. Applying the boundary condition at the interfaces, i.e.,

the continuity of electric field displacement vector,D = F, yields:

1 1 = 1 1 = 2 2 = 2 2 = = ¡1 ¡1 = (2.29)

where = 0 and = 0 are the permittivities in the barrier and in the well, respec­
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tively. Where 0 is the vacuum permittivity. and are the electric field in the barrier and

in the well [60]. Defying the barriers width as = 2 2 ¡1 and wells width as =

2 +1 2 . From Eq. (2.29), assuming a constant electric field, one can write

1
¢ 1

( 2 1)
= 1

¢ 2

( 3 2)
= = ¡1

¢ ¡1

( 2 ¡1 2 ¡2)
=

¢

( 2 2 ¡1)
(2.30)

Using Eq. (2.30) we can write ¢ for = 1 as a function of ¢ 1, hence, combining with

Eq. (2.28), yields

= ¢ 1

1 + ( 4 3) 1

2
+ + ( 2 2 ¡1) 1 1

( 2¡ 1)
+

( 3 2) 1

1
+ + ( 2 ¡1 2 ¡2) 1

2

1
( 2¡ 1)

isolating the term ( 2 1) and noticing that 1 = ¢ 1 ( 2 1), we have

1 = ( 2 1) + 1

=2

1
( 2 2 ¡1) + 1

¡1

=1

1
( 2 +1 2 )

¡1

(2.31)

For the particular case in which all quantum wells are made of the same semiconductor,

= . Similarly, if the barriers are composed of the same material, then yields = . In

this case, defining = 1 and 1 = and writing all the terms ¢ as a function of the

electric field in the first barrier and the electric field in the first well, yields:

=
=1

+
¡1

=1

¡1

(2.32)

Using Eq. (2.29) one gets = . Hence, we can write the electrical potential

energy drop ¢ as¢ = , where = +1 and is given by

=

Thus, to = 1 2 2 1, the potential energy within the region +1 can be

written as

( ) = + © ( ) (2.33)
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where

©2 =

2 ¡1

=1

¢ (2.34)

©2 ¡1 = 0

2 ¡2

=1

¢ (2.35)

After determining the electrical potential drop at each barrier and quantum well, one can

compute the tunneling coefficient under an applied external voltage. Seeking an analytical

approximation for the transmission coefficient in the particular case of double potential barrier,

in the next section, the classical WKB method is presented.

2.4 The WKBMethod

The WKB (Wentzel­Kramers­Brillouin) method, or simply WKB approximation, is a useful

method for finding approximate solutions to linear differential equations with spatially varying

coefficients [56]. For the case of interest here, consider an electron in a crystal structure, such

as the semiconductor, subjected to an arbitrary potential energy profile ( ) with slow spatial

variation (in relation to de Broglie wavelength). The one­dimensional Schrödinger equation in

the effective mass approximation is

2 ( )
2

=
2 ¤

2
[ ( )] ( ) (2.36)

where ( ) is the envelope function in the crystalline medium [55]. The complete electron

wave function is of the form ª( ) ( ) ( ), where ( ) represents the Bloch function

[55]. Using the WKB method, the solution of Eq. (2.36) is [55]:

( )
0

4 ( )
§ ( ) (2.37)

where

( ) =
2 ¤

2
[ ( )] (2.38)



22

when ( ), one can write ( ) = ( ), and, the wave vector can be written as

( ) = ¡1 2 ¤ [ ( )]. Hence, the envelope function can be written as

( )
1

( )
§ ( ) (2.39)

where 1 is an arbitrary constant. One can interpret Eq. (2.39) as a plane wave in which the

wavelength varies slowly in ­direction and also the amplitude decreases with increasing wave

vector.

Figure 2.5: Schematic illustration of a particle tunneling through an arbitrary potential barrier.

Considering an electron incident at an electrical potential barrier with kinetic energy

( ), as illustrated in Fig. (2.5). In this situation, we have ( ) = 2( ) = 2 ¤ [ ( )] 2

0. Thus, the solution of Eq. (2.36) using the WKB method is given by

( )
0

( )
§ ( ) (2.40)

we neglect the term (+) in the exponent of Eq. (2.40), since in this case, ( ) would tend to

infinite. Again, 0 is a normalization constant of the wave function. Fig. (2.5) illustrates the

classic turning points, = 1 and = 2, where the difference ( ) tends to zero. In this
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case, one can write the ratio between the envelope functions, at the turning points, by using Eq.

(2.40):

( 2)

( 1)

¡ 2 ( )

¡ 1 ( )
= ¡ 2

1
( ) (2.41)

where is the phase angle between the classic turning points [56]. Finally, we can calculate

the tunneling coefficient using the WKB method,T ( ), for the situation illustrated in Fig.

(2.5), as [56]:

T ( )
( 2)

( 1)

2

= exp
2 2

1

2 ¤ [ ( ) ] (2.42)

2.4.1 Calculation of T for a Rectangular Barrier With and Without

Applied Bias

In this section, we apply the WKB method to calculate the transmission probability coeffi­

cient T ( ) for a rectangular potential barrier with and without applied bias, as illustrated

in Fig. (2.6). Fig (2.6­a) shows a schematic illustration of a barrier with height 0 and width

2 . Fig. (2.6­b) shows the barrier in the absence of applied bias, while Fig. (2.6­a) illustrates

the barrier with applied bias 1. Again, we assume a linear electrical potential energy ( ) dis­

tribution in region defined by [ ]. It is worth noting that the barrier shape illustrated in

Fig. (2.6­b) is often used in the analytical modeling of the RTD output characteristics [18], [53].

In the absence of applied bias, by using Eq. (2.42) one gets

T ( ) = exp
4

2 ¤ ( 0 ) (2.43)

As an example of transmitting an electron through a potential barrier, consider 0 = 1 0

eV and width 20 Å, the electron effective mass in the barrier as ¤ = 0 15 0 and outside

of the barrier region as ¤
1 = ¤

2 = 0 065 0. Fig. (2.7) shows the transmission coefficient

as a function of the kinetic energy by using Eq. (2.43) and also the exact solution obtained by

Eq. (2.12). As it can be seen from Fig. (2.7), the first­order WKB approximation provides a

good agreement for incident kinetic energy lower than the height of the barrier, that is, when

1 0 eV. For the cases where the electron kinetic energy is greater than the barrier height
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Figure 2.6: Part (a): Schematic illustration of a rectangular barrier 0. Part (b): A schematic illustration

of a barrier under applied voltage.

we haveT ( ) = 1 resembling the classical behavior shown in Fig. (2.2), distinct from the

oscillatory behavior given by Eq. (2.12) (red curve in Fig. (2.7)).

In the case of an external bias applied to the barrier, as depicted in Fig. (2.6­b), the electrical

potential in the range can be written as

( ) = 0
1

2
1 + (2.44)

Applying the WKB method through Eq. (2.42) yields

T ( ) exp
2

2 ¤

¡

1

2
+ 0

1

2

making a change of variable, one can get
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Figure 2.7: Exact and approximate transmission coefficient provided by the WKB method, for a rectan­

gular potential barrier with 0 and width Å

=
1

2
+ 0

1

2

=
2

1

In this way, we have

T ( ) exp
1 4

1
2 ¤

3 2

3 2

0¡ ¡ 1

0¡

finally:

T ( ) exp
8 2 ¤

3 1
( 0 )3 2 ( 0 1)

3 2 (2.45)

Once more, as an example, consider a potential barrier with the following parameters: 0 =

1 0 eV, barrier width 20 Å, ¤ = 0 15 0 and ¤
1 = ¤

2 = 0 065 0. Fig. (2.8) shows the

transmission coefficient as a function of the electron kinetic energy through Eq. (2.45) and the
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exact solution given by Eq. (2.27) for an applied bias equivalent to 1 = 0 3 eV. As it can be

seen from Fig. (2.7) the first order WKB approximation shows a fair agreement for 1 0

eV.

Figure 2.8: Exact and WKB approximate transmission coefficient for a rectangular potential barrier with

0 and width Å under an applied external potential of 1 .

We should point out that under an applied bias the barrier becomes asymmetrical. Indeed,

by increasing the applied bias, the barrier assumes a more triangular shape than a trapezoidal

one. Eventually, above a specific voltage, the barrier profile becomes completely triangular (in

respect to an arbitrary incident energy ) [53]. Thus, for an electron with incident kinetic energy

less than the barrier height, the WKB approximation provides a reasonable agreement with the

exact solution. As we will demonstrate in the following chapters, the barrier profile sketched

in Fig. (2.6­b) provides a satisfactory approximation for modeling the single barriers in RTD,

under applied bias. In fact, the electrical output characteristics of RTD are more sensitive to

the global tunneling, i.e., the transmission coefficient computed considering the double barrier

structure rather than the individual transmission coefficient of each barrier.

In the next section, we investigate the electron tunneling through a double barrier quantum
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well, characterized as resonant tunneling.

2.5 Double Barrier QuantumWell

In particular, the tunneling structure of interest in this work is the double barrier quantum

well (DBQW), the basic building blocks in RTDs. Fig. (2.9) shows a schematic illustration of

the DBQW. Semiconductor DBQWs can be fabricated through a layer sequence composed of

different semiconductor materials, such as GaAs/Ga1¡ Al As, InP/InAs, among others [51].

Figure 2.9: Schematic illustration of a double barrier quantum well. The terms + ¡ + and ¡

represent the incident and reflected waves propagating through the structure.

To calculate the tunneling coefficient for a DBQW, initially, we employ the transfer matrix

formalism. The plane waves inside the well, + ¡ + and ¡ are under the same electrical

potential, although defined in different regions. Thus, it can be considered that these waves

experienced only phase shifting inside the quantum well. Hence, one can write

+ = +

¡ = ¡
¡

writing in matrix form
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+

¡

=
¡ 0

0

+

¡

= P
+

¡

(2.46)

so, we define P as the propagation matrix of the wave functions in the well. For the whole

structure we can write

+

¡

=
11 12

21 22

¡ 0

0

11 12

21 22

+

¡

+

¡

=M P M
+

¡

writingM =M P M and carrying out the calculations yields

M =
¡

11 11 + 12 21
¡

11 12 + 12 22

¡
21 11 + 22 21

¡
21 12 + 22 22

(2.47)

Thus, considering no wave incidence from right to left, leads to ¡ = 0. Hence, we have

+ = 11 + , where

11 =
¡ ( +2 ) 2

11 +
( ) 2

21

2

Since the barriers are identical, we can write 11 and 11 in a phasor form as

11 = 11 = 11 = 11
¡

where the coefficients 11, 12, 21 and 22 are given by Eq. (2.8) setting = 2 . Finally,

we have

11 = 1 +
2 2 + 2 2

4 2 2 2
sinh2 ( )

= arctan
2 2 2

2
tanh ( )
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where = ¤ ¤ , = 2 ¤ and = 2 ¤( 0 ) . The term refers to

the quantum well width. The terms ¤ and ¤ account for the electron effective masses in the

barrier and well regions, respectively.

The transmission coefficient is given by T ( ) = 11
¡2. After some algebraic

manipulations, we get

11
2 = 11

2 + 21
2 2

+ 4 11
2

21
2 cos2 [2 ( + )]

where the term 11
2 + 21

2 2
is equal to one, since it is the transfer matrix determinant,

where the plane wave functions are normalized. Carrying out the calculations one obtain

T ( ) =
1

11
2 =

1

1 + 4 11
2

21
2 cos2 [2 ( + )]

(2.48)

For a rectangular barrier the transmission and reflection coefficient are given by T1 =

11
¡2 andR1 = 21

2
11

2, respectively. Hence, Eq. (2.48) can be simplified to

T ( ) =
T2

1

T2
1 + 4R2

1 cos
2 ( )

(2.49)

As it can be seen in Eq. (2.49), the tunneling coefficientT ( ) depends on the barriers

width, , the well width, , the electron effective masses and barrier height, 0. Fig. (2.10)

shows the tunneling coefficient for a DBQW with the following parameters: = 30Å, =

50Å, ¤ = 0 15 0, ¤ = 0 067 0 and 0 = 1 0 eV. In Fig. (2.10), it is possible to observe

several peaks in the curve for ln(T ( )). These peaks occurs for electron kinetic energy

values less than the barriers height, i.e., in cases where 1 0 eV. As it can be seen in Fig.

(2.10), for energy greater than 0, the tunneling coefficient tends to zero with an oscillatory

behavior, which is equivalent to T ( ) 1. The energy peaks shown in Fig. (2.10),

marked by the blue and green dashed lines, can be interpreted as resonance energies, where

T ( ) has maximum values, for this particular case 1 = 0 11 eV and 2 = 0 45 eV.

At the resonance peak, the coherent superposition of the reflected waves cancels out in both

amplitude and phase, making the transmission coefficient equal to one [2]. It is interesting to

note that the resonance energies are precisely the quantum well eigenenergies [53]. In the next

section, we derive the Breit­Wigner approximation to compute the T( ). This approximation
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Figure 2.10: Tunneling coefficient as a function of the electron energy for a DBQW with Å,

Å, ¤
0, ¤

0 and 0 .

is used in our work as an ingredient element to develop an analytical current density expression

for RTD structures.

2.5.1 Breit­Wigner Approximation

The Breit­Wigner approximation was proposed in a seminal article entitled Capture of Slow

Neutrons published, in 1936, by physicists G. Breit and E. Wigner [62]. In this paper, Breit and

Wigner investigated the phenomenon of neutron absorption by atomic nuclei after a neutron­

nucleus collision. [62]. In this regard, the authors proposed the existence of quasi­stationary

states, i.e., resonant energy levels. Then, they derived an approximate expression for the decay

time of these states [62]. This formalism can also be applied to the specific case of DBQW

structure [3], [18], [53].

In Eq. (2.49), if we consider the infinite well approximation, it is possible to demonstrate

that = 2 [3], [53]. Thereby,
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Figure 2.11: Schematic illustration of the resonant levels, , in the quantum well.

cos2 +
2

= sin2 ( )

At resonance, it is necessary that , and consequently, T ( ) 1. Then,

sin2 ( ) 0, where is the index for the eigenenergies, as illustrated in Fig. (2.11). There­

fore, we can write

sin2 ( ) [( ) ]2 (2.50)

where is given by

=
2 ¤

1 (2.51)

We can write the electron energy around the resonant energy levels as = + , hence,

we have

=
+

= 1 + = 1 + (2.52)

where = . One can rewrite Eq. (2.51) as

=
2 ¤

1 + 1
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assuming small , we can approximate 1 + 1 + 2, thus

2 ¤

2

hence

[( ) ]2
2 ¤

2

2

[( ) ]2
¤ 2

2 2

( )2
(2.53)

Therefore, combining Eq. (2.53) with Eq. (2.49), the Breit­Wigner approximation for the

tunneling coefficient is given by

T ( )

2T2
1

2

4R2
1

¤ 2

2T2
1

2

4R2
1

¤ 2 + ( )2
(2.54)

Writing Eq. (2.54) in the usual Lorentzian form, one can define the resonance linewidth as

¡ =
2T2

1
2

R2
1

¤ 2

hence, rewriting Eq. (2.54):

T ( )
(¡ 2)2

(¡ 2)2 + ( )2
(2.55)

In case of unequal barriers, using the same formalism described in this section, it is possible

to derive a Lorentzian approximation similar to Eq. (2.55) [3]. To do so, we start by defining

T = T ( ) and T = T ( ) as the tunneling coefficients of the left and right barriers

in respect to the well, respectively. Following the same procedure, the tunneling coefficient for

asymmetric barriers, in the Breit­Wigner approximation, is

T ( ) =
¡ ¡

¡2

(¡ 2)2

(¡ 2)2 + ( )2
(2.56)

where ¡ and ¡ are the left and right barrier resonance linewidths, respectively:
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¡ =
2T2 2

(1 T )2 ¤ 2

¡ =
2T2 2

(1 T )2 ¤ 2

the equivalent resonance linewidth is given by ¡ = (¡ + ¡ ) 2. Note that if ¡ = ¡ Eq.

(2.56) becomes Eq. (2.55).

Figure 2.12: Tunneling coefficient for a DBQW. The energy levels were exactly calculated using Eq.

(2.49) and using the Breit­Wigner approximation for the resonance energies, 1 and 2

.

Fig. (2.12) shows the tunneling coefficient as a function of kinetic energy for the case

illustrated in Fig. (2.10), calculated exactly using Eq. (2.49) and using the Breit­Wigner ap­

proximation, Eq. (2.55). From Fig. (2.12), it is possible to identify the resonance energies

1 = 0 11 eV and 2 = 0 45 eV. As it can be seen in Fig. (2.12), for 0 , effectively,

the tunneling occurs around the resonance levels. Therefore, the Breit­Wigner approximation

shows a good agreement when the electrons kinetic energy, , is within the resonance linewidth

¡. On the other hand, for kinetic energy outside the resonance width, it can be seen from Fig.
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(2.12) that the tunneling coefficient does not provide a good agreement with the exact solution.

However, in these regions, the magnitude of T ( ) is negligible and, therefore, the Breit­

Wigner approximation presents a good agreement for the regions of interest [3], [53]. Although

the Breit­Wigner approximation offers a satisfactory agreement within the resonance linewidth,

in order to use this approximation is necessary to compute the values of the quantum well

eigenenergies. However, for a finite rectangular quantum well, the energy levels are obtained

through the solution of transcendental equations, which, by definition, has no analytical solu­

tions [1], [54]. To address this problem, in the next chapter, we propose accurate approximate

analytical solutions to determine the energy levels in the finite rectangular potential wells.
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Chapter 3

Analytical Expressions for Eingenenergy

Levels in Finite Rectangular Quantum

Wells

This chapter presents original accurate analytical expressions to compute the eigenenergies

for finite rectangular quantum wells. Specifically, we propose a novel approximation method

to calculate the roots of trigonometric transcendental equations by means of a Taylor series

dynamic expansion approach. The expressions are validated against numerical solutions of the

energy levels transcendental equations. As a result, an agreement greater than 99% is achieved

for the solution space investigated. In addition, we derived useful analytical expressions for

nanoelectronics and optoelectronics design purposes. As we will demonstrate in the following

chapters, the proposed expressions are helpful in formulating a fully analytical model for the

RTD.

3.1 Introduction

As discussed in the previous Chapter, computing the resonant tunneling transmission coeffi­

cient by means of the Breit­Wigner approximation requires the value of the finite quantum well

eigenergies. In this regards, the classic example found in quantum mechanics textbooks is the

infinite rectangular potential well, which has an explicit analytical expression for calculating
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the eigenenergies [54]. However, in realistic quantum devices, the infinite well approximation

does not provide a good agreement with the experimental results, being necessary to consider

the quantum well with finite barrier height [1]. However, for finite quantum wells, the solution

of the Schrödinger equation can only be obtained through transcendental equations [1], which

do not have an explicit analytical solution. Usually, its solution is determined by numerical

techniques, such as Newton­Raphson method [1], [53].

Moreover, in the compact modeling scope, numerical solutions [63]­ [64] are not always

suitable due to the prohibitive computational effort demanded, especially, when it is necessary

to simulate hundreds of thousands of these devices simultaneously, which often occurs in inte­

grated circuits design. Other alternatives, based on infinite series expansion [65]­ [67], Green

functions [68] and Cauchy­Riemann method [69] are rather complex. Additionally, most of

the literature does not consider different effective masses and/or asymmetric wells, which is

fundamental to accurate describe semiconductor quantum well devices [70], [71].

Following the discussion in the previous paragraphs, we develop an analytical method pro­

viding compact expressions for the computation of finite quantum well eigenenergies. As com­

pact expressions of this nature are not widely found in the literature, we carry out a detailed

calculations to find these eigenenergies, aiming to achieve an accuracy level suitable for com­

pact modeling applications.

3.2 Symmetric Finite Square QuantumWell

3.2.1 Theoretical Background

In semiconductor devices, one­dimensional quantum wells are defined as thin layered

structures with different bandgaps, where charge carriers, electrons or holes, are confined due

to quantum mechanical effects [72]. As shown in Fig. (3.1), a typical symmetric quantum well

(SQW) consists of two potential barriers of the same height (regions I and III) and a thin layer

of narrower bandgap — the well — where the carriers are confined in the ­direction. The

potential energy profile ( ) is given by
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( ) =
0 2

0 2
(3.1)

Figure 3.1: Schematic illustration of a typical layered semiconductor structure comprising a rectangular

quantum well of width and symmetric potential barriers of height 0. The terms represent the

energy levels.

As usual, Schrödinger one­dimensional equation for this structure is

2

2 ¤

2ª ( )
2

+ ( )ª ( ) = ª ( ) = 1 2 3 (3.2)

where ¤ is the carrier effective mass in region , is the reduced Planck constant, ª ( ) is the

wave function in region and is the energy of the carrier ( 0). The solution of Eq. (3.2)

in regions I and III is in the form plane waves: ª1( ) = 1 and ª3( ) = ¡ 1 , where

and are normalization constants, and the wave vector 1 for both regions is

1 =
2 ¤( 0 )

2
(3.3)

where ¤ is the effective carrier mass at the potential barriers. The solution to the Schrödinger

equation in region II is

ª2( ) = cos( 2 ) + sin( 2 ) (3.4)
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where and are normalization constants, and the wave vector is 2 = 2 ¤ , where

¤ is the carrier effective mass at the potential well.

The usual boundary conditions — also know as BenDaniel­Duke boundary conditions

— at the interface of two semiconductor materials, and , are [71]:

ª ( ) = ª ( ) (3.5)

1
¤ ª ( ) =

1
¤ ª ( )

Assuming constants and different from zero, these boundary conditions yield a tran­

scendental equations known in the literature as odd­parity equation:

¤

¤ 1 = 2 tan
2

2
(3.6)

similarly, assuming constants and different from zero, yields another transcendental equa­

tions known in the literature as even­parity equation:

¤

¤ 1 = 2 cot
2

2
(3.7)

Defining as the parameter that encompasses the physical parameters of the well:

=
2 2

2 ¤
0 (3.8)

we can write

=
2

2
=

2 2
2 ¤ (3.9)

Hence, Eqs. (3.6) and (3.7) can be written as

tan ( ) =
2

2
1 (3.10)

cot ( ) =
2

2
1 (3.11)
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where 2 = ¤ ¤ is the parameter accounting for the differences in effective masses along

the structure.

