
Universidade de São Paulo

Escola de Engenharia de São Carlos

Fernando Luis Rossi

Uma contribuição para o problema de programação mixed no-idle flowshop com tempos

de preparação dependentes da sequência: análises e métodos de solução

São Carlos

2019

University of São Paulo

São Carlos School of Engineering

Fernando Luis Rossi

A contribution for the mixed no-idle flowshop scheduling problem with sequence-

dependent setup times: analysis and solutions procedures

São Carlos

2019

Fernando Luis Rossi

Uma contribuição para o problema de programação mixed no-idle flowshop com tempos

e preparação dependentes da sequência: análises e métodos de solução

 Tese apresentada à Escola de Engenharia de

São Carlos da Universidade de São Paulo,

para obtenção do título de Doutor em

Ciências - Programa de Pós-Graduação em

Engenharia de Produção.

Área de concentração: Pesquisa Operacional

Supervisor: Prof. Dr. Marcelo Seido Nagano

São Carlos

2019

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Rossi, Fernando Luis
 R831u Uma contribuição para o problema de programação

mixed no-idle flowshop com tempos de preparação
dependentes da sequência: análises e métodos de solução
/ Fernando Luis Rossi; orientador Marcelo Seido Nagano.
São Carlos, 2019.

Tese (Doutorado) - Programa de Pós-Graduação em
Engenharia de Produção e Área de Concentração em
Processos e Gestão de Operações -- Escola de Engenharia
de São Carlos da Universidade de São Paulo, 2019.

1. Flowshop. 2. No-idle. 3. Tempos de Preparação.
4. Heurísticas. I. Título.

Eduardo Graziosi Silva - CRB - 8/8907

Fernando Luis Rossi

A contribution for the mixed no-idle flowshop scheduling problem with sequence-

dependent setup times: analysis and solutions procedures

 Doctoral Dissertation presented to the

Graduate Program in Production Engineering

of the São Carlos School of Engineering at

University of São Paulo to obtain the degree

of Doctor of Science.

Concentration Area: Operational Research

Supervisor: Prof. Dr. Marcelo Seido Nagano

São Carlos

2019

I AUTHORIZE THE TOTAL OR PARTIAL REPRODUCTION OF THIS WORK,
THROUGH ANY CONVENTIONAL OR ELECTRONIC MEANS, FOR STUDY AND
RESEARCH PURPOSES, SINCE THE SOURCE IS CITED.

 Catalog card prepared by Patron Service at “Prof. Dr. Sergio
Rodrigues Fontes” Library at EESC/USP

 Rossi, Fernando Luis

R831c A Contribution for the mixed no-idle flowshop

scheduling problem with sequence-dependent setup

times : analysis and solutions procedures / Fernando Luis

Rossi ; Thesis directed by Marcelo Seido Nagano. -- São

Carlos, 2019.

 Doctoral (Dissertation) - Graduate Program in

Production Engineering and Research Area in Process and

Operations Management – São Carlos School of Engineering,

at University of São Paulo, 2019.

 1. Flowshop. 2. No-idle. 3. Setup times.

4. Heuristics. I. Title.

Elena Luzia Palloni Gonçalves – CRB 8/4464

This work is wholeheartedly dedicated to my wife, daughter and beloved parents, who have
been our source of inspiration and gave us strength when we thought of giving up, who

continually provide their moral, spiritual, emotional, and financial support.
To our brothers, sisters, relatives, mentor, friends, and classmates who shared their words

of advice and encouragement to finish this study.
And lastly, we dedicated this book to the Almighty God, thank you for the guidance,

strength, power of mind, protection and skills and for giving us a healthy life. All of these,
we offer to you.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Prof. Marcelo Seido
Nagano for the continuous support of my Ph.D study and related research, for his patience,
motivation, and immense knowledge. His guidance helped me in all the time of research
and writing of this thesis. I could not have imagined having a better advisor and mentor
for my Ph.D study.

I also want to be thankful with my colleagues in the Department of Managment of
Federal Institute of São Paulo. Although each of them has been really important to carry
out this Thesis, I want to be specially grateful to the support of Rodolfo Butcher, Cynthia
Regina Fischer, Hânia Cecília Pilan and Francisco Manoel Filho.

“Computers are like Old Testament gods; lots of rules and no mercy.”
Joseph Campbell, The Power of Myth.

RESUMO

Rossi, F. Uma contribuição para o problema de programação mixed no-idle
flowshop com tempos de preparação dependentes da sequência: análises e
métodos de solução. 2019. 176p. Tese (Doutorado) - Escola de Engenharia de São
Carlos, Universidade de São Paulo, São Carlos, 2019.

Neste trabalho é abordado o problema de programação de produção em ambiente mixed
no-idle flowshop com tempos de preparação dependente da sequência. Este ambiente de
produção ainda não foi estudado na literatura, apesar de estar presente na dinâmica
dos sistemas produtivos. No ambiente no-idle flowshop, as máquinas que compõem o
sistema não podem ficar ociosas e todas as tarefas são executadas ininterruptamente.
Geralmente os motivos são associados à fatores econômicos ou tecnológicos, onde uma
máquina parada influencia diretamente o desempenho do sistema produtivo. O ambiente
no-idle flowshop está presente no processamento de fibra de vidro, produção de circuitos
integrados, em siderúrgicas, dentre outros. Entanto, assumir que todas as máquinas não
fiquem ociosas no ambiente produtivo geralmente não é realístico. Uma situação mais
realista é considerar o ambiente misto, onde apenas algumas máquinas que compõem o
sistema executam as tarefas ininterruptamente, enquanto as outras permitem a ociosidade
normalmente. Neste caso, o ambiente é chamado de mixed no-idle flowshop. Na extensão
estudada neste trabalho, tempos de preparação que antecedem o processamento das
tarefas são considerados nas máquinas em que é permitida a parada. Este é o primeiro
trabalho a abordar o problema mixed no-idle flowshop com tempos de preparação. Nesta
Tese, métodos heurísticos eficientes para resolução do problema mixed no-idle flowshop
foram propostos. Para demonstrar a performance dos métodos desenvolvidos, foram
realizadas extensas comparações com métodos considerados estado-da-arte na literatura.
Os resultados mostram que as heurísticas propostas fornecem soluções de qualidade com
eficiência computacional, superando os métodos da literatura.

Palavras-chave: Flowshop, No-idle, Tempos de Preparação, Heurísticas

ABSTRACT

Rossi, F. A contribution for the mixed no-idle flowshop scheduling problem
with sequence-dependent setup times: analysis and solutions procedures. 2019.
176p. Tese (Doutorado) - Escola de Engenharia de São Carlos, Universidade de São Paulo,
São Carlos, 2019.

