
 

 

 

 
 

UNIVERSITY OF SÃO PAULO 
SÃO CARLOS SCHOOL OF ENGINEERING 

DEPARTMENT OF ELECTRICAL AND COMPUTATION ENGINEERING 

POST-GRADUATION PROGRAM OF THE ELECTRICAL DEPARTMENT 
 

Metasurfaces for control of light propagation and 

diffractive optics applications 
 

Augusto Martins 

 

 

 

 

  

 

 

São Carlos – SP 

2021 



 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 
 

UNIVERSITY OF SÃO PAULO 
SÃO CARLOS SCHOOL OF ENGINEERING 

DEPARTMENT OF ELECTRICAL AND COMPUTATION ENGINEERING 

POST-GRADUATION PROGRAM OF THE ELECTRICAL DEPARTMENT 
 

Metasurfaces for control of light propagation and 

diffractive optics applications 
 

Author: Augusto Martins 

Advisor: Prof. Dr. Ben-Hur Viana Borges  

Co-advisor: Prof. Dr. Emiliano Rezende Martins 

Doctoral thesis submitted in 
fulfilment of the requirements for the 
academic degree of Doctor in 
Engineering and Doctor in Science. 

 

São Carlos – SP 

2021 

Trata-se da versão corrigida da tese. A versão original se encontra disponível na EESC/USP que aloja o 

Programa de Pós-graduação de Engenharia elétrica 



 

 

 

 

  



 

 

 

 

 
 

 

 

  



 

 

 

 

FOLHA DE JULGAMENTO 
 
 

 

Candidato: Engenheiro AUGUSTO MARTINS.  
 
Título da tese: “Metassuperfícies para o controle da propagação da luz e 

aplicações em óptica difrativa”. 
  
Data da defesa: 08/03/2021. 
 
 
 
Comissão Julgadora                   Resultado 
 
 
Prof. Dr. Emiliano R Martins                                                       APROVADO 
(Orientador)                                           
(Escola de Engenharia de São Carlos – EESC/USP) 
 
Prof. Andrea Di Falco APROVADO 
(University of St Andrews)  
 
Prof. Dr. Thiago Pedro Mayer Alegre APROVADO 
(Universidade Estadual de Campinas/UNICAMP) 
 
Prof. Carlos Ourivio Escobar APROVADO 
(Universidade Estadual de Campinas/UNICAMP) 
 
 Dr. Alexandre Manoel Pereira Alves da Silva APROVADO 
(Universidade Estadual de Campinas/UNICAMP) 
 
 
Coordenador do Programa de Pós-Graduação em Engenharia Elétrica: 
Prof. Titular Ivan Nunes da Silva 
 
Presidente da Comissão de Pós-Graduação: 
Prof. Titular Murilo Araujo Romero 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



i 

 

 

Acknowledgements 

Firstly, I would like to express my gratitude to my parents José and Rita de Cassia and to my 

siblings Thalles Martins and Fernanda Martins for all their support and love. 

To my girlfriend Giuliane for all the love, patience and support. I am very grateful for her 

long distance support and love during my exchange at York.  

To my advisor Prof. Ben-Hur Viana Borges for his dedication throughout my academic 

endeavour since when I was an undergraduate.  

To my co-advisor  Prof. Emiliano Rezende Martins for his dedication.  

To Prof. Thomas F. Krauss for supervising me during one year in his group at the University 

of York.  

I am very grateful for all their guidance, support and confidence, which were fundamental 

for the execution of this thesis.  

To Professor Juntao Li for the essential contribution in this thesis fabricating several 

metasurfaces for me.  

To Professor Luiz Gonçalves Neto for his support and advices. 

To Achiles F. da Mota,  Donato C., Fernando L. T., Haowen Li, João P. do C.,  and Yin W. 

for all the support and help in my publications.  

To Prof. Luís Alberto Mijam Barêa and Prof. Newton Cesario Frateschi for all the support. 

To my friend Pedro Paulo Justino da Silva Arantes for all the discussions and support since 

when we were undergraduates. 

To my friend Norbert Vanek for all the insightful and crazy discussions about everything 

and for all his support. 

To my friend Kezheng Li for his friendship, support and help when I was in York and also 

for teaching me nanofabrication techniques. 

To my friends at USP: Achiles F. da Mota for our long term and fruitful collaboration;  

Mateuzin R., Rodrigo R., Rodrigo Gounella, Nicão, Gustavo C., Guilherme A., Talita C. and 

Vinicius P. for all the help, discussions and leisure times. 

To my friends and colleagues at York: Manuel, George, Kallum, Donato, Pepe, Isabel, Elena, 

Chris, Yue Wang, Alex, Josh, Giampaolo and Ben. 

To the São Paulo Research Foundation (FAPESP) (Grants 2015/21455-1 and 2018/25372-

1) for the financial support. 

 

 

 



ii 

 

 

Abstract 

MARTINS, A. Metasurfaces for control of light propagation and diffractive optics applications. 

Thesis (Ph.D.), São Carlos School of Engineering, University of São Paulo, São Carlos, 2021. 

 

This PhD thesis describes the design, modelling, fabrication, and characterization of 

metasurfaces capable of controlling the propagation of light beams with low insertion losses.  

Metasurfaces are planar subwavelength structures that allow local control of phase, amplitude 

and/or polarization of light. These structures have proven to be extremely versatile, finding 

applications in imaging, holography, polarization optics and sensing, to mention only a few. One 

key aspect in the design of a metasurface is the material choice of its constituents, as it plays a 

significant role in defining the physical mechanism underlining its operation. In this sense, we 

can divide metasurfaces into two groups:  plasmonic and dielectric. Plasmonic metasurfaces, 

which use metallic structures, were the first metasurfaces demonstrated in the literature. 

Nevertheless, the efficiencies of these metasurfaces are severely impacted by Ohmic losses and 

are theoretically limited in 25% when operating in transmission mode. For example, it is shown 

in this thesis that the transmission efficiencies of plasmonic metasurfaces based on aluminium are 

of the order of ~ 13%, which is typically too low for holography, for instance. 

Recently, all-dielectric metasurfaces based on high refractive index materials have been 

proposed as an alternative to circumvent the low transmission problem of plasmonic 

metasurfaces. In this thesis, it is shown how the transmission efficiencies of metasurfaces are 

dramatically improved by dielectric materials. The dielectric of choice in this thesis is crystalline 

silicon (c-Si), which has a combination of advantageous properties, such as: high refractive index, 

ease of patterning, and low absorption in the visible (as compared to amorphous silicon). Two 

metasurface designs are then proposed for holography applications. The first design uses 

cylindrical nanoposts to impose a phase modulation in the transmitted light. The hologram shows 

high fidelity and high efficiency, with measured transmission and diffraction efficiencies of ~65% 

and ~40%, respectively. Although originally designed to achieve full phase control in the range 

[0-2π] at 532 nm, these holograms have also performed well at 444.9 nm and 635 nm. The high 

tolerance to both fabrication and wavelength variations demonstrate that holograms based on c-

Si metasurfaces are quite attractive for diffractive optics applications, and particularly for full-

colour holograms.   

The second design uses elliptical cross-section nanoposts that are form-birefringent, that is, 

they provide independent control of phase for two orthogonal polarizations in the visible 

spectrum. Relying on these properties, a holographic stereogram was encoded in the metasurface. 

Briefly, a stereoscopic image (stereogram) is composed of a pair of orthogonally polarized images 
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taken from the same scene but recorded in slightly shifted positions to replicate the natural 

parallax of the human eye. For the stereoscopic effect (depth perception) to occur, each of these 

two images has to be directed to each of the user’s eyes separately with the help of cross-polarized 

glasses. The stereoscopic effect is obtained by combining two holograms on the same metasurface 

(one for each polarization). The hologram was encoded with four phase levels. Two additional 

non-stereoscopic holograms using two uncorrelated images were also fabricated to help assessing 

polarization cross-talk. The reconstruction plane consists of a fine-sanded aluminium surface to 

preserve the polarization of the scattered light. The stereoscopic view is obtained with a pair of 

cross-polarized filters (or glasses) placed in front of the observers’ eyes. The theoretical 

bandwidth is 110 nm with a signal to noise ratio (SNR) >15 dB. The measured transmission and 

diffraction efficiencies are about 70% and 15%, respectively, at 532 nm. Such high efficiency is 

due to a combination of low absorption and high index of c-Si at visible: the index is sufficiently 

high to enable sufficiently small posts to alleviate the material losses. We also investigated the 

metasurfaces at 444.9 nm and 635 nm to experimentally assess their bandwidth performance. The 

quality of the stereoscopic effect is surprisingly high at 444.9 nm (but not so much at 635 nm) 

with transmission and diffraction efficiencies around 70% and 18%, respectively. The proposed 

structure was able to successfully capture the depth effect on the reconstructed images, with 

potential applications in diverse areas such as visual arts, entertainment, and security. The latter, 

in particular, will certainly benefit from the increased degree-of-freedom conveyed by 

stereoscopic information. 

Leveraging on the experience obtained with the research on holograms, we focused on the 

problem of monochromatic aberrations on metalenses. Metalenses are nanostructured surfaces 

that mimic the functionality of optical elements. Many exciting demonstrations had already been 

made, for example, focusing into diffraction-limited spots or achromatic operation over a wide 

wavelength range. The key functionality that was yet missing, however, and that is most important 

for applications such as smartphones or virtual reality, is the ability to perform the imaging 

function with a single element over a wide field of view. Thus, relaxing the constraint on 

diffraction-limited resolution, we demonstrated the ability of single-layer metalenses to perform 

wide field of view (WFOV) imaging while maintaining high resolution suitable for most 

applications. We also discussed the WFOV physical properties and, in particular, we showed that 

such a WFOV metalens mimics a spherical lens in the limit of infinite radius of curvature and 

infinite refractive index.   

Finally, we explored the expertise acquired with the design of nanostructures to address an 

important problem in the renewable energy community: how to improve the performance of solar 

cells using nanostructures. In particular, we analysed the impact of these structures on the 

performance of a new class of solar cells: the tandem solar cell employing perovskites and silicon. 

Such tandem solar cells require careful photon management for optimum performance, which can 
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be achieved with intermediate photonic structures. We first identified that a photonic intermediate 

structure in a perovskite/c-Si tandem solar cell should act as an optical impedance matching layer 

at the perovskite-silicon interface. This conclusion did not tally with the perception in the tandem 

community at the time, which tented to ascribe the role of a tailored reflector to intermediate 

structures. Relying on the new insights gained, we analysed two simple designs and compared 

their performances with intermediate reflectors based on Distributed Bragg Reflectors (DBR). 

Our conclusion was that the intermediate structures acting only as an optical impedance matching 

layer show similar performance as the DBR reflectors but are much simpler. We completed the 

analysis by simulating a realistic device configuration and showed that optical impedance 

matching alone can increase the short circuit current of the silicon solar cell by 18.5% 

(corresponding to a boost of 2.8 mA/cm2), thus resulting in an expected tandem efficiency in 

excess of 30%. 

 

 

 

Keywords: photonic crystals, photonic nanostructures, dielectric metasurfac, metalens, wide 

field of view metalens, computer holography, form birefringence, stereoscopy, perovskite, 

tandem solar cells, crystalline silicon 
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Resumo 

MARTINS, A. Metasuperfícies para o controle da propagação da luz e aplicações em ótica 

difrativa. Tese (Doutorado), Escola de Engenharia de São Carlos, Universidade de São Paulo, São 

Carlos, 2021. 

 

Esta tese de doutorado descreve o projeto, a modelagem, a fabricação e a caracterização de 

metasuperfícies para o controle da propagação de feixes de luz com baixas perdas. 

Metassuperfícies são estruturas planas compostas de estruturas menores que o comprimento de 

onda operante que permitem o controle local da fase, amplitude e/ou polarização da luz. Tais 

estruturas se provaram extremamente versáteis com aplicações demonstradas em imageamento, 

holografia, polarização da luz e sensoriamento, por exemplo. Uma característica fundamental no 

projeto de uma metassuperfície é a escolha material de seus elementos, pois ele dita o mecanismo 

físico no qual ela se baseia. Dessa forma, podemos agrupar as metassuperfícies em duas 

categorias: as plasmônicas e as dielétricas. As metassuperfícies plasmônicas, que são compostas 

de estruturas metálicas, foram as primeiras metassuperfícies demonstradas na literatura. Porém, 

suas eficiências são afetadas por perdas ôhmicas e teoreticamente limitadas em 25% quando 

operando em transmissão. Por exemplo, nesta tese é mostrado que a eficiência de transmissão de 

metassuperfícies plasmônicas feitas em alumínio é da ordem de 13%, o que é muito baixo para 

muitas aplicações como holografia. 

Recentemente, metassuperfícies baseadas em materiais dielétricos de alto índice de refração 

foram propostas como uma alternativa para solucionar o problema da baixa transmissão das 

metassuperfícies plasmônicas. Nesta tese, nós demonstramos que as metassuperfícies dielétricas 

apresentam, de fato,  uma melhora significativa na eficiência de transmissão quando comparadas 

com as plasmônicas. Para tanto, utilizamos como material dielétrico o silício cristalino (c-Si), que 

possui uma combinação de propriedades favoráveis, tais como: alto índice de refração, facilidade 

de corrugação e baixas perdas no visível quando comparadas com outros tipos de silício como o 

amorfo e o policristalino. Assim, foram propostas e projetadas duas metassuperfícies para 

aplicações em holografia. A primeira é baseada em nanopostes cilíndricos capazes de modular a 

fase de feixes não polarizados transmitidos através da metassuperfície. Os hologramas apresentam 

alta fidelidade e alta eficiência, com eficiências de transmissão e difração aproximadamente de 

65% e 40%, respectivamente, medidas experimentalmente. Apesar de terem sido projetadas para 

operar em 532 nm, os hologramas também apresentaram bons resultados em comprimentos de 

onda de 444.9 nm e 635 nm. Portanto, as altas tolerâncias a variações na fabricação e comprimento 

de onda evidenciam que hologramas baseados em metassuperfícies de silício cristalino são ótimos 

candidatos para aplicações em ótica difrativa e, particularmente, para hologramas coloridos. 
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O segundo projeto utiliza nanopostes com seção transversal elíptica que apresentam 

birrefringência de forma no visível. Ou seja, tais nanopostes modulam diferentemente a fase da 

luz transmitida de acordo com o estado de polarização da luz incidente. Dessa forma, um 

estereograma holográfico foi gerado com tal metassuperfície. Resumidamente, uma imagem 

esterocópica (estereograma) é composto de duas imagens tomadas de uma mesma sena mas 

fotografadas em posições diferentes para replicar a paralaxe natural da visão humana. Para o efeito 

estereoscópico (percepção de profundidade) ocorrer, cada uma dessas imagens deve ser vista 

independentemente por cada um dos olhos do observador. Para tanto, decidimos realizar dois 

hologramas com quatro níveis de fase cada, um para cada imagem do estereograma e numa 

mesma metassuperfície birrefringente em cada um dos dois estados de polarização ortogonal. 

Assim, o efeito estereoscópico pode ser visto na reconstrução birrefringente com o uso de óculos 

cujas lentes apresentam polarizadores ortogonais. Além disso, projetamos os hologramas de duas 

imagens diferentes para facilitar a análise de efeitos de cross-talk na polarização. O plano de 

reconstrução, para os hologramas estereoscópicos, consiste de uma superfície de alumínio lixada 

levemente para preservar o estado de polarização da luz espalhada. A largura de banda estimada 

teoreticamente é de 110 nm com uma relação de sinal ruído maior que 15 dB. As medidas de 

eficiências de transmissão e difração são da ordem de 70% e 15%, respectivamente, no 

comprimento de onda de 532 nm. Tais valores são consequências das baixas perdas e alto índice 

de refração do silício cristalino no visível. Ou seja, o índice de refração é alto o suficiente para 

minimizar as perdas materiais. As metassuperfícies foram investigadas experimentalmente 

quando iluminadas com lasers em 444.9 nm e 635 nm para avaliar experimentalmente sua largura 

de banda. A qualidade do efeito estereoscópico é surpreendentemente alta em 444.9 nm com 

eficiências de transmissão e difração de 70% e 18%. Já em 635 nm, as reconstruções não foram 

tão boas. Dessa forma, verificamos que a estrutura proposta foi capaz de demonstrar o efeito 

estereoscópico nas reconstruções com potencial para aplicações em diversas áreas como artes 

visuais, entretenimento e segurança. A última, em particular, certamente irá beneficiar do grau de 

liberdade adicional fornecido pela informação birrefringente. 

Com base na experiência obtida na pesquisa de metassuperfícies holográficas, decidimos 

focar no problema de aberrações monocromáticas em metalentes. Metalentes são 

metassuperfícies que reproduzem as funcionalidades de elementos óticos. Muitas demonstrações 

surpreendentes já foram demonstradas tais como foco em pontos no limite de difração e operação 

acromática em uma larga banda de comprimentos de onda. Uma característica importante que 

ainda não havia sido propriamente solucionada e que é fundamental em aplicações como 

smartphones e realidade virtual é a capacidade de formar imagens com alto campo de visão e 

apenas uma metalente. Para tanto, abdicando a operação no limite de difração, nós demonstramos 

a habilidade de apenas metalente obter imagens com alto campo de visão (WFOV) com 

resoluções altas o suficiente para grande parte das aplicações em imageamento. Também são 
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discutidas as propriedades físicas de tais metalentes e, em particular, é mostrado que elas simulam 

uma lente esférica no limite de raio de curvatura e índice de refração interno infinitos.  

Por fim, a experiência no projeto de nanoestruturas para o controle da luz foi utilizado para 

resolver um problema importante no contexto de energia renovável: como aprimorar o 

desempenho de células solares com nanoestruturas. Em particular, foram analisados os impactos 

de tais estruturas na performance de uma nova classe de células solares tandem que utilizam 

peroviskitas e silício. Esse tipo de célula solar tandem requer um cuidados controle fotônico para 

obter o melhor desempenho e isso pode ser realizado com estruturas fotônicas intermediárias, ou 

seja, postas entre as camadas de silício e peroviskita. Primeiramente, nós identificamos que, para 

essa classe de célula solar tandem, a estrutura fotônica intermediária deve casar a impedância 

entre a peroviskita e o silício. Tal conclusão não concorda com a percepção da comunidade 

científica, que era a de que deveria utilizado refletor otimizado como estrutura intermediária. Com 

base na conclusão que obtivemos, nós decidimos avaliar duas estruturas simples, que agem como 

casadoras de impedância, e comparar seu desempenho com refletores intermediárioas baseados 

em refletores Bragg distribuídos. Assim, concluímos que, de fato, estruturas intermediárias 

baseadas em casadores de impedância ótica mostram desempenhos muito semelhantes aos dos 

refletores intermediários mas com a vantagem de serem muito mais simples. 

 

Palavras-chave: cristais fotônicos, metassuperfícies dielétricas, metalentes, metalentes com 

alto campo de visão, holografia computacional, birrefringência de forma, estereoscopia, 

peroviskita, células solares tandem, silício cristalino. 
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I. Introduction 

I.1. Physics of Light - Historical Introduction 

The curiosity about the properties of light has driven several scientific and technological 

innovations throughout the history of mankind. Since the early days of classical antiquity, Greek 

philosophers such as Empedocles and Euclid were already familiar with some of the properties 

of light and applications, such as burning glasses, reflection, refraction and rectilinear 

propagation. At that time, they tried to explain those phenomena based on an emission 

(corpuscular) theory. The development of optical instrumentation experienced a boom during the 

Renaissance, thanks to the relentless efforts of science giants like Galileo Galilei (1564-1642), 

[1]. Improved telescopes and microscopes turned the far places of the universe and the uncanny 

world at small scales observable to the eyes of humanity, marking turning points in the fields of 

astronomy and biology.  

Thus, under the rigorous treatment of the scientific method, several discoveries contributed 

to build the knowledge of the properties of light from the seventeenth to nineteenth centuries. For 

instance, interference fringes (Robert Boyle (1627-1691) and Robert Hooke (1635-1703)), 

diffraction (Francesco Maria Grimaldi (1618-1663)), polarization (attributed to  Christian 

Huygens (1629-1692)),  finite propagation velocity (Olaf Römer (1644-1710)) are some 

discoveries that contributed to the development of applied and fundamental optics [1, 2]. This 

period also marked a great conflict in the understanding of what is light. Indeed, the corpuscular 

theory of light, which had Newton as its main supporter and it was fiercely defended at that time, 

could not explain the interference and diffraction phenomena.  

Huygens tried to explain these phenomena by treating light as a wave rather than a 

corpuscular entity.  He proposed his famous principle in which every point in the wavefront can 

be regarded as a secondary spherical source and the sum of all these sources build up the 

wavefront at a later instant. Nevertheless, the theory was not accepted for almost a century, mostly 

due to the unique influence held by Newton at that time. Only a century after Huygens’ principle 

had been enunciated that the wave theory regained significant attention. Thomas Young (1773-

1829) in the beginning of the nineteenth century introduced the principle of interference, 

predicting the signature of destructive interference only allowed by a wave theory. Furthermore, 

the theoretical work of Augustin Jean Fresnel (1788-1827) had a decisive impact on establishing 

the wave theory of light, corroborated by several experimental observations (such as the Poisson’s 

spot) [1, 3].  
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In the nineteenth and twentieth centuries, the understanding of what is light suffered a turning 

point fuelled by two breakthrough discoveries. The first of them stemmed from the fields of 

electricity and magnetism and is epitomized by James Clerk Maxwell (1831-1879) and his 

seminal 1864 paper. Maxwell not only rigorously unified all previous experimental observations 

in a set of equations that now bear his name, but also used them to predict the existence of 

electromagnetic waves. Surprisingly, his equations predicted that these waves should travel at a 

speed very close to the speed of light. Maxwell did not consider this fact as a mere coincidence 

and proposed that light is also made of coupled and oscillating electric and magnetic fields. 

Although not readily accepted at the time, it did not take a long time for Maxwell’s predictions to 

be experimentally proved. In 1888, Heinrich Hertz (1857-1894) proceeded with his famous 

experiment proving the existence of electromagnetic waves. In other words, Maxwell’s equations 

led to the extraordinary prediction that light is physically equivalent to radio waves, infrared 

radiation, ultraviolet radiation, x-rays and gamma radiation. All the different phenomena related 

to these different types of radiation could be in principle equally treated with Maxwell’s theory. 

The main difference between them is their frequency of operation, which has great influence on 

their interaction with matter.  Figure I-1 shows a simplified chart of the electromagnetic spectrum 

with the different kinds of radiations and their frequencies and wavelengths. Visible light is just 

a small patch in the rich electromagnetic spectrum.   

 
Figure I-1 – The electromagnetic spectrum. Based on [4]. Acronyms: ULF – Ultra low frequency; VLF – Very low frequency; 
LF – Low frequency; MF – medium frequency; HF – high frequency; VHF very high frequency; UHF – ultra high frequency; 
SHF – super high frequency; EHF – extremely high frequency; FIR – far infrared; MIR – mid infrared; NID – near infrared; 
NUV – near ultraviolet; EUV – extreme ultraviolet; SX – soft X-rays; HX – hard X-rays; γ -  gamma rays. 

Although Maxwell seemed to have demonstrated unequivocally that light is indeed a wave 

phenomenon, the second breakthrough challenged this interpretation and revived the old particle 

versus wave debate. Indeed, the quantum theory, which emerged in 1900 almost by accident with 

Max Planck’s (1858-1947) research on thermal emission, shook the classical physics in its 

apotheosis. Newton’s and Maxwell’s descriptions of nature seemed to rule almost all observable 

physical phenomena. Nevertheless, several experiments such as blackbody radiation and 
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observation of discrete lines in the spectra of light crossing gaseous chemical elements could not 

be explained by those theories. In a creative fashion, Planck was able to theoretically estimate the 

blackbody radiation under the assumption that light can only assume energy values that are 

integers multiples of the fundamental quantum hf, where f is the operating frequency and h the 

Planck’s constant [5]. Inspired by Planck’s take on blackbody radiation, Albert Einstein (1879-

1955) revived in 1905 the corpuscular theory of light. Einstein assumed that light is quantized in 

particles (now called photons) whose energy is given by Planck’s fundamental quantum hf. That 

is, the corpuscular theory of light was back in the game, and with robust experimental validation, 

since Einstein successfully described the photoelectric effect based on this assumption. Therefore, 

light has characteristics of both particles and waves. From there, quantum mechanics was born, 

and the twentieth century witnessed its quick developments. Not long after, the field of quantum 

optics emerged through the work of Paul Dirac (1902-1984).  
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I.2. Light manipulation at the wavelength scale 

Photonics is the field that studies the manipulation of light and its interaction with matter. It 

deals with the generation, transmission, modulation, amplification and detection of light [6]. That 

is, the ultimate goal of photonics is to manipulate light for scientific and technological 

applications. For instance, telescopes and microscopes unveil the universe at different scales; 

Fourier optics improves imaging systems; waveguides and optical fibres enable the transmission 

of light over long distances. The field was greatly impacted by the development of electronics as 

light and electrons interact with each other. Lasers, diodes, solar cells and electro-optical 

modulators are examples of applications spanning both photonics and electronics. Nevertheless, 

these devices rely most on the manipulation of electrical properties of the materials and/or on 

their natural optical properties.  

What about the optical properties? How to control them? 

The past few decades saw a huge effort to provide a solution for the problem of controlling 

the optical properties of optoelectronic and photonic devices. A clever solution was to bring 

crystals (periodic arrangement of atoms or molecules) from the electronic to the photonic domain. 

As it is well known, the electronic properties of a crystal depend on the lattice size and shape of 

the crystals, their constituents and their arrangements in the unit cell [7]. Evidently, the crystalline 

arrangement of the atoms also has an impact on the optical properties of the materials. But as the 

wavelength of the light is much larger than the periodicity of the crystals (the former is in the 

order of hundreds of nanometers whereas the latter of a few angstroms), the optical properties are 

impacted differently from their electronic counterparts. In fact, a crystal is effectively a 

homogenous medium for light and thus can be described by macroscopic parameters such as the 

refractive index. Consequently, light interaction with these materials are appropriately described 

by the macroscopic form of Maxwell’s equations [8]. In this form, all the fields and charges are 

assumed to be averaged over a scale much smaller than the wavelength of the light but much 

larger than the separation of the charges. Therefore, the electromagnetic fields are described by 

macroscopic (averaged) field quantities whereas the material properties are described in terms of  

effective polarization (P) and magnetization (M) vectors, i.e., by a refractive index [8].  Electrons, 

on the contrary, have De Broglie wavelengths in the order of the lattice size of the crystals and 

require a more sophisticated description than averaging. The theory that explains how electrons 

behave in crystals is well stablished in quantum mechanics and is based on Bloch’s (also called 

Floquet’s) theorem. In short, this theorem states that the eigenfunctions of a periodic system are 

given by a plane wave modulated by a periodic function with the same periodicity of the system 

[7]. The properties of electrons are dictated by the periodic potential in the crystal.  
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Analogously, a similar feature could be obtained with electromagnetic waves (note that it 

does not need necessarily to be light) by patterning a bulk material in lattices of the order of the 

operating wavelength. In this case, it is the spatial variation of the macroscopic permittivity (or 

the refractive index) that rules the wave interaction with matter. The resulting periodic structures 

are called “photonic crystals”, as represented in Figure I-2. One of the beauties of this approach 

is that several observations made for electrons in crystals also apply for photons in photonic 

crystals [9]. The appearance of bandgaps, for example, are also possible in the band diagram of a 

photonic crystal, which prevents the propagation of the wave in certain directions, as shown in 

Figure I-3. There is a myriad of applications explored with photonic crystals such as: waveguide 

couplers, filters, photonic crystal fibers and waveguides, cavities, solar cell efficiency 

enhancement and sensing, to mention but a few.    

 
Figure I-2 – Examples of (a) one-, (b) two- and (c) three-dimensional photonic crystals.   

 
Figure I-3 – In-plane (𝒌𝒌𝒛𝒛 = 𝟎𝟎) band diagram (left) of a 2D photonic crystal with a triangular lattice (upper right). Note the 

presence of a photonic bandgap in the middle of the band diagram. The primitive vectors are 𝒂𝒂��⃗ 𝟏𝟏 = 𝒂𝒂 �√𝟑𝟑
𝟐𝟐

, 𝟏𝟏
𝟐𝟐
� and 𝒂𝒂��⃗ 𝟐𝟐 = 𝒂𝒂(𝟏𝟏,𝟎𝟎). 

The photonic crystal in this example is made up of holes in a medium with a permittivity of 13. The bottom right figure shows 

the irreducible Brillouin zone of the crystal with the symmetry points (Γ, M and K) at the corners.  This example was extracted 

from [9]. The band diagram was calculated using a RCWA code written by the author. The TE (even) and TM (odd) modes 

have only (𝑬𝑬𝒙𝒙,𝑬𝑬𝒚𝒚,𝑯𝑯𝒛𝒛)  and (𝑯𝑯𝒙𝒙,𝑯𝑯𝒚𝒚,𝑬𝑬𝒛𝒛)  components, respectively. This is the definition according to the mirror symmetry of 

the modes with respect to the x-y plane. 
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Another approach to manipulate light that has resulted in several applications is the coupling 

between photons and electrons in a metal/dielectric interface. In the visible and infrared ranges, 

metals support coherent oscillations of electrons driven by electromagnetic waves, the so-called 

surface plasmon polaritons (SPPs), as illustrated in Figure I-4 (a). SPPs are in-plane propagating 

modes confined in the metal/dielectric interface [10]. The coupling between electrons and photons 

finds several interesting applications and can lead to novel physical phenomena, so much so that 

a whole field was named after it: the field of Plasmonics. Biological and chemical sensing and 

spectroscopy [11-14] are some examples of the vast range of applications that resulted from SPPs. 

Due to its guided nature, the dispersion line of a SPP mode lies below the cone of light, as 

represented in Figure I-4 (c) and cannot couple directly with free space radiation.  That is, they 

need an additional mechanism to provide enough momentum to the incoming light and reach the 

required phase matching. For instance, this can be done by tunnelling of light in a prism or with 

a grating [10]. 

 
Figure I-4 – Illustration of a (a) SPP in a metal (gray region)/ dielectric (white region) interface. The lines represent the electric 
field and the signals the charge density inside the metal. (b) Represents the charge density and electric field lines of a LSPR of 
a metallic sphere. (c) Shows the dispersion line (solid blue) of a SPP in a Silver/Air interface before the silver frequency of 
plasma and interband transitions [10]. Experimental data by Johnson et al. was used for the permittivity distribution of Silver 
[15]. The dashed line marks the dispersion of plane waves in air. Propagation in air is allowed only above this line.   

This issue can be circumvented by “trapping” the surface plasmon polariton in a cavity-like 

structure. For example, this can be done with metallic nanospheres [16], nanorods [12, 17] and 

nanoantennas [18-21]. In these configurations there is no need for an external phase matching 

mechanism and the plasmon can be coupled directly with free space radiation. Differently from 

common cavities, where the electromagnetic field is confined inside them, a SPP “cavity” 

supports its waves on the metal/dielectric interface; in other words, the plasmon oscillates locally 

around (electromagnetic waves) and on the surface (charges) of the metallic structure. This mode 

receives the name of Localized Surface Plasmon (LSP) and it typically shows resonant behaviour;  

its resonance being called a Localized Surface Plasmon Resonance (LSPR) [10]. A LSPR of a 

metallic sphere is represented in Figure I-4 (b). Typically, these structures manifest a large 

enhancement of both the extinction cross section and the near field of the nanostructure on 

resonance. The near-field enhancement is usually extremely high, making the LSPR very 

sensitive to environmental changes. Thus, LSPRs are promising candidates for sensing 
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applications. Furthermore, the high near-field enhancement also finds applications based on non-

linear phenomena such as Surface-enhanced Raman scattering [22, 23].  

Another class of structures that has received a great deal of attention in the past few decades 

are the metamaterials. Metamaterials are artificially engineered bulk materials whose 

electromagnetic properties can be manipulated in unprecedented ways [24-26]. Note that, 

differently from photonic crystals, metamaterials are formed by structures lying in subwavelength 

regime and whose properties are homogenized. A band diagram representing the regimes where 

these structures are typically found is shown in Figure I-5 (a). Differently from a photonic crystal, 

a metamaterial has only one mode for each state of polarization and it is possible to define 

effective wave parameters such as refractive index, permittivity and permeability parameters. A 

generic metamaterial is illustrated in Figure I-5 (b). These structures present flexibility on the 

tunability of their electrical properties making them appealing for several scientific and 

technological applications such as sensors [27], antennas [28], perfect lenses [29] and even 

invisibility cloaks [30-32]. Negative refraction, for instance, is a property that is not found in 

nature but that is possible in metamaterials [31] and photonic crystals near the bandgap [33]. 

Unfortunately, high insertion losses and fabrication challenges associated with bulk 

metamaterials hinder their practical applications.  

Metasurfaces, the two-dimensional (2D) equivalent of volumetric metamaterials, are planar 

subwavelength structures that allow local control of phase, amplitude and/or polarization of light 

[34-39]. Differently from metamaterials, whose functionalities rely on the propagation of 

electromagnetic waves through a bulk media, metasurfaces operate as a discontinuity capable of 

imposing abrupt changes on wavefronts [34, 37]. Therefore, metasurfaces can overcome the 

propagation loss and fabrication issues associated with bulk metamaterials. A representation of a 

metasurface is shown in Figure I-5 (c). 

 
Figure I-5 – (a) Bloch modes diagram calculated of n=3 oblate spheroids (x and z semi axes: a/2; y semi axis: a/4) in simple 
square lattice (period a) embedded in air. For details on the symmetry points, check [7]. The energy diagram was calculated 
in Comsol. Representation of a metamaterial and a metasurface (b) and (c), respectively. Note that differently from a photonic 
crystal, the unit cell size of a metamaterial is several times smaller than the wavelength. 

The first metasurfaces proposed in the literature were based on metallic nanoresonators 

whose functionality relied on the excitation of LSPRs [36-38, 40-45]. Unfortunately, LSPRs 

suffer from high losses at visible wavelengths that severely limit the metasurface efficiency when 

operating in transmission-mode [17, 36, 43, 45, 46]. For instance, the maximum reported 
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efficiency for a transmission based metasurface hologram based on LSPR is about ~10% at near-

infrared wavelengths [43]. Furthermore, LSPR-based metasurfaces do not afford full-phase shift 

(0-2π) between incident and transmitted fields through resonance frequency tuning only [36], 

which is an major limitation in many applications. In contrast, when operating in reflection mode, 

LSPR based metallic metasurfaces can reach efficiencies as high as 80% [44].  

In view of all these problems, all-dielectric metasurfaces based on high refractive index 

materials have been proposed as an alternative to circumvent the low transmission problem of 

metallic metasurfaces. All-dielectric metasurfaces can be divided in two classes: high- and low-

contrast structures, with contrast defined as the difference between the refractive index of the 

nano inclusion and that of the surrounding medium. High-contrast metasurfaces structured as low-

aspect ratio resonators may exhibit only electric and magnetic dipolar Mie resonances at optical 

wavelengths [47], and these resonances can be tuned  and brought into spectral overlap [48], thus 

allowing manipulation of the amplitude and phase of the light [49-51]. However, if  both the 

contrast and aspect-ratio are high, the structure may exhibit several multipole resonances at 

optical wavelengths [47]. In this case, it is preferable to treat each structure as a truncated 

waveguide (exhibiting Fabry-Pérot resonances [52]) where the waveguide effective index can be 

tailored by adjusting the fill-factor of the structures. This last feature offers an attractive degree-

of-freedom in the design of diffraction gratings as it allows them to be made with either high or 

low index contrast. For instance, a [0-2π] phase control has been achieved with tall cylinders 

(nanoposts, see Figure I-6 (a)) and high transmission [52-55]. In fact, the high diffraction 

efficiency provided by dielectric metasurfaces has been explored in many other classical 

applications, such as lenses [56-58], holograms [50-52, 55, 59-63], wave plates [64], anomalous 

refraction generation [53, 65],  and vortex beam generation  [65, 66]. Figures I-6 (b) and (c) 

illustrate examples of lenses and holograms, respectively, made with metasurfaces based on high 

contrast gratings. 

 
Figure I-6 – (a) Representation of a dielectric cylinder used to phase shift light locally. (b) Representation of a metalens made 
of dielectric nanoposts. Note that in this case the nanoposts are arranged to mimic the phase distribution of a lens. (c) 
Representation of a holographic metasurface. This image is not to scale. 

The choice of materials plays an important role in the design of the strucures. High index 

materials such as  titanium dioxide (TiO2) [58, 62, 67, 68], silicon nitride (Si3N4) [54], and silicon 

[50-53, 59-61, 63-65, 69] are usually the preferred choices. Silicon is particularly interesting for 
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metasurface applications not only for its compatibility with CMOS processes, but also for its high 

refractive index that allows high-contrast gratings to be fabricated with low aspect ratio. For 

instance, metasurface holograms with diffraction efficiencies in excess of 90% were obtained in 

the infrared with poly-silicon (p-Si) metasurfaces based on Mie resonances [63]  and with 

amorphous silicon (a-Si) based on high-contrast grating [52]. However, the high absorption of 

these two types of silicon severely limits their application in the visible range. For example, a full 

color hologram has been demonstrated with diffraction efficiencies of only 3.6%(blue), 

5.2%(green) and 18% (red) [61] using  amorphous silicon (a-Si). Furthermore, using poly-silicon 

(p-Si) a hologram operating at 532 nm has been demonstrated with a diffraction efficiency of only 

6% [55].  

In this scenario, crystalline silicon (c-Si) can be advantageous as it has lower absorption in 

the visible range. This feature motivated the recent demonstration of a  polarization independent 

metasurface based on  c-Si, which achieved a  high transmission efficiency of 71% at 532 nm 

with an aspect ratio of only 3.4 [53]. In contrast, a TiO2-based metasurface hologram requires 

aspect ratios larger than 10 [62] to achieve a similar efficiency.  

  



 

10 

 

I.3. From classical to digital holography  

Holography is a technique that generates an image by modulating the amplitude and/or phase 

of a light beam. This concept was initially developed in the context of optical microscopy by 

Dennis Gabor [70] in 1948 to improve the imaging quality. In 1971, Gabor was awarded a Nobel 

prize for the invention of holography. In his work, Gabor used the interference pattern of two 

coherent sources at the recording process: the scattered field by an object and a reference field, as 

shown in Figure I-7. It can be shown that the amplitude of the resulting interference pattern is 

modulated by both the phase and amplitude of the field scattered by the object [3, 70]. The 

interference pattern is then recorded at a medium sensitive to the field intensity. Therefore, when 

a coherent source, with the same wavelength and at the same incidence angle as the reference 

wave used to record the hologram, impinges at the recorded media, the scattered field will 

reconstruct the original object field pattern creating an image of it. Furthermore, spurious 

scattering will also be generated: a zero order that is the portion of wave passing the recorded 

media directly and a twin image that will create a virtual image of the original object. In practice, 

this procedure needs an optical setup with high precision to make sure that all elements are 

aligned.  

Gabor’s work did not receive too much attention during the first decade after its publication 

due to practical reasons that even hindered the experimental realization of the technique at that 

time. Nevertheless, the theory received improvements after Gabor’s initial work by other 

researchers [70]. In 1960s, several scientists mainly at the Soviet Union and University of 

Michigan’s Radar Laboratory applied the emerging technology of lasers to holography, providing 

a huge development in the method. For instance, Leith and Upatnieks improved the recording 

technique to remove the twin images superposition that is present in the Gabor Hologram [71].  

 

 
Figure I-7 – Pictorial representation of the recording of a classical hologram. The scattered and reference wavefronts are 

coherent and interfere at the recording media that is sensible to the field intensity [3].   
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With the advent and ongoing improvement of digital computers, several algorithms were 

developed for generating holograms digitally. The resulting computer-generated holograms 

(CGHs) are matrices storing the field phase and amplitude as its classical counterpart. The main 

difference between them is that it is much easier to generate a CGH than a classical hologram 

because the former does not need any optical setup for its generation, but only a computer, 

whereas the latter requires a precise setup. The diffraction of the field can be calculated, under 

some approximations – as described in appendix D.1 Diffraction in Fourier Optics - 

Mathematical Background –  by Fourier Transforming the phase/amplitude spatial distribution 

imparted by the recording media. Reversely, the field distribution in the hologram plane can be 

obtained, under the same approximations, by inverse Fourier Transforming the original field 

distribution. These operations can be easily performed numerically with the fast Fourier 

Transform (FFT) algorithm, that is a highly optimized algorithm.  

 Different from classical holograms where a real scattered field from a physical object is 

needed to be recorded, in a CGH any digital image or three-dimensional scenario can be, in 

principle, recorded. Therefore, one can make a hologram from any field distribution in theory 

which may widen the applicability of holography. Another important difference in comparison 

with classical holography is that a CGH is stored numerically in a computer memory rather than 

in a physical medium. Therefore, in order to reconstruct a CGH, it is necessary to encode it in an 

array of diffractive optical elements (DOEs). There are several well-developed techniques for 

fabricating the CGHs such as pen plotters, laser printers, photolithography, electron-beam 

lithography, focused ion beam milling and nanoimprinting, to mention a few.  

Unfortunately, it is challenging to achieve full locally control the phase and amplitude of the 

light with DOEs. Therefore, the phase and/or the amplitude of the hologram must be quantized in 

a suitable way that does not spoil the information being encoded. Usually, the quality of the 

encoded CGH is quantified in terms of its reconstruction signal-to-noise ratio (SNR) and 

diffraction efficiency (DE). Several algorithms were developed to maximize those values such as 

Detour Phase Hologram, Direct Binary Search and the Iterative Fourier Transform Algorithm 

(IFTA). 

 In this work I adopted the Iterative Fourier Transform Algorithm (IFTA) [72-75], because 

it outperforms both the Detour Phase Hologram and the Direct Binary Search in terms of 

calculation time and efficiency [75]. A detailed explanation of the IFTA is presented in section 

D.3 Iterative Fourier Transform Algorithm (IFTA)  of the appendix, which was extracted and 

adopted from Neto [75]. The main goal of this thesis is to explore CGHs encoded on metasurfaces 

and study their performances, main properties and limitations. Both plasmonic and dielectric 

metasurfaces were considered but, due their far better performances on transmission mode, the 

thesis focuses on the latter.    
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I.4. Text organization 

This thesis is organized as follows. Chapter II presents the physics and design concepts 

behind metasurfaces in general, and of c-Si based metasurfaces in particular. In section II.1 an 

overview of metasurfaces is presented where the main physical mechanisms employed in their 

design are presented. Section II.2 presents an example of a metasurface design. In sections III.1 

and III.2 the design, fabrication and experimental characterization of c-Si based holographic 

metasurfaces are shown. Section III.3 presents some concluding remarks and future works. 

Chapter IV presents the design, fabrication and characterization of metalenses with wide field of 

view. 

Chapter V shows how nanostructures can impact the performance of a promising new class 

of solar cells, the tandem solar cells employing perovskites and silicon. The chapter closes with 

some concluding remarks and future works. 

It should be noted that a plasmonic holographic metasurface design based on aluminium 

nanoantennas is described in Appendix A. Appendix B contains additional information regarding 

the metasurface design. Appendix C contains additional information regarding the metalens 

design. The Appendix D presents the theoretical and numerical foundations of digital holography. 
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II. Light control with metasurfaces 

II.1. Introduction 

Metasurfaces are planar subwavelength structures that allow local control of phase, 

amplitude and/or polarization of light [34-38]. Its functionality relies on the Huygens principle, 

which states that every point of the wavefront can be regarded as a secondary spherical source 

and the sum of all these sources build the wavefront at a later instant. In this sense, each element 

of a metasurface can be regarded as an engineered secondary source generator. Therefore, with a 

judicious arrangement of these structures, a phase, amplitude and/or polarization profile can be 

imprinted on the transmitted or reflected light [39]. Figure II-1 illustrates the basics of a 

metasurface. The yellow cylinders represent the metasurface building blocks that are excited by 

the red wavefront from below. After transmission, the wavefronts are all distorted because the 

metasurface imprinted a phase and/or amplitude distribution on the transmitted light. Note that a 

metasurface can also work on reflection.  With this principle a metasurface can be used to encode 

holograms, metalenses, waveplates and beam shapers, to mention only a few.  

 

 
Figure II-1 – Pictorial representation of the operation of a metasurface composed by yellow cyllinders. The structure is excited 
from below in this example and the transmitted light acquires phase and amplitude signatures imparted by the metasurface.  

The design of a metasurface starts by first determining how and which properties of light 

(phase, amplitude and/or polarization) will be manipulated after transmission and/or reflection in 

a desired wavelength. The next step is to choose what physical mechanism will rule the property 

manipulation and which material is more suitable for that in the chosen wavelength. To this intent, 

the most common approaches are resonant tuning, Pancharatnam-Berry (PB) phase and hybrid 

Resonant Tuning with PB phase [36].  

The first method is based on tunning a local resonance of the inclusion by changing its size, 

as illustrated in Figure II-2, where the radius of an arbitrary shaped resonator is changed.  Note 

that the scattering of a nanostructure is strongly enhanced when it is in the resonance, which is 

also accompanied by an enhancement of its absorption if the material is lossy [76]. Thus, with 
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small geometrical adjustments, the inclusion may go from a non-resonant to a resonant condition 

that can radically change the phase and/or amplitude of the scattered light, as represented in Figure 

II-2. Thus, local control of light may be achieved by shaping the nanostructure in a controlled 

way. In this approach, there is no polarization conversion between the incident and scattered light 

and the structure can even present form-birefringence [52, 77]. This last feature can be achieved 

by resorting to asymmetrical structures that present non-degenerate modes excited with light 

polarized along two orthogonal axes.  

 
Figure II-2 – Representation of the resonant tuning mechanism by changing the size of the structure. The field distributions 
are only representations and not the actual scattering distributions by these structures. Each field distribution is the scattering 
of different structures plane wave excitation coming either from below or above. The resonant structure presents the higher 
scattered field. Furthermore, note that the phase shift of the radiated light by different structures is different (use the dotted 
line as reference). 

 The PB phase, also called geometric phase, is a way to obtain a local phase shift on 

transmitted or reflected light by rotating the scatterer [78, 79], as represented in Figure II-3. When 

a circularly polarized light is incident on a nanostructure, it will transmit light not only with the 

same polarization of the incident light but also with the other handedness (cross-polarized term). 

If the structure is rotated about its centre by an angle θ, the transmitted cross-polarized term will 

acquire a phase shift of 2θ  [78, 79]. Thus, full phase-control in the range [0-2π] can be achieved 

by simply rotating the structure in the range [0-π]. On the contrary, if the reflected light is 

analysed, it is the co-polarized reflected term that acquires a phase shift of 2θ. Figure II-3 

illustrates the cross-polarized scattered field by a rod-like structure excited with circular 

polarization. In this example, each structure is [counter] clockwise rotated 22.5 degrees with 

respect to its [left] right neighbour, thus, the phase difference between them is [-] +45 degrees. 

Although the phase control does not depend on any resonance that the structure may present, the 

scattering cross section does. Therefore, the design of structures aims to maximize the scattered 

cross(co)-polarization if transmissive (reflective) metasurfaces are of interest and resonant 

behaviour is usually required. In other words, these structures should behave as half-wave plates 

(in reflection, a half-wave plate keeps the circular polarization the same). 
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Figure II-3 – Representation of the scattered field by structures operating under the Pancharatnam-Berry phase (these are 
not the actual field scattered by the represented structures). It is assumed that the exciting field is polarized circularly (can 
income either from above or below) and the shown distributions are circularly polarized in the other handedness. Note that, 
in this example, each structure is [counter] clockwise rotated 22.5 degrees with respect to its [left] right neighbor, thus, the 
phase difference between them is [-] +45 degrees. Based on [80]. 

Finally, with the hybrid method (that explores both resonant tuning and PB phase) it is 

possible to design structures that present the phase shift flexibility allowed by the geometric phase 

and also amplitude and polarization control [68, 81]. This method can operate not only with 

circular polarization but also with any orthogonal pair of polarization states [68].  

All these mechanisms have been successfully demonstrated with all-dielectric structures 

[36]. Furthermore, when shaped with low aspect-ratio, high-index dielectric structures may 

present localized electric and magnetic dipolar Mie resonances (see Figure II-4) with similar 

resonant wavelengths and comparable scattering cross-sections [76]. When these resonances 

overlap spectrally and have similar strengths, several interesting physical phenomena arise. For 

instance, they support the Kerker effect (named after Milton Kerker for theoretically predicting it 

[82]) in which the overall backward scattering is suppressed due to the interference between the 

partial scattering of the electric and magnetic dipole modes [48, 83]. Additionally, it was 

discovered that this condition also allows the full phase control [0-2π] of the scattered light acting 

as Huygen’s sources [49]. Metasurfaces that rely on this mechanism are named Huygens’ 

metasurfaces. 