Under the parabolic band approximation, the eigenenergy levels are calculated using

the expression = 2 2 (2 ¤ ) [72], where is the wave vector associated with each state

in the well region. Then, we have

=
2 2

¤ 2
2 = 1 2 3 (3.12)

where corresponds to the ­th energy level of a set of allowed energy levels in the finite

well.

As seen in Eq. (3.12), the energy levels of a symmetric quantum well, , are

obtained as function of . In other words, they depend on finding the roots of Eqs. (3.10)

and (3.11). The traditional approaches to compute these energy levels rely on graphical meth­

ods [73], [74] or numerical methods [63], [64]. As stated before, neither of them can be con­

sidered suitable for compact modelling, which requires simplified analytical expressions. Other

approaches available in the literature [65]­ [68] are too complex for compact modeling. Many

of them do not provide explicit analytical expressions and/or do not take into account the ef­

fective mass differences of realistic structures. In an attempt to solve these shortcomings, in

this work, we present a novel method to obtain the energy levels, , with closed­form and

high­accurate analytical expressions, which are well suited for compact modelling in the semi­

conductor industry. To do so, in the next sub­section we focus on solving Eqs. (3.10) and

(3.11).

3.2.2 Analytical Approximate Solution for SQW

To obtain a general method for computing any allowed energy levels for a wide range

of physical parameter values, 0, ¤ and ¤, we split the solution into two parts, whether or

not the condition ( ) 1 is met.

Condition ( ) 1 is satisfied:

Initially, to achieve a more concise formulation, we combine the odd and even parity

equations into a single general formulation. To do so, it is enough to recognize that
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tan ( + 2) = cot ( )

in such way that, we can combine Eqs. (3.10) and (3.11) to provide:

tan +
( + 1)

2
=

2

2
1 (3.13)

Also, we know that tan( + ( + 1) 2) when 2. Therefore, due to

this asymptotic behavior, it is difficulty to elaborate an accurate and low­complexity analytical

approximation for tan( ), . Therefore, the approximation proposed in this section is

restricted for ( ) 1, which is equivalent to say that tan( ) + .

We start by applying the trigonometric identity:

tan2 ( ) = sec2 ( ) 1

in Eq. (3.13). Thus,

sec2 +
( + 1)

2
=

2 2

2
1 +

2

1 2 (3.14)

Once we are considering only the cases in which ( ) 1, we can neglect the

term ( ( ))2 (1 2 ), yielding

sec2 ( + ( + 1) 2) =
2 2

2

then,

+
( + 1)

2
= arccos (3.15)

Next, we expand arccos( ) in a Taylor series, holding the first three terms, to obtain

arccos( ) 2 3 6

This approximation is accurate for 1. From Eq. (3.15), we have that = ( ).

Thus, the approach is accurate as long as ( ) 1. Replacing the approximation in Eq.

(3.15) and rearranging the terms, we have
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3

6 3 3 + 1 +
1

+
2

= 0 (3.16)

Rewriting Eq. (3.16) in the form 3+ + = 0 and defining the constants = 2,

= [1 + 1 ( )] and = 1 (6 3 3), we obtain a third­degree polynomial equation with one

real root and two imaginary roots. Solving for the real root, we get

= 0

6

2

0

(3.17)

where

0 =
3
12 3(27 2 + 4 3) + 108 2 (3.18)

In the next section, we propose our solution for the cases in which the condition ( )

1 is no longer met.

Condition ( ) 1 is not satisfied:

When the condition ( ) 1 is not satisfied, the third order Taylor series expan­

sions of arccos( ) does not lead to an accurate solution. The most obvious approach would

be increase the accuracy by making use of higher order terms in the expansion. Nonetheless,

this would lead to a greater complexity in finding the roots of the polynomial. As an alterna­

tive approach, we proceed by expanding both sides of the Eq. (3.13) around a chosen optimal

point. Naturally, the accuracy of the approximate solution depends on whether the expansion

point is close enough to the exact solution, which varies accordingly to the different physical

parameters. Thus, instead of carrying out the expansion around a fixed point, we set a dynamic

expansion point, expan, which is a function of the these parameters, to assure that the relative

error of the approximation is as small as possible. As it will be shown next, expan is obtained

from a mapping

M : + +

expan

(3.19)

where the subscript refers to the symmetric quantum well case. The mapped value obtained

from M ( ) is the dynamic expansion point, i.e., expan = M ( ). This approach allows for
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lower degree polynomials in Taylor series expansion, significantly reducing the effort on finding

the roots, while assuring great accuracy. In fact, as we will demonstrate later, a simple linear

expansion is enough to ensure high accuracy for the whole interval. In this work, we refer to

this approach as the Mobile Expansion Point Method (MEPM).

To establish how many terms are necessary in the expansion, a graphical analysis is

carried out. Hence, we start by defining functions for both sides of the transcendental equation.

For the specific case of the symmetric potential well, from Eq. (3.13), we set the left­hand side

(LHS) as ( ) and the right­hand side (RHS) as ( ). Thus,

( ) = tan +
( + 1)

2
= 1 2 3 (3.20)

( ) =
2

2
1 (3.21)

Next, we graphically analyze ( ) and ( ), as shown in Fig. (3.2). The points of

intersection between the curves are the roots of Eq. (3.13).

Figure 3.2: Left­hand side (red curves), expressed by Eq. (3.20) and right­hand side (blue

curve), , from Eq (3.21). The intersection between the blue and red curves yields the root of the

transcendental equation, Eq. (3.13), . The position corresponds to .
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By varying the physical parameters and analyzing the behavior of ( ) and ( ),

we chose to carry out a parabolic expansion for ( ) and linear expansion for ( ), both

around expan. Then, for ( ) we have

( ) =
2

=0

( )( )( 0)

!
( expan) = 1+(1+ 2

1)( expan)+ 1(1+
2
1)( expan)

2

where 1 = tan( expan + ( + 1) 2).

Similarly, for ( ) we have

( ) =
1

=0

( )( )( 0)

!
( expan) = 2 + 3( expan) (3.22)

where,

2 =
2
expan

2

2
expan

3 =
2

expan(
2
expan

2)
(3.23)

Equating both sides and solving for the real root, we obtain

=
1 + 2 + 3

0
(3.24)

where the constants 0, 1, 2 and 4 are given by

0 = 2 1(1 +
2
1)

1 = 0 expan 1 + 3
3
1

2 = 1 2( 2
1 + 3 + 3

2
1) +

2
3

3 = 4 1( 2 +
2
1 2) 3 4

1

Fig. (3.3) graphically illustrates, for the fundamental state, the regions in which the so­

lution of the transcendental equation, Eq. (3.13), is obtained by the approximation for arccos( )

and by the MEPM.

In the next section, we discuss a simple way to build a proper mapping function to obtain

expan = M ( ), which is the cornerstone in our methodology.
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Figure 3.3: Illustration of the application regions of the approximation given by and the MEPM

approximation for the ground state.

Building the mapping functionM

To build the mapping function M ( ), initially, we plot the fundamental state 1 as

function of . By inspection of Fig. (3.2), one can see that 1 tends to 2 as .

Similarly, it is easy to see that the solutions to the higher­order states tends to 2 as

. Therefore, for the eigenvalues of Eq. (3.13), we have [( 1) 2 2)).

Hence, any function that approximates the curve for 1( ) and whose limit tends to 2 under

the condition ( 1 expan) 1 will work as a proper mapping function for the ground state

in our approach. Obviously, the proposed solution for will demonstrate better agreement

when 0. For the sake of clarity, we summarize the above discussion in mathematical

notation. In doing so, the mapping function for the symmetrical quantum well must meet these

two criteria:

Criterion 1 ( ( ) M ( )) ( ) for = 0 1 with (0 1 1), max = 20

Criterion 2 M ( )
2
when max

where max is the maximum value of in which the condition ( ) 1 is not satisfied,

determined by the minimization of the relative error. Note that the mapping function does not

need to meet Criterion 1 for all values, but only for those under the condition max, since
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we are dealing with the case where 1 is not met. The value of max was defined

evaluating the overall relative error of our proposition. In addition, our experience indicates

that does not need to be extremely small, given that the mapping function provides only a

pointer to the vicinity of the solution. Then, the following mapping function for the ground

state is proposed:

M ( ) = 1
1

2

2

=1

exp (3.25)

where coefficients are determined by minimizing the relative error. Hence, in order to obtain

the optimized coefficients, we employ nonlinear regression, with R­square 99 8%. Thus, for

1( ) with ¤ = 0 067 0 and ¤ = 0 11 0, where 0 is the resting electron mass [75], [76],

we obtain 1 = 2 45 and 2 = 0 70. Nonetheless, we should point out that values for are

derived only as an illustration of our method. The final expressions for energy levels already

provide the optimized mapping function constants for a broader range of typical semiconduc­

tors physical parameters. Therefore, it is needless to re­define the mapping function for each

different application.

The exact solution for 1( ) and the mapping functionM ( ) are shown in Fig. (3.4)

for different masses ratios, expressed by the parameter = ¤ ¤, exhibiting an excellent

agreement. Since is a function of ¤ , and 0, we demonstrate by this analyses that the

proposed mapping function is robust concerning the variation of the QW parameters.

In principle, for each energy level, it would be necessary to define a new mapping

function, which it is certainly impractical. However, taking advantage of the properties of the

trigonometric functions in the transcendental equations, we can employ Eq. (3.24) to compute

any energy level. To do so, we shift and M ( ) by multiples of 2 to the interval of

interest to compute , i.e., shifting both and M ( ) to the interval (( 1) 2 2).

Since is greater than (see Fig. (3.2)) and M ( ) was defined for the ground state, i.e.,

limited to 2, they must shift in the opposite direction to the interval (( 1) 2 2). To

obtain the smallest possible error, we propose a similar mapping function for even values of ,

only adjusting the coefficients . Proceeding as before, we obtain the mapping relation for all

allowed levels of the symmetric well:
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Figure 3.4: Solid colored curves represent the mapping function, , while symbols represent the

solution for the ground state, 1 , for different 2 values.

M ( ) =
( ) +

2
(2 ¡(1 45 ( ¡1)+1) ¡0 7 ) = 1 3 5

( )
2
+

2
(2 ¡5 ¡1 5 ) = 2 4 6

(3.26)

where, ( ) = ( 1) 2 . In Eq. (3.26), ( 1) is the discrete Dirac delta function ( ( 1)

returns 1 when = 1 and 0 otherwise). The parameter is just the value of shifted to the

interval of interest to calculate the respective eigenvalue. Thereby, keeping in mind that for each

interval of size 2 there is only one eigenvalue, we have

=

( ¡1)
( ) = 1 3 5

( )
2

= 2 4 6
(3.27)

Through an inspection of the relative error for M ( ) we notice that has great

impact on the solution for the ground state 1. Also from the Fig. (3.4), for 2, the

tested values for impact more the curve shape for 1( ) when 0 than when .

Nevertheless, the same analysis performed for the other energy levels does not show a strong

dependence of ( ) on for the assessed values. By means of this investigation, the term
( ¡1)

in Eq. (3.27) when = 1 leads to Eq. (3.25). Ultimately, to determine for

which value of the condition ( ) 1 no longer holds, we set the threshold value of
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considering the minimization of the relative error for different values of physical parameters.

Finally, from Eqs. (3.17) and (3.24), we write Eq. (3.28) that summarizes all possible

values of , providing all allowed energy levels in a one­dimensional finite rectangular quantum

well:

=
0 (6 ) 2 0 2

+ 2

¡1
0 ( 1 + 2 + 3) 2

+ 2
(3.28)

By analyzing Fig. (3.2), it is possible to determine the minimum condition for the

curves to intersect each other at the interval (( 1) 2 2) for a given . Hence, it is

straightforward that, for the level, we have ( 1) 2 in order to get an eigenvalue in

(( 1) 2 2). In this way, replacing the expression for defined in Section (3.2.1), we

can determine the minimum width so that the symmetric well presents a bound state for the th

energy level:

min( ) =
( 1)

2 ¤
0

(3.29)

For instance, to build a symmetric quantum well with semiconductor parameters 0 =

0 3 eV and ¤ = 0 067 0 with at least 4 allowed energy levels, the minimum width obtained

by setting = 4 in Eq. (3.29) is min = 129 75 Å. As it can be seen from Eq. (3.29), ¤

does not alter the minimum length for a given energy level, albeit affects its magnitude. Another

important relation for engineering purposes is set between the energy level and the width of

the well. Thus, combining Eqs. (3.10) and (3.11), and using the relationship:

arctan( ) + arctan
1

=
2

we can write

( ) =
2

2 ¤

( 1)

2
+ arctan

0
1 (3.30)

We readily point out that the expression obtained in Eq. (3.30) is similar to the result

from [77], except for the mass ratio parameter (included by the application of the boundary

conditions), which they do not take into account. As an example, consider the design of a

semiconductor structure with 0 = 0 5 eV, ¤ = 0 067 0 and ¤ = 0 1 0. As a requirement,

energy level 2 must be 0 2 eV. Through Eq. (3.30), we have 2( 2 = 0 2 eV) = 79 50 Å.
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Finally, examining Fig. (3.2), we have that the number of states allowed in the sym­

metrical well is

=
2

+ 1 (3.31)

where is the floor function defined as the first integer smaller than (for instance, 3 37 =

3; 5 = 4) [78]. In the next section, we address the asymmetric quantum well case following

the same strategy developed for the symmetric case.

3.3 Asymmetric Finite Square QuantumWell

3.3.1 Theoretical Background

Fig. (3.5) shows a schematic illustration of an asymmetric rectangular quantum well

(ASQW), where the left barrier is lower than the right barrier. For this particular case, the

electrical potential energy can be written as

( ) =

1 0

0 0

2

(3.32)

where 1 and 2 are the height of the left and right potential energy barrier, respectively, with

1 2.
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Figure 3.5: Schematic illustration of a typical asymmetric rectangular quantum well of width poten­

tial barriers with heights 1 and 2.

For regions I and III, the solutions for Schrödinger equation are of the form ª1( ) =

1
1 and ª3( ) = 3

¡ 3 , respectively, where 1 and 3 are normalization constants. The

wave vectors are 1 = 2 ¤
1( 1 ) 2 and 3 = 2 ¤

2( 2 ) 2, where ¤
1 and

¤
2 are the effective masses in regions I and III, respectively, and is the kinetic energy,

with 1. In the same way, the solution for Schrödinger equation in the well is ª2( ) =

cos( 2 ) + sin( 2 ) where and are normalization constants and the wave vector is

2 = 2 ¤ 2. Also, one can rewrite ª2( ) as ª2( ) = 2 sin( 2 + ). Applying the

boundary conditions at = 0 and = , after some algebraic manipulation, we obtain

cot( ) =
2
1
2

1 (3.33)

cot( + ) =
2
2
2

1 (3.34)

with 1 = ( ) 2 ¤
1, 2 = ( ) 2 ¤

2and = 2 . The ratios between the

effective masses are 2 = ¤ ¤
1 and

2 = ¤ ¤
2.

Similar to the symmetric case, it is necessary to solve the system formed by two tran­

scendental equations, in order to find the eigenenergies of the asymmetric well. The energy

levels are given by
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=
2

2 ¤ 2
2 = 1 2 3 (3.35)

where are the solutions obtained by solving the coupled Eqs. (3.33) and (3.34), corre­

sponds to the th energy level of a set of allowed energy levels and the subscript refers

to the asymmetric case. In the next section, we present our solution for Eq. (3.33) and (3.34),

based on whether the condition max 1 is satisfied, where we define max as

max = max
1 2

The reason for us to adopt this strategy defined by max will be clarified in the next section.

3.3.2 Approximate Analytical Solution for ASQW

Once more, to obtain a general method for computing any allowed energy levels for a wide

range of physical parameter values, 1, 2, ¤ , ¤
1 and

¤
2, we divide the solution in two

parts. In this case, the solution is based on whether the condition max 1 is satisfied.

Condition max 1 is satisfied:

Proceeding in the same way as in Section (3.2.2) and using the trigonometric identity

cot2( ) = csc2( ) 1, we have for Eq. (3.33):

= arcsin
1

+ (3.36)

Similarly, for Eq. (3.34), we have

+ = arcsin
2

(3.37)

Since and are both integer numbers, then is also an integer number, thereby,

one can write = . Replacing Eq. (3.36) in Eq. (3.37) we have a general transcendental

equation for the asymmetric well:

= arcsin
1

arcsin
2

(3.38)
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Employing a third order Taylor approximation, we have arcsin ( ) + 3 6. There­

fore, the general transcendental equation is approximated to

3 + = 0 (3.39)

where

=
1

6 3 3
1

+
1

6 3 3
2

= 1 +
1

1
+

1

2

= (3.40)

Solving Eq. (3.39) and choosing the real root, we have

= 1 3 1

(3.41)

where

1 =
3

2

2

+
3

3

+
2

(3.42)

Again, as discussed in the case of the symmetrical well, the solution is obtained in two

parts. The proposed solution for Eq. (3.38) is accurate if arcsin( ) can be approximated to a

third order polynomial. Thus, we need to meet 1 2 1, which implies that

max 1 2 1, leading to max 1. In the next section we propose a solution

for the cases where the condition max 1 is not met.

Condition max 1 is not satisfied:

To combine Eqs. (3.33) and (3.34) in a single expression for the transcendental equa­

tions, we employ the trigonometric identity:

cot ( + ) =
cot ( ) cot ( ) 1

cot ( ) + cot ( )
(3.43)
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Replacing the terms cot( ) and cot( + ) in Eq. (3.43) for the Eqs. (3.33) and (3.34),

respectively, and isolating the term cot ( ), we have

cot ( ) =
1

2
1
2 1

2
2
2 1

2
1
2 1 +

2
2
2 1

(3.44)

To perform a graphical analysis, we define two functions of representing the left­

and right­hand sides of the Eq. (3.44). Hence, let ( ) be the LHS of Eq. (3.44) and

( ) be the RHS of Eq. (3.44). Fig. (5.5) shows the curves of ( ) and ( ), where

the intersection points are the roots of Eq. (3.44). For the asymmetric well case, we have

[( 1) ). Fig. (5.5) it also shows the position of 1. In our case, 1 2 implies

that 1 2. Note that, for 1, the RHS of Eq. (3.44) belongs to the complex plane, .

Therefore, the variable that determines the existence of a real solution for Eq. (3.44) is 1.

Figure 3.6: Left­hand side (blue curve), and right­hand side (red curve), of Eq (3.44).

The intersection between the curves yields the root of the transcendental equation, .

Employing the same strategy developed in Section (3.2.2), we expand ( ) and

( ) in a Taylor series around expan . Thus, by means of a graphical analysis of Eq. (3.44),

shown in Fig. (5.5), we conclude that a simple linear expansion around expan for both ( )

and ( ) is enough to provide high accuracy. Hence, for ( ) we have

( ) = + 1 2
expan
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where = cot expan . By the same token, expanding ( ) around expan , we obtain:

( ) = + expan

where the constants are

=
1 1 2

1 + 2

= 1¡2 + 2¡1

1 + 2

= (¡2 ¡1) (3.45)

with

1 =
2
1

2
expan

1

2 =
2
2

2
expan

1

¡1 =
1

2
1

expan
2
1

2
expan

¡2 =
2

2
2

expan
2
2

2
expan

(3.46)

Next, we can write an approximation for Eq. (3.44) equating both sides and isolating

:

=
2 + + 1

+ expan (3.47)

It is worth mentioning that a linear approximation on both sides of Eq. (3.44) was

only possible due to our strategy of expanding transcendental equations around a movable point

described through the mapping function M ( 1). In contrast, in a conventional approaches,

a second order polynomial approximation for cot( ) around = 0 in Eq. (3.44) would result

in a 4th­order polynomial equation, making the solution very laborious, with no guarantee of

satisfactory agreement for the entire range of interest.
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Building the mapping functionM

To determine the mapping function, we proceed just as before in the Sec. (3.2.2). Ini­

tially, we plot the fundamental state 1 as a function of 1. From Fig. (5.5), it is seen that

1 tends to as 1 . By the same token, from Fig. (5.5), the solutions to the other

eigenstates tends to as 1 , hence, [( 1) ). Therefore, any func­

tion that approximates the behavior for 1( 1) and whose limit tends to under the condition

( 1 ) 1 will work as a mapping function for the ground state. Again, we sum­

marize this arguments in mathematical notation. For this case, the mapping function must meet

these two criteria:

Criterion 3 ( ( 1) M ( 1)) ( 1) with = 0 1, for (0 1 1) and

1 max

Criterion 4 M ( 1) with 1 max

where max is the maximum value 1 from which the condition max 1 is not met. Notice

that the mapping function does not need to meet Criterion 1 for all 1 values, but only for those

under the condition 1 max, concerning the case where max 1 is not satisfied. The value

of max was defined evaluating the overall relative error of our proposition. Again, does not

need to be extremely small, once the mapping function provides only a pointer to the vicinity of

the solution instead of the solution itself. Then, the following mapping function for the ground

state is proposed:

M ( 1) = 0

2

=1

exp
4

1
(3.48)

The coefficients and are determined by minimizing the relative error. To obtain the op­

timized and coefficients, we performed a fitting curve procedure by means of nonlinear

regression with the obtained R­square equal to 99 8%. To do so, we computed 1( 1) for the

following parameters: ¤ = 0 067 0, ¤
1 = 0 09 0 and ¤

2 = 0 15 0 where 0 is the

resting electron mass [75], [76]. For this set of parameters, we obtain 0 = 2 9, 1 = 1 59

2 = 1 37, 1 = 1 42 and 2 = 6 69. As before, the values for and are defined only once

in the derivations steps of our method. Again, the final expressions for the energy levels will
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provide the optimized mapping function constants for a broad range of typical semiconductor’s

physical parameters.