In this work the mixed no-idle permutation flowshop with sequence-depdent setup times
scheduling problem is approached. This production environment has not yet been studied
in the literature, despite being present in the dynamics of production systems. In the
no-idle flowshop environment, the machines cannot be idle and all jobs are processed
uninterruptedly. Generally, the reasons are associated with economic or technological
factors, where a stationary machine directly influences the performance of the production
system. The no-idle flowshop is present in the manufacturing of fiberglass, production
of integrated circuits, in steelworks, among others. However, assuming that all machines
cannot be idle is often unrealistic. A more realistic situation would consider a mixed
environment, where only a few machines perform the jobs uninterruptedly, while the other
allow idleness. In this case, the environment is called mixed no-idle flowshop. In the problem
extension studied in this work, setup times are considered on machines where idleness
is allowed. This is the first work that addresses the mixed no-idle flow shop scheduling
problem with setup times. In this Thesis, efficient heuristic methods for solving the mixed
no-idle flowshop with setup times scheduling problem are proposed. To demonstrate the
performance of the new methods, extensive comparisons with state-of-the-art methods
from literature are performed. The results show that the proposed heuristics provide
high quality solutions with computational efficiency, outperforming the methods from the
literature.

Keywords: Flowshop, No-idle, Setup Times, Heuristics

LIST OF FIGURES

Figure 1 – Optimum solution for the PFSP without no-idle. 36
Figure 2 – The same solution of Figure 1, now with no-idle machines. 36
Figure 3 – Optimum solution for the no-idle PFSP. 36
Figure 4 – The mixed no-idle PFSP. 37
Figure 5 – The mixed no-idle PFSP with sequence-dependent setup times. 37
Figure 6 – Earliest completion time for the candidate job π[k+1] in machine Mi. . . 59
Figure 7 – Idles times and starting times for the jobs in a permutation flowshop

without no-idle machines. 60
Figure 8 – Idles times and starting times for the jobs in a permutation flowshop

with no-idle machines. 60
Figure 9 – ARPD and ARPT values for compared heuristics. The Pareto dominat-

ing heuristic is depicted in green. 80
Figure 10 – Means plot for the heuristics in all distributions for the benchmark from

Pan e Ruiz (2014). All means have 95% confidence intervals 82
Figure 11 – Means plot for the heuristics in all distributions for the benchmark from

Ruiz, Maroto e Alcaraz (2005). All means have 95% confidence intervals 83
Figure 12 – ARPD vs ACPU for the compared heuristics. 116
Figure 13 – Means plot for the heuristics in all distributions with 95% confidence

intervals. 119
Figure 14 – Percentage of ties between partial sequences. 130
Figure 15 – Means plot for the heuristics in all distributions with 95% confidence

intervals. 138
Figure 16 – ARPD grouped by number of jobs. 139
Figure 17 – ARPD grouped by number of jobs. 140
Figure 18 – Means plot for the metaheuristics in all distributions with 95% confi-

dence intervals and Tmax = 500 · n ·m. 151

LIST OF TABLES

Table 1 – Small example with three machines and three jobs. 35
Table 2 – Summary of works addressing the no-idle PFSP. 53
Table 3 – Summary of works addressing the PFSP with sequence dependent setup

times. 57
Table 4 – ARPD values for the parameter tuning of RNx heuristic. The best results

are highlighted in bold. 70
Table 5 – Summary of the results in the benchmark adapted from Pan e Ruiz (2014). 71
Table 6 – ARPD values for the compared heuristics in the all distributions grouped

by number of jobs in the benchmark adapted from Pan e Ruiz (2014).
The values in bold are the best ARPD, in each line. 72

Table 7 – ARPD values for the compared heuristics in the all distributions grouped
by number of machines in the benchmark adapted from Pan e Ruiz
(2014). The values in bold are the best ARPD, in each line. 73

Table 8 – ARPD values for the compared heuristics in the SSD50 distribution in
the benchmark adapted from Pan e Ruiz (2014). The values in bold are
the best ARPD, in each line. 74

Table 9 – ARPD values for the compared heuristics in the SSD100 distribution in
the benchmark adapted from Pan e Ruiz (2014). The values in bold are
the best ARPD, in each line. 75

Table 10 – ARPD values for the compared heuristics in the SSD125 distribution in
the benchmark adapted from Pan e Ruiz (2014). The values in bold are
the best ARPD, in each line. 76

Table 11 – Average CPU values and ARPT for the compared heuristics grouped by
number of jobs in the benchmark adapted from Pan e Ruiz (2014). The
values in bold are the best results, in each line. 77

Table 12 – Average CPU values for the compared heuristics grouped by number of
machines in the benchmark adapted from Pan e Ruiz (2014). The values
in bold are the best results, in each line. 78

Table 13 – Tukey test results of the best heuristics, with significance level of 95% in
the benchmark from Pan e Ruiz (2014). The values in bold mean that
there is a significant statistical difference between the algorithms in the
first and second column. 81

Table 14 – ARPD results in the benchmark from Pan e Ruiz (2014) without sequence
dependent setup times. The values in bold are the best results, in each line. 84

Table 15 – Average CPU times in the benchmark from Pan e Ruiz (2014) without
sequence dependent setup times. 84

Table 16 – Summary of the results in the benchmark adapted from Ruiz, Maroto e
Alcaraz (2005). 85

Table 17 – ARPD values for the compared heuristics in the all distributions intervals
in the benchmark adapted from Ruiz, Maroto e Alcaraz (2005). The
values in bold are the best ARPD, in each line. 86

Table 18 – ARPD values for the compared heuristics in the SSD10 distribution
interval in the benchmark adapted from Ruiz, Maroto e Alcaraz (2005).
The values in bold are the best ARPD, in each line. 87

Table 19 – ARPD values for the compared heuristics in the SSD50 distribution
interval in the benchmark adapted from Ruiz, Maroto e Alcaraz (2005).
The values in bold are the best ARPD, in each line. 88

Table 20 – ARPD values for the compared heuristics in the SSD100 distribution
interval in the benchmark adapted from Ruiz, Maroto e Alcaraz (2005).
The values in bold are the best ARPD, in each line. 89

Table 21 – ARPD values for the compared heuristics in the SSD125 distribution
interval in the benchmark adapted from Ruiz, Maroto e Alcaraz (2005).
The values in bold are the best ARPD, in each line. 90

Table 22 – Average CPU times and ARPT for the compared heuristics in the all
distributions intervals in the benchmark adapted from Ruiz, Maroto e
Alcaraz (2005). The values in bold are the best CPU times, in each line. 91

Table 23 – Tukey test results of the best heuristics, with significance level of 95%
in the benchmark from Ruiz, Maroto e Alcaraz (2005). The values in
bold mean that there is a significant statistical difference between the
algorithms in the first and second column. 93