 
Figure II-4 -Representation of the electric and magnetic dipole Mie resonances excited by a plane wave that is being 
represented by the 𝒌𝒌��⃑  (wavevector), 𝑬𝑬��⃑  (electric field) and 𝑯𝑯���⃑  (magnetic field) triad. Note that the electric (magnetic) field 
circulates inside the structure at the magnetic (electric) resonance. This figure was adapted from [83]. 
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Increasing the aspect ratio of high contrast dielectric structures enhances the scattering 

contributions of high order multipole modes [47], thus making the multipole description of their 

scattering properties cumbersome and non-intuitive. These structures, however have been studied 

using High Contrast Gratings (HCGs), which are periodic by nature, long before the development 

of the metasurface concept [67]. Several applications have been successfully demonstrated with 

HCGs in the past such as high reflecting mirrors for vertical-cavity surface-emitting lasers 

(VCSELs)[84], high-Q resonator [85] and lenses [86], to mention only a few.   Although periodic 

structures are fully described by the Bloch’s theorem and are non-local by nature, the high contrast 

index of HCG gives rise to local resonances with high mode confinement inside the high index 

region [52, 56, 86]. These modes can be treated as Fabry-Perot resonances of each array element, 

which is acting as a truncated waveguide [52]. Thus, due to the high modal localization, the optical 

response of these structures can be obtained by treating them as HCG, as will be shown in the 

next section. More details about the modes confinement in HCG structures are shown in Appendix 

B – Field confinement in dielectric nanoposts. 
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II.2. Design of a metasurface 

The design procedure is applied to the case of beam steering metasurfaces, which can bend 

light by an arbitrary angle θ with respect to the normal incidence (this could also be done in 

reflection). This example lies in the core of metasurfaces as it was the catalyst for the development 

of the concept [80]. How should a metasurface operate on light to create this effect? This was 

answered with the aid of Fermat’s principle that states that light follows the optical path that is at 

an extremum under variational changes between two points (let’s call these points A and B) [6] 

 𝛿𝛿 � 𝑛𝑛(𝑥⃗𝑥)𝑑𝑑𝑑𝑑
𝐵𝐵

𝐴𝐴
= 0   

 

( II-1 ) 

where n(𝑥⃗𝑥)  is the refractive index along the path. Equation ( II-1 ) is valid for light propagating 

without discontinuities. What if there is an open surface S between A and B that imposes a phase 

discontinuity Φ(𝑥⃗𝑥), 𝑥⃗𝑥 ∈ 𝑆𝑆 in the path, such as a metasurface? In this case, Equation ( II-1 ) should 

be rewritten as [80] 

𝛿𝛿 �Φ(𝑥⃗𝑥) + � 𝑛𝑛(𝑥⃗𝑥)𝑑𝑑𝑑𝑑
𝐵𝐵

𝐴𝐴
� = 0   

 

( II-2 ) 

 

It will be further assumed that S is a plane, the light travels normally from point A to the 

discontinuity and that the two media separated by S are homogeneous with refractive indexes na 

and nb  where points A and B stand, respectively. Working under these assumptions, one arrives 

at [80] 

   
𝑑𝑑Φ
𝑑𝑑𝑑𝑑

= 𝑛𝑛𝑏𝑏𝑘𝑘0 sin𝜃𝜃 
( II-3 ) 

where 𝑘𝑘0 = 2𝜋𝜋
𝜆𝜆0

 is the freespace wavenumber and 𝜆𝜆0 the operating wavelength. Equation ( II-3 ) 

is the normal incidence case of the generalized law of refraction [80]. The importance of Equation 

( II-3 ) should not be underestimated.  Equation ( II-3 ) can be used to analyse the behaviour of a 

generic metasurface where the steering angle is not constant. Note that the right part is essentially 

the local in-plane momentum acquired by the transmitted beam. In other words, Equation ( II-3 ) 

tells what is the local spatial frequency [3] of the transmitted beam. For instance, a hyperbolic  

metalens with focal length f needs 𝜃𝜃(𝑥𝑥) = − asin 𝑥𝑥
�𝑥𝑥2+𝑓𝑓2

  [87]. Inserting this equation in equation 

( II-3 ), the Hyperbolic phase profile is readily obtained [87] 

  𝜙𝜙(𝑥𝑥) = −𝑛𝑛𝑏𝑏𝑘𝑘0�𝑥𝑥2 + 𝑓𝑓2 ( II-4 ) 

The same rule applies to other devices that operate under similar conditions such as axicons and 

holograms. Turning our attention back to the simple case of constant 𝜃𝜃, it follows from equation 

( II-3 ) 
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Φ(𝑥𝑥) = 𝑥𝑥𝑛𝑛𝑏𝑏𝑘𝑘0 sin𝜃𝜃 ( II-5 ) 

Note that the integration constant was neglected because a constant phase value does not alter the 

anomalous angle of refraction given by equation ( II-3 ).  Therefore, a metasurface needs to 

impose this linear phase distribution on the reflected or transmitted light to simply steer the 

incoming beam, as represented in Figure II-3.   

Suppose that a given design has pixels with unit cell size P and can provide a full range phase 

shift with N different structures. That is, there are N different phase levels available whose 

discretization is ΔΦ = 2𝜋𝜋
𝑁𝑁

. Therefore,  

𝑑𝑑Φ
𝑑𝑑𝑑𝑑

≅
ΔΦ
𝑃𝑃

=
2𝜋𝜋
𝑁𝑁𝑁𝑁

 
( II-6 ) 

Substituting ( II-3 )  in ( II-6 ), the following restriction is imposed  

𝑛𝑛𝑏𝑏𝑘𝑘0 sin𝜃𝜃 =
2𝜋𝜋
𝑁𝑁𝑁𝑁

 
( II-7 ) 

Interestingly, equation ( II-7 ) is exactly the grating equation for the first diffraction order for a 

grating with periodicity NP, under normal incidence and towards a medium with refractive index 

𝑛𝑛𝑏𝑏. Furthermore, equation ( II-7 ) imposes a trade-off between the desired steering angle, the 

number of phase samplings and the metasurface unit cell size.  

Equations ( II-6 ) and ( II-7 ) give the necessary information about the phase distribution that 

the proposed metasurface should impart. From equation ( II-6 ), we can conclude that the 

metasurface should impart a linear phase distribution on the metasurface. That is, two adjacent 

elements should have absolute phase difference of 2π/NP. Furthermore, from equation ( II-7 ) we 

can obtain the required NP value for this design.  

In this work, the phase shift imparted on the transmitted light is the parameter of interest. 

Furthermore, the mechanism chosen to drive this control is the resonant tuning of dielectric 

nanoposts. Therefore, phase and transmission maps as functions of the geometrical parameters of 

the structures need to be obtained. The phase map is obtained by calculating the transmission of 

a normal plane wave incident on an infinite array of nanoposts with the rigorous coupled-wave 

analysis (RCWA) [88]. This semi-analytical method relies on Bloch’s theorem, which, in short, 

states that the eigenfunctions of a periodic system, in this case a photonic one, are given by a 

plane wave modulated by a periodic function with the same periodicity of the system [9]. Thus, 

RCWA already assumes that the system is periodic. Furthermore, the silicon high index 

guarantees that the field is highly confined inside the structure, thus making the coupling between 

adjacent structures small [52]. Therefore, the phase and transmission changes as function of the 

geometrical parameters of each structure in the array are similar to the changes for the same 

parametrization on an isolated structure. This is necessary because the holographic metasurface 

assumes that the response of each pixel is local in the sense that it is not coupled to adjacent 

pixels.  
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The advantage of using an infinite array is because Bloch’s theorem greatly facilitates the 

numerical modelling. However, the numerical simulation of the electromagnetic response of an 

isolated structure under the excitation of a plane wave requires the computational domain to be 

extended beyond its unit cell, so evanescent fields excited by the structure do not touch the 

boundaries of the domain, and therefore tends to have higher computational cost. Normally, these 

simulations are carried out with finite elements method (FEM) or finite-difference time-domain 

method (FDTD) and require a perfect match layer (PML) surrounding the computational domain 

to absorb the scattered light and simulate an infinite region. 

 Continuing our example, the structure represented in Figure II-5 (a) will be used to achieve 

the desired phase control. It consists of a dielectric ridge made of silicon on a silicon substrate. 

Note that the actual calculations are carried with the array depicted in Figure II-5 (b) in RCWA, 

as explained above. The operating wavelength was chosen to be 900 nm and the silicon index is 

nSi=3.74. The incidence is normal from above with TM polarization (electric field along 𝑥𝑥�, see 

Figure II-5 (a)). 

The phase and efficiency of the transmitted zero-order by the grating into the substrate was 

evaluated as function of the grating period (p) and fill factor (ff). The fill factor is defined as the 

ratio between the ridge width to unit cell size (ff=w/p). The unit cell size is swept in the range [50 

nm,225 nm] and the fill factor from 0 to 1. 

Three height values were chosen: 200 nm, 300 nm and 400 nm. Figure II-5 contains the zero-

order transmission and relative phase for the chosen height values as functions of grating period 

and fill factor.  The first column (Figures II-5 (c), (e) and (g)) has the amplitude of the transmitted 

zero order by the grating whereas the second (Figures II-5 (d), (f) and (h)) has the corresponding 

relative phase as functions of the grating period and fill factor. The first (Figures II-5 (c) and (d)), 

second (Figures II-5 (e) and (f)) and third (Figures IIII.2-5 (g) and (h)) lines show the results for 

grating height (h) equals 200 nm, 300 nm and 400 nm, respectively. The relative phase maps were 

normalized by a factor of 2π. Note that we seek to choose a unit cell size for which it is possible 

to phase shift light in the full range [0-2π] by changing the fill factor of the structures.  

The structure that is 200 nm tall cannot make this control as Figure II-5 (d) shows. The 

maximum and minimum values of normalized phase shift are of approximately 0.3 and -0.25, 

respectively, giving a difference slightly bigger than π rad, a half than what is required. For a 

grating height of 300 nm the relative phase map almost covers the necessary phase range with a 

maximum phase difference of about 1.72π rad, as shown in Figure II-5 (f). Finally, for a grating 

400 nm tall, full phase difference coverage is possible with high transmission, as shown in Figure 

II-5 (g) and (h). Thus, this is the chosen design to build our metasurface. 
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Figure II-5 - Results from the first silicon high contrast grating design. The chosen structure is depicted in (a) and the simulated 
structure in (b). The fill factor (ff) is defined as the ratio w/p.  The first column (figures c, e and g) shows the amplitude of the 
transmitted zero order by the grating whereas the second (figures d, f and h) shows the corresponding relative phase as 
function of the grating period and fill factor. The relative phase maps in radian were normalized by a factor of 2π. The first, 
second and third rows have the results for grating height (h) equals 200 nm, 300 nm and 400 nm, respectively. The operating 
wavelength is 900nm at normal incidence for TM polarization (electric field polarized along x). The superstrate is air and the 
substrate silicon. It was used nSi=3.62 for the refractive index of silicon. 

Now suppose that we want to bend the transmitted light by an angle of 17.85°, using four 

elements. Thus, according to equation ( II-7 ), the required unit cell size is 200 nm.  Table II-1 

lists the obtained structures in terms of its widths and their relative phase and transmission, 

obtained from the maps shown in Figures II-5  (g) and (h).  
Table II-1 - Relative phase and transmission of high contrast gratings made of silicon (400 nm of height) with different values 
of fill factor and unit cell size of 200 nm. The wavelength is 900 nm with light coming from air to the substrate, made of silicon. 

Element  w [nm] Relative phase [rad/2π] Transmission 
#1 34 0.25 0.67 
#2 100 0.5 0.96 
#3 128 0.75 0.74 
#4 160 1 0.88 
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Assembling the elements in Table II-1 in a supercell, results in a metasurface with positive 

phase gradient (note that the relative phase increases with the increasing in the element number). 

Figure II-6 (a) shows the assembled   metasurface, the dotted line highlights one supercell. The 

diffraction efficiency of the metasurface was calculated with RCWA again. Figure II-6 (b) shows 

the resulting transmission diffraction efficiencies spectra of the -1,0 and +1 orders by the 

metasurface. Light is normally incident from air with TM polarization and there is nothing below 

the metasurface besides the substrate of silicon. As desired, most of the light is diffracted to the 

+1 order of the supercell, which, as we saw from equation ( II-7 ) is equivalent to the target angle 

for anomalous refraction. Therefore, the proposed design is capable of phase shifting the light 

locally, even though the simulations were carried out using an infinite array of structures. 

Furthermore, this design could be applied to impart any phase profile along one direction and 

with the required phase levels. Nevertheless, it should be noted that a trade-off between number 

of phase levels and fabrication challenge must be considered. The more phase levels are required, 

the smaller is the minimum fill factor (ridge size) difference between the structures. Thus, a 

limitation is imposed by the resolution of the fabrication method used to create the metasurface.  

 
Figure II-6 - (a) Pictorial representation of the silicon metasurface supercell made of high contrast gratings. The fill factor of 
each numbered element is shown in Table II-1  (b) Metasurface transmission diffraction efficiency of the +1, 0 and -1 orders 
as function of the wavelength. Light is incident from air and below the metasurface is the silicon substrate. 
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III. Holographic metasurfaces 

III.1. Highly efficient holograms based on c-Si 

metasurfaces in the visible range 

Adapted with permissions from  

Augusto Martins, et.al , "Highly efficient holograms based on c-Si metasurfaces in the visible 

range," Opt. Express 26, 9573-9583 (2018) [77] © The Optical Society 

 and 

 A. Martins, et. al, "Crystalline Silicon (c-Si) Metasurface Holograms in the Visible Range," 

in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, 

pcAOP), OSA Technical Digest (Optical Society of America, 2018), paper DTh2E.5: [89] © The 

Optical Society.  

A copy of the permission can be found in appendix E.1. 

 

III.1.1. Introduction 

This chapter describes the design and implementation of a dielectric metasurface for 

holographic applications. In 2017, we started a collaboration with Prof. Dr. Juntao Li of the State 

Key Laboratory of Optoelectronic Materials & Technologies from Sun-Yat Sen university at 

China. At the beginning of 2017, the group of Prof. Dr. Li demonstrated a c-Si based metasurface 

with a low aspect ratio of 2.7, reaching efficiencies of 71% in transmission at 532 nm [53]. This 

result is of relevant scientific impact because c-Si stands out as arguably possessing the best 

combination of properties for dielectric metasurfaces: low losses with high refractive index at the 

visible range. It should be noted that, the higher is the refractive index, the smaller is the effective 

wavelength inside a given structure, thus resulting in a higher field confinement and smaller 

structures (see section B.1 Bloch modes on the Appendix for more details). For instance, TiO2 

based structures, which presents a smaller refractive index than c-Si, require aspect ratios larger 

than 10 [62], which are difficult to fabricate. Furthermore, most of the published works on silicon 

based metasurfaces relied either on its amorphous (a-Si) [63] or on its polycrystalline (p-Si) [52] 

varieties, which is disadvantageous since both present high losses in the visible spectrum [61]. 

Therefore, it was decided to exploit c-Si based holographic metasurfaces in collaboration 

with Prof. Dr. Juntao Li’s group. In the collaboration, I designed the metasurfaces and sent the 

design to Prof. Li’s group for fabrication. Both the numerical and experimental characterizations 

were performed by the author. Two designs have been proposed: cylindrical and elliptical ones. 
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Both have been successfully proved to be a suitable platform for highly efficient holograms 

operating in the visible range. 

III.1.2. Metasurface design 

The metasurfaces were designed using cylindrical c-Si nanopost as the individual resonators, 

as shown in Figure III-1 (a). Also shown in this figure is a representation of the two substrates 

used: quartz and sapphire. In the first design, the cylinders were patterned on a 220 nm thick layer 

of c-Si and are over a 1 μm thick silica layer that is bonded to the quartz substrate by an also 1 

μm thick NOA61 adhesive. The additional silica and adhesive layers are residual from the 

fabrication process, which is based on the layer-transfer technique (see section III.1.6.a.1 

Fabrication methods – Quartz or [53] for details). The second design, with sapphire substrate is 

represented in Figure III-1 (d), was fabricated on a commercially available 230 nm thick c-Si 

(100), epitaxially grown on a sapphire substrate from UniversityWafer (see section III.1.7.a.1 

Fabrication method – Sapphire details).  

 
Figure III-1 – (a) and (d) show, respectively, the unit cell of the cylindrical c-Si structures over quartz and sapphire substrates. 

(b) and (c) [(e) and (f)] show the zero order transmission and relative phase divided by 2π, respectively, of the design over 

quartz [sapphire] substrate as functions of the unit cell size and the nanopost diameter to unit cell size ratio, D/a. The dashed 

blue [red] lines in (b) and (e) mark the regions where the diameter is equal to 105 nm [105 nm] and 158 nm [160 nm], 

respectively.  The dashed white lines mark the regions with 𝒂𝒂 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝐧𝐧𝐧𝐧, used for both designs. The diffraction efficiencies 

and relative phase shift along the dashed lines are shown in Figure III-2. The operating wavelength is 532 nm. 
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The operating wavelength was chosen to be 532 nm for all cases. In order to assess the 

metasurface sensitivity to wavelength variations, after the design was optimized for the 

wavelength of 532 nm, additional simulations were performed at 444.9 nm and 633 nm. The 

complex refractive indexes of c-Si at 444.9 nm, 532 nm, and 635 nm are, respectively, n = 3.875 

+ j0.0158, n = 4.141 + j0.032 and n = 4.733 + j0.099 [90], with the index of the remaining 

materials assumed constant (quartz n = 1.45, silica n = 1.45, adhesive n = 1.56 and sapphire n = 

1.77). 

The resulting zero order transmission efficiency and phase shift maps as a function of the 

cylinder D diameter to unit cell size a ratio, D/a, and of the nanopost diameter, D, are shown in 

Figures III-1 (b) and (c) for the structures on the quartz substrate. Figures III-1 (e) and (f) show 

the same parameters, but for the structures on sapphire substrate. From the phase maps of both 

structures (Figures III-1 (c) and (f)), by varying the diameter of the nanoposts, full-phase control 

[0-2π] is attained for all a in the range analysed. Nevertheless, the transmission maps (Figures III-

III.1-1 (b) and (e)) present a valley that gets more accentuated for periods higher than ~200 nm. 

Therefore, it was decided to use a = 190 nm (marked with a dashed white line in Figures III-1 

(b), (c), (d) and (f)). Apart from the high transmission, another important aspect taken into account 

for the choice of a = 190 nm was the resulting low aspect ratios. 

The valleys on both designs are due to the Fabry-Perot resonance in the post for those 

particular structures. Interestingly, the first resonance occurs for fixed diameters of 105 nm (blue 

dashed lines on Figures III-1 (b) and (e)) for periods larger than 170 nm, approximately. The 

second resonance, which is marked with red dashed lines on Figures III-1 (b) and (e), occur for 

diameters of 150 nm (nanopost over quartz) and 160 nm (nanopost over sapphire), respectively. 

In other words, this resonance depends mainly on the nanopost geometry and material and not 

much on the array. This conclusion is corroborated by the field profile of the Bloch modes 

supported by this structure. Since the posts have high index, the field tends to be more 

concentrated inside the posts, thus minimizing the interaction between adjacent structures. As the 

period is reduced, the overlap of the evanescent field outside adjacent nanoposts increases, which 

also increases the coupling among posts and affects the resonances.  A detailed analysis of this 

design in terms of Bloch modes is found in Appendix B, section B.1 Bloch modes and the field 

distributions of the resonant nanoposts for unit cell sizes of 190 nm and 220 nm are shown in 

Appendix B, section B.2 Nanoposts resonances. At the resonance, light bounces back and forth 

inside the structures, which enhances the phase accumulation and the field inside the nanopost. 

The increased field inside the structures also increases their absorption losses, which can be seen 

by the minima in Figures III-1 (b) and (e). 

Finally, in Figures III-2 (b) and (e), it is shown the transmitted zero order phase and 

efficiency of the designs with posts over quartz and sapphire substrates, respectively, and a = 190 

nm as function of D/a at 532 nm. Additionally, Figure III-2 shows the absorption and reflection 
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efficiencies as function of the diameter. It is known that, the more phase levels are used, the better 

are the CGH reconstruction signal to noise ratio and diffraction efficiency (see appendix D.3.1 

Example: Fourier hologram calculation). Note, however, how that the phase curve is highly 

slanted for diameter values in the range [80 nm,120 nm] (see Figures III-2 (b) and (e) ). Therefore, 

the more phase levels are used, the smaller is the diameter differences between different structures 

in this range. This imposes a trade-off between CGH quality and fabrication feasibility. We found 

that a good trade-off between quality and fabrication constrains can be reached with eight phase 

levels (see appendix D.3.1 Example: Fourier hologram calculation). The corresponding selected 

phases and transmission values are marked with dots in Figure III-2. 

 
Figure III-2 – Zero order transmission efficiency (solid black) and phase (solid coloured), reflection efficiency (dashed) and 

absorption (dotted) of the metasurface designs over a quartz (upper row) and sapphire (bottom row) substrates as function of 

the diameter of the nanopost with unit cell size a = 190 nm. The results are shown for operating wavelengths of 633 nm, 532 

nm and 444.9 nm at the first, second and third columns. 

To assess the bandwidth of the holograms, Figure III-2 also shows the same results operating 

at 633 nm (Figures III-2 (a) and (d)) and at 444.9 nm (Figures III-2 (c) and (f)). Clearly, at these 

wavelengths, the phase control is reduced. Nevertheless, the transmissions are still quite high, 

reaching 0.79 at 449.9 nm and 0.98 at 633 nm for the chosen structures. Additionally, note that 

all curves present only one Fabry-Pérot resonance that is shifted toward smaller diameters as the 

wavelength is reduced. As shown in section B.2 Nanoposts resonances of the appendix, this 

resonance is characterized by an enhancement of the field inside the structure that leads to an 

increasement in the absorption because silicon is lossy. Additionally, this resonance is marked by 

a strong phase shift at the transmitted light. These features can be seen by the valleys of the 

transmission functions (maximum of absorptions) at 130 nm (Figures III-2 (a) and (d)), 100 nm 

(Figures III-2 (b) and (e)) and at 70 nm (Figures III-2 (c) and (f)). Note how the absorption peak 

increases at the resonance as the wavelength reduces since the imaginary part of c-Si increases as 
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well. The transmission minimum for diameters bigger than 100 nm  and operating at 449 nm is 

only due to the increased fill factor of  c-Si, whose absorption is much larger at this wavelength. 

III.1.3. Hologram designs 

The holograms were calculated with the iterative Fourier Transform algorithm (IFTA), 

described in appendix D.3 Iterative Fourier Transform Algorithm (IFTA). Two CGHs with eight 

phase-levels, number of pixels 512×512 and 1024×1024 pixels, were calculated using target 

images shown in Figures IIIIII.1-3 (a) and (b), respectively. These images have resolutions of, 

respectively, 123×159 and 257×213 pixels. The image window (that is, the region of the 

reconstruction plane where the image is placed and is defined at Figure  D.2 (b) in appendix D.3) 

of the CGH relative to Figure III-3 (a) was centralized with the reconstruction plane, whereas the 

image window relative to Figure III-3 (b) was vertically displaced by 190 pixels to separate the 

image from the spurious zero order that appears in the reconstruction of the metasurface 

hologram.  

 

 
Figure III-3 – (a) and (b) show the target images of the first and second holograms, respectively. (c)-(f) show the metasurfaces 

assembly composed with arrays of the calculated CGHs. Each square corresponds to a CGH. In (c) and (d) they represent the 

first hologram, with 512×512 pixels, recorded on a c-Si metasurface and with each pixel represented by a single nanopost cell 

with dimension of 190 nm × 190 nm. The squares at (e) also represent the first CGH but encoded in a c-Si metasurface where 

each pixel is represented by an array of 2×2 nanopost cells with a total dimension of 380 nm × 380 nm. Finally, in (f) each 

square represents the second CGH, with 1024×1024 pixels, recorded on a c-Si metasurface where each pixel is a single nanopost 

cell with dimensions of 190 nm × 190 nm. Therefore, metasurfaces 1B, 1C and 2 all have dimensions of 389.12 μm × 389.12 μm 

whereas 1A has dimensions of 194.56 μm × 194.56 μm. 

 

It should be noted that the first metasurface that was fabricated encoded the CGH related to 

Figure III-3 (a) and, during its experimental and numerical reconstructions, we noted a wide-angle 

aberration, as explained in appendix D.4 Rigorous Rayleigh Sommerfeld (RS) Diffraction. Thus, 

in the other CGH, a wide-angle correction was performed prior to its calculation to avoid this 

issue. This correction depends on several parameters related to the CGH design such as pixel size, 

operating wavelength, propagation distance and image window position in the reconstruction 

plane [91]. 
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The resulting reconstruction field distributions amplitudes obtained from the IFTA algorithm 

using the Fresnel diffraction approach of equation ( D.13 ) are shown in Figure III-4. Note how 

the reconstruction of the second hologram, shown in  Figure III-4 (b), looks distorted in 

comparison with its target image, shown in Figure III-3 (b). This is due to the wide-angle 

correction that was performed on it. Furthermore, because the Fresnel Diffraction does not suffer 

from wide angle aberration, its reconstruction does not compensate for it. 

 

 
Figure III-4 – (a) and (b)  field distribution amplitude at the reconstruction plane of the first and second CGS, respectively. 

Figures are not to scale. 

 

The resulting figures-of-merit of these CGHs are listed in Table III-1. The image efficiencies, 

that is, the amount of power that is cast inside the image window, are over 70% for both CGHs. 

Note that such high efficiencies are accompanied of elevated SNRs, whose base ten logarithms 

are over 34. 
Table III-1 – Obtained figures of merit, defined in Table  D-1 in the appendix, of the CGHs whose target images are shown in 
Figures III-3 (a) and (b). 

CGH Target Image Figure III-3 (a) Figure III-3 (b) 

Image Efficiency (%) 73.48 77.3 

log10(SNR) 34.04 35.55 

Mean Squared error 3.9e-4 2.78e-4 

 

Each hologram was encoded in a c-Si metasurface by correlating its phase distribution with 

a given nanopost diameter according to Figure III-2 (b). This procedure was made using four 

different approaches to analyse their performances in terms of efficiency and reconstruction 

quality and are shown in Figures III-3 (c)-(f). The first CGH, whose target image is shown in 

Figure III-3 (a), was encoded in metasurfaces 1A,1B and 1C. Metasurfaces 1A (Figure III-3 (c)) 

and 1B (Figure III-3 (d)) are made of arrays with, respectively, 2×2 and 4×4 CGHs and each pixel 

of the CGHs is represented by a single cell of size 190 nm × 190 nm with one nanopost. 1A was 

fabricated only over the quartz substrate and the remaining over both substrates. The metasurface 

1C (Figure III-3 (e)), in turn, is composed by an array of 2×2 CGHs and each pixel of the CGHs 

is composed of an array of 2×2 nanoposts having a size of 380 nm×380 nm. Finally, metasurface 

2 (Figure III-3 (f)), encodes an array of 2×2 CGHs whose target image is shown in Figure III-3 
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(b), where each pixel of the CGHs is represented by a single nanopost cell sizing 190 nm×190 

nm. Therefore, as the first and second CGH have 512×512 and 1024×1024 pixels each, 

metasurfaces 1B,1C and 2 have dimensions of 389.12 μm × 389.12 μm whereas 1A has 

dimensions of 194.56 μm × 194.56 μm. 

III.1.4. Numerical Characterization 

The numerical characterization of the holograms was made using the Rayleigh-Sommerfeld 

(RS) integration [3], with the reconstruction plane positioned 20 cm away from the hologram. 

The calculation details are explained in appendix D.4 Rigorous Rayleigh Sommerfeld (RS) 

Diffraction. Note that this method is computationally very slow as the involved field matrices 

have millions of pixels. Therefore, an optimization procedure based on some symmetries between 

the reconstruction and hologram planes was developed. The procedure is thoroughly described in 

appendix D.4.1 RS Integration. A performance comparison is provided in section D.4.1.f. 

Performance comparison. The reconstructions were performed for wavelengths of 444.9 nm, of 

532 nm and of 633 nm. Two approaches were used to perform the numerical reconstructions. In 

one, called “c-Si approximation”, the phase and amplitude values of each CGH pixel follow the 

values of the metasurface design according to Figure III-2. In the other approach, called “Ideal”, 

it is assumed that the transmission of each pixel is unitary, and the phase shift of each pixel follows 

the exact value from the CGH. The reconstructions were made only for designs using a quartz 

substrate, as their transmission and phase maps are very similar to those of the designs using a 

sapphire substrate. The transmission efficiency is defined as the ratio between the transmitted 

power by the hologram to the transmitted power with the metasurface removed [53], and the 

diffraction efficiency is defined as the ratio between the power in the image window to the power 

transmitted with the metasurface removed. The definition of the image efficiency is the same as 

the definition of the IFTA: the ratio between the power at the image window to the total power 

transmitted with the metasurface. The power calculations are described in Appendix D.4.2 Power 

calculation of the diffracted fields. The resulting numerical reconstructed fields will be shown 

side by side with the experimental ones in the next section. 

The calculated diffraction and transmission efficiencies of the analysed metasurfaces are 

listed in Table III-2. Note that the Ideal metasurfaces have transmission efficiencies of 100% for 

all wavelengths, but this is not listed in Table III-2. Therefore, the diffraction efficiency of the 

Ideal metasurface has the same result of the image efficiency used as a figure of merit to quantify 

the CGH performance in the IFTA. For the first CGH, used in metasurfaces 1A, 1B and 1C, the 

expected image efficiency from the IFTA was 73.48%, which is almost equal to the result 

obtained by RS integration operating at 444.9 nm and 532 nm, according to Table III-2. At the 

wavelength of 633 nm, the diffraction efficiencies were 68.3% and 66.4% with metasurfaces 1A 
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and 1B, respectively, which are still relatively high values. On the contrary, the c-Si metasurface 

has lower efficiencies because it considers the transmission and phase values of the design into 

the CGH. The main effect of the transmission modulation in the pixels is the reduction of the 

overall transmission, which had marginal variations between different metasurfaces, remaining 

near 53%, 72% and 85% for the wavelengths of 444.9 nm, 532 nm and 633 nm, respectively. 

These results manifest directly the fact that c-Si losses are larger for smaller wavelengths [92]. 

But that does not mean that the operation of the metasurface was enhanced at 633 nm. In fact, this 

behaviour does not appear in the diffraction efficiency, which reaches 16.2%, 52.2% and 39.8% 

when operating at 444.9 nm, 532 nm and 633 nm respectively. This result is a consequence of the 

phase shift imparted by the nanoposts, optimized to operate at 532 nm. At the other wavelengths, 

the resulting phase control is worsened, as can be seen in Figure III-2, with the worst control at 

444.9 nm. The poorer phase modulation deteriorates the CGH phase distribution at the 

metasurface, which results in more energy being casted as noise, zero order and the symmetric 

Hermitian copy of the image, which are not considered in the diffraction and image efficiencies. 

Furthermore, the reduced diffraction efficiency of the metasurface operating at 532 nm is only 

affected by the fact that the pixels are faded due to the transmission curve of the c-Si nanoposts. 

In fact, the image efficiency, that is, the ratio between energy in the image window to total energy 

transmitted by the device, of the c-Si metasurfaces at this wavelength is almost equal to the image 

efficiency of the ideal one, reaching 72.5% for metasurface 1C. In contrast, the image efficiencies 

of the metasurfaces at 633 nm [444.9 nm] range from 25% to 46.7% [9.76% to 16.2%], evidencing 

once again the manifestation of the poorer phase modulation of the metasurfaces at these 

wavelengths.  
Table III-2 – Numerical transmission, diffraction and image efficiencies of the designed metasurfaces operating at 444.9 nm, 

532 nm and 633 nm. The ideal metasurfaces have transmission efficiencies of 100%. 

 Ideal c-Si Approximation 

 Difraction | Image Transmission Diffraction Image 

𝜆𝜆0 (nm) 444.9 532 633 444.9 532 633 444.9 532 633 444.9 532 633 

1A 71.8 70.2 68.3 53.1 72.0 85.1 14.5 50.5 32.4 27.3 70.1 38.0 

1B 71.1 70.2 66.4 53.1 72.0 85.1 13.6 50.5 31.6 25.6 70.1 37.1 

1C 72.6 72.9 71.9 53.1 72.0 85.1 16.2 52.2 39.8 30.5 72.5 46.7 

2 77.2 70.9 68.0 53.0 72.0 85.0 9.76 50.8 21.3 18.4 70.5 25.0 

 

Finally, in order to quantify the hologram fidelity, we calculated the signal-to-noise ratio 

(SNR) of the proposed metasurfaces. This quantity is defined as [75] 

𝑆𝑆𝑆𝑆𝑆𝑆 = 10 𝑙𝑙𝑙𝑙𝑙𝑙10 �
∑ |𝑀𝑀|2𝛺𝛺

∑ (|𝐼𝐼| − |𝑀𝑀|)2𝛺𝛺
� 𝑑𝑑𝑑𝑑 = 10 𝑙𝑙𝑙𝑙𝑙𝑙10 �

1
∑ (|𝐼𝐼| − |𝑀𝑀|)2𝛺𝛺

�  𝑑𝑑𝑑𝑑 

 

(  III-1 ) 

 where Ω is the image window, and I and M are the normalized field distributions of the ideal 

and c-Si metasurfaces, respectively. The sinc function that appears due to the zero-order 
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diffraction in the origin is neglected in this calculation. It should be noted that both I and M are 

normalized in such a way that their power in Ω are the same (this is why the sum in the numerator 

equals 1). Thus, the mean squared error gives a measure of how much the metasurface 

reconstruction deviates from the ideal case without taking the intensity of the reconstructed image 

into account.  

The results obtained with the SNR calculations are listed in Table III-3. The SNR is larger 

than 34 dB for all cases at 532 nm, resulting in high reconstruction fidelity. This means that the 

amplitude modulation has little impact on the image reconstruction. In contrast, the SNR reach 

~11 dB and ~10 dB at 444.9 nm and 635 nm, respectively.   

Table III-3 – Signal-to-noise ratio (SNR) of the four metasurfaces investigated in this work at different wavelengths. 

 SNR (dB) 

Samples 444.9 nm 532 nm 633 nm 

1A 10.67 34.75 7.72 

1B 10.45 34.76 7.79 

1C 10.63 34.79 8.14 

2 11.77 37.05 10.62 

 

III.1.5. Experimental Characterization  

The holograms are characterized with two different optical setups, one for reconstructing 

their images and other for measuring their transmitted and diffracted powers. The first setup, 

shown in Figure III-5 (a), consists of a solid-state laser, an iris (to block unwanted scattered light 

by the optical interfaces), and two lenses (L1 and L2 with focus f1=7.5 cm and f2=2.5 cm, 

respectively). The lenses are arranged as a Keplerian telescope to reduce the beam waist size to a 

collimated spot diameter of ~400 μm. All metasurfaces have an area of 389.12 μm × 389.12 μm. 

The reconstruction plane is located 20 cm away from the hologram in all cases. All 

reconstructions are captured with a camera (Nikon Coolpix p100) positioned in front of the 

reconstruction plane. The power measurement procedure is carried out as illustrated in Figure 

III-5 (b), with the same optical source of (a), a lens L3 (f3=25 cm), and an iris. The sample is 

positioned near the lens focus so that a beam waist of ~200 μm is obtained (smaller than the 

hologram size) [44]. The total transmitted power is measured with the power meter detection head 

(Thorlabs S120C) positioned in front of the metasurface at position P1 in Figure III-5 (b) (this 

guarantees that the power is focused onto the detector surface). The zero-order transmitted power 

is measured by moving the detection head to the zero-order spot position represented by position 

P2 in Figure III-5 (b).  Figures III-5 (c) and (d) show photos of the used reconstruction and power 

measurement setups. 
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Figure III-5 - (a) and (b) measurement setup used for the holograms’ image reconstruction and power measurements, 

respectively. Note that in (a) the lenses L1 and L2 are arranged as a Keplerian telescope. (c) and (d) photos of the used 

reconstruction and power measurement setups. 

The experimental reconstruction of the metasurfaces and the measured efficiencies will be 

shown next. The results relative to each design (quartz and sapphire substrates) are shown 

separately.  

III.1.6. Quartz Substrate 

a) Fabricated Metasurfaces – Quartz 

 Fabrication methods – Quartz 

The fabrication steps for the metasurfaces on the quartz substrate are represented in Figure 

III-6 and are based on the transfer layer technique [53]. In this process, the c-Si layer from a 

SOITEC SOI wafer (Figure III-6 (a)) is transferred to a quartz substrate.  Initially, a 1 μm silica 

is deposited over a wafer with a c-Si layer (220 nm height) over the insulating silica layer (1 μm) 

for protection (Figure III-6 (b)). A UV light curable NOA61 adhesive is then spin coated on the 

silica layer (Figure III-6 (c)), followed by bonding to a quartz substrate (Figure III-6 (d)). The 

structure is subsequently illuminated with UV light to cure the adhesive for two hours and then it 

is baked for two days to increase the adherence (Figure III-6 (d)). The silica layer is exposed by 

milling the silicon handle followed by DRIE (deep reactive ion etching) (Figure III-6 (e)). Finally, 

the c-Si layer is exposed by removing the silica isolating layer using wet etching (Figure III-6 

(f)).  

The structure at this point is now ready to be patterned. The structure is patterned on a HSQ 

electron beam resist using an electron beam generator (Vistec EBPG 5000+ at 100 KeV - Figure 

III-6 (g)-(h)). After developing the resist, the pattern is transferred from the resist to the silicon 

layer using inductively coupled plasma etching (ICP) (PlasmaPro System 100ICP180) (Figure 
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III-6 (i)). The remaining HSQ is removed with Hydrofluoric acid. The scanning electron 

micrographs (SEM) of the metasurfaces are shown in the next section. 

 

 
Figure III-6 - Fabrication steps of the metasurfaces fabricated over quartz substrate. (a) SOITEC SOI wafer. (b)-(i) shows the 
steps involved on the fabrication. This image was based on [53]. (EBL) Electron beam lithography. (ICP) Inductively coupled 
plasma. 

 Metasurface 1A 

The metasurface 1A was fabricated twice on the same sample. Figure III-7 shows pictures 

of the sample with the metasurfaces and their SEM micrographs under different scales. The SEMs 

indicate that the metasurfaces present good quality in their fabrications (see in Figures III-7 (b) 

and (c)). 

 
Figure III-7 – (a) Picture of the sample where the two 1A metasurfaces were fabricated. The red region arrow points their 

locations on the sample. (b) and (c) show SEM micrographs of one of the structures in different scales. 

 Metasurfaces 1B, 1C and 2 

The metasurfaces 1B, 1C and 2 were fabricated on the same substrate but on four different 

samples, that will be called Q1, Q2, Q3 and Q4. Figures III-8 –  III-15 show pictures and SEM 

micrographs of the fabricated samples. The quality of the metasurfaces, as shown by the 

micrographs, impact the performance of the metasurfaces as our efficiencies and reconstructions 

measurements show in the next sections. Note that, unfortunately, there are some coalescence in 

some regions of the metasurfaces while in others the nanoposts fell on the substrate. Furthermore, 
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we noted that there is some variation between the target diameters and the fabricated ones of about 

10 nm, which also impacts the performance of the structure. Nevertheless, there are regions where 

the posts present good quality despite the diameter variation. Thus, even with these imperfections, 

we obtained satisfactory results in terms of both diffraction efficiency (reaching 29.5% in 532 

nm) and image quality. 

 Sample Q1 

 
Figure III-8 – Picture of sample Q1 with metasurfaces 1B, 1C and 2, circumscribed by red squares. 

 
Figure III-9 – SEM micrograph of metasurfaces 1B (first row), 1C (second row) and 2 (third row) at different scales and 

positions of Q1 sample. 

 Sample Q2 

 
Figure III-10 – Picture of sample Q2 with metasurfaces 1B, 1C and 2, circumscribed by red squares. 
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Figure III-11 – SEM micrograph of metasurfaces 1B (first row), 1C (second row) and 2 (third row) at different scales and 

positions of Q2 sample. 

 Sample Q3 

 
Figure III-12 – Picture of sample Q3 with metasurfaces 1B, 1C and 2, circumscribed by red squares. 

 
Figure III-13 – SEM micrograph of metasurfaces 1B (first row), 1C (second row) and 2 (third row) at different scales and 

positions of Q3 sample. 

 Sample Q4 

 
Figure III-14 – Picture of sample Q4 with metasurfaces 1B, 1C and 2, circumscribed by red squares. 
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Figure III-15 – SEM micrograph of metasurfaces 1B (first row), 1C (second row) and 2 (third row) at different scales and 

positions of Q4 sample. 

b) Efficiencies  
The measured transmission and diffraction efficiencies of metasurface 1A and samples  Q1, 

Q2, Q3 and Q4, with metasurfaces 1B, 1C and 2 are listed in Tables III-4, III-5, and III-6 for the 

wavelengths of 532 nm, 444.9 nm and 633 nm respectively. Three main factors have an impact 

on the diffraction efficiency: 1) The amplitude and phase maps do not afford the ideal modulation 

required by the hologram. 2) The local character of the resonances: the amplitude and phase maps 

refer to infinite periodic arrays, but only a few periods are used in the metasurface to create the 

local resonance (often only a single period is used). Here, materials with high refractive index, 

such as c-Si, offer an obvious advantage, as they promote localization of the resonance. 3) 

Fabrication imperfections that induce noise in the phase and amplitude modulation. 

 As theoretically predicted (see Figure III-2 and Table III-2), the transmission efficiency 

increases with wavelength for all cases. This behaviour is also observed for the measured 

transmission and diffraction efficiencies. It is worth noting that the measured diffraction 

efficiencies are smaller than the numerical ones at the target wavelength of 532 nm, and the 

opposite is true for the transmission efficiencies. This is mostly because the fabricated 

metasurfaces have nanoposts whose diameters are on average 10 nm smaller than originally 

designed. Since the nanopost phase-diameter response is not linear (see Figure III-2), its relative 

phase is not maintained when the diameter is varied. The metasurface then loses more power to 

the zero order and noise, therefore reducing its diffraction efficiency. Note that, by modulating 

the pixel intensity via the c-Si nanopost array transmission, the diffraction efficiency is reduced 

by almost 20% for all metasurfaces at 532 nm (compare the c-Si and Ideal metasurfaces 

approaches in Table III-2). Nonetheless, the diffraction efficiency is still high at this wavelength.  

Although the phase control is worsened at 444.9 nm and 633 nm (see Figure III-2), the 

obtained transmission efficiencies still reach 51.8% and ~63.9%, respectively, which is quite 

remarkable for the visible range and shows the suitability of c-Si for metasurfaces operating in 

the visible. Note that the diffraction efficiencies at 444.9 nm and 633 nm are about half of those 
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at 532 nm. This means that most of the transmitted energy does not contribute to the image 

reconstruction at these wavelengths, since it is essentially lost to the zero-order beam at the origin 

due to the poor phase modulation.  
 

Table III-4 – Measured transmission and diffraction efficiencies of the fabricated metasurfaces over quartz substrate 
operating at 532 nm. 

Sample Metasurface Transmission Diffraction 

First Sample 
(metasurface 1A) 

Upper 51.8% 25.0% 

Bottom 42.9% 30.4% 

Q1 

1B 27.6% 9.8% 

1C 33.3% 14.3% 

2 25.7% 9.5% 

Q2 

1B 27.9% 16.9% 

1C 29.9% 20.6% 

2 28.4% 20.3% 

Q3 

1B No reconstruction 

1C 28.6% 19.7% 

2 27.1% 19.4% 

Q4 

1B 41.9% 29.5% 

C 38.1% 28.6% 

2 37.6% 26.2% 

 
Table III-5 – Measured transmission and diffraction efficiencies of the fabricated metasurfaces over quartz substrate and 
operating at 444.9 nm. 

Sample Metasurface Transmission Diffraction 

First Sample 
(metasurface 1A) 

Upper 24,9% 11,2% 

Bottom 17,3% 7,5% 

Q1 

1B 17,8% 8,3% 

1C 18,7% 8,7% 

2 17,4% 8,7% 

Q2 

1B 10,8% 7,6% 

1C 13,9% 10,3% 

2 11,7% 7,4% 

Q3 

1B No reconstruction 

1C 14,7% 10,5% 

2 12,9% 8,9% 

Q4 

1B 51,8% 16,4% 

1C 50,0% 18,6% 

2 49,5% 16,8% 
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Table III-6 – Measured transmission and diffraction efficiencies of the fabricated metasurfaces over quartz substrate and 
operating at 633 nm. 

Sample Metasurface Transmission Diffraction 

First Sample 
(metasurface 1A) 

Upper 50,0% 26,3% 

Bottom 52,6% 26,3% 

Q1 

1B 48,6% 8,6% 

1C 45,3% 8,3% 

2 42,9% 8,6% 

Q2 

1B 37,1% 13,1% 

1C 42,9% 23,7% 

2 34,3% 19,7% 

Q3 

1B No reconstruction 

1C 47,2% 8,3% 

2 41,7% 8,3% 

Q4 

1B 58,3% 25,0% 

1C 52,8% 19,4% 

2 63,9% 30,6% 

 

c) Reconstructions - Quartz 
Only the reconstructions of metasurfaces 1A upper and Q4 1B, 1C and 2 are shown because 

the other ones are very similar to those but noisier and with stronger zero orders. In other words, 

only the best reconstructions are shown. Figures III-16, III-17 and III-18 show the numerical ideal 

and experimental reconstructions of those metasurfaces operating at 532 nm, 444.9 nm and 633 

nm, respectively (these figures are not to scale). Samples 1A and 1B use only one nanopost per 

pixel and the wide-angle aberration is present operating in all wavelengths [Figures III-16, III-17 

and III-18   (a)-(d)], these figures are not to scale. Note that the wide-angle aberration increases 

with wavelength because the angular spread also does. The reconstructions from sample 1C, in 

turn, [Figures III-16, III-17 and III-18  (e)-(f)] do not appear distorted even without wide-angle 

correction at all wavelengths. This is due to its larger pixel size (2×2 array of nanoposts per pixel), 

which results in a smaller angular spread [3].  
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Figure III-16 – 1A [(a) and (b)], 1B [(c) and (d)], 1C [(e) and (f)] and 2 [(g) and (h)] numerical (first column) and experimental 

(second column) reconstructions operating at 532 nm.  

Metasurface 2 uses only one nanopost per pixel and wide-angle distortion correction [Figures 

III-16, III-17 and  III-18 (g)-(h)]. Observe that the correction performed in this sample is carried 

out only for the operation wavelength (532 nm), which makes the reconstructed images from it to 

appear distorted for the other wavelengths, namely 444.9 nm [Figures III-17 (g)-(h)] and 633 nm 

[Figures III-18 (g)-(h)]. Note how the image is warped at 444.9 nm (compare with Figure III-3 

(b)). In this case, the reconstruction size is smaller than at 532 nm. Therefore, the wide-angle 

distortion is weaker and does not compensate for the correction performed previously on the target 

image. On the other hand, at 633 nm, the reconstruction of metasurface 2 [Figures III-18 (g)-(h)] 

is wider than at 532 nm and the wide-angle correction is not enough to compensate for the wide-

angle distortion. Therefore, the reconstruction has a stretched aspect (compare with Figure III-3 

(b)). 

The holograms at the wavelengths of 444.9 nm and 633 nm still display relatively high 

brightness and quality, as shown in Figures III-17 (g)-(h) and III-18 (g)-(h), respectively, which 

is an interesting observation given how far these wavelengths are from the target wavelength. 

These results show that holograms based on c-Si metasurfaces can be effectively applied for full-

color holograms. 
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Figure III-17 – 1A [(a) and (b)], 1B [(c) and (d)], 1C [(e) and (f)] and 2 [(g) and (h)] numerical (first column) and experimental 

(second column) reconstructions operating at 444.9 nm.  

 
Figure III-18 – 1A [(a) and (b)], 1B [(c) and (d)], 1C [(e) and (f)] and 2 [(g) and (h)] numerical (first column) and experimental 

(second column) reconstructions operating at 632 nm.  

The difference between 1A and 1B is not clear in Figures III-16, III-17 and  III-18, but can 

be visualized by taking a closer look at one portion of the reconstruction. Figures III-19 (a)-(c) 
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show numerical reconstructions zooming in the queen for 1A, 1B and 1C, respectively, at 532 

nm, these figures are to scale. 1A and 1B reconstructions have the same size, but the former is 

composed of bigger dots than the latter. This behaviour was previously seem [44] and is a direct 

manifestation of the fact that the hologram were calculated by the discrete Fourier transform 

(DFT) as is explained at Appendix D.2.3 Diffraction of the sampled hologram. In short, DFT 

assumes that the hologram is periodic but only a few periods are in fact fabricated. Therefore, a 

windowing effect happens that mathematically is equivalent to multiplying the periodic hologram 

by a top rect function. As the reconstruction of the hologram is given by its Fourier transform 

(neglecting the wide-angle aberration), the actual reconstruction of the windowed CGH will be 

given by the convolution between the DFT of the periodic CGH (that is, its reconstruction) 

convoluted with a sinc function, that is, the Fourier Transform of the top rect function. Due to the 

convolution, at each pixel of the discrete image there is a sinc function modulated by the pixel 

intensity. Thus, the more repetitions the holograms have, the larger is the top rect function and 

the smaller are the sinc functions waists on the reconstructions. Finally, the reconstruction of 1C, 

shown in Figure III-19 (c), has half the size in each direction than 1A and 1B, because it uses 

larger pixel dimensions, which in turn eliminates wide angle aberration. Furthermore, 1C is 

composed of a 2×2 CGH array as 1A so the dots composing both reconstructions have the same 

relative dimension in comparison with the queen size. In absolute terms, the dots at the 

reconstruction of 1C have half the size of the ones at the reconstruction of 1A along each direction, 

because the reconstruction of the former is also smaller than the reconstruction of the latter. 

 

 
Figure III-19 - Numerical reconstructions of (a) 1A (b) 1B and (c) 1C metasurfaces zoomed in the queen. Operating at 532 nm. 

These figures are to scale. 
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III.1.7. Sapphire Substrate 

a) Fabricated metasurfaces - Sapphire 

 Fabrication method – Sapphire 

The metasurfaces were fabricated on a commercially available 230 nm thick c-Si (100) 

epitaxially grown on a sapphire substrate (from UniversityWafer, Inc.), shown in Figure III-20 

(a). The structure was patterned on a HSQ electron beam resist using electron beam generator 

Vistec EBPG 5000 +at 100 KeV (Figures III-20 (b)-(c)). After developing the resist (Figure III-20 

(c)), the pattern was transferred from the resist into the silicon layer using inductively coupled 

plasma etching (PlasmaPro System 100ICP180) (Figure III-20 (d)). The remaining HSQ is 

removed with Hydrofluoric acid. The scanning electron micrographs (SEM) of the metasurfaces 

are shown in the next section. 

 
Figure III-20 - Fabrication steps of the metasurfaces fabricated over quartz substrate. (a) UniversityWafer silicon on sapphire 
waver. (b)-(c) shows the steps involved on the fabrication. (EBL) Electron beam lithography. (ICP) Inductively coupled 
plasma. 

 Metasurfaces 1B, 1C and 2 

The metasurfaces fabricated on the sapphire substrate were made in the same substrate using 

the same substrate in three different samples that will be called S1, S2 and S3. Figures III-21 –  

III-24 show pictures and SEM micrographs of the fabricated samples.  

From the micrograph over a larger area in Figure III-21 it is already possible to see that some 

of the metasurfaces present fabrication defects. Note that, ideally, they should be almost 

transparent as metasurfaces 1B of samples S1 and S2 and all metasurfaces 2. On the other hand, 

1B from sample S1 and all 1C metasurfaces present dark regions suggesting that there are 

imperfections in the structures. Nevertheless, taking a closer look in the good regions of the 

samples, shown in the micrographs in Figures III-22 – III-24, it is clear that there are neither 

coalescence nor fallen nanoposts as we saw for the quartz design. Furthermore, as we saw for the 

quartz design, the diameter of the fabricated also differed from the designed ones. In summary, 

the pictures of these micrographs show that the fabricated metasurfaces over sapphire substrate 

present better quality than the previous one. Consequently, the measured diffraction efficiencies 

reach 40% in 532 nm (10% higher than the design on quartz) and the image reconstructions better 

quality. 
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Figure III-21 – SEM micrograph of the sample with the metasurfaces fabricated over sapphire substrate. The first, second 

and third rows show the metasufaces S1, S2 and S3, respectively. The first, second and third columns show metasurfaces 1B, 

2 and 1C, respectively. 