To evaluate the accuracy of our proposed mapping function, we compare the exact solution

for ( 1) and the mapping function M ( 1) with different masses ratios, expressed by the

parameter 2 = ¤ ¤
1. As it can be seen in Fig. (3.7), the mapping function provides an

excellent agreement. In addition, since 1 is a function of ¤ , and 1, we demonstrate that

the proposed mapping function is robust concerning the variation of the physical parameters.

Figure 3.7: Solid curves represent the mapping function, 1 , while symbols represent the exact

solution for the ground state, 1 1 , for different 2 values.

Again, taking advantage of the periodicity of the trigonometric functions involved in the

transcendental equation, we can employ Eq. (3.48) to compute any energy level simply by

shifting 1 andM ( 1) by multiples of to the interval where it is desired to compute , in

this case shifting both to the interval [( 1) ). Also, since 1 is greater than (see Fig.

(5.5)) andM ( 1) was defined for the ground state, i.e., limited to , these two factors must

shift opposite directions in order to reach the interval [( 1) ). To minimize the relative

error, we propose a similar mapping function for 1, adjusting only the coefficients and

. Proceeding in the same manner as in the case = 1, we obtain the mapping relation for all

allowed levels of the asymmetric well:

M ( 1) =
2 9 1 59

¡ 4
1 1 42

1 37
¡ 4

1 6 69
= 1

+ 5 79 15 13 ¡( 1¡ ) 1 05 2 91 ¡( 1¡ ) 6 41 1
(3.49)
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where, = ( 2) . Again, the optimized expansion point is obtained simply by setting

expan =M ( 1).

The limit value at which the condition max 1 is not met was determined by min­

imizing the relative error against the numerical solution for the Eqs. (3.41) and (3.47). This

analysis was carried out covering a wide range of physical parameters found in the semicon­

ductor heterostructures used in electronic devices.

As such, Eq. (3.50) summarizes all possible values of , describing all allowed energy

levels in a one­dimensional finite asymmetric rectangular quantum well potential:

=
1 3 1

1 15 + ( 1)

¡
2+ +1

+ expan 1 15 + ( 1)
(3.50)

Unlike the symmetric case, depending on the physical parameters, there may be no

solution for Eq. (3.44), i.e., an absence of bound energy levels in the asymmetric well. By

analyzing the graphical behavior of the curves ( ) and ( ), we can determine the

minimum condition for which Eq. (3.44) allow a solution. To do so, setting = 1, we have

that a solution for the ground state exists only when

cot ( 1)
2

1
1

¡1

2 (3.51)

Similarly, we can determine the minimum width of the well so the ­th energy level is

a bound state:

min( ) =
2 ¤

1

( 1) + arccot
2

1
1

¡1

(3.52)

From Eq. (3.44) we can also compute the exact width of the asymmetric well for a

given energy level , a very useful expression for engineering design purposes:

( ) =
2 ¤

+ arccot
1 2

1 + 2

(3.53)

Note that Eqs. (3.52) and (3.53) are exact solutions without any kind of approximation

employed. Finally, we also express how many energy levels are allowed for a given asymmetric

quantum well with width :
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=
1

1 arccot
2

1
1

¡1

+ 1 (3.54)

If we set 2 = 1 in Eq. (3.52), it becomes Eq. (3.29), as expected. Also, if 2 = 1

in Eq. (3.51), there will always be at least the ground state. Additionally, 2 = 1 implies that

= , since in this case we have 1 = 2 .

As a final note, we mention that it is possible to use the expressions originally de­

veloped for the asymmetric quantum well to compute energy levels of the symmetric case by

setting 2 = 1 . However, we cannot guarantee the same level of accuracy since the mapping

functions were optimized for each specific case.

3.4 Results and Discussion

3.4.1 Results for SQW

We start validating our expressions in comparison to the exact numerical solution. The

validation is carried out in terms of , initially considering = 1. Indeed, since encompasses

the quantum well physical parameters, by contrasting our results with the exact solution, as

function of , we validate the proposed expressions for a wide range of quantumwell structures.

Fig. (3.8) shows the odd mode eigenenergies 1, 3, 5 and 7 as function of , numerically

calculated (considered in this work as an exact solution) and using the analytical expression

given by Eq. (3.28). As can be seen, the proposed expressions offer an excellent agreement

with the exact solution. Fig. (3.9) shows the relative error of the odd­mode eigenenergies of

Fig. (3.8). The maximum error is less than 1%.

Fig. (3.10) show the even mode eigenenergies 2, 4, 6 and 8 as function of , numer­

ically calculated (symbols) and using the analytical expression proposed by Eq. (3.28) (solid

lines). Again, the proposed model displays an excellent agreement to the exact solution. Fig.

(3.11) shows the relative error of the even mode eigenenergies plotted in Fig. (3.10). As it can

be seen the maximum error is less than 1%.

In addition, to validate our solution for the symmetrical rectangular well, we used a

semiconductor structure with the following physical parameters 0 = 0 5 eV, ¤ = 0 067 0 and
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Figure 3.8: Odd mode eigenenergies 1, 3, 5 and 7 as a function of , numerically calculated

(symbols) and using the analytical model proposed by Eq. (3.28) (solid lines).

Figure 3.9: Relative error for the odd mode eigenenergies.

¤ = 0 11 0, being these values typically found in realistic semiconductor devices (e.g., de­

vices employing AlGaAs heterostructres) [75]­ [76], [79]. Fig. (3.12) shows the position of

the first three energy levels as function of the width of the well, , obtained numerically by

solving Eq. (3.13), and analytically through our expression, Eq. (3.28). We obtained excellent

results, in fact, as it can be seen from Fig. (3.12), the curves are visually indistinguishable.

Fig. (3.13) shows the relative error of the proposed model in respect to the numerical
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Figure 3.10: The eigenenergies, even mode, 2, 4, 6 and 8 as function of , numerically calculated

(symbols) and using our analytical expressions (solid lines).

Figure 3.11: Relative error for the even mode eigenenergies.

solution. The relative error is less than 1% for the three energy levels. Finally, to evaluate the

robustness of the model for different semiconductor structures, the relative error for different

effective masses ratio was also analyzed. Fig. (3.12) shows the relative error for the ground

state, 1 , for 2 = 0 25, 0 5, 0 75 and 1. For semiconductors devices, in general, ¤

¤ . Hence, the range of analysis for ¤ ¤, performed in this work, comprises most of the

practical cases in nanoelectronics and optoelectronics [75]. As depicted in Fig. (3.14), the
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Figure 3.12: Energy levels 1, 2 and 3 as function of

relative error for all tested values of 2 is below 1%. Notice that, in Fig. (3.13), the relative

error curves for the levels 2 and 3 start from a certain length of the well for which

the bound state do exist. These minimum length values can be calculated analytically by Eq.

(3.29).

Figure 3.13: Relative error of our proposed model with respect to the exact solution are smaller than

for energy levels 1, 2 and 3.
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Figure 3.14: Evaluation of our proposed solution regarding different electron effective masses in the

potential barrier and the quantum well. This ratio is expressed by 2 ¤ ¤. All curves are for

the ground state, , and 2 , . For all evaluated values of 2 the

relative error is below .

3.4.2 Results for ASQW

In the same way, to check the accuracy of the analytical model for the asymmetric case,

we consider an asymmetric rectangular well with 1 = 0 2 eV, 2 = 0 5 eV, ¤ = 0 085 0,

¤
1 = 0 15 0 and ¤

2 = 0 3 0 [75]. Fig. (3.15) shows the position of the first three energy

levels of the asymmetric well as a function of the width , obtained numerically by solving

Eq. (3.44), and analytically through our expression, Eq. (3.50). Again, excellent agreement is

obtained. Fig. (3.16) shows the relative error as a function of the width of the well. The relative

error for all energy levels evaluated is below 1%. The minimum values of for 2 and

3 can be calculated using Eq. (3.52).

Fig. (3.17) shows the relative error for the ground state for different values of 2 =

¤ ¤
1 and

2 = ¤ ¤
2 to investigate the accuracy of the expressions for different semi­

conductor structures. Note that the relative error for all cases addressed are below 1%, showing

that the expressions are capable of computing energy levels correctly, regardless of the semi­

conductor structure. Finally, Fig. (3.18) shows an analysis performed for the asymmetric well

model regarding the difference between the barriers heights, ¢ = 2 1 ( 2 1). Thus,
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it was possible to determine that the proposed solution provides a relative error of less than 1%

for the fundamental state, even in an unusual case when¢ = 2 0 eV.

Figure 3.15: Energy levels 1, 2 and 3 as a function of for the asymmetrical quantum

well. Comparing our analytical expressions (solid lines) with numerical exact solutions (symbols), we

obtain excellent agreement.

Figure 3.16: Relative errors of our proposed model with respect to the exact solution are smaller than

for energy levels 1, 2 and 3.
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Figure 3.17: Evaluation of our proposed solution regarding the electron effective masses ratios between

the potential barrier and the quantum well. This ratio is expressed by 2 ¤ ¤
1 and 2

¤ ¤
2. Relative errors for the ground energy level, , for all evaluated values of 2 and 2 are

below .

Figure 3.18: Evaluation of our proposed solution regarding difference in barriers height. For all evaluated

values of 2 1 the relative error is below .
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3.5 Comparison Between Symmetric and Asymmetric Solu­

tions

Concerning the accuracy of the model, an important question that arises is if the solution

originally proposed for the symmetric well can be used for asymmetric well. To address this, we

evaluate the relative error of the solution proposed for the symmetric quantum well employed

in the asymmetric quantum well. Specifically, we evaluate the solution as a function of the

quantum well width, for a set of the difference between the barriers heights (¢ = 2 1),

the results are consolidated in Fig. (3.19).

As it can be seen from Fig. (3.19), for a quantum well with = 40 Å and a small asym­

metry of 0.2 eV, the relative error is higher than 10%. Therefore, depending on the accuracy

level required and the amount of asymmetry, it is more advantageous to use the model proposed

for asymmetric quantum well than the symmetric version.

Figure 3.19: Evaluation of the solution proposed for the symmetric quantum well employed in the asym­

metric quantum well, regarding difference in barriers height, 2 1.

In this Chapter, we presented a novel method to calculate energy levels in quantum

wells, addressing requirements in semiconductor device compact modelling. Our approach is

based on a Taylor series expansion technique around a variable optimized expansion point,

obtained by mapping functions, to find the roots of transcendental equations. We highlight
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that this approach is a general method that can also be applied in other problems involving

transcendental equations. The Appendix contains a step­by­step tutorial with instructions on

how to apply the method to solve other transcendental equations.

By using the analytical expressions for the position of the eigenenergies in the finite rec­

tangular quantum well developed in this chapter, one can now develop then the Breit­Wigner

expression in a purely analytical and explicit form.

The model described in this chapter is summarized in reference [80]. In addition, a different

method for determining the energies of rectangular quantum wells was published at [81].

In the next chapter, we outline the charge transport dynamics in RTDs.
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Chapter 4

Charge Transport in Resonant Tunneling

Diodes

This chapter initially introduces the fundamentals of electronic transport dynamics in RTDs.

Specifically, we highlighted the origin of the negative differential resistance (NDR) in the de­

vice. Next, the pioneering Tsu­Esaki transport formalism is outlined [31]. We also discuss the

popular Schulman’s empirical analytical model [82]­ [83]. Finally, we discuss the relevant

scattering mechanisms present in RTDs.

4.1 Introduction

Fundamentally, the RTD consists of a heterostructure forming a region of double potential

barrier, as schematically illustrated in Fig. (4.1). The quantum well width is small enough

so that to allow spatial quantization effects. Consequently, the electron momentum in the

direction perpendicular to the potential barriers becomes quantized, producing a sequence of

two­dimensional subbands associated with the eigenstates, k , in the quantum well region.

Therefore, there is a two­dimensional (2D) density of states in the quantum well [51].

As illustrated in Fig. (4.1), the energy level 1 corresponds to the lowest resonant energy

level in the quantum well. As shown in Chapter 2, the transmission coefficient profile has a

peak at 1. In fact, the transmissivity is unitary when barriers are identical. In addition, there

is a finite lifetime, 1, associated with this energy level. Consequently, 1 has an associated
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Figure 4.1: Top: Schematic illustration of the RTD layer structure. Botton: Schematic of the conduction

band profile containing the double potential barrier region. refers to the Fermi energy level.

resonance linewidth, ¡1. The resonance linewidth is inversely proportional to the lifetime i.e.

1 [53]. As seen earlier, depending on the geometrical parameters, the well can have

higher energy levels with their respective resonance linewidths, ¡ , where accounts for the

–th subband.

As shown in Fig. (4.1), the double barrier structure is surrounded by layers of strongly

doped (n­type) GaAs acting as low resistance emitter and collector contacts. With applied bias

to the emitter and collector contacts, the emitter Fermi energy level is eventually aligned with

the resonant energy level, 1, in the well. Under this condition, a large current density flows

through the barriers due to the increase in the transmission coefficient i.e., a greater number of

electrons flow from the emitter region to the collector region. Under higher voltage conditions,

the well resonant energy level is below the Fermi energy level, thereby suppressing the supply

of electrons. As a result, a sharp decrease in current density occurs. In addition, as a direct

consequence of increasing applied voltage, the NDR region emerges, as shown in the I–V curve

in Fig. (4.3). Moreover, with more than one resonant energy level in the well, additional peak

and valley regions will be present in the I–V characteristic curve [61].

The electron experiences a change in dimensionality when crossing the potential barriers.

Specifically, the dimensionality changes from the three­dimensional state density (3D), in the

emitter region, to the two­dimensional state density (2D), in the quantum well region, 3D 2D.
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Figure 4.2: Conduction band profile of a typical RTD. Part (a) shows a schematic of the conduction band

in absence of applied voltage and part (b) at the resonance condition. Part (c) illustrates the contribution

of inelastic processes. Part (d) illustrates the off­resonance condition and the thermionic contribution to

the current density.

To elucidate this mechanism, Fig. (4.4) contains a schematic illustration of the conduction band

profile in the ­direction, in the absence of an applied bias. Also, Fig. (4.4) shows a schematic

illustration of the emitter Fermi sphere in k­space, at low­temperature limit. In the equilibrium

condition, as it can be seen in Fig. (4.4­b), the wave vector is equal to 1. In other words,

the resonant energy level is outside of the emitter Fermi sphere. Therefore, in this condition,

there is no resonant current through the potential barrier [51].

As discussed in Chapter 2, quantum tunneling occurs at resonant energy levels. In the

example illustrated in Fig. (4.5­a), this process is indicated by the green arrow. As it can be

noted, there is an emitter electron with kinetic energy 0
1 coincident with the resonant energy.

The resonant current is composed mainly of electrons with energy within the resonant en­
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Figure 4.3: The I–V characteristic curve of a RTD. and are the peak and valley current density,

respectively. and account for the peak and valley voltage positions, respectively. Additionally, it is

possible to identify in the figure the corresponding regions, (a), (b), (c) and (d), illustrated in Fig. (4.2).

Figure 4.4: Part (a) shows the conduction band of an RTD in thermodynamic equilibrium. The resonant

subband 1 is illustrated in the well above the Fermi level. Part (b) shows the Fermi sphere of the

emitter and the quantum well wavevector position, 1. In this condition, ideally, there is no

resonant current.

ergy width, ¡1. Also, the resonant current is proportional to the disk area in k­space, ¤, which

results from the intersection between the Fermi sphere with the plane parallel to the interface

, sectioning the sphere at the point = 0
1. Thus, any electron with a parallel wave

vector component obeying the relation: k ¤ contributes to the resonant current density [51].
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Figure 4.5: Part (a) shows the RTD conduction band under applied voltage . Electrons with energy

0
1 (resonance energy under applied external voltage) tunnel through the resonant subband in the well.

There is a slight possibility of electrons with energy 2 tunnel through the potential barrier. Electrons

can overcome the potential barrier by thermionic emission, process depicted by electrons with energy 3.

(b) shows the emitter Fermi sphere, sectioned by the plane parallel to the barriers at the point 0
1.

This process is illustrated in Fig. (4.5­b). In addition to the transport through resonant energy

levels, other mechanisms also contribute to the current density. For instance, an electron with

energy below the resonant level can absorb a phonon and, sequentially, tunnel through the res­

onant level [51], [53]. Similarly, an electron with initial energy greater than the resonant level

can interact with the lattice vibration emitting a phonon and tunneling through the resonant

level. Additionally, electrons with sufficiently high energy can overcome the potential barriers

through thermionic emission, as it is also indicated in Fig. (4.5­a). Also, there is still a minor

but non­zero probability that electrons with kinetic energy different from the resonant level can

tunnel because of the broadening of resonant energy level. This mechanism has an important

contribution to the valley current, by electrons with energy 2, as illustrated in Fig. (4.5­a).

As argued by Luryi [32], during quantum tunneling the kinetic energy is conserved, leading

to 3 = 2 [32]. Fig. (4.6) contains a schematic illustration of the RTD conduction band

and the density of state in each region.

Considering the effective mass approximation, the total electron energy, at the emitter con­

tact, can be written as
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Figure 4.6: Top: A schematic illustration of the double potential barrier structure. Bottom: The figure

shows the density of 3D states in the emitter and collector and the 2D density in the quantum well.

3 = +
2 2

2 ¤ +
2 2
k

2 ¤
k

(4.1)

the plane wave vector, parallel to the barriers, is k = 2 + 2, where ¤ is the electron

effective mass in the ­direction. The ¤
k term refers to the electron effective mass in the

parallel plane. The term represents the bottom of the conduction band.

The total energy in the quantum well is given by

2 = +
2 2

k

2 ¤
k

(4.2)

where is the energy associated with the ­th subband in the quantum well. As discussed

earlier, during quantum tunneling, there is a dimensionality reduction, but the electron tunneling

do not perceive any potential change in the parallel y­ and z­directions. In other words, the

momentum in the parallel plane is conserved [32], [51]. However, the momentum in the ­

direction, in the quantum well, is quantized.

For instance, consider 0
1 (for = 1 under applied bias), tunneling is only possible for

electrons possessing momentum satisfying = 0
1. Hence, by equating Eqs. (4.1) and (4.2),

we have 02
1 = 2 ¤ ( 0

1 ) 2. Therefore, for = 0
1, corresponding to

0
1 = 0, the

electric current density reaches its maximum value [51].
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Carrier scattering mechanisms arise from crystal lattice vibrations, impurities, interface

roughness, and carrier­carrier interactions. Thus, many scattering events can take place dur­

ing the tunneling process. Also, impurities in the quantum well can generate additional states in

the well, working as traps for the conducting electrons, thereby affecting the I–V characteristics.

Finally, in addition to the processes described above, there are also the hysteresis effects caused

by the intrinsic and extrinsic bistability of the device. These processes can significantly affect

device properties, making it difficult to develop a model to accurately reproduce experimental

data [51].

One of the first experimental investigations of resonant tunneling in double barrier semicon­

ductor heterostructure was carried out by Chang, Esaki and Tsu, in 1974 [84]. When investi­

gating an RTD device formed by the GaAs/Al0 7Ga0 3As material system, the authors observed

small peaks in the output current around the quantum well eigenenergies position, character­

izing the resonant tunneling process [84]. However, the investigation was conducted under a

low­temperature regime. The difficulty in clearly observing the NDR in RTDs, as compared

with Esaki diodes, is due to the challenge in achieving low concentrations of unwanted impu­

rities with the technology available at that time. Only after the 1980s, the quality of epitaxial

growth improved significantly, making it possible to observe resonant tunneling in epitaxial

layers of the III­V materials group.

For most applications, NDR devices should have a high peak current and a low valley cur­

rent. Therefore, a figure of merit for RTDs is the peak­to­valley current ratio (PVCR), which

is the relation between the resonance peak current and the valley current, as illustrated in Fig.

(4.3).

In this context, one of the first observations of the NDR region in RTD, at room temperature,

was reported in 1985 [85]­ [87], for a device composed of GaAs/AIGaAs heterojunctions. For

this device, an approximate PVCR of 4:1 was measured. With the maturing of the epitaxial

growth technology, it was possible to manufacture devices with better performance, such as

using the InGaAs/AlAs material system [88], where the PVCR is in the order of 30:1 at room

temperature and 60:1 at cryogenic temperature [89]. Additionally, resonant tunneling has also

been observed in many other material systems, e.g., GaAsP/GaAs [90], InP/InGaAs [91], p­type

GaAs/AIGaAs [92], AlSb/lnAs [93], HgTe/HgCdTe [94], Si/Ge Si1¡ [95]­ [96], amorphous
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a­Si/SbN, [97], AlGaN/GaN [98], Graphene Nanoribbon RTDs [99]­ [100] and, more recently,

GaN/AlN [101].

4.2 Quantization in RTDs

For the semiconductor heterostructure present in RTDs, one can describe the conduction

band quantization by solving the three­dimensional Schröedinger equation given by

Ĥ ª( ) = ª( ) (4.3)

where ª( ) is the eigenstate of the system wave function and Ĥ is the Hamiltonian

operator written in terms of the kinetic energy operators K, and the electron potential V, as

Ĥ K+V [1]. Assuming quantization in the ­direction, one can write

2

2

1
¤( )

2

2 ¤
k

2
r + ( ) ª (r ) = ª (r ) (4.4)

where ¤( ) is the electron effective mass in the ­direction, perpendicular to the interface

while ¤
k represents the electron effective mass parallel to the interface. The term r is the

position vector parallel to the interface and ª(r ) is the wave function.

Assuming ª(r ) varies slowly with respect to the dimensions of the crystal unit cell, the

eigenvalues of the Hamiltonian operator are the system energy levels [53]. Then, assuming an

parabolic energy approximation, we can write ¤( ) as a constant ¤ :

1
¤ =

1
2

2 ( )
2

(4.5)

In Eq. (4.4) ( ) is the approximate effective potential, considering the isotropic crystal

and ignoring the stress at the heterostructure interface, we have

( ) =
¢ ( )

( ) + ( ) (4.6)

where ¢ is the discontinuity in the conduction band caused by the joining of materials with

different bandgaps, and ( ) is the Hartree term. The exchange correlation term among the

free carriers is ( ) [53].
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The Poisson equation is given by

( ) ( ) =
( )

0
(4.7)

where ( ) is the dielectric constant as a function of the position and ( ) is the charge density

in the structure.