Table 24 – ARPD results in the benchmark from Ruiz, Maroto e Alcaraz (2005)
without no-idle machines. The values in bold are the best CPU times, in
each line. 94

Table 25 – Average CPU times in the benchmark from Ruiz, Maroto e Alcaraz (2005)
without no-idle machines. 94

Table 26 – APRD and percentage of optimum solutions for the proposed RN70

heuristic. 95
Table 27 – Average and maximum CPU time for the MILP model. 96
Table 28 – Parameter testing with different values for d. 114
Table 29 – ARPD and ACPU for the compared heuristics. 115
Table 30 – ARPD for each set of problems arranged by the number of jobs. 117
Table 31 – ACPU for each set of problems arranged by the number of jobs. 118
Table 32 – APRD for the proposed heuristics when compared to optimal solutions. 120
Table 33 – Percentage of optimum solutions for the proposed heuristics. 121
Table 34 – Average and maximum CPU time for the MILP model. 122

Table 35 – ARPD and ACPU values for the compared heuristics in different distri-
butions and due date scenarios. 137

Table 36 – ARPD values for the compared heuristics for all setup times distributions
and due dates scenarios. The best results are highlighted in bold. 141

Table 37 – ACPU values for the compared heuristics for all setup times distributions
and due dates scenarios. 142

Table 38 – ARPD values for the compared heuristics in the SSD-50 distribution and
τ = 1. 143

Table 39 – ARPD values for the compared heuristics in the SSD-50 distribution and
τ = 3. 144

Table 40 – ARPD values for the compared heuristics in the SSD-100 distribution
and τ = 1. 145

Table 41 – ARPD values for the compared heuristics in the SSD-100 distribution
and τ = 3. 146

Table 42 – ARPD values for the compared heuristics in the SSD-125 distribution
and τ = 1. 147

Table 43 – ARPD values for the compared heuristics in the SSD-125 distribution
and τ = 3. 148

Table 44 – ARPD values for the metaheuristics in different distributions and due
date times. 150

Table 45 – ARPD values for the metaheuristics for all setup times distributions and
due dates scenarios. The best results are highlighted in bold. 152

Table 46 – ARPD values for the compared metaheuristics in the SSD-50 distribution
and τ = 1. 153

Table 47 – ARPD values for the compared metaheuristics in the SSD-50 distribution
and τ = 3. 154

Table 48 – ARPD values for the compared metaheuristics in the SSD-100 distribution
and τ = 1. 155

Table 49 – ARPD values for the compared metaheuristics in the SSD-100 distribution
and τ = 3. 156

Table 50 – ARPD values for the compared metaheuristics in the SSD-125 distribution
and τ = 1. 157

Table 51 – ARPD values for the compared metaheuristics in the SSD-125 distribution
and τ = 3. 158

LIST OF ABBREVIATIONS AND ACRONYMS

AA Approximate Algorithms

ACO Ant Colony Optimization Algorithms

B&B Branch-and-Bound

B&C Branch-and-Cut

CH Constructive Heuristic

DE Differential Evolution Algorithm

DP Dynamic Programming Formulation

GA Genetic Algorithms

IG Iterated Greedy Algorithm

IH Improvement Heuristic

ILS Iterated Local Search

IWO Invasive Weed Optimization Algorithm

MBO Migration Bird Optimization Algorithms.

ME Memetic Algorithm.

MILP Mixed-integer Linear Programming model

PFSP Permutation Flowshop Scheduling Problem

PSO Particle Swarm Optimization Algorithms

SI Saving Index Algorithm

CONTENTS

1 INTRODUCTION . 29
1.1 Objectives and outline of the Thesis 31

2 PROBLEM STATEMENT . 33
2.1 Notations . 34
2.2 The no-idle and mixed no-idle PFSP 35
2.3 The mixed no-idle PFSP with sequence dependent setup times . . . 37
2.3.1 Mixed integer linear programming model 38
2.3.2 Makespan, total flowtime and total tardiness calculation 40
2.3.3 Acceleration method to calculate the makespan for the insertion neighbourhood 41
2.3.4 Acceleration method to calculate the total flowtime or the total tardiness . 43

3 THE MIXED NO-IDLE PFSP WITH SETUP TIMES AND MAKESPAN
MIMIZATION . 49

3.1 Literature review . 50
3.1.1 The no-idle PFSP . 50
3.1.2 The PFSP with sequence dependent setup times 54
3.2 A new constructive heuristic . 58
3.2.1 Greedy heuristic . 58
3.2.2 NEH heuristic variant . 61
3.2.3 The RNx heuristic . 62
3.3 Computational and statistical experiments 63
3.3.1 Instances generation . 63
3.3.1.1 Benchmark for the parameter tuning for the RNx 64
3.3.1.2 Benchmark adapted from Pan e Ruiz (2014) 65
3.3.1.3 Benchmark adapted from Ruiz, Maroto e Alcaraz (2005) 66
3.3.1.4 Benchmark for the MILP model evaluation 66
3.3.2 Compared Heuristics . 66
3.3.3 Performance measures . 68
3.3.4 Parameter settings of RNx . 69
3.3.5 Comparison between heuristics in the benchmark adapted from Pan e Ruiz

(2014) . 69
3.3.6 Comparison between heuristics in the benchmark adapted from Ruiz, Maroto

e Alcaraz (2005) . 82
3.3.7 Evaluation of the MILP model and the RNx heuristic 92
3.4 Conclusion . 96

4 THE MIXED NO-IDLE PFSP WITH SETUP TIMES AND TOTAL
FLOWTIME MINIMIZATION . 99

4.1 Literature Review . 99
4.1.1 Heuristics for the F |prmu|Cmax problem 99
4.1.2 Heuristics for the F |prmu|∑Cj problem 100
4.1.3 Heuristics for the F |prmu, no − idle|Cmax and F |prmu, mixed no −

idle|Cmax problems . 101
4.2 Proposed heuristics . 102
4.2.1 The index function for nodes evaluation 103
4.2.2 The H1(N), H2(N, k) and H3(N) heuristics 105
4.3 Computational and statistical experiments 108
4.3.1 Instances generation . 108
4.3.2 Compared heuristics . 109
4.3.3 Performance measures . 113
4.3.4 Parameter tunning for the H1(N), H2(N, k) and H3(N) 113
4.3.5 Comparison . 114
4.4 Conclusion . 122

5 THE MIXED NO-IDLE PFSP WITH SETUP TIMES AND TOTAL
TARDINESS MINIMISATION . 125

5.1 Literature Review . 125
5.1.1 The Fm|prmu|

∑
Tj problem . 126

5.1.2 The Fm|prmu, no− idle|
∑
Tj problem 128

5.2 Proposed Heuristics . 129
5.3 Computational and statistical experiments 132
5.3.1 Instances generation . 132
5.3.2 Compared heuristics . 134
5.3.3 Performance measures . 135
5.3.4 Comparisons between heuristics . 136
5.3.5 Comparisons between metaheuristics . 149
5.4 Conclusion . 159