 Sample S1 

 
Figure III-22 – SEM micrographs of metasurfaces 1B (first row), 1C (second row) and 2 (third row) of sample S1. 

 Sample S2 

 
Figure III-23 – SEM micrographs of metasurfaces 1B (first row), 1C (second row) and 2 (third row) of sample S2. 
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 Sample S3 

 
Figure III-24 – SEM micrographs of metasurfaces 1B (first row), 1C (second row) and 2 (third row) of sample S3. 

 

b) Efficiencies  
The measured transmission and diffraction efficiencies of Samples S1, S2 and S3 are listed 

in Tables III-7, III-8 and  III-9 for the wavelengths of 532 nm, of 633 nm, and of 444.9 nm, 

respectively. The same fabrication issues discussed for the metasurfaces on quartz substrate apply 

here (see quartz section III.1.6.b) Efficiencies). But the efficiencies of metasurfaces on sapphire 

are higher than the designs on quartz. For the target wavelength of 532 nm, the higher 

transmission (diffraction) measurement is 68.57% (41.14%) which is 17% (10%) larger than the 

best results on quartz. Furthermore, the highest transmission (diffraction) efficiency reduced only 

4% (10%) when compared to the numerical results with the c-Si approximation listed in Table 

III-2. These better results are consequence of the better quality in the samples, as can be seen in 

the SEMs micrographs of Figures III-23 and IIIIII.1-24 (compare  with the SEMs of the design 

on the quartz substrate, shown in Figures III-9, III-11, III-13 and III-15). The same discussion 

also applies to the results of the other wavelengths, which also surpass the corresponding ones 

obtained for the design on the quartz substrate. 
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Table III-7 – Measured transmission and diffraction efficiencies of the metasurfaces over sapphire substrate operating at 532 

nm. 

Sample Hologram Transmission efficiency Diffraction efficiency 

S1 

1B 68,57% 34,57% 

1C 65,71% 31,43% 

2 62,86% 29,71% 

S2 

1B 64,86% 39,66% 

1C 60,00% 30,94% 

2 62,86% 33,14% 

S3 

1B 61,14% 41,14% 

1C 45,43% 30,23% 

2 58,29% 38,20% 

 

Table III-8 – Measured transmission and diffraction efficiencies of the metasurfaces over sapphire substrate operating at 633 

nm. 

Sample Hologram Transmission efficiency Diffraction efficiency 

S1 

1B 76,36% 27,27% 

1C 83,78% 27,97% 

2 74,55% 18,36% 

S2 

1B 72,73% 29,27% 

1C 68,78% 19,59% 

2 77,03% 25,68% 

S3 

1B 65,45% 38,18% 

1C 56,76% 30,54% 

2 63,38% 33,11% 

 

Table III-9 – Measured transmission and diffraction efficiencies of the metasurfaces over sapphire substrate operating at 444 

nm. 

Sample Hologram Transmission efficiency Diffraction efficiency 

S1 

1B 43,33% 15,00% 

1C 66,67% 11,67% 

2 40,00% 15,00% 

S2 

1B 50,00% 23,33% 

1C 41,67% 13,33% 

2 46,67% 18,33% 

S3 

1B 43,33% 16,67% 

1C 35,00% 16,67% 

2 35,00% 10,00% 
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c) Reconstructions - Sapphire 
Only the reconstructions of S2 are shown because the other ones, although very similar, are 

noisier and with stronger zero orders. In other words, only the best reconstructions are shown. 

Figures III-25, III-26 and III-27 show the numerical ideal and experimental reconstructions of 

those metasurfaces operating at 532 nm, 444.9 nm, and 633 nm, respectively (these figures are 

not to scale). These reconstructions are better in terms of noise and zero order power than the ones 

made for design on quartz (compare them with Figures III-16, III-17 and  III-18). These results 

tally with the efficiency measurements. Finally, the issues related to wide-angle aberration and 

differences between each hologram discussed for the quartz substrate  (see section III.1.6.c) 

Reconstructions - Quartz of chapter II for details) also apply to the sapphire substrate. 

 
Figure III-25 – 1B [(a) and (b)], 1C [(c) and (d)] and 2 [(e) and (f)]  numerical (first column) and experimental (second column) 

reconstructions operating at 532 nm.  



 

48 

 

 
Figure III-26 – 1B [(a) and (b)], 1C [(c) and (d)] and 2 [(e) and (f)]  numerical (first column) and experimental (second column) 

reconstructions operating at 444.9 nm.  

 
Figure III-27 – 1B [(a) and (b)], 1C [(c) and (d)] and 2 [(e) and (f)]  numerical (first column) and experimental (second column) 

reconstructions operating at 633 nm.  
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III.2. Broadband c-Si metasurfaces with 

polarization control at visible wavelengths: 

Applications to 3D stereoscopic holography 

Adapted with permission from   Augusto Martins, et. al, "Broadband c-Si metasurfaces with 

polarization control at visible wavelengths: applications to 3D stereoscopic holography," Opt. 

Express 26, 30740-30752 (2018) [93] © The Optical Society.  

A copy of the permission can be found in appendix E.1. 

III.2.1. Introduction 

In the past few years, visual arts and entertainment related industries, as well as many 

research groups around the world, have invested a great deal of effort and resources directed at 

improving users’ experience by means of state-of-the-art visualization techniques, such as 

telemedicine, holographic projections, three-dimensional (3D) cinema screens, and 3D mobile 

displays, to mention a few. These technologies have benefited from rapid advances in 

nanofabrication techniques that have had a direct impact on the pixel resolution and on the 

miniaturization of optical systems. One remarkable example of optical miniaturization is the 

concept of planar photonic components, or flat optics, enabled through metasurfaces, i.e. a dense 

arrangement of subwavelength resonators designed to modify the optical response of the interface 

[94]. Metasurfaces, the two-dimensional (2D) equivalent of (volumetric) metamaterials, are 

periodic or semi-periodic materials that allow light properties (phase, amplitude and/or 

polarization) to be tailored by geometrical adjustments on the size and/or orientation of the 

subwavelength unit-cell geometry.  

Interestingly enough, a decades-old 3D visualization technique known as stereoscopic 

viewing has only recently been theoretically explored with metasurfaces [95]. Briefly, a 

stereoscopic image (stereogram) is composed of a pair of orthogonally polarized images taken 

from the same scene but recorded in slightly shifted positions to replicate the natural parallax of 

the human eye. For the stereoscopic effect to occur, each of these two images should be directed 

to one of our eyes separately with the help of cross-polarized glasses. Most of the proposed 

metasurfaces to this date operate either with single [42, 49, 69] or multiple discrete wavelengths 

[45, 77, 96, 97] in the visible and infrared ranges. Nevertheless, many applications such as 

metalenses, holography and polarization optics could benefit from or even require broadband 

operation. This issue has already been addressed both in reflection [98] and transmission mode 

[62, 64, 99-101] metasurfaces. However, high efficiency at the blue region of the visible spectrum 

was achieved only with TiO2  based structures [62]. 
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In the present work, we proposed and fabricated the first broadband holographic stereogram 

made with a birefringent crystalline silicon (c-Si) metasurface at visible wavelengths. The 

metasurface design is based on c-Si nanoposts with elliptical cross-section and different effective 

indices, and excited by linearly polarized light aligned to each of its semi-axes[52]. The 

holograms (one for each polarization) are combined on the same metasurface and encoded with 

four phase levels each, calculated via modified Gerchberg-Saxton (G-S) phase-retrieval algorithm 

to maximize the signal-to-noise-ratio (SNR) [73, 75]. Furthermore, a coordinate transformation 

correction is performed on the target images to avoid wide angle aberration of the reconstructions 

[91]. Two additional metasurface holograms, whose reconstructions yield two completely distinct 

images, are also fabricated aimed at addressing possible cross-talk between the two polarizations. 

We show that the relative phase shift of the nanostructures has a high tolerance over a broad 

bandwidth and a high diffraction efficiency even at the blue region of the spectrum. Diffraction 

efficiencies >20% within a 110 nm bandwidth are numerically obtained with a SNR>15 dB. We 

also show that the operating band of the structure can be blueshifted by simply reducing the 

nanoposts diameter with minimum impact on the relative phase. Even in this case the calculated 

diffraction efficiency remains >20% within an 80 nm bandwidth with a SNR>10 dB.  

The experimental stereographic reconstruction is obtained on a fine-sanded aluminium 

surface. This choice not only preserves the polarization of the scattered light but also minimizes 

the mirror effect of the aluminium surface, which increases the 3D perception. The measurements 

are carried out at three different wavelengths, namely 444.9 nm, 532 nm (the design wavelength) 

and 635 nm, to assess the metasurface bandwidth performance. The measured transmission and 

diffraction efficiency maxima at 532 nm are 70% and 15% for both polarizations, respectively. 

The reconstructed images at 444.9 nm are as good as at 532 nm in terms of noise, polarization 

cross-talk, and depth perception. The measured transmission and diffraction efficiencies in this 

case are 69.5% and 18.5%, respectively. This good performance at lower wavelengths can be 

attributed to the reduced semi-axis size of the fabricated nanoposts that cause the metasurface 

operating point to blueshift. The reconstructed images at 635 nm, in contrast, are noisier with 

stronger polarization cross-talk when compared to those at 532 nm, making it difficult to observe 

the stereoscopic effect. Consequently, the diffraction efficiencies are small (<10%), despite the 

high transmission (>80%) due to the c-Si low absorption at this wavelength.  

III.2.2. Metasurface design 

The unit cell geometry of the proposed birefringent metasurface structure is shown in Figure 

III-28 (a). It consists of c-Si elliptical nanoposts 230 nm high on top of a sapphire substrate, with 

the design wavelength of 532 nm.  This structure can be regarded as a truncated waveguide with 

elliptical cross section exhibiting polarized modes with different effective wavelengths along each 
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semi-axis of the ellipsis [52]. In other words, the transmitted light experiences different phase 

changes when polarized along each semi-axis. Therefore, independent phase control can be 

achieved for each polarization by tuning the semi-axes sizes. The design is carried out by 

calculating the transmission phase and efficiency of an infinite array of identical nanoposts under 

normal plane-wave incidence from air. We use a square unit cell 190 nm in size and sweep both 

semi-axes (Dx and Dy) to determine the optimum phase levels and transmission efficiencies of the 

array using the rigorous coupled-wave analysis (RCWA) [88]. The refractive indices of c-Si and 

sapphire adopted in the simulations are, respectively, nc-si =4.3+j0.072[90] and nS=1.77[102].  

 

 
Figure III-28 -(a) Schematic of the unit cell for high birefringent contrast grating (not to scale). Transmission efficiency (b) 
and relative phase maps (c) of the c-Si nanopost array as function of their semi-axes for light polarized along x. (d) and (e) 
represent analogous results for light polarized along y. The transmitted phase difference (Φx- Φy) is shown in (f). The operating 
wavelength is 532 nm in all cases. The colored symbols represent the map boundaries for achieving four phase levels. Their 
correspondences are listed in Table III-10. The stars mark the chosen structures inside each region. 

The transmission efficiency and phase maps (in units of rad/2π) as function of Dx and Dy are 

shown, respectively, in Figures III-28 (b) and (c) for polarization along x, and in Figures III-28 

(d) and (e) for polarization along y. Full phase control [0-2π] is obtained for each polarization 

with high transmission efficiency. Moreover, these maps present as major features both 

birefringence and high transmission efficiency. The next step is to check whether independent 

full phase control [0-2π] for both polarizations can be achieved with these maps. In other words, 

if n phase levels are needed for each polarization, then a total of n2 different elements are required 

to satisfy all possible phase combinations (Φx,i, Φy,j), i, j  ∈ [1,n]. Therefore, the phase difference 

map (Φx- Φy) needs to cover the range [-π, π], as shown in Figure III-28 (f). 
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The final step is to check which structures satisfy these phase level requirements. Assuming 

a 10% tolerance on the phase value, independent phase control is achieved with n = 4 phase levels, 

resulting in sixteen different structures. The symbols in Figures III-28 (b)-(f) (listed in Table 

III-10) delimit the boundaries where a given structure geometry satisfies the required phase level. 

The chosen structures are marked with white stars in Figures III-28 (b)-(f). The pertinent 

parameters of the 16 structures that satisfy the stablished design criteria, namely, the length of the  

semi axes, transmission phase and efficiency values, are listed in Table III-11  for each 

polarization. 
Table III-10 - Symbol definition relative to Figures III-28 (b) – (f).  Each color (symbol) corresponds to a relative phase level 

obtained for electric field polarized along x or y direction.  

Target Phase [rad] Color (x) Symbol (y) 
-0.5π or 1.5π black Down triangles 
0 or 2π red Left triangles 
0.5 π green Diamonds 
-π or π blue circles 

 
Table III-11 - Target and obtained phase and transmission values of each pixel with four phase level control. The operating 
wavelength is 532 nm. The chosen structures are marked with white stars in Figures III-28 (b)-(f). 

Target x phase ϕx 
[1/2π] 

Target y phase ϕy 
[1/2π] 

Dx 
[nm] 

Dy 
[nm] 

Obtained x phase ϕx 
[1/2π] 

Obtained y phase ϕy 
[1/2π] 

|Tx| |Ty| 

0 or 1 0 or 1 69 69 0.01 0.01 0.92 0.92 

0 or 1 0.25 54.1 122 0.01 0.25 0.92 0.79 

0 or 1 0.5 49 168 0.01 0.50 0.92 0.7 

0 or 1 0.75 171 101 0.99 0.73 0.63 0.75 

0.25 0 or 1 122 54.1 0.25 0.01 0.79 0.92 

0.25 0.25 95 95 0.26 0.26 0.78 0.78 

0.25 0.5 89.6 113 0.26 0.51 0.79 0.65 

0.25 0.75 83.8 138 0.26 0.74 0.81 0.77 

0.5 0 or 1  168 49 0.50 0.01 0.7 0.95 

0.5 0.25 113 89.6 0.51 0.26 0.65 0.79 

0.5 0.5 105 105 0.48 0.50 0.65 0.65 

0.5 0.75 98.3 127 0.48 0.75 0.66 0.77 

0.75 0 or 1 101 171 0.73 0.99 0.75 0.63 

0.75 0.25 138 83.8 0.74 0.26 0.77 0.81 

0.75 0.5 127 98.3 0.75 0.48 0.77 0.66 

0.75 0.75 118 118 0.76 0.76 0.76 0.76 

 

Next, the metasurface bandwidth was assessed in terms of both relative phase and 

transmission efficiency. As shown in the previous section, c-Si metasurfaces do have broadband 

behaviour in the visible spectrum. However, here we address this issue by averaging the spectra 

of the metasurfaces that provide the same phase level 𝜙𝜙𝑥𝑥 at 532 nm according to Table III-11 (a 

similar result can be obtained for 𝜙𝜙𝑦𝑦). The resulting averaged spectra are shown in Figure III-29 

(a) for the following phase levels: 0 (red), 0.25 (blue), 0.5 (black) and 0.75 (green) rad/2π. The 

dots in Figure III-29 (a) indicate the optimum phase levels at 532 nm. The error bars indicate the 
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phase and transmission standard deviations of the average values. Note that the phase curves 

relative separation does not change significantly over a broad spectral region around 532 nm. 

Note further that the corresponding averaged transmission spectra, shown in Figure III-29 (b), are 

not only high but also broadband, therefore confirming the broadband nature of c-Si metasurfaces. 

 
Figure III-29 - Averaged phase (a) [(c)] and transmission (b) [(d)] of the unperturbed [perturbed, nanopost semi-axes reduced 
by 20 nm] structures designed to give relative phase levels of 0 (red), 0.25 (blue), 0.5 (black) and 0.75 (green) rad/2π. The 
average is taken over the spectra of different metasurfaces that provide the same phase level in each polarization.  

This analysis is now further extended assuming a 20 nm reduction of the semi-axes, which 

is compatible with our nanofabrication resolution. The phase and transmission spectra are shown 

in Figure III-29 (c) and (d), respectively. Note that the metasurface optimum operating point (dots 

in Figure III-29 (c)) blueshifts by approximately 52 nm (to ~480 nm). Moreover, this occurs 

without significantly changing the relative phase separation over a broad band (see Figure III-29 

(c)) and with high transmission (>60%, as shown in Figure III-29 (d)). Finally, Figure III-29 (a)-

(d) indicate that variations in transmission (wide error bars) at a given wavelength are less 

detrimental to the metasurface SNR and diffraction efficiency than variations in phase. 

III.2.3. Hologram design 

The performance of the birefringent metasurfaces is assessed by way of two different 

hologram designs (Designs 1 and 2). Each design encodes two target images as illustrated in 

Figure III-30. In Design 1, we use two different superposed target images (images A and B) with 

the purpose of assessing the cross-talk between each polarization and comparing their efficiencies. 

In Design 2 we use two similar images (C and D) which are slightly separated in space with 
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respect to each other. This is done to mimic the human eye parallax and thus guarantee 

stereoscopic reproduction. This effect is created with the open source 3D computer-graphic 

software Blender [103] (to see the depth effect in the Design 2 anaglyph hold a blue filter in front 

of the right eye and a red filter in front of the left eye). However, in the proposed image 

reconstruction setup these images (both at the same wavelength) must be orthogonally polarized 

to each other and separated at the observer’s eyes with the help of a pair of cross-polarized filters. 

This arrangement successfully reproduces the depth perception characteristic of 3D projections.   

The computer generated holograms (CGHs) of each target image A-D, all with 1024×1024 

pixels and pixel dimension of 190 nm×190 nm  are calculated via the iterative Fourier Transform 

algorithm (IFTA), described in appendix D.3 Iterative Fourier Transform Algorithm (IFTA). The 

total size of each CGH is 194.56 μm×194.56 μm. The small pixel dimension compared to the 

operating wavelength (532 nm) causes the reconstructed images to suffer from wide angle 

aberration. Thus, a correction is required for each target image to avoid this effect prior to 

hologram calculation [91]. Finally, the target images are vertically displaced to avoid cross-talk 

with the unwanted zeroth-order beam. The resulting CGHs of A and B (similarly for C and D) are 

then encoded in a c-Si birefringent metasurface for x and y polarized light, respectively, according 

to Table III-11. Each encoded CGH is then assembled as 2×2 arrays D1 and D2 as the final 

metasurfaces with total size of 389.12 μm×389.12 μm. 

 
Figure III-30 - Concept of the two birefringent c-Si metasurfaces. Design 1 consists of two different target images (A encoded 
for x- and B for y-polarization) with the purpose of accessing the efficiency and polarization cross talk of both images. Design 
2 consists of two similar parallax-separated images (C encoded for x- and D for y-polarization) for 3D stereoscopic 
reconstruction. 
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III.2.4. Numerical Characterization 

A broadband reconstruction analysis of metasurface D1 was carried using the RS integration 

(explained in appendix D.4 Rigorous Rayleigh Sommerfeld (RS) Diffraction) by simulating its 

SNR, diffraction and transmission efficiencies spectra. As usual, the transmission efficiency is 

defined as the ratio between the transmitted power through the hologram to the transmitted power 

through the substrate, while the diffraction efficiency is defined as the ratio between the power at 

the image window to the power transmitted through the substrate. The calculated efficiencies and 

SNR are shown in Figures III-31 (a) and (b), respectively. Note in both plots that the operating 

point of the metasurface is blueshifted to 480 nm when the semi-axes are reduced by 20 nm. 

Furthermore, the diffraction efficiencies (dotted and continuous lines in Figure III-31 (a) from 

CGHs A and B, respectively) are >20% within a 110 nm [80 nm] region for the unperturbed 

[perturbed, semi-axes reduced by 20 nm] metasurfaces, as indicated by the blue [black] curves. 

In this region, the transmission efficiency remains >70% [>50%] and the SNR, shown in Figure 

III-31 (b), >15dB[>10dB], resulting in high quality reconstructions. These results confirm once 

again the broadband nature of c-Si metasurfaces as suggested by the phase and transmission 

spectra in Figures III-29 (a) and (b), respectively. More importantly, it demonstrates that by 

simply rescaling the nanoposts it is possible to tune the operating bandwidth of the proposed 

design. 

 

 
Figure III-31 - (a) Transmission (dashed lines) and diffraction (continuous and dotted for CGH A and B, respectively) 
efficiencies spectra for the design without perturbation (blue) and reduced by 20 nm (black). The transmission efficiencies 
spectra of A and B are overlapped. (b) SNR of the unperturbed (blue lines) and reduced (black lines) designs. The continuous 
and dotted lines show the result of CGHs A and B, respectively. 
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III.2.5. Experimental Characterization 

a) Fabricated Metasurfaces  

 Fabrication methods  

The fabrication procedure is the same used to fabricate the previous metasurfaces over 

sapphire substrate. See section III.1.7.a.1 Fabrication method – Sapphire for the detailed steps 

involved. 

 Metasurfaces D1 and D2 

The metasurfaces D1 and D2 were fabricated in the same substrate but with different doses 

of exposure. Figures III-32 – III-34  show pictures and SEM micrographs of the fabricated 

samples. 

The SEM micrographs show that all the fabricated metasurfaces present good quality. 

Unfortunately, we noted that the fabricated posts have smaller posts than the designed ones. We 

estimated a reduction of 20 nm in average. Therefore, this caused the operation of the structure to 

blueshift, as our experimental and numerical characterizations show. Nevertheless, the 

reconstructions and efficiency measurements were good operating at both 532 nm and 444.9 nm, 

which showed us that this design present a broadband behaviour. 

 
Figure III-32 – Picture of the sample with metasurfaces D1 (cyan squares) and D2 (red squares) fabricated with different 

doses (1300 and 1400) of ebeam exposure. 
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 Dose1300 

 
Figure III-33  -  SEM micrograph of metasurfaces D1 (first row) and D2 (second row) at different scales and positions of 

Dose1300 sample. 

 Dose1400 

 
Figure III-34  -  SEM micrograph of metasurfaces D1 (first row) and D2 (second row) at different scales and positions of 

Dose1400 sample. 

b) Efficiencies 
The experimental characterization is first made at the design wavelength of 532 nm. The 

measured transmission and diffraction efficiencies are listed in Table III-12 for both metasurfaces 

and polarizations. The transmission efficiencies of all metasurfaces are very high because of c-Si 

low absorption at the operating wavelength when compared to amorphous or polycrystalline 

silicon [77]. However, the diffraction efficiency is modest for all samples because the fabricated 

metasurfaces suffer from semi-axis size deviations of their elliptical nanoposts. As a result, the 

phase shift imparted by each nanopost on the transmitted light deviates from the desired values 

listed in Table III-11, as shown in Figure III-28. In this sense, more light is cast as noise in addition 

to being lost to the zeroth-order beam. Both these effects contribute to reduce the diffraction 

efficiency and to increase the polarization cross-talk. 
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Table III-12 - Measured and simulated efficiencies at the holograms reconstructions plane and different wavelengths.  

  Wavelength 444.9 nm 532 nm 635 nm 

Sample Metasurface Hologram 
(polarization) 

Transmission 
Efficiency 

Diffraction 
Efficiency 

Transmission 
Efficiency 

Diffraction 
Efficiency 

Transmission 
Efficiency 

Diffraction 
Efficiency 

D
os

e1
30

0 

D1 A (x) 69.36% 18.50% 67.95% 10.26% 85.88% 9.41% 
B (y) 69.52% 14.29% 73.08% 12.82% 77.53% 5.62% 

D2 C (x) 69.65% 10.17% 60.26% 8.97% 80.00% 9.41% 
D (y) 69.33% 14.00% 57.69% 14.10% 77.75% 4.83% 

D
os

e1
40

0 

D1 A (x) 72.83% 11.56% 71.79% 2.56% 85.6% 3.53% 

B (y) 79.05% 10.48% 76.92% 5.13% 82.02% 6.74% 

D2 C (x) 63.58% 14.34% 65.38% 12.82% 82.53% 7.41% 

D (y) 70.52% 13.33% 69.23% 16.67% 82.22% 5.62% 

 

Next, the metasurfaces are investigated at 444.9 nm and 635 nm to assess their bandwidth 

performance. Table III-12  lists the resulting diffraction and transmission efficiencies for both 

metasurfaces and polarizations. Surprisingly, the efficiencies at 444.9 nm are as high as those at 

532 nm, even though c-Si is more absorptive at this wavelength. This result can be attributed to 

variations in the  semi-axes of the nanoposts during fabrication, that caused the metasurface 

operating point to blueshift, as shown in Figures III-31 (a) and (b). 

c) Reconstructions 
Only the reconstructions of dose1300 sample are shown, as they resulted in the better images. 

The experimental reconstructions of metasurface D1 are shown in Figures III-35 (a) and (d) for 

x- and y-polarized light, respectively. Both present good reconstruction quality despite the noise 

caused by variations on the size of the nanoposts. Part of this noise comes from the hologram 

encoded on the other polarization. Note that the reconstructions are polarized along one direction, 

x or y, meaning that these spurious reconstructions are essentially due to polarization cross-talk. 

To provide a phenomenological explanation for the mechanism behind this effect, we carry out 

numerical reconstructions, by RS integration, of the holograms. Initially, it is assumed that each 

CGH pixel has a homogeneous field distribution whose phase and amplitude accounts for the 

nanopost response according to Table III-11. Since CGHs are close to ideal, the reconstructions 

for x and y polarizations shown in Figures III-35 (b) and (e), respectively, are very good and 

without the polarization cross-talk image. Next, we perturb the semi-axes of the nanoposts by 20 

nm (within the error from the SEM measurements), leading to new phase and amplitude values 

for each pixel read from the maps in Figure III-28. As expected, this perturbation diverts more 

power to both the zeroth-order beam and the Hermitian copy of the reconstruction for x and y 

polarizations, respectively, which increases the noise and reduces the diffraction efficiency as a 

result. Note also that the shadow of the orthogonal polarization reconstruction is visible around 

the desired image in this perturbed numerical reconstruction. Therefore, these numerical results, 
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mimicking the fabrication error and its impact on both the reconstruction noise and diffraction 

efficiency, fully corroborate the experimental observations. 

 
Figure III-35 - Experimental reconstructions of metasurfaces D1 for (a) x- and (d) y- polarized light. (b) and (e) [(c) and (f)] 
show the numerical reconstructions of the unperturbed [perturbed] metasurface. The reconstructions are taken 20 cm away 
from the metasurface. These images are not stereoscopic and are used to assess polarization cross-talk. The operating 
wavelength is 532 nm. 

The experimental stereoscopic reconstructions of metasurface D2 are shown in Figures III-

36 (a) and (b) for x- and y-polarized light, respectively. The stereoscopic reconstruction requires 

the hologram to be illuminated with x+y polarized light. The image is then reconstructed on a 

fine-sanded aluminium plate surface, used as reconstruction plane, to preserve the polarization of 

the scattered light. The stereoscopic view, however, requires the observer to wear a pair of cross-

polarized filters in front of his/her eyes as used in our experiment (or a pair of cross-polarized 

glasses). Note that the cross-polarized spurious reconstructions are also present, but they are 

subtler to observe due to the similarity between images.  

 
Figure III-36 - Experimental reconstructions of each image from the holographic stereogram for (a) x- and (b) y-polarized 
light. The reconstructions are taken 20 cm away from the metasurface. The operating wavelength is 532 nm. 

The image reconstructions at 444.9 nm are shown in Figures III-37 (a), (b), (e) and (f), where 

(a) and (e) are not stereoscopic and used only to assess polarization cross-talk while (b) and (f) 

are obtained from the holographic stereogram. These images exhibit not only low noise, but also 

virtually inexistent cross-talk, indicating that phase control is more efficient at this wavelength 

resulting in improved depth perception. In contrast, the stereoscopic effect is not observed at 635 
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nm despite the metasurface high transmission efficiencies (>80%) due to c-Si low absorption at 

this wavelength. Moreover, the low diffraction efficiencies (<10%) are due to the poorer phase 

control at this wavelength, leading to higher noise and stronger polarization cross-talk compared 

to lower wavelengths, as seen in Figures III-37 (c), (d), (g) and (h). Similarly, (c) and (g) are not 

stereoscopic and used only to assess polarization cross-talk while (d) and (h) are obtained from 

the holographic stereogram. It is important to point out that the reconstructions at 444.9 nm and 

632 nm are distorted because the wide-angle correction is wavelength dependent and is carried 

only for 532 nm. 

 

 
Figure III-37 - Experimental reconstructions for x- (first row) and y- (second row) polarized light at 444.9 nm (first two 
columns) and 635 nm (last two columns). The reconstructions are taken 20 cm away from the metasurface. (a), (e), (c) and (g) 
are not stereoscopic and are used to assess polarization cross-talk. (b), (f), (d) and (h) are obtained from the holographic 
stereogram. 
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III.3. Conclusions and future works 

The design proposed in section III Highly efficient holograms based on c-Si metasurfaces in 

the visible range is the first c-Si metasurface hologram designed to operate at 532 nm in 

transmission-mode with maximum transmission efficiency of ~65% and diffraction efficiency of 

~40%. We have also investigated the performance of the metasurfaces, both numerically and 

experimentally at different wavelengths to assess their operation bandwidth. Surprisingly, the 

reconstructed images at these wavelengths show good quality despite their reduced theoretical 

transmission efficiency (~19% at 444.9 nm, and ~51% at 635 nm). We used the numerically 

reconstructed images, obtained with the RS integration, as benchmark to assess the performance 

of the fabricated metasurfaces in terms of transmission and diffraction efficiencies. The numerical 

calculations showed that the transmission(diffraction) efficiency can reach up to 53.1%(16.2%), 

72%(52.2%) and 85% (39.8%) at 444.9 nm, 532 nm and 635 nm, respectively. There is plenty of 

room for improvements in future designs by optimizing of the metastructures at each wavelength. 

More importantly, these results show that c-Si-based hologram metasurfaces are tolerant to 

fabrication and wavelength variations, making them quite attractive not only for diffractive optics 

applications in general, but particularly for full-color holograms. 

After concluding the first metasurface design with c-Si, we decided to explore another one 

more sophisticated that features independent phase control for a pair of orthogonal linear 

polarization of light. Thus, we have presented the first broadband stereoscopic hologram 

fabricated with a birefringent c-Si/Saphire metasurface designed to operate at 532 nm. The 

birefringent metasurface was designed with c-Si nanoposts with elliptical cross-section and 

different effective indices, excited with linearly polarized light aligned to each of its semi-axis. 

The stereoscopic holograms (one for each polarization) were combined on the same metasurface 

and encoded with four phase levels each, calculated via the modified Gerchberg-Saxton (G-S) 

phase-retrieval algorithm to maximize the signal-to-noise-ratio (SNR). A coordinate 

transformation correction was carried out on the target images to avoid wide-angle aberration. 

The reconstruction plane used for the stereogram consisted of a fine-sanded aluminum surface to 

preserve the polarization of the scattered light and to minimize the mirror effect of the aluminum 

surface. We also fabricated two additional metasurface holograms using two completely 

uncorrelated images to address polarization cross-talk issues. The broadband nature of the 

metasurfaces was assessed by means of phase and transmission spectra calculation. We noticed 

that the wavelength band can be easily tuned simply by reducing the diameters of the nanoposts 

without significantly affecting their phase response. We also performed numerical reconstructions 

to assess the metasurface wavelength response in the visible range. The results showed diffraction 

efficiencies >20% within a 110 nm bandwidth with SNR>15 dB. Moreover, when the semi-axes 
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of the nanoposts were reduced by 20 nm (to account for fabrication errors), the diffraction 

efficiency remained >20% within a 80 nm bandwidth with SNR>10 dB. The measured 

transmission efficiencies were very high (about 70%) because of the c-Si low absorption at the 

operating wavelength when compared to amorphous or polycrystalline silicon. The diffraction 

efficiency, in contrast, was modest because the semi-axes size of the fabricated nanoposts were 

smaller than originally designed. This caused more light to be diverted to noise and to the zeroth-

order, in addition to increasing the polarization cross-talk. We have also investigated the 

metasurfaces’ performance at 444.9 nm and 635 nm to assess their bandwidth. The stereoscopic 

effect was surprisingly good at 444.9 nm with transmission and diffraction efficiencies as high as 

70% and 18%, respectively, with good depth perception. The same was not true at 635 nm due to 

low diffraction efficiencies (<10%, due to poor phase control), despite high transmission 

efficiencies (>80%, due to c-Si low absorption at this wavelength). This occurred because the 

semi-axes size variation blueshifted the operating wavelength. Nonetheless, the proposed 

structure was able to successfully capture depth effect on the reconstructed images, with potential 

applications in diverse areas such as visual arts, entertainment, and security. The latter in 

particular will certainly benefit from the increased degree-of-freedom conveyed by stereoscopic 

information. 

Most of the proposed metasurfaces in the literature are static, which means that it is 

unchangeable once a functionality is encoded on it. This constrain could be removed if the wave-

matter interaction of the structure could be tuned. Therefore, reconfigurable metasurfaces could 

be encompass several exciting applications such as dynamical holography, switchable optical 

devices such as metalenses with controllable focus, beam steering to mention a few.  There are 

several ways to perform this control and it has been already reported with liquid crystals [104], 

phase change materials [105, 106], graphene [107], carrier density control [108], mechanical 

control [109] to mention a few. Nevertheless, an ultrathin dynamical holographic display based 

on metasurface concept still have not been achieved yet, with a proof-of-concept demonstrated 

only at microwave regime [110]. Therefore, as a future work, we seek to contribute to this area 

and study approaches for the development of this concept at optical regime. 

Furthermore, the versatility allowed by a metasurface and its ultrathin thickness make it a 

platform suitable for biosensing applications. For instance, by using structures with resonances 

possessing high quality factors, a refractive index and temperatures metasurface sensor with 

sensitivities of of 242.44nm/RIU and 50.47 pm/°C was reported [111]. Another work reported a 

plasmonic metasurface capable of sensing nonspecific BSA protein binding [112]. Therefore, this 

platform has been proven suitable for biosensing and another future work aims to develop a 

metasurface platform to operate as compact and highly sensitive biosensors. 
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IV. Design, fabrication and characterization 

of aberration-free metalenses 

Adapted with permission from Martins, Augusto, et al. "On metalenses with arbitrarily wide 

field of view." ACS Photonics 7.8 (2020): 2073-2079 [113]. Copyright (2018) American 

Chemical Society.  

Adapted with permission from Haowen Liang, et al."High performance metalenses: 

numerical aperture, aberrations, chromaticity, and trade-offs," Optica 6, 1461-1470 (2019)  

[114] © The Optical Society.  

Copies of the permissions can be found in appendix E.2. 

IV.1. Introduction 

The current advances in optical device integration have allowed unprecedented 

miniaturization of optical systems in the most diverse applications, such as high numerical 

aperture (NA) microlens arrays [115], ultracompact multi-lens objectives [116], micro-optical 

elements [117], to mention a few. However, these devices still rely on conventional refractive or 

planar lenses, which poses a limit to further miniaturization. Moreover, conventional lenses 

require laborious fabrication steps to mould their surfaces properly, partially alleviated with the 

use of spherically shaped lenses despite their worsening of third order (Seidel) aberration. These 

aberrations usually require several lenses in tandem to eliminate them [1], posing an additional 

limit to miniaturization. Conventional planar lenses, such as diffractive and Fresnel plate, demand 

even more complex fabrication methods that make them inadequate for optical integration [118]. 

Additionally, diffractive lenses suffer from the generation of spurious diffractive orders that lead 

to unwanted focuses and ghost imaging. 

Metalenses are an emerging technology that uses nanostructures to modulate the amplitude 

and phase of an optical beam, thus achieving optical functionalities that can replace or improve 

bulk optical systems [36, 37, 42, 114, 118, 119]. A canonical example for this capability is the 

development of the hyperbolic metalens, which is free from spherical aberrations [120, 121], a 

property that is difficult to obtain in bulk optics, especially with single elements. The metalens 

paradigm, in contrast, can be readily designed to impose a hyperbolic phase profile, thus leading 

to diffraction limited resolution [58, 118, 121-125]. More interestingly, metalenses can also be 

designed to realise functionalities that are impossible to achieve in bulk optics. We exploit this 

new degree of freedom for metalens design by addressing the problem of field of view (FOV), 

which has not received much attention so far. Indeed, in many applications, such as imaging 
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systems, FOV is the crucial parameter, but metalens designs that have been put forward to date 

are limited to procedures that reduce off-axis aberration via numerical optimisation [126], often 

combined with a doublet system [127, 128]. While ingenious, these approaches are limited to 

moderate Numerical Apertures (NA) and do not explore the physical mechanisms limiting the 

FOV. An alternative strategy is to relax the requirement of diffraction limited resolution in order 

to achieve a wide FOV (WFOV) in a singlet system  [129-131].  

In this project, we demonstrate WFOV imaging with a single layer metalens, reaching a  

FOV > 170° and an NA of 0.8. The design trades off FOV against the diffraction limited 

resolution equivalent to an NA of 0.27, which is however sufficient for most imaging applications, 

including smartphones. I discuss the physical properties of the WFOV metalens and, using Fourier 

analysis, we show that the WFOV metalens achieves an arbitrarily large FOV by mimicking a 

bulk spherical lens with infinite refractive index and infinite radius of curvature. The WFOV is 

therefore unique in that its bulk counterpart is impossible to obtain. Finally, we compare the 

WFOV metalens to the diffraction limited (DL) hyperbolic metalens, showing that they are 

complementary in the sense that the FOV of the former and the resolution of the latter improve 

monotonically with the NA. 

These findings were published in the journal Optica [114] and ACS photonics [113].     
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IV.2. Metalenses field of view (FOV) analysis  

The analysis starts by assessing how the oblique incidence affects the point spread function 

(PSF) of metalenses with three different phase profiles: Hyperbolic, numerically optimized and 

spherical profile. The first, shown in equation (  IV-1 ), where n is the background refractive 

index, k0  is the freespace wavenumber and f  is the focal length of the lens, was successfully 

adopted by the metasurface community because it does not suffer from spherical aberrations and 

can reach diffraction limited focusing at normal incidence [58, 120]. For a high NA, however, 

this advantage is offset by the introduction of coma and other off-axis aberrations, which severely 

limit the FOV. To overcome this problem, we optimize the phase profile to minimize the off-axis 

aberration by allowing some spherical aberration to exist. Following the approach used in the 

literature, this is done by including polynomial functions of the radial coordinate as shown in 

equation ( IV-2 ). The optimization process is described in the appendix. Finally, we investigate 

a metalens with the phase profile equivalent to a spherical lens with radius of curvature ρ, as 

shown in equation ( IV-3 ) [3]. Notice that the radius of curvature and the focal length are 

constrained by the relation Δ𝑛𝑛 = 𝜌𝜌
2𝑓𝑓

, where Δ𝑛𝑛 is the difference between the equivalent lenses 

inner refractive index and the surrounding refractive index. 

Figure IV-1 shows longitudinal cuts of the focused fields by the three lenses. The focal length 

is 15 μm and NA = 0.8, where 𝑁𝑁𝑁𝑁 = 𝑅𝑅
�𝑅𝑅2+𝑓𝑓2

 , R is the radius of the metalens and Δ𝑛𝑛 = 0.5 

corresponding to a glass lens for the spherical profile. These simulations were done using the 

angular spectrum formalism [3]. More details are given in section C.4 Angular spectrum 

formalism of the appendix. 

For normal incidence, the optical field is tightly focused at the focal distance for all cases 

[Figures IV-1 (a), (d) and (g)]. The plots show that the hyperbolic has the tightest aberration-free 

focal spot. Nevertheless, when the angle of incidence is increased to 30°, the focal spot of the 

hyperbolic lens is strongly distorted due to off-axis aberrations, as seen in Figure IV-1 (b). This 

aberration is also clearly apparent from the PSFs cuts along the x direction shown in Figure IV-1 

(c) for different angles of incidence. Notice how more energy is cast into the lateral lobes of the 

PSF as the angle of incidence is increased and how the peak decreases accordingly.  

𝜙𝜙ℎ𝑦𝑦𝑦𝑦(𝑟𝑟) = −𝑘𝑘0𝑛𝑛 ��𝑓𝑓2 + 𝑟𝑟2 − 𝑓𝑓� (  IV-1 ) 

𝜙𝜙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟) = −𝑘𝑘0𝑛𝑛 ��𝑓𝑓2 + 𝑟𝑟2 − 𝑓𝑓� + �𝑎𝑎𝑖𝑖 �
𝑟𝑟
𝑅𝑅
�
2𝑖𝑖

5

𝑖𝑖=1

 ( IV-2 ) 

𝜙𝜙𝑠𝑠𝑠𝑠ℎ(𝑟𝑟) = −𝑘𝑘0𝑛𝑛
𝜌𝜌2

𝑓𝑓
 �1 −�1 −

𝑟𝑟2

𝜌𝜌2
� ( IV-3 ) 
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Figure IV-1 –   Diffraction reconstructions of three metalenses (f=15 µm) with the following phase profiles: (a-c) Hyperbolic, 

(d-f) hyperbolic superimposed with optimized polynomial and (g-i) spherical. The first and second columns show the 

longitudinal field distributions at normal and at oblique (30°) incidence, respectively. The third column shows the resulting 

point spread function (PSF) at 0° (black), 7.5° (red), 15° (green), 22.5° (blue) and 30° (orange). The operating wavelength is 

532 nm. The dashed boxes in (d) and (e) highlight that the corresponding phase profiles impose an effective aperture onto the 

lens.  These simulations were done using the angular spectrum formalism [3]. More details are given in section C.4 Angular 

spectrum formalism of the appendix.  

The problem of coma is clearly important and a substantial research effort has already been 

poured on it [120, 126-128, 132, 133]. Most attempts to reduce coma, however, have relied on 

numerical optimisation [127, 128, 133]. Typically, a polynomial function is superimposed onto 

the hyperbolic phase profile and its coefficients are optimised, as exemplified by the second term 

of equation ( IV-3 ). An example of a field profile obtained with such a procedure is shown for 

perpendicular and angular incidence in Figures IV-1 (d) – (f), clearly showing that the coma is 

much reduced, although careful observation of the PSF reveals that the focal spots are slightly 

broadened compared to Figure IV-1 (c). The reason for this broadening is apparent from Figure 

IV-1 (d); even though the incident plane wave covers the entire metalens, the rays contributing to 

the focus emerge only from a limited area, corresponding to approximately half the radius of the 

lens. This means that the optimised phase profile induces an effective aperture onto the metalens 

and reduces the NA. Interestingly, this effective aperture (highlighted by the dashed squares) is 

laterally displaced when the angle of incidence is increased, as indicated in Figure IV-1 (e). 

In fact, the appearance of an effective aperture and its displacement as function of incidence 

angle is the signature of a spherical phase profile (equation ( IV-3 )). Accordingly, I added a 

spherical profile to the comparison; Figures IV-1 (g) and (h) show the corresponding field profiles 

and effective aperture. The “moving” aperture appears again and the focal spot is unchanged 

irrespective of the angle of incidence, so the lens is free of coma. This observation is even more 
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apparent from the PSFs cuts shown in Figure IV-1 (i), which are nearly identical for all angles of 

incidence between 0 and 30 degrees. 

This comparison points to the conclusion that the numerical optimisation procedure 

essentially converts the hyperbolic into a spherical phase profile, which points to a fundamental 

limitation of this approach.  It also highlights the difficulty of correcting both spherical and off-

axis aberrations simultaneously in a single metasurface. For example, the hyperbolic phase profile 

corrects for spherical aberrations yet introduces coma, while the spherical profile does the 

opposite. Multi-layered metasurfaces, in contrast, can correct for both aberrations at the same 

time [127, 128, 133] at the cost of fabrication complexity. The trade-offs that are most favourable 

will depend on the specific application.   

Studying the Fourier Transform (FT) of the field distribution helps to understand the 

problem. Figures IV-2 (a) and (e) show the two-dimensional FT of the field distribution right after 

the metalens with spherical and hyperbolic phase profiles, respectively, as a function of k-vector. 

The light line is shown as a dashed white circle: any k-vector component outside the circle is 

evanescent and therefore does not contribute to focusing. Figures IV-2 (c) and (g) (red lines) show 

a corresponding line plot through the origin with the light line now indicated as a dashed black 

line. The hyperbolic phase profile has its Fourier components tightly confined inside the light 

line, and so gives the best performance for perpendicular incidence. The fact that the amplitude 

of its k-vector components increases towards the light line explains its high performance at normal 

incidence, because a large amplitude of high k-vector components ensures a tight focal spot. The 

spherical phase profile, on the other hand, has components outside the light line, i.e. the lens 

imposes k-components above �𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2  >k0 onto the incoming beam. These components are 

evanescent and do not contribute to the focal spot. Furthermore, in real space, they are generated 

at the edge of the metalens, and are the cause of the effective aperture; so, at first sight, they 

appear wasted. When the input angle changes, however, it is precisely the presence of these high 

k-components that avoids coma, because the high-k components become available at higher input 

angles and then contribute to image formation. This effect is apparent when comparing k-space 

for perpendicular incidence (red lines in Figures IV-2 (c) and (g)) with angular incidence (blue 

lines in Figures IV-2 (c) and (g)). The effect of angular incidence is to increase the k-vector in 

that particular direction, thereby moving the spectrum sideways (see also Figures IV-2 (b) and 

(f)). The hyperbolic lens now loses k-vectors, thereby losing focusing power; in particular, the k-

vector distribution becomes very asymmetric, which is a clear signature of coma and other off-

axis aberrations. For the spherical lens, however, the k-vector components that were previously 

evanescent now come into play and move into the light line. Overall, its k-vector distribution 

remains largely similar to the un-shifted distribution at perpendicular incidence, so the focusing 
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performance will also be similar. Therefore, the imposition of the effective aperture by high k-

vector components and the reduction of coma are directly related and are not accidental. 

 
Figure IV-2 - Fourier transform amplitude of the field at the exit of the spherical metalens at normal (a) and oblique (b) 

incidence as a function of normalised k-vector. (c) Corresponding line plot through the origin showing normal incidence (red) 

and oblique incidence (blue) (e-g) show the same for the hyperbolic metalens. The light line is shown by the white dashed circle 

in (a), (b), (e), and (f) and as dashed black lines in (c) and (g). Ray tracing of a bulk spherical lens is shown in (d) for 

perpendicular incidence and (h) for oblique incidence, superimposed onto the field distributions of an equivalent metalens 

with spherical phase profile.  

The origin of the effective NA can also be appreciated from a ray optics point of view, as we 

illustrate with a conventional (“bulk”) lens with spherical profile. Figure IV-2 (d) shows the ray 

tracing picture of such a lens for normal incidence and we superimpose the field profile of an 

equivalent metasurface with spherical phase profile (as in equation ( IV-3 )). Notice that the 

effective aperture of the metalens coincides with the area of the rays forming the focal spot of the 

bulk lens. Figure IV-2 (h) shows the same for incidence at 30 degrees and we note that the analogy 

largely holds. So, a conventional spherical lens also imposes an effective aperture.  This effective 

aperture does not act as a physical aperture, however, since light entering the high gradient region 

may pass through undiffracted, producing haze and reducing image contrast. Therefore, it may be 

advantageous to use a physical aperture, as e.g. provided by a multilayer lens [127, 128]. 

It is worth emphasizing at this point that it is not possible to obtain a single phase profile that 

corrects perfectly for coma and for spherical aberration at the same time [120, 126]. Any phase 

profile will be a trade-off between NA, spherical aberration and coma, so the challenge is to find 

the best compromise. 

An alternative compromise between NA, spherical aberration, and coma is to immerse a 

spherical profile metalens into a high refractive index medium. The image quality of this 

arrangement would be limited by spherical aberrations, yet high NA would be achievable without 

coma. For example, we found that immersion in an oil of refractive index n = 1.56 raises the 

maximum effective NA to 1.56×0.707 = 1.1, without image quality deterioration compared to the 
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non-immersed case. The possibility of oil immersion as offered by high refractive index materials, 

therefore, is important for achieving coma-free and high NA metalenses.  

IV.3. Spherical-phase profile analysis 

As shown in the previous section, the diffraction limited hyperbolic profile suffers from 

strong off axis aberrations and trying to fix it with optimization boils down to the spherical profile. 

But a phase profile equivalent to what radius of curvature would give result in the best metalens? 

It is known that the focal length and radius of curvature are constrained by the refractive index 

contrast of the lens, as described by the equation Δ𝑛𝑛 = 𝜌𝜌
2𝑓𝑓

. Nevertheless, a metalens can impose 

any phase profile and is not constrained by this relation whereas bulk lenses are subject to its 

inner  refractive index.  

In order to understand how the physics of a spherical phase profile based metalens relates to 

bulk optics, consider a conventional spherical lens with light incident at oblique incidence at some 

angle θ = 30°, as shown in Figure IV-3 (a) for a conventional lens with R = 500 μm and f = 500 

μm (ray tracing obtained using Comsol). The focal distance f of the spherical lens is given by the 

ratio of the radius of curvature R and the refractive index contrast Δn between the lens and the 

surrounding medium (f = ρ/2Δn). It is obvious from the equation that the same focal length can 

be achieved by keeping the ratio of radius and index contrast constant. Conventional optical 

systems are constrained to index contrasts of typically ∆n < 1 by the availability of suitable 

materials, so this ratio is not explored in practise. Metalenses do not have this constraint, however, 

and they can be designed to mimic any radius and any refractive index. Figure IV-3  explores this 

opportunity. For example, Figure IV-3 (b) shows the example of a lens with twice the radius and 

twice the index contrast (R  = 1000 μm, Δn = 1) of the conventional lens. Note that the ray 

convergence is already improved compared to the lens of Figure IV-3 (a). The convergence then 

improves further as the radius of curvature is increased while keeping the focal length constant, 

as illustrated in Figure IV-3 (c), for which R  = 1500 μm, Δn = 1.5. 
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Figure IV-3 - Comparison between the WFOV metalens and spherical bulk lens. Ray traces for a spherical bulk lens (NA=0.65) 

for oblique incidence (θ=30°) and a radius of curvature of (a) 500 μm, (b) 1000 μm, and (c) 1500 μm. (d) FT amplitude of the 

field generated by the spherical lenses in (a) (black line) and (c) (blue line); the FT in (d) is for perpendicular incidence and 

(e) for oblique incidence (θ=30°). 