Assuming that the variation of the electric potential occurs only in the ­direction, it is

possible to solve Eq. (4.4) using the method of separation of variables. To do so, one can write

ª(r ) = £(r)¨( ), considering £(r) as a plane wave:

ª(r ) = £(r)¨( ) =
1 kk¢r¨ ( ) (4.8)

where is the normalization factor obtained by

£(r) £(r) =

+1

¡1

£¤(r)£(r) 2r = 1 (4.9)

In the ­direction the one­dimensional Schrödinger equation is

2

2 ¤

2

2
+ ( ) ¨( ) = ¨( ) (4.10)

we can write the total kinetic energy as

k = +
2 2
k

2 ¤
k

As usual, the density of ionized donors is given by

+( ) =
( )

1 + ( ¡ )
(4.11)

where ( ) represents the density of impurities donors and accounts for the degeneracy

factor. For fermions, by the Pauli exclusion principle, we have = 2. Also, is the donor

energy level, is the Fermi energy level and is the Boltzmann constant. The electron

density can be found through the relation

=
1

0

( ) ( ) (4.12)
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where ( ) is the density of states and ( ) represents the Fermi­Dirac statistics:

( ) =
1

1 + exp [( ) ]
(4.13)

for a two­dimensional system, the density of states is given by

( ) =
¤
k
2

(4.14)

replacing Eqs. (4.13) and (4.14) in Eq.(4.12), one obtain

=
¤
k
2

1 1

1 + exp [( ) ]
(4.15)

Thus, for quantized heterostructures once the subbands have been determined, the free elec­

tron density distribution ( ) can be calculated through the expression

( ) = ¨¤( )¨ ( ) = ¨ ( ) 2 (4.16)

replacing Eq. (4.15) in Eq.(4.16), yields

( ) =
¤
k
2

¨ ( ) 2 ln [1 + exp (( ) )] (4.17)

The charge density can then be written as

( ) = + ( ) ¡ ( ) ( ) + ( ) (4.18)

where is the electron elementary charge, ¡ ( ) is the ionized acceptors density, ( ) is the

free electrons density, given by Eq. (4.16), and ( ) the hole density. In the n­type devices in­

vestigated in this work, we can neglect ( ), since it is very small compared to the other charges

in Eq. (4.18). Additionally, the energy in the i­th subband , and its respective wave functions

¨ ( ) are obtained by solving Eq. (4.4). Therefore, the Schrödinger and Poisson equations

form a system of coupled differential equations, which is usually solved self­consistently.

However, in this work, to obtain an analytical model, we assume a low charge density in the

quantum well region. Thus, we neglect the Hartree, ( ), and the correlation, ( ), electric

potential terms. With these considerations, determining the eigenenergies in the finite quantum

well becomes a one­dimensional problem already addressed in Chap. (3), where an original

analytical solution is provided.
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4.3 Tsu­Esaki Carrier Transport Formalism [31]

This section describes the pioneering current density formalism proposed by Tsu­Esaki in

1973 in [31]. Originally, the authors considered a finite superlattice formed of potential bar­

riers composed by the GaAs/Al0 5Ga0 5As heterostructure [31]. In this formalism, the coherent

transverse transport of electrons is considered, i.e., it is assumed that the electron coherence

length is of the order of the structure width, including the barriers. Thus, it is considered

that the electron traverses the potential barriers without loss of phase coherence (purely elastic

collisions) [31]. Additionally, in the Tsu­Esaki formalism, the following considerations and

simplifications are assumed [31], [58]:

1. Conservation of transverse momentum during tunneling;

2. Electric field evenly distributed in the structure;

3. Space charge formation across the structure is negligible;

4. The existence of load sources or sinks along the structure is disregarded;

5. Effective mass approximation;

6. Current density is composed of electrons;

7. Rectangular potential barriers;

For the RTD illustrated in Fig. (4.1), as discussed previously, it is possible that electrons in

the emitter region tunnel into the collector region through the double barrier. Likewise, there is

a possibility that electrons in the collector can tunnel into the emitter region through the barriers.

Considering the effective mass approximation, one can write

(k) =
2 k 2

2 ¤

2 2

2 ¤ +
2 2

2 ¤ +
2 2

2 ¤

where the wave vector is k = x+ y+ z . As discussed in the section (4.1), the conservation

of the parallel moment is assumed. Then, one can write kk = k = y+ z. Taking the bottom

of the conduction band as a reference ( = 0), the total kinetic energy can be written as
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(k) = + k =
2 2

2 ¤ +
2 2

k

2 ¤
k

(4.19)

The current density in the RTD can be written as the difference between the current density

flowing from the emitter to the collector, ! and the current density from collector to emitter,

! . Thus, the current density in the RTD is

= ! !

Taking into account the perpendicular velocity of the electron, , the transmission proba­

bility coefficientT, the density of states (DOS) in the emitter and collector and the Fermi­Dirac

distribution, (k), one can write

! = (k) ( )T( ) (k) (1 (k)) (4.20)

! = (k) ( )T( ) (k) (1 (k))

where the terms (1 (k)) and (1 (k)) represent the number of states available in the

collector and emitter, respectively.

The density of states ( ) is given by

( ) =
1

0

1

0

( ) (4.21)

where ( ) is the three­dimensional density of states in ­space. For simplicity, con­

sider the free electron in a cube of side , thus, the quantization steps for the three directions

are

= = =
2

in ­space, the 3­D density of states can be written as

( ) = 2
1 1

3
=

2

(2 )3
(4.22)

where the factor 2 in Eq. (4.22) accounts for the Pauli exclusion principle.
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The group velocity of electrons in the semiconductor can be written as v (k) = 1 (k).

For the one­dimensional case, the velocity x­direction is

(k) =
1 (k)

=
1 2 2

2 ¤ = ¤ (4.23)

in addition, one can take advantage of the relation: = 1 . Then, one can write Eq.

(4.20) as

! =
1

0

1

0

2

(2 )3
T( ) (k) (1 (k))

1
(4.24)

! =
1

0

1

0

2

(2 )3
T( ) (k) (1 (k))

1
(4.25)

rearranging

! =
4 3

1

0

1

0

T( ) ( ) (1 ( ))

! =
4 3

1

0

1

0

T( ) ( ) (1 ( ))

The total current density is

= ! ! =
4 3

1

0

T( )
1

0

1

0

( ) (1 ( )) +

+
4 3

1

0

T( )
1

0

1

0

( ) (1 ( ))

finally, rearranging

=
4 3

1

0

T( )
1

0

1

0

[ ( ) ( )] (4.26)

The integration in energy goes from 0 to because electron tunneling below the bottom

of the conduction band falls into the bandgap. In addition, the tunneling is considered to be

symmetric, accordingly, T( ) is the same for left­to­right as well as right­to­left incident

electrons.
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Starting by making a change of coordinates, from Cartesian to Polar, and knowing that

k k =
¤
k
2 k, one can write

1

0

1

0

[ ( ) ( )] =
1

0

2

0

[ ( ) ( )] k k (4.27)

= 2
¤
k
2

1

0

[ ( ) ( )] k

Combining Eq. (4.27) and Eq. (4.26), yields:

=
¤
k

2 2 3

1

0

T( )
1

0

[ ( ) ( )] k (4.28)

=
¤
k

2 2 3

1

0

T( )
1

0

( ) k

1

0

( ) k

for the emitter and collector, the Fermi­Dirac statistic is ( ) and ( ), respectively, being

described as:

( ) =
1

1 + exp + k
(4.29)

( ) =
1

1 + exp + k (
(4.30)

knowing that

1 + exp ( )
= ln

1

1 + exp ( )
+ 0

one gets

1

0

( ) k = ln [1 + exp (( ) )] (4.31)

1

0

( ) k = ln [1 + exp (( ) )] (4.32)

where 0 is an arbitrary constant. Substituting Eqs. (4.31) and (4.32) in Eq. (4.28) and perform­

ing some algebraic manipulations, finally, one obtains the Tsu­Esaki current expression [31]:
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=
¤
k

2 2 3

1

0

T( ) ln
1 + exp (( ) )

1 + exp (( ) )
(4.33)

Originally, Tsu and Esaki used the transfer matrix method to calculate the transmission

coefficient T( ) for the N­barriers case. Therefore, in principle, the current density in the

Tsu­Esaki formalism must be calculated numerically. Also, when proposed, the formalism of

Tsu and Esaki [31] did not consider the difference in the effective mass of the electron in the

different semiconductor layers, barriers and the well. Such analysis was carried out later, in

1998, by Schulman in [83].

Figure 4.7: I­V curve obtained experimentally and numerically by using the formalism of Tsu and

Esaki [31], for a double potential barrier RTD, with formed by the alloy Al0 35Ga0 65As, and

the quantum well formed by GaAs with measurements, the curves were obtained with

[102]

Fig. (4.7) shows a comparison between the I­V curve obtained experimentally [102] and by

the Tsu and Esaki formalism for a double potential barrier RTD. The Al0 35Ga0 65As barriers

have a width of 85 Å, while the GaAs quantum well is 50 Å wide. The curves were obtained

at 77 K [102]. As it can be seen, there is no agreement between the current density calculated

from the Tsu­Esaki model and the experimental curve. The peak and the valley voltage bias and

the PVRC do not agree with the experimentally measured values. The peak and valley current

density calculated using the Tsu­Esaki model is ten times higher for the measured peak and
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three times smaller for the measured valley [102]. This discrepancy is because the model does

not take into account the inelastic phonon scattering mechanisms present in RTDs, and the accu­

mulation and depletion regions formed in the emitter and collector regions, respectively. [103].

Additionally, in the experimental curve, it can be noticed a voltage range where the increase

of the applied voltage does not cause significant variation in the current density, appearing as a

"shoulder," a plateau. This effect is mainly due to the intrinsic and extrinsic bistability present

in bulk RTDs [104] ­ [106]. Finally, the Tsu­Esaki original model also fails because it does

not consider the voltage drop in the GaAs well region, assuming a constant voltage drop in the

barrier region. Thus, the model erroneously predicts the first resonance peak at = 2 1 [31].

The Tsu­Esaki model correctly predicts the general shape of the I–V curve, encompassing

the current peak and valley and, consequently, the NDR range. However, due to the simplifi­

cations and approximations assumed, it completely fails to describe the current density in real

RTD devices [58]. Several models have been proposed in the literature to address these inac­

curacies [51]. Among these, models modifying the Tsu­Esaki formalism to derive analytical

expressions as well as models based in numerical approaches.

In general, numerical models can take into account effects generally neglected in analytical

models, such as inelastic scattering effect, non­parabolicity of the band diagram, space­charge

builf­up, self­consistent calculations, interface traps, among other considerations [51]. Among

the numerical models found in the literature one can mention models based on non equilibrium

Green’s function (NEGF) [107]­ [109], Wigner transport equation [110]­ [112], Bhom’s formal­

ism [113] and method based on the R­matrix formalism [114]. Among the models mentioned,

those that present lower computational effort albeit still providing excellent agreement with ex­

perimental data are the models based on the NEGF formalism and the R­matrix, since, in gen­

eral, the Wigner­Eisenbud [115], and Bhom formalisms rely on Monte­Carlo techniques [112].

In this context, G. Klimeck, using NEGF, developed a device simulator called NEMO (Nano

Electronics Modeling Tools) capable of describing the I–V characteristics of nanodevices [?].

The nanoHUB.org [116] is an OpenSource tool that employs a free NEMO version. The site

provides free nanoscale transport simulation programs that run in the cloud and are accessible

through a standard web browser [116]. In addition to NEMO, there are commercial TCAD

(Technology Computer­Aided Design) platforms for simulating quantum devices, such as Sen­
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taurus from Synopsis R and Atlas from Silvaco R [117]. These tools are very useful for vali­

dating compact analytical models.

Numerical simulations accurately describe the physical behavior of manometric scale de­

vices [51]. However, it is necessary to deal with the complexity of numerical codes, very long

simulation times and stringent requirements for memory storage and computational capacity. In

addition, the results are often difficult to interpret.

For engineering purposes, compact analytical models are desired, as they capture the most

relevant physical mechanisms governing the carrier transport in quantum devices, in a simple

and fast way, being a useful tool for circuit design. In this regard, most models are focused on

SPICE implementations, therefore relying on purely empirical fitting parameters [118]­ [122].

They are essentially behavioral device models, suitable for circuit simulation but unable to pre­

dict the relationship between the RTD layer structure and its electrical output characteristics, a

crucial step for device optimization. Such predictive capability is the domain of physics­based

models. However, the literature concerning physics­based models for RTDs is quite limited. In­

deed, the most well­known physics­based analytical model for the I–V characteristics of RTDs

is the model proposed by Schulman and co­workers [82], which was recently revisited by [123].

The next section describes the analytical formula for current density in double potential barrier

RTDs proposed by Schulman [82].

4.4 Schulman’s Model [82]

In 1986, Coon and Liu [124], proposed a model, based on the Tsu­Esaki formulation, for

the negative resistance at the temperature limit 0 K. Later, in 1993, Chang et al. [118], starting

from the expression proposed by Coon and Liu, replaced the original physical parameters by

fitting parameters, which allowed to extend the formalism to cover room temperatures. In 1995,

Yan et al. [120], proposed a fully empirical model in which the I–V curve characteristic of the

RTD is divided into three parts: before the peak voltage, from the peak voltage to the valley

voltage and beyond the valley voltage. Yan et al. model is completely empirical, not based

on device physics. Finally, in 1996, Schulman proposes to modify the Coon and Liu model,

including the essential characteristics of non­zero temperature and the Fermi­Dirac statistic. In
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the article [82] Schulman derives an analytical expression for the voltage­current characteristic

of the RTD based on Tsu­Esaki formalism [82].

Schulman starts by proposing to compute the transmission coefficient T( ), originally

calculated using MMT, by using the Breit­Wigner approximation (derived in Chapter 2)

T( ) =
(¡ 2)2

(¡ 2)2 + ( )2
(4.34)

where ¡ and accounts for the n–th level resonance linewidths and resonant energy in the

well, respectively.

Calculations show that ¡ is of the order of a few , even for thin barrier widths [125],

which is much less than for room temperature. Schulman noticed that, for small ¡ , the

transmission coefficient becomes negligible, except when the kinetic energy is close to the

resonant level . Thus, Schulman proposed the approximation = 2. In doing

so, the logarithmic term in Eq. (4.33) can be placed outside the current integral to provide:

=
¤
k ¡

4 2 3
ln

1 + exp (( + 2) )

1 + exp (( 2) ) 2
+ arctan 2

¡ 2

(4.35)

Schulman states that the Eq. (4.35) contains device parameters which can be used as fitting

parameters. To fit with experimental data, Schulman proposed:

1 ( ) = ln
1 + exp (( + 1 ) )

1 + exp (( 1 2) ) 2
+ arctan

1 (4.36)

where the physical parameters in Eq. (4.35) are replaced by fitting parameters:

¤
k ¡

4 2 3
and ¡ 2

Eq. (4.36) accounts for the resonant peak current, but it is not capable to reproduce the

exponential part of the I–V characteristics. To address this problem, an additional term based

on conventional diode current­voltage equation is added to Eq. (4.36):

2 ( ) = 1 1
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Then, Schulman’s final expression becomes ( ) = 1 ( ) + 2 ( ):

( ) = ln
1 + exp (( + 1 ) )

1 + exp (( 1 2) )

2
+ tan¡1

1
+ 2 1 (4.37)

where , 1 and 2 are fitting parameters.

We should point out that the expression is originally not fully analytical since the resonant

energy levels are computed numerically. Additionally, Schulman assumed that quantum tunnel­

ing is purely coherent, which is not true in realistic devices. Furthermore, Schulman admitted

that the resonant energy levels drop by half the applied voltage ( 2), which is also not

always valid, mainly due to the space charge regions. Despite this, the expression derived by

Schulman provides the correct lineshape of the resonant current­voltage characteristic.

In [82], Schulman contrasts the model with the experimental results from a RTD composed

by the undoped In0 53Ga0 47As/AlAs hetrostructure with barrier width of 26Å, quantum well

width of 48 Å and spacer layers of 265Å. Fig. (4.8) shows a schematic illustration of the RTD

considered by Schulman in [82].

Figure 4.8: Schematic illustration of the device investigated by Schulman in [82].

Fig. (4.9) shows the experimental current density compared to the result provided by the

Schulman model. In particular, the fitting parameters used in this validation are; = 104,

= 0 035, = 0 1472, = 0 0052, 1 = 0 115, = 0 1411 and 2 = 0 1201. As it can be
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seen in Fig. (4.9), there is a good agreement. The plateau present in the experimental curve is

associated with intrinsic and the extrinsic bistability of the RTD, not modeled by the theoretical

Schulman formalism.

Schulman’s model, despite based on a compact parametric equation, suitable for a circuit

simulator, is composed of several fitting parameters not totally based on physical parameters.

Therefore, its accuracy depends on the adjustment of these parameters against the measured

data. The work described in [82] is certainly technically sound in terms of the physics of

the RTD. However, it can still be considered semi­emprical, since it relies on seven fitting

parameters, which have a clear physical meaning but are allowed to vary in order to match

theory and experiment. Also, there is no direct correspondence between the model parameters

and the device structure regarding the layer thicknesses and compositions, doping levels, etc.

Figure 4.9: Comparison between experimental results and the Schulman model for an RTD with

In0 53Ga0 47As/AlAs structure [82].

We should point it out that after the Schulman model [82], models such as [121]­ [123],

[126] can be found in the literature. However, most of these models are not fully analytical

and/or do not cover a broad range of temperature and most of than are not predictive. Addition­

ally, many of these models disregard scattering mechanisms in RTDs, preventing an accurate

description of the I–V characteristics. In this regard, the next section discusses the most relevant
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scattering mechanisms present in RTDs.

4.5 Scattering Mechanisms

Several RTD models found in the literature disregard the inelastic scattering effects during

electron tunneling, considering a fully coherent current density. In addition, many of these

models neglect the formation of the accumulation and depletion regions. Thus, the I–V curve

provided by these models differs from the experimental data [51]. Therefore, it is necessary to

investigate the scattering effects that most impact the tunneling process in RTDs.

In this regard, Tsu­Esaki original formalism neglects the effects of space charge formation

in the RTD. Consequently, the potential profile in the double barrier quantum well region, under

bias, taken as linear, as illustrated in Fig. (4.2). However, in a more accurate model, the spatial

charge distribution in RTDs directly interplays with the electron distribution, giving rise to a

non­uniform potential profile [127]­ [133]. The charge distribution in biased RTDs, i.e., out of

thermodynamic equilibrium, is ruled by energy dissipation processes [53]. Energy dissipation

processes, such as LO­phonon emission (optical­longitudinal phonon) [134]­ [148], impurity

scattering, roughness, and others [103], [149]­ [157], lead to charge storage in the quantum

well. In this context, inelastic phonon­electron scattering is considered the process that mostly

defines the I–V characteristic in RTDs [51], [158]. Additionally, inter­band tunneling processes

(e.g., ¡ X ) and impurity scattering also affect the transport dynamics in RTD [158].

The Tsu­Esaki formalism [31] assumes that the carriers travel through the device without

losing phase coherence. One can argue that this is a plausible assumption since the formalism is

only applied in the double barrier section (barriers and well, excluding contacts) with undoped

narrow width barriers (although scattering effects, even under these conditions, often become

significant [158]). There is also minor scattering contributions from impurities in the strongly

doped contact regions, emitter and collector. These regions are often modeled using the semi­

classical Thomas­Fermi approximation, in which electrons are assumed to occupy continuous

states above the edge of the conduction band [159]­ [161]. Thus, in the Thomas­Fermi approach,

the electron density ( ) in Eq. (4.18) is computed by taking the difference between the quasi­

Fermi level and the conduction band edge [103], [157]. Fully quantum treatment of the contact



87

regions can be done by adopting a dissipative quantum transport theory such as the Wigner and

NEGF transport model [107]­ [109], [110]­ [112].

In general, the quantum well and potential barrier regions are fabricated to be undoped.

Thus, ionized impurity scattering is not expected in the quantum tunneling process. How­

ever, donor atoms in adjacent contact regions, emitter and collector, can diffuse to the barrier

and well layers during the epitaxial growth process, giving rise to Coulomb scattering centers

[149]­ [162]. In order to reduce Coulomb scattering, an undoped spacer layer is usually inserted

between the contacts and the barriers. Additionally, including spacer layers allows the barriers

to sustain symmetry under bias voltage, since most of the bias applied lies over the space lay­

ers. As seen in Chapter 2, the asymmetry (is experienced by the electrons at the emitter side)

in the conduction band profile degrades the peak of the resonant transmission coefficient, con­

sequently, reducing the resonant tunneling current density [128]­ [129]. Fig. (4.10) depicts a

schematic illustration of the conduction band profile of an RTD with the inclusion of undoped

spacer layers adjacent to the barriers.

Figure 4.10: Schematic illustration of the conduction band profile of an RTD encompassing double

potential barrier, emitter, collector and spacer layer.

The applied external voltage is also distributed in the spacer layer, which is employed be­

cause a low doping profile near the resonant tunneling barriers results in a higher PVRC [163].

Thus, in real RTDs, the space charge modifies the electric potential, leading to a region of

charge accumulation in the emitter and charge depletion in the collector [164]. Depending on

the doping level in the spacer layer, a quasi­triangular quantum well may form a 2DEG region

at the emitter [147], [161], as shown in Fig. (4.11­b).