6 CONCLUSIONS, RESULTS AND FUTURE RESEARCH 161
6.1 Conclusions . 161
6.2 Results . 164
6.3 Future research lines . 164

BIBLIOGRAPHY . 167

31

1 INTRODUCTION

In the past decades, following the massive globalization of markets, companies
worldwide struggle in a more competitive market, where corporations from different
regions must battle for common customers. As a consequence, efficiency in the production
processes of the companies have become more essential than ever (SLACK et al., 2009).
Thus, production management is a important aspect for firms to remain competitive.
Production management comprises decision making related to many issues, as example
the master scheduling, material requirements planning, capacity planning, production
scheduling (VOLLMANN, 2005). Between these, production scheduling performs an crucial
role on resource productivity and client service (FERNANDEZ-VIAGAS, 2016). Companies
around the world must meet promised delivery times, and failing to meet them can result
in significant customer losses (LIU; REEVES, 2001).

Production scheduling is a decision process that deals with the allocation of
resources to the jobs in a given period of time in order to optimize one or more objectives
(PINEDO, 2016). With the objective of determining the best schedule for the shop floor,
constraints and the objective of the shop have to be considered. The complexity of the
scheduling problem increases and becomes NP-hard even for small scheduling problems
(FRAMINAN; LEISTEN, 2003). Also, scheduling decisions should be made in short time
intervals requiring a rapid response time, due to several aspects such as the lifetime of
a schedule, the delay in the suppliers, arrivals of new jobs to be processed, rescheduling
due to failures while processing a job (FERNANDEZ-VIAGAS, 2016). Therefore, the
development of fast and efficient solution procedures for solving manufacturing scheduling
problems is decisive for companies’ efficiency.

Currently, many processing layouts have been utilized by manufacturing industries.
The Permutation Flowshop Scheduling Problem (PFSP) has been extensively studied in
the literature with several papers published that deal with flowshops and other related
problems (RAD; RUIZ; BOROOJERDIAN, 2009). The main reason for this is that the
flowshop layout is the common configuration in many real manufacturing scenarios, as it
presents several advantages over more general job shop configuration, and, in addition,
many job shops are indeed a flow shop for most of the jobs (FERNANDEZ-VIAGAS,
2016). Another reason is that many models and solutions methods for different constraints
and layouts have their origins in the PFSP.

The flowshop environment is present in many relevant industry segments such
as metallurgical, chemical, and pharmaceutical industries. In certain situations in which
profitability is improved by means of (a) maximizing the use of resources, (b) reducing
work-in-process inventory or (c) better meeting deadlines, scheduling methods have the

32

minimization criteria of (a) maximum completion time of a sequence or makespan, (b)
total flowtime or (c) total tardiness (MACCARTHY; LIU, 1993). These three objectives
are the most relevant for the flowshop environment (LIU; REEVES, 2001; FRAMINAN;
LEISTEN, 2003; FERNANDEZ-VIAGAS; FRAMINAN, 2015).

More specifically, in a PFSP a set jobs is processed on machines with the objective
of minimising a certain criterion. In a permutation flowshop, the order in which each
machine processes the jobs is identical for all machines. In this Thesis, the mixed no-idle
PFSP with sequence dependent setup times is studied, which is a variation of the no-idle
PFSP. In the no-idle PFSP, machines are not allowed to be idle after a job sequence begins.
This condition occurs when their operating costs are high enough to make idle machines
economically prohibitive or technological constraints do not allow machines to stop after
the process is started. Briefly, in a no-idle environment, machines must process all the
jobs of the sequence without interruption. Due to this, when necessary, some jobs must be
delayed to ensure that the no-idle constraint is met.

However, in practice we rarely see an environment where there are only no-idle
machines (PAN; RUIZ, 2014). In a real production system, it is more common to have a
mixed environment in which no-idle machines and idle machines coexist. (PAN; RUIZ,
2014) were the first to formally define this type of mixed production system in a flowshop
environment (mixed no-idle PFSP). The mixed no-idle environment can be found in
steel production using the continuous casting process as described by (PAN; RUIZ, 2014).
Another example arises from the production of truck engine blocks in a foundry (SAADANI;
GUINET; MOALLA, 2003). In more detail, this includes casting sand moulds and sand
cores. The moulds are filled up with molten metal and they prevent the metal from filling
some spaces. The production system is defined by four main activities: the core production
shop; the smelting step; the casting line; and the finishing step. The smelting step, casting
line and some core production machines must work continuously due to both technical
and economic reasons, while the other operations can work with idle times.

Within the flowshop problem, another important consideration is the existence
of setup times that precede the jobs. Some example of setup operations are obtaining
tools, cleaning machines, positioning raw material, adjustments, inspections and other
activities. There is a distinction between two types of setup: a) sequence independent
setup (si,j), when the setup time of machine Mi only depends on job Jj; b) sequence
dependent setup (sij,k), when the setup time of machine Mi depends on the previous job
Jj and the current job Jk. The setups times can also be described as anticipatory or
non-anticipatory. Anticipatory setups are those that can be performed on the machine
as soon as this machine finishes the previous job in the sequence. Otherwise, a setup is
non-anticipatory. Literature reviews addressing the scheduling problem with setup can be
found in Allahverdi, Gupta e Aldowaisan (1999), Allahverdi e Soroush (2008), Allahverdi

33

et al. (2008), Allahverdi (2015).

In an environment in which all machines are no-idle, the setup time makes no
practical sense, as the machine requires continuous processing. However, in a mixed no-idle
environment, the existence of setup times is acceptable, and therefore the setup times on
regular machines can be considered, which allows idleness. For example, in the continuous
casting process in the steel industry, setup times for the machine to accommodate the
iron load to be processed or to separate the specific alloying elements for the steel to be
produced can be considered. Therefore, the setup times would occur in the stages in which
idle times are allowed. For example, the setup times in the finishing step can result from
cleaning and adjustment operations needed in the machines and tools used at this stage.

In this work, this special variant of the PFSP is denoted as mixed no-idle PFSP
with sequence-dependent setup times. Succinctly, in this new problem, no-idle machines
coexist with stages that allow iddleness, in these stages sequence-dependent setup times
between the jobs are considered. To the best of our knowledge, this problem has not yet
been studied in the literature, although it can be found in the dynamics of productive
systems.