This improvement of convergence with increasing radius and refractive index can be readily 

understood via the Fourier Transform (FT) of the field distribution immediately after the lens for 

perpendicular incidence (Figure IV-3 (d)), i.e. by considering k-space. The FT of the large radius 

lens (Figure IV-3 (d)- blue line) is flatter than that of the conventional lens (Figure IV-3 (d) - 

black line), which increases the symmetry of the Fourier components (see sections C.2 and C.3 

on the Appendix for more details). Symmetry in k-space is important because it ensures that the 

rays contributing to image formation from opposite sides of the lens have equal strength, thus 

forming a well-defined spot. For oblique incidence (Figure IV-3 (e)), this symmetry is 

compromised, unless the FT is flat, which is the case for large radius spherical lenses (see also 

Figures IV-5 (a) – (b). Note that the asymmetry in k-space is particularly pronounced for the 

hyperbolic lens, which explains its very limited field of view [114]. 

These insights clarify the optical performance of the WFOV lens. Indeed, the parabolic 

profile is obtained in the limit of both ρ and Δn going to infinity while keeping f = ρ/2Δn constant, 

as shown in Equation ( IV-4 ). 

 

The spectral flattening of the spherical lens can be readily seen by the Fourier Transform of 

the spherical phase profile as shown in appendix C.3 Spectrum flattening of the spherical phase 

profile.  

Since a metalens with parabolic profile corresponds to the limit of a spherical lens with 

infinite radius and infinite refractive index, we conclude that the WFOV metalens does not have 

a bulk counterpart. We notice that a bulk lens with parabolic profile is not equivalent to the WFOV 

lens, since their optical characteristics coincide only for paraxial rays. 

𝜙𝜙(𝑟𝑟) = lim
(𝜌𝜌,Δ𝑛𝑛)→(+∞,+∞)

𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.

−𝑘𝑘0𝑛𝑛
𝜌𝜌2

𝑓𝑓
 �1 −�1 −

𝑟𝑟2

𝜌𝜌2
� = −

𝜋𝜋𝑟𝑟2

𝜆𝜆0𝑓𝑓
𝑛𝑛 ( IV-4 ) 
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Notice that the limit of the spherical lens when the radius and refractive index go to infinity, 

keeping the focal length fixed, is given by a quadratic profile. One might then think that the 

WFOV lens behaves just like a bulk lens with a quadratic profile. However, I emphasize that this 

is not the case, however, because their behaviour is only equivalent for paraxial rays, as illustrated 

in Figure IV-4, which shows a ray tracing comparison between the WFOV metalens (left) and 

quadratic bulk lens (right).  

 
Figure IV-4 - Comparison between the WFOV metalens (first column) and an equivalent bulk quadratic lens (second column) 

at different angles of incidence . The red dashed lines mark the output aperture of the lenses and focal positions at normal 

incidence, which coincides at oblique incidence for the quadratic metalens. The blue dashes line marks the bulk lens focal 

position for different angles of incidence. All lenses have a focal length of 750 μm with NA = 0.8. 

Notice that the WFOV metalens, for being flat, focuses light at the same distance (750 µm), 

irrespective of the angle of incidence. The focal point of the bulk quadratic lens, in contrast, is 

dependent of the angle of incidence (which is a manifestation of Petzval curvature aberration). 

This effect is highlighted by comparing the blue dashed line in Figures IV-4 (d)-(f), that mark the 

focal point for different angles of incidence, with the red dashed line that marks the focal distance 

at normal incidence. Notice how the focal length of the bulk lens increases at oblique incidence, 

tracing the Petzval field curvature. 

IV.4. Optical performance of a WFOV metalens 

The optical characteristic of the WFOV lens can also be understood intuitively by conducting 

a geometrical analysis, where the effect of angular incidence is to add a linear term to the phase 

profile. As shown by Pu et.al. [129], the parabolic profile converts the linear phase into a change 

of the origin of the coordinate system, so that the effect of angular incidence is only a translation 

of the focus spot away from the centre. 
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The FT of the WFOV lens is further explored in Figure IV-5 (a) for NAs of 0.4 (black line), 

0.65 (blue line) and 0.9 (red line). Note that, the larger the NA, the wider the FT. In fact, for an 

NA ≈ 0.9 the FT covers the range of normalized k vectors from -2 to 2, i.e., it covers a region 

twice as large as the light line, which makes the FT invariant for oblique incidence (Figure IV-5 

(b)  ), thus resulting in a FOV = 180°.  We note a very interesting difference of lens performance 

on NA; for most lens designs, including the hyperbolic design, it is the spatial resolution which 

increases with increasing NA. For the WFOV lens, however, it is the FOV that increases with 

increasing NA. This interesting behaviour is explored in Figures IV-5 (c)-(d).  As expected, the 

FWHM of the DL (hyperbolic) lens (Figure IV-5 (c) – black line) decreases monotonically as the 

NA increases, while the FWHM for the spherical (blue line) and WFOV (red line) lenses remain 

constant beyond an NA of 0.2 (spherical) and ≈ 0.3 (WFOV). The FTs of the WFOV and DL 

lenses are very similar up to an NA ≈ 0.3 (see section C.2 Fourier Transforms of quadratic 

(WFOV) and hyperbolic (DL) field profiles. on the appendix for the Fourier Transform profiles), 

and consequently their FWHM are identical in the low NA regime; for higher NAs, however, 

their FTs differ, which is a manifestation of spherical aberrations and limits the FWHM of the 

WFOV lens.  

 
Figure IV-5 – (a) Fourier Transforms of the WFOV lens for an NA of 0.4 (black), 0.65 (blue) and 0.9 (red), for perpendicular 

incidence. (b) same as red line in (a), but for oblique incidence. (c) Spatial resolution (2FWHM⁄λ0) and (d) FOV as a function 

of NA for the DL (black), spherical (blue) and WFOV (red) metalenses. The operating wavelength is 532 nm and focal length 

is 500 µm for all cases. All simulations were performed using the angular spectrum formalism. More details are given in section 

C.4 Angular spectrum formalism of the appendix. 

In terms of field of view, however, the roles are reversed. The FOV of the DL lens now 

rapidly decreases as the NA increases (Figures IV-5 (d) – black line –  see section C.5 FOV 

characterization on the appendix for detailed information on how the FOV is quantified), while 

the FOV of the WFOV lens (red line) increases monotonically with NA, until it reaches 180° for 
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NA ≈ 0.8. Note that the FOV of the spherical lens (blue line) saturates at a value of ≈ 20°. This 

limitation of the spherical lens highlights the unique advantage of the WFOV design: even though 

the WFOV lens is fundamentally based on the spherical design, it achieves much higher 

performance by going to the R,n → +∞ limit. Therefore, while the spatial resolution of the DL 

lens increases with NA (at the expense of FOV), it is the FOV that increases with NA for the 

WFOV lens. We note, however, that the spatial resolution of the WFOV lens can be readily 

improved by using oil immersion, while the limited FOV of the DL lens can only be improved 

with a suitable phase corrector, e.g. in a doublet configuration [127, 128].   
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IV.5. Characterization 

IV.5.1. Materials and methods 

a) Metalens design  
The metalenses are realised using an array of 230 nm tall c-Si posts on a sapphire substrate, 

similar to the design I have used for the metasurface holograms, as show in section III.1.2 

Metasurface design. More details are provided in the Appendix, Section C.1 Phase and 

transmission maps, including the angle-dependent phase maps.  Micrographs and a photograph 

are shown in Figures IV-6 (a)-(c), highlighting the excellent fabrication quality despite the very 

small period of 190 nm (see item  b) Fabrication of this section, for details on fabrication and the 

imaging system, and for more micrographs). The imaging system (Figure IV-6 (d)) integrates the 

metalens with a complementary metal oxide semiconductor (CMOS) sensor (Sony IMX219) in a 

3D printed box. I fabricated two metalenses: a WFOV using a quadratic profile [129-131], and a 

diffraction limited (DL) metalens using a hyperbolic profile as a reference. The phase profiles of 

the metalenses are defined in equations (  IV-1 ) and ( IV-4 ). 

 
Figure IV-6 - (a) and (b) show SEM micrographs of the array of c-Si nanoposts forming the metalens. The scale bars are 400 

nm (a) and 3 μm (b). (c) photograph of the fabricated metalenses. The units of the ruler are in mm indicating the 2 mm 

diameter. (d) Setup of the 3D-printed system encapsulating the metalens with a CCD camera. 

b) Fabrication 
The metalenses were fabricated by me on commercially available 230 nm thick c-Si (100) 

wafers epitaxially grown on a sapphire substrate (from The Roditi International Corporation 

Limited.). The sample was cleaned using acetone, isopropyl alcohol (IPA) and oxygen plasma. It 

was subsequently spin-coated with a 300 nm positive electron beam resist layer (AR-P 6200.13, 
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AllResist GmbH) followed by a 60 nm charge dissipation layer (AR-PC 5090, AllResist GmbH). 

The structure was then patterned using an e-beam system (Voyager, Raith GmbH) at a dose of 

117 μC/cm2 followed by a resist development in xylene for 2 minutes. The pattern was transferred 

to silicon using reactive ion etching. SEM micrographs of finished metalenses are shown in  

Figure IV-7.  

 
Figure IV-7 - SEM micrographs of the fabricated metalenses. 

After the metalens was fabricated, I proceeded to the mask fabrication using lift off. The 

procedure is illustrated in Figure IV-8. I spun LOR as sacrificial layer for 60 seconds at 5000 rpm 

and finally baked at 180°C for 5 minutes. Then I spun negative resist SU8 2000.5 at 500 rpm for 

10 seconds followed by 60 seconds at 5000 rpm and finally baked the sample at 65 °C, 95 °C and 

65 °C for 1 minute, 2 minutes and 1 minute, respectively. The aperture was then patterned onto 

the resist using an e-beam system (Voyager, Raith GmbH) at a dose of 6.75 μC/cm2. This dose 

overexposes the SU8 but since the features were in mm (apertures) scale they were   not 

significantly affected and it was safer to ensure that the whole exposed region remained for the 

following steps. It should be noticed that some markers were left on the sample during the 

metalens fabrication to align the mask with it. Then a post-exposure bake (2 minutes at 95 °C plus 

two 1-minute long ramps at 65 °C) and development for 2 minutes in EC solvent were made. 

After this step, only the exposed areas remained on the SU8 with a layer of LOR covering the 

whole sample under it. The uncovered LOR regions were then developed on MF-319 for ~ 16s 

and rinsed in DI water. Then a layer of 100 nm of Aluminium was evaporated over the sample. 

Finally, the remaining LOR+SU8 layer was lift off on MICROPOSIT® REMOVER 1165 at 60 

°C.  Figure IV-9  shows a picture with some metalenses samples with the aluminium aperture. 

The defects around the bottom metalens are due the exposure the resist suffered by simply 

imaging the sample on the e-beam when I was searching for the markers. 
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Figure IV-8 – Lift-off fabrication steps. 

 

 
Figure IV-9 - Metalenses with aluminium apertures fabricated with lift-off technique. 

c) Camera (imaging system) 
 The metalens was integrated with a CMOS sensor (Sony IMX219 8-megapixel sensor) to 

form a metalens camera. The camera set-up is shown in Figures IV-10 (a)-(c). Figure IV-10 (a) 

shows a schematic of the metalens position with respect to the CMOS sensor, where the red arrow 

indicates that the CMOS position is adjustable to focus the image. Figures IV-10 (b)-(c) show the 

integrated system without and with the lid on, respectively. The imaging system uses a 

monochromatic light source, as indicated in Figure IV-10 (d). In order to better show the FOV, 

parts of the image were magnified with the system shown in Figure IV-10 (e).  
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Figure IV-10 - (a) shows a representation of the 3D printed metalens camera focusing. The metalens is fixed in the front part 

(metalens holder in (b), which shows a side view of the inner part of the camera) and the focus is adjusted by moving the 

CMOS holder position through the front screws, as pictorially represented by the red arrow in (a). (c) Shows a render image 

of the metalens camera mounted with the lid. The monochromatic imaging setups are drawn in (d). (e) System for 10x 

magnified imaging, using an objective and a tube lens. The objective and diffuser in front of the laser are used to diverge the 

beam and eliminate speckle noise. 

d) Point Spread Function (PSF) characterization setup 
 The PSFs were measured using a rotation stage, as shown in  Figure IV-11. The metalens 

was illuminated by a laser at a wavelength of 532 nm, and the corresponding PSFs were then 

imaged onto the CMOS sensor. 

 
Figure IV-11 - Point spread function characterization setup. The metalens, objective, tube lens and camera were mounted in 

a rotation stage. 
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IV.5.2. Point spread function (PSF) characterization 

The extremely large FOV of the WFOV metalens is demonstrated by analysing the Point 

Spread Function (PSF) shown in Figures IV-12 (a) and (b) for different angles of incidence (see 

section IV.5.1.d) Point Spread Function (PSF) characterization setup for details on the 

experimental setup). The normalized PSF of the WFOV metalens is virtually unchanged for an 

incoming angle as high as 89° (Figure IV-12 (a)), while the normalized PSF of the DL lens is 

already badly distorted for an angle of only 2° (Figure IV-12 (b)). The focusing efficiency of the 

WFOV metalens is virtually unchanged up to an angle of incidence of 20° and reduces for higher 

angles due to a reduction in the transmission efficiency. A more detailed analysis of the efficiency 

is shown in section IV.5.3 Focusing efficiency .  The angular dependence of the PSFs full width 

at half maximum (FWHM) in the x-direction in Figures IV-12 (a)-(b) is shown in Figure IV-12 

(c), comparing experimental and theoretical (see Appendix, Section C.4 Angular spectrum 

formalism, for details on the PSF simulation method). For perpendicular incidence (0°), the DL 

lens has a diffraction limited FWHM, which explains its high performance at the very centre of 

the image, while the FWHM of the WFOV lens is twice as large  (notice in Figure 12 (c) that the 

measured FWHM of the DL lens is larger than the theoretical, which I attribute mainly to the 

objective used in the imaging of the PSF). The FWHM of the DL lens, however, rapidly increases 

for small angles of incidence, while the FWHM of the WFOV lens is constant up to angles as 

high as ±89°. 

Notice that the WFOV single layer metalens achieves a FOV > 170° and a FWHM ~ 2λ0, 

which is comparable to bulk optics WFOV lenses. For example, the wide and ultra-wide lenses 

of the iPhone 11 Pro Max have a FOV = 60°, FWHM ~ 1.87λ0 and a FOV = 120°, FWHM ~ 

2.26λ0, respectively [134, 135]. As another example, the Nikkon AS-Fisheye NIKKOR 8-15mm 

f/3.5-4.5E ED system has a FOV = 60° and FWHM ~ 3.54λ0. 
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Figure IV-12 - PSFs for different angles of incidence for the WFOV (a) and the DL (b) metalenses. The x axis in (a) and (b) is 

centred at the maximum of each PSF. (c) Dependence of the FWHM on the angle of incidence for both lenses.  Focal length is 

750 μm, diameter is 2 mm, operating wavelength is 532 nm and NA=0.8. 

IV.5.3.  Focusing efficiency  

a) Experimental 
The angle dependent focusing and transmission efficiencies of the quadratic and hyperbolic 

metalenses are shown in Figure IV-13 (a) (quadratic) and Figure IV-13  (b) (hyperbolic) for both 

s (black lines) and p (blue lines) polarizations. The theoretical efficiencies, determined by 

numerical simulations, are shown in Figure IV-14 of the next item of this subsection. The focusing 

efficiencies were determined by integration of the energy in the focal spot using a circular aperture 

with a radius of 7.5 µm. The dotted lines show the transmission efficiencies. To better assess the 

metalens performance, the experimental focusing efficiency with respect to both incident (solid 

lines) and transmitted power (dashed lines) are shown in Figure IV-13. Comparing these two 

efficiencies is helpful to determine whether a reduction in the focusing efficiency comes from a 

loss of the metalens ability to focus light, or from a loss of the transmitted power itself. Therefore, 

the reduction of the focusing efficiency with respect to the incoming power (Figure IV-13  (a), 

solid lines) is not due to a loss of ability to focus light, but it is rather due to a loss of transmitted 

power itself (Figure IV-13  (a), dotted lines), which is mostly due to the cosine dependent 

projected area. Nevertheless, the efficiency with respect to incoming power (Figure IV-13  (a), 

solid lines) is virtually unchanged up to an angle of 20º. 
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Figure IV-13 - Measured transmission (dotted lines) and focusing efficiencies (dashed and solid lines) as a function of the angle 

of incidence for both s and p polarisations. The focusing efficiency is determined with respect to both incoming power (solid 

lines) and transmission power (dashed lines). (a) efficiencies of the quadratic metalens. At perpendicular incidence, the 

transmission efficiency is 14%, the focusing efficiency with respect to incoming power is 3.5% and the focusing efficiency with 

respect to transmitted power is 25%. (b) efficiencies of the hyperbolic metalens. At perpendicular incidence, the transmission 

efficiency is 31%, the focusing efficiency with respect to incoming power is 23%, and the focusing efficiency with respect to 

transmitted power is 74%. 

As expected, the efficiencies of the quadratic lens are more tolerant at oblique incidence than 

the efficiencies of the hyperbolic lenses. Notice, however, that the efficiencies of the quadratic 

lens (3.5% for focusing with respect to incoming power and 14% for transmission) are much 

lower than the efficiencies of the hyperbolic lens (23% for focusing with respect to incoming 

power and 31% for transmission). This is an intrinsic consequence of a combination of spherical 

aberrations and the effective numerical aperture of the quadratic lens [129], (for a more detailed 

analysis, see the next item). This feature highlights the need of using low loss materials, such as 

c-Si, in the design of WFOV metalenses. Notice that the simulated focusing efficiency (shown in 

Figure IV-14, solid lines) is -13 dB, (i.e., 5%), as compared to the -14.5 dB (i.e., 3.5%) of the 

experimental efficiency (Figure IV-13 (a), solid lines). We therefore achieved an experimental 

focusing efficiency of 3.5/5*100% = 70% compared to the simulated efficiency. 

b) Theoretical 
The measured efficiencies are shown in Figure IV-13 and their corresponding simulated 

values are shown in Figure IV-14. 
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Figure IV-14  - Simulated transmission (dotted lines) and focusing efficiencies as function of the angle of incidence for both s 

and p polarisations. The focusing efficiency is determined with respect to both incoming power (continuous lines) and 

transmission power (dashed lines). (a) efficiencies of the quadratic metalens. At perpendicular incidence, the transmission 

efficiency is 34%, the focusing efficiency with respect to incoming power is 5%, and the focusing efficiency with respect to 

transmitted power is 14%. (b) efficiencies of the hyperbolic metalens. At perpendicular incidence, the transmission efficiency 

is 75%, the focusing efficiency with respect to incoming power is 71%, and the focusing efficiency with respect to transmitted 

power is 95%. 

Now the physical origin of the low efficiencies of quadratic metalenses is investigated. I 

consider a metalens with NA = 0.8 (Figure IV-15 (a)) and a metalens with NA = 0.71 (Figure 

IV-15 (b)). In Figure IV-15 (a) (NA = 0.8), it is highlighted the effective numerical aperture with 

the green colour. The metalens of Figure IV-15 (b) (NA = 0.71) is essentially “cut out” from the 

effective numerical aperture region of Figure IV-15 (a), so that the entire metalens area of Figure 

IV-15 (b) lies inside the effective numerical aperture. 

 Light that impinges on the lens outside the numerical aperture region is mostly reflected, 

while the light that impinges on the lens inside the numerical aperture is mostly transmitted, as 

illustrated in Figures IV-15 (c) and (d) for the metalenses with NA = 0.8 and NA = 0.71, 

respectively; in a hyperbolic lens, however, the entire area contributes to the focusing, as shown 

in Figures IV-15 (e) and (f). 
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Figure IV-15  – (a) and (b) show a representation of a metalens with NA = 0.8 and NA=0.71, respectively. The radii of the 

metalenses are 133 μm (NA = 0.8) and 100  μm (NA = 0.71).  The green and white parts mark the effective aperture and 

evanescent regions, respectively, of the quadratic phase profile. (c) and (d) show the transmitted and reflected field intensities 

(incident field not shown), respectively, of a quadratic metalens with NA = 0.8 and NA =0.71, respectively. The focal length is 

100 μm and the operating wavelength is 532 nm. (e) and (f) show the same for a hyperbolic metalens with the same parameters. 

The field distributions were obtained through FDTD and angular spectrum simulations. These plots are saturated to highlight 

the intensity distribution. 

In order to better understand the origin of the lower efficiency, I considered four distinct 

situations: 1) an ideal quadratic lens, 2) an ideal hyperbolic lens, 3) a c-Si quadratic lens, and 4) 

a c-Si hyperbolic lens. The ideal metalens is a surface that imparts the desired phase discontinuity, 

while the c-Si metasurface is a surface that imparts the phase and transmission obtained from the 

transmission/phase maps. Table IV-1 shows the transmission and focusing efficiencies of these 

four cases.  

We first consider the metalens with NA = 0.71, where the entire lens lies inside the effective 

numerical aperture. Notice that the ideal transmissions (quoted under parenthesis) are very 

similar: 96.5% and 97.0% for the ideal quadratic and hyperbolic metalenses, respectively. The 

focusing efficiencies, however, are very different: 10.6% and 89.4% for the ideal quadratic and 

hyperbolic metalenses, respectively. Since in this case there is no effect of effective numerical 

aperture, and that the transmission efficiencies are very similar, we conclude that the lower 

focusing efficiency of the quadratic lens is due to spherical aberrations. 
Table IV-1 – Simulated ideal and c-Si based metalenses focusing (transmission) efficiencies with quadratic and hyperbolic 

phase profiles with NA = 0.71 and NA = 0.8. The ideal metalens is a surface that imparts the desired phase discontinuity. The 

focal length is 750 μm for all lenses. The operating wavelength is 532 nm. 

Aperture NA = 0.71 NA = 0.8 
Type Ideal c-Si Ideal  c-Si 
Quadratic 10.6% (96.5%) 8.4%  (76.7%) 6% (55%) 5% (34%) 
Hyperbolic 89.4% (97.0%) 70.9% (77.2%) 89.9% (97%) 71% (75%) 
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I then compared the ideal efficiencies with the c-Si metalens efficiencies. The results are 

summarised in Table IV-1. Notice that the focusing efficiency of the quadratic c-Si metalens is 

8.4%, which is close to the ideal 10.6%. These results corroborate the claim that the c-Si is a 

suitable material for WFOV metalens.  

Next, I performed the same calculations, but now considering a metalens with NA = 0.8. The 

results are shown in Table IV-1. Comparing the transmission efficiencies of the ideal quadratic 

lenses, we notice that the transmission is 96.5% and 55% for the NA = 0.71 and NA = 0.8, 

respectively. This drop in transmission comes from the numerical aperture effect, a conclusion 

that can be supported by noticing that the ratio between the metalenses areas is 0.752 = 0.56, 

which is almost the same ratio of the transmission efficiencies (55/96.5 = 0.57). This lower 

transmission efficiency ensues in a lower focusing efficiency of the ideal quadratic lens, which is 

6% for NA = 0.8, as compared to 10.6% for NA = 0.71. 

Finally, I noticed that the focusing efficiency of the c-Si metalens with NA = 0.8 is 5%, 

which is close to the ideal focusing efficiency of 6%, once more corroborating the advantages of 

using c-Si. 

Thus, the lower focusing efficiency of the quadratic metalens is due to a combination of 

spherical aberration and effective numerical aperture. 

IV.5.4. Imaging  

The performance of the WFOV lens is shown in Figure IV-16 (a), in comparison to a DL 

design (Figure IV-16 (b)) using a USAF 1964 chart 6 cm from the lens (see Appendix, section 

C.6 USAF 1951 chart,  for a description of the chart). Figure IV-17 shows the same but with 

another chart at ~5.7 mm from the lens (higher magnification). The metalenses have the same 

numerical aperture of NA = 0.8 which is here defined as D/√D2 + 4f2, where D and f are the lens 

aperture diameter and focal length, respectively. For all lenses, I used a focal length of f = 750 

μm and a diameter of D = 2 mm. It is clear that the image obtained with the WFOV metalens is 

virtually free of aberrations, except for the barrel distortion or “fish-eye” effect, which is typical 

of optical systems with a wide field of view [127]. The barrel distortion arises due to a mismatch 

between the actual displacement of the focal spot (which depends on the sine of the angle of 

incidence), and the paraxial displacement (which depends on the tangent of the angle). The 

measured displacements are shown in Figure IV-16 (d). Because this displacement is predictable, 

it can be corrected in post-processing [136], so it does not constitute a fundamental limitation of 

the lens. 

The image of the DL metalens, in contrast, is strongly blurred by off-axis aberrations. The 

only area where the DL lens achieves superior performance is at the very centre of the image. The 

imaging quality of the lenses is further evidenced on Figures IV-18 (a)-(b) that shows a 
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comparison between the WFOV and DL, respectively, reinforcing the previous conclusions. The 

comparison is highlighted by the rulers, that are zoomed in and shown Figures IV-18 (b)-(d)  for 

the WFOV and DL metalens, respectively. Notice that they are well defined when placed in all 

regions and imaged with WFOV whereas only the on axis  (viewing angle of 0°) is not blurred 

when imaged by the DL metalens.  

 

 
Figure IV-16 - (a) Image of a USAF 1964 chart obtained with the WFOV (quadratic) metalens using the setup of Figure IV-10 

(a); the scale bar is 100 μm long. (b) Image of a USAF 1964 chart obtained with the DL (hyperbolic) metalens using the setup 

of Figure IV-10 (a); the scale bar is 100 μm long and the field of view is 70°. (c) Picture of the USAF 1964 chart with the field 

of view zones highlighted by dashed circles. See Appendix, section C.6 USAF 1951 chart,  for a description of the chart. The 

field of view zones marked by the solid circles (from innermost to outermost) are 20°, 40° and 70°. The radius of the outermost 

circle is 4.2 cm. (d) Focal spot displacement as function of the incident angle. The continuous line shows the product of the sine 

function with the focal length. The distance between the lens and the object is 6 cm.  

 
Figure IV-17 -  (a) Image of a USAF 1964 chart obtained with the WFOV (quadratic) metalens; the scale bar is 100 μm long. 

(b) Image of a USAF 1964 chart obtained with the DL (hyperbolic) metalens; the scale bar is 100 μm long and the field of view 

is 140°. The distance between the lens and the object is 5.7 mm. (c) Picture of the USAF 1964 chart with the field of view zones 

highlighted by green  circles. The field of view zones marked by the circles (from innermost to outermost) are 20°, 40°, 80°, 

90°, 110°. The radius of the outermost dashed circle is 8.14 mm. See Appendix, section C.6 USAF 1951 chart,  for a description 

of the chart. 
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Figure IV-18 - Imaging comparison between WFOV and DL metalenses. (a) and (b) show the obtained images with the WFOV 

and DL metalenses, respectively, using the system of Figure IV-10 (d). (c) and (d) show a zoom in of the scales placed at viewing 

angles of 0, 15 and 30 degrees. These zoomed images were taken with the system of Figure IV-10 (e). The rulers unit is in mm. 

Finally, I tested the WFOV metalens imaging under incoherent illumination (ambient light). 

To minimize the chromatic aberration, I placed a green filter in front of the camera. Figure IV-19 

shows a photo of myself in the optics lab of our group at the Department of Electrical and 

Computer engineering at the University of Sao Paulo taken with the metalens with the filtered 

incoherent illumination. Despite the presence of the barrel distortion, the image presents a good 

quality.   

 

 
Figure IV-19 – Photo taken with WFOV metalens camera under incoherent illumination (ambient light). To minimize the 

chromatic aberration,  a green filter was used.  
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IV.6. Conclusions and future works 

In conclusion, I have demonstrated WFOV imaging with a single layer metalens by relaxing 

the constraint on diffraction limited resolution; in particular, I showed that WFOV metalenses 

mimic a spherical lens in the limit of infinite radius of curvature and infinite refractive index. This 

metalens has an arbitrarily large FOV and can be seen as complementary to the established DL 

(hyperbolic) lens design, in the sense that the FOV of the WFOV lens increases with the NA, 

while it is the resolution that increases with NA in DL lenses. Notice that the WFOV metalens 

achieves a FWHM ≈ 2λ0, which is sufficient for all but the most demanding imaging applications, 

including the very best smartphone cameras, which have a maximum NA of ~ 0.3 (notice that 

FWHM ≈ 2λ is obtained in the DL lens with NA = 0.27). The WFOV metalens opens an 

unprecedented degree of freedom to control the FOV, with achromatic operation presenting the 

next challenge. Overall, I believe that the WFOV metalens will make an important contribution 

to the development of novel wide-field and high-resolution imaging applications, including 

smartphone imaging, virtual reality viewers and miniaturised high-end scientific imaging 

systems. 
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V. Photon Management in Tandem 

Si/Perovskite Solar Cells  

© 2018 IEEE. Reprinted with permission  from Martins, A., Borges, B. H. V., Li, J., Krauss, 

T. F., & Martins, E. R. (2017). Photonic intermediate structures for Perovskite/c-Silicon four 

terminal tandem solar cells. IEEE Journal of Photovoltaics, 7(5), 1190-1196.[137]. 

A copy of the permission can be found in appendix E.3. 

V.1. Introduction 

Control over light propagation is of paramount importance for solar cells. Traditionally, 

highly efficient silicon solar cells use micron-sized pyramids to improve absorption in the active 

layer [138], but recently there has been intense research on employing nanostructures to achieve 

cheaper and/or more efficient solar cells. In this chapter, I show how nanostructures can impact 

the performance of a promising new class of solar cells: the tandem solar cell employing 

perovskites and silicon [139]. 

For solar cells to become competitive with traditional energy sources, their cost per Watt of 

energy needs to be reduced. This cost depends mainly on the installation and manufacturing 

process as well as on the power conversion efficiency. As the average price of silicon has already 

dropped sharply in the last decade [140], the manufacturing costs are already very low and the 

installation costs are difficult to reduce, much of the research effort is now focusing on the 

efficiency problem. Since the efficiency of single junction silicon cells is already approaching its 

theoretical limit of 30% [141, 142], it is  essential to seek low cost alternatives to boost the 

efficiency of silicon solar cells beyond their single junction limit. As a result, there has been a 

surge in interest in tandem solar cells using silicon as the low band gap absorber and perovskite 

as the high band gap absorber [139, 143-147], with the goal of exploiting the higher open circuit 

voltage of perovskites. This interest is justified by the combination of the mature silicon 

technology with the huge potential of perovskites to deliver low cost and highly efficient solar 

cells [139, 148, 149]. Theoretical analyses suggest that, in principle, tandem silicon perovskite 

cells can have efficiencies in excess of 30% [143, 144, 150], while there have been experimental 

reports of tandem silicon perovskite cells reaching 23.4%[145], 18% [147], 25% [151] and even 

28% [152], the latter using an optical splitting system. In order to be technologically viable, 

tandem cells need to be realized as stacked structures, in which case the performance is highly 

dependent on photon management. For example, in two-terminal tandem cells, photon 

management is used to balance the absorption in the different layers in order to match the currents 
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delivered by each cell. In the alternative four-terminal configuration, photon management is used 

to maximize the absorption in the top cell, which has the highest band gap and therefore delivers 

the highest open circuit voltage (Voc). Photon management can be achieved by placing 

intermediate photonic reflectors between the two cells, with the reflectance designed to match the 

top cell absorption band. Examples of intermediate reflectors include homogeneous layers [153, 

154], photonic crystals [153-156], metallic nanoparticles [157], stacked layers [153, 154] and a 

combination of those with randomly texturized surfaces [158]. It is interesting to note that most 

of the attention has been paid to the reflectance at shorter wavelengths, motivated by the desire 

to optimise the top cell performance [153-158], with only a few papers addressing the problem of 

optical  impedance matching into the lower cell [156]. Here, we take the optical impedance 

matching concept further and demonstrate that it is, in fact, the dominant effect in determining 

tandem cell efficiency.  

The majority of intermediate reflectors proposed so far has been targeted at micromorph 

solar cells, with their potential for perovskite/silicon tandem cells yet to be explored [139]. As an 

example of this potential, Lal et al. have concluded that a combination of an intermediate reflector 

with a Lambertian scatterer can overcome the 30% limit in a perovskite/silicon tandem cell [150]. 

However, it is still not clear what the ideal properties of an intermediate structure should be and 

whether these properties can be met by realistic structures. Here, we address this problem by first 

identifying the ideal requirement for intermediate photonic structures in perovskite/silicon tandem 

solar cells in Chapter V.2. Importantly, and counter-intuitively, we show that the intermediate 

structure reflectance into the high band-gap material (perovskite) absorption window does not 

have a significant impact on the overall tandem performance. This conclusion differs from the 

requirement for micromorph solar cells [152, 159]. Instead of boosting the reflectance into the 

perovskite window, we show that the intermediate structure should mainly act as an optical 

impedance matching layer for the spectral region where the perovskite is transparent, i.e., the 

intermediate structure should maximize the optical transmission between the top cell and bottom 

cell. After carefully identifying this requirement, we design simple and robust photonic structures 

that provide broad-band optical impedance matching between top and bottom cells. The designs 

are thoroughly described in Chapter V.3. Finally, in Chapter V.4 the performance of different 

optical impedance matching structures is compared to that of intermediate reflectors, analyzing 

the impact of both classes of photonic structures on the overall performance of the tandem solar 

cell. Chapter V.5 closes this section with some concluding remarks. The conclusion is that simple 

and efficient structures are obtained when only an optical impedance matching layer is used. As 

an example, we show that by varying the reflectivity and cut-off wavelength of the intermediate 

reflector, the highest increase in short circuit current, assuming there is no light trapping, is 18.5% 

compared to a structure without intermediate reflector, and it is achieved for R ≈ 0, i.e. for an 

optical impedance matching layer.  
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V.2. Ideal Intermediate Photonic Structure 

We begin by identifying the ideal requirements for the intermediate photonic structure, which 

is placed between the perovskite and silicon absorbing layers of a 4-terminal tandem solar cell, 

as shown in Figure V-1 (a). The choice of a 4-terminal configuration has two important 

advantages: 1) it does not require current matching and 2) it affords the optical separation between 

the top and bottom cells by means of an optical buffer. This scheme is particularly convenient 

because it allows the cells to be fabricated separately and be subsequently bonded together.  The 

top cell is comprised of an Anti-Reflection (AR) coating, a 400 nm thick perovskite layer and a 

100 nm thick Indium Tin Oxide (ITO) electrode. The top and bottom cells are optically separated 

by a 1 µm silicon dioxide (SiO2) buffer, followed by the photonic intermediate structure. Finally, 

the cell is terminated by a 400 µm thick crystalline silicon (c-Si) absorber covered with a perfect 

mirror. The refractive index of the AR coating is set to 1.45 and the dispersion of all materials is 

shown in Figure V-2. As the choice of the optimum transparent front contact is still under active 

research [160-164], we opted to first perform the calculations without any particular choice of 

front contact and transport layers, so that the results can be kept as general as possible. However, 

the performance characterization for a complete device using ITO as the front contact and 

multiple perovskite thicknesses is provided in section V.4.2 Complete device characterization. 

 

 
Figure V-1  – (a) Intermediate photonic structure on a perovskite/c-Si tandem solar cell. The thickness of each layer is stated 
in parenthesis in front of the material. The refractive index of the AR coating is set to 1.45.  First, the optimum properties of 
an ideal intermediate reflector are identified. The ideal reflector is depicted in (b).  In (c), the absorption in the perovskite 
layer is calculated by choosing a substrate such that the Fresnel reflection coefficient between the perovskite layer and the 
substrate gives the desired ideal reflectance - according to the top inset of Figure V-3 (a). In the second step, (d), the power 
transmitted into the substrate of (c) is transposed to a matched superstrate (with the same real part of refractive index as 
silicon), so as to avoid reflection from the silicon layer. The structure of (d) is then used to calculate the absorption in the 
silicon layer. The light reflected from (d) is considered as loss and does not reach (c) again. 

The ideal properties of the intermediate structure can be identified by considering an ideal 

reflector placed between the perovskite and silicon layers, as shown in Figure V-1 (b). The ideal 

reflector spectrum is shown in top the inset of Figure V-3 (a): it has a fixed reflectance Rir up to 

a cut-off wavelength λirc, after which the reflectance drops sharply to zero.  The impact of the 
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ideal reflector on the solar cell efficiency can thus be assessed by varying the reflectance Rir and 

the cut-off wavelength λirc. 

 
Figure V-2 - (a) Real and (b), (c) imaginary parts of the refractive indices used in the calculations. 

The absorption spectra of the perovskite and silicon layers in the presence of the ideal 

reflector are then calculated in two steps. Firstly, the perovskite absorption and transmission are 

calculated by replacing the entire bottom cell, including the optical buffer, by a substrate whose 

refractive index is calculated from the Fresnel equations to provide the chosen reflectance Rir, as 

shown in Figure V-1 (c). Secondly, the power transmitted into the substrate of Figure V-1 (c) is 

assumed to be the incident power on the matched superstrate of Figure V-1 (d). Notice that the 

power incoming from the superstrate is the total incident power minus the power lost to both 

reflection and absorption in the perovskite layer. The configuration of Figure V-1 (d) is then used 

to calculate the absorption in the silicon layer. The calculations assume perpendicular incidence 
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and AM1.5G solar spectrum. All optical calculations were performed using the Rigorous Coupled 

Wave Analysis (RCWA) [88]. 

The calculated absorptions were then used to determine the performance of the tandem cell. 

Following the procedure described in [143], the bottom silicon solar cell parameters are chosen 

based on the c-Si PERL solar cell [165]; they are: charge carrier collection probability of 0.978, 

fill factor of 82.8% and open circuit voltage 𝑉𝑉𝑜𝑜𝑜𝑜𝑆𝑆𝑆𝑆  given by the following diode equation. 

 

𝑉𝑉𝑜𝑜𝑜𝑜𝑆𝑆𝑆𝑆 =
𝑘𝑘𝑘𝑘
𝑞𝑞

ln�
𝐽𝐽𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆

𝐽𝐽0
+ 1� (  V-1 ) 

 

where k is the Boltzmann constant, T is the temperature in K, q is the fundamental charge, 𝐽𝐽𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆 

is the short circuit current density in units of mA/cm2 and J0 = 4.9 × 10-11 mA/cm2. 

The top perovskite solar cell short-circuit current, open circuit voltage and efficiency are also 

calculated according to [143]. Following Ref. [143], the parameters used in the calculations are: 

diffusion length Ld = 100 nm, luminescence efficiency of 0.55, fill factor of 80% and band-gap of 

1.55 eV. Even though the optimum band-gap is around 1.8 eV., we opted to choose a band-gap 

that is more similar to current perovskite materials. 

 
Figure V-3 - (a) Dependence of the tandem solar cell efficiency on the ideal reflector cut-off wavelength. The efficiency is not 
strongly dependent on the reflectance for cut-off wavelengths inside the perovskite absorption window, but drops sharply for 
high reflectance when the cut-off wavelength reaches the perovskite transparency window. The top inset shows the reflectance 
of the ideal reflector and the bottom inset shows the absorption coefficient of perovskite. (b) Dependency of the silicon 
(continuous line) and perovskite (dashed lines) layers' efficiency on the ideal reflector cut-off wavelength. 

Figure V-3 (a) shows the tandem solar cell efficiency as a function of the cut-off wavelength 

λirc for different values of Rir. According to the ideal reflector spectrum (top inset of Figure V-3 

(a)), the reflectance between the perovskite and silicon layers is fixed to Rir up to the cut-off 

wavelength. For wavelengths above λirc, the ideal reflector acts a perfect optical impedance 

matching layer between perovskite and silicon. As perovskite absorbs up to 800 nm, it is 

reasonable to assume that the ideal reflector optimum parameters should be Rir = 1 and λirc ≈ 800 

nm, since this is the condition that maximizes absorption in the high band-gap (perovskite) layer. 

The results of Figure V-3 (a), however, contradict this assumption: it is clear that the total 

efficiency is not maximized for Rir = 1 and, more importantly, it depends only weakly on Rir for 
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λirc up to ~750 nm. In the wavelength region near cut-off (550 nm < λirc < 800 nm), one would 

expect a strong dependence of the tandem efficiency on Rir because of the strong overlap of high 

solar photon density with the perovskite absorption window. According to Figure V-3 (a), 

however, this dependence is not pronounced and, moreover, it peaks at Rir = 0.7 and λirc = 750 

nm instead of the expected Rir = 1, with only a weak dependence on Rir. Therefore, these results 

lead to the conclusion that high reflectance in the perovskite absorption window is not a strong 

requirement. 

We propose that this counter-intuitive behaviour is a consequence of the balance between 

reflection and thermalization losses, which is best explained by means of an example: assuming 

a perfect AR coating, for Rir = 0, the absorption at the wavelength of 700 nm is about 80% in the 

perovskite layer and 20% in the silicon layer (at this wavelength, the 400 µm thick silicon layer 

absorbs virtually all photons that reach it). For Rir = 1, however, and at the same wavelength of 

700 nm, the absorption in the perovskite layer is about 90%, while in the silicon layer it is 0% 

(since no photon reaches it). This means that Rir = 1 results in higher absorption in the perovskite 

layer and, consequently, lower thermalization losses. Yet, this improvement is more than 

outweighed by the loss of efficiency in the silicon. Consequently, there is a trade-off between 

reflection and thermalization losses that cannot be overlooked in the intermediate structure 

design; essentially, while any value of Rir > 0 increases the absorption in the perovskite layer, it 

also increases the reflection back into free space, so photons are being lost rather than being 

absorbed in the silicon. It is this trade-off that accounts for the low dependency of the tandem 

efficiency on Rir in the spectral region 550 nm < λirc < 800 nm. This compensation is clearly seen 

when the efficiencies for the perovskite and silicon solar cells are plotted independently (Figure 

V-3 (b)): as Rir increases, the efficiency of the perovskite top cell also increases by approximately 

the same amount as the efficiency of the silicon bottom cell decreases. Consequently, the tandem 

efficiency is not strongly affected by a change of Rir.  

Even though the tandem efficiency is fairly constant for λirc up to 750 nm, the reflection loss 

argument starts to become much more relevant in the long cut-off wavelength region (λirc > 750 

nm), where the perovskite layer becomes transparent. In this region, any value of Rir different 

from zero results in reflection losses, so it is of paramount importance to identify a minimum 

requirement for Rir. This requirement can be readily identified through the results of Figure V-3 

(a): it is apparent that the tandem efficiency is almost independent of wavelength for Rir = 0.1, 

thus indicating that the reflection losses should not be higher than 10% in the spectral region 

where perovskite is transparent.  

We have thus gained two key insights into the analysis of the ideal intermediate reflector: 1) 

The device performance is almost independent on the intermediate structure reflectance in the 

perovskite absorption window; 2) the intermediate structure should act predominantly as an 

optical impedance matching layer in the spectral region where perovskite is transparent, with the 
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requirement that the reflection arising from impedance mismatch be kept below 10%. In the next 

section, these insights are used to guide the design of the intermediate photonic structures.  

V.3. Intermediate Photonic Structure design 

As discussed in section V.2, we have now identified that the main role of the photonic 

intermediate structure in perovskite/c_Si tandem cells should be to provide optical impedance 

matching between the top and bottom cells. In order to better understand the role of intermediate 

photonic structures, we now introduce four different designs, shown in Figures V-4 (a)-(d). The 

structures of Figures V-4 (a)-(b) are designed to act as optical impedance matching layers between 

the top and bottom cells, whereas the structures of Figures V-4 (c)-(d) are designed as 

intermediate reflectors. Figure V-4 (a) consists of only a layer of silicon nitride (Si3N4) 

sandwiched between the SiO2 superstrate and the silicon substrate. The structure of Figures V-4 

(b) shows a patterned double layer photonic structure, where corrugated titanium dioxide (TiO2) 

layer is combined with a homogeneous layer of the same material and thickness. The intermediate 

structures shown in Figures V-4 (c) and (d) are Distributed Bragg Reflectors (DBR), comprised 

of 2 and 4 layers, respectively. The design procedures of each structure will be shown separately 

in the following sections.  

 

 
Figure V-4 - (a)-(d) Four different intermediate structure designs. (a), (b) Intermediate structures designed as impedance 
matching layer: (a) A single 80 nm thick silicon nitride impedance matching layer. (b) double layer structure consisting of a 
corrugated TiO2 layer, with a period of 300 nm, followed by a homogenous layer of the same material. There are no 
propagating diffraction orders and the grating acts only as an effective index layer.  (c)-(d) Intermediate structures designed 
as intermediate reflectors. (c) a 2-layer DBR with parameters fine-tuned to optimize the tandem solar cell performance. (d) a 
4-layer DBR with parameters fine-tuned to optimize the tandem solar cell performance. 
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V.3.1. Homogeneous Si3N4 layer 

This intermediate structure is shown in Figure V-4 (a) and its design consists only in 

adjusting the Si3N4 thickness, so it has a Fabry-Perot resonance at a desired wavelength 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚. 

This structure should act as an impedance matching layer to maximize light transmission into 

silicon. Therefore, light reflected at the SiO2/Si3N4 interface must interfere destructively with light 

reflected at the Si3N4/Si interface, which means that their phase difference must be mπ rad, where 

m is an integer number. The phase acquired upon reflection at SiO2/Si3N4 interface is 𝜋𝜋 rad, as the 

index of reflection of silica is smaller than Si3N4. The light that is reflected from Si3N4/Si interface, 

and acquires a  π phase shift upon reflection, must travel through the Si3N4 layer twice before 

getting back to the SiO2 buffer. So, the total phase accumulated by light that gets reflected by the 

Si3N4/Si is 

  𝜙𝜙 = 𝜋𝜋 + 2𝐻𝐻𝑆𝑆𝑖𝑖3𝑁𝑁4𝑛𝑛𝑆𝑆𝑖𝑖3𝑁𝑁4𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚  ( V-2 ) 

 

where 2𝐻𝐻𝑆𝑆𝑖𝑖3𝑁𝑁4𝑛𝑛𝑆𝑆𝑖𝑖3𝑁𝑁4𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚  is the phase accumulated during propagation through the Si3N4 layer 

twice. 𝐻𝐻𝑆𝑆𝑖𝑖3𝑁𝑁4 and 𝑛𝑛𝑆𝑆𝑖𝑖3𝑁𝑁4 are height and refractive index of Si3N4  layer and 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 2𝜋𝜋
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

 is the 

wavenumber. Therefore, the phase difference between the portions reflected at the two Si3N4 

interfaces, and which must equal mπ rad, is 

𝜙𝜙 − 𝜋𝜋 = 2𝐻𝐻𝑆𝑆𝑖𝑖3𝑁𝑁4𝑛𝑛𝑆𝑆𝑖𝑖3𝑁𝑁4𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚 ( V-3 ) 

Isolating 𝐻𝐻𝑆𝑆𝑖𝑖3𝑁𝑁4 in equation ( V-3 ), it follows that  

𝐻𝐻𝑆𝑆𝑖𝑖3𝑁𝑁4 =
𝑚𝑚𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
4𝑛𝑛𝑆𝑆𝑖𝑖3𝑁𝑁4

 
( V-4 ) 

 

Equation ( V-4 ) provides a first guess for the thickness of the Si3N4 layer acting as an optical 

impedance matcher. Figure V-5 shows 𝐻𝐻𝑆𝑆𝑖𝑖3𝑁𝑁4  as function of the resonance wavelength, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚, for 

m=1 (this value of m was chosen because it gives the smaller possible height for the layer).  

 

 
Figure V-5 -Graphic of equation ( V-4 ) for m=1. 

The solar cell efficiency of the silicon layer was calculated as function of the Si3N4 height to 

find which value maximizes the efficiency. To this intent, we calculated the absorption in a 400 
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μm thick silicon layer under the intermediate structure and the SiO2 buffer and terminated by an 

ideal mirror on bottom. The calculations were performed using Si3N4 layer height in the range [0 

nm, 150 nm], that was based on Figure V-5. The range starts at 0 nm to access the efficiency 

without the intermediate structure. Figure V-6 shows the silicon solar cell efficiency as function 

of 𝐻𝐻𝑆𝑆𝑖𝑖3𝑁𝑁4 . Note that it presents a maximum near 80 nm, which we chose to implement in the 

tandem solar cell. Furthermore, this structure increases the efficiency of the silicon bottom solar 

cell by approximately 7% in comparison with the case without it. 

 
Figure V-6 – Silica solar cell efficiency as function of the intermediate Si3N4 homogeneous layer thickness. In the absorption 
calculation, the system consists of a silica layer 400 μm height under the intermediate structure and the silicon buffer and 
terminated by an ideal mirror on bottom. Light comes from the silicon buffer. The calculations assume perpendicular 
incidence and AM1.5G solar spectrum. 

V.3.2. Corrugated TiO2 layer 

The second approach used for impedance matching between silicon and silica layer consists 

of a TiO2 grating, height hg, on top of a homogeneous layer of the same material with height given 

by hl, as represented in Figure V-7 (a). The grating period is p, the ridge width is d and, therefore, 

the fill factor is 𝑓𝑓𝑓𝑓 = 𝑑𝑑
𝑝𝑝

100%. The transmission of the structure was calculated using RCWA 

assuming normal incidence from the silica dioxide buffer. 

The optimization process starts by analyzing the response of the structure as function of the 

fill factor of the grating. To this intent, the other parameters were set as 

• p  = 200 nm 

• hl = 50 nm 

• hg = 50 nm 

Figure V-7 (b) shows the calculated transmission spectrum as function of the fill factor. Note 

that there is a region in which the transmission is over 0.9 in a 300 nm wavelength bandwidth that 

redshifts when the fill factor is increased. Since the wavelength is much larger than its period, the 

grating does not present diffractive behaviour for 𝜆𝜆0 > 800  nm. Consequently, the wave 

perceives the grating as an effective medium whose index is modulated by the fill factor. In this 

sense, the  response of the system is almost period independent, as can be seen in Figure V-7 (c), 

where the transmission spectrum is shown as function of the period. The grating and 

homogeneous layers heights were fixed at 50 nm and the fill factor at 60%, because it provides 
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maximum transmission for 𝜆𝜆0 = 800 𝑛𝑛𝑛𝑛 according to Figure V-7 (b). Diffraction in TiO2 only 

starts in the region above the white line and in the buffer only above the black dots in Figure V-7 

(c). Nevertheless, it does not impact the high transmission band that starts at 𝜆𝜆0 = 700 𝑛𝑛𝑛𝑛 

significantly. The major perturbation is the onset of diffraction ( Rayleigh anomaly) in the buffer, 

that leaves a resonant signature in the spectrum.  

Thus, with the presented results it is already possible to choose a design for the final structure 

and the following parameters will be used: 

• ff = 60%, hl = 50 nm, hg = 50 nm 

• p = 300 nm, because with this period the grating does not present diffractive 

phenomena in the region with maximum transmission (𝜆𝜆0 > 800  nm) and also 

presents large grooves that do not pose any fabrication challenge. 