In this context, a widely documented device, which is based on a 2­DEG channel, is the
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HEMT (High Electron Mobility Transistor). For instance, consider a HEMT composed by

the GaAs/AI Ga1¡ As semiconductor heterostructure with modulated doping, where the GaAs

layer is nominally undoped and the AI Ga1¡ As is n­type (to improve mobility and reducing

Coulomb scattering, doping occurs at a distance of 100Å from interface). In thermal equilib­

rium, to produce a constant Fermi level across the structure, charge transfer occurs across the

interface, leading to spatial charge regions on both sides of the junction. Consequently, there

is a bending in the conduction band profile [165], [166]. In this case, electrons are transferred

from the higher band­gap material to the lower one, forming a region of positive spatial charge

due to ionized donors and creating an electron inversion layer in the GaAs side. Specifically,

a triangular quantum well is formed at the inversion layer, confining the electrons close to the

interface and quantized eigenenergy levels in the well. Thus, a series of subbands are formed,

each with a two­dimensional state density of ¤ 2. At low temperatures, electrons occupy

only the first subband and hence the electron gas can be considered a quasi two­dimensional

where electrons are free in plane parallel to the interface. [167]. In this structure, the elec­

trons are spatially separated from the ionized donor ions, which leads to high electron mobility

values ( 10 106 cm2 V s). However, the situation in RTDs is slightly different as the

AI Ga1¡ As region is not doped and therefore, there is no 2DEG layer formation in the absence

of applied voltage. Nevertheless, bias application produces an accumulation layer adjacent to

the potential barrier and two­dimensional states arise at the interface.

As mentioned earlier, the valley current density calculated by the purely coherent model

is much smaller than the value measured experimentally (see Fig. (4.7)). Thus, the pre­

dicted PVRC ratio is more than an order of magnitude greater than the measured experimental

data [51], [102]. This large difference between theoretically calculated and experimentally mea­

sured valley current was similarly observed in several RTD structures. Therefore, it cannot be

attributed to uncertainty about the material parameters used in the calculations or due to mea­

surement inaccuracies. The excess current observed in the valley region has been attributed

to the loss of phase coherence [135], neglected in the coherent tunneling model. One of the

main causes of this loss of phase coherence is LO­phonon scattering [134]­ [148]. This effect

can play an important role even in recently developed RTDs, since the relaxation time of the

electrons, due to phonon scattering, is much less than the time required for the electron to cross
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the quantum well, the dwell­time, .

The LO­phonon scattering directly affects the transmission coefficient and the charge distri­

bution in the device. The change in charge distribution results from energy dissipation processes

in the well and it is generally investigated using NEGF quantum transport theory [107]­ [109].

Other effects of electron­phonon interactions are expected in the charge transport. First, a LO­

phonon emission process can create an additional resonant tunneling channel, which appears

as a small additional peak in the I­V curve [147]. Second, a LO­phonon scattering can cause

a broadening on the transmission peak due to loss of phase coherence. In this framework,

Luryi [168] proposed that the NDR would be better described by a sequential process rather

than the coherent resonant process. In this approach, the electrons first tunnel from the emitter

to the quantum well and subsequently from the well to the collector. Between these two steps,

electron phase memory can be completely lost due to the scattering processes [162], [169].

4.5.1 Sequential Tunneling

The formalism described in this section, closely follows reference [158] and it is presented

here for completeness.

The transfer matrix method, used in the Tsu­Esaki formalism, can be applied in any het­

erostructure to describe purely coherent resonant tunneling. However, in a sequential approach,

as demonstrated by Weil and Vinter [169], the Hamiltonian transfer method is more suitable,

as it allows the direct evaluation of scattering effects such as electron­phonon and electron­

electron interactions. The Hamiltonian transfer formalism was originally proposed by Bardeen,

in 1961 [170]. Since then, it has been successfully applied to describe several phenomena

such as tunneling in superconductor­metal interfaces and the inelastic scattering processes in

resonant tunneling devices [138]­ [146], [153]­ [154], [171]. Fig. (4.12) shows a schematic

illustration of the sequential tunneling process in which the electron tunnels through the left

barrier to the quantum well, undergoes an energy relaxation process, and then, sequentially,

tunnels from the quantum well to the collector through the right barrier.

As described in [158], the double potential barrier structure is divided into three regions;

E (emitter), W (well) and C (collector). The transfer of electrons between these regions can

be described using tunneling Hamiltonians across each potential barrier, as illustrated in Fig.
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Figure 4.11: Schematic diagram illustrating the difference between resonant tunneling through a double

potential barrier structure with an 3­D density of states emitter, linear potential profile (a) and two­

dimensional self­consistently calculated potential profile (b). The resonance width in the case of the 3D

emitter is larger than that of the 2D emitter.

(4.12). Thus, the total Hamiltonian of the system can be written as

= 0 + + 0 (4.38)

where, the Hamiltonian in the well is

= 0 + + + (4.39)

The terms 0, 0 and 0 are the Hamiltonians of the emitter, well and collector, respec­

tively. The terms 0, 0 and 0 can be written as [158]:
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0 =
kk

kk
+ y

kk
kk

0 =
kk

kk
+ y

kk
kk

0 =
kk

kk
+ 0

y
kk

0 kk
0

where kk and are, respectively, the parallel and longitudinal component of the wave vector,

k. The term 0 is the wave vector of the resonant energy in the well. k and
y
k are the usual

electron creation and annihilation operators, respectively [1], [54].

and are the tunneling terms of the emitter­well and collector­well comprising the

Hamiltonian of the well region in Eq. (4.39). It is possible to write and as [158]:

=
kk kk

kk ;kk
0 y

kk
kk

0 +

=
kk kk

kk ;kk
0 y

kk
kk

0 +

where kk ;kk
0 and kk ;kk

0 are the elements of the tunneling matrix be­

tween the emitter and the well and between the collector and the well. The term represents

other interactions which electrons can undergo during tunneling, such as phonon scattering,

electron­electron interaction, and scattering due to impurities.

In this formalism, the transmission coefficient in the well can be written using the Green’s

function [158]:

=
1

(kk )
(4.40)

where is an infinitesimal increment of energy. Then, one can write the tunneling coefficient as

T(kek )=
kk

Im kk kk (4.41)

after some algebraic manipulation, as proposed in [158], one obtain
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Figure 4.12: Illustration of sequential tunneling assisted by some energy relaxation process. The terms

and are the tunneling terms of the emitter­well and collector­well, respectively.

T(kek ) =
kk kk

Im
kk kk

0 kk
0 kk

(kk ) (kk
0) § kk (kk )

(4.42)

where § is the electron self­energy (the energy that a particle has as a result of changes that

it causes in its environment, e.g., due to the semiconductor crystal lattice) in the well due to

tunneling and interactions with the lattice. Assuming the terms and conserving the

momentum, it is possible to make kk ;kk
0 = therefore, one can simplify Eq.

(4.42) to [158]:

T(kek ) = Im
¡

(kk ) (kk
0) § kk (kk )

where ¡ is the intrinsic broadening of the resonant state, approximately

¡ 2 0

When electrons do not interact with the lattice, that is, = 0, it is possible to substitute §
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for ¡ thus, using perturbation theory [1], the lowest order term of the probability coefficient,

T(0)(kek ) can be simplified to [158]:

T(0)(kek ) = T(0)( ) =
¡2

( 0)2 + ¡2
(4.43)

In this condition, the tunneling current can be written as

=
¤
k

2 2 3

1

0

T(kk )
1

0

[ ( ) ( )] k (4.44)

Note that Eq. (4.44) is reduced to the Tsu­Esaki formalism in the absence of scattering.

However, in the Hamiltonian transfer approach, scattering effects can be incorporated into cur­

rent density through the Hamiltonian [158].

4.5.2 Phonon Scattering

As mentioned earlier, interactions between electrons and LO­phonons are, in general, the

most important energy dissipation process in polar semiconductor systems such as RTDs. Elec­

trons in double barrier RTDs can emit or absorb phonons during the resonant tunneling process

[134]­ [148]. As this is an inelastic scattering process, momentum is not conserved. The reso­

nant tunneling assisted by LO­phonons is illustrated schematically in Fig. (4.13).

Figure 4.13: Schematic illustration of resonant tunneling assisted by LO­phonons. The term refers

to the phonon energy.
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The probability of phonon emission is relatively small compared to the main resonant tun­

neling process. However, the result can be directly seen in the I–V characteristic at low tem­

peratures by the presence of a small lateral peak along the main resonant peak [134]­ [148].

Additionally, there is a broadening in the resonant linewidth and an increase in the valley cur­

rent.

In this context, resonant tunneling assisted by LO­phonons was experimentally observed by

Goldman et al. [104]. In [104], the authors observed a small peak in the valley region a 4 2 K

with a magnitude of about 4% in relation to the main peak. Chevoir and Vinter [135] theoreti­

cally demonstrated the existence of a small peak, in the I–V curve, confirming the observations

of Goldman et al. [104].

The scattering rate due to phonon emission can be calculated by Fermi’s Golden Rule [1]:

( ) =
2

¡
2 ( )

where the Hamiltonian ¡ describes the electron LO­phonons interaction in a semiconduc­

tor. The term denotes the energy of the LO­phonon, where represents the initial state

with an electron and the final state with an electron and an emitted phonon. The Hamiltonian

which describes the electron­phonon interaction is known as the Fröhlich Hamiltonian [153]­

[154]. In the well, the Fröhlich Hamiltonian can be written as [140]­ [141]:

¡ =
Fr
=

qk

qk¢rk

2
k + ( )2

1 2
sin qk + y qk (4.45)

where is the coupling constant [140]­ [141]. The term refers to the effective volume of

the emitter, where is the effective length of the emitter and is the cross­section of the plane

parallel to the barriers ­ .

In Eq. (4.45) qk is the wave vector of the phonon emitted in the parallel plane, qk

and y qk is the photon creation and annihilation operators, respectively. is the number of

phonons allowed in the confinement layer. The excess in current density due to LO­phonon

scattering can be calculated as [140]­ [141]:

=
1

W (k) (k) ( ((k)) k (4.46)
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where (k) = 2 (2 )3 is the density of states in the emitter ( ((k)) is the emitter

Fermi­Dirac distribution,W (k) = § ( ) is the total phonon emission rate per electron

for a given initial state with the wavevector k. The term § accounts for the summation of the

final states with longitudinal confinement energy equal to the resonant energy level . Note

that (k) ( ((k)) is the number of electrons per unit volume in k­space that tunnel with the

emission of phonons with the rate of phonon emission per electron given byW (k) [140]. Thus,

writing the Hamiltonian for electron­phonon interaction, one can apply the Hamiltonian transfer

method to compute the current density in the RTD within the sequential tunneling formalism.

Alternatively, Büttiker [172] proposed a phenomenological model that allows the inclusion

of scattering effects in the transmission coefficient. In [172], Büttiker calculated the trans­

mission coefficient across a double barrier structure in the presence of a phase randomization

reservoir connected to the well. For this, Büttiker extended the Breit­Wigner formula to the

sequential tunneling regime, introducing an additional factor to express the incoherent scatter­

ing in the original Breit­Wigner formula (derived in Chapter (2)) . For the particular case of

symmetric barriers, Büttiker proposes

T( ) =
¡

¡

¡2

¡2 + ( )2
(4.47)

where ¡ is the total resonance width, composed of a purely coherent intrinsic width, ¡, and

the extrinsic width due to scattering, ¡ .Thus, ¡ = ¡+¡ . The dwell­time can be calculated

from the intrinsic resonance width as = ¡ [172]. By the same token, the phase coherence

break time, , induced by scattering, can be calculated as = ¡ . Eq. (4.47) shows that

the relationship between ¡ and ¡ (equivalent to ) is an important parameter to provide

a boundary between the purely coherent tunneling regime and the sequential tunneling regime.

In the sequential regime we have ¡ ¡ 1 the peak value of the transmission coefficient

decreases and the transmission peak becomes broader, when compared with the purely coherent

tunneling model.

Moreover, as proposed by Mizuta et al. [173], the resonance width due to LO­phonon

scattering can be estimated through the moment relaxation time, , calculated by expres­

sion [173], [174]:
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1
=

1 2

q ln
+ 1

1
+ exp

¤
ln

1 +

1
(4.48)

where is the Fröhlich polar constant given by

=
2 ¤

4 2 0

1 1

and and are the dielectric optical (high frequency) and static constants, respectively. The

parameter is the average number of phonons in mode q given by the Bose­Einstein thermal

distribution [174]:

q =
1

exp (¤ ) 1

the parameters and are defined as

= 1 +
1 2

= Re 1
1 2

The term ¤ refers to the Debye temperature, which indicates the approximate temperature

limit below which quantum effects can be observed [174]. The Debye temperature can be

calculated as ¤ = [75], [174]. ¡ can be estimated from the moment relaxation time,

such as ¡ . As demonstrated by Mizuta et al. [173], the approximation for ¡ by means

of the moment relaxation time, , provides satisfactory agreement with experimental data.

In addition, the Hamiltonian transfer method can be used to compute scattering effects due to

impurities in undoped regions (double barrier and well), as proposed in [153]­ [155]. Likewise,

from a phenomenological point of view, one can estimate the broadening in the resonance width

due to impurities, ¡ . However, because of the technological maturity of epitaxial growth

technique and the insertion of long undoped spacer layers between the double barrier and the

doped regions, the excess broadening due to impurities can be neglected [156]. Therefore,

scattering due to LO­phonons can be considered the leading broadening resonance linewidth

and degrading the PVRC in RTDs.
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Despite advances in the compact modeling of RTD I–V characteristics, through an extensive

literature review, we identified the need for fully analytical compact models relying on device

physics and capable of accurately reproducing RTD I­V characteristics. Aiming to fill this gap,

the next chapter presents a compact model describing RTDs 2D­2D and 3D­2D I–V charac­

teristics. The models are based on the device physics and allow the computation of electrical

characteristics as a function of physical parameters and geometric dimensions, with a reduced

number of fitting parameters, maintaining a compact, fully analytical, and explicit form, which

allows easy introduction into a circuit simulator.
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Chapter 5

Analytical Physics­Based Models for the

I–V Characteristics of 2D­2D and 3D­2D

RTDs

In this Chapter, we develop a fully analytical model for the I­V characteristics of 2D­2D and

3D­2D RTDs. Starting from the Tsu­Esaki formalism, we consider the overall electrical poten­

tial distribution in the device layer structure, including the space charge region in the emitter

layer. Additionally, we also take into account the scattering experienced by electrons during

tunneling process through the double barrier region. These additional features greatly improve

the accuracy of the proposed models when compared with others approaches reported in the

literature. The device models is fully physics­based, allowing the computation of the I­V curve

accordingly to the geometry and device structure of the RTD. The models are fully analytical

and explicit, thereby well suited for circuit simulator environment. The models are validated

against experimental and numerical data from several distinct RTDs structures, providing ex­

cellent agreement.
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5.1 Model for the I–V Characteristics of 2D­2D RTD

5.1.1 Electric Field and Potential Distribution Model

Figure 5.1: Schematic illustration of an arbitrary double barrier RTD structure. Part (a): schematic illus­

tration of the RTD conduction band profile. Part (b): RTD doping distribution generalized as piecewise

uniform.

For the 2D­2D RTD, we consider an arbitrary heterostructure, schematically depicted in Fig.

(5.1). To provide a generalized model, we assumed a piecewise uniform doping distribution,

as it is usually employed in realistic devices. The self­consistent solutions of the Schrödinger

and Poisson equations, under the application of an external electric field, indicate the formation

of space charge in the emitter and collector regions [127], [159]. Specifically, for the emit­

ter region both theoretical calculations and experimental demonstrations, considering weakly

doped RTD space layers, show an accumulation space charge formation. This accumulation

layer is characterized by a two­dimensional electron gas (2­DEG) with quantized energy lev­

els [79], [157], [175].

In this section, for the electrostatic analysis, we follow the approach proposed by Leadbeater

[164] to compute the 2­DEG electron concentration, , at the emitter, and next, the electric field
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and potential distributions, in terms of .

Accumulation Layer

We start by considering the electrical potential distribution in a set of distinct regions,

namely: the potential energy drop in the accumulation layer (the voltage drop at the emit­

ter taken from the Fermi level to the interface with the left barrier); in the double barrier region

(left barrier, rectangular quantum well and right barrier); in the spacer layer and the

depletion region (the voltage drop in the collector in the depletion region). Fig. (5.2) shows

a schematic illustration of the potential double barrier region in the unperturbed condition, Fig.

(5.2­a), and under an applied bias voltage ( ), Fig. (5.2­b).

Under external bias, a fraction of the carriers from the two­dimensional accumulation layer

continuously tunnel through the left barrier to reach the well. Meanwhile, the empty states in

the 2D accumulation region are replenished with electrons from the 3D region of the emitter,

in such way that there is a steady supply of electrons to ensure current continuity across the

device.

In the approach proposed by Leadbeater [164], the Fang­Howard variational method [176]

is used to compute the potential drop in the accumulation region. In this framework, the one­

dimensional variational Fang­Howard wavefunction is

ª ( ) =
2

2

3 2
exp

2
0

0 0
(5.1)

where the subscript "ac" refers to the accumulation region. In this case, the origin, = 0, is

placed in the interface between the accumulation region and the left barrier with respect to the

rectangular quantum well.

The total energy of the system can be expressed as = ª Ĥ ª , where Ĥ is the

Hamiltonian operator. As usual, the variational parameter, , is determined by minimizing ,

hence, given by:

=
ª Ĥ ª

ª ª

Considering the 2D charge density as ( ) = ª ( ) 2, we have:
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2 ( ) =
( )

0
(5.2)

where ( ) it is the conduction­band profile in the emitter accumulation layer and is the

emitter dielectric constant. In this approach, the band­bending is due only to , the free elec­

tron charge confined in the quasi­triangular well at the emitter side. Contributions from elec­

trons at the 3D bulk region of the emitter as well as from fixed ionized atoms are neglected. The

conduction band away from the interface is considered as reference: = 0. In the accumula­

tion region, the band bending due to 2D electrons in the quasi­triangular well, solving Poisson’s

equation, is [164]:

( ) =
2 0

2 2 4 + 6 (0 ) (5.3)

Hence, the voltage drop in the accumulation region is given by (0) [164]:

(0) = =
72 2 2

11 ¤ 2 2
0

1 3

(5.4)

In our model, the eigenenergy levels in the quasi­triangular quantum well can be easily

calculated using the expression [53]:

=
3

2

1

4

2 3 2

2 ¤

1 3

(5.5)

where = 1 2 3 , is the eigenstate index, is the eigenenergy associated with the

mth two­dimensional subband in the quasi­triangular quantum well. The electric field in the

accumulation region is given by ( ) = ( ) yielding

( ) =
( 2 2 2 + 2)

2 0
exp( ) (5.6)

It should be pointed out that the above formulation takes into account neither the wavefunc­

tion penetration into the barrier nor the screening due to 3D­bulk electrons located away from

the emitter accumulation region. Therefore, as experimentally observed in [164], this model

overestimates the binding energy in the accumulation region. To overcome this inaccuracy, and

seeking to closely match the experimental data, we empirically take the value of the effective

electric field in the two­dimensional electron gas at the emitter to be multiplied by a factor in
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the form: = ª ( ) ª , where the required wavefunction is described by Eq. 5.1

Carrying out the calculation, in our model the effective electric field in the accumulation region

is averaged out as (2 ). It is important to note throughout the simulations, for

every one of the five RTD devices investigated, we kept = 1 3

Double Barrier Region

Space Charge Buildup

As discussed in Chapter 4, the charge storage in the well is due to electrons from the accu­

mulation region which tunnel into the well through the potential barrier. Hence, the next step in

our model to find a mathematical relationship between the charge densities in the emitter and

the well . To do so, we modify the approach proposed by Sheard and Toombs to describe the

2D state density case. The authors originally developed a model considering a 3D state density

at the emitter region [160].

Under proper bias, one can consider the RTD as two parallel plates capacitors in series, with

a negative charge in the emitter , positive in the collector and a negative charge at

the center plate of the device, representing the well [160].

In steady state, the charge density in the well is determined by the balance between the

current flowing into and out of the well [160]. We can identify the emitter states by means of its

wavevector k = ( k?) and the collector states as p = ( p?). In the 2D quantum well, the

wavevector is represented as q = (0 q?), i.e., the longitudinal component of the wavevector

is the same for all transverse states, since energy is quantized in this direction. Therefore, we

describe tunneling in terms of the transition rate between states q, in the quantum well, and

the states k, at the emitter, kq = ( qk). Likewise the transition rate between the states of

the well q and the collector states p, pq = ( qp). It is possible to compute the transition

probability per unit of time by using Fermi’s Golden Rule [1]:

=
2

ª Ĥ ª
2

( ) (5.7)

where Ĥ = , with being the Hamiltonian of the left potential barrier, is the energy

level at the emitter. ª is the emitter wave function and ª represents the state in the well.

According to Bardeen [170], the matrix element of the transition can be written as
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Figure 5.2: Schematic illustration of the conduction­band profile under thermodynamic equilibrium (a)

and subjected to an external bias voltage, (b). The voltage drop is distributed in the accumulation

layer , in the double barrier region and in the depletion region . The figure also shown the

extension of the accumulation region and depletion . The term refers to the 2D level at the

transmitter and the term the energy levels in the well between the potential barriers.
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ª Ĥ ª =
1
ª¤ ( )ª r

where lower limit of integration, , can be defined as any point on the barrier, since ( )ª =

0 for . Carrying out the calculations, as demonstrated by [160], we have:

ª Ĥ ª
2

=
2 ( )

4 ( + 2 )
q? k? (5.8)

where, = 2 1
¤ and = 2 1

¤ . 1 is the first subband in the accumulation

layer at the emitter side and 1 is the first subband in the quantum well . The parameter

is [160]:

=
2 + + 2

0

T

T +T

where 0 represents the Bohr’s radius give by

0 =
4 0

2

¤ 2

T and T are the single barrier transmission coefficients relative to the left and right barriers

of the well, respectively.

Thus, the rate equations for the states occupation at the emitter k and in the well q (where

is the Fermi­Dirac distribution function) are:

k
=

k q

( k q) kq

q
=

q k

( q k) qk

q p

( q p) qp

In steady­state, we have q = 0. Therefore, the equilibrium condition is

q k

( k q) qk

q p

( q p) qp = 0 (5.9)

Assuming momentum conservation in the plane perpendicular to the barriers, we have k? =

q and p?= q. Additionally, assuming a narrow resonance linewidth, taking into account only

the first subband in the emitter and in the well, and considering energy conservation, yields:
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2 2
0

2 ¤ +
2 2
?