1.1 Objectives and outline of the Thesis

As stated in the previous section, the goal of this Thesis is to study the mixed
no-idle PFSP with sequence-dependent setup times, both deeply analysing the problem
under different criteria and developing new efficient methods to solve the problem. To
carry out this goal, the following general research objectives are identified:

OBJ1. To provide in-depth analysis of the mixed no-idle PFSP with sequence-dependent
setup times, presenting mathematical models, formulations and calculations methods for
different objective functions;

OBJ2. To review the no-idle PFSP, PFSP with setup times and classical PFSP liter-
ature for the most common objectives, i.e. makespan, total flowtime or total tardiness
minimisation;

OBJ3. To provide efficient methods to solve the mixed no-idle PFSP with sequence
dependent setup times for makespan, total flowtime or total tardiness minimisation;

OBJ4. To demonstrate the efficiency and good performance of the new proposed methods
thought extensive computational and statistical experiments.

To achieve these objectives, the Thesis have been structured in five chapters as
follows:

34

In Chapter 2 the problem under consideration is stated, where mathematical
formulation and calculation methods for the different objective functions are provided in
detail. Chapters 3, 4 and 5, the mixed no-idle is analysed under different minimization
criteria along three chapters (Chapter 3 - makespan, Chapter 4- total flowtime, Chapter 5
- total tardiness). In each chapter, the main contributions in the literature are reviewed
and the state-of-the-art algorithms are presented. We propose new heuristics algorithms to
solve the mixed no-idle PFSP under each objective. We developed each heuristics in order
to exploit the specific structure of the problem to both reduce the computational times of
them and improve the quality of the solutions. Additionally, they are tested in extensive
computational evaluations, comparing them with the state-of-the-art algorithms under
the same conditions. Finally, in Chapter 6, the conclusions of this research and future
research lines are discussed.

35

2 PROBLEM STATEMENT

The PFSP in industrial environments are frequent, complex and have characteristics
peculiar to each company (NAGANO; MOCCELLIN, 2002). In the scope of Operational
Research, such problems are represented by models, in most cases mathematical, and must
contain the variables and parameters that explain and represent significantly the behaviour
of the problems treated (PINEDO, 2016). The problem consists of the determination of
the sequence of n jobs which achieves the minimal objective function value when all jobs
are processed, in the order, on the m machines of the flow shop. The following additional
hypotheses are usually assumed for the PFSP:

• Processing times are known and deterministic.

• No preemption is allowed.

• Transportation times can be considered either insignificant or constant.

• Each job can be processed by at most one machine at the same time.

• Release times are set to 0.

• Each machine can process only one job at the same time.

• All machines are available on the whole scheduling horizon.

• Unlimited in-process inventory is considered.

To obtain the solution of the problem of production scheduling many methods
of solution have been proposed. According to Framinan, Leisten e Ruiz-Usano (2005),
these methods are mainly: efficient methods of optimal solutions, enumerative methods of
optimal solutions, heuristic and metaheuristics methods. Among the efficient methods of
optimal solutions, the best known method is Johnson (1954), which determines the optimal
solution for the PFSP with two machines and n jobs in a polynomial time. The enumerative
methods determine the optimal solution of the problem, but at a high computational cost.
Among these, the most studied are the branch & bound procedures (BAPTISTE; HGUNY,
1997; BAGGA, 2003). The last type of solution method is the heuristic and metaheuristics
methods, which provide good quality solutions at a computational time that is not very
high compared to the other solution methods.

The heuristic methods can be classified in several ways, the most usual being to
classify them in: constructive heuristic methods and improvement methods. In the case
of constructive heuristic methods, the solution of the problem is obtained: directly from

36

the ordering of jobs according to priority indexes calculated according to the processing
times of the jobs, such as the methods proposed by Palmer (1965) and Koulamas (1998);
choosing the best sequence of jobs from a set of sequences (CAMPBELL; DUDEK; SMITH,
1970; HUNDAL; RAJGOPAL, 1988); or from the construction of partial sequences of a set
of jobs (subsequences) until a complete sequence is obtained (for example, Nawaz, Enscore
e Ham (1983)). In the case of the improvement methods, an initial solution is obtained
and, later, by means of some iterative procedure, a better solution is sought than the
current one in relation to the adopted measure of performance. Thus, the improvement
methods start from an initial solution and look for a better solution in their neighbourhood.
Two widely used neighbourhoods are the pairwise exchange and the insertion of jobs
(FRAMINAN; GUPTA; LEISTEN, 2004). In the pairwise exchange, all possible exchanges
of pairs in a sequence are performed; therefore, if we have a sequence with n tasks, we will
have n(n− 1)/2 possible pairwise exchanges. In the insertion method, a job of the current
sequence is removed and subsequently tested in all possible positions, resulting in n(n− 1)
sequences generated by the insertion procedure.

Finally, a metaheuristic can be seen as a general-purpose heuristic method designed
to guide the solution toward promising regions of the search space containing high quality
solutions (DORIGO et al., 2008). In addition, metaheuristics may move to not necessary
improving solutions, which constitutes the main mechanism to avoid stopping at local
optima Crainic e Toulouse (2003). Some examples are the particle swarm algorithm
proposed by Pan e Wang (2008b), the evolutionary algorithms of Tasgetiren et al. (2011)
and Deng e Gu (2012) or the bee colony algorithm of Tasgetiren et al. (2013b). Before
the problem is formally described, the notations used in the expressions are presented in
detail in the next section.

2.1 Notations

The notations used to describe the problem are detailed bellow.

Jj : job to be processed;

Mi : machine or stage;

pi,j : processing time of job Jj in machine Mi (i = 1, . . . ,m; j = 1, . . . , n);

dj : the due date of job Jj;

π : sequence of processing;

πj or [j] : defines a job occupying the jth position of the sequence;

U : set of jobs that have not yet been sequenced;

37

Ci,j : the completion time of job Jj in machine Mi;

Si,j : the start time of job Jj in machine Mi;

C ′i,j : the completion time calculated from back to front of Jj in machine Mi;

Cmax, Cm,j : the makespan or the completion time of the sequence;
∑
Tj,

∑n
j=1 max(Cm,j − dj, 0) : the total tardiness of the sequence;

∑
Cj,

∑n
j=1 Cm,j or ∑Cj(π) : total flowtime of the sequence π;

S ′i,j : the start date calculated from back to front of Jj in machine Mi;

M ′ : set of no-idle machines. Machines that do not belong to M ′ are defined as regular
machines, which allow stopping and also have setup time between jobs.

sij,k : setup time in machine Mi between jobs Jj and Jk (k ≤ n, k 6= j).