Finally, it will be analysed the sensibility of the structures with respect to variations in the 

grating and homogeneous layers heights. For this purpose, Figure V-7 (d) shows the transmission 

spectra a function of the homogeneous layer height while maintaining the grating height equals 

50 nm. Figure V-7 (e) shows the same plot but with now with the homogenous layer fixed at 50 

nm and with the grating height varying. Note that for both cases the transmission maximum 

redshifts when the height is increased but affecting neither the bandwidth nor the peak. 
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Figure V-7 – (a) Corrugated TiO2 layer system. Vectors E and H represent the electric and magnetic fields, respectively, for 
TE and TM polarizations. Unpolarized light is assumed to impinge normally on the structure. (b) Transmission spectrum of 
the structure as function of fill-factor (ff) with p=200 nm and hg = hl = 50 nm. (c) Transmission spectrum of the structure as 
function of the unit cell size (p), with ff=60%, and hg = hl = 50 nm. (d) and (e) Show the transmission spectrum as function of 
hg and hl, respectively. The fill factor was maintained constant for both cases at 60% and hl [hg] was fixed in 50 nm in (d) [(e)]. 
The dashed lines in (b), (d), and (e) mark the spectrum of the final design. The white line in (c) show the border for diffraction 
on TiO2 whereas the dotted line the Rayleigh anomaly on the buffer. 

V.3.3. Intermediate Reflectors: Bragg reflectors with 2 and 4 

layers 

To complete the analysis, we also designed two structures to act as intermediate reflectors, 

as is usually done in the literature. To this intent, distributed Bragg Reflectors (DBR) with two 

and four layers were chosen. These structures are composed of multiple homogeneous dielectric 

layers, A and B, disposed alternately. Figures V-8 (a) and (b) illustrate two DBR filters with two 

and four layers, respectively, where it is assumed that the index of A ( nA ) is higher than that of  

B (nB) and of SiO2. Furthermore, the thicknesses of layers with the same material have the same 

height (hA and hB for layers A and B, respectively). 
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Figure V-8 – DBR filters designed with two (a) and four (layers). The thicknesses of the layers A and B are hA and hB, 

respectively. The numbers are used to enumerate the interfaces between the layers. 

The DBR design follows the same line of reasoning made for the homogeneous Si3N4 layer 

design (section V.3.1 Homogeneous Si3N4 layer); i.e., it is necessary to guarantee that the 

reflected wave at each layer interface suffers constructive interference at the SiO2 buffer. The 

wave reflected immediately on the (SiO2/A) acquires phase of π rad. Thus, the waves reflected on 

the remaining interfaces must return to the buffer with accumulated phase given by π+2πm, m∈

ℤ. The waves reflected at odd interfaces (see the interface numbering at Figure V-8) do not acquire 

π rad as they happen in a medium with higher refractive index. Thus, the phase acquired by the 

wave returning to the SiO2 buffer after being reflected by an odd interface are due only to 

propagation and is given by 

 

𝜙𝜙𝑙𝑙 = 2(𝑙𝑙 − 1)ℎ𝐵𝐵𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝐵𝐵 + 2𝑙𝑙ℎ𝐴𝐴𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝐴𝐴 , 𝑙𝑙 𝑜𝑜𝑜𝑜𝑜𝑜 (  V-5 ) 

 

where l is the interface number and 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 = 2𝜋𝜋
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

 is the wavenumber for maximum reflection 

operating at a wavelength 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚. 

The waves reflected at even interfaces, in turn, acquire additional π rad because they happen 

in the medium with smaller refractive index. Thus, the total phase acquired by a wave returning 

to the SiO2 buffer after being reflected by an even interface is given by 

𝜙𝜙𝑙𝑙 = 2𝑙𝑙𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝐵𝐵 + 2𝑙𝑙ℎ𝐴𝐴𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝐴𝐴 + 𝜋𝜋, 𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒       (  V-6 ) 

Imposing the constructive interference condition at equations (  V-5 ) and (  V-6 ), and, after 

some algebraic manipulations, it follows that, respectively, 

𝑙𝑙(𝑛𝑛𝐵𝐵ℎ𝐵𝐵 + ℎ𝐴𝐴𝑛𝑛𝐴𝐴) − 𝑛𝑛𝐵𝐵ℎ𝐵𝐵 =
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

2
�

1
2

+ 𝑚𝑚�  , 𝑙𝑙 𝑜𝑜𝑜𝑜𝑜𝑜,𝑚𝑚 ∈ ℤ 
(  V-7 ) 

𝑙𝑙(𝑛𝑛𝐵𝐵ℎ𝐵𝐵 + ℎ𝐴𝐴𝑛𝑛𝐴𝐴) =
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

2
𝑚𝑚 , 𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 ∈ ℤ 

(  V-8 ) 

 

The operating wavelength 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 is chosen by design and equations (  V-7 ) and (  V-8 ) must 

hold for all possible l, with m as a free parameter. Thus, the layers heights and refractive indexes 

must be judiciously chosen to satisfy equations (  V-7 ) and (  V-8 ). One possible way of doing 

it is by imposing the following restriction  
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𝑛𝑛𝐵𝐵ℎ𝐵𝐵 = 𝑛𝑛𝐴𝐴ℎ𝐴𝐴 =
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

4
 

   (  V-9 ) 

Thus, by following equation (  V-9 ), three different DBR filters are proposed with TiO2 used 

on layers A for all cases with target at 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 550 nm. For layer B it was analysed the filter 

performance with alumina (Al2O3), SiO2 and Si3N4. The resulting thicknesses of each design are 

listed on Table V-1.  
Table V-1 – Thicknesses of the designed DBR filters following equation (  V-9 ) with target wavelength at 𝝀𝝀𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟓𝟓𝟓𝟓𝟓𝟓 nm.  

 

 

 

 

 

The reflectance of the proposed DBRs were calculated using the RCWA [88] for the cases 

with two and four layers to assess their performances and the results are shown in Figures V-9 (a) 

and (b), respectively.  Both cases with four and two layers present high reflectance at the region 

where perovskite is absorptive (𝜆𝜆0 < 800 nm) and low reflectance for higher wavelengths, where 

perovskite is transparent, as expected for an intermediate reflector.  Nevertheless, the four-layered 

filters have better performance as its reflectance is higher with a more well-defined bandwidth. 

Furthermore, silica is the material presenting higher reflectance for both two- and four- layered 

systems. Thus, the DBRs of SiO2/TiO2 will be chosen for application on the tandem solar cell. 

 
Figure V-9 – Reflectances of DBR filters with (a) two and (b) four layers. The layers thicknesses are listed on Table V-1. The 

high index material is TiO2 for all DBRs.  

 

 Material Thickness (nm) 

A TiO2 51  

B 

Si3N4 68  

Alumina 82  

SiO2 94  
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V.4. Application of intermediate structures on 

Si/Perovskite tandem solar cells 

V.4.1. Simplified structure characterization 

In this section the performance of the tandem solar cell in the presence of the designed 

intermediate structures will be evaluated. The final structures are shown in Figures V-10 (a)-(d). 

Figure V-10 (a) consists of only a single 80 nm thick layer of silicon nitride (Si3N4) sandwiched 

between the SiO2 superstrate and the silicon substrate. The structure of Figure V-10 (b) shows a 

patterned double layer photonic structure, where a 50 nm thick corrugated titanium dioxide (TiO2) 

layer is combined with a homogeneous layer of the same material and thickness. The period of 

the TiO2 grating is 300 nm and the fill factor is 60%. Notice that the small grating period ensures 

that the grating acts only as an effective medium and that there are no propagating diffraction 

orders. As shown in Figure V-10 (e), the transmittance of the double layer structure is higher than 

the transmittance of the single layer structure, but the difference is not large: both structures 

provide broad-band high transmittance (> 90%), spanning the spectral range between 500 and 

1100 nm. 

 
Figure V-10 - (a)-(d) Four different intermediate structure designs. (a), (b) Intermediate structures designed as impedance 
matching layer: (a) A single 80 nm thick silicon nitride impedance matching layer. (b) double layer structure consisting of a 
corrugated TiO2 layer, with a period of 300 nm, followed by a homogenous layer of the same material. There are no 
propagating diffraction orders and the grating acts only as an effective index layer.  (c)-(d) Intermediate structures designed 
as intermediate reflectors. (c) a 2-layer DBR with parameters fine-tuned to optimize the tandem solar cell performance. d) a 
4-layer DBR with parameters fine-tuned to optimize the tandem solar cell performance. (e) Transmittance of all four 
intermediate photonic structures. The transmittance without any intermediate structure (WIS) is also shown for comparison. 
All transmittances are between the silicon dioxide superstrate and the silicon substrate. 
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The intermediate structures shown in Figures V-10 (c) and (d) are Distributed Bragg 

Reflectors (DBR), comprised of 2 and 4 layers, respectively. As described in section V.3.3 

Intermediate Reflectors: Bragg reflectors with 2 and 4 layers, the DBRs are first optimized to 

provide high reflectance into the perovskite absorption spectral window and, at the same time, 

low reflectance in the perovskite transparency window. The optimised DBR final thicknesses are 

50nm for the TiO2 layers and 95nm for the SiO2 layers. 

Figures V-11 (a)-(d) show the tandem solar cells with the corresponding intermediate 

photonic structures, whereas Figures V-11 (e)-(f) show the absorption in the perovskite and 

silicon layers, respectively. As expected, the perovskite absorption is higher in the structures with 

intermediate reflectors, as shown in green squares and yellow triangles in Figures V-11 (e). The 

perovskite absorption spectra for the intermediate reflectors also show more pronounced Fabry-

Perot oscillations when compared to the optical impedance matching layers. We use the integrated 

absorption as a figure of merit to assess the performance of the structures. The integrated 

absorption takes into account the photon density in the solar spectrum and is defined as the total 

amount of absorbed solar photons divided by the total amount of incoming solar photons. 

The integrated absorptions in the perovskite layer for the solar cells of Figures V-11 (a)-(d) 

are, respectively: 46.2% (optical impedance matching), 46.2% (optical impedance matching), 

49.3% (DBR), 50.2% (DBR); while the integrated absorption in the perovskite layer without 

intermediate structure (WIS) is 47.4%. The absorption in the silicon layer shown in Figure V-11 

(f), on the other hand, is higher for the impedance matched structures of Figures V-11 (a)-(b). 

The integrated absorptions in the silicon layer for the structures of Figures V-11 (a)-(d) are, 

respectively: 41.9% (optical impedance matching), 43.5% (optical impedance matching), 34.6% 

(DBR), 34.8% (DBR); while the integrated absorption in the silicon layer without intermediate 

structure (WIS) is 36.85%. The calculated efficiencies and short circuit currents are shown in 

Table V-2 for two different values of the perovskite charge carrier diffusion length: Ld = 100 and 

Ld = 400 nm. 
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Figure V-11 - Illustration of the complete solar cell with the intermediate photonic structure.  (a)-(b) Photonic intermediate 
structures designed as impedance matching layers. (c)-(d) Photonic intermediate structures designed as intermediate 
reflectors. (e) Absorption in the perovskite layer. (f) Absorption in the silicon layer. 
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Table V-2- Solar cell parameters for LD=100 nm and for LD=400 nm. 

 

The 4-layer DBR shows high transmittance for wavelengths larger than 800 nm (Figure V-10 

(e)), which results in high absorption in the silicon layer for these wavelengths (Figure V-11 (f)). 

The 4-layer DBR, therefore, is acting as both an intermediate reflector for the perovskite 

absorption window, and also as an optical impedance matching layer for wavelengths larger than 

800 nm (i.e., the perovskite transparency window). 

This double role of the DBR structure might justify the assumption that the 4-layer DBR is 

the optimum structure. As shown in Table V-2, however, the tandem solar cell efficiency is not 

highest for the 4-layer DBR. Indeed, the best overall efficiency is achieved for the optical 

impedance matching structure comprised of the TiO2 grating (Figure V-11 (b)). It is important to 

notice that, even when compared to the simplest optical impedance matching layer (Figure V-11 

(a)), the tandem efficiency of the 4-layer DBR is only marginally higher. These counter-intuitive 

results can be understood by comparing Figure V-10 (e) with Figure V-11 (f): even though the 

transmittance for the 4-layer DBR rises quickly between 700 and 800 nm, this transition is not 

sharp enough to mitigate reflection losses in the silicon layer. Consequently, the absorption in the 

silicon layer (Figure V-11 (f)) in the short-wavelength region (< 850 nm) is higher for the 

structures that provide only optical impedance matching. It is this difference that accounts for the 

similar performances of the tandem solar cells, listed in Table V-2. These results, therefore, 

corroborate the previous conclusion that it is preferable that intermediate structures be designed 

to provide only optical impedance matching between the top and bottom cells. Indeed, the DBR 

 Ld =100 nm Ld =400 nm 

 

Impedance 

matching 

layers 

Intermediate 

Reflectors 
Without 

intermediate 

structure 

Impedance 

matching 

layers 

Intermediate 

Reflectors 
Without 

intermediate 

structure 
Si3N4 TiO2 2 DBR 4 DBR Si3N4 TiO2 2 DBR 4 DBR 

Silicon Jsc 

(mA/cm2) 
17.81 18.50 14.74 14.81 15.68 17.81 18.50 14.74 14.81 15.68 

Perovskite 

Jsc (mA/cm2) 
18.79 18.79 20.05 20.57 19.29 19.98 19.98 21.32 21.87 20.50 

Silicon 

Efficiency 

(%) 

10.08 10.49 8.29 8.32 8.83 10.08 10.49 8.29 8.32 8.83 

Perovskite 

Efficiency 

(%) 

19.01 19.03 20.27 20.79 19.52 20.23 20.26 21.57 22.13 20.78 

Tandem 

Efficiency 

(%) 

29.09 29.52 28.56 29.11 28.35 30.31 30.74 29.86 30.45 29.61 
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intermediate structures are more complex and yet show similar performance when compared to 

the simplest optical impedance matching layer. 

Our calculations indicate that both optical impedance matching layers result in efficiencies 

exceeding 30% for Ld = 400 nm. Naturally, we expect that the tandem device performance can be 

further increased by applying light trapping concepts [146, 150] and that the design of such light 

trapping structures will benefit from the optical impedance matching principles we have outlined 

here. When compared to the solar cell without intermediate structure, the silicon solar cell short 

circuit current is increased by 18.5% for the TiO2 grating. It is important to notice that these high 

efficiencies were achieved without any light trapping scheme, which is expected to boost the 

efficiencies even further [143, 150].  

Resonant structures depend on specific phase accumulation requirements that tend to limit 

their angular performance. One additional advantage of employing optical impedance matching 

layers is that their non-resonant behavior results in a very angular tolerant performance. This 

feature can be seen in Figures V-12 (a)-(b), which show, respectively, the absorption in the silicon 

and perovskite layers versus incidence angle (θ) and wavelength for the system with the TiO2 

grating acting as optical impedance matching layer. The dependence of the solar cell efficiencies 

on the incidence angle is shown in Figure V-12 (c). Impressively, the efficiencies are virtually 

constant up to an angle of 60 degrees, implying an acceptance cone of at least 120 degrees. 

 
Figure V-12 - Angular dependence of the solar cell performance. (a) and (b) show the absorption spectra of the perovskite and 
c-Si, respectively, as a function of incident angle and wavelength. (c) Efficiency of the silicon and perovskite solar cells as a 
function of the incident angle. 
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V.4.2. Complete device characterization 

Additional simulations were performed to characterize the solar cell performance by taking 

into account a front contact and also transport layers. Therefore, a front ITO contact and also 

charge transport layers were included into the model, taking their real and imaginary indexes into 

account (refractive indexes shown in Figure V-2). We find that while the performance is 

somewhat reduced, the physical principles and conclusions from the previous section remain 

unchanged.  

In order to support these arguments, the complete structure is shown in Figure V-13 and the 

absorptions for two intermediate structures in both simplified and complete devices in Figure 

V-14. The simplified device refers to the device used in the previous section (Figures V-10 (b) 

and (d)). The label TiO2 refers to the optical impedance matching layer comprised of a TiO2 

grating and the 4 DBR label refers to the intermediate reflector. As expected, the absorption in 

both perovskite and silicon layers are lower in the complete structure (Figure V-14), mostly due 

to parasitic absorption in the front ITO contact. However, the effects of parasitic absorption are 

similar in both impedance matching (TiO2) and intermediate reflectors (4 DBR). For example, 

the absorption in the silicon layer around 950 nm (Figure V-14 (b)) exhibits a gap in the complete 

device for both optical impedance matching (TiO2) and intermediate reflector (4 DBR), when 

compared to the simplified cell (i.e., without front ITO and charge transport layers). Such a gap 

is not due to an increase in the material parasitic absorption, but due to thin-film interference in 

the top solar cell and its effects on the devices with both classes of photonic intermediate 

structures are very similar.  

 

 
Figure V-13 – Complete device structure 
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Figure V-14 - Absorptions in the perovskite (a) and silicon (b) layers for two classes of photonic intermediate structures: a 
TiO2 grating acting as an impedance matching layer and a 4 layers DBR acting as an intermediate reflector. The simplified 
structures do not include the front ITO and transport layers. The complete structure includes the front ITO and transport 
layers. A comparison between the absorptions in the simplified and complete devices shows that the absorption penalty is very 
similar for both classes of photonic intermediate structures. 

A comparison between the parameters of the solar cells can be found in Table V-3. In all 

cases, the parasitic absorption reduced the efficiencies of the cells.  For example, if we compare 

the performance of the device using the TiO2 grating (optical impedance matching layer) with 

the device using 4 DBR (intermediate reflector) for Ld = 400 nm, we find that changing from the 

simplified to the complete device lowers the silicon short circuit current from 18.5 mA/cm2 to 

17.96 mA/cm2 for the device with TiO2 grating and from 14.81 mA/cm2 to 14.39 mA/cm2 for the 

device with 4 DBR. These reductions correspond to a factor of 0.971 for the TiO2 device and 

0.972 for the 4 DBR device: in other words, the silicon short circuit current penalty is virtually 

the same in both devices. This is also true for the perovskite short circuit current penalty: the 

current in the TiO2 device is reduced by a factor of 0.89 while the current in the 4 DBR is reduced 

by a factor of 0.9. Therefore, the efficiencies of both devices are reduced by very similar amounts: 

the efficiency of the TiO2 devices goes from 30.74% to 28.12% (a reduction of 2.62%) and the 

efficiency of the 4 DBR goes from 30.45% to 27.91% (a reduction of 2.54%). In conclusion, the 

message of this work is unaltered: the optical impedance matching layers perform equally or even 
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slightly better than the intermediate reflectors. It is important to emphasize that, since the main 

conclusion of this work does not depend on the particular choice of device, the simplified structure 

can convey our message more straightforwardly. 

 
Table V-3- Solar cell parameters for LD=100 nm and for LD=400 nm. Comparison between the performances of the simplified 
and complete devices. The simplified structure does not include the front ITO and transport layers whereas the complete 
structure does.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Ld =100 nm 
Simplified | Complete 

 
Impedance Matching layers Intermediate Reflectors Without 

intermediate 
structure Si3N4 TiO2 

2 Layer 
DBR 

4 Layer 
DBR 

Silicon Jsc 
(mA/cm2) 17.81|17.57 18.50|17.96 14.74|14.01 14.81|14.39 15.68|15.72 

Perovskite Jsc 
(mA/cm2) 18.79|16.67 18.79|16.70 20.05|17.95 20.57|18.46 19.29|17.18 

Silicon 
Efficiency (%) 10.08|9.94 10.49|10.17 8.29|7.86 8.32|8.08 8.83|8.86 

Perovskite 
Efficiency (%) 19.01|16.82 19.03|16.87 20.27|18.11 20.79|18.63 19.52|17.32 

Tandem 
Efficiency (%) 29.09|26.76 29.52|27.04 28.56|25.97 29.11|26.71 28.35|26.18 

 Ld =400 nm 
Simplified | Complete 

 
Impedance Matching layers Intermediate Reflectors Without 

intermediate 
structure Si3N4 TiO2 

2 Layer 
DBR 

4 Layer 
DBR 

Silicon Jsc 
(mA/cm2) 17.81|17.57 18.50|17.96 14.74|14.01 14.81|14.39 15.68|15.72 

Perovskite Jsc 
(mA/cm2) 19.98|17.72 19.98|17.75 21.32|19.08 21.87|19.62 20.50|18.26 

Silicon 
Efficiency (%) 10.08|9.94 10.49|10.17 8.29|7.86 8.32|8.08 8.83|8.86 

Perovskite 
Efficiency (%) 20.23|17.90 20.26|17.95 21.57|19.28 22.13|19.83 20.78|18.44 

Tandem 
Efficiency (%) 30.31|27.84 30.74|28.12 29.86|27.14 30.45|27.91 29.61|27.30 
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V.5. Conclusions and future work 

It was identified that a photonic intermediate structure in a perovskite/c-Si tandem solar cell 

should act as an optical impedance matching layer at the perovskite-silicon interface. The reason 

for this somewhat unexpected behavior is that by increasing the reflectivity, the reflection loss 

back into free space tends to outweigh the improvement in absorption in the top layer. This insight 

affords the relaxation of the photonic structure reflectance in the perovskite absorption window, 

which leads to very simple and robust designs for the intermediate structure. Accordingly, two 

simple designs were analyzed, and their performances compared with DBR based intermediate 

reflectors. The conclusion is that intermediate structures acting only as optical impedance 

matching layers are much simpler than the DBR structures yet showing similar performances. 

This insight was implemented by simulating a realistic device configuration and show that optical 

impedance matching alone can increase the short circuit current of the silicon solar cell by 18.5% 

(corresponding to a boost of 2.8 mA/cm2), thus resulting in an expected tandem efficiency in 

excess of 30%. 

The obvious next step for a future work is to combine these insights with light trapping 

structures, acting to scatter light on either (or both) perovskite and silicon substrate.  
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(third row) of sample S2.............................................................................................................. 44 
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Figure III-26 – 1B [(a) and (b)], 1C [(c) and (d)] and 2 [(e) and (f)]  numerical (first column) 

and experimental (second column) reconstructions operating at 444.9 nm. ............................... 48 

Figure III-27 – 1B [(a) and (b)], 1C [(c) and (d)] and 2 [(e) and (f)]  numerical (first column) 

and experimental (second column) reconstructions operating at 633 nm. .................................. 48 

Figure III-28 -(a) Schematic of the unit cell for high birefringent contrast grating (not to 

scale). Transmission efficiency (b) and relative phase maps (c) of the c-Si nanopost array as 

function of their semi-axes for light polarized along x. (d) and (e) represent analogous results for 

light polarized along y. The transmitted phase difference (Φx- Φy) is shown in (f). The operating 

wavelength is 532 nm in all cases. The colored symbols represent the map boundaries for 

achieving four phase levels. Their correspondences are listed in Table III-10. The stars mark the 

chosen structures inside each region. .......................................................................................... 51 

Figure III-29 - Averaged phase (a) [(c)] and transmission (b) [(d)] of the unperturbed 

[perturbed, nanopost semi-axes reduced by 20 nm] structures designed to give relative phase 

levels of 0 (red), 0.25 (blue), 0.5 (black) and 0.75 (green) rad/2π. The average is taken over the 

spectra of different metasurfaces that provide the same phase level in each polarization. ......... 53 

Figure III-30 - Concept of the two birefringent c-Si metasurfaces. Design 1 consists of two 

different target images (A encoded for x- and B for y-polarization) with the purpose of accessing 

the efficiency and polarization cross talk of both images. Design 2 consists of two similar 

parallax-separated images (C encoded for x- and D for y-polarization) for 3D stereoscopic 

reconstruction. ............................................................................................................................. 54 

Figure III-31 - (a) Transmission (dashed lines) and diffraction (continuous and dotted for 

CGH A and B, respectively) efficiencies spectra for the design without perturbation (blue) and 

reduced by 20 nm (black). The transmission efficiencies spectra of A and B are overlapped. (b) 

SNR of the unperturbed (blue lines) and reduced (black lines) designs. The continuous and dotted 
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Figure III-32 – Picture of the sample with metasurfaces D1 (cyan squares) and D2 (red 

squares) fabricated with different doses (1300 and 1400) of ebeam exposure. .......................... 56 

Figure III-33  -  SEM micrograph of metasurfaces D1 (first row) and D2 (second row) at 
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Figure III-34  -  SEM micrograph of metasurfaces D1 (first row) and D2 (second row) at 
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Figure III-35 - Experimental reconstructions of metasurfaces D1 for (a) x- and (d) y- 

polarized light. (b) and (e) [(c) and (f)] show the numerical reconstructions of the unperturbed 

[perturbed] metasurface. The reconstructions are taken 20 cm away from the metasurface. These 

images are not stereoscopic and are used to assess polarization cross-talk. The operating 
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Figure III-36 - Experimental reconstructions of each image from the holographic stereogram 

for (a) x- and (b) y-polarized light. The reconstructions are taken 20 cm away from the 

metasurface. The operating wavelength is 532 nm. .................................................................... 59 

Figure III-37 - Experimental reconstructions for x- (first row) and y- (second row) polarized 

light at 444.9 nm (first two columns) and 635 nm (last two columns). The reconstructions are 

taken 20 cm away from the metasurface. (a), (e), (c) and (g) are not stereoscopic and are used to 

assess polarization cross-talk. (b), (f), (d) and (h) are obtained from the holographic stereogram.
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Figure IV-1 –   Diffraction reconstructions of three metalenses (f=15 µm) with the following 

phase profiles: (a-c) Hyperbolic, (d-f) hyperbolic superimposed with optimized polynomial and 

(g-i) spherical. The first and second columns show the longitudinal field distributions at normal 

and at oblique (30°) incidence, respectively. The third column shows the resulting point spread 

function (PSF) at 0° (black), 7.5° (red), 15° (green), 22.5° (blue) and 30° (orange). The operating 

wavelength is 532 nm. The dashed boxes in (d) and (e) highlight that the corresponding phase 

profiles impose an effective aperture onto the lens.  These simulations were done using the angular 

spectrum formalism [3]. More details are given in section C.4 Angular spectrum formalism of the 

appendix. ..................................................................................................................................... 66 

Figure IV-2 - Fourier transform amplitude of the field at the exit of the spherical metalens at 

normal (a) and oblique (b) incidence as a function of normalised k-vector. (c) Corresponding line 

plot through the origin showing normal incidence (red) and oblique incidence (blue) (e-g) show 

the same for the hyperbolic metalens. The light line is shown by the white dashed circle in (a), 

(b), (e), and (f) and as dashed black lines in (c) and (g). Ray tracing of a bulk spherical lens is 

shown in (d) for perpendicular incidence and (h) for oblique incidence, superimposed onto the 

field distributions of an equivalent metalens with spherical phase profile. ................................ 68 

Figure IV-3 - Comparison between the WFOV metalens and spherical bulk lens. Ray traces 

for a spherical bulk lens (NA=0.65) for oblique incidence (θ=30°) and a radius of curvature of (a) 

500 μm, (b) 1000 μm, and (c) 1500 μm. (d) FT amplitude of the field generated by the spherical 

lenses in (a) (black line) and (c) (blue line); the FT in (d) is for perpendicular incidence and (e) 

for oblique incidence (θ=30°). .................................................................................................... 70 

Figure IV-4 - Comparison between the WFOV metalens (first column) and an equivalent 

bulk quadratic lens (second column) at different angles of incidence. The red dashed lines mark 

the output aperture of the lenses and focal positions at normal incidence, which coincides at 

oblique incidence for the quadratic metalens. The blue dashes line marks the bulk lens focal 

position for different angles of incidence. All lenses have a focal length of 750 μm with NA = 

0.8. ............................................................................................................................................... 71 

Figure IV-5 – (a) Fourier Transforms of the WFOV lens for an NA of 0.4 (black), 0.65 (blue) 

and 0.9 (red), for perpendicular incidence. (b) same as red line in (a), but for oblique incidence. 
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(c) Spatial resolution (2FWHM⁄λ0) and (d) FOV as a function of NA for the DL (black), spherical 

(blue) and WFOV (red) metalenses. The operating wavelength is 532 nm and focal length is 500 

µm for all cases. All simulations were performed using the angular spectrum formalism. More 

details are given in section C.4 Angular spectrum formalism of the appendix. .......................... 72 

Figure IV-6 - (a) and (b) show SEM micrographs of the array of c-Si nanoposts forming the 

metalens. The scale bars are 400 nm (a) and 3 μm (b). (c) photograph of the fabricated metalenses. 

The units of the ruler are in mm indicating the 2 mm diameter. (d) Setup of the 3D-printed system 

encapsulating the metalens with a CCD camera. ........................................................................ 74 

Figure IV-7 - SEM micrographs of the fabricated metalenses. ........................................... 75 

Figure IV-8 – Lift-off fabrication steps. .............................................................................. 76 

Figure IV-9 - Metalenses with aluminium apertures fabricated with lift-off technique. ..... 76 

Figure IV-10 - (a) shows a representation of the 3D printed metalens camera focusing. The 

metalens is fixed in the front part (metalens holder in (b), which shows a side view of the inner 

part of the camera) and the focus is adjusted by moving the CMOS holder position through the 

front screws, as pictorially represented by the red arrow in (a). (c) Shows a render image of the 

metalens camera mounted with the lid. The monochromatic imaging setups are drawn in (d). (e) 

System for 10x magnified imaging, using an objective and a tube lens. The objective and diffuser 

in front of the laser are used to diverge the beam and eliminate speckle noise. .......................... 77 

Figure IV-11 - Point spread function characterization setup. The metalens, objective, tube 

lens and camera were mounted in a rotation stage. ..................................................................... 77 

Figure IV-12 - PSFs for different angles of incidence for the WFOV (a) and the DL (b) 

metalenses. The x axis in (a) and (b) is centred at the maximum of each PSF. (c) Dependence of 

the FWHM on the angle of incidence for both lenses.  Focal length is 750 μm, diameter is 2 mm, 

operating wavelength is 532 nm and NA=0.8. ............................................................................ 79 

Figure IV-13 - Measured transmission (dotted lines) and focusing efficiencies (dashed and 

solid lines) as a function of the angle of incidence for both s and p polarisations. The focusing 

efficiency is determined with respect to both incoming power (solid lines) and transmission power 

(dashed lines). (a) efficiencies of the quadratic metalens. At perpendicular incidence, the 

transmission efficiency is 14%, the focusing efficiency with respect to incoming power is 3.5% 

and the focusing efficiency with respect to transmitted power is 25%. (b) efficiencies of the 

hyperbolic metalens. At perpendicular incidence, the transmission efficiency is 31%, the focusing 

efficiency with respect to incoming power is 23%, and the focusing efficiency with respect to 

transmitted power is 74%. ........................................................................................................... 80 

Figure IV-14  - Simulated transmission (dotted lines) and focusing efficiencies as function 

of the angle of incidence for both s and p polarisations. The focusing efficiency is determined 

with respect to both incoming power (continuous lines) and transmission power (dashed lines). 

(a) efficiencies of the quadratic metalens. At perpendicular incidence, the transmission efficiency 
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is 34%, the focusing efficiency with respect to incoming power is 5%, and the focusing efficiency 

with respect to transmitted power is 14%. (b) efficiencies of the hyperbolic metalens. At 

perpendicular incidence, the transmission efficiency is 75%, the focusing efficiency with respect 

to incoming power is 71%, and the focusing efficiency with respect to transmitted power is 95%.
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Figure IV-15  – (a) and (b) show a representation of a metalens with NA = 0.8 and NA=0.71, 

respectively. The radii of the metalenses are 133 μm (NA = 0.8) and 100  μm (NA = 0.71).  The 

green and white parts mark the effective aperture and evanescent regions, respectively, of the 

quadratic phase profile. (c) and (d) show the transmitted and reflected field intensities (incident 

field not shown), respectively, of a quadratic metalens with NA = 0.8 and NA =0.71, respectively. 

The focal length is 100 μm and the operating wavelength is 532 nm. (e) and (f) show the same for 

a hyperbolic metalens with the same parameters. The field distributions were obtained through 

FDTD and angular spectrum simulations. These plots are saturated to highlight the intensity 

distribution. ................................................................................................................................. 82 

Figure IV-16 - (a) Image of a USAF 1964 chart obtained with the WFOV (quadratic) 

metalens using the setup of Figure IV-10 (a); the scale bar is 100 μm long. (b) Image of a USAF 

1964 chart obtained with the DL (hyperbolic) metalens using the setup of Figure IV-10 (a); the 

scale bar is 100 μm long and the field of view is 70°. (c) Picture of the USAF 1964 chart with the 

field of view zones highlighted by dashed circles. See Appendix, section C.6 USAF 1951 chart,  

for a description of the chart. The field of view zones marked by the solid circles (from innermost 

to outermost) are 20°, 40° and 70°. The radius of the outermost circle is 4.2 cm. (d) Focal spot 

displacement as function of the incident angle. The continuous line shows the product of the sine 

function with the focal length. The distance between the lens and the object is 6 cm. ............... 84 

Figure IV-17 -  (a) Image of a USAF 1964 chart obtained with the WFOV (quadratic) 

metalens; the scale bar is 100 μm long. (b) Image of a USAF 1964 chart obtained with the DL 

(hyperbolic) metalens; the scale bar is 100 μm long and the field of view is 140°. The distance 

between the lens and the object is 5.7 mm. (c) Picture of the USAF 1964 chart with the field of 

view zones highlighted by green circles. The field of view zones marked by the circles (from 

innermost to outermost) are 20°, 40°, 80°, 90°, 110°. The radius of the outermost dashed circle is 

8.14 mm. See Appendix, section C.6 USAF 1951 chart,  for a description of the chart. ............ 84 

Figure IV-18 - Imaging comparison between WFOV and DL metalenses. (a) and (b) show 

the obtained images with the WFOV and DL metalenses, respectively, using the system of Figure 

IV-10 (d). (c) and (d) show a zoom in of the scales placed at viewing angles of 0, 15 and 30 

degrees. These zoomed images were taken with the system of Figure IV-10 (e). The rulers unit is 

in mm. ......................................................................................................................................... 85 

Figure IV-19 – Photo taken with WFOV metalens camera under incoherent illumination 

(ambient light). To minimize the chromatic aberration,  a green filter was used. ....................... 85 
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Figure V-1  – (a) Intermediate photonic structure on a perovskite/c-Si tandem solar cell. The 

thickness of each layer is stated in parenthesis in front of the material. The refractive index of the 

AR coating is set to 1.45.  First, the optimum properties of an ideal intermediate reflector are 

identified. The ideal reflector is depicted in (b).  In (c), the absorption in the perovskite layer is 

calculated by choosing a substrate such that the Fresnel reflection coefficient between the 

perovskite layer and the substrate gives the desired ideal reflectance - according to the top inset 

of Figure V-3 (a). In the second step, (d), the power transmitted into the substrate of (c) is 

transposed to a matched superstrate (with the same real part of refractive index as silicon), so as 

to avoid reflection from the silicon layer. The structure of (d) is then used to calculate the 

absorption in the silicon layer. The light reflected from (d) is considered as loss and does not reach 

(c) again. ...................................................................................................................................... 89 

Figure V-2 - (a) Real and (b), (c) imaginary parts of the refractive indices used in the 

calculations. ................................................................................................................................. 90 

Figure V-3 - (a) Dependence of the tandem solar cell efficiency on the ideal reflector cut-off 

wavelength. The efficiency is not strongly dependent on the reflectance for cut-off wavelengths 

inside the perovskite absorption window, but drops sharply for high reflectance when the cut-off 

wavelength reaches the perovskite transparency window. The top inset shows the reflectance of 

the ideal reflector and the bottom inset shows the absorption coefficient of perovskite. (b) 

Dependency of the silicon (continuous line) and perovskite (dashed lines) layers' efficiency on 

the ideal reflector cut-off wavelength. ........................................................................................ 91 

Figure V-4 - (a)-(d) Four different intermediate structure designs. (a), (b) Intermediate 

structures designed as impedance matching layer: (a) A single 80 nm thick silicon nitride 

impedance matching layer. (b) double layer structure consisting of a corrugated TiO2 layer, with 

a period of 300 nm, followed by a homogenous layer of the same material. There are no 

propagating diffraction orders and the grating acts only as an effective index layer.  (c)-(d) 

Intermediate structures designed as intermediate reflectors. (c) a 2-layer DBR with parameters 

fine-tuned to optimize the tandem solar cell performance. (d) a 4-layer DBR with parameters fine-

tuned to optimize the tandem solar cell performance. ................................................................. 93 

Figure V-5 -Graphic of equation ( V-4 ) for m=1. .............................................................. 94 

Figure V-6 – Silica solar cell efficiency as function of the intermediate Si3N4 homogeneous 

layer thickness. In the absorption calculation, the system consists of a silica layer 400 μm height 

under the intermediate structure and the silicon buffer and terminated by an ideal mirror on 

bottom. Light comes from the silicon buffer. The calculations assume perpendicular incidence 

and AM1.5G solar spectrum. ...................................................................................................... 95 

Figure V-7 – (a) Corrugated TiO2 layer system. Vectors E and H represent the electric and 

magnetic fields, respectively, for TE and TM polarizations. Unpolarized light is assumed to 

impinge normally on the structure. (b) Transmission spectrum of the structure as function of fill-
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factor (ff) with p=200 nm and hg = hl = 50 nm. (c) Transmission spectrum of the structure as 

function of the unit cell size (p), with ff=60%, and hg = hl = 50 nm. (d) and (e) Show the 

transmission spectrum as function of hg and hl, respectively. The fill factor was maintained 

constant for both cases at 60% and hl [hg] was fixed in 50 nm in (d) [(e)]. The dashed lines in (b), 

(d), and (e) mark the spectrum of the final design. The white line in (c) show the border for 

diffraction on TiO2 whereas the dotted line the Rayleigh anomaly on the buffer. ...................... 97 

Figure V-8 – DBR filters designed with two (a) and four (layers). The thicknesses of the 

layers A and B are hA and hB, respectively. The numbers are used to enumerate the interfaces 

between the layers. ...................................................................................................................... 98 

Figure V-9 – Reflectances of DBR filters with (a) two and (b) four layers. The layers 

thicknesses are listed on Table V-1. The high index material is TiO2 for all DBRs. ................. 99 

Figure V-10 - (a)-(d) Four different intermediate structure designs. (a), (b) Intermediate 

structures designed as impedance matching layer: (a) A single 80 nm thick silicon nitride 

impedance matching layer. (b) double layer structure consisting of a corrugated TiO2 layer, with 

a period of 300 nm, followed by a homogenous layer of the same material. There are no 

propagating diffraction orders and the grating acts only as an effective index layer.  (c)-(d) 

Intermediate structures designed as intermediate reflectors. (c) a 2-layer DBR with parameters 

fine-tuned to optimize the tandem solar cell performance. d) a 4-layer DBR with parameters fine-

tuned to optimize the tandem solar cell performance. (e) Transmittance of all four intermediate 

photonic structures. The transmittance without any intermediate structure (WIS) is also shown for 

comparison. All transmittances are between the silicon dioxide superstrate and the silicon 

substrate. .................................................................................................................................... 100 

Figure V-11 - Illustration of the complete solar cell with the intermediate photonic structure.  

(a)-(b) Photonic intermediate structures designed as impedance matching layers. (c)-(d) Photonic 

intermediate structures designed as intermediate reflectors. (e) Absorption in the perovskite layer. 

(f) Absorption in the silicon layer. ............................................................................................ 102 

Figure V-12 - Angular dependence of the solar cell performance. (a) and (b) show the 

absorption spectra of the perovskite and c-Si, respectively, as a function of incident angle and 

wavelength. (c) Efficiency of the silicon and perovskite solar cells as a function of the incident 

angle. ......................................................................................................................................... 104 

Figure V-13 – Complete device structure .......................................................................... 105 

Figure V-14 - Absorptions in the perovskite (a) and silicon (b) layers for two classes of 

photonic intermediate structures: a TiO2 grating acting as an impedance matching layer and a 4 

layers DBR acting as an intermediate reflector. The simplified structures do not include the front 

ITO and transport layers. The complete structure includes the front ITO and transport layers. A 

comparison between the absorptions in the simplified and complete devices shows that the 

absorption penalty is very similar for both classes of photonic intermediate structures. .......... 106 
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Appendices 
Figure A.1 - Representation of (a) a complementary and (b) a regular nanorod antennas 

oriented at an angle 𝜷𝜷 with respect the x axis. (c) A pair of complementary nanorods with angular 

orientations differing by 𝝅𝝅𝝅𝝅 rad. Gray parts represent the metal portion of the structure and cyan 

the substrate. .............................................................................................................................. 127 

Figure A.2 –Geometry used for the calculation of the nanorod effective index in the mode 

analysis module of Comsol. Note that, since the mode is assumed to be confined around the Al 

region, the simulation region must be large enough so the evanescent fields do not touch the outer 

boundaries. ................................................................................................................................ 131 

Figure A.3 - (a) Representation of the unit cell containing the complementary nanorod. The 

incidence is normal from the cover, above the metallic layer. The period was taken as 𝟐𝟐 𝑳𝑳. The 

resulting cross-polarization energy conversion is shown at (b) and (c) for widths (w) equal 100 

nm and 150 nm, respectively, as functions of the length, L, and the operating wavelength, 𝝀𝝀𝝀𝝀. The 

dotted lines in (b) and (c) mark the regions with wavelengths of 444 nm and 635 nm, respectively. 

(d) cuts of the cross-polarization energy conversion dispersions of (b) and (c) in blue (L= 165 

nm) and red (L = 255 nm), respectively. ................................................................................... 133 

Figure A.4 - Target images for the red (a) and blue (b) holograms. (c) Shows a representation 

of the expected reconstruction of the merged metasurface when both holograms are excited. 134 

Figure A.5 - Representation of the merging between the CGHs designed to operate at 444 

nm  (blue square matrix on top) and 635 nm (red square matrix on top) resulting in the final Chess 

Table arrangement (below). Note that the arrangement is made by threading the pixels of each 

original CGH. ............................................................................................................................ 134 

Figure A.6 - Arrangements used to represent each pixel of the CGHs for the red (a) and (b) 

holograms. The unit cell size of the isolated nanoantennas is equal to the red design, that is 386 

nm × 386 nm while for the 5×5 arrays is 1930 nm × 1930 nm. ................................................ 135 

Figure A.7 -– (a) Matrix representation of the merging of the blue and red CGHs. (b) and (c) 

show the resulting masks of the merged CGH shown in (a) with one nanoantenna per pixel and 

an array of 5×5 nanoantennas per pixel, respectively. .............................................................. 136 

Figure A.8 – SEM micrographs of the (a) one nanoantenna per pixel metasurface and (b) 5×5 

nanoantenna array per pixel. ..................................................................................................... 136 

Figure A.9 – Optical setup used for the reconstruction of the CGH. The He-Ne laser is 

polarized horizontally. The lens is used to reconstruct the hologram on the focus of the CCD 

camera [3]. In front of the CCD, there is a polarizer that only transmits the cross-polarized light.

 ................................................................................................................................................... 137 
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Figure A.10 - (a) Experimental and (b) numerical reconstructions of the metasurface 

operating at 632 nm. (c) Shows the reconstruction of the CGH, operating also at 632 nm, when a 

random phase noise is applied on it showing that the poor quality of the experimental 

reconstruction in (a) is due to phase variations on the metasurface. ......................................... 138 

Figure A.11 - Unit cell representation. .............................................................................. 141 

Figure A.12 – Out-of-plane effective indices of the first 20 Bloch modes with cylinders made 

of constant medium with a refractive index of 1.5. The blue diamonds mark the dispersion of the 

two fundamental modes (since they are degenerated only one curve is visible) and the black dots 

the dispersions of the remaining modes. In all figures, the upper and bottom rows show the real 

and imaginary parts of the effective indices. Structures with three diameters were analysed: 100 

nm, 130 nm and 156 nm, which are shown in (a)-(b), (c)-(d) and (e)-(f), respectively. ........... 142 

Figure A.13 – Out-of-plane effective indices of the first 20 Bloch modes with TiO2 cylinders. 

The blue diamonds mark the dispersion of the two fundamental modes (since they are degenerated 

only one curve is visible) and the black dots the dispersions of the remaining modes. The TiO2   

refractive index dispersion was taken from [170]. In all figures, the upper and bottom rows show 

the real and imaginary parts of the effective indices. Structures with three diameters were 

analysed: 100 nm, 130 nm and 156 nm, which are shown in (a)-(b), (c)-(d) and (e)-(f), 

respectively. .............................................................................................................................. 142 

Figure A.14 – Out-of-plane effective indices of the first 20 Bloch modes with c-Si cylinders. 

The blue diamonds mark the dispersion of the two fundamental modes (since they are degenerated 

only one curve is visible) and the black dots the dispersions of the remaining modes. The c-Si 

refractive index dispersion was taken from [90]. In all figures, the upper and bottom rows show 

the real and imaginary parts of the effective indices. Since we are interested in the existence of 

propagating (non-evanescent)  Bloch modes, only the real parts of the refractive indices were 

accounted for.  Structures with three diameters were analysed: 100 nm, 130 nm and 156 nm, 

which are shown in (a)-(b), (c)-(d) and (e)-(f), respectively. .................................................... 143 

Figure A.15 – Fundamental x-polarized (stronger component along x) Bloch mode field 

amplitude distribution of a SiO2 (a), TiO2  (b) and c-Si (c) array. From left to the right, the 

cylinders diameters are 100 nm, 130 nm and 156 nm. The unit cell size is 190 nm and the operating 

wavelength is 532 nm. ............................................................................................................... 144 

Figure A.16 – x-component field amplitude (top) and phase (bottom) distributions of the 

three Bloch modes with lowest effective index on a c-Si based array. From left to the right, the 

cylinders diameters are 100 nm, 130 nm and 156 nm. The unit cell size is 190 nm and the operating 

wavelength is 532 nm. ............................................................................................................... 144 

Figure A.17 - Electric field amplitude distributions of the structures with diameters 190 nm 

((a), (b), (e) and (f)) and 220 nm  ( (c), (d), (g) and (h)). The top row ( (a) – (d) ) shows a cut along 

the XZ plane and the bottom row first row ((e) – (h) ) along the YZ plane. Finally, (a), (c), (e) and 
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(g) shows the results for posts with diameters of 105 nm and (b), (d), (f) and (h) shows the results 

for posts with diameters of 150 nm. .......................................................................................... 145 

Figure C.1 - Phase maps, in units of rad, of the eight structures used in the c-Si metalens at 

p polarisation. The operating wavelength is 532 nm. ................................................................ 148 

Figure C.2 - Transmittance maps of the eight structures used in the c-Si metalens at p 

polarization. The operating wavelength is 532 nm. .................................................................. 148 

Figure C.3 - Phase maps, in units of rad, of the eight structures used in the c-Si metalens at s 

polarisation. The operating wavelength is 532 nm. ................................................................... 148 

Figure C.4 - Transmittance maps of the eight structures used in the c-Si metalens at s 

polarisation. The operating wavelength is 532 nm. ................................................................... 149 

Figure C.5 -  (a) Quadratic and (b) hyperbolic field profiles Fourier transform comparison as 

function of the metalenses ‘NAs and radial wavevector component. The white dashed lines mark 

the equations 𝑁𝑁𝑁𝑁=±𝑘𝑘𝑘𝑘/𝑘𝑘0. (c) [(d)] shows a cut of (a) and (b) in black and blue lines, respectively, 

at an NA of 0.3 [0.8]. The operating wavelength is 532 nm and the focal length 750 𝜇𝜇𝜇𝜇. ...... 150 

Figure C.6 - Representation of the cross section of the PSF at normal (blue) and oblique 

incidence (red). Notice that the later was displaced to align with the former. .......................... 154 

Figure C.7 – USAF 1951 chart with the groups 0 (red box) and 1 (blue box). This figure is 

not to scale. Table C-2 lists the elements widths. ..................................................................... 155 

Figure C.8 – USAF 1951 chart with groups 2 to 7. This figure is not to scale. Table C-2 lists 

the elements widths. .................................................................................................................. 156 

Figure D.1 - Analysed diffraction geometry with the hologram 𝚺𝚺   and reconstruction 

𝚷𝚷 planes. The origin of these planes are the points O and O’, respectively, whose distance is 

𝑶𝑶𝑶𝑶′ = 𝒛𝒛, .................................................................................................................................... 158 

Figure  D.2 – Discrete representations of the hologram (a) and reconstruction (b) planes. 

Each one is a matrix with M𝗑𝗑N elements representing the field distributions. In (b), 𝛀𝛀 represents 

the image window where the target field pattern 𝑼𝑼𝑼𝑼𝑼𝑼 is inserted. .......................................... 169 

Figure  D.3 - Flow diagram of the implemented IFTA. Adapted from [75]. .................... 171 

Figure  D.4 – (a) Target field distribution at the reconstruction plane. (b)-(f) Show the 

reconstructed image from the algorithm obtained with 2,3,4,8 and 16 phase levels for k= 𝟏𝟏𝟏𝟏𝟏𝟏. 
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Appendices 

Appendix A – Optical Plasmonic Metasurface 

Hologram 

A.1. Introduction 

In this chapter, it is described the design and measurement of a plasmonic holographic 

metasurface operating in the optical regime. The metasurface is composed of an array of 

complementary aluminum nanorods on a silica substrate. Nanorods antennas are structures that 

may present two localized surface plasmon resonances (LSPRs) at optical frequencies: one that 

arises from a longitudinal plasmon mode and the other from a transverse plasmon mode [17]. 

When excited at the resonance frequency, the scattering cross-section of the structure is enhanced, 

which may be useful for tailoring the properties of light. In this project, this characteristic is used 

to enhance the cross-polarization efficiency of the transmitted light, that is, the amount of energy 

that is scattered with polarization orthogonal to the incident field polarization. The reason for that 

is because two  complementary nanorod antennas that are 90° rotated with respect to each other 

scatters cross-polarized light with a phase difference of 𝜋𝜋 rads [80]. Therefore, they can be used 

as a binary phase wavefront modulator that works with cross polarization. This concept is then 

used to design a dual color holographic plasmonic metasurface. 

This section starts with the design of the nanoantennas. In A.2.1, it is analyzed the theoretical 

limit of the cross-polarization efficiency and the binary phase control of the complementary 

nanorod structure. Then, in A.2.2, numerical simulations are used to optimize the efficiency of 

the structure operating at 444 nm or 635 nm. In A.2.3, a dual color metasurface arrangement is 

proposed. Micrographs of the fabricated metasurfaces are shown in A.3. Finally, A.4  shows the 

optical reconstructions and it is discussed the results. This section closes at A.5 where the main 

conclusions of this work are exposed. 
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A.2.  Metasurface Design 

A.2.1. Theoretical Analysis of the Plasmonic 

Metasurface Design 

The binary phase modulation is performed with complementary nanorod antennas, as shown 

in Figure A.1 (a). The nanorod shown in Figure A.1 (b) could also be used to achieve binary phase 

control but the complementary structure was used because it reduces the co-polarized light 

transmission, which increases the signal to noise ratio of the hologram [43].  A pair of those 

nanoantennas with angular orientations 𝛽𝛽1  and 𝛽𝛽2  differing by 𝜋𝜋
2
, as shown in Figure A.1 (c), 

scatter the cross polarized light with relative phase difference of 𝜋𝜋  [80]. 