2 ¤ = ( ) +
2 2
?

2 ¤ (5.10)

likewise, the condition for tunneling from the collector to the well is

2 2
0

2 ¤ +
2 2
?

2 ¤ = ( ) +
2 2
?

2 ¤ (5.11)

where = 0 and = 0 correspond to the wavevectors at the emitter and the collector in

resonant tunneling, respectively. The term ( ) refers to the resonant energy levels in the

well, under applied bias. Hence, Eq. (5.9) at resonance, for the 2D­2D case, is

q k

qk( k? q) k? q 0

q p

qp( q p) p? q 0 = 0 (5.12)

when there are no occupied states in the collector with the same energy level of the quantum

well, we have p = 0. Thus, isolating q in Eq. (5.9), one can compute the charge stored in the

well as = q q, where is the interface area, yielding:

=
q k

k qk

q k

qk +
q p

qp

=
q k

k qk

¡1 + ¡1 (5.13)

where ¡1 = q k qk and
¡1 = q p qp [160]. In a sequential tunneling framework,

the transmission rates qk and qp are obtained using Eqs. (5.7) and (5.8). Therefore,

q k qk = ( 2 )T = T . Similarly, for the collector side, we have q p qp =

T , where is the classical attempt ratio [160]. In addition, q q accounts for the number

of charge stored in the well, that is, . By the same token, k k? is the number of states

at the emitter with = 0. Summarizing:

( ) =
( 2 2

0) 2 0 0

0
(5.14)

Hence, one can rewrite Eq. (5.12) as

( ( ) ) = 0 (5.15)

thus, the charge in the well is given by
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=
T

T +T

2 2
0

2
( 2

0
2 ) ( 2

0) (5.16)

where () is the step function.

Meanwhile, Sheard and Toombs [160] proposed the expression (5.16) considering a 3D den­

sity of states at the emitter. In other words, there is no formation of quantized energy levels at

the emitter. On the other hand, for our specific case, where quantization occurs in the accumu­

lation layer, the charge is proportional to the wavevector of the subbands. Therefore, we can

rewrite Eq. (5.16) considering a 2D charge densities = and = [160]:

=
T

T +T
( 2

0
2
max) ( 2

0) (5.17)

Finally, to obtain a more compact form, we can simplify Eq. (5.17) by using a Lorentizian

approximation to describe the resonant energy levels in the quantum well, as proposed by [159],

yielding:

=
T

T +T

1 ¡2
¢ 4

¡2
¢ 4 + ( )2

= ¤ (5.18)

Electrostatic Analysis

As discussed in the previous section, in the RTD the barriers are undoped and at the reso­

nance condition a charge density, , is stored in the quantum well. Also, since the resonance

linewidth is narrow, results: . To account for the band bending due to the charge in the

QW, the charge distribution is given by ( ) = ª ( ) 2, while the Poisson equation is

written as

2 ( ) =
( )

(5.19)

Throughout the derivations, and are the permittivity constants in the barrier and in the

well, respectively. is the width of the rectangular quantum well and the terms and

are the widths of the QW barriers to the left and right of the well, respectively.

In order to compute the wavefunction, required to calculate the charge distribution ( ),

we consider the first energy subband, 1. In a first approximation, we assume the equilibrium

condition, i.e., an absence of the electric field applied to the structure. Then, the problem
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reduces to the solution of the Schrödinger equation for the rectangular finite well under unequal

effective masses of the barriers and well regions (see Chapter 3).

For the quantum well, the electric potential is ( ) = 0 for 2 and ( ) = 0

otherwise. Consider the index = 1 2 3 representing the left barrier, quantum well and

right barrier regions, respectively. Placing the origin, = 0, at the center of well, for left and

right barriers regions, the solutions for Schrödinger equation are ª1( ) = 1 and ª3( ) =

¡ 1 , respectively, where and are normalization constants. By the same token, the

solution for Schrödinger equation in the well is

ª2( ) = cos( 2 ) + sin( 2 )

where and are normalization constants.

Applying the BenDaniel­Duke [177] boundary conditions at = 2 and = 2,

after some algebraic manipulation, we obtain

( + ) ¡ 1 2 = 2 cos ( 2 2) (5.20)

( ) ¡ 1 2 = 2 sin ( 2 2) (5.21)

As the potential barriers have equal height, 0, we can assume that = , that is, the

probability of the electrons entering the barrier from the left of the well is equal to the one

entering from the right of the well. Hence, from Eq. (5.21) results in = 0. Again, considering

= , from Eq. (5.20) we have a relation between and :

= ¡ 1 2 cos ( 2 2) (5.22)

Applying the normalization condition, 1
¡1 ª ( ) 2 , we have

¡ 2

¡1

1
2

+
2

¡ 2

cos( 2 ) 2 +
1

2

¡ 1
2

= 1 (5.23)

Combining Eq. (5.22) with Eq. (5.23), evaluating Eq. (5.23) and isolating we have

=
2 1 2

1 2 + 2 2 cos2 ( 2 2) + 1 sin ( 2 )

1
2

(5.24)
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by making = in Eq. (5.24) we have as:

=
2 1 2

1 2 + 2 2 cos2 ( 2 2) + 1 sin ( 2 )

Hence, the wavefunction in the well is given by

ª ( ) = cos( 2 ) ( 2 2) (5.25)

where the wave vectors are given by 1 = (1 ) 2 ¤( 0 1) and 2 = (1 ) 2 ¤
1,

¤ and ¤ are the effective masses of the particle in the barrier region and in the well region,

respectively.

Then, the Poisson equation for the well is written by taking ( ) = ª ( ) 2, to

provide 2 ( ) = ( ) . Solving the Poisson equation by setting (0) = 0 and

imposing continuity of the electric field displacement vector, D = F, at the well/left barrier

interface, at the emitter side of the RTD, ( 2) = ( ) , yields:

( ) =
4

2 +
sin2( 2 )

2
2

+ +
4

sin ( 2)

2

+ (5.26)

Note that, since the barrier is undoped, the electric field across the left potential barrier

is constant, = ( ) , resulting from imposing the continuity of the D vector at the

emitter/left barrier: = with given by Eq. (5.6). Therefore, the voltage drop at the

left potential barrier is = .

Using Eq. (5.26), the voltage drop in the well, = ( 2) ( 2), is

= +
4

sin ( 2)

2

+ (5.27)

It is also worth noting that, when there is no space charge stored in the well, i.e., = 0,

the voltage drop = ( ) . This result is expected since the barriers are undoped and

the only electric charge in the double­barrier RTD is , the charge in the emitter accumulation

layer. Again, imposing the continuity of the D vector at the interface between the well and

the right potential barrier, we have that the electric field at the right barrier is given by =
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( ) ( 2). The electric field in the well is obtained by ( ) = ( ). Thus,

as the barrier layers are undoped, the voltage drop in the right barrier is simply given by =

. Therefore, the total voltage drop in the double barrier configuration = + +

is obtained by adding up the voltage drop in the two potential barriers and the quantum well,

yielding

=
+

+ +
sin ( 2)

4 2
+

+
(sin ( 2) + 2)

4 2
+

4
+ (5.28)

Finally, again applying the continuity of the D vector, we can calculate the voltage drop in

the spacer layer placed between the right barrier and the collector as, = ( ) :

=
(sin ( 2) + 2)

4 2
+

+
sin ( 2)

4 2

+
4

(5.29)

where is the permittivity constant of the collector semiconductor material and is the width

of the undoped spacer layer.

Collector Depletion Region

From the charge neutrality condition, following the approach proposed by [160], we have

= + , where the negative electronic charge at the emitter, = , and at the

quantum well, = , is balanced by the positive ionized charge at the depleted collector,

. In other words, the charge neutrality condition can be rewritten as = + , where

is the total ionized charge (per unit area) in the depletion region, which is a function of

the applied voltage. Then, taking Fig. (5.2­a) as a reference for a generic multiple­layer in a

staircase doping profile, we discuss three distinct bias conditions:

1 1 1

2 1 1 1 1 + 2 2

3 1 1 + 2 2

(5.30)
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It should be pointed out that the resulting expressions can be readily generalized for larger a

number of layers, if needed, depending on the bias conditions as well as parameters including

layer thickness and doping density.

Case 1 1 1

For the solution of the Poisson equation in the collector depletion region, we set the origin

= 0 at the interface between the spacer layer and the collector layer, of doping density 1(see

Fig. (5.2­a)). Hence, under the total depletion approximation, the Poisson equation becomes

2 ( ) = ( 1) for 0 1, where 1 is the depletion region width. Integrating

twice with respect to yields

( ) =
1

2
2 + 1 + 2

where 1 and 2 are arbitrary constants to be determined by the boundary conditions. For

simplicity, at the origin, we impose (0) = 0 and, consequently, 2 = 0. Next, considering

an abrupt transition at the edge of the space charge region, the electric field in the collector,

( ) = ( ), is set to zero at = 1, yielding 1 = ( 1 1) . To determine 1,

we employ the charge neutrality condition:

+ 1 1 = 0 (5.31)

From Eq. (5.18), = ¤ . Then, the total negative charge is

= + = (1 + ¤ ) (5.32)

By making = 1 + ¤ we have = yielding 1 = ( ) 1. Therefore, the

voltage drop due to the space charge formation in the collector is

= ( 1) =
2 2

2 1
(5.33)
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Case 2 1 1 1 1 + 2 2

For this case, the depletion region width is greater than the width of the first section of the

collector region, of doping level 1. Hence, we have 1 1 + 2, where is the

depletion region width, defined as = 1 + 2 2 defined as the depletion layer extension

into layer 2.

Fig. (5.3) shows a schematic illustration of the conduction band and the charge density

profile for this case.

As in the previous case, we start by solving the Poisson equation:

2 ( )
2

=
1 0 1

2 1 1 + 2

(5.34)

Again, we set 1(0) = 0. In addition, the electric field at edge of the depletion region,

= 1 + 2 = is equal to zero. Imposing charge neutrality across the device, after some

algebraic manipulation, the total voltage drop becomes

=
( 1 1)

2

2 2

+
1

2
1 1

2
(5.35)

Case 3 1 1 + 2 2

Although the expressions above can be easily generalized for increasing number of layers,

care should be taken if the doping level becomes very high (see Fig. (5.2­a) for 3). In the case

of strong doping, the electrostatic screening effect becomes relevant and reduces the accuracy

of the depletion approximation. An improved approximation is achieved by using the Thomas­

Fermi screening formulation [160], [164]. In this case, an expression for voltage drop in the

depletion region is given by [164]:

=
1 1

2
1 + 1 1 +

2 2

2
2

+ ( 1 1 + 2 2) ] (5.36)

where the Thomas­Fermi length is written as:
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Figure 5.3: Part (a): schematic illustration of the conduction band profile under the application of ex­

ternal bias, Part (b): schematic illustration of charge density profile for the case where the condition

1 1 1 1 2 2 is met.

=
2 3 4

2 ¤ 3 3 3

1
2

(5.37)

Considering all the three sets of results discussed above, it is possible to write the voltage

drop in the depletion region in a generic polynomial form:

= 2 + + (5.38)

where the constants , and are:

=

2

2 1
1 1

2

2 2
1 1 1 1 + 2 2

0 1 1 + 2 2
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=

0 1 1

1 1 1

2
1 1 1 1 + 2 2

( 1 + 2 + ) 1 1 + 2 2

=

0 1 1

2
1

2
1

2 2

2
1 1

2 1 1 1 1 + 2 2

1
2
1

2
+ 2 2

2 1 1 2

+ ( 2 2 1 1) ] 1 1 + 2 2

Then, having written the electrical potential distribution throughout the RTD structure as a

function of electronic concentration , next, we derive an expression to analytically compute

the dependence of as a function of the applied voltage .

5.1.2 Analytical Approximation for Sheet Density ( )

The diagram of Fig. (5.2­b), yields the straightforward relation

= + + + (5.39)

Replacing each respective voltage drop in Eq. (5.39) for their expressions in terms of the

emitter charge density obtained in the previous sub­sections, yields

1
2 3 + 2

2 + 3 + 4 = 0 (5.40)

where the constants are

1 =
72 2

11 ¤ 2

1 3

2 = (5.41)

3 =
+

+ + +
¤ sin ( 2)

4 2

+ +

+
¤ (sin ( 2) + 2)

4 2
+ +

¤

4
+ + +

4 = (5.42)
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To analytically find the roots of Eq. (5.40), it is necessary to eliminate the 2 3 power

dependency of . The usual procedure is to express the equation in terms of 2 3 and raise

both sides of the equation to the third power, resulting in a sixth degree polynomial equation,

which is quite cumbersome to handle. Instead, in order to find an approximation for the roots

of Eq. (5.40), we expand the term 2 3, in a Taylor series around the carrier density =

¤ ( 2 ), which is the maximum value for the carrier density in the accumulation layer, in

the low­temperature limit.

Therefore, expanding 2 3 up to the second order and replacing the expansion in Eq. (5.40):

2
2 + 1 + 0 = 0 (5.43)

where

2 = 2
1

9 ( )
4
3

1 = 3 +
8 1

9 ( )
1
3

0 = 4 +
2 1 ( )

2
3

9

Solving Eq. (5.43) and choosing the positive root, one gets

=
1 + 4 0 2 + 2

1

2 2
(5.44)

where we take the absolute value of to avoid unphysical mathematical solutions.

It is worth mention that, in order to evaluate the constants in Eqs. (5.41) and (5.42), it

is necessary to have a first estimation for the depletion region width, or, in order words, the

value of the total charge density = + . To do so, it is enough to recognize that the

resonance linewidth is quite narrow, is such way that out of resonance. Then, in a first

approximation, = 0 yielding = with the depletion width restrict to condition 1, i.e.,

1 1. Then, it is possible to estimate the initial value of using Eq. (5.44) and update

the value of , to compute , and . Next, is self­consistently recalculated through Eq.

(5.44) to obtain a more accurate approximation. Finally, each term of the potential distribution
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described in the previous sections is analytically computed and the process is repeated for the

following bias point. In addition, under applied external voltage, in our model, the resonant

energy level is approximated as

( ) (0) ( + + 2) (2) (5.45)

where (0) is the resonant energy level in the quantum well in equilibrium, i.e., in the absence of

an electrical field. To enhance accuracy, the term (2) in Eq. (5.45) is the second order correc­

tion (first order correction vanishes due to symmetry) mostly due to the quantum Stark effect [2].

The Stark effect correction is analytically estimated by evaluating (2)
= ª ( ) ª ,

with ª ( ) given by Eq. (5.25) and ( ) given by Eq. (5.26):

ª ( ) ª =
2

288 2
2

6

=1

(5.46)

where the terms are:

1 = 3 3 3
2 9 2 + 9 2 2

2 sin ( 2)

2 = 12 2 2 cos3
2

2
+ 3 cos2

2

2

3 = 18 cos2
2

2
sin ( 2)

4 = 8 cos
2

2
sin ( 2)

5 = 9 sin ( 2) + 32 sin
2

2

5.1.3 Validation of the approximation for ( )

To evaluate the accuracy of the proposed model for compute , we used experimental data

gathered from [164]. This device is referred to as RTD# 1 with the main physical parameters

summarized in Table 5.1. Fig. (5.4) depicts a comparison between the experimental results

extracted from [164] (symbols) and the results provided by our model (solid red curve). As

it can be seen from Fig. (5.4), an excellent agreement with experimental data is observed. In

addition, consistent with the experimental data, our model can also describe the drop in the

magnitude of , which occurs at resonance due to space charge buildup in the quantum well.
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Figure 5.4: 2D electron sheet density in the emitter, , obtained experimentally in [164] (symbols),

and computed by the proposed analytical model (solid curve), Eq. ( 5.44). The figure also indicates the

resonant bias point for charge storage in the well, , due to to the resonant tunneling process.

To also validate our approximations for the quantized energy levels in the emitter and in the

well, as a function of the bias voltage, we used the self­consistent solution reported on [161].

Fig. (5.5) compares the values of 1, 1 and 2, with respect to the Fermi level and as

a function of the applied bias, obtained through the self­consistent numerical solution [161], as

well as analytically, by our model through the expressions Eq. (5.5) and Eq. (5.45). As it can

be seen from Fig. (5.5), our model provides a very close agreement to the numerical solution.

We also compared our results with the experimental data reported in [178], for the eigenen­

ergies levels under bias applied. Fig. (5.6) depicts the eigenenergies values 1and 1 in

respect to the Fermi level, as function of applied bias, comparing the experimental results

from [178] (symbols) to the results provided by our model (solid lines) through expressions

Eq. (5.45) and Eq. (5.5). Again, our model shows an excellent agreement to experimental data.

5.1.4 Tunneling Transmission Coefficient

As shown in Chapter 4, the PVCR of the RTD characteristic curve at resonance is much

smaller than predicted by the idealized Tsu­Esaki model. The main cause for this reduction
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Figure 5.5: Self­consistent numerical solution for the eigenstates, 1 (circles), 2 (triangles), of the

accumulation layer formed in the emitter, as well as for the first subband level in the quantum well, 1

(squares), under the applied bias. The potential energy reference is the Fermi level position, obtained

from [161]. The solid curves represent the solution computed analytically by our model for 1, 2

and 1. The Fermi energy level position, is also shown (Dash­Dot symbols).

on the PVCR is the loss of the phase coherence in the resonant tunneling, caused by intrasub­

band scattering mechanisms, in particular the interaction between electrons and longitudinal

optical phonons (LO­phonons) in the current transport process [135]­ [148]. For double­barrier

RTDs, the tunneling transmission coefficient is dependent both on the applied voltage as well

as scattering mechanisms. To account for both effects and describe the additional broadening

due to phonon scattering, we used the Lorentzian approximation proposed by Büttiker [172]:

T ( ) =
¡ ¡

(¡ + ¡ )

¡

¡2 4 + ( ( ))2
(5.47)

In the equation above T ( ) is the electronic transmission coefficient for an electron in

the n­th subband of the quantum well (QW), is the incident kinetic energy for the electron

while ( ) refers to the n­th eigenenergy in the quantum well under the applied voltage .

¡ and ¡ account for the left and right barrier intrinsic resonance linewidths, respectively. The

use of distinct values for the barriers of each side of the well allows the modeling of asymmetric
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Figure 5.6: Symbols indicate the experimental data obtained from [178] for the eigenstates, 1 (cir­

cles) of the accumulation layer in the emitter and the first subband in the quantum well , 1 (triangles),

with respect to the Fermi level, under applied bias. The solid curves show the solution computed by our

model. The Fermi energy level position, , is also indicated (Dash­Dot symbols).

QWs, if required. Then, the term ¡ refers to the total resonance linewidth given by ¡ =

¡ + ¡ + ¡ , where ¡ 2 is the linewidth due to scattering by LO­phonons and is

momentum relaxation time given by Eq. (4.48) [179]. As demonstrated by Mizuta et al. [173],

the approximation for ¡ , shows good agreement with experimental data.

Next, the left and right intrinsic resonance linewidths are

¡ =
T ( )

2

with the electron velocity in the well = 2 ¤ [172]. Finally, in our proposition, we

used the WKB approximation (Eq. (2.45)) to calculate the tunneling transmission coefficient

( ) for a single potential barrier case as a function of applied bias, as

T ( ) = exp
4 2 ¤

3
( )3 2 ( )3 2 (5.48)

where, from Fig. (5.2), the effective left­barrier height under applied bias, assuming an energy

level , is = 0 while for the right side = .
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5.1.5 2D­2D Current Density Model

For small values of ¡ , the transmission coefficient becomes negligible, except when elec­

tron kinetic energy is aligned to one of the resonant levels in the well, . Hence, under

an applied bias voltage, we approximate ( ) where is kinetic energy compo­

nent related to the electron velocity in the ­direction and ( ) is given by Eq. (5.45).

Accordingly, the logarithmic part of Eq. (4.33) can be taken out of the integral [82]. Also,

it is considered that the emitter eigenenergy, , in the quasi­triangular well has linewidth

¡¢, comparable to the LO­phonon’s linewidth, i.e., ¡¢ ¡ , which is fair approximation for

RTDs [164], [178]. Then, replacing the term T( ) in Eq. (4.33) by means of the Büttikir

approximation provided by Eq. (5.47) and replacing in Eq. (4.33) for Eq. (5.45), it becomes

possible to integrate Eq. (4.33) from ( ¡¢ 2) up to ( + ¡¢ 2), to finally write a

generalized expression for the the resonant current density, as given by

( ) =
¤

2 3

¡ ¡

¡ + ¡
ln

1 + exp [( ( )) ]

1 + exp [( ( ) ) ]

arctan
+ ¡¢ 2 ( )

¡ 2
arctan

¡¢ 2 ( )

¡ 2

(5.49)

where the summations in Eq. (5.49) describe the contribution of all energy levels in the quasi­

triangular well as well as in the rectangular QW in the active region of the RTD. The complete

scheme for obtaining the 2D­2D current density in RTD is summarized in the flowchart depicted

in Fig. (5.7).

In next section, the model is applied to a series of devices experimentally demonstrated in

the literature.
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Figure 5.7: Flowchart of the proposed model to calculate the current density for the 2D­2D RTD.

5.1.6 Results and Discussion for 2D­2D Model

In order to validate our model, we contrasted the results obtained from Eq. (5.49) to exper­

imental data extracted from five RTD structures reported in the technical literature. To ensure

the comparison with true 2D­2D based RTDs, we restricted ourselves to experimental data in

which the nature of quantized emitter was experimentally verified. Table 5.1 describes the layer

structure, including thickness, material composition and nominal doping levels, operating tem­

perature, and mesa configuration, of the five RTDs used to validate our compact model. The

double barrier region in all the structures in Table 5.1 are undoped. The nominal doping levels
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Table 5.1: The composition, nominal doping levels, relevant structures geometrical dimensions and op­

erating temperatures of five RTD’s structures used to validate our model.