2.2 The no-idle and mixed no-idle PFSP

As mentioned before, a variant of the PFSP is caused when idleness is not allowed on
machines (no-idle). Cases like these are common and important in practical situations where,
for example, machines with high economic value added are used in the production process.
Allowing these machines to be idle many times may not be financially desirable. Clear
examples of this arise in the production of integrated circuits through photolithography
(RUIZ; VALLADA; FERNÁNDEZ-MARTÍNEZ, 2009). Other examples can be seen in
sectors where the machines are of low value, but the machines can not be easily restarted
or stand still because the costs would be very high, for example, the ceramics industry
uses kilns that use large amounts of gas while operating, in this case, idleness should be
avoided, since it would take several days to stop the oven due to a large thermal inertia
for heating. In all these cases, idleness should be avoided, either for economic reasons
or for technological reasons inherent to the process. In order to understand and better
illustrate the no-idle PFSP, an example is presented with three machines and three jobs.
The processing times of the jobs are given in Table 1.

Table 1: Small example with three machines and three jobs.

Jobs J1 J2 J3
M1 21 10 23
M2 27 20 15
M3 7 12 33

A simple way to represent the solution of a production scheduling problem is to
use the Gantt Chart. Figure 1 presents a Gantt Chart of an optimal solution for the small

38

𝑀

𝑀

𝑀

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐶 = 88𝜋∗ = {𝐽 , 𝐽 , 𝐽 }

Figure 1: Optimum solution for the PFSP without no-idle.

𝑀

𝑀

𝑀

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐶 = 94𝜋 = {𝐽 , 𝐽 , 𝐽 }

Figure 2: The same solution of Figure 1, now with no-idle machines.

𝑀

𝑀

𝑀

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐶 = 92𝜋∗ = {𝐽 , 𝐽 , 𝐽 }

Figure 3: Optimum solution for the no-idle PFSP.

PFSP example presented in Table 1, note that the problem does not yet considers no-idle
machines.

Considering a PFSP with makespan criterion, enumerating all possible solutions,
the optimal solution is provided by the sequence π∗ = {J2, J3, J1}, resulting in a makespan
of 88 (Figure 1). On the other hand, if it is considered the no-idle PFSP, the same solution
results in a worse non-optimal makespan of 94 (Figure 2). The optimal solution for the
same problem when no-idle machines are considered is another one, π∗no−idle = {J3, J2, J1},
with makespan 92 (Figure 3). Thus, the existence of no-idle machines can lead to a different
optimal solution.

The small example presented shows that the no-idle machines significantly impact
the solutions for the problem. As stated before, the problems studied is an extension of the
no-idle PFSP, denoted as mixed-noidle PFSP with sequence-dependent setup times. In the

39

𝑀

𝑀

𝑀

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝜋
∗ = {𝐽 , 𝐽 , 𝐽 }

Figure 4: The mixed no-idle PFSP.

𝑀

𝑀

𝑀

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝐽

𝜋∗
 , ,

= {𝐽 , 𝐽 , 𝐽 }

Setup times

Figure 5: The mixed no-idle PFSP with sequence-dependent setup times.

mixed no-idle PFSP, some machines allow idleness, while the other are no-idle. Figure 4
illustrates the mixed no-idle PFSP under the processing times presented in Table 1, where
only machine M2 allow idleness and M1 and M3 are no-idle machines.

As stated before, in the machines that allow idleness, setup times can occur between
the jobs. Figure 5 shows a small example where only machine M1 is no-idle, M2 and
M3 allow idleness and have setup times between the jobs. In the next section we will
present the detailed definition and formalization of the mixed no-idle PFSP with sequence
dependent setup times, which is the object of study of this work.

2.3 The mixed no-idle PFSP with sequence dependent setup times

Formally, the problem under consideration can be defined as follows. A set of
n jobs J = {J1, . . . , Jn} must be processed in the same order by a set of m machines
M = {M1, . . . ,Mm} with the objective of minimising a certain criterion, namely, in this
work, makespan, total flowtime or total tardiness. A processing sequence is defined by
π = {π1, . . . , πn}, πj or [j] defines a job in the jth position of the sequence. The processing
time of job Jj in machine Mi is pi,j (∀i = {1, . . . ,m}, ∀j = {1, . . . , n}). The completion
time of job Jj in machine Mi is called Ci,j and the starting date is Si,j. The makespan
(Cmax or Cmax (π)) is equal to the completion time of the last job in the last machine
Cm,[n] for the sequence π. The total flowtime is the sum of the completions times of the

40

jobs in the last machine Mm,
∑n
j=1 Cm,j. The total tardiness is the sum of the tardiness

of all jobs, ∑n
j=1 max(Cm,j − d − j), while dj is the due date of job Jj. Machines that

are no-idle belong to a set defined by M ′. The machines that do not belong to M ′ are
defined as regular machines, which allow idle and also have a setup time between jobs.
The sequence-dependent setup times are considered in the regular machines Mi (Mi ∈M ′)
between jobs Jj and Jk (k ≤ n, k 6= j), and are denoted as sij,k.

According to Graham et al. (1979), a scheduling problem can be defined in a
notation comprising three fields α|β|γ, in which α represents the machine environment
considered (single machine, parallel machine, flowshop, jobshop or openshop) and the
number of machines, β the technological constraints (sequence dependent setup times,
unavailability of machines, no-wait, no-idle, mixed no-idle, permutation) and γ is the
performance criterion (makespan, tardiness, total flowtime, among others). Thus, the
problem considered in this work can be defined as Fm|prmu,mixed no− idle, sij,k|(Cmax,∑
Cj, or

∑
Tj) where Fm defines that the machine environment is a flowshop with m

machines and prmu (permutation) means that the jobs are processed in the same order
by all the machines.

2.3.1 Mixed integer linear programming model

We extended the MILP model of Pan e Ruiz (2014) in order to consider the
sequence dependent setup times for the regular machines (Mi /∈M ′). The decision variable
is defined by Xj,k, where Xj,k = 1 if jobs Jj is the kth job of the sequence π and Xj,k = 0
otherwise. The relation between the adjacent jobs is controlled by the decision variable
Yj,k,l, as Yl,k,j = 1 if job Jj is in position k in the sequence and is immediately preceded by
Jl; otherwise, it equals zero (∀l, j ∈ {1, . . . , n}, ∀k ∈ {2, . . . , n}). The decision variables
are detailed below:

Xj,k =

1 if Jj is in position k in the sequence

0 otherwise

Yl,k,j =

1 if Jj is in position k in the sequence and

is preceded by Jl, j 6= l

0 otherwise

The mixed integer programming model is provided as follows. The objective function,
Z, is defined in (2.1) and minimises the makespan, total flowtime or the total tardiness.
The set (2.2) and (2.3) state that each job is attributed to one position and vice-versa.
Constraints (2.4) and (2.5) ensures that each job precedes only one job and follows exactly
one job, and these two jobs are not the same. Constraint (2.6) ensures that there is no
precedence for the job in the first position of the sequence, as when k = 1 no job precedes
Jj, therefore Yl,1,j = 0 (∀l, j ∈ {1, . . . , n}). Constraint (2.7) establish that the completion

41

time of the job in the first position is greater than or equal to its processing time in the
first machine. Constraint (2.8) ensures that a job cannot be processed on a machine before
its completion on the preceding machine. In constraints (2.9) and (2.10) the job completion
time is equal to the completion time of the previous job plus the processing time if the
machine is no-idle. For regular machines, the completion time is greater than or equal to
the previous job plus the processing time and setup time between the jobs. Constraints
(2.11), (2.12) and (2.13) give the domains of the variables.