 

 
Figure A.1 - Representation of (a) a complementary and (b) a regular nanorod antennas oriented at an angle 𝜷𝜷 with respect 

the x axis. (c) A pair of complementary nanorods with angular orientations differing by 𝝅𝝅
𝟐𝟐
 rad. Gray parts represent the metal 

portion of the structure and cyan the substrate. 

The binary phase control of these structures can be understood by considering the Jones 

matrix formulation. A nanorod may be viewed as a birefringent layer with transmittance functions 

𝑇𝑇𝐿𝐿   and 𝑇𝑇𝑇𝑇  for light polarized along the major and minor length directions of the structure, 

respectively. The subscripts L and T stand for the excited plasmon modes longitudinal and 

transversal, respectively, as they rule the antennas scattering along these directions. For 

convenience, it will be supposed that the major length of the antenna is parallel to the 𝑥𝑥 axis while 

the minor to the y axis. If the nanoantenna is rotated by an angle 𝛽𝛽, the resulting transmitted field 

by the antenna will be given by [166] 
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�
𝐴𝐴𝑥𝑥
𝐴𝐴𝑦𝑦
� = �cos(𝛽𝛽) − sin(𝛽𝛽)

sin(𝛽𝛽) cos(𝛽𝛽) � �
𝑇𝑇𝐿𝐿 0
0 𝑇𝑇𝑇𝑇

� � cos(𝛽𝛽) sin(𝛽𝛽)
− sin(𝛽𝛽) cos(𝛽𝛽)� �

𝐼𝐼𝑥𝑥
𝐼𝐼𝑦𝑦
� (A.1) 

 

where, Ax and Ay are the transmitted field amplitudes polarized along 𝑥𝑥� and 𝑦𝑦�, respectively; Ix 

and Iy are the incident field amplitudes polarized along 𝑥𝑥� and 𝑦𝑦�, respectively.  Developing (A.1), 

and considering the incident field polarized along 𝑥𝑥� , that is, 𝐼𝐼𝑦𝑦 = 0, follows that 

 

�
𝑇𝑇𝑥𝑥𝑥𝑥
𝑇𝑇𝑦𝑦𝑦𝑦

� = �
cos2(𝛽𝛽)𝑇𝑇𝐿𝐿 + sin2(𝛽𝛽)𝑇𝑇𝑇𝑇

1
2

sin(2𝛽𝛽) (𝑇𝑇𝐿𝐿 − 𝑇𝑇𝑇𝑇)
� (A.2) 

 

Where, 𝑇𝑇𝑥𝑥𝑥𝑥 ≡
𝐴𝐴𝑥𝑥
𝐼𝐼𝑥𝑥

 and 𝑇𝑇𝑦𝑦𝑦𝑦 ≡
𝐴𝐴𝑦𝑦
𝐼𝐼𝑥𝑥

.  From equation (A.2)  it is possible to infer that the cross 

polarized transmission, Tyx, is maximum, in terms of 𝛽𝛽, when sin(2𝛽𝛽) is at maximum, that is for 

𝛽𝛽1 = 𝜋𝜋
4

 and 𝛽𝛽2 = 3𝜋𝜋
4

 (note that the  𝛽𝛽2 − 𝛽𝛽1 = 𝜋𝜋
2

) . In other words, the nanoantenna must be 

oriented at an angle of ± 𝜋𝜋
4
 relative to the incident polarization. Furthermore, if the antenna is 

rotated by 𝜋𝜋
2
 with respect to an initial rotation of 𝛽𝛽, the cross polarized transmission, from (A.2), 

reduces to: 

𝑇𝑇𝑦𝑦𝑦𝑦 =
1
2

sin�2 �𝛽𝛽 +
𝜋𝜋
2
�� (𝑇𝑇𝐿𝐿 − 𝑇𝑇𝑇𝑇) = −

1
2

sin(2𝛽𝛽)(𝑇𝑇𝐿𝐿 − 𝑇𝑇𝑇𝑇)  (A.3) 

 

Therefore, rotating the antenna by π/2 causes a delay of π rad in the cross-polarized field.  

The cross-polarization energy conversion, ℰ, is defined as the ratio between the transmitted 

cross-polarized energy flux, 𝒯𝒯𝑦𝑦𝑦𝑦, and incident energy flux, ℐ𝑥𝑥, that is 

 

ℰ =
𝒯𝒯𝑦𝑦𝑦𝑦
ℐ𝑥𝑥

 (A.4) 

 

Assuming that the transmitted and incident waves are plane waves and the antennas are 

arranged in a subwavelength array, then the power fluxes can be calculated by the plane wave 

Poynting Vector amplitude [8], that is 

 

𝒯𝒯𝑦𝑦𝑦𝑦 =
�𝐴𝐴𝑦𝑦�

2

2𝑛𝑛𝑠𝑠𝜂𝜂0
=

1
8𝑛𝑛𝑠𝑠𝜂𝜂0

sin2(2𝛽𝛽) |𝑇𝑇𝐿𝐿 − 𝑇𝑇𝑇𝑇|2|𝐼𝐼𝑥𝑥|2 
 

(A.5) 

and  
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ℐ𝑥𝑥 =
|𝐼𝐼𝑥𝑥|2

2𝜂𝜂0
 (A.6) 

where, 𝑛𝑛𝑠𝑠 is the substrate refractive index and 𝜂𝜂0 is the vacuum impedance. Using (A.5) and 

(A.6) in (A.4) follows that 

 

ℰ =
1

4𝑛𝑛𝑠𝑠
sin2(2𝛽𝛽) |𝑇𝑇𝐿𝐿 − 𝑇𝑇𝑇𝑇|2 (A.7) 

 

 

Therefore, the cross-polarization energy conversion depends on the difference between the 

transmission of light that is scattered by the longitudinal and transverse plasmon modes of the 

antenna. The transmission parameters, 𝑇𝑇𝐿𝐿 and 𝑇𝑇𝑇𝑇, and the cross-polarization energy conversion 

will be numerically calculated by using the commercial software HFSS on next section. 

Nevertheless, it is possible to infer the maximum conversion of energy from equation (A.7). For 

the complementary nanorod, the longitudinal and transverse LSPRs appears as peaks in the 

dispersion of 𝑇𝑇𝐿𝐿  and 𝑇𝑇𝑇𝑇  [167]. As the transverse resonance is at smaller wavelengths than the 

longitudinal one, we can assume that |𝑇𝑇𝐿𝐿| > |𝑇𝑇𝑇𝑇| at the longitudinal LSPR condition. Therefore, 

at the longitudinal LSPR we can approximate (A.7) by 

 

ℰ ≅
1

4𝑛𝑛𝑠𝑠
sin2(2𝛽𝛽) |𝑇𝑇𝐿𝐿|2 

(A.8) 

 

Furthermore, the power flux of the radiated field by the longitudinal mode is given by 

 

ℐ𝐿𝐿 =
|𝑇𝑇𝐿𝐿|2

2𝑛𝑛𝑠𝑠𝜂𝜂0
 

 

(A.9) 

 

From conservation of energy it follows that 

 

ℐ𝐿𝐿 ≤ ℐ𝑥𝑥 (A.10) 

Thus, substituting (A.6) and (A.9) in (A.10)  and, after some algebraic manipulations, it is 

concluded that 

 

|𝑇𝑇𝐿𝐿|2 ≤ 𝑛𝑛𝑠𝑠  

(A.11) 

Using this fact on (A.8), it follows that 
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ℰ ≤
1
4

sin2(2𝛽𝛽) 
(A.12) 

 

If the antenna is oriented so that polarization conversion is at maximum, that is with 𝛽𝛽 = 𝜋𝜋
4
 

or 𝛽𝛽 = 3𝜋𝜋
4

,  from (A.12) follows that the energy conversion of the proposed design is limited by 

 

ℰ ≤ 0.25 (A.13) 

 

This limitation is in good agreement with the numerical results that will be shown in the next 

section. 

A.2.2. Numerical simulations 

The design goal is to find complementary nanorod geometries that present high polarization 

ℰ operating at 444 nm and 635 nm. As discussed previously, the nanorods are made of aluminium 

on a silica substrate. The calculations were performed assuming a constant refractive index for 

the silica equals to ns=1.45 and the dispersion of aluminium was taken from Palik [92]. The 

thickness of the aluminium was fixed at 𝐻𝐻 = 50 nm and the nanorod orientation was fixed at 𝛽𝛽 =
𝜋𝜋
4
. As discussed in the previous section, the conversion efficiency will be mostly dependent on the 

scattering of the longitudinal LSPR, according to equation (A.7). Therefore, before starting the 

numerical simulations, an estimation of the required complementary nanorod lengths and widths 

so the LSPR is at 444 nm for one set and at 635 nm for the other will be performed. Note that the 

LSPR of the nanorod and its complementary counterpart are almost in tune [167]. Therefore, the 

estimation of the LSPR of the nanorods will be performed assuming that it behaves as the first 

Fabry-Perot resonance of a truncated aluminium ridge waveguide on a silica substrate with length 

L and terminated by ideal mirrors. It follows that the resonance condition is 

 

ℜ�𝑘𝑘𝑔𝑔�𝐿𝐿 = 𝜋𝜋 (A.14) 

 

where, 𝑘𝑘𝑔𝑔 = 2𝜋𝜋
𝜆𝜆0
𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 is the propagation constant of the fundamental mode of the ridge with 𝜆𝜆0 

being the operating wavelength and 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒′ − 𝑗𝑗𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒′′   is the effective complex index of 

refraction of the mode. From (A.14), it follows that 

 

𝐿𝐿 =
𝜆𝜆0

2𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒′  
(A.15) 
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The estimation of (A.15) does not take into account the round curvature of the termination 

of the nanorod and the retardation effects on the extremities, since the field, at optical frequencies, 

extends beyond the cavity [168]. This result will be only used as a first guess in the full numerical 

simulation. The effective index of the ridge was calculated using the commercial software 

COMSOL and the results for each wavelength are listed in Table A-1. The simulations were done 

using the mode analysis module in COMSOL, which calculates the propagation constant of a 

waveguide. As a first approximation, the effective index was calculated assuming an infinite rod 

with constant cross section. Thus, in COMSOL, only the waveguide cross section is necessary for 

the propagation constant (effective index) calculation. A representation of the simulation region 

used is shown in Figure A.2. 

 
Figure A.2 –Geometry used for the calculation of the nanorod effective index in the mode analysis module of Comsol. Note 

that, since the mode is assumed to be confined around the Al region, the simulation region must be large enough so the 

evanescent fields do not touch the outer boundaries. 

The calculation was performed with widths w ranging from 80 nm to 150 nm.  Since, as 

shown in Table A-1, the effective index does not change significantly as a function of w, using 

(A.15), one finds that the resonance occurs for 𝐿𝐿𝐵𝐵 ≅ 149 nm , at 444 nm, and  𝐿𝐿𝑅𝑅 ≅ 218 nm, at 

635 nm. To minimize the overlapping between the transverse and longitudinal plasmon modes, 

the width should be smaller than the length. Thus, the width will be fixed at 100 nm, for the design 

operating at 444 nm, and 150 nm, for the design operating at 635 nm. 
Table A-1 - Effective index �𝒏𝒏𝒆𝒆𝒆𝒆𝒆𝒆� of the aluminum waveguide ridge (50 nm tall) over a silica substrate for different widths at 
two wavelengths (444 nm and 635 nm). 

w (nm) 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎  
𝜆𝜆0 = 444 nm 

𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎 
 𝜆𝜆0 = 635  nm 

80 1.512-0.038j 1.457-0.036j 
90 1.509-0.035j 1.453-0.032j 
100 1.507-0.034j 1.453-0.030j 
110 1.506-0.032j 1.453-0.029j 
120 1.505-0.031j 1.452-0.027j 
130 1.504-0.030j 1.453-0.026j 
140 1.504-0.0291j 1.453-0.025j 
150 1.504-0.028j 1.450-0.025j 
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With the initial design dimensions determined, we can start the rigorous simulation of the 

complementary nanoantenna to determine the geometry that optimizes the cross-polarization 

energy conversion for the required wavelengths. The simulation was performed on the 

commercial software HFSS using Bloch boundaries on the lateral walls to simulate an infinite 

array of complementary nanorods and the system was illuminated by a normal incident plane 

wave. The unit cell size was taken as a square with dimensions of √2𝐿𝐿 × √2𝐿𝐿 to minimize the 

coupling between the antennas of the array. The simulated unit cell is shown at Figure A.3 (a) and 

the resulting cross-polarization energy conversion maps are shown at  Figure A.3 (b) and (c) as 

function of the length, L, and operating wavelength, 𝜆𝜆0 , for widths of 100 nm and 150 nm, 

respectively. Note that the resonances of each case appear near the proposed wavelengths but 

deviate from the obtained guesses 𝐿𝐿𝑅𝑅 and 𝐿𝐿𝐵𝐵, as it was expected. In other words, according to the 

white dotted lines in Figure A.3 (b) [(c)], the resonance is at 444 nm [635 nm] when  L= 165 nm 

[L = 255 nm], which is only 15 nm [32 nm] bigger than the 𝐿𝐿𝐵𝐵[ 𝐿𝐿𝑅𝑅] predicted by the Fabry-Perot 

model. Finally, note that the length for maximum energy conversion depends linearly on the 

wavelength for both widths, as predicted by the Fabry-Perot cavity model in equation (A.15). 

Finally, Figure A.3 (d) shows the cross-polarization energy conversion dispersion for the 

optimum structures resonating at 444 nm (blue line) and 635 nm (red line). Note that the 

maximum conversion for both structures is almost 0.12, which is half the limit imposed in (A.13). 

This difference arises due to Ohmic losses in the aluminum and the interferences between the 

longitudinal and transverse plasmon modes scattering that are not considered in (A.13). 
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Figure A.3 - (a) Representation of the unit cell containing the complementary nanorod. The incidence is normal from the 

cover, above the metallic layer. The period was taken as √𝟐𝟐 𝑳𝑳. The resulting cross-polarization energy conversion is shown at 

(b) and (c) for widths (w) equal 100 nm and 150 nm, respectively, as functions of the length, L, and the operating wavelength, 

𝝀𝝀𝟎𝟎. The dotted lines in (b) and (c) mark the regions with wavelengths of 444 nm and 635 nm, respectively. (d) cuts of the cross-

polarization energy conversion dispersions of (b) and (c) in blue (L= 165 nm) and red (L = 255 nm), respectively. 

A.2.3. Dual Color Plasmonic Holographic 

Metasurface 

The designed plasmonic metasurface structures can work as a static (in the sense that once 

its functionality is encoded it is unchangeable) wavefront modulator with binary phase control. 

For instance, it could be used as a Fresnel Zone Plate, a hologram or a beam shape converter, to 

mention but a few. We employed the metasurface to encode two CGH operating at each of those 

wavelengths. The CGHs were calculated as Fourier Holograms, see Appendix D – Digital 

Holography for details on the calculation, that are reconstructed in the far-field. The target images 

are shown in Figure A.4 (a) for the hologram that will be reconstructed with a red laser 

(wavelength of 635 nm) and Figure A.4 (b) for the blue laser (wavelength of 444 nm). Note that 

these images are the complementary of each other. Thus, if the reconstructions of each hologram 

is aligned it would result in a dual color image, as represented in Figure A.4 (c).  
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Figure A.4 - Target images for the red (a) and blue (b) holograms. (c) Shows a representation of the expected reconstruction 

of the merged metasurface when both holograms are excited. 

To relax the image alignment requirements for the reconstructions, the metasurfaces 

containing the CGHs for each color were merged in only one structure following the pattern of a 

Chess Table, as shown in  Figure A.5. Note that this arrangement makes the hologram stretched 

along the horizontal dimension. This will impact the reconstruction by making it thinner along 

the horizontal dimension according to the similarity principle of the Fourier Transform, that rules 

the diffraction of the Fourier Hologram according to ( D.6 ), as represented in Figure A.4 (c). 

Furthermore, according to the spectra of each nanoantenna design, shown in Figure A.3 (d), the 

red (blue) design has a cross-polarization energy conversion of about 6% ( 1%) when operating 

at 444 nm (635 nm). Therefore, there will be a noticeable cross-talk between the two wavelengths 

mainly due to the red design. The red CGH will be reconstructed also by light operating at 444 

nm with an efficiency of approximately a half of the reconstruction efficiency of the red CGH 

with light at 635 nm. The blue CGH design, on the other hand, will be reconstructed at 635 nm 

with an efficiency of only 1%, that is ten times smaller than its efficiency at 444 nm.  

 

 
Figure A.5 - Representation of the merging between the CGHs designed to operate at 444 nm  (blue square matrix on top) and 

635 nm (red square matrix on top) resulting in the final Chess Table arrangement (below). Note that the arrangement is made 

by threading the pixels of each original CGH. 

Unfortunately, the Chess Table arrangement has the drawback that the pixels for each color 

should have the same size but the unit cell design of the nanoantenna for each color have different 

sizes. Thus, two solutions were employed to solve this challenge. The first consists in adapting 

the blue nanoantenna design unit cell size to match the red one, which is larger. That is, it will be 
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used 386 nm for the pixel size of both structures, as shown in Figure A.6 (a). The second 

procedure consists in imposing the CGHs pixel size as 1930 nm × 1930 nm  and fill this area with 

an array of 5×5 of nanoantennas, as depicted in Figure A.6 (b). 

 

 
Figure A.6 - Arrangements used to represent each pixel of the CGHs for the red (a) and (b) holograms. The unit cell size of 

the isolated nanoantennas is equal to the red design, that is 386 nm × 386 nm while for the 5×5 arrays is 1930 nm × 1930 nm. 

Finally, the metasurface mask was assembled using the commercial software TannerTools, 

which allows the generation of masks in GDSII format, required for posterior fabrication. 

Initially, the pixels represented in Figure A.6 were drawn on the software for each arrangement 

(one nanoantenna and 5×5 array of nanoantennas per pixel). Note that the binary phase CGHs for 

each color are separated and independent numerical matrices containing only 1s and -1s that 

correspond to the phases of the resulting distribution field from the IFTA. The numbers 1 and -1 

represent phases 0 and π rad, respectively. Then, these matrices are merged according to the 

schemes shown in Figure A.6. This procedure is further represented in Figure A.7 (a) where the 

blue (red) numbers correspond to the CGH calculated to operate with blue (red) light. The final 

merged matrix is then inserted into a script on TannerTools that translates each the 1s and -1s to 

the corresponding representation by the nanoantennas. Therefore, if in a given position it is 

required a blue (red) +1 pixel, the previously drawn reference representation of the blue (red) 

pixel is inserted at that position. Instead, if a -1 pixel is required, the reference is rotated about its 

center by 𝜋𝜋
2
 rad. The resulting masks of the scheme in Figure A.7  (a) are shown in Figures A.7 

(b) and (c) for metasurfaces that use one antenna per pixel and the array with 5×5 nanoantennas, 

respectively.  
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Figure A.7 -– (a) Matrix representation of the merging of the blue and red CGHs. (b) and (c) show the resulting masks of the 

merged CGH shown in (a) with one nanoantenna per pixel and an array of 5×5 nanoantennas per pixel, respectively. 

A.3. Fabrication 

The fabrication of the metasurface was made in collaboration with Prof. Dr. Luis Alberto 

Barêa (UFSCar/UNICAMP), from the group of Prof. Dr. Newton Frateschi (IFGW/UNICAMP). 

As I did not participate directly in the fabrication process, its details were omitted.  

Scanning electron microscopy (SEM) micrographs of parts of the fabricated metasurfaces 

can be seen in Figures A.8 (a) and (b) for the metasurfaces with one nanoantenna per pixel and 

an array of 5×5 nanoantennas per pixel, respectively. 

 

 
Figure A.8 – SEM micrographs of the (a) one nanoantenna per pixel metasurface and (b) 5×5 nanoantenna array per pixel. 
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A.4. Optical reconstruction 

Unfortunately, only the design with the 5×5 nanoantenna array was available for optical 

characterization. The setup used for the measurements is shown in Figure A.9. 

 
Figure A.9 – Optical setup used for the reconstruction of the CGH. The He-Ne laser is polarized horizontally. The lens is used 

to reconstruct the hologram on the focus of the CCD camera [3]. In front of the CCD, there is a polarizer that only transmits 

the cross-polarized light. 

 

The He-Ne laser (632 nm) is already vertically polarized and a polarizer is placed in front of 

the CCD to allow only the cross-polarized light to impinge on it. Furthermore, a convergent lens 

(f=2.5 cm) was used so the reconstruction is formed on its focus, where the CCD is placed, instead 

of forming in the far-field [3]. The reconstructed image is shown in Figure A.10 (a) along with 

the numerical reconstruction in Figure A.10 (b), obtained via rigorous RS-Integration (see section 

D.4.1 - RS Integration for details), operating at 632 nm. As expected, both images are thinner 

(compare Figure A.10 (b) with Figure A.4 (a)) along the horizontal dimension because the merged 

hologram stretches along this dimension. The experimental reconstruction is extremely noisy, and 

one can hardly identify the target image. I hypothesize that the poor image quality is due to some 

pixels not transmitting light with the required phase by the CGH, thus degrading the 

reconstruction. This hypothesis was numerically tested by reconstructing the CGH, via RS 

integration, with a random phase added to its pixel. The resulting reconstruction is shown in 

Figure A.10 (c) and, as expected, it is severely noisier than the numerical reconstruction of the 

original CGH, in Figure A.10 (b), indicating that the presence of dead pixels on the fabricated 

metasurface may have contributed for the degeneration of its reconstruction. Unfortunately, the 

reconstruction was not present when the sample was excited with a wavelength of 444 nm.  
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Figure A.10 - (a) Experimental and (b) numerical reconstructions of the metasurface operating at 632 nm. (c) Shows the 

reconstruction of the CGH, operating also at 632 nm, when a random phase noise is applied on it showing that the poor quality 

of the experimental reconstruction in (a) is due to phase variations on the metasurface. 

According to Prof. Dr. Luis Barêa, in charge of the fabrications, the machine used to record 

the masks had temperature issues because the air conditioner of the room where it was installed 

was broken at that time. Therefore, this issue may have affected the geometries of the 

nanoantennas which, in turn, changed they electromagnetic response in an unpredictable way that 

harmed its functionality.  
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A.5. Conclusion 

In this work it was projected, fabricated and experimentally measured the first holographic 

metasurfaces of this project. The used structures to compose the array were simple 

complementary nanorod antennas made of aluminum on a silica substrate. When excited at the 

LSPR, these structures may present a cross polarization conversion that can be used to achieve a 

binary phase control. Unfortunately, they present a theoretical limit conversion efficiency of 25%, 

neglecting losses. Thus, two designs were proposed that resonate at 444 nm and 635 nm each with 

a maximum cross-polarization efficiency of 12% both. These designs were used to assemble two 

dual color holographic metasurface designs that follows a chess table distribution of the pixels. 

The CGH were previously calculated with the IFTA, described at section D.3 Iterative Fourier 

Transform Algorithm (IFTA). In one of the metasurface designs, the CGH pixel was represented 

by a single nanoantenna whereas in the other by a 5×5 nanoantenna array.  

The designed metasurfaces were fabricated in collaboration with Prof. Dr. Luis Alberto 

Barêa (UFSCar/UNICAMP), and the group of Prof. Dr. Newton Frateschi (IFGW/UNICAMP). 

Unfortunately, we only received the 5×5 nanoantenna array design that suffered from temperature 

issues that deteriorated its optical performance, making the reconstruction at 632 nm extremely 

noisy and the one 444 nm completely washed out. Therefore, these issues and the small theoretical 

limit of the conversion efficiency (25%) motivated us to seek other concepts and materials for the 

holographic metasurfaces. Nevertheless, the presented work was important for the development 

of this thesis because it was the most directly attempt to its original proposal. It was a milestone 

in terms of learning experimental and design tools related to metasurfaces, electromagnetism and 

diffractive optics. 
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Appendix B – Field confinement in dielectric 

nanoposts 

The starting point of the metasurface design is the calculation of the scattering parameters of 

its building blocks. Here, I was interested in manipulating the phase shift imparted by these 

structures onto the transmitted light. Therefore, I calculated the phase shift of the transmitted light 

and its efficiency by an array of identical structures. These simulations rely on Bloch’s theorem 

and greatly reduces the computational requirements as discussed in section II.2 Design of a 

metasurface. However, this procedure assumes that the array and isolated nanopost responses 

match. That is, the response of the nanopost must be local in the sense that each nanopost is 

weakly coupled to its neighbours. To check if that is indeed the case, we need to analyse the 

modes supported by the array structure and check how confined they are in the nanoposts. 

This section explores in depth the modes and resonances of the cylindrical nanoposts used 

in the holographic metasurfaces and metalenses design. First, the dispersion and field distributions 

of the Bloch modes supported by the structures are calculated. Additionally, the Bloch modes 

parameters of the same geometries are calculated assuming TiO2 and a medium with refractive 

index of 1.5. It will be shown that the higher is the cylinder refractive index the higher is the field 

confinement of the fundamental Bloch modes in the cylinder. Then, a brief analysis is made on 

the field distribution of the Fabry-Perot modes found in the nanoposts that are the building blocks 

of the metasurfaces. Similar analysis and conclusions can be drawn with the elliptical nanoposts 

that are used in the birefringent designs with the difference that TM and TE modes are no longer 

degenerated. Thus, the analysis of the elliptical nanoposts is omitted. 

B.1. Bloch modes  

The Bloch modes are calculated using a RCWA code written by me and based on the works 

of Whittaker et al. [88] and Popov et al. [169]. The eigenvalue system is solved to find the out-

of-plane (z direction) propagation constant of a periodic array of circles in a square lattice at a 

given frequency. The unit cell size with the relevant geometrical parameters is shown in Figure 

A.11. The embedding medium is always air and different materials are used within the cylinder. 

All calculations are done for out-of-plane propagation at the Γ point (𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦 = 0).  
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Figure A.11 - Unit cell representation. 

Figures B.2, B.3 and B.4 show the out-of-plane effective indices of the first 20 Bloch modes 

with cylinders made of constant medium with refractive index 1.5, TiO2 and c-Si, respectively. 

The blue diamonds mark the dispersion of the two fundamental modes (since they are 

degenerated, only one curve is visible) and the black dots the dispersions of the remaining modes. 

The TiO2   and c-Si wavelength-dependent refractive indices were taken from [170] and [90], 

respectively. Since we are interested in the existence of propagating (non-evanescent)  Bloch 

modes, only the real parts of the refractive indices were accounted for. In all figures, the upper 

and bottom rows show the real and imaginary parts of the effective indices. Structures with three 

diameters were analysed: 100 nm, 130 nm and 156 nm, which are shown in (a)-(b), (c)-(d) and 

(e)-(f), respectively, in Figures B.2, B.3 and B.4.  

All SiO2 based arrays allow only two propagating modes, which are the degenerated 

fundamental modes, due to the small refractive index contrast supported by these structures, as 

shown in Figure A.12. Therefore, these arrays can be treated in terms of an effective medium with 

refractive index given by the effective index of the fundamental modes. The TiO2 structures 

present a similar behaviour except for the largest diameter at low wavelength. That is, it supports 

high order propagating modes for wavelengths smaller than 450 nm when the diameter is equal 

to 156 nm, as shown in Figure B.3. At this condition, the effective medium theory no longer holds, 

and the structure behaves as a photonic crystal.  Finally, the c-Si based array of cylinders supports 

propagating higher order Bloch modes in a given region of the spectrum, as shown in Figure A.14. 

The onset of the propagating higher order modes is at 500 nm, 600 nm and 630 nm with arrays of 

cylinders having diameters of 100 nm, 130 nm and 156 nm, respectively. These are the 

wavelengths upon which the imaginary part of the following two higher order modes kicks off 

and become evanescent as shown by Figures B.4 (b), (d) and (f). 
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Figure A.12 – Out-of-plane effective indices of the first 20 Bloch modes with cylinders made of constant medium with a 

refractive index of 1.5. The blue diamonds mark the dispersion of the two fundamental modes (since they are degenerated 

only one curve is visible) and the black dots the dispersions of the remaining modes. In all figures, the upper and bottom rows 

show the real and imaginary parts of the effective indices. Structures with three diameters were analysed: 100 nm, 130 nm 

and 156 nm, which are shown in (a)-(b), (c)-(d) and (e)-(f), respectively.  

 

 
Figure A.13 – Out-of-plane effective indices of the first 20 Bloch modes with TiO2 cylinders. The blue diamonds mark the 

dispersion of the two fundamental modes (since they are degenerated only one curve is visible) and the black dots the 

dispersions of the remaining modes. The TiO2   refractive index dispersion was taken from [170]. In all figures, the upper and 

bottom rows show the real and imaginary parts of the effective indices. Structures with three diameters were analysed: 100 

nm, 130 nm and 156 nm, which are shown in (a)-(b), (c)-(d) and (e)-(f), respectively. 
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Figure A.14 – Out-of-plane effective indices of the first 20 Bloch modes with c-Si cylinders. The blue diamonds mark the 

dispersion of the two fundamental modes (since they are degenerated only one curve is visible) and the black dots the 

dispersions of the remaining modes. The c-Si refractive index dispersion was taken from [90]. In all figures, the upper and 

bottom rows show the real and imaginary parts of the effective indices. Since we are interested in the existence of propagating 

(non-evanescent)  Bloch modes, only the real parts of the refractive indices were accounted for.  Structures with three 

diameters were analysed: 100 nm, 130 nm and 156 nm, which are shown in (a)-(b), (c)-(d) and (e)-(f), respectively. 

Thus, it seems that SiO2 and TiO2 are better than c-Si because they can support only one 

mode and can be treated in terms of an effective index medium. However, as a matter of fact, this 

is not a desired feature because the effective medium effects only hold when the low index 

cylinders are arranged in the array to create the required fundamental Bloch mode. This can be 

seen by the electric field amplitude of the fundamental x-oriented mode (stronger component 

along x direction), as shown in Figure A.15. The results for the structures made of SiO2, TiO2 and 

c-Si are shown in Figures B.5 (a), (b), and (c), respectively. Note that the field is mainly around 

the cylinders in the first two cases for all diameters analysed but has more field inside the cylinder 

for the TiO2 cases. Thus, this indicates that the posts are strongly coupled to each other and the 

response of an isolated structure strongly differs from the array. The structures made of c-Si 

present most of the fields inside the cylinder for all cases but the one with the smaller diameter 

(100 nm) as shown in Figure B.5 (c).  Therefore, most of light propagates in the nanopost without 

significant interaction between neighbour structures, which give these structures a local character.  

However, we saw in Figure B.4 that the c-Si based structures can support higher order modes 

even on the desired region of the spectrum. In particular, at 532 nm, there are two additional 

modes for the structures with diameters of 130 nm and 156 nm that could give a photonic like 

behaviour for the structure. However, these modes present asymmetric distributions (see Figure 

A.16) and can couple with neither of the fundamental modes, which are symmetric, nor with the 

normally incident plane wave. Therefore, these are dark modes that will not affect the optical 

response. Therefore, the response of the array of truncated waveguides is ruled by the fundamental 
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Bloch mode, which is highly concentrated inside the structure. Thus, it is expected that the 

response of each c-Si nanopost in terms of phase accumulation and energy transmission better 

resembles that of the array than the other cases. 

 

 
Figure A.15 – Fundamental x-polarized (stronger component along x) Bloch mode field amplitude distribution of a SiO2 (a), 

TiO2  (b) and c-Si (c) array. From left to the right, the cylinders diameters are 100 nm, 130 nm and 156 nm. The unit cell size 

is 190 nm and the operating wavelength is 532 nm. 

 
Figure A.16 – x-component field amplitude (top) and phase (bottom) distributions of the three Bloch modes with lowest 

effective index on a c-Si based array. From left to the right, the cylinders diameters are 100 nm, 130 nm and 156 nm. The unit 

cell size is 190 nm and the operating wavelength is 532 nm.  
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B.2. Nanoposts resonances 

In the previous section it was shown that the field distribution of c-Si based 2D photonic is 

highly confined inside the high index region. Thus, the response of each individual post is similar 

to the response of the array in terms of the transmitted light phase delay and power. When this 

array is finite along the out-of-plane direction it behaves as a truncated waveguide (leaky cavity) 

that can support modes along its axis. As it was shown in Figures III-1 and III-2 of section III.1.2 

Metasurface design  in the main text, these truncated waveguides demonstrated a resonant 

behaviour for certain diameters, which were characterized by reduced transmissions in both 

designs. Since the physics is the same for both designs over Sapphire and Quartz, only the former 

is analysed here for simplicity. The simulations were carried out in Comsol using periodic 

boundary condition (Floquet) in the XY and YZ boundaries. The structures are excited with a x-

polarized plane wave at normal incidence and operating at 532 nm. 

 
Figure A.17 - Electric field amplitude distributions of the structures with diameters 190 nm ((a), (b), (e) and (f)) and 220 nm  

( (c), (d), (g) and (h)). The top row ( (a) – (d) ) shows a cut along the XZ plane and the bottom row first row ((e) – (h) ) along 

the YZ plane. Finally, (a), (c), (e) and (g) shows the results for posts with diameters of 105 nm and (b), (d), (f) and (h) shows 

the results for posts with diameters of 150 nm. 

 Figure A.17 shows the field distributions of the structures with diameters 190 nm (Figure 

A.17 (a), (b), (e) and (f)) and 220 nm  (Figure A.17 (c), (d), (g) and (h)). The top row (Figure 

A.17 (a) – (d) ) shows a cut along the XZ plane and the bottom row first row (Figure A.17 (e) – 

(h) ) along the YZ plane. Finally, Figures A0 (a), (c), (e) and (g) shows the results for posts with 

diameters of 105 nm and Figure A.17 (b), (d), (f) and (h) shows the results for posts with diameters 

of 150 nm. Note that this resonance are marked by the presence of intense region of maximum 
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that can be better seen along the YZ plane. Finally, note that all fields distributions are very intense 

inside the post, which is the reason for the enhanced absorption under the resonance as shown  in 

Figure 2 of section III.1.2 Metasurface design  in the main text. 

 

 

 

.  
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Appendix C – Metalenses additional informations 

C.1. Phase and transmission maps 

The metalenses are comprised of eight different meta-atoms to encode eight phase levels. 

Table C-1  shows the corresponding diameters with the ideal phase levels at normal incidence. 
Table C-1 - Metalens nanoposts diameters and ideal relative phases 

Id #1 #2 #3 #4 #5 #6 #7 #8 
Diameter [nm] 71 88 96 101 106 111 120 137 

Ideal relative phase 
[rad] 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 

 

Figures C.1 and C.2 [C.3 and C.4] show the relative phase and transmittance maps, 

respectively, of the eight meta-atoms (labeled according to Table S3), as function of the 

normalized parallel wavevector components kx and ky at s and p polarizations. The operating 

wavelength is 532 nm. It is clear that, except for nanoposts #6 and #8, both the phase and 

transmissions are largely independent of the angle of incidence, thus guaranteeing a WFOV. 

Nanoposts  #6 and #8 showed a more pronounced dependency on  the angle of incidence, but this 

dependency did not perceptibly affect the overall metalens performance. 
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Figure C.1 - Phase maps, in units of rad, of the eight structures used in the c-Si metalens at p polarisation. The operating 

wavelength is 532 nm. 

 
Figure C.2 - Transmittance maps of the eight structures used in the c-Si metalens at p polarization. The operating wavelength 

is 532 nm. 

 
Figure C.3 - Phase maps, in units of rad, of the eight structures used in the c-Si metalens at s polarisation. The operating 

wavelength is 532 nm. 
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Figure C.4 - Transmittance maps of the eight structures used in the c-Si metalens at s polarisation. The operating wavelength 

is 532 nm. 
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C.2. Fourier Transforms of quadratic (WFOV) 

and hyperbolic (DL) field profiles. 

The Fourier Transform (FT) amplitude of the field profile generated by the WFOV and DL 

metalenses are shown in Figures C.5 (a) and (b), respectively, as function of the radial component 

of the wavevector and the NAs of the metalenses. The dashed white lines correspond to the 

numerical aperture equation NA = ± sin θ = ±kr/k0. Note that the hyperbolic spectrum is totally 

confined inside the cone defined by those lenses (Figure C.5 (b)) whereas the quadratic is only 

confined up to NA ≈ 0.3 (Figures C.5 (a)). As the NA increases, the hyperbolic FT has a higher 

intensity around the cone edges, which explains its diffraction limits capacity. The FT of the 

quadratic profile, however, spreads the energy at high frequency components outside the cone, 

which explains its high field of view [114]. 

In Figure C.5 (c), it is shown a cut of Figures C.5 (a)-(b) along NA = 0.3. Up to NA ≈ 0.3, 

the spectra are very similar, as clearly seen in Figure C.5 (c). Figure C.5 (d) shows a cut along 

NA=0.8 of Figures C.5  (a) and (b). 

 

Figure C.5 -  (a) Quadratic and (b) hyperbolic field profiles Fourier transform comparison as function of the metalenses ‘NAs 

and radial wavevector component. The white dashed lines mark the equations 𝑁𝑁𝑁𝑁=±𝑘𝑘𝑘𝑘/𝑘𝑘0. (c) [(d)] shows a cut of (a) and (b) 

in black and blue lines, respectively, at an NA of 0.3 [0.8]. The operating wavelength is 532 nm and the focal length 750 𝜇𝜇𝜇𝜇. 
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C.3. Spectrum flattening of the spherical phase 

profile 

 The magnitude of the Fourier Transform of the spherical phase profile is given by: 

where 𝑅𝑅 is the radius of curvature, 𝑓𝑓 is the focal length and 𝑘𝑘⊥2 = 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2. The dependency of 

the FT magnitude on 𝑘𝑘⊥ vanishes in the limit of 𝑅𝑅 going to infinity: 

 

 

which accounts for the spectral flattening. Note that equations ( C.1 )and ( C.2 ) assume an infinite 

large metalens. In reality, they would be convoluted with a jinc function due to the limited 

numerical aperture of the metalens.   
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C.4. Angular spectrum formalism 

All simulations done in chapter IV of the main text involved a rigorous wave-optics treatment 

which does not involve the paraxial approximation. It was assumed a background media with 

refractive index n and an operating free-space wavelength λ0.  The beam is propagated using the 

angular spectrum formalism [3]. That is, given a field in a plane Π = [z = z1,∀(x,y,z) ∈ ℝ3], the 

resulting diffracted field in a plane Γ = [z = z2,∀(x,y,z) ∈ ℝ3] which is parallel to Γ, is given by 

 

( ) ( ) ( ){ }( )2 1( )1
2 1, ; , ; , ,zik z z

x yU x y z F F U x y z k k e x y−−=       (C.3 ) 

                                

where, U(x,y;z) is the field distribution, F and F-1 are the bi dimensional Fourier and inverse 

Fourier transforms, respectively, given by 

( ) ( ) ( ) ( ) ( ) ( )
2

, ,, , , , yxj x y k k
x y x yF g x y k k G k k g x y e dxdy− ⋅

= =   ∫∫


   ( C.4 ) 

( ) ( ) ( )
( )

( ) ( ) ( )
2

, ,1
2

1, , , ,
2

yxj x y k k
x y x y x yF G k k x y g x y G k k e dk dk

π
⋅−   = =  ∫∫



   (C.5 ) 

       Finally, kz is the z component of the wave-vector k


=(kx, ky, kz ) ( k


≡ k =2π/λ0n) 

2 2 2
z x yk k k k= − −    ( C.6 ) 

The advantage of this approach is that it can be calculated using Fast Fourier Transform 

(FFT) algorithm. Thus, this method is faster and more exact than other approaches, such as the 

Rayleigh-Sommerfeld (RS) integral calculation. Next section explores the differences between 

the RS integral and Angular spectrum formalisms. 
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C.4.1. Equivalence to the Rayleigh-Sommerfeld 

equation 

Although there is no question about the validity of equation (C.3), I had not seen an 

equivalency among it and the Rayleigh-Sommerfeld (RS) integral (shown in equation ( D.50) [3], 

which is also a rigorous diffraction equation under the wave-optics approximation. As the RS 

integral is a more stablished equation for diffraction calculations, it is convenient to draw the link 

with the angular spectrum and check their similarities. 

For convenience, the RS equation is rewritten bellow 

𝑈𝑈𝑅𝑅𝑅𝑅(𝑥𝑥,𝑦𝑦; 𝑧𝑧2) = −
𝑗𝑗𝑗𝑗
2𝜋𝜋

� 𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′
 

ℝ2
𝑈𝑈(𝑥𝑥′,𝑦𝑦′; 𝑧𝑧1)

𝑧𝑧𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗�𝑥𝑥′−𝑥𝑥,𝑦𝑦′−𝑦𝑦,𝑧𝑧2−𝑧𝑧1 � 

𝑟𝑟2(𝑥𝑥′ − 𝑥𝑥,𝑦𝑦′ − 𝑦𝑦, 𝑧𝑧2 − 𝑧𝑧1)  
( C.7 ) 

where, 

𝑟𝑟(𝑥𝑥,𝑦𝑦; 𝑧𝑧) = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 ( C.8 ) 

Thus, I begin by applying the convolution theorem in the angular spectrum equation (C.3) , which 

results in 

𝑈𝑈(𝑥𝑥, 𝑦𝑦; 𝑧𝑧2) = 𝑈𝑈(𝑥𝑥,𝑦𝑦; 𝑧𝑧1) ⊗ℱ−1�𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧(𝑧𝑧2−𝑧𝑧1)� ( C.9 ) 

 

But, according to Weyl’s identity [171],  

𝑒𝑒𝑗𝑗𝑗𝑗�𝑥𝑥2+𝑦𝑦2+𝑧𝑧2

�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2
= 𝑗𝑗2𝜋𝜋ℱ−1 �

1
𝑘𝑘𝑧𝑧
𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧� (𝑥𝑥,𝑦𝑦) ( C.10 ) 

Deriving both sides of ( C.10) by z, it follows that 

ℱ−1�𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧�(𝑥𝑥, 𝑦𝑦) = −
1

2𝜋𝜋
𝑧𝑧𝑒𝑒𝑗𝑗𝑗𝑗�𝑥𝑥2+𝑦𝑦2+𝑧𝑧2

𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2
�𝑗𝑗𝑗𝑗 −

1
�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2

�   ( C.11 ) 

Substituting ( C.11 ) in ( C.9 ) and defining 𝑟𝑟 ≡ �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2  

𝑈𝑈(𝑥𝑥,𝑦𝑦; 𝑧𝑧2) = 𝑈𝑈(𝑥𝑥,𝑦𝑦; 𝑧𝑧1) ⊗ �−
1

2𝜋𝜋
𝑧𝑧𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗

𝑟𝑟2 �𝑗𝑗𝑗𝑗 −
1
𝑟𝑟�  � = 

= −
1

2𝜋𝜋� 𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′
 

ℝ2
𝑈𝑈(𝑥𝑥′,𝑦𝑦′; 𝑧𝑧1) �

𝑧𝑧𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗(𝑥𝑥′−𝑥𝑥,𝑦𝑦′−𝑦𝑦,𝑧𝑧2−𝑧𝑧1) 

𝑟𝑟2(𝑥𝑥′ − 𝑥𝑥,𝑦𝑦′ − 𝑦𝑦, 𝑧𝑧2 − 𝑧𝑧1) �𝑗𝑗𝑗𝑗 −
1

𝑟𝑟(𝑥𝑥′ − 𝑥𝑥,𝑦𝑦′ − 𝑦𝑦, 𝑧𝑧2 − 𝑧𝑧1) �� 

 

( C.12 ) 

 

Comparing the RS integral (Eq. ( C.7)) with ( C.12), one concludes that 

𝑈𝑈(𝑥𝑥, 𝑦𝑦; 𝑧𝑧2) = 𝑈𝑈𝑅𝑅𝑅𝑅(𝑥𝑥,𝑦𝑦; 𝑧𝑧2) +
1

2𝜋𝜋
� 𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′

 

ℝ2
𝑈𝑈(𝑥𝑥′, 𝑦𝑦′; 𝑧𝑧1)

𝑧𝑧𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗(𝑥𝑥
′−𝑥𝑥,𝑦𝑦′−𝑦𝑦,𝑧𝑧2−𝑧𝑧1) 

𝑟𝑟3(𝑥𝑥′ − 𝑥𝑥, 𝑦𝑦′ − 𝑦𝑦, 𝑧𝑧2 − 𝑧𝑧1)  
 

( C.13 ) 
 

That is, the angular spectrum equation contains both the RS integral and another integral, whose 

integrand is proportional to 𝑧𝑧
𝑟𝑟3

~ 1
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒2

 and do not radiate. Therefore, the angular spectrum 

integral is more accurate than the RS integral, especially in the near field domain. This is a 
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reasonable result since the angular spectrum equation is derived from Helmholtz equation with 

only the scalar wave approximation whereas the RS integral carries also the radiation 

approximation [3]. 

 

C.5.  FOV characterization 

In order to quantify the field of view, we define a function that expresses the distortion 

suffered by the point spread function at oblique incidence. The obvious approach is to calculate 

the energy of the difference between the PSF amplitudes at normal and oblique incidences. That 

is, 

 

where, θ is the angle of incidence, P(x,y,θ), is the PSF field amplitude at that angle and ρ(θ) its 

focusing efficiency. Note that the oblique incidence PSF was displaced by (Δx,Δy) to align the 

centre of its peak with the P(x,y,0) (see Figure C.6). We observed that the point spread function 

is well defined for. The FOV is thus defined as the angular cone for which ξ(θ) < 0.1. 

 
Figure C.6 - Representation of the cross section of the PSF at normal (blue) and oblique incidence (red). Notice that the later 

was displaced to align with the former. 

 

 

 

 

  

( )
( )

( )
( )

2
, ,0 , ,

( )
0

P x y P x x y y
dS

θ
ξ θ

ρ ρ θΓ

− ∆ −∆
= −∫  ( C.14 ) 
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C.6. USAF 1951 chart 

The USAF 1951 resolution chart is a test target created by the U. S. Air force to comply with 

the MIL-STD-150A standard [172]. It consists of several pairs of elements orthogonally arranged. 

Each element has three rectangles with a length to width ratio of 5 to 1. The elements are arranged 

in groups of six as shown in Figure C.7. Each element within a group is numbered from 1 to 6. 

Note, in Figure C.7 that the groups are arranged in pairs with the even to the left (red box) and 

the odd to the right (blue box).   

 The width (w) of the elements change according to equation  ( C.15 ) 

Where E is the element number and G the group number. Table C-2 lists the width of the 

elements from the group -1 to 7. 

 
Table C-2 – Element width (w) in the USAF chart according to  ( C.15 ). The units are in μm. 

Element 
(E) 

Group Number (G) 
−1 0 1 2 3 4 5 6 7 

1 1000.00 500.00 250.00 125.00 62.50 31.25 15.63 7.81 3.91 
2 890.90 445.45 222.72 111.36 55.68 27.84 13.92 6.96 3.48 
3 793.70 396.85 198.43 99.21 49.61 24.80 12.40 6.20 3.10 
4 707.11 353.55 176.78 88.39 44.19 22.10 11.05 5.52 2.76 
5 629.96 314.98 157.49 78.75 39.37 19.69 9.84 4.92 2.46 
6 561.23 280.62 140.31 70.15 35.08 17.54 8.77 4.38 2.19 

 

Note that pairs of groups from  ( C.15 ) 

 group exponentially to the power of 2 and can, therefore, be arranged concentrically, as 

shown in Figure C.8. For example, all the groups of  would fit inside the pair shown in Figure 

C.7. 

 

 
Figure C.7 – USAF 1951 chart with the groups 0 (red box) and 1 (blue box). This figure is not to scale. Table C-2 lists the 

elements widths. 

𝑤𝑤 =
2−�𝐺𝐺+

𝐸𝐸−1
6 �

2
 𝑚𝑚𝑚𝑚 

( C.15 ) 
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Figure C.8 – USAF 1951 chart with groups 2 to 7. This figure is not to scale. Table C-2 lists the elements widths. 
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Appendix D – Digital Holography 

This section explains thoroughly how the Iterative Fourier Transform Algorithm (IFTA) 

algorithm is implemented. The method was initially proposed by Gerchberg and Saxton [73] and 

it was followed by several improvements [74, 75]. The presented implementation was taken and 

adapted from [75], where most of the improvements are described. Additionally, it was 

implemented three algorithms for the diffraction calculation of the CGHs by the RS (Rayleigh 

Sommerfeld) integration, which better reproduces the real diffraction. These algorithms exploit 

some symmetries in the hologram and reconstruction planes that can reduce the calculation time 

by a factor of 5 (note that some reconstructions may take days using the RS integration). 

Furthermore, the RS integration manifested a wide angle aberration in the numerical 

reconstruction of the optical metasurface holograms that is not expected by the IFTA algorithm 

because the IFTA is based on either Fresnel or Fourier diffractions [75]. In short, the designed 

CGHs have subwavelength pixels, which causes their diffraction to spread over wide angles thus 

violating the paraxial approximation that is assumed in the Fresnel and Fourier diffractions [3]. 

As the IFTA diffraction is based on Fourier transforming the fields in each plane, the wide-angle 

distortion does not happen. Therefore, a correction, based on an approach proposed in [91], was 

implemented to compensate for the wide angle aberration. 

Appendix C  is organized as follows: in section D.1 the mathematical foundations behind the 

scalar diffraction are defined. In section D.2 all diffraction equations defined in section 1 are 

discretized and some useful relations are obtained. Section D.3 describes the IFTA algorithm and 

has some examples. Finally, in section D.4, the RS integration method is described and it is shown 

how to reduce its calculation time.  
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D.1. Diffraction in Fourier Optics - Mathematical 

Background 

In this section, the analytical equations of diffraction will be defined and it is not intended to 

provide a rigorous demonstration of any equation, which can be found in [3]. The objective of 

this chapter is to define the equations that relate a given field distribution (hologram) to its 

diffracted field (reconstruction or object field). The hologram and object fields are defined at 

planes Σ and Π, respectively, as shown in Figure D.1, and represented by 𝐺𝐺(𝑥𝑥, 𝑦𝑦) and 𝑈𝑈(𝜉𝜉, 𝜈𝜈), 

respectively. 