Structure RTD#1 [164] RTD#2 [147] RTD#3 [147] RTD#4 [178] RTD#5 [180]

77K 4K 4K 4 2K 2K

[Al] = 0 4 = 0 4 = 0 4 = 0 31 = 0 35

Mesas £ 10¡8m2 £ 10¡8m2 4 £ 10¡8m2 60£ 60­ m2 500 m£ 600 m

( 3 3) 2£ 1018 2 m 2£ 1018 2 m 2£ 1018 0 5 m 1£ 1018 0 3 m 1£ 1018 0 3 m

( 2 2) 2£ 1016 500 Å 2£ 1016 500 Å 1£ 1017 500 Å 1£ 1016 600 Å 1£ 1016 600 Å

( 1 1) 1£ 1016 500 Å

25 Å 25 Å 33 Å

56 Å 56 Å 111 Å 100 Å 100 Å

50 Å 117 Å 58 Å 50 Å 50 Å

56 Å 56 Å 83 Å 100 Å 100 Å

25 Å 25 Å 33 Å

( 1 1) 2£ 1016 500 Å 2£ 1016 500 Å 1£ 1016 500 Å 1£ 1016 600 Å 1£ 1016 600 Å

( 2 2) 2£ 1018 0 5 m 2£ 1018 0 5 m 1£ 1017 500 Å 1£ 1018 0 3 m 1£ 1018 0 3 m

( 3 3) 2£ 1018 2 m

are in unit of cm¡3. For all devices used in this work the emitter and collector are composed of

n­GaAs material. The barriers and the well are composed of Al Ga1¡ As and GaAs undoped

semiconductors, respectively.

The electronic effective masses and the dielectric constants in the alloy Al Ga1¡ As, as

well the theoretical value of 0, were obtained from [75]. Also, for GaAs, the effective masses

is ¤ = 0 067 0, where 0 is the rest mass, and the theoretical value of the LO­phonon

energy is = 36 25 eV [75]. In all devices used to validate our model it was enough

to consider only the first energy level both in the emitter quasi­triangular quantum well at the

emitter side and in the rectangular quantum well, i.e., = = 1 in our model.

For the device RTD#1 the experimental data is obtained from [164] and the main features

of the device are summarized in Table 5.1. As it can be seen from Fig. (5.8), the I­V character­

istic provided by our model display an excellent agreement with the experimental findings. To
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achieve this agreement, a minimal adjustment in the width of the potential barriers, concerning

their nominal value, was necessary. Specifically, the adjusted value was 58 5 Å, relatively to the

nominal value of 56 Å. The difference, of the order of few Bohr radii, is within the uncertainty

range of all major epitaxial growth techniques.

For RTD#2 the experimental data is obtained from [147] and the main features of the device

are summarized in Table 5.1. As it can be seen from Fig. (5.9), the I­V characteristic described

by the proposed model presents a quite good agreement with the experimental data. This turn,

to achieve the agreement, a small adjustment in the width of the quantum well was necessary.

The value used in our model was 112 Å (only 5 Å difference from the nominal value). In

addition, we assumed an unintentional doping level of = 1015 ¡3 for the GaAs spacer

layer of 25 Å, which was nominally undoped.

For RTD#3, we used the experimental data from another RTD described in [147] and the

main features of this device are summarized in Table 5.1. As it can be seen from Fig. (5.10),

the I­V characteristic described by the proposed model presents an excellent agreement with

the experimental data. To achieve this result, a small adjustment in some nominal parameters

were necessary, namely: = 56 5 Å, = 110 5 Å and = 0 85 1016 ¡3. Again,

all three are small deviations from the nominal values, well within the fabrication tolerances of

established epitaxial growth techniques.

Figure 5.8: Comparison between the I–V curves obtained by the proposed 2D­2D current density model

(solid curve) and the experimental curve (symbols) of the RTD #1 [164]. Data was measured at 77
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Figure 5.9: Comparison between the I–V curves obtained by the proposed 2D­2D current density model

(solid curve) and the experimental curve (symbols) of the RTD #2 [147]. Data were measured at 4

For RTD#4, the experimental data is obtained from [178] and the main features of the device

are summarized in Table 5.1. As it can be seen from Fig. (5.11), the I­V characteristic described

by the proposed model presents an excellent agreement with the experimental data. Once again,

a small adjustment in the width of the potential barriers, relatively to the nominal value, was

necessary. The value used in our calculation was 103 Å, an increase of only 3 Å.

Finally, for RTD#5, the experimental data is obtained from [180] and the main features of

RTD#5 are summarized in Table 5.1. The model correctly predicts the PVCR ratio and the

peak current position, as it can be seen from Fig. (5.12). In order to obtain this agreement,

only a minor adjustment in the width of the quantum well, from the nominal value of 50 Å

(see Table 5.1) to 48 Å, was necessary. However, the shoulder­like shape in the I­V curve

around 0.5 V, as well as the fluctuations registered in the valley region, are not captured by the

model. This is because these anomalies have been associated to an intrinsic bistability effect

as well as the charge feedback mechanism between the emitter and well, which sometimes

arises at resonance [164], [160]. Neither one of those undesired effects were accounted for in

our model Also, it should be pointed out that the only broadening mechanism included in our

model is the scattering for LO­phonons. Therefore, the observed discrepancy between theory
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and experiment also means that other broadening mechanisms play an important role in the

shaping of the I­Vcurve for this particular device.

Figure 5.10: Comparison between the I–V curves obtained by the proposed 2D­2D current density

model (solid curve) and the experimental curve (symbols) of the RTD #3. [147]. Data was measured at

4

Figure 5.11: Comparison between the I–V curves obtained by the proposed 2D­2D current density model

(solid curve) and the experimental curve (symbols) of the RTD #4 [178]. Data was measured at 4.2
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Figure 5.12: Comparison between the I–V curves obtained by the proposed 2D­2D current density

model (solid curve) and the experimental curve (symbols) of the RTD #5. [180]. Data was measured at

2

5.2 Model for the I–V Characteristics of 3D­2D RTD

5.2.1 Electric Field and Potential Distribution Model

Similarly to Section 5.1, we start by considering the electrical potential distribution across

the device. Fig. (5.13­a) shows a schematic illustration of the potential double barrier region in

equilibrium. Fig. (5.13­b) shows a schematic illustration of the double barrier potential RTD

structure under an applied bias voltage ( ). Fig. (5.13­c) shows a schematic illustration of the

charge density distribution within the structure.

As pointed out n the discussion of the 2D­2D model, obtaining a reliable physics­based

model is necessary to accurately describe the electric field distribution across the structure,

giving raise to an accumulation region at the emitter layer and a depletion region at the col­

lector layer. Depending on the thickness of these spacer layers and the operating temperature,

a quasi­triangular quantum well may form at the emitter, yielding a 2DEG. This energy­level

quantization feature usually occurs in very low­temperature regimes, as Section 5.1 illustrates.

On the other hand, for the 3D­2D case, we now derive a model to describe the case where there

is no quantum well at the emitter region. Therefore, the model in the present sub­section con­

siders the resonant current density as 3D­2D (three­dimensional emitter to a 2DEG quantum
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Figure 5.13: Part (a) shows a schematic illustration of an arbitrary double barrier potential RTD structure;

(b) the same conduction­band profile subjected to an external bias voltage, ; and (c) the corresponding

charge­density distribution.

well).

The starting point is to compute the space charge formation along the device. To do so, the

electric potential distribution is calculated in a set of distinct regions as schematically illustrated
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in Fig. (5.13­b). Since there is no quantization at the emitter side, our approach to describe the

electric potential distribution in 3D­2D RTDs differs slightly from the 2D­2D model.

Under bias, Sheard and Toombs [160] argue that the RTD is electrostatically equivalent to

a pair of identical parallel plate capacitors in series with a negative charge on the center

plate, representing the quantum well. To improve their approach, we consider the RTD as two

distinct capacitors in series: 1 and 2. This consideration is more realistic because it takes

into account charge storage in the quantum well. Hence, unlike [160], the absolute value of the

space charge in the emitter, , is different from the space charge in the collector, . A

schematic illustration of the charge distribution is presented in Fig. (5.13­c).

Next, we determine the voltage drop in the accumulation region at the emitter, . To do

so, we assume a uniform charge density as a function of the applied voltage, ( ) . Therefore,

we can write ( ) = ( ) (per unit area), where is an effective value that

accounts for the accumulation region width. Then, Poisson’s equation is taken as:

2 ( ) = (5.50)

and the electric field at this layer is given by ( 0) = ( ), where = 0 is placed at the

left­hand side of the left barrier. To solve the Poisson equation, we use the traditional boundary

conditions, i.e., imposing (0) = 0 and ( ) = 0, thereby considering an abrupt transi­

tion at the edge of the quasi­neutral zone. Thus, the voltage drop in the accumulation region is

given by

=
2

2
=

2
(5.51)

Assuming a high electronic concentration in the accumulation region, we estimate

using the Thomas­Fermi screening theory [160]:

=
2

2 ¤
3

4

3

1
2

(5.52)

The electric field at the interface between the accumulation region and the potential­barrier

layer is (0) = ( 0 ). By imposing the continuity of the electric displacement vec­

tor (D) at this interface, F (0) = F , we obtain the electric field at the left­barrier

layer as = , where is the electric permittivity at the left­barrier layer. Since
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the potential­barrier layer is undoped, the voltage drop is simply given by = =

( ) .

The next step in our model is to find a mathematical expression for the charge stored in the

quantum well. This charge storage results from the steady­state carrier from the accumulation

region (tunneling through the potential barrier). In our work, we modify the expression pro­

vided by [160], originally proposed for the low temperature limit (0K), to account for the finite

temperature effects. The authors used a rate­equation approach to relate the electronic charge at

the emitter to the stored charge in the rectangular quantum well. Their expression accounts for

energy and momentum conservation, and the final result is weighted by ( + ), where

and are the single­barrier transmission coefficients relative to the left­ and right­barrier,

respectively [160]. The derivation of this expression is outlined in Sec. 5.1.1. We consider the

2­DEG charge density in the quantum well as = , where is the sheet carrier density

in the well. Hence, taking only the first subband in the quantum well, we have

+

1

1

2 ( ) (5.53)

where 2 is the two­dimensional effective electron density of states (DoS), and is the Fermi­

Dirac distribution. Therefore, the charge in the quantum well can be estimated by

¤

2 +
ln 1 + exp

( )
(5.54)

where ¤ is the effective mass of the electron in the quantum­well.

To account for the voltage drop in the quantum well due to charge storage, we take ( 0) =

ª ( 0) 2. Consequently, Poisson’s equation is given by 2 ( 0) = ( 0) .

Proceeding as outlined in Section 5.1.1, the required wave function, neglecting the shallow

penetration in the barriers, is

ª ( 0) =
2

+ ( 1)
¡1 sin( 1 )

1
2

cos( 1
0) (5.55)

where is the width of the rectangular quantum well. In this case, the reference, 0 = 0, is

placed at the center of the quantum well. The wave vector associated with the lowest subband
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is 1 = (1 ) 2 ¤
1, where the energy level 1 is computed analytically by our model

described in Chapter 3.

To solve the Poisson equation, we set (0) = 0. Then, by imposing continuity of D at

the quantum­well/left­barrier interface, we have:

( 0) =
2 1

sin2( 1
0) + 2

1
02

1 + sin( 1 )
+ +

2
0 (5.56)

valid for 2 0 2. Hence, the voltage drop in the quantumwell, = ( 2)

( 2) is

= +
2

(5.57)

Inspecting the contribution of to Eq. (5.57), in a similar fashion to [160], we can un­

derstand this result as if the electrons in the quantum well are effectively described as a charge

sheet of infinitesimal thickness located at 0 = 0. By knowing the position of the common

plate capacitor ( 0 = 2), one can determine the capacitances and their respective voltage

drops. Hence, the voltage drops across the emitter and collector capacitors are 1 = 1 and

2 = 2, respectively (see Fig. (5.13­b)). The geometric capacitances (per unit area) are:

1

1
= + +

2
(5.58)

1

2
=

2
+ + (5.59)

where , , and are the dielectric constants at the emitter, collector, right­barrier and

quantum­well layers, respectively. The terms and are the widths of the potential­barrier

to the left and right sides of the well, respectively. The term is the width of the depletion

region.

For the depletion region at the collector layer, we consider the total depletion approximation,

with the charge density being = , where is the effective doping concentration. Thus,

we can write the depletion charge density as = . The charge neutrality principle

requires that = + . Therefore, the depletion width is = ( + ) . Starting

by substituting in Eq. (5.59) and noticing that = 1 + 2, leads to
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=
1
+

+

2

and we can write:

= 2 + + (5.60)

where

=
1

=
1

1

+ + and =

= + +
2

By solving Eq. (5.60) and choosing the positive root, we have:

( ) =
1

2
4 4 + 2 (5.61)

The electric field at the right­barrier is determined by imposing the continuity of D at

the well/right­barrier interface. Then, the voltage drop is = :

= + (5.62)

As observed in real devices, Eq. (5.62) demonstrates that the voltage drops in the potential

barriers are unequal even if = given that there is charge stored in the quantum well.

Finally, from the band diagram depicted in Fig. (5.13­a), the voltage drop at the depletion region

is = .

In addition, under an applied external voltage, the resonant energy level shift is approxi­

mated in our model as

( ) (0)
1

(2) (5.63)

where (2) is a second­order correction due to the quantum well electric field generated by the

space charge. Again, (2) is essentially the energy level shift caused by the Quantum­Confined

Stark Effect [181], given by (2)
= ª ( ) ª :
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(2) =
24 2

0
3
1

3 3
1 + 3 2 2

1 sin( 1)

+ [12 1 6 sin( 1)] cos
2( 1 2)

3 1 3 sin( 1) (5.64)

where 0 = + ( 1)
¡1 sin( 1 ).

To increase accuracy, our 3D­2D RTD model takes and as dependent of ( ) and

( ), respectively. Moreover, ( ) and ( ) are a function of the charge in the well, ,

which in turn is a function of and , i.e., the charge in the well modifies the voltage drop at

the barriers. Rigorously, the problem must be solved self­consistently. Alternatively, to avoid

numerical procedures, we take when out of resonance to obtain an approximate

solution in two steps. First, we calculate the voltage drop considering = 0. Then, after

estimating the and , we recalculate each voltage drop term taking = 0.

5.2.2 3D­2D Current Model

In the resonant model, the transmission coefficient becomes negligible, except when the

electron kinetic energy in ­direction, , is aligned with the resonant levels in the quantum

well, . Thus, under applied bias, we can make ( ) with ( ) given by Eq.

(5.63). Accordingly, the logarithmic part of Eq. (4.33) can be pulled out of the integral [82].

The tunneling transmission coefficient is computed by Eq. (5.47) described in Sec. (5.1.4).

In the 3D­2D model, we consider an incident electron kinetic energy = , the effective

left­barrier height under an applied bias is ( ) = 0 , and the right­barrier

height is ( ) = ( ) (see Fig. (5.13­b)).

Considering Eq. (4.33), we replace the term T( ) by Eq. (5.47) and in by Eq.

(5.63), and integrate from 0 up to in order to obtain a generalized resonant current expression:

( ) =
¤

2 3

¡ ¡

¡ + ¡
ln

1 + exp (( ( )) ( ))

1 + exp (( ( ) ) ( ))

2
+ arctan

( )

¡ 2
(5.65)



132

where the summation describes the contribution over all energy levels in the rectangular quan­

tum well.

5.2.3 Model Validation and Discussion for the 3D­2D Model

To validate the proposed framework, we contrast the results obtained through our model

with experimental and numerical data gathered from different 3D­2D RTD structures. The elec­

tron effective masses, the dielectric constants in the GaAs, AlAs, Al Ga1¡ As and In Ga1¡ As

lattices, the theoretical LO­phonon energy value is , as well as the theoretical value of 0,

are obtained from [75], [182]. Otherwise mentioned, in all devices investigated, the operating

temperature is = 300K.

We start validating our model with the device described in [82], composed by an In0 53Ga0 47As/

AlAs heterostructure with = = 2 6nm and = 4 8 nm. For this device we have:

= 1 1018 cm¡3and 35 eV [82]. As it can be seen from Fig. (5.14), the proposed

model presents an excellent agreement with the experimental curve, correctly describing the

resonant peak and the approximate magnitude of the current density obtained experimentally.

Also, our model correctly predicts the PVCR value, the main figure­of­merit, which character­

izes the NDR region. However, to achieve this agreement, we replaced the parameter in

our model for an approximation, 0 = , where is a fitting parameter. This procedure

was done for all evaluated devices. Our calculations revealed that the resonant peak position is

very sensitive to the value of as it determines the voltage drop across the whole structure.

Besides, the parameter can be justified by our approximation for . Albeit it provides a

good quantitative agreement for the accumulation width, in realistic devices, also varies

with the applied bias. For this device, we set = 0 85. Also, the barrier width and the doping

level were adjusted to 25Å and = 0 75 1018 cm¡3, respectively. This small adjustment to

the barrier width was in the order of a few Bohr radii, within the uncertainty range of the ma­

jority of epitaxial growth techniques. As a final remark, we noticed an undesired shoulder­like

shape at the valley region around 1.5 V (see Fig. (5.14)). This effect is mostly attributed to the

intrinsic/extrinsic bistability and feedback mechanism present in realistic devices [82], [160],

which are not included in our compact model.

The next device used in our validation is reported in [183]. It is composed of a double­barrier
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Figure 5.14: Comparison between the I–V characteristics obtained by our proposed model (solid line)

and the experimental data (symbols) [82].

In0 8Ga0 2As/AlAs heterostructure with symmetrical undoped In0 53Ga0 47As space layers. The

nominal parameters reported are = = 1 1nm, = 3 5 nm, = 3 1018 cm¡3and

55 eV. As demonstrated by the results shown in Fig. (5.15­a), the proposed model

correctly predicts the resonant peak characteristics and the PVCR. To achieve such an agree­

ment, we set in our calculations = 0 80. As noted before, our model does not accounts for

the hysteresis anomaly around 0.5 V in the experimental curve. We should also point out that

AlAs layers have an indirect bandgap, leading to an additional broadening in total resonance

linewidth. In our model, we neglect the contribution of carrier tunneling across intra­band chan­

nels, such as the ¡ bands tunneling. Nevertheless, even for the indirect bandgap case, our

model closely matches the experimental curve with minor adjustments in the nominal parame­

ters.

Next, we compare our results with RTD investigated by Yang et al. [184]. This device is

composed by a GaAs/AlAs heterostructure, with the nominal parameters reported as =

= 1 7nm, = 4 5 nm, = 1 1018 cm¡3 and 55 eV. Fig. (5.15­b) shows

the analytical and the experimental I–V curves. Our model presents a good agreement with the

experimental data, correctly describing the characteristic curve, the location of the resonance

peak, and the magnitude of the current density. Again, to achieve this result, small adjustments

were performed: = 0 85 1018 cm¡3, = = 1 55 nm and = 0 80.

The next device is composed by an Al0 33Ga0 67As/GaAs heterostructure with = =
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Figure 5.15: Comparison between the I–V curves obtained by our proposed model (solid line) and the

experimental data (symbols) for (a) RTD reported on [183]; and (b) RTD reported on [184].

3 0 nm and = 3 0 nm. For this numerically analyzed device, the nominal parameters are:

= 77K, = 1 1018 cm¡3 and 58 eV [133]. As it can be seen in Fig. (5.16), the

proposed model provides an excellent agreement to the self­consistent calculations. Once more,

a small adjustment in a few nominal parameters was necessary: = 3 15 nm = =

3 3nm, = 1 1 1018 cm¡3 and = 0 95. Eventually, as the bias increases, the effective right

barrier height, ( ), vanishes, and approaches unity. In this situation, the device behaves

as a conventional diode, yielding the characteristic exponential I–V current lineshape. It is

interesting to observe that, since the effective barrier height in our model also varies accordingly

to the applied bias, the model matches the exponential part of the I–V curve without any further

adjustment. Although our main goal in this work is to model the NDR region, this additional

feature is an improvement when compared to the previous model developed in [82], where an

additional fitting equation is required.

The next RTD is a device analyzed by ourselves using Silvaco­ATLAS numerical simulator.

This TCAD platform is based on a self­consistent electric potential model and NEGF carrier

transport formalism. The device is composed by an Al0 5Ga0 5As/GaAs heterostructure with

= = 2 0nm and three different quantum­well widths: (2 5 3 0 4 0) nm.

For this device, we have = 1 1018 cm¡3 and 50 eV. As can be seen from
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Figure 5.16: Comparison between the I–V curves obtained by our proposed model (solid line) and the

self­consistent numerical model (symbols) for the RTD evaluated by [133].

Fig. (5.17) the proposed model presents a very close agreement with the simulated results

for all three widths investigated. To achieve this agreement, we used = 1 1 1018 cm¡3,

= = 2 15 nm and = 1 in our calculations

In addition to the I–V characteristics, we also validated our expression for the resonant

energy level under an applied bias, Eq. (5.45). For this investigation, we set = 2 0 nm in the

RTD structure. As it can be seen in Fig. (5.18), our expression provides an excellent agreement

with TCAD results for the ground energy level as a function of the applied bias. Furthermore,

our model correctly predicts energy rise around the resonance peak since we did not neglect the

quantum Stark effect in Eq. (5.45). We also validated our expressions to compute the space

charge in the quantum well and the accumulation region, given by Eqs. (5.54) and (5.61),

respectively. The model is in excellent agreement with the TCAD results, as demonstrated in

Fig (5.19). Again, our model correctly predicts the variation of the charge density around the

resonance peak for both space charges regions, and . Fig. (5.20) shows the respective

I–V characteristics for comparison. As it can be seen, our model correctly predicts the I–V

curve profile of the RTD.

It is also possible to evaluate the charge density distribution in the accumulation, double­

barrier and depletion regions. As demonstrated in Fig. (5.21), an inspection on the electronic

concentration reveals a charge accumulation near the DBR at the emitter side (bright­red color
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indicates the high electronic density), and a depletion (blue color) at the collector layer. Fig.