Minimize Z =

Cm,n for the makespan criterion∑n
j=1 Cm,j for the total flowtime criterion∑n
j=1 Tj = max(Cm,j − dj, 0) for the total tardiness criterion

(2.1)

Subject to:
n∑
k=1

Xj,k = 1, ∀j ∈ {1, . . . , n} (2.2)

n∑
j=1

Xj,k = 1, ∀k ∈ {1, . . . , n} (2.3)

Xj,k =
n∑
l=1

Yl,k,j, ∀j ∈ {1, . . . , n} ∀k ∈ {2, . . . , n} (2.4)

Xj,k =
n∑
l=1

Yj,k+1,l, ∀j ∈ {1, . . . , n} ∀k ∈ {1, . . . , n− 1} (2.5)

Yl,1,j = 0, ∀j, l ∈ {1, . . . , n} (2.6)

C1,k ≥
n∑
j=1

Xj,k · p1,j, ∀k ∈ {1, . . . , n} (2.7)

Ci,k ≥ Ci−1,k +
n∑
j=1

Xj,k · pi,j ∀k ∈ {1, . . . , n}, ∀i ∈ {2, . . . ,m} (2.8)

Ci,k = Ci,k−1 +
n∑
j=1

Xj,k · pi,j, ∀i ∈M ′, ∀k ∈ {2, . . . , n} (2.9)

Ci,k ≥ Ci,k−1 +
n∑
j=1

Xj,k · pi,j +
n∑
j=1

n∑
l=1

Yl,k,j · sil,j, ∀i /∈M ′, ∀k ∈ {2, . . . , n} (2.10)

Ci,k ≥ 0 ∀k ∈ {1, . . . , n}, ∀i ∈ {1, . . . ,m} (2.11)
Xi,k ∈ {0, 1} ∀k ∈ {1, . . . , n}, ∀i ∈ {1, . . . ,m} (2.12)
Yl,k,j ∈ {0, 1} ∀j, k, l ∈ {1, . . . , n} (2.13)

According to Pan e Ruiz (2014), the mixed no-idle PFSP is NP-Hard in the strong
sense. Therefore, as our problem is a special case of the mixed no-idle PFSP where setup
times are considered in the regular machines, the new problem studied in this work in also
NP-Hard.

42

2.3.2 Makespan, total flowtime and total tardiness calculation

As the mixed no-idle PFSP with sequence-dependent setup times has not yet been
studied in the literature, we present a method to evaluate the makespan of a permutation
sequence. Supposing a sequence π = {π1, π2, . . . , πl−1, πl, . . . , πn} where πl (l = {1, . . . , n})
represents a job in position l of sequence π. To simplify the expressions, the notation
[l] denotes the job in the position l of sequence π, i.e. πl = [l]. Si,[l] and Ci,[l] denote the
earliest start and completion time of job [l] in machine Mi, respectively. The Cmax (π) can
be obtained adopting the following steps.

Step (1): In order to simplify the calculations, consider that the setup time is equal
to zero between the jobs Jj and Jk ∀j, k ∈ J, j 6= k in a no-idle machine Mi ∈M ′.

sij,k = 0 ∀j, k ∈ J, j 6= k if Mi ∈M ′ (2.14)

Step (2): The earliest start and completion times for the machines Mi (∀i =
{1, . . . ,m}) can be calculated as follows:

Step (2.1): For the jobs (l = {1, . . . , n}), calculate the earliest start and completion
times in machine Mi without considering if the machine is no-idle.

C0,[l] = 0 (2.15)
Si,[1] = Ci−1,[1] (2.16)
Ci,[1] = Si,[1] + pi,[1] (2.17)
Si,[l] = max

(
Ci,[l−1] + si[l−1],[l], Ci−1,[l]

)
(2.18)

Ci,[l] = Si,[l] + pi,[l] (2.19)

Step (2.2): The completion time values are recalculated to l = {n− 1, . . . , 1}, now
considering if machine Mi allows or not idleness among the jobs.

Ci,[l] =

Ci,[l] + max
(
Ci,[l+1] − pi,[l+1] − Ci,[l], 0

)
if machine Mi ∈M ′

Ci,[l] otherwise
(2.20)

Step (2.3): If i = m, then calculate the objective function, otherwise return to Step
(2.1) and consider the next machine Mi+1.

• If the objective is to minimize the makespan, Cmax (π) = Cm,[n];

• If the objective is to minimize the total flowtime, ∑Cj,
∑n
j=1 Cm,j;

• If the objective is to minimize the total tardiness, ∑Tj,
∑n
j=1 max(Cm,j − dj, 0).

Steps (2.1) and (2.2) are iterated for m machines and have worst case complexity
of O(n). As a result, the makespan evaluation procedure has worst case complexity of
O(nm).

43

2.3.3 Acceleration method to calculate the makespan for the insertion neighbourhood

The insertion neighbourhood is extensively used in the PFSP (RUIZ; VALLADA;
FERNÁNDEZ-MARTÍNEZ, 2009; RUIZ; STÜTZLE, 2007; RAD; RUIZ; BOROOJER-
DIAN, 2009). The insertion neighbourhood in a π sequence with n jobs is the result of
movements of inserting the jobs into the sequence. An insertion movement consists of
removing job πj from the sequence, and then πj is reinserted into all positions of π, except
for its original position.

The insertion neighbourhood is generated by applying this insertion movement to
each job in the sequence. The first to propose acceleration methods for insertion neighbour-
hood was Taillard (1990) for the PFSP with makespan criterion. Since then, acceleration
methods have been extensively used in the literature (RAD; RUIZ; BOROOJERDIAN,
2009; FERNANDEZ-VIAGAS; FRAMINAN, 2014; ROSSI; NAGANO; NETO, 2016), even
for other variations of the problem (PAN; WANG, 2008b; PAN; WANG, 2008a; RUIZ; VAL-
LADA; FERNÁNDEZ-MARTÍNEZ, 2009; RIBAS; COMPANYS; TORT-MARTORELL,
2010; TASGETIREN et al., 2013a; INCE et al., 2016; NAGANO; ROSSI; TOMAZELLA,
2017; PAGNOZZI; STÜTZLE, 2017).

Pan e Ruiz (2014) explained and demonstrated an acceleration method to evaluate
the makespan of an insertion neighbourhood for the mixed no-idle PFSP. We extended
the acceleration procedure for the variant discussed in this study, the mixed no-idle PFSP
with a sequence dependent setup.