 
Figure D.1 - Analysed diffraction geometry with the hologram (𝚺𝚺)   and reconstruction (𝚷𝚷) planes. The origin of these planes 

are the points O and O’, respectively, whose distance is 𝑶𝑶𝑶𝑶′ = 𝒛𝒛, 

 

Assuming that the scalar theory of diffraction holds, the diffraction of U from Π to Σ  is 

rigorously given by [3] 

𝐺𝐺(𝑥𝑥,𝑦𝑦) = −
𝑧𝑧
𝑗𝑗𝜆𝜆0

��𝑈𝑈(𝜉𝜉, 𝜂𝜂)
𝛱𝛱

𝑒𝑒−𝑗𝑗𝑘𝑘0𝑟𝑟(𝜉𝜉,𝜂𝜂;𝑥𝑥,𝑦𝑦)

𝑟𝑟2(𝜉𝜉, 𝜂𝜂; 𝑥𝑥,𝑦𝑦)   𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

(D.1 ) 

where 𝜆𝜆0 is the working wavelength, 𝑘𝑘0 = 2𝜋𝜋
𝜆𝜆0

 the freespace wavenumber and r is the distance 

between the points (x,y), at Σ, and (𝜉𝜉, 𝜂𝜂), at Π, defined as  

𝑟𝑟(𝜉𝜉, 𝜂𝜂; 𝑥𝑥,𝑦𝑦) = �(𝑥𝑥 − 𝜉𝜉)2 + (𝑦𝑦 − 𝜂𝜂)2 + 𝑧𝑧2 
 

(  D.2 ) 

By simply changing the propagation direction, we can also express U in terms of G as 

𝑈𝑈(𝜉𝜉, 𝜂𝜂) =
𝑧𝑧
𝑗𝑗𝜆𝜆0

��𝐺𝐺(𝑥𝑥,𝑦𝑦)
𝛱𝛱

𝑒𝑒𝑗𝑗𝑗𝑗0𝑟𝑟(𝜉𝜉,𝜂𝜂;𝑥𝑥,𝑦𝑦)

𝑟𝑟2(𝜉𝜉, 𝜂𝜂; 𝑥𝑥,𝑦𝑦)   𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

(  D.3 ) 

 

If the paraxial approximation holds (𝑧𝑧 ≫ 𝑥𝑥,𝑦𝑦, 𝜉𝜉, 𝜂𝜂 ) , the following approximation can be made 

for the denominators of equations (D.1 ) and (  D.3 ) 
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1
𝑟𝑟2(𝜉𝜉, 𝜂𝜂; 𝑥𝑥,𝑦𝑦) =

1
𝑧𝑧2

1

�(𝑥𝑥 − 𝜉𝜉)2
𝑧𝑧2 + (𝑦𝑦 − 𝜂𝜂)2

𝑧𝑧2 + 1�
≅  

1
𝑧𝑧2

 

 

(  D.4 ) 

And the following for the complex exponentials at equations (D.1 ) and (  D.3 ) 

𝑟𝑟(𝜉𝜉, 𝜂𝜂; 𝑥𝑥,𝑦𝑦) = 𝑧𝑧�
(𝑥𝑥 − 𝜉𝜉)2

𝑧𝑧2
+

(𝑦𝑦 − 𝜂𝜂)2

𝑧𝑧2
+ 1 ≅ 𝑧𝑧 �1 +

1
2

(𝑥𝑥 − 𝜉𝜉)2

𝑧𝑧2
+

1
2

(𝑦𝑦 − 𝜂𝜂)2

𝑧𝑧2
 � 

 

(  D.5 ) 

Note that equations (  D.4 )   and (  D.5 ) are the binomial expansions of 𝑟𝑟(𝜉𝜉, 𝜂𝜂; 𝑥𝑥,𝑦𝑦) with only 

one and two terms, respectively. The exponential requires additional terms because it is multiplied 

by k, that normally is a large number,  and small variations in the exponent can change the value 

of the exponential significantly [3]. 

Substituting the approximations (  D.4 )and (  D.5 ) on (D.1 ) and, after a few algebraic 

manipulations, one obtains the Fresnel diffraction equation  given by [3] 

𝐺𝐺(𝑥𝑥,𝑦𝑦) = −
𝑒𝑒−𝑗𝑗𝑘𝑘0𝑧𝑧

𝑗𝑗𝜆𝜆0𝑧𝑧
𝑒𝑒−𝑗𝑗

𝑘𝑘0
2𝑧𝑧�𝑥𝑥

2+𝑦𝑦2� ℱ−1 �𝑈𝑈(𝜉𝜉, 𝜈𝜈)𝑒𝑒−
𝑗𝑗𝑘𝑘0
2𝑧𝑧 �𝜉𝜉

2+𝜈𝜈2�� �
𝑥𝑥
𝜆𝜆0𝑧𝑧

,
𝑦𝑦
𝜆𝜆0𝑧𝑧

� 

 

( D.6 ) 

 

where ℱ is the two-dimensional Fourier Transform operator defined by 

ℱ{𝑓𝑓}(𝑢𝑢, 𝑣𝑣) ≡ 𝐺𝐺�𝑓𝑓𝑥𝑥, 𝑓𝑓𝑦𝑦� = � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦)𝑒𝑒−2𝜋𝜋𝜋𝜋�𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦�⋅(𝑥𝑥,𝑦𝑦)

ℝ2
   

 

( D.7 ) 

 For a given function 𝑓𝑓:ℝ2 → ℝ. Similarly, we define the inverse Fourier Transform of 

G�fx, fy�, represented by  ℱ−1{G}, as  

ℱ−1{𝐺𝐺}(𝑥𝑥,𝑦𝑦) ≡ 𝑓𝑓(𝑥𝑥,𝑦𝑦) = � 𝑑𝑑𝑓𝑓𝑥𝑥𝑑𝑑𝑓𝑓𝑦𝑦𝐺𝐺�𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦�𝑒𝑒2𝜋𝜋𝜋𝜋�𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦�⋅(𝑥𝑥,𝑦𝑦)

ℝ2
   

 

( D.8 ) 

 We can also write a simplified expression for 𝑈𝑈  in terms of G by either applying the 

approximations (  D.5 ) and ( D.6 ) at (  D.3 ) or by simply changing the direction of propagation 

at ( D.6 ). Either way, one finds  [3] 

𝑈𝑈(𝜉𝜉, 𝜂𝜂) =
𝑒𝑒𝑗𝑗𝑘𝑘0𝑧𝑧

𝑗𝑗𝜆𝜆0𝑧𝑧
𝑒𝑒
𝑗𝑗𝑘𝑘0
2𝑧𝑧 �𝜉𝜉

2+𝜈𝜈2�ℱ   �𝐺𝐺(𝑥𝑥,𝑦𝑦)𝑒𝑒𝑗𝑗
𝑘𝑘0
2𝑧𝑧�𝑥𝑥

2+𝑦𝑦2� � �
𝜉𝜉
𝜆𝜆0𝑧𝑧

,
𝜂𝜂
𝜆𝜆0𝑧𝑧

� 

 

(D.9 ) 

 

Finally, these equations can be further simplified to the Fraunhofer diffraction under either 

one of the following conditions [3]: 

 

1. 𝑧𝑧 ≫
𝑘𝑘0�𝜉𝜉2+𝜈𝜈2�𝑚𝑚𝑚𝑚𝑚𝑚

2
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2. The object and the hologram plane are on the focuses of a convergent lens with focal 

length f.  

 

The Fraunhofer approximation is obtained by neglecting the quadratic phase terms (given by 

e± jk02z �u
2+v2�) at ( D.6 ) or (D.9 ). Therefore, besides the paraxial approximation, the diffracted field 

will be in the far field zone.  For both cases, ( D.6 ) reduces to 

𝐺𝐺(𝑥𝑥,𝑦𝑦) = −
𝑒𝑒−𝑗𝑗𝑘𝑘0𝑧𝑧

𝑗𝑗𝜆𝜆0𝑧𝑧
ℱ−1{𝑈𝑈(𝜉𝜉, 𝜈𝜈)} �

𝑥𝑥
𝜆𝜆0𝑧𝑧

,
𝑦𝑦
𝜆𝜆0𝑧𝑧

� 

 

 

(D.10 ) 

that is, the diffraction is obtained by simply Fourier Transforming its field distribution, scaling it, 

and multiplying it by phase and amplitude factors. Furthermore, we can also apply the Fraunhoffer 

approximation to (D.9 )  obtaining 

𝑈𝑈(𝜉𝜉, 𝜈𝜈) =
𝑒𝑒𝑗𝑗𝑘𝑘0𝑧𝑧

𝑗𝑗𝜆𝜆0𝑧𝑧
ℱ  {𝐺𝐺(𝑥𝑥,𝑦𝑦)} �

𝜉𝜉
𝜆𝜆0𝑧𝑧

,
𝜂𝜂
𝜆𝜆0𝑧𝑧

� 

 

( D.11 ) 

These relations also hold for case 2 with a lens with 𝑧𝑧 = 𝑓𝑓. Therefore, equations( D.6 ) and (D.9 

)  will be used to relate the field distributions between the Hologram and Reconstruction planes 

for Fresnel Holograms. Equations (D.10 ) and ( D.11 ), in turn, do the same but for Fourier 

Holograms. Note that all these equations perform a Fourier Transformation, which can be 

calculated by the Fast Fourier Transform (FFT) algorithm in a computer. Therefore, the IFTA 

algorithm will be very fast because it benefits from the FFTs fast calculations. For simplicity, 

equations ( D.6 ) and (D.10 ), that relates G in terms of ℱ−1{𝑈𝑈}, will be redefined as 

𝐺𝐺(𝑥𝑥,𝑦𝑦) = 𝐴𝐴−[𝑓𝑓  (𝑥𝑥,𝑦𝑦)]−1ℱ−1{𝑈𝑈(𝜉𝜉, 𝜈𝜈)[𝑓𝑓(𝜉𝜉, 𝜈𝜈)]−1} �
𝑥𝑥
𝜆𝜆0𝑧𝑧

,
𝑦𝑦
𝜆𝜆0𝑧𝑧

� 

 

( D.12 ) 

Whereas, equations (D.9 ) and ( D.11 ), that relates U  in terms of ℱ  {𝐺𝐺} as 

 

𝑈𝑈(𝜉𝜉, 𝜈𝜈) = 𝐴𝐴+𝑓𝑓(𝜉𝜉, 𝜂𝜂)ℱ  {𝐺𝐺  (𝑥𝑥,𝑦𝑦) 𝑓𝑓(𝑥𝑥,𝑦𝑦)} �
𝜉𝜉
𝜆𝜆0𝑧𝑧

,
𝜂𝜂
𝜆𝜆0𝑧𝑧

� 

 

( D.13 ) 

where 𝐴𝐴± = ± 𝑒𝑒±𝑗𝑗𝑘𝑘0𝑧𝑧

𝑗𝑗𝑘𝑘0𝑧𝑧
 and the function 𝑓𝑓:ℝ2 → ℂ  is defined as  

 

𝑓𝑓(𝑎𝑎, 𝑏𝑏) ≡ 𝑓𝑓 =  �𝑒𝑒
𝑗𝑗𝑘𝑘0
2𝑧𝑧 �𝑎𝑎

2+𝑏𝑏2�  𝑓𝑓𝑓𝑓𝑓𝑓 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
1                  𝑓𝑓𝑓𝑓𝑓𝑓 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

  

 

( D.14 ) 
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D.2. Computational development of the diffraction 

relations 

In a computer we are only able to store a finite amount of data, but equations ( D.12 ) and ( 

D.13 ) relate complex functions of the kind  f:ℝ2 → ℂ . Therefore, to represent digitally the field 

distributions, we need not only discretize equations ( D.12 ) and ( D.13 ) but also limit the 

calculation to a finite region at the hologram (Σ)  and reconstruction (Π)  planes. Thus, the 

hologram region will be limited to a rectangle centered on the origin of Σ discretized by M and N 

points along directions x and y, respectively, each separated by 𝑃𝑃𝑥𝑥 and 𝑃𝑃𝑦𝑦 along those directions. 

The reconstruction plane will also be limited in a rectangle centered at the origin of Π  and 

discretized by M and N points with separations that depends on 𝑃𝑃𝜉𝜉 , 𝑃𝑃𝜂𝜂, operating wavelength and 

the separation between the planes (z) as will be shown. Therefore, the field distributions of the 

hologram (G) and of the object (U) will be numerically stored in matrices 𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀   and 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀, 

respectively.  

This section starts by sampling the field distributions at each plane and calculating the 

diffracted field of each one. The effect of the sampling of the hologram on the diffraction will be 

discussed. The next part deals with the relationship between the discretized fields at both planes, 

i.e., it will be shown that they relate to each other by the discrete Fourier transform, as expected. 

D.2.1. Sampling the fields 

In this step we will first sample the field distributions at each plane in a finite matrix of 

square pixels. Therefore, the field at each pixel of the sampled distribution is assumed to have 

constant amplitude and phase given by  

𝑔𝑔[𝑚𝑚,𝑛𝑛] = �𝐺𝐺�𝑚𝑚𝑃𝑃𝑥𝑥,𝑛𝑛𝑃𝑃𝑦𝑦��𝑓𝑓�𝑚𝑚𝑃𝑃𝑥𝑥,𝑛𝑛𝑃𝑃𝑦𝑦��
−1,   𝑚𝑚 ∈ �−

𝑀𝑀
2

,
𝑀𝑀
2
− 1 � 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 ∈ �−

𝑁𝑁
2

,
𝑁𝑁
2
− 1 �

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

 

( D.15 ) 

Thus, the sampled field distribution is given by 𝐺𝐺𝑠𝑠(𝑥𝑥,𝑦𝑦): 

𝐺𝐺𝑠𝑠(𝑥𝑥,𝑦𝑦) ≡ 𝐺𝐺𝑠𝑠 = � � 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
𝑥𝑥
𝑃𝑃𝑥𝑥

 −𝑚𝑚,
𝑦𝑦
𝑃𝑃𝑦𝑦
− 𝑛𝑛�𝑔𝑔[𝑚𝑚,𝑛𝑛]

𝑁𝑁
2−1

𝑛𝑛=−𝑁𝑁2

𝑀𝑀
2−1

𝑚𝑚=−𝑀𝑀2

 

= 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
𝑥𝑥
𝑀𝑀𝑃𝑃𝑥𝑥

+
1

2𝑀𝑀
,
𝑦𝑦
𝑁𝑁𝑃𝑃𝑦𝑦

+
1

2𝑁𝑁
� � � 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �

𝑥𝑥
𝑃𝑃𝑥𝑥

 −𝑚𝑚,
𝑦𝑦
𝑃𝑃𝑦𝑦
− 𝑛𝑛�𝑔𝑔[𝑚𝑚,𝑛𝑛]

∞

𝑛𝑛=−∞

∞

𝑚𝑚=−∞

 

 

(D.16 ) 
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where, 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥,𝑦𝑦) = �1,   |x| <
1
2

e |y| <
1
2

 

0, c. c
 

 

( D.17 ) 

 

We can rewrite (D.16 ) as  

𝐺𝐺𝑠𝑠(𝑥𝑥, 𝑦𝑦) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
𝑥𝑥
𝑀𝑀𝑃𝑃𝑥𝑥

+
1

2𝑀𝑀
,
𝑦𝑦
𝑁𝑁𝑃𝑃𝑦𝑦

+
1

2𝑁𝑁
� � � � 𝛿𝛿�𝑥𝑥 −𝑚𝑚𝑃𝑃𝑥𝑥, 𝑦𝑦 − 𝑛𝑛𝑃𝑃𝑦𝑦�𝑔𝑔[𝑚𝑚,𝑛𝑛]

∞

𝑛𝑛=−∞

∞

𝑚𝑚=−∞

� ⊗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
𝑥𝑥
𝑃𝑃𝑥𝑥

,
𝑦𝑦
𝑃𝑃𝑦𝑦
� 

= 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
𝑥𝑥
𝑀𝑀𝑃𝑃𝑥𝑥

+
1

2𝑀𝑀 ,
𝑦𝑦
𝑁𝑁𝑃𝑃𝑦𝑦

+
1

2𝑁𝑁�𝐺𝐺𝑑𝑑
(𝑥𝑥,𝑦𝑦) ⊗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �

𝑥𝑥
𝑃𝑃𝑥𝑥

,
𝑦𝑦
𝑃𝑃𝑦𝑦
� 

 

( D.18 ) 

𝐺𝐺𝑑𝑑(𝑥𝑥, 𝑦𝑦) is the discrete field distribution defined as 

𝐺𝐺𝑑𝑑(𝑥𝑥,𝑦𝑦) ≡ 𝐺𝐺𝑑𝑑 = � � 𝛿𝛿�𝑥𝑥 −𝑚𝑚𝑃𝑃𝑥𝑥,𝑦𝑦 − 𝑛𝑛𝑃𝑃𝑦𝑦�𝑔𝑔[𝑚𝑚,𝑛𝑛]
∞

𝑛𝑛=−∞

∞

𝑚𝑚=−∞

 ( D.19 ) 

Using ( D.18 ) in ( D.13 ), we obtain (for here on it is assumed that ℱ   is calculated at � ξ
λ0z

, η
λ0z
�)   

𝑈𝑈𝐺𝐺𝑠𝑠(𝜉𝜉, 𝜈𝜈) = 𝐴𝐴+𝑓𝑓  ℱ  �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
𝑥𝑥
𝑀𝑀𝑃𝑃𝑥𝑥

+
1

2𝑀𝑀
,
𝑦𝑦
𝑁𝑁𝑃𝑃𝑦𝑦

+
1

2𝑁𝑁
��⊗ ��ℱ  {𝐺𝐺𝑑𝑑}ℱ  �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �

𝑥𝑥
𝑃𝑃𝑥𝑥

,
𝑦𝑦
𝑃𝑃𝑦𝑦
��� � ( D.20 ) 

In ( D.20 ) it was used the convolution theorem of the Fourier transform. Note that 𝑈𝑈𝐺𝐺𝑠𝑠 is the field 

diffracted by a sampled field distribution. Evaluating the tabulated inverse Fourier transforms [3] 

𝑈𝑈𝐺𝐺𝑠𝑠(𝜉𝜉, 𝜂𝜂) = 𝐴𝐴+𝑓𝑓  𝑀𝑀𝑀𝑀𝑃𝑃𝑥𝑥𝑃𝑃𝑦𝑦𝑒𝑒
𝑗𝑗� 𝜉𝜉

𝜆𝜆0𝑧𝑧
,
𝜂𝜂
𝜆𝜆0𝑧𝑧
�⋅�𝑃𝑃𝑥𝑥2 ,

𝑃𝑃𝑦𝑦
2 �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜉𝜉𝜉𝜉𝑃𝑃𝑥𝑥
𝜆𝜆0𝑧𝑧

,
𝜂𝜂𝜂𝜂𝑃𝑃𝑦𝑦
𝜆𝜆0𝑧𝑧

� ⊗ �ℱ  {𝐺𝐺𝑑𝑑}𝑃𝑃𝑥𝑥𝑃𝑃𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜉𝜉𝑃𝑃𝑥𝑥
𝜆𝜆0𝑧𝑧

,
𝜂𝜂𝑃𝑃𝑦𝑦
𝜆𝜆0𝑧𝑧
�� ( D.21 ) 

Equation ( D.21 ) contains already useful information regarding the diffraction by  the sampled 

field. First, ℱ  {𝐺𝐺𝑑𝑑} is just the discrete Fourier transform of 𝐺𝐺𝑑𝑑 and we can relate it with ℱ  {𝐺𝐺} by 

substituting ( D. 15 )  in ( D.19 ) and calculating the Fourier Transform 

ℱ  {𝐺𝐺𝑑𝑑} = ℱ  � � � 𝛿𝛿�𝑥𝑥 −𝑚𝑚𝑃𝑃𝑥𝑥,𝑦𝑦 − 𝑛𝑛𝑃𝑃𝑦𝑦�𝐺𝐺  �𝑚𝑚𝑃𝑃𝑥𝑥,𝑛𝑛𝑃𝑃𝑦𝑦�
∞

𝑛𝑛=−∞

∞

𝑚𝑚=−∞

𝑓𝑓  �𝑚𝑚𝑃𝑃𝑥𝑥,𝑛𝑛𝑃𝑃𝑦𝑦��

= ℱ  �� � � 𝛿𝛿�𝑥𝑥 −𝑚𝑚𝑃𝑃𝑥𝑥,𝑦𝑦 − 𝑛𝑛𝑃𝑃𝑦𝑦�
∞

𝑛𝑛=−∞

∞

𝑚𝑚=−∞

�⊗ [𝐺𝐺(𝑥𝑥,𝑦𝑦)𝑓𝑓  (𝑥𝑥,𝑦𝑦)]�

=
(𝜆𝜆0𝑧𝑧)2 
𝑃𝑃𝑥𝑥𝑃𝑃𝑦𝑦

� � 𝛿𝛿�𝜉𝜉 −
𝑚𝑚𝜆𝜆0𝑧𝑧
𝑃𝑃𝑥𝑥

 , 𝜂𝜂 −
𝑛𝑛𝜆𝜆0𝑧𝑧
𝑃𝑃𝑦𝑦

�
∞

𝑛𝑛=−∞

∞

𝑚𝑚=−∞

⊗ℱ  {𝐺𝐺𝑓𝑓  }

=
(𝜆𝜆0𝑧𝑧)2 
𝑃𝑃𝑥𝑥𝑃𝑃𝑦𝑦

� � ℱ  {𝐺𝐺𝑓𝑓  }�
𝜉𝜉
𝜆𝜆0𝑧𝑧

 −
𝑚𝑚
𝑃𝑃𝑥𝑥

 ,
𝜂𝜂
𝜆𝜆0𝑧𝑧

−
𝑛𝑛
𝑃𝑃𝑦𝑦
�

∞

𝑛𝑛=−∞

∞

𝑚𝑚=−∞

  

( D.22 ) 
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Therefore, the Fourier transform of the discretized field distribution is obtained by an infinite 

superposition of displaced copies of the Fourier Transform ℱ  {𝐺𝐺𝑓𝑓  } by 𝜆𝜆0𝑧𝑧
𝑃𝑃𝑥𝑥

 and 𝜆𝜆0𝑧𝑧
𝑃𝑃𝑦𝑦

 in directions 𝜉𝜉 

and 𝜂𝜂, respectively. This is a commonly known result from digital signal processing. Therefore, 

we can take as our reduced reconstruction plane one of these repetitions with pixel sizes 𝑃𝑃𝜉𝜉 =
𝜆𝜆0𝑧𝑧
𝑀𝑀𝑃𝑃𝑥𝑥

 and 𝑃𝑃𝜂𝜂 = 𝜆𝜆0𝑧𝑧
𝑁𝑁𝑁𝑁𝑦𝑦

 in directions 𝜉𝜉 and 𝜂𝜂, respectively.  Furthermore, in ( D.21 ), the term ℱ  {𝐺𝐺𝑑𝑑} 

is multiplied by a sinc function that came from the finite size of the pixels (its effect on the 

calculated hologram will be discussed later). Finally, all these terms are convolved with another 

sinc that is skewed, that is due to the finite size of the hologram, and its effect will also be analyzed 

later. 

Analogously, we can sample U with a matrix of square pixels sizing  𝑃𝑃𝜉𝜉  𝗑𝗑 𝑃𝑃𝜂𝜂   along the 

directions 𝜉𝜉 and 𝜂𝜂, respectively, on the Π plane. Again, the field at each pixel of the sampled 

distribution is assumed to have constant amplitude and phase given by 

𝑈𝑈[𝑖𝑖, 𝑗𝑗]  ≡ 𝑢𝑢[𝑚𝑚,𝑛𝑛] = 𝑈𝑈 �𝑚𝑚𝑃𝑃𝜉𝜉 ,𝑛𝑛𝑃𝑃𝜂𝜂�� 𝑓𝑓�𝑚𝑚𝑃𝑃𝜉𝜉 ,𝑛𝑛𝑃𝑃𝜂𝜂��
−1 

 

( D.23 ) 

Proceeding with the same steps made from (D.16 ) to ( D.21 ) but using the diffraction equation 

( D.12 ) instead we arrive at  

𝐺𝐺𝑈𝑈𝑠𝑠(𝑥𝑥,𝑦𝑦) = 𝐴𝐴−𝑓𝑓  𝑀𝑀𝑀𝑀𝑃𝑃𝜉𝜉𝑃𝑃𝜂𝜂𝑒𝑒

 

−𝑗𝑗� 𝑥𝑥
𝜆𝜆0𝑧𝑧

, 𝑦𝑦𝜆𝜆0𝑧𝑧
�⋅�

𝑃𝑃𝜉𝜉
2 ,
𝑃𝑃𝜂𝜂
2 �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑥𝑥𝑥𝑥𝑃𝑃𝜉𝜉
𝜆𝜆0𝑧𝑧

,
𝑦𝑦𝑦𝑦𝑃𝑃𝜂𝜂
𝜆𝜆0𝑧𝑧

�

⊗ �ℱ−1{𝑈𝑈𝑑𝑑}𝑃𝑃𝜉𝜉𝑃𝑃𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑥𝑥𝑃𝑃𝜉𝜉
𝑧𝑧𝑧𝑧0

,
𝑦𝑦𝑃𝑃𝜂𝜂
𝑧𝑧𝑧𝑧0

�� ( D.24 ) 

 

where ℱ−1{  } ≡ ℱ−1 � 𝑥𝑥
𝜆𝜆0𝑧𝑧

, 𝑦𝑦
𝜆𝜆0𝑧𝑧
� and 𝑈𝑈𝑑𝑑 is defined as 

𝑈𝑈𝑑𝑑(𝑥𝑥,𝑦𝑦) ≡ 𝑈𝑈𝑑𝑑 = � � 𝛿𝛿�𝑥𝑥 −𝑚𝑚𝑃𝑃𝜉𝜉 ,𝑦𝑦 − 𝑛𝑛𝑃𝑃𝜂𝜂�𝑢𝑢[𝑚𝑚,𝑛𝑛]
∞

𝑛𝑛=−∞

∞

𝑚𝑚=−∞

 ( D.25 ) 

All the same observations of ( D.21 ) applies to ( D.24 ). Therefore, 

ℱ−1{𝑈𝑈𝑑𝑑} =
(𝜆𝜆0𝑧𝑧)2 
𝑃𝑃𝜉𝜉𝑃𝑃𝜂𝜂

� � ℱ−1{ 𝑈𝑈𝑓𝑓−1 }�
𝑥𝑥
𝜆𝜆0𝑧𝑧

 −
𝑚𝑚
𝑃𝑃𝜉𝜉

 ,
𝑦𝑦
𝜆𝜆0𝑧𝑧

−
𝑛𝑛
𝑃𝑃𝜂𝜂
�

∞

𝑛𝑛=−∞

∞

𝑚𝑚=−∞

  
 

( D.26 ) 

Until now, we sampled the field distributions at the hologram and reconstruction planes and found 

the diffraction equations by those fields. The resulting diffracted field still needs to be discretized 

to be used for calculations in a computer, which will be done in the next section.  
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D.2.2. Discretizing the diffraction equations 

We need to discretize equations ( D.21 ) and ( D.24 ) to relate them with each other and 

calculate them with the aid of the FFT. Let’s define the discrete version of  𝐺𝐺𝑈𝑈𝑠𝑠(𝑥𝑥,𝑦𝑦) as 

𝐺𝐺𝑈𝑈𝑠𝑠
𝑑𝑑 (𝑥𝑥,𝑦𝑦) = 𝐺𝐺𝑈𝑈𝑠𝑠(𝑥𝑥,𝑦𝑦) � � 𝛿𝛿�𝑥𝑥 − 𝑘𝑘𝑃𝑃𝑥𝑥,𝑦𝑦 − 𝑙𝑙𝑃𝑃𝑦𝑦  

 �

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2

 

 

= � � 𝛿𝛿�𝑥𝑥 − 𝑘𝑘𝑃𝑃𝑥𝑥,𝑦𝑦 − 𝑙𝑙𝑃𝑃𝑦𝑦  
 �𝐺𝐺𝑈𝑈𝑠𝑠�𝑘𝑘𝑃𝑃𝑥𝑥, 𝑙𝑙𝑃𝑃𝑦𝑦�

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2

  (D.27 ) 

and the discrete version of  𝑈𝑈𝐺𝐺𝑠𝑠(𝜉𝜉, 𝜂𝜂) as 

𝑈𝑈𝐺𝐺𝑠𝑠
𝑑𝑑 (𝜉𝜉, 𝜂𝜂) = 𝑈𝑈𝐺𝐺𝑠𝑠(𝜉𝜉, 𝜂𝜂) � � 𝛿𝛿�𝜉𝜉 − 𝑘𝑘𝑃𝑃𝜉𝜉 , 𝜂𝜂 − 𝑙𝑙𝑃𝑃𝜂𝜂  

 �

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2

 

 

= � � 𝛿𝛿�𝜉𝜉 − 𝑘𝑘𝑃𝑃𝜉𝜉 , 𝜂𝜂 − 𝑙𝑙𝑃𝑃𝜂𝜂  
 �

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2

 𝑈𝑈𝐺𝐺𝑠𝑠�𝑘𝑘𝑃𝑃𝜉𝜉 , 𝑙𝑙𝑃𝑃𝜂𝜂� (D.28 ) 

Substituting (D.28 ) in  ( D.12 ), we obtain 

 

𝐺𝐺𝑑𝑑′ (𝑥𝑥,𝑦𝑦) = 𝐴𝐴−[𝑓𝑓(𝑥𝑥,𝑦𝑦)]−1ℱ  −1

⎩
⎨

⎧
� � 𝛿𝛿�𝜉𝜉 − 𝑘𝑘𝑃𝑃𝜉𝜉 , 𝜂𝜂 − 𝑙𝑙𝑃𝑃𝜈𝜈   �

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2

 𝑈𝑈𝐺𝐺𝑠𝑠�𝑘𝑘𝑃𝑃𝜉𝜉 , 𝑙𝑙𝑃𝑃𝜂𝜂�

⎭
⎬

⎫
�
𝑥𝑥
𝜆𝜆0𝑧𝑧

,
𝑦𝑦
𝜆𝜆0𝑧𝑧

� 

 

 

 

 

= 𝐴𝐴−[𝑓𝑓(𝑥𝑥,𝑦𝑦)]−1 � � 𝑈𝑈𝐺𝐺𝑠𝑠�𝑘𝑘𝑃𝑃𝜉𝜉 , 𝑙𝑙𝑃𝑃𝜂𝜂�

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2

𝑒𝑒𝑗𝑗2𝜋𝜋�
𝑥𝑥
𝜆𝜆0𝑧𝑧

, 𝑦𝑦𝜆𝜆0𝑧𝑧
�⋅�𝑘𝑘𝑃𝑃𝜉𝜉,𝑙𝑙𝑃𝑃𝜂𝜂� ( D.29 ) 

 

Substituting (D.27 ) in  ( D.13 ) we obtain 
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𝑈𝑈𝑑𝑑′ (𝜉𝜉, 𝜈𝜈) = 𝐴𝐴+𝑓𝑓(𝜉𝜉, 𝜂𝜂)ℱ  

⎩
⎨

⎧
� � 𝛿𝛿 �𝑥𝑥 − 𝑘𝑘𝑃𝑃𝑥𝑥,𝑦𝑦 − 𝑙𝑙𝑃𝑃𝑦𝑦  

 �𝐺𝐺𝑈𝑈𝑠𝑠�𝑘𝑘𝑃𝑃𝑥𝑥, 𝑙𝑙𝑃𝑃𝑦𝑦�

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2 ⎭
⎬

⎫
�
𝜉𝜉
𝜆𝜆0𝑧𝑧

,
𝜂𝜂
𝜆𝜆0𝑧𝑧

� 

= 𝐴𝐴+𝑓𝑓(𝜉𝜉, 𝜂𝜂) � � 𝐺𝐺𝑈𝑈𝑠𝑠�𝑘𝑘𝑃𝑃𝑥𝑥, 𝑙𝑙𝑃𝑃𝑦𝑦�

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2

𝑒𝑒−𝑗𝑗2𝜋𝜋�
𝜉𝜉
𝜆𝜆0𝑧𝑧

, 𝜂𝜂𝜆𝜆0𝑧𝑧
�⋅�𝑘𝑘𝑃𝑃𝑥𝑥,𝑙𝑙𝑃𝑃𝑦𝑦� 

 

 

(D.30 ) 

 

 

Note that 𝐺𝐺𝑑𝑑′  and 𝑈𝑈𝑑𝑑′  are the diffraction of the discrete field distributions 𝑈𝑈 and 𝐺𝐺, respectively. 

Finally, we discretize Gd
′ (x, y)  and 𝑈𝑈𝑑𝑑′ (𝜉𝜉, 𝜈𝜈)  by defining the discrete variables 𝐺𝐺𝑑𝑑′ [𝑚𝑚,𝑛𝑛]  and 

𝑈𝑈𝑑𝑑′ [𝑚𝑚,𝑛𝑛] as, respectively 

𝐺𝐺𝑑𝑑′ [𝑚𝑚,𝑛𝑛]  ≡ 𝐺𝐺𝑑𝑑′ �𝑚𝑚𝑃𝑃𝑥𝑥,𝑛𝑛𝑃𝑃𝑦𝑦� 
 

(D.31 ) 

and 

𝑈𝑈𝑑𝑑′ [𝑚𝑚,𝑛𝑛]  ≡ 𝑈𝑈𝑑𝑑′ �𝑚𝑚𝑃𝑃𝜉𝜉 ,𝑛𝑛𝑃𝑃𝜂𝜂� 
 

(D.32 ) 

Substituting ( D.29 ) in  (D.31 ) and (D.30 ) in (D.32 )  we obtain the following relations, 

respectively 

𝐺𝐺𝑑𝑑′ [𝑚𝑚,𝑛𝑛]  = 𝐴𝐴−�𝑓𝑓�𝑚𝑚𝑃𝑃𝑥𝑥,𝑛𝑛𝑃𝑃𝑦𝑦��
−1 � � 𝑈𝑈𝐺𝐺𝑠𝑠�𝑘𝑘𝑃𝑃𝜉𝜉 , 𝑙𝑙𝑃𝑃𝜂𝜂�

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2

𝑒𝑒𝑗𝑗2𝜋𝜋�
𝑚𝑚𝑃𝑃𝑥𝑥
𝜆𝜆0𝑧𝑧

,
𝑛𝑛𝑃𝑃𝑦𝑦
𝜆𝜆0𝑧𝑧

�⋅�𝑘𝑘𝑃𝑃𝜉𝜉,𝑙𝑙𝑃𝑃𝜂𝜂� 

 

 

( D.33 ) 

and 

𝑈𝑈𝑑𝑑′ [𝑚𝑚,𝑛𝑛]  = 𝐴𝐴+�𝑚𝑚𝐼𝐼𝑥𝑥 ,𝑛𝑛𝑃𝑃𝑦𝑦� � � 𝐺𝐺𝑈𝑈𝑠𝑠�𝑘𝑘𝑃𝑃𝑥𝑥, 𝑙𝑙𝑃𝑃𝑦𝑦�

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2

𝑒𝑒−𝑗𝑗2𝜋𝜋�
𝐼𝐼𝑥𝑥𝑚𝑚
𝜆𝜆0𝑧𝑧

,
𝐼𝐼𝑦𝑦𝑛𝑛
𝜆𝜆0𝑧𝑧

�⋅�𝑘𝑘𝑃𝑃𝑥𝑥,𝑙𝑙𝑃𝑃𝑦𝑦� 

 

 
( D.34 ) 

But 𝑈𝑈𝐺𝐺𝑠𝑠�kPξ, lPη� is the field distribution at point �kPξ, lPη� in the reconstruction plane obtained 

from the sampled version of the hologram distribution (𝐺𝐺𝑠𝑠). If the Nyquist theorem holds on ( 

D.22 ), we could assume that it reproduces the field distribution at ( D.21 ): 

𝑈𝑈𝐺𝐺𝑠𝑠�𝑘𝑘𝐼𝐼𝑥𝑥 , 𝑙𝑙𝐼𝐼𝑦𝑦� = 𝑈𝑈�𝑘𝑘𝐼𝐼𝑥𝑥 , 𝑙𝑙𝐼𝐼𝑦𝑦� 
 

( D.35 ) 

Analogously,  𝐺𝐺𝑈𝑈𝑠𝑠�𝑘𝑘𝑃𝑃𝑥𝑥 , 𝑙𝑙𝑃𝑃𝑦𝑦� is the field distribution at point �𝑘𝑘𝑃𝑃𝑥𝑥 , 𝑙𝑙𝑃𝑃𝑦𝑦� on the hologram 

plane obtained from the sampled version of the hologram distribution (𝑈𝑈𝑠𝑠). If the Nyquist theorem 

holds on ( D.26 ), we could assume that 𝐺𝐺𝑈𝑈𝑠𝑠(𝑥𝑥,𝑦𝑦) reproduces the field distribution at ( D.24 ): 
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𝐺𝐺𝑈𝑈𝑠𝑠�𝑘𝑘𝑃𝑃𝑥𝑥, 𝑙𝑙𝑃𝑃𝑦𝑦� = 𝐺𝐺�𝑘𝑘𝑃𝑃𝑥𝑥, 𝑙𝑙𝑃𝑃𝑦𝑦� 
 

( D.36 ) 

Therefore, as the Nyquist theorem is respected for both field distributions by hypothesis, it is 

satisfied at ( D.29 ) and (D.30 ) as well. Therefore, 

𝑈𝑈𝑑𝑑′ [𝑚𝑚,𝑛𝑛] = 𝑈𝑈�𝑚𝑚𝐼𝐼𝑥𝑥,𝑛𝑛𝐼𝐼𝑦𝑦� 
 

( D.37 ) 

and  

𝐺𝐺𝑑𝑑′ [𝑚𝑚,𝑛𝑛] = 𝐺𝐺�𝑚𝑚𝑃𝑃𝑥𝑥,𝑛𝑛𝑃𝑃𝑦𝑦� 
( D.38 ) 

 

Thus, equations ( D.33 ) and ( D.34 ) can be rewritten as a Discrete Fourier Transform (DFT) 

pair: 

𝐺𝐺𝑑𝑑′ [𝑚𝑚,𝑛𝑛]  = 𝐴𝐴−�𝑓𝑓�𝑚𝑚𝑃𝑃𝑥𝑥,𝑛𝑛𝑃𝑃𝑦𝑦��
−1 � � 𝑈𝑈𝑑𝑑′ [𝑘𝑘, 𝑙𝑙]

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2

𝑒𝑒𝑗𝑗2𝜋𝜋
(𝑚𝑚,𝑛𝑛)
𝑀𝑀𝑀𝑀 ⋅(𝑘𝑘,𝑙𝑙) ( D.39 ) 

and 

𝑈𝑈𝑑𝑑′ [𝑚𝑚,𝑛𝑛]  = 𝐴𝐴+𝑓𝑓�𝑚𝑚𝑃𝑃𝜉𝜉 ,𝑛𝑛𝑃𝑃𝜂𝜂� � � 𝐺𝐺𝑑𝑑′ [𝑘𝑘, 𝑙𝑙]

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2

𝑒𝑒−𝑗𝑗2𝜋𝜋
(𝑚𝑚,𝑛𝑛)
𝑀𝑀𝑀𝑀  ⋅(𝑘𝑘,𝑙𝑙) 

 

 
( D.40 ) 

Note that the relations 𝑃𝑃𝜉𝜉 = 𝜆𝜆0𝑧𝑧
𝑀𝑀𝑃𝑃𝑥𝑥

 and 𝑃𝑃𝜂𝜂 = 𝜆𝜆0𝑧𝑧
𝑁𝑁𝑁𝑁𝑦𝑦

 were used to obtain the DFTs. Therefore, we can 

calculate the diffraction of the fields via equations ( D.39 ) and ( D.40 ) in a computer by using 

the Fast Fourier Transform (FFT) algorithm to compute the DFTs. These equations will be used 

to implement the iterative Fourier transform algorithm (IFTA) to calculate the hologram (matrix 

𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀) of a given discretized field distribution (matrix 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀)  . 

D.2.3.  Diffraction of the sampled hologram 

For now, let’s suppose that we are given a discretized field distribution (𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 could be a 

digital image for instance) and obtain the discrete hologram matrix by ( D.39 ). If we implement 

this hologram on a wavefront modulator and illuminate it with a coherent light source, how the 

reconstructed field relates to 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀? To answer this question, it will be assumed that the wavefront 

modulator has a transfer function given by (D.16 ). Therefore, its diffraction is given by ( D.21 ). 

Substituting ( D.39 ) on ( D.19 ) and the result on ( D.21 ) we have  
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𝑈𝑈𝑅𝑅(𝜉𝜉, 𝜂𝜂) = 𝐴𝐴+𝑓𝑓  𝑀𝑀𝑀𝑀𝑃𝑃𝑥𝑥𝑃𝑃𝑦𝑦𝑒𝑒
𝑗𝑗� 𝜉𝜉
𝜆𝜆0𝑧𝑧

, 𝜂𝜂𝜆𝜆0𝑧𝑧
�⋅�𝑃𝑃𝑥𝑥2 ,

𝑃𝑃𝑦𝑦
2 �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜉𝜉𝜉𝜉𝑃𝑃𝑥𝑥
𝜆𝜆0𝑧𝑧

,
𝜂𝜂𝜂𝜂𝑃𝑃𝑦𝑦
𝜆𝜆0𝑧𝑧

� 
 

⊗

⎣
⎢
⎢
⎡
ℱ  

⎩
⎨

⎧
� � 𝛿𝛿 �𝑥𝑥 − 𝑘𝑘𝑃𝑃𝑥𝑥,𝑦𝑦 − 𝑙𝑙𝑃𝑃𝑦𝑦  

 �𝐺𝐺𝑑𝑑′ [𝑘𝑘, 𝑙𝑙]

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2 ⎭
⎬

⎫
𝑃𝑃𝑥𝑥𝑃𝑃𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜉𝜉𝑃𝑃𝑥𝑥
𝜆𝜆0𝑧𝑧

,
𝜂𝜂𝑃𝑃𝑦𝑦
𝜆𝜆0𝑧𝑧

�

⎦
⎥
⎥
⎤
 (D.41 ) 

But 

ℱ  

⎩
⎨

⎧
� � 𝛿𝛿 �𝑥𝑥 − 𝑖𝑖𝑃𝑃𝑥𝑥,𝑦𝑦 − 𝑗𝑗𝑃𝑃𝑦𝑦  

 �𝐺𝐺𝑑𝑑′ [𝑖𝑖, 𝑗𝑗]

𝑁𝑁
2−1

𝑗𝑗=−𝑁𝑁2

𝑀𝑀
2−1

𝑖𝑖=−𝑀𝑀2 ⎭
⎬

⎫
= � � 𝑒𝑒−𝑗𝑗�

𝜉𝜉
𝜆𝜆0𝑧𝑧

,
𝜂𝜂
𝜆𝜆0𝑧𝑧
�⋅�𝑖𝑖𝑃𝑃𝑥𝑥,𝑗𝑗𝑃𝑃𝑦𝑦�𝐺𝐺𝑑𝑑′ [𝑖𝑖, 𝑗𝑗]

𝑁𝑁
2−1

𝑗𝑗=−𝑁𝑁2

𝑀𝑀
2−1

𝑖𝑖=−𝑀𝑀2

 

 

=⏞
(D.30 )

𝑈𝑈𝑑𝑑(𝜉𝜉, 𝜈𝜈)[𝑓𝑓(𝜉𝜉, 𝜂𝜂)]−1𝐴𝐴+−1 
( D.42 ) 

Substituting ( D.42 ) in (D.41 ) 

𝑈𝑈𝑅𝑅(𝜉𝜉, 𝜂𝜂) = 𝑓𝑓  𝑀𝑀𝑀𝑀�𝑃𝑃𝑥𝑥𝑃𝑃𝑦𝑦�
2𝑒𝑒𝑗𝑗�

𝜉𝜉
𝜆𝜆0𝑧𝑧

, 𝜂𝜂𝜆𝜆0𝑧𝑧
�⋅�𝑃𝑃𝑥𝑥2 ,

𝑃𝑃𝑦𝑦
2 �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜉𝜉𝜉𝜉𝑃𝑃𝑥𝑥
𝜆𝜆0𝑧𝑧

,
𝜂𝜂𝜂𝜂𝑃𝑃𝑦𝑦
𝜆𝜆0𝑧𝑧

�⊗ �𝑈𝑈𝑑𝑑 (𝜉𝜉, 𝜈𝜈)[𝑓𝑓(𝜉𝜉, 𝜂𝜂)]−1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜉𝜉𝑃𝑃𝑥𝑥
𝜆𝜆0𝑧𝑧

,
𝜂𝜂𝑃𝑃𝑦𝑦
𝜆𝜆0𝑧𝑧

�� ( D.43 ) 

We can analyze the effect of those sincs on the reconstruction by evaluating them with the discrete 

distribution Ud
 (ξ, ν). The inner sinc (that is multiplied to 𝑈𝑈𝑑𝑑 directly), is due to the finite size of 

the pixel and has the effect of modulate the amplitude of the reconstruction. As we saw in the 

previous section, the sampling of the hologram plane causes the reconstruction to be a 

superposition of the diffraction separated by 𝜆𝜆0𝑧𝑧
𝑃𝑃𝑥𝑥

 and 𝜆𝜆0𝑧𝑧
𝑃𝑃𝑦𝑦

 at direction 𝜉𝜉  and 𝜂𝜂 , respectively. 

Therefore, to satisfy the Nyquist theorem, Ud
 (ξ, ν) is limited in the rectangle given by 

⎩
⎪
⎨

⎪
⎧−  

𝜆𝜆0𝑧𝑧
2𝑃𝑃𝑥𝑥

< 𝜉𝜉 <  
𝜆𝜆0𝑧𝑧
2𝑃𝑃𝑥𝑥

−
𝜆𝜆0𝑧𝑧
2𝑃𝑃𝑦𝑦

< 𝜂𝜂 <
𝜆𝜆0𝑧𝑧
2𝑃𝑃𝑦𝑦

 

 

 

 

(  D.44) 

This region is inside the first lobe of the internal sinc, which decreases as |𝜉𝜉| and/or |𝜂𝜂| increases. 

Therefore, its minimum value occurs at a vertex of rectangle the (  D.44). Therefore, at (𝜉𝜉, 𝜂𝜂) =

�− 𝜆𝜆0𝑧𝑧
2𝑃𝑃𝑥𝑥

,− 𝜆𝜆0𝑧𝑧
2𝑃𝑃𝑦𝑦

� it values sinc �1
2

, 1
2
� = 4

𝜋𝜋2 ≅ 0.4 . This issue can be circumvented by pre-modulating 

Ud
 (ξ, ν) with �sinc �ξMPx

λ0z
, ηNPy
λ0z

��
−1

. 
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The effect of the external sinc (that is convoluting 𝑈𝑈𝑑𝑑) to the reconstruction has another 

interesting effect on the reconstruction. Supposing that the inner sinc was corrected and 

substituting ( D.25 ) in ( D.43 ), we have 

𝑈𝑈𝑅𝑅(𝜉𝜉, 𝜂𝜂) = 𝑓𝑓  𝑀𝑀𝑀𝑀�𝑃𝑃𝑥𝑥𝑃𝑃𝑦𝑦�
2𝑒𝑒𝑗𝑗�

𝜉𝜉
𝜆𝜆0𝑧𝑧

, 𝜂𝜂𝜆𝜆0𝑧𝑧
�⋅�𝑃𝑃𝑥𝑥2 ,

𝑃𝑃𝑦𝑦
2 �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜉𝜉𝜉𝜉
𝐼𝐼𝑥𝑥

,
𝜂𝜂𝜂𝜂
𝐼𝐼𝑦𝑦
�⊗

⎣
⎢
⎢
⎡
� � 𝛿𝛿 �𝜉𝜉 − 𝑘𝑘𝑃𝑃𝜉𝜉 , 𝜂𝜂 − 𝑙𝑙𝑃𝑃𝜂𝜂  

 �𝑈𝑈𝑑𝑑[𝑘𝑘, 𝑙𝑙]

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2 ⎦
⎥
⎥
⎤
 

 

= 𝑓𝑓  𝑀𝑀𝑀𝑀�𝑃𝑃𝑥𝑥𝑃𝑃𝑦𝑦�
2𝑒𝑒𝑗𝑗�

𝜉𝜉
𝜆𝜆0𝑧𝑧

,
𝜂𝜂
𝜆𝜆0𝑧𝑧
�⋅�𝑃𝑃𝑥𝑥2 ,

𝑃𝑃𝑦𝑦
2 � � � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑀𝑀

𝜉𝜉 − 𝑘𝑘𝑃𝑃𝜉𝜉
𝑃𝑃𝜉𝜉

,𝑁𝑁
𝜂𝜂 − 𝑙𝑙𝑃𝑃𝜂𝜂  
𝑃𝑃𝜂𝜂

�𝑈𝑈𝑑𝑑[𝑘𝑘, 𝑙𝑙]

𝑁𝑁
2−1

𝑙𝑙=−𝑁𝑁2

𝑀𝑀
2−1

𝑘𝑘=−𝑀𝑀2

 

 

( D.45 ) 

 

Therefore, the reconstruction of the sampled hologram is the superposition of sinc functions on 

the sample grid of the reconstruction plane modulated by the discretized field matrix 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀. For 

fixed 𝑃𝑃𝜉𝜉  and 𝑃𝑃𝜂𝜂, increasing the size of the hologram, i.e., M and N, the sinc function gets skewed 

and the reconstruction seems as a sum of tiny dots. These results were numerically and 

experimentally verified on the optical photonic metasurface project (see Chapter III.1.6.c) 

Reconstructions - Quartz). 
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D.3. Iterative Fourier Transform Algorithm 

(IFTA) 

Equations ( D.39 ) and ( D.40 ) are already the simplified diffraction equations that can be 

used to calculate a hologram and its reconstruction under either Fourier or Fraunhofer 

approximations. However, the resulting hologram is a complex-valued matrix whose phase and 

amplitude are only constrained by the floating-point representation of the complex numbers on 

the computer. From a computational point of view this pose no problem at all, but it is a challenge 

to be reproduced by a wavefront modulator. It is a difficult task to implement discrete optical 

elements (DOE) that have a full phase control in the range [0-2π] with also amplitude modulation 

capability. In practice, most DOEs rely on the phase control only, which is already not an easy 

task to do as well, with only a finite number of phase levels. Therefore, the hologram must be 

encoded in such a way that it has constant amplitude and only a finite number of phase levels, so 

it can be well reproduced by the wavefront modulator. This necessity gave rise to the field of 

computer-generated holograms (CGH) algorithms as briefly described in section I.3 From 

classical to digital holography  of the main text. Here it will be described the Iterative Fourier 

Transform Algorithm (IFTA)  that is based on [75]. 