(5.21) shows the electronic concentration at the resonant peak ( 0 67 ) and Fig. (5.21)

shows the electronic concentration at the valley voltage range ( 1 2 ). The results ob­

tained by Eqs. (5.54) and (5.61) are consistent with the numerical data from the TCAD sim­

ulation. Inspecting Fig. (5.21), one can see that the electronic concentration in the quantum

well reaches its maximum value at the resonant peak. In contrast, the electronic concentration

in the quantum well is significantly reduced at the valley bias range. This behavior is in total

accordance with the device theory as well as our analytical predictions.

We also compared our results with the TCAD investigation performed by [185] for nitride­

based RTDs. These devices have been attracting a great deal of attention for applications in

THz technology and also because of their wide bandgap [185]. The RTD is composed by an

Al Ga1¡ N/GaN heterostructure with nominal parameters as = = 1 5nm, = 1 5

nm and = 1 1019 cm¡3. Other relevant physical parameters and a complete description

of this device can be found in [185]. We compared our results for two different compositions

of the Al Ga1¡ N barrier: = 0 1 and = 0 2. As shown in Fig. (5.4­a), the proposed model

presents an excellent agreement with the simulated curve, yielding the same PVCR. Once more,

to reach this agreement, we used = 1 18 = = 1 4 nm and = 1 7 nm in our

calculations.

We reinforce that in all devices used to validate our model, the minor fitting performed in

our theoretical predictions for through parameter does not alter the order of magnitude of

. Furthermore, the fine adjustment performed in some geometric dimensions is within the

typical tolerances of most device nanofabrication technologies.

In this Chapter, we developed fully analytical compact models to describe the I­V charac­

teristic of 2D­2D and 3D­2D RTDs. The models are based on the Tsu­Esaki formalism but

include a complete analysis of the electric field across the device, allowing one to account for

the space­charge effects due to the formation of a quasi­triangular well at the emitter side as

well as the quantum Stark effect. The proposed model also incorporates an analytical tunneling

coefficient, including LO­phonon scattering mechanisms and asymmetrical QW barriers.

The models were validated by comparison to experimental and numerical data obtained

from different RTDs described in the literature and numerical simulation performed by means
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Figure 5.17: Comparison between the I–V curves obtained by our proposed model (solid line) and

quantum transport TCAD simulations (doted line) performed to investigate the RTD regarding different

quantum­well widths.

Figure 5.18: Validation of our proposed model (solid lines) against TCAD simulations (dotted line)

performed for the RTD with regarding the fundamental resonant energy level under

applied bias.
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Figure 5.19: Validation of our proposed model (solid lines) against TCAD simulations (dotted line)

performed for the RTD with regarding space­charge density in the quantum­well and the

accumulation regions.

Figure 5.20: Validation of I–V characteristics of the proposed model (solid lines) against TCAD simula­

tions (dash_dotted line) performed with
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Figure 5.21: Simulated charge­density maps around resonance (left) and the valley voltage ranges (right).

Figure 5.22: Comparison between the I–V characteristics obtained by our proposed model (solid line)

and the quantum­transport numerical simulation (doted line) for the RTD described in [185].
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of TCAD software. The overall agreement in terms of the PVCR and peak current is excellent

and the model is capable of reproducing the main features of the I­V characteristics for all

RTDs, with only minimal adjustments regarding the layer structure and/or doping levels, all

changes well below the fabrication tolerances of current epitaxial growth techniques.

The correct modeling of the NDR range, as well as the PVCR, are essential to design RTD

oscillators, analog­to­digital converters, frequency dividers/multipliers, and digital circuits em­

ploying multiple valued logic [50]. In this regard, we highlight that our model provides an

excellent quantitative agreement for both NDR regions for all devices used for validation. We

should also note that the proposed model include only direct bandgap contributions only, ne­

glecting small contribution due to other conduction band­minima, such as intra­band tunneling,

e.g., ¡ and ¡ .

We should also point out that the proposed model for RTD 2D­2D works well for cryogenic

temperatures where the energies in the quasi­triangular quantum well in the accumulation re­

gion are well­defined, ensuring the 2D nature of the emitter electrons. Hence, for the 2D­2D

model, we neglect the small contribution of 3D electrons in the emitter. On the other hand, we

validated our model for the RTDs 3D­2D, considering only the contribution of 3D electrons at

the emitter side. The 3D­2D model works well for RTDs operating at room temperature. In

other words, we did not account for hybrid regimes in intermediate temperatures, with simulta­

neous contributions 2D­2D and 3D­2D.

We considered the total ionization for the accumulation and depletion regions for both mod­

els and the models developed in this work were validated for n­type RTDs. Still, even with the

simplifications assumed, the proposed model presents an excellent agreement with validation

data, comparable to much more sophisticated numerical approaches.

The results presented in this chapter regarding the 2D­2D model were published at [188].

Also, the initial results for the 3D­2D model can be found at [189]­ [190].
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Chapter 6

Conclusions and Future Works

In this thesis, we focused on modeling the I­V characteristics of RTDs. We provided a

brief account of the historical context in which the resonant tunneling concept was conceived.

In Chapter 2, we reviewed useful analytical expressions for computing the quantum tunneling

transmission coefficient across rectangular potential barriers, with and without applied bias.

As a required step, to obtain an analytical model it is necessary to determine the energy lev­

els in the finite­height quantum well present in the RTD structure. However, to determine these

energy levels it is necessary to solve transcendental equations that do not have an exact analyt­

ical solution. Therefore, approximate analytical solutions were developed for symmetric and

asymmetric rectangular quantum wells, demonstrating excellent agreement when contrasted

against the exact solution. Next, a literature review of carrier transport in RTDs was carried

out, where the challenges in developing compact models for I­V characteristics were identified.

Additionally, the main scattering mechanisms in RTDs were discussed, in order to incorporate

their effects into the proposed model.

In Chapter 5, we developed a fully analytical model for the I­V characteristics of 2D­2D and

3D­2D RTDs. In particular, depending on the thickness of these spacer layers and the operating

temperature, a quasi­triangular quantum well may form at the emitter, yielding a 2DEG. This

energy­level quantization feature usually occurs in very low­temperature regimes. In this case,

the RTD is named 2D­2D (two­dimensional emitter to a 2DEG quantum well) RTD. On the

other hand, for the 3D­2D case, there is no quantum well at the emitter region and the model

considers the resonant current density as 3D­2D (three­dimensional emitter to a 2DEG quantum
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well). To do so, we started from the Tsu­Esaki formalism and considered the electrical potential

distribution in the device layer structure, including the space charge region in the emitter layer.

The models developed combine elements of previous works found in the literature but also

add some modifications and original contributions, such as the inclusion of the quantum Stark

effect, the dependence of the tunneling transmission on the bias voltage and LO­phonon scat­

tering mechanisms, analytical calculations of eigenenergy levels and the analytical computation

of charge densities. These features result in an accurate novel expression to describe I–V char­

acteristic of 2D­2D and 3D­2D RTDs. The models were validated by comparison to numerical

results obtained using TCAD simulation and experimental data available from different RTDs

described in the literature. The overall agreement is excellent, and the model accurately re­

produces the I–V characteristics for all RTDs, with only minimal adjustments regarding a few

physical parameters. It is worth noting that all changes well below the fabrication tolerances of

current epitaxial growth techniques.

The RTD is a building block for oscillators capable of operating in the THz range, thus

making it one of the target candidates for 6G applications. Therefore, in a future work, there is

a need for accurate small­signal equivalent circuit modeling. As a first step, in the next Section,

we provide our partial results on the analytical modeling for the elements of RTD small­signal

equivalent circuits. In addition, future work also includes modeling the I­V characteristics of

nanowire RTDs and RTTs (Resonant Tunneling Transistors).

6.1 RTD Equivalent Small­Signal Model

As mentioned in the previous Chapter, the most distinct feature of RTDs is their highly non­

linear I–V characteristics on account of their NDR. This unique behavior enables the devel­

opment of terahertz oscillators and detectors, and its detailed description depends on different

parameters, such as device size, material composition, doping levels, and temperature [35]­ [47]

. Aiming the design of next­generation transceivers, a reliable compact model must correctly

describe the I–V and C–V characteristics in regard to fabrication parameters, without losing

track of the underlying physics. To do so, in this section we sketch a fully analytical model for

the first­order characteristics of the 3D­2D RTD.
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Fig. (6.1) shows the small­signal equivalent circuit model of an RTD [186].

Figure 6.1: RTD equivalent small­signal circuit.

In the circuit, represents the contact and access resistance on accounts of the metal­

semiconductor contact resistance and the sheet resistance of the heavily doped semiconductor

contacts. represents the differential conductance (first derivative of the DC I–V curve).

is the tunneling inductance which accounts for the time required for the buildup or decay of

the wave function in the quantum well, leading to a delay of current with respect to bias. The

capacitance represents the capacitance due to the space charge buildup in both accumulation

and depletion regions. represents the quantum capacitance resulting from the charge and

discharge of free carriers in the well [186].

We calculate the device conductance and its equivalent capacitance to compute the maxi­

mum operating frequency and the associated maximum output power, fundamental features for

designing RTD­based oscillators. To find the differential conductance characteristics, we apply

the generalized chain rule in Eq. (5.65), yielding:

= = +
¡

¡
+

¡

¡
+

¡

¡
(6.1)

First, we notice that the linewidth enhancement factor due to scattering is much more sig­

nificant than the intrinsic linewidths, i.e., ¡ ¡ ¡ . Since ¡ = ¡ + ¡ + ¡ , we have

¡ ¡ . In addition, since ¡ is almost a constant with respect to [187], we can make

¡ 0. Next, following the argument of Coon and Liu [124], as the intrinsic linewidths

¡ and ¡ are much smaller than the energy level, we can assume:
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¡ ¡
(6.2)

Therefore, we can approximate Eq. (6.1) to:

(6.3)

By evaluating Eq. (6.3), we have the differential conductance as
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where

¤1 = exp (( ( ) ) ( ))

= exp (( ( )) ( ))

Off resonance, there is no space charge buildup in the well and, for constant values of

and , the device behaves like a parallel plate capacitor, with the charge accumulated at the

emitter plate being proportional to the applied voltage. Hence, in this case, this geometric

component of the capacitance is simply given by

=
1

1
+

1

2

¡1

(6.5)

The terms 1 and 2 are defined in Chapter 5 given by the equations (5.58) and (5.59). By

evaluating Eq. (6.5) we have:
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= ( ) [( ( + ) + )

+ ] + ¡1 (6.6)

Following the approach proposed by R. Lake and J. Yang in [187], a simple expression to

compute the quantum capacitance is given by

=
¡

(6.7)

Therefore, the overall equivalent capacitance of the RTD can be estimated by

= +

The tunneling inductance is given by [186]:

=
¡

(6.8)

Furthermore, the circuit has a negative differential conductance for frequencies below max.

Hence, the cutoff frequency, i.e., the maximum oscillation frequency, is given by [191]:

max =
1

2

1
1

2 2

1 1
+ 1

( (2 2) 1)2

1 2 1 2

(6.9)

Finally, the maximum output power of an oscillator can be computed by [126], [192]:

max =
3

16
¢ ¢ 1

max

2

(6.10)

where the NDR is characterized by ¢ = and ¢ = with , , and

representing the peak and valley values for the voltages and currents, respectively. Typically,

the equivalent capacitance of RTDs is in the order of a few femtofaradays while the series

resistance is about a few ohms [186]. These values assure the THz operating frequency range

for RTD­based oscillators.
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In a future work, we will contrast the results from the expressions derived in this section

with experimental and simulation results from technical literature.

6.2 Nanowire RTD and RTT

In a future work, we will focus on the compact modeling of quantum wire RTDs and RTTs

operating in the quasi­ballistic regime. In the quantum wire RTD, the transport carries experi­

ence lateral quantum confinement, leading to a collimation effect in these devices and altering

their electrical output characteristics. In this context, it is worth mentioning the work of Björk et

al. [194], in 2002. The authors investigated the electronic properties of heterostructured quan­

tum wires with InAs/InP semiconductor structures. The device possesses a double potential

barrier region, resulting in the quantum wire diode with resonant tunneling, as it can be seen

schematically in Fig. (6.2). Fig. (6.2) shows a schematic illustration of the device proposed

by [194], of radius 0, with two InP regions of length forming the potential barriers for the

resonant structure. The term refers to the conductive radius, i.e., the effective conduction

radius of the longitudinal channel, disregarding the lateral depletion region of the RTD.

Figure 6.2: Schematic illustration of the quantum wire resonant tunneling diode proposed by Björk et

al. [194]. On top, the figure shows a schematic illustration of the conduction band in the longitudinal

direction and a cross­section of the device [194].

In 2005, Wensorra et al. in [195] proposed a nanocolumn resonant tunneling diode (vertical
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quantum wire) formed by AlAs/GaAs semiconductor heterostructure. As reported by Wensorra

et al., the quantum wire RTD investigated presents an electrons collimation effect due to the

lateral confinement of the nanocolumn [195]. Thus, the proposed RTD presents quasi­one­

dimensional electron transport in the vertical direction of the nanocolumn.

Figure 6.3: (a) Schematic illustration of a quantum wire RTT. (b) a longitudinal section of the device

where it can be identified the double potential barrier and the quantum well. (c) a cross­section in the

NW­RTT showing the gate electrode, the oxide layer, the depletion region and the conduction channel

defined by the conducting radius . The term refers to the width of the oxide.

Another interesting device for modeling is the quantum wire resonant tunneling transistor,

NW­RTT. Fig. (6.3) shows a schematic illustration of a quantum wire NW­RTT. The advantage

of NW­RTTs is their potential to operate at higher speeds than conventional transistors. In this

context, the device proposed by Wensorra et al. uses the gate voltage to control the width of the

depletion region, consequently controlling the nanocolumn conducting radius and the current

density [196]. NW­RTTs provide greater improvement in device performance compared to bulk

RTTs [196]. Despite its interesting features, there is a lack of physics­based models for both

quantum wire RTDs and RTTs in the literature, which makes these devices an promising topic

for future works.
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Appendix A

Mapping Function Approximation Method

A.1 Introduction

In the semiconductor industry, there has been a growing demand for fully analytical mod­

els to describe the basic electronic circuit components. This demand occurs because, although

accurate, numerical models impose challenges, such as very long simulation times and higher

requirements for computational capacity. In the scope of today technologies, where it is nec­

essary to simulate integrated circuit design with dozens of millions of transistors, numerical

simulations impose great difficulties. In modeling such devices, it is often necessary to solve

transcendental equations. However, by definition, these equations do not have a closed­form

analytical solution, making them particularly difficult to handle. As a result, most existing

formulations in the literature resort to numerical routines like the Newton­Raphson method to

tackle these equations.

In this scenario, the present appendix provides a method to write the solution of transcenden­

tal equations in terms of analytical expressions. We exemplified the application of the Mapping

Function Approximation Method (MFAM) employed in Chapter 3 to compute eigenvalues of

the finite square well potential. Here, we split the method in six steps to facilitate understanding.

In short, our method is used to find analytical solutions to transcendental equations by ap­

proximating these equations in polynomials using Taylor series expansions. Nonetheless, in­

stead of expanding the transcendental equations in a predetermined fixed point, for instance, the

origin of the system, we expand the transcendental equation in a moving point provided by a
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"mapping function". In our approach, the moving point varies accordingly to the parameters of

the original transcendental equation, in a way that minimizes the relative error.

A.2 Step­by­StepMapping Function ApproximationMethod

We begin by applying the MFAM to calculate the approximate roots of an arbitrary

transcendental equation, namely,

3
2 2 + 5 2 + 3

2
+

6

( )
2
3 +

ln ( 2 + 2 )

10( 10 10)

3 6

ln 2 + 5
1
3 = 0

(A.1)

Eq. (A.1) could, for instance, represent some physical phenomenon in which the constants

, , , , , and are operational and/or physical parameters and is the variable of interest.

In our example, , , , , , +
0 . At a first glance, Eq. (A.1) may look cumbersome.

However, we demonstrate in the next section that, by applying the MFAM, an approximate

solution can be easily found with satisfactory agreement.

A.2.1 STEPS:

1. The first step, if needed, is to rearrange the equation, grouping the transcendental func­

tion(s) to one side of the equality. Thus, for Eq. (A.1), we get:

3
2 2 + 5 2 + 3
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3 6
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1
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(A.2)

2. To get a more visually friendly equation, we can define a parameter that encompasses the

most relevant aspects of the target equation (not a mandatory step). For Eq. (A.2), we

define = 3 2. Hence, rearranging equation (A.2) and writing as a function of ,

we get
3 2 + 5 + + ( )

2
3 =

ln ( 2 + 2 )

+ 100
+ ln 2 + 5

1
3 (A.3)

3. The next step is to write each side of Eq. (A.3) as an independent function of . For this,

we call the left­hand side of Eq. (A.3) as ( ), and the right­hand side as ( ).
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Thus, we have

( ) = 3 2 + 5 + + ( )
2
3 (A.4)

( ) =
ln ( 2 + 2 )

+ 100
+ ln 2 + 5

1
3 (A.5)

4. In this step, we use what is commonly referred to in the literature as a graphical method

(GM) to identify preliminary approximate solutions of Eq. (A.3), needed only to build the

mapping function. In this example, the GM consists of plotting the ( ) and ( )

curves in the same chart for a set of parameters , and . The solution, , of interest

is just the intersection point of the curves. For illustration, Fig. (A.1) shows the ( )

and ( ) curves for = 1 = 1000, = 0 = 100 and = 0 = 10. Next, we

plot the ( ) and ( ) curves, but in this case, for a different value of the chosen

parameter, 1, and keeping the same values of 0 and 0. We repeat this process varying

, where (1 2 ) and is the number of different values of to cover the full

application range. Thus, for each value of we build a table relating to the solution, 0,

obtained by identifying the intersection point.

Figure A.1: and curves for 1 , 0 and 0 . The

intersection point is the approximate solution provided by the graphical method.

A judicious choice of 0 and 0, was made in regard to this particular example. Neverthe­

less, any value of and , in the physical range, can be used.
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Figure A.2: Solution of Eq. (A.1) as function of with and .

5. Next, with the curve shows in the Fig. (A.2), we can use a software platform, such as

Origin or Matlab (Curve Fitting ToolboxTM), to find the expression of the mapping func­

tion which matches the relationship described in Fig. (A.2), with satisfactory agreement.

Following the steps above, we get the mapping function

0( ) = 1
2 (A.6)

where, 1 and 2 are constants. The Fig. (A.3) shows a picture of the software window

used to find the mapping function, Eq. (A.6). In this case, with = 100 and = 10 the

Origin software automatically adjusted the values of the constants to,

1 = 2 21915

2 = 0 81452

In our example, different values of and would result in others values to 1 and 2.

Nevertheless, despite different choices, the mapping function agrees well with the graph­

ical solution. This happens because, in our method, the point obtained with the mapping
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function acts just as a pointer to the vicinity of the root we are seeking. Hence, the map­

ping function is defined once in our method. On the other hand, if we decide to use the

mapping function as a direct solution, the relative error will grow rapidly as we change

the input values, as we will show later.

Figure A.3: User interface of Origin software used to find the mapping function.

6. Next, by using Taylor series, we can expand the functions ( ) and ( ) into

polynomials of low degree around 0 and, consequently, easily solve Eq. (A.2). To

properly choose the polynomial degree, we can go back to the fourth step and analyze the

lineshape of the curve of Fig. (A.1) to get a hint of which degree of the polynomial would

be more adequate. In our particular case, we choose to expand ( ) into a second

order polynomial and ( ) into a first order polynomial, thus we have

( ) + ( 0) + ( 0)
2

( ) + ( 0)

hence, the approximate Eq. (A.2) becomes

+ ( 0) + ( 0)
2 = + ( 0) (A.7)
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where the constants from Taylor expansion are
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Finally, one of the roots of the resulting polynomial equation, Eq. (A.7), is the solution

provided by our method. Thus, by simply solving Eq. (A.7) and choosing the real root, the

solution is described as

=
1

2
+ + 2 0 +

2 2 4 + 4 + 2 (A.8)

A.3 Results

To show the robustness of our method, we can compare our solution, given by Eq.

(A.8), with the numerical solution for several values of and . Fig. (A.4) shows the exact and

approximate solution for several values of and . As it can be seen, our solution provides a

good agreement with the exact solution. Fig. (A.5) shows the relative error of our method for

several values of and . The maximum error resulting from our method is around 1 5% for a

broad range of , and . Note that, even changing the values of and to different values

from those which the mapping function was defined, there was no need for any change in our

solution, Eq. (A.8).
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Figure A.4: Exact and the approximate solution for different values of and

One might think that, instead of expanding the functions ( ) and ( ) using Taylor

series, the solution could be more easily found just using Eq. (A.6). The problem with this

approach is that the function provided by the Origin software, in this case expressed by Eq.

(A.6), is set for fixed values of the parameters and (in this case, 0 = 100 and 0 = 10).

Consequently, by using Eq. (A.6) for different values of 0 and 0, the relative error would

certainly increase. Fig. (A.6) shows the relative error obtained using Eq. (A.6), as it can be

seen, the relative error is much greater than the value provided by our method. In fact, for some

values of the relative error observed is more than 100%.

It is possible to improve the accuracy of the solution proposed by our method, for instance,

by increasing the degree of the expansion polynomials, ( ) and ( ) or improving

the mapping function. However, a trade­off must be accomplished because this method aims to

provide approximate solutions that are easy to compute, compact, fully analytical, and, at the

same time, offer good agreement to exact solutions.

In conclusion, we demonstrated that the method originally proposed to find the finite quan­

tum well problem eigenvalues can also be used to find the roots of other transcendental equa­

tions. It is worth to keep in mind that the method described here is an approximation method

since transcendental equations, by definition, have no analytical solution. In this sense, the
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method can be considered as a tool to obtain analytical expressions for those who work with

compact modeling.

Figure A.5: The relative error for different values of and .

Figure A.6: The relative error obtained using Eq. (A.6).
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