The speed-up procedure described below can be used to evaluate the makespan of
an insertion neighbourhood. S ′i,j and C ′i,j, denote the start and completion time for the
job Jj in the machine Mi calculated backwards.

Step (1): Considering a partial sequence π = {π1, . . . , πn−1}. Calculate the earliest
start and completion time for sequence π in machines Mi (i = 1, . . . ,m), Si,j and Ci,j

(j = {1, . . . , n− 1}) (Section 2.3.2).

Step (2): Calculate the earliest start and completion time backwards in the sequence
π in machines Mi (i = {m, . . . , 1}), S ′i,j and C ′i,j (j = {n− 1, . . . , 1}) (Section 2.3.2).

Step (3): For all the positions in the sequence π (l = {1, . . . , n}), go through the
following steps: Step (3.1): Insert job Jk in position l of π, resulting in the complete
sequence π = {π1, . . . , πk−1, Jk, πk+1, . . . , πn−1}.

Step (3.2): Calculate the earliest completion time of job Jk in machine Mi, denoted
by Ci,[k] using Expressions (2.21)-(2.24). The delay at the beginning of processing the jobs
in machine Mi, so that there is no idleness, is defined by ai.

44

{
sij,k = 0 ∀j, k ∈ J, j 6= k if Mi ∈M ′ (2.21)S1,[k] = C1,[k−1] + s1

[k−1],[k]

C1,[k] = S1,[k] + p1,[k]

(2.22)

S2,[k] = max(C2,[k−1] + s2
[k−1],[k], C1,[k])

C2,[k] = S2,[k] + p2,[k]

a2 =

max(C1,[k] − C2,[k−1], 0) if Mi ∈M ′

0 otherwise

(2.23)

Si,[k] = max(Ci,[k−1] + ai−1 + si[k−1],[k], Ci−1,[k])

Ci,[k] = Si,[k] + pi,[k]

ai = ai−1 +

max(Ci−1,[k] − (Ci,[k−1] + ai−1), 0) if Mi ∈M ′

0 otherwise

∀i = {3, . . . ,m}

(2.24)

Expression (2.21) defines that the setup times are non-existent in the no-idle
machines. Expression (2.22) calculates the starting and completion times for the job in
position k in the first machine is calculated. Expression (2.23) calculates the start and
completion for the second machine, and max(C1,[k] − C2,[k−1], 0) defines the right shift
delay in the start time for the job in position k if it is a no-idle machine. Expression
(2.24) calculates the start and completion time is calculated for the other machines, and
max(Ci−1,[k] − (Ci,[k−1] + ai−1), 0) is the shift delay.

Step (3.3): The makespan (Cmax) of the complete sequence π = {π1, . . . , πk−1, πk,
πk+1, . . . , πn−1} can be calculated by Expressions (2.25)-(2.29).

45

{
sij,k = 0 ∀j, k ∈ J, j 6= k if Mi ∈M ′ (2.25){
L1 = C1,[k] + C ′1,[k+1] + s1

[k],[k+1] (2.26)

L2 = C2,[k] + C ′2,[k+1] + s2
[k],[k+1]

L = max (L1, L2)

a2 =

max (L− L2, 0) if M2 ∈M ′

0 otherwise

(2.27)

Li = Ci,[k] + ai−1 + C ′i,[k+1] + si[k],[k+1]

L = max (L,Li)

ai = ai−1 +

max (L− Li, 0) if Mi ∈M ′

0 otherwise

∀i = {3, . . . ,m}

(2.28)

Cmax = L (2.29)

Expression (2.26) defines L1 as the sum of the earliest completion time calculated
backwards, Step (2), and forward, Step (3), in the first machine with the setup time
between position k and k + 1 in the first machine. In set (2.27)-(2.28), the value of Li is
calculated for the other machines. Expression (2.29) define the makespan for the sequence.
Note that the makespan (Cmax)is the maximum value of Li (∀i = {1, . . . ,m}).

Steps (1) and (2) are followed only once for each insertion of job Jk at the n
positions of the π sequence and the complexity is O (nm). Steps (3.2) and (3.3) have
complexity O(m) and are within the iteration of the step (3) which is carried out n times
(l = {1, . . . , n}). Therefore, evaluating the Cmax of the insertion of Jk in all the n positions
of sequence π results in complexity O(nm). If the evaluation method described in Section
2.3.2 was used, the same insertion procedure would have a complexity O(n2m).

2.3.4 Acceleration method to calculate the total flowtime or the total tardiness

Pan e Ruiz (2014) proposed an acceleration method to evaluate the makespan in
an insertion neighbourhood of the mixed no-idle flowshop problem. In the previous section,
this acceleration method was adpated for the problem under consideration with makespan
criterion. However, a problem arises when adapting the proposed method directly to the
mixed no-idle problem with total flowtime or total tardiness criteria as this method can
only determine the completion time of the last job in the machines. Furthermore, the
method does not take into consideration the existence of setup times between the jobs.

46

Considering that in order to evaluate the total flowtime we need to know the completion
time of all jobs, and not only the last one, and also considering that there is a setup time
between the jobs, it is not possible to directly adapt the acceleration method. However,
a partial acceleration method can be developed for the insertion neighbourhood can be
proposed considering the following:

The completion time of all jobs in no-idle machine Mi can be determined if the
completion time of the last job in machine Mi (Ci,[n]) and the processing times of the jobs
in the same machine (pi,j) are known.

Considering I ik,j as the idle time between jobs Jj and Jk in the regular machine Mi

(allows idle times), the completion time of the job in the last position in machine Mi is:

Ci,[n] = Ci,[n−1] + I i[n−1],[n] + pi,[n] (2.30)

On the other hand, if Mi is a no-idle machine, then I i[n−1],[n] = 0, which results in:

Ci,[n] = Ci,[n−1] + pi,[n] (2.31)

Otherwise:

Ci,[n−1] = Ci,[n] − pi,[n] (2.32)
Ci,[n−2] = Ci,[n] − pi,[n] − pi,[n−1]

Ci,[j] = Ci,[n] −
n∑

k=j+1
pi,[k]

Supposing that Mh (1 ≤ h ≤ m) is the last no-idle machine of the flowshop,
we can apply an acceleration mechanism adapted from Pan e Ruiz (2014) to calculate
the completion time of the last job in Mh, which is denoted as Ch,[n]. Then, calculate
recursively the completion times for the remaining jobs. For machines Mh+1, Mh+2, . . . ,

Mm the procedure of regular calculation (Subsection 2.3.2) can be used to calculate the
completion times of the jobs in the last machine Mm.

The procedure below describes the step-by-step procedure of the acceleration
method.

Step (1): Considering an incomplete sequence π = {π1, . . . , πn−1}, and that Mh