The task of the algorithm is to obtain a phase distribution matrix 𝐺𝐺𝑘𝑘𝑘𝑘, that is the hologram, 

with constant and unitary amplitude whose diffraction at the reconstruction plane, 𝑔𝑔𝑚𝑚𝑚𝑚, have an 

intensity distribution that resembles a known field pattern given by  𝑈𝑈𝑚𝑚𝑚𝑚. The discrete version of 

the hologram, Σ ,  and reconstruction, Π , planes are represented in Figure  D.2. Inside the 

reconstruction plane, in Figure  D.2 (b), the target field distribution is placed inside a region Ω, 

called image window. This is necessary to increase the degree of freedom of the method and 

increase the final reconstruction quality [75]. 

 

 
Figure  D.2 – Discrete representations of the hologram (a) and reconstruction (b) planes. Each one is a matrix with M𝗑𝗑N 

elements representing the field distributions. In (b), 𝛀𝛀 represents the image window where the target field pattern 𝑼𝑼𝒎𝒎𝒎𝒎 is 

inserted. 
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Based on those definitions, the following figures of merit, listed on Table  D-1, are defined 

to assess the quality of the calculated reconstructions 
Table  D-1 - List of figures of merit to account for the quality of the reconstructions 

Mean squared error 
(MSE) 

𝑒𝑒 = �[|𝑈𝑈| − |𝑔𝑔′|]2
Ω

 ( D.46) 

Image efficiency (IE) 𝜌𝜌 =
∑ |𝑔𝑔′|2Ω

∑ |𝑔𝑔′|2Π
 ( D.47 ) 

SNR 𝑆𝑆𝑆𝑆𝑆𝑆 =
∑ |𝑔𝑔′|2Ω

𝑒𝑒 
=

∑ |𝑔𝑔′|2Ω

∑ [|𝑈𝑈| − |𝑔𝑔′|]2Ω
 ( D.48 ) 

 

The mean squared error gives a quantification of the inserted noise energy into the 

reconstructed field due the phase quantization. The image efficiency gives the resulting energy 

that is being transmitted to the image window. Finally, the signal to noise ratio (SNR), is self-

explanatory, and will be used as our main figure of merit.  

The algorithm starts by inserting the target image in the image window with all unoccupied 

positions on the reconstruction plane initialized as zero. Then, a random phase noise is added to 

this field distribution followed by the calculation of the inverse diffraction of the resulting matrix, 

that is 𝑔𝑔𝑚𝑚𝑚𝑚. As explained in section D.2.2 Discretizing the diffraction equations of the Appendix, 

we will use the  use the Fast-Fourier transform (FFT) pair to calculate the diffraction between the 

fields at each plane. Therefore, the hologram matrix, 𝐺𝐺𝑘𝑘𝑘𝑘 , is obtained by Fast Fourier 

Transforming 𝑔𝑔𝑚𝑚𝑚𝑚. Then, the phase of 𝐺𝐺𝑘𝑘𝑘𝑘 is quantized while the amplitude is normalized to a 

constant value and the result is stored in 𝐺𝐺𝑘𝑘𝑘𝑘′ . Subsequently, 𝐺𝐺𝑘𝑘𝑘𝑘′  is Inverse Fast Fourier 

transformed to the reconstruction plane [73, 75]. The resulting matrix, 𝑔𝑔𝑚𝑚𝑚𝑚′  (containing the  

reconstructed field with quantized phases and normalized amplitudes) is then reinforced  at the 

image window with the original image multiplied by a scale factor, therefore increasing the SNR, 

given by [75] 

α =
∑ |𝑔𝑔′|2Ω
∑ |𝑈𝑈𝑔𝑔′|Ω

 
( D.49 ) 

Thus, the result is stored on matrix 𝑔𝑔𝑚𝑚𝑚𝑚 that will be inverse Fast Fourier Transformed to 

obtain 𝐺𝐺𝑘𝑘𝑘𝑘 that will be again quantized, and the previous steps repeated iteratively as shown in 

Figure  D.3 [75]. These processes are carried out iteratively until the phase quantization is 

complete. The phase quantization at the plane of the hologram is not carried out in one step [173]. 

Instead, it makes use of a stepwise operator that restricts the allowed phase values on the hologram 

in each iteration. In the first iteration, all possible phase levels are allowed and the number of 

levels is iteratively reduced until a discrete number of values is obtained after k iterations [173]. 

This process increases the degree-of-freedom of the  algorithm resulting in better efficiency and 

SNR [75, 173]. At each step, the three figures of merit given by equations  ( D.46) - ( D.48 ) are 
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evaluated. Note that, during the algorithm evaluation, the phase of 𝑔𝑔𝑚𝑚𝑚𝑚 can have any value in Ω 

while the noise field outside this region can have any value, which is exploited as another degree 

of freedom for the algorithm [75]. This is made by forcing 𝑔𝑔𝑚𝑚𝑚𝑚′ = 0,∀ (𝑚𝑚,𝑛𝑛) ∉ Ω for the first c 

iterations and then letting it vary freely. Therefore, the hologram calculation is performed several 

times in a sweep with increasing values of 𝑐𝑐 in the range [1,𝜓𝜓],𝑤𝑤𝑤𝑤𝑤𝑤ℎ 1 ≤ 𝜓𝜓 ≤ 𝑘𝑘. For each CGH, 

all the figures of merit are evaluated and stored in the memory. Then, the last value of SNR is 

compared with the biggest one, stored in a dummy variable that is initialized with zero. If it is 

bigger, the dummy variable is updated to the last value, and the calculated hologram is stored in 

a dummy matrix (used to store the best hologram in terms of SNR, note that it will starts with the 

hologram for c=1 because the evaluated SNR is always greater than 0). Then, if 𝑐𝑐 < 𝑘𝑘, c is 

increased, and the hologram is recalculated, otherwise the loop halts. On the other hand, if the last 

SNR is 10% smaller than the best case, the algorithm stops, and the convergence is achieved. This 

criterion will be justified on section D.3.1 Example: Fourier hologram calculation. Finally, if it 

is smaller, but by less than 10%, the loop is performed again if 𝑐𝑐 < 𝑘𝑘. The algorithm is represented 

in a flow diagram in Figure  D.3. 

 
Figure  D.3 - Flow diagram of the implemented IFTA. Adapted from [75]. 
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D.3.1. Example: Fourier hologram calculation 

In this section, several CGHs will be calculated using the IFTA algorithm. All holograms, 

except the ones with two phase levels, will be obtained from the same field distribution 𝑈𝑈𝑚𝑚𝑚𝑚, 

which corresponds to the logo of the EESC (Escola de Engenharia de São Carlos), shown in 

Figure  D.4 (a). For two phase levels, the hologram is real, therefore its reconstruction must be 

Hermitian symmetric because its diffraction is given by a FFT. Thus, the image window was 

displaced from the reconstruction plane origin to avoid superposition between the image and its 

Hermitian twin.  By setting different discrete phase levels and number of quantization steps the 

resulting holograms will be analyzed in terms of the SNR and IE. Therefore, it will be justified 

the convergence criterion, in terms of SNR, proposed in the last section. This will be done by 

analyzing the behavior of the resulting SNR ∀ 𝑐𝑐 ∈ [1, 𝑘𝑘], that is, by disabling the convergence 

criteria. The resolutions of the reconstruction and hologram plane are both equal 256𝗑𝗑256 and of 

the image window is 111𝗑𝗑105. For Fourier holograms, there is no need to specify the operating 

wavelength, distance between the planes neither the pixel sizes because the quadratic phase 

function f, is equal to one. Therefore, the field at one plane is obtained by Fast Fourier 

Transforming the other. Nonetheless, these parameters can be specified at the fabrication step, 

provided that the Fraunhofer approximation is valid, and will affect both its size and the size of 

its reconstruction. 

 

 
Figure  D.4 – (a) Target field distribution at the reconstruction plane. (b)-(f) Show the reconstructed image from the algorithm 

obtained with 2,3,4,8 and 16 phase levels for k= 𝟏𝟏𝟏𝟏𝟏𝟏. Note that for 2 phase levels the reconstruction presents Hermitian 

Symmetry because the Hologram is real. Therefore, the image window was displaced to avoid superposition of the target image 

with its Hermitian twin.  
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The resulting SNR [IE] is shown as function of 𝑐𝑐/𝑘𝑘 at Figures D.5 (a),(c),(e),(g) and (i) 

[(b),(d),(f),(h) and (j)]  for 2, 3, 4, 8 and 16 phase levels, respectively. For each case, the 

quantization steps (k) of 5, 20, 50 and 100 are shown in black, blue, red, and green, respectively. 

The diamonds at each line mark the maximum SNR for each case, that is the target of the 

algorithm. Note that, for this target image, using 2, 3, 4 and 8 phase levels, increasing 𝑐𝑐/𝑘𝑘  makes 

the SNR reaches a maximum then start to reduce. For the other cases, the SNR is already at 

maximum for 𝑐𝑐 = 1. The presence of only one maximum for SNR as function of 𝑐𝑐/𝑘𝑘, happened 

even for other target images with different hologram dimensions. Therefore, if the SNR is, in 

average, decreasing as function of 𝑐𝑐/𝑘𝑘, we can infer that the stored maximum is in fact the best 

hologram in terms of SNR. As the SNR function is not monotonic, see Figure D.5 (a) for instance, 

it is not possible to rely on its derivative to tell if the maximum was reached. Nevertheless, based 

on the calculation of several other holograms, when the SNR decreases by more than 10% it 

indicates that the maximum has already been reached and the function is at the decrescent portion. 

Thus, the algorithm can be halted if the actual SNR is more than 10% smaller than the highest 

one, that is stored in the memory. 
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Figure  D.5 - (a), (c), (e), (g) and (i) [(b),(d),(f),(h) and (j) ] show the SNR [IE] as function of the ratio 𝒄𝒄/𝒌𝒌 for 2, 3, 4, 8 and 16 

phase levels, respectively. For each case, the quantization steps (k) of 5, 20, 50 and 100 are shown in black, blue, red, and green, 

respectively. The diamonds at each line mark the maximum SNR for each case, that is the target of the algorithm. Note that 

for two phase levels, the Hermitian is treated as noise and does not enter in the efficiency calculation. 
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D.4. Rigorous Rayleigh Sommerfeld (RS) 

Diffraction   

In the previous section, the diffraction was performed assuming the paraxial approximation 

validity and applied to IFTA. The advantage of this procedure is that diffraction becomes a 

Fourier Transform which can be performed almost instantaneously with FFT depending on the 

hologram size. Nevertheless, the designed metasurfaces, that will be used as wavefront modulator 

for the holograms, have subwavelength pixel sizes. Therefore, the diffracted image will be wide- 

angle, thus violating the paraxial approximation. This observation is evident from (  D.44), which 

shows the dimensions of the reconstruction plane. If we assume that 𝑃𝑃𝑥𝑥 = 𝑃𝑃𝑦𝑦 = 𝑃𝑃 < 𝜆𝜆0 , the 

opening angle, 𝛼𝛼, of the reconstruction will satisfy 

 

α = atan �
max(𝜉𝜉)

𝑧𝑧
� = atan �

𝜆𝜆0
2𝑃𝑃
� ≥ atan �

1
2
� ≅ 26𝑜𝑜 

 

where it was used the fact the atan function is crescent. Therefore, the reconstruction obtained 

from the IFTA algorithm will not represent the physical diffraction of the metasurface containing 

that hologram. This is because the procedure of Fourier transforming the near-field (hologram) to 

obtain the far-field (reconstruction) assumes the latter sufficiently far away from the former so 

that its projection plane can be calculated as a spherical surface whose origin is at the hologram 

position [2]. In the Fourier diffraction it is further assumed that the projection plane is planar, 

which is valid only in the paraxial approximation. Therefore, if the hologram is calculated using 

the Fourier transform and its period is small enough for the paraxial approximation to be used, 

the reconstruction will be formed at the surface of a sphere and not at a planar screen as we would 

expect. This issue can be overcome by mapping the target image onto a spherical surface in the 

hologram design via a coordinate transformation [91] and causes the reconstruction on a spherical 

surface to be distorted but it correctly reconstructs the image on a planar screen.  

For instance, Figures D.6 (a)-(c) show the target field distribution, the obtained Fresnel 

diffraction and the RS diffraction at the reconstruction plane, respectively, of an 8-phase level 

CGH obtained by the IFTA with 𝑐𝑐 = 100 . The RS integration was performed assuming an 

operating wavelength of 532 nm, hologram pixel size of 190 nm and the reconstruction plane at 

the Fraunhofer region. For these conditions, the opening angle of the reconstruction plane is of  

54𝑜𝑜 × 54𝑜𝑜, which is far from the paraxial approximation. Therefore, the RS reconstruction at 

Figure D.6 (c) gets distorted at distant regions from the origin by comparing it with the target 

field distribution at Figure D.6 (a). On contrary, this feature does not happen for Fresnel 
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Diffraction, shown at Figure D.6 (b), whose reconstruction resembles the target image, at Figure 

D.6 (a), without distortion.  

 
Figure  D.6 – (a) and (d) show the original and the wide-angle corrected, respectively, target reconstruction planes.  (b) and 

(e) [(c) and (f)] show the Fresnel [RS] Diffractions of (a) and (d), respectively. The operating wavelength is 532 nm. 

To correct this issue, the wide-angle correction was applied at the reconstruction plane and 

the resulting field distribution, shown at Figure D.6 (d), was used to calculate a new CGH. The 

resulting Fresnel and RS diffractions of the fixed hologram are shown at Figures D.6 (e) and (f), 

respectively. Note that now the roles have inverted: the RS reconstruction image is less distorted 

while the Fresnel one is more distorted, when compared with Figure D.6 (a). Because the RS 

integration compensates the wide-angle correction while the Fresnel diffraction does not and 

resembles the wide-angle corrected image of Figure D.6 (d). 

D.4.1. RS Integration 

The RS needs to be performed for each point at the reconstruction plane separately, which 

can take from several hours to few days depending on the hologram size and the required 

resolution of the reconstruction. In the search of minimizing the computational effort it was 

discovered that the slowest part of the calculation is the creation of the matrix containing the term 

𝑒𝑒𝑗𝑗𝑗𝑗0𝑟𝑟(𝜉𝜉,𝜂𝜂;𝑥𝑥,𝑦𝑦)  for each point at the reconstruction plane. Nevertheless, the distance function 

between two points at each plane 𝑟𝑟(𝜉𝜉, 𝜂𝜂; 𝑥𝑥,𝑦𝑦) ≡ 𝑟𝑟 , defined at (  D.2 ), may possess mirror 

symmetries with respect to some axes as will be explained in the next section. This observation 

allows to use the same exponential matrix for two or eight different points depending on the 

symmetry group of the function, reducing the necessary calculation time up to two and five times, 

respectively.  

This section starts by analyzing the symmetries properties of the RS integration. Then, the 

implementation of RS integration without resorting to any symmetry of 𝑟𝑟 is used followed by the 
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implementation of the integration with the symmetries. Then, the performance of each case will 

be compared and an equation for estimating the integration time of each one will be proposed. 

The section closes by describing a way of calculating the energy of the diffracted field. 

a.  Symmetry properties of the RS integration 

We can calculate the reconstruction at any point in Σ, by simply specifying its coordinates. 

Therefore, lets define the observation region as a square in Σ centered at (𝜉𝜉 − Δξ, η − Δη), as 

shown in Figure  D.7 (a). It will be shown that when Δξ (Δη) is zero the function r possesses 

mirror symmetry with respect the axis 𝜉𝜉 = 0 (𝜂𝜂 = 0). Furthermore, if both are zero it will have 

mirror symmetry with respect the axis 𝜉𝜉 = 0, 𝜂𝜂 = 0, 𝜂𝜂 = 𝜉𝜉 𝑎𝑎𝑎𝑎𝑎𝑎 𝜂𝜂 = −𝜉𝜉 . The RS diffraction 

equation (  D.3 ) will be rewritten in terms of  a coordinate system centered at the observation 

region, with coordinates 𝜉𝜉′ = 𝜉𝜉 − Δξ and 𝜂𝜂′ = 𝜂𝜂 − Δη: 

𝑈𝑈(𝜉𝜉′, 𝜂𝜂′) =
𝑧𝑧
𝑗𝑗𝜆𝜆0

��𝐺𝐺(𝑥𝑥,𝑦𝑦)
𝛱𝛱

𝑒𝑒𝑗𝑗𝑗𝑗0𝑟𝑟�𝜉𝜉′,𝜂𝜂′;𝑥𝑥,𝑦𝑦�

𝑟𝑟2(𝜉𝜉′, 𝜂𝜂′; 𝑥𝑥,𝑦𝑦)   𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

( D.50 ) 

Therefore, it will be stated three symmetry properties of the RS integral: 

• S1: If Δ𝜉𝜉 = 0 and Δ𝜂𝜂 ≠ 0, then we can calculate 𝑈𝑈(𝜉𝜉′, 𝜂𝜂′) and 𝑈𝑈(−𝜉𝜉′, 𝜂𝜂′)  by using the 

same function 𝑒𝑒𝑗𝑗𝑗𝑗0𝑟𝑟�𝜉𝜉
′,𝜂𝜂′;𝑥𝑥,𝑦𝑦�

𝑟𝑟2(𝜉𝜉′,𝜂𝜂′;𝑥𝑥,𝑦𝑦)  in the RS integrand. This property arises because 

𝑟𝑟(𝜉𝜉, 𝜂𝜂′; 𝑥𝑥,𝑦𝑦) = 𝑟𝑟(−𝜉𝜉, 𝜂𝜂′;−𝑥𝑥,𝑦𝑦), as depicted at Figure  D.7 (b).  

 

• S2: If Δ𝜉𝜉 ≠ 0 and Δ𝜂𝜂 = 0, then we can calculate 𝑈𝑈(𝜉𝜉′, 𝜂𝜂′) and 𝑈𝑈(𝜉𝜉′,−𝜂𝜂′)  by using the 

same function 𝑒𝑒
𝑗𝑗𝑗𝑗0𝑟𝑟�𝜉𝜉′,𝜂𝜂′;𝑥𝑥,𝑦𝑦�

𝑟𝑟2(𝜉𝜉′,𝜂𝜂′;𝑥𝑥,𝑦𝑦)  in the integrand. This property arises because 𝑟𝑟(𝜉𝜉, 𝜂𝜂′; 𝑥𝑥,𝑦𝑦) =

𝑟𝑟(𝜉𝜉,−𝜂𝜂′; 𝑥𝑥,−𝑦𝑦), as depicted at Figure  D.7 (c).  

 

• S3: If Δ𝜉𝜉 = 0  and Δ𝜂𝜂 = 0  then, we can calculate 

𝑈𝑈(𝜎𝜎𝜎𝜎′,𝜎𝜎𝜂𝜂′),𝑈𝑈(𝜎𝜎𝜂𝜂′,−𝜎𝜎𝜉𝜉′),𝑈𝑈(𝜎𝜎𝜂𝜂′,𝜎𝜎𝜉𝜉′) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈(𝜎𝜎𝜂𝜂′,−𝜎𝜎𝜉𝜉′), 𝜎𝜎 = ±1   by using the same 

function 𝑒𝑒
𝑗𝑗𝑗𝑗0𝑟𝑟�𝜉𝜉′,𝜂𝜂′;𝑥𝑥,𝑦𝑦�

𝑟𝑟2(𝜉𝜉′,𝜂𝜂′;𝑥𝑥,𝑦𝑦)  in the integrand. This property arises because 𝑟𝑟(𝜎𝜎𝜎𝜎  ,𝜎𝜎𝜎𝜎 ;𝜎𝜎𝜎𝜎,𝜎𝜎𝜎𝜎) =

𝑟𝑟(−𝜎𝜎𝜎𝜎  ,𝜎𝜎𝜎𝜎 ;−𝜎𝜎𝜎𝜎,𝜎𝜎𝜎𝜎) = 𝑟𝑟(𝜎𝜎𝜎𝜎 ,𝜎𝜎𝜎𝜎  ;𝜎𝜎𝜎𝜎,𝜎𝜎𝜎𝜎) = 𝑟𝑟(−𝜎𝜎𝜎𝜎 ,𝜎𝜎𝜎𝜎  ;−𝜎𝜎𝜎𝜎,𝜎𝜎𝜎𝜎) , as depicted at 

Figure  D.7 (d).  
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Figure  D.7 – Representation of the RS Diffraction regions of integration (enlarged hologram) and of observation 

window(dotted-dashed square) for (a) 𝚫𝚫𝝃𝝃 ≠ 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝚫𝚫𝚫𝚫 ≠ 𝟎𝟎, (b) 𝚫𝚫𝝃𝝃 = 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝚫𝚫𝚫𝚫 ≠ 𝟎𝟎, (c) 𝚫𝚫𝝃𝝃 ≠ 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝚫𝚫𝚫𝚫 = 𝟎𝟎 and (d) 𝚫𝚫𝝃𝝃 =

 𝚫𝚫𝚫𝚫 = 𝟎𝟎 . 𝚫𝚫𝝃𝝃 𝒂𝒂𝒂𝒂𝒂𝒂 𝚫𝚫𝚫𝚫  are the displacements of the center of the observation window with respect to the center of the 

reconstruction, or equivalently hologram, plane. In (b), the points (x,y) and (𝝃𝝃′,𝜼𝜼′) were mirrored with respect the axes 𝝃𝝃′ = 𝟎𝟎 

and 𝒙𝒙 = 𝟎𝟎, respectively, but the coordinates were omitted to clean the figure. In (c), the points are also mirrored but with 

respect the axes 𝜼𝜼′ = 𝟎𝟎 and 𝒚𝒚 = 𝟎𝟎. Note that the distance between the original pair of points and the mirrored ones is the same. 

In (d), the hologram and the reconstruction window were enlarged to avoid overcrowding of information. Furthermore, the 

point (x,y) was mirrored with respect the axes 𝒙𝒙 = 𝟎𝟎,𝒚𝒚 = 𝟎𝟎,𝒙𝒙 = −𝒚𝒚, 𝒙𝒙 = 𝒚𝒚, 𝒙𝒙 = 𝒚𝒚 followed by 𝒙𝒙 = 𝟎𝟎 𝒐𝒐𝒐𝒐 𝒚𝒚 = 𝟎𝟎 𝒐𝒐𝒐𝒐  𝒙𝒙 = −𝒚𝒚  

while the point  (𝝃𝝃′,𝜼𝜼′) with respect the axes   𝝃𝝃 = 𝟎𝟎,𝜼𝜼 = 𝟎𝟎, 𝝃𝝃 = −𝜼𝜼, 𝝃𝝃 = 𝜼𝜼, 𝝃𝝃 = 𝜼𝜼 followed by 𝝃𝝃 = 𝟎𝟎 𝒐𝒐𝒐𝒐 𝜼𝜼 = 𝟎𝟎 𝒐𝒐𝒐𝒐  𝝃𝝃 = −𝜼𝜼. Note 

that the distance, r, between the original pair of points and the mirrored ones is the same.  

Proofs: 

• S1:  
 

Assumption: Δξ = 0, 𝜉𝜉 = 𝜉𝜉′  

 

The diffraction at (−𝜉𝜉 , 𝜂𝜂′) is given by, using ( D.50 ), 

 

𝑈𝑈(− 𝜉𝜉  ,𝜂𝜂′) = −
𝑧𝑧
𝑗𝑗𝜆𝜆0

��𝐺𝐺(𝑢𝑢,𝑦𝑦)
𝛱𝛱

𝑒𝑒𝑗𝑗𝑗𝑗0𝑟𝑟�−𝜉𝜉 ,𝜂𝜂′;−𝑥𝑥,𝑦𝑦�

𝑟𝑟2(−𝜉𝜉, 𝜂𝜂′;−𝑥𝑥,𝑦𝑦)   𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

( D.51 ) 

 
where the change of variables 𝒙𝒙 = −𝒖𝒖 was made. From (  D.2 ) , we have that 𝒓𝒓(−𝝃𝝃 ,𝜼𝜼′;−𝒙𝒙,𝒚𝒚) = 𝒓𝒓(𝝃𝝃 ,𝜼𝜼′;𝒙𝒙,𝒚𝒚). Substituting 

this result on  

( D.51 ) 
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𝑈𝑈(− 𝜉𝜉′, 𝜂𝜂′) = −
𝑧𝑧
𝑗𝑗𝜆𝜆0

��𝐺𝐺(𝑢𝑢,𝑦𝑦)
𝛱𝛱

𝑒𝑒𝑗𝑗𝑗𝑗0𝑟𝑟�𝜉𝜉 ,𝜂𝜂′;𝑢𝑢,𝑦𝑦�

𝑟𝑟2(𝜉𝜉  , 𝜂𝜂′;𝑢𝑢,𝑦𝑦)   𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ( D.52 ) 

Therefore, if Δ𝜉𝜉 = 0, we can use the same function e
jk0r(ξ ,η;u,y)

r2(ξ ,η′;u,y)  to calculate the field at points 

(𝜉𝜉, 𝜂𝜂′) and (−𝜉𝜉, 𝜂𝜂′ ). 

 

 

• S2:  
 

Assumption: Δ𝜂𝜂 = 0, 𝜂𝜂 = 𝜂𝜂′  

 

The diffraction at (𝜉𝜉′,−𝜂𝜂 ) is given by, using ( D.50 ), 

𝑈𝑈(𝜉𝜉′ ,−𝜂𝜂 ) = −
𝑧𝑧
𝑗𝑗𝜆𝜆0

��𝐺𝐺(𝑥𝑥, 𝑣𝑣)
𝛱𝛱

𝑒𝑒𝑗𝑗𝑗𝑗0𝑟𝑟�𝜉𝜉′
 ,−𝜂𝜂 ;𝑥𝑥,−𝑣𝑣�

𝑟𝑟2(𝜉𝜉′ ,−𝜂𝜂 ;𝑥𝑥,−𝑣𝑣)   𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

( D.53 ) 

Where the change of variables 𝑦𝑦 = −𝑣𝑣  was made. From (  D.2 ), we have that 

r(ξ′ ,−η ; x,−y) = r(ξ , 𝜂𝜂; x, y). Therefore, substituting this result on ( D.53 ) 

𝑈𝑈(𝜉𝜉′ ,−𝜂𝜂 ) = −
𝑧𝑧
𝑗𝑗𝜆𝜆0

��𝐺𝐺(𝑥𝑥, 𝑣𝑣)
𝛱𝛱

𝑒𝑒𝑗𝑗𝑗𝑗0𝑟𝑟�𝜉𝜉′
 ,𝜂𝜂 ;𝑥𝑥,𝑣𝑣�

𝑟𝑟2(𝜉𝜉′ , 𝜂𝜂 ;𝑥𝑥, 𝑣𝑣)   𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

( D.54 ) 

Therefore, if Δ𝜉𝜉 = 0, we can use the same function e
jk0r�ξ′

 
,η ;x,v�

r2(ξ′ ,η ;x,v)  to calculate the field at points 

(𝜉𝜉′, 𝜂𝜂) and (𝜉𝜉′,−𝜂𝜂 ). 

 

• S3: 

 
Assumption: Δξ = 0, 𝜉𝜉 = 𝜉𝜉′ and Δ𝜂𝜂 = 0, 𝜂𝜂 = 𝜂𝜂′  

 

The properties S1 and S2 hold if S3 is satisfied. Therefore, ( D.54 ) and ( D.56 ) already hold. 

If S1 followed by S2 are applied at ( D.50 ), follows that 

 

𝑈𝑈(− 𝜉𝜉  ,−𝜂𝜂 ) =
𝑧𝑧
𝑗𝑗𝜆𝜆0

��𝐺𝐺(𝑢𝑢, 𝑏𝑏)
𝛱𝛱

𝑒𝑒𝑗𝑗𝑗𝑗0𝑟𝑟(𝜉𝜉 ,𝜂𝜂 ;𝑢𝑢,𝑣𝑣)

𝑟𝑟2(𝜉𝜉  , 𝜂𝜂 ;𝑢𝑢, 𝑣𝑣)   𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

(D.55 ) 
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Next, we need to check the mirror symmetry with respect 𝜉𝜉 = 𝜂𝜂 followed by the applications 

of S1 and S2 at it. Thus, the diffraction at (𝜂𝜂, 𝜉𝜉) is given by, using ( D.50 ), 

𝑈𝑈(𝜂𝜂, 𝜉𝜉) =
𝑧𝑧
𝑗𝑗𝜆𝜆0

��𝐺𝐺(𝑥𝑥,𝑦𝑦)
𝛱𝛱

𝑒𝑒𝑗𝑗𝑗𝑗0𝑟𝑟(𝜂𝜂,𝜉𝜉;𝑥𝑥,𝑦𝑦)

𝑟𝑟2(𝜂𝜂, 𝜉𝜉; 𝑥𝑥,𝑦𝑦)   𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ( D.56 ) 

Now, we mirror the (x,y) plane with respect the 𝑥𝑥 = 𝑦𝑦  axis. This can be done by the 

following change of coordinates (𝑥𝑥′,𝑦𝑦′) = (𝑦𝑦, 𝑥𝑥) , whose Jacobian determinant can be calculated 

easily and is given by |𝐽𝐽(𝑥𝑥′,𝑦𝑦′)|  = −1. Furthermore, from (  D.2 )  is easy to check that 

𝑟𝑟(𝜂𝜂, 𝜉𝜉;𝑦𝑦′, 𝑥𝑥′) = r(𝜉𝜉, 𝜂𝜂; 𝑥𝑥′,𝑦𝑦′). Applying the coordinate change at ( D.56 )   

 

𝑈𝑈(𝜂𝜂, 𝜉𝜉) =
𝑧𝑧
𝑗𝑗𝜆𝜆0

��𝐺𝐺(𝑦𝑦′, 𝑥𝑥′)
𝛱𝛱

𝑒𝑒𝑗𝑗𝑗𝑗0𝑟𝑟�𝜉𝜉,𝜂𝜂;𝑥𝑥′,𝑦𝑦′�

𝑟𝑟2(𝜉𝜉, 𝜂𝜂; 𝑥𝑥′,𝑦𝑦′)
 |𝐽𝐽(𝑥𝑥′,𝑦𝑦′)|𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′ 

 

 

= −
𝑧𝑧
𝑗𝑗𝜆𝜆0

��𝐺𝐺(𝑦𝑦′, 𝑥𝑥′)
𝛱𝛱

𝑒𝑒𝑗𝑗𝑗𝑗0𝑟𝑟�𝜉𝜉,𝜂𝜂;𝑥𝑥′,𝑦𝑦′�

𝑟𝑟2(𝜉𝜉, 𝜂𝜂; 𝑥𝑥′,𝑦𝑦′)
 𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′ (D.57) 

If we apply S1 in (D.57), follows that  

𝑈𝑈(−𝜂𝜂, 𝜉𝜉) =
𝑧𝑧
𝑗𝑗𝜆𝜆0

��𝐺𝐺(𝑣𝑣′, 𝑥𝑥′)
𝛱𝛱

𝑒𝑒𝑗𝑗𝑗𝑗0𝑟𝑟�𝜉𝜉,𝜂𝜂;𝑥𝑥′,𝑣𝑣′�

𝑟𝑟2(𝜉𝜉, 𝜂𝜂; 𝑥𝑥′,𝑣𝑣′)
 𝑑𝑑𝑥𝑥′𝑑𝑑𝑣𝑣′ 

 

(D.58) 

If we apply S2 in (D.57), follows that  

𝑈𝑈(𝜂𝜂,−𝜉𝜉) =
𝑧𝑧
𝑗𝑗𝜆𝜆0

��𝐺𝐺(𝑦𝑦′,𝑢𝑢′)
𝛱𝛱

𝑒𝑒𝑗𝑗𝑗𝑗0𝑟𝑟�𝜉𝜉,𝜂𝜂;𝑢𝑢′,𝑦𝑦′�

𝑟𝑟2(𝜉𝜉, 𝜂𝜂;𝑢𝑢′,𝑦𝑦′)
 𝑑𝑑𝑢𝑢′𝑑𝑑𝑦𝑦′ (D.59) 

Finally, we apply both S1 and S2 in (D.57), obtaining  

𝑈𝑈(−𝜂𝜂,−𝜉𝜉) = −
𝑧𝑧
𝑗𝑗𝜆𝜆0

��𝐺𝐺(𝑣𝑣′,𝑢𝑢′)
𝛱𝛱

𝑒𝑒𝑗𝑗𝑗𝑗0𝑟𝑟�𝜉𝜉,𝜂𝜂;𝑢𝑢′,𝑣𝑣′�

𝑟𝑟2(𝜉𝜉, 𝜂𝜂;𝑢𝑢′,𝑣𝑣′)
 𝑑𝑑𝑢𝑢′𝑑𝑑𝑣𝑣′ (D.60) 

Therefore, if Δ𝜉𝜉 = Δ𝜂𝜂 = 0, from equations ( D.50 ), ( D.52 ), ( D.54 ), (D.55 ), (D.57), 

(D.58), (D.59) and (D.60) we can calculate 

𝑈𝑈(𝜎𝜎𝜎𝜎′,𝜎𝜎𝜂𝜂′),𝑈𝑈(𝜎𝜎𝜂𝜂′,−𝜎𝜎𝜉𝜉′),𝑈𝑈(𝜎𝜎𝜂𝜂′,𝜎𝜎𝜉𝜉′) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈(𝜎𝜎𝜂𝜂′,−𝜎𝜎𝜉𝜉′), 𝜎𝜎 = ±1   by using the same 

function 𝑒𝑒
𝑗𝑗𝑗𝑗0𝑟𝑟�𝜉𝜉′,𝜂𝜂′;𝑥𝑥,𝑦𝑦�

𝑟𝑟2(𝜉𝜉′,𝜂𝜂′;𝑥𝑥,𝑦𝑦)  in the integrand. 
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b.  Normal discrete RS Integration 

 The calculation will be performed for the sampled hologram assuming a constant field 

distribution across each pixel. Therefore, equation (  D.3 ) can be approximated by 

 

𝑈𝑈𝑘𝑘𝑘𝑘 =
𝑧𝑧
𝑗𝑗𝜆𝜆0

𝑃𝑃2 � �𝐺𝐺𝑚𝑚𝑚𝑚
 𝑒𝑒𝑗𝑗𝑘𝑘0𝑟𝑟(𝜉𝜉𝑘𝑘,𝜂𝜂𝑙𝑙;𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)

𝑟𝑟2(𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙; 𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛) 

𝑀𝑀

𝑛𝑛=1

𝑀𝑀

𝑚𝑚=1

 
 

( D.61 ) 

 

where the CGH is stored in matrix 𝐺𝐺𝑚𝑚𝑚𝑚, with M𝗑𝗑M pixels with dimensions P𝗑𝗑P each; the axes of 

the hologram plane are stored in vectors 𝑥𝑥𝑚𝑚 and 𝑦𝑦𝑛𝑛; 𝑈𝑈𝑘𝑘𝑘𝑘 is the reconstructed field at point (𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙). 

The operating wavelength is 𝜆𝜆0 and the distance between the planes is z. To perform ( D.61 ) in 

MATLAB, for each 𝑈𝑈𝑘𝑘𝑘𝑘, it is faster to first create the following auxiliary matrix  

 

𝐴𝐴𝑚𝑚𝑚𝑚(𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙) ≡  
 𝑒𝑒𝑗𝑗𝑘𝑘0𝑟𝑟(𝜉𝜉𝑘𝑘,𝜂𝜂𝑙𝑙;𝑥𝑥𝑚𝑚,𝑦𝑦𝑛𝑛)

𝑟𝑟2(𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙; 𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑛𝑛)  
(D.62 ) 

 

and then perform the element-wise multiplication with 𝐺𝐺𝑚𝑚𝑚𝑚 and sum all elements of the resulting 

matrix. Therefore, if the reconstruction window has 𝑁𝑁 × 𝑁𝑁  points, the matrix 𝐴𝐴𝑚𝑚𝑚𝑚  must be 

created 𝑁𝑁2 times. 

c.  RS discrete Integration: S1 symmetry  

Applying  

( D.51 ) at ( D.61 ), follows  

 

𝑈𝑈𝑁𝑁−𝑘𝑘,𝑙𝑙 = −
𝑧𝑧
𝑗𝑗𝜆𝜆0

𝑃𝑃2 � �𝐺𝐺𝑀𝑀−𝑚𝑚,𝑛𝑛𝐴𝐴𝑚𝑚𝑚𝑚(𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙)
𝑀𝑀

𝑛𝑛=1

𝑀𝑀

𝑚𝑚=1

 (D.63 ) 

 

Note that, from ( D.61 ) and (D.63 ), 𝑈𝑈𝑘𝑘,𝑙𝑙 𝑈𝑈𝑁𝑁−𝑘𝑘,𝑙𝑙 are calculated from the same matrix 𝐴𝐴𝑚𝑚𝑚𝑚(𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙). 

Furthermore, the summations in  (D.63 ) are performed by element-wise multiplication between 

𝐺𝐺𝑀𝑀−𝑚𝑚,𝑛𝑛, that is the 𝐺𝐺𝑚𝑚𝑚𝑚 flipped up-down, and 𝐴𝐴𝑚𝑚𝑛𝑛 and summing the resulting matrix. Therefore, 

if the reconstruction window has 𝑁𝑁 × 𝑁𝑁 points, the matrix 𝐴𝐴𝑚𝑚𝑚𝑚 must be created 𝑁𝑁
2

2
 times. 

 



 

182 

 

d.  RS discrete Integration: S2 symmetry  

Applying ( D.52 ) at ( D.61 ), follows  

 

𝑈𝑈𝑘𝑘,𝑁𝑁−𝑙𝑙 = −
𝑧𝑧
𝑗𝑗𝜆𝜆0

𝑃𝑃2 � �𝐺𝐺𝑚𝑚,𝑀𝑀−𝑛𝑛𝐴𝐴𝑚𝑚𝑚𝑚(𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙)
𝑀𝑀

𝑛𝑛=1

𝑀𝑀

𝑚𝑚=1

 ( D.64 ) 

 

Note that, from ( D.64 ) and (D.63 ), 𝑈𝑈𝑘𝑘,𝑙𝑙 𝑈𝑈𝑘𝑘,𝑁𝑁−𝑙𝑙 are calculated from the same matrix 𝐴𝐴𝑚𝑚𝑚𝑚(𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙). 

Furthermore, the summations in  (D.63 ) are performed by element-wise multiplication between 

𝐺𝐺𝑚𝑚,𝑀𝑀−𝑛𝑛, that is the 𝐺𝐺𝑚𝑚𝑚𝑚 flipped left-right, and 𝐴𝐴𝑚𝑚𝑚𝑚 and summing the resulting matrix. Therefore, 

if the reconstruction window has 𝑁𝑁 × 𝑁𝑁 points, the matrix 𝐴𝐴𝑚𝑚𝑚𝑚 must be created 𝑁𝑁
2

2
 times. 

e.  RS discrete Integration: S2 symmetry  

Applying equations ( D.50 ), ( D.52 ), ( D.54 ), (D.55 ), (D.57), (D.58), (D.59) and  (D.60)  

at ( D.61 ), follows, respectively that 

𝑈𝑈𝑁𝑁−𝑘𝑘,𝑙𝑙 = −
𝑧𝑧
𝑗𝑗𝜆𝜆0

𝑃𝑃2 � �𝐺𝐺𝑀𝑀−𝑚𝑚,𝑛𝑛𝐴𝐴𝑚𝑚𝑚𝑚(𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙)
𝑀𝑀

𝑛𝑛=1

𝑀𝑀

𝑚𝑚=1

 
 

( D.65 ) 

𝑈𝑈𝑘𝑘,𝑁𝑁−𝑙𝑙 = −
𝑧𝑧
𝑗𝑗𝜆𝜆0

𝑃𝑃2 � �𝐺𝐺𝑚𝑚,𝑀𝑀−𝑛𝑛𝐴𝐴𝑚𝑚𝑚𝑚(𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙)
𝑀𝑀

𝑛𝑛=1

𝑀𝑀

𝑚𝑚=1

 
 

(  D.66 ) 

𝑈𝑈𝑁𝑁−𝑘𝑘,𝑁𝑁−𝑙𝑙 =
𝑧𝑧
𝑗𝑗𝜆𝜆0

𝑃𝑃2 � �𝐺𝐺𝑀𝑀−𝑚𝑚,𝑀𝑀−𝑛𝑛𝐴𝐴𝑚𝑚𝑚𝑚(𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙)
𝑀𝑀

𝑛𝑛=1

𝑀𝑀

𝑚𝑚=1

 
 

(  D.67 ) 

𝑈𝑈𝑙𝑙𝑙𝑙 = −
𝑧𝑧
𝑗𝑗𝜆𝜆0

𝑃𝑃2 � �𝐺𝐺𝑛𝑛𝑛𝑛𝐴𝐴𝑚𝑚𝑚𝑚(𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙)
𝑀𝑀

𝑛𝑛=1

𝑀𝑀

𝑚𝑚=1

 
 

(  D.68 ) 

 

𝑈𝑈𝑙𝑙−𝑁𝑁,𝑘𝑘 =
𝑧𝑧
𝑗𝑗𝜆𝜆0

𝑃𝑃2 � �𝐺𝐺𝑛𝑛−𝑀𝑀,𝑚𝑚𝐴𝐴𝑚𝑚𝑚𝑚(𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙)
𝑀𝑀

𝑛𝑛=1

𝑀𝑀

𝑚𝑚=1

 
 

( D.69 ) 

𝑈𝑈𝑙𝑙−𝑁𝑁,𝑘𝑘 =
𝑧𝑧
𝑗𝑗𝜆𝜆0

𝑃𝑃2 � �𝐺𝐺𝑛𝑛,𝑚𝑚−𝑁𝑁𝐴𝐴𝑚𝑚𝑚𝑚(𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙)
𝑀𝑀

𝑛𝑛=1

𝑀𝑀

𝑚𝑚=1

 
 

( D.70 ) 

𝑈𝑈𝑙𝑙−𝑁𝑁,𝑘𝑘−𝑁𝑁 = −
𝑧𝑧
𝑗𝑗𝜆𝜆0

𝑃𝑃2 � �𝐺𝐺𝑛𝑛−𝑁𝑁,𝑚𝑚−𝑁𝑁𝐴𝐴𝑚𝑚𝑚𝑚(𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙)
𝑀𝑀

𝑛𝑛=1

𝑀𝑀

𝑚𝑚=1

 
 

( D.71 ) 

 

In equations ( D.61 ) and ( D.65 )-( D.71 ) the same matrix 𝐴𝐴𝑚𝑚𝑚𝑚(𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙) is used to obtain the 

diffraction at different points. These operations can also be performed by element-wise 
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multiplication of  𝐴𝐴𝑚𝑚𝑚𝑚(𝜉𝜉𝑘𝑘 , 𝜂𝜂𝑙𝑙) with a transformed 𝐺𝐺𝑚𝑚𝑚𝑚 followed by the summation of all elements 

of the resulting matrix. In ( D.65 ) the multiplication is with 𝐺𝐺𝑀𝑀−𝑚𝑚,𝑛𝑛, that is the flipped left-right 

𝐺𝐺𝑚𝑚𝑚𝑚; in (  D.66 ) the multiplication is with 𝐺𝐺𝑚𝑚,𝑛𝑛−𝑀𝑀, that is the flipped up-down 𝐺𝐺𝑚𝑚𝑚𝑚; in (  D.67 ) 

the multiplication is with 𝐺𝐺𝑀𝑀−𝑚𝑚,𝑛𝑛−𝑁𝑁, that is the flipped left-right and up-down 𝐺𝐺𝑚𝑚𝑚𝑚; in  (  D.68 ) 

the multiplication is with 𝐺𝐺𝑛𝑛,𝑚𝑚, that is the transpose of 𝐺𝐺𝑚𝑚𝑚𝑚; finally, in ( D.69 ), ( D.70 ),( D.71 ) 

the multiplication is with, respectively, the flipped left-right, flipped up-down and flipped left-

right and up-down of the transpose of 𝐺𝐺𝑚𝑚𝑚𝑚. These matrix transformations are fast and therefore 

do not appreciably increases the computational time. 

f.  Performance comparison  

In this section the implementations of the normal, S1 and S3 RS integrations will be 

compared. Note that S1 and S2 should have the same performance under the same circumstances 

so only the former will be shown. The hologram that will be reconstructed is an 8 phase levels 

CGH with wide angle correction obtained by the IFTA with 𝑐𝑐 = 100 as described at section D.4. 

The RS integration is performed assuming an operating wavelength of 532 nm, hologram pixel 

size of 190 nm and the reconstruction plane at the Fraunhofer region. The hologram has 

dimensions of 1024×1024 pixels and the observation window have the same size of the 

reconstruction region and is centered at the reconstruction plane, that is, Δξ = Δη = 0. Table  D-2 

lists the time taken to perform the RS integration under the normal, S1 and S3 methods for 

observation windows with different resolutions. Note that, for all methods, the computational time 

is proportional to 𝑁𝑁2. Furthermore, S1 is twice as faster as the Normal method and the S3 is 

almost five times faster than the normal method. Although not included, the performance of the 

S2 method should be the same of S1 because both algorithms use the same operations. Therefore, 

depending on the location of projected image, it is better to place the observation window in such 

a way that preferable S3 or S1 or S2 is used to reduce the computational time.  
Table  D-2 – Time expended to complete the RS integration of a hologram with 1024×1024 pixels in an observation window 

with different resolutions. Three methods were used: Normal, S1 and S3.  

Observation window 
resolution (N×N) 

Computational time  (s) 

Normal  S1 S3 

16×16 24 13.18 5.1 

32×32 99.51 51.5 18.9 

64×64 382 203.5 73.3 

128×128 1548.8 819.2 315 

256×256 6092 3200 1185 
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D.4.2. Power calculation of the diffracted fields 

The scalar approximation will be used to calculate the transmitted power over certain region 

S in the reconstruction plane. In this case, the Poynting vector,  𝑃𝑃��⃗ , at a point (𝜉𝜉, 𝜂𝜂)  in the 

reconstruction plane, will be radial and given by  [3] 

𝑃𝑃�⃗ (𝜉𝜉, 𝜂𝜂) =
|𝑈𝑈(𝜉𝜉, 𝜂𝜂)|2

2
𝑠̂𝑠 ( D.72 ) 

Where U(ξ,̘η) is the reconstructed field distribution and 𝑠̂𝑠 is the direction versor, |𝑠̂𝑠| = 1 of 

the Poynting vector. It is assumed that the reconstructed field is in the far-field zone and the 

holograms size is much smaller than the reconstruction plane. Therefore, the Poynting vector is 

assumed to be radial with center on the middle of the hologram, see Figure D.8.  

 
Figure D.8 – Representation of the reconstruction plane. 

 

Follows that, 

𝑠̂𝑠 =
𝑟𝑟0���⃗

|𝑟𝑟0���⃗ | 
( D.73) 

where 𝑟𝑟0���⃗ ≡ 𝜉𝜉𝜉𝜉 + 𝜂𝜂𝜂̂𝜂 + 𝑧𝑧𝑧̂𝑧 is a radial vector that links the center of the hologram to a point (ξ,̘η)  

in the reconstruction plane. Therefore, the power flux crossing a region S inside the reconstruction 

plane is given by 

ℰ = ��𝑑𝑑𝑑𝑑����⃗ ⋅ 𝑃𝑃�⃗ (𝜉𝜉, 𝜂𝜂) 
𝑆𝑆

=
1
2
��𝑑𝑑𝑑𝑑|𝑈𝑈(𝜉𝜉, 𝜂𝜂)|2𝑠̂𝑠 ⋅ 𝑧̂𝑧 

𝑆𝑆
 ( D.74) 

Substituting ( D.73) and (  D.2 ) in ( D.74), follows that 

ℰ =
1
2
��𝑑𝑑𝑑𝑑|𝑈𝑈(𝜉𝜉, η)|2

z
𝑟𝑟(𝜉𝜉, 𝜂𝜂; 0,0) 

𝑆𝑆
 ( D.75) 

The field distribution 𝑈𝑈(𝜉𝜉, η) is calculated numerically by the RS integration and stored in a 

𝑛𝑛𝑥𝑥 × 𝑛𝑛𝑦𝑦 matrix 𝑈𝑈𝑖𝑖𝑖𝑖 .  Thus, equation ( D.75) is approximated by the following sum 
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ℰ =
1
2
𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧���𝑈𝑈𝑖𝑖𝑖𝑖�

2
𝑛𝑛𝑦𝑦

𝑗𝑗=1

1
𝑟𝑟�𝜉𝜉𝑖𝑖 , 𝜂𝜂𝑗𝑗; 0,0�

𝑛𝑛𝑥𝑥

𝑖𝑖=1

 
 

(D.76) 

where dξ and dη are the sampling of the field on the reconstruction plane along the ξ and η 

directions. 

 

 

  



 

186 

 

Appendix E – Rights & Permissions 

E.1. Holographic metasurfaces 

Section III.1 of chapter III the main text was adapted with permissions from 

Augusto Martins, et.al , "Highly efficient holograms based on c-Si metasurfaces in the visible 

range," Opt. Express 26, 9573-9583 (2018) [77] © The Optical Society 

 and 

 A. Martins, et. al, "Crystalline Silicon (c-Si) Metasurface Holograms in the Visible Range," 

in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, 

pcAOP), OSA Technical Digest (Optical Society of America, 2018), paper DTh2E.5: [89] © The 

Optical Society.  

 

Section III.2 of chapter III of the main text was adapted with permissions from 

Augusto Martins, et. al, "Broadband c-Si metasurfaces with polarization control at visible 

wavelengths: applications to 3D stereoscopic holography," Opt. Express 26, 30740-30752 (2018) 

[93] © The Optical Society.  

 

A copy of the permission is shown below. 
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E.2. On metalenses with arbitrarily wide field of 

view 

Chapter IV of the main text was adapted with permission from  

Martins, Augusto, et al. "On metalenses with arbitrarily wide field of view." ACS Photonics 

7.8 (2020): 2073-2079. Copyright (2021) American Chemical Society.  

and 

Haowen Liang, et al."High performance metalenses: numerical aperture, aberrations, 

chromaticity, and trade-offs," Optica 6, 1461-1470 (2019)  [114] © The Optical Society.  

 

A copy of the permissions are shown below. 

• ACS: 
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• OSA 
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E.3. Photon Management in Tandem Si/Perovskite 

Solar Cells  

Chapter V of the main text was adapted with permission from Martins, Augusto, et al. 

"Photonic intermediate structures for Perovskite/c-Silicon four terminal tandem solar cells." 

IEEE Journal of Photovoltaics 7.5 (2017): 1190-1196.. 

 © 2018 IEEE. Reprinted with permission  from Martins, A., Borges, B. H. V., Li, J., Krauss, 

T. F., & Martins, E. R. (2017). Photonic intermediate structures for Perovskite/c-Silicon four 

terminal tandem solar cells. IEEE Journal of Photovoltaics, 7(5), 1190-1196. 

A copy of the permission is shown below. 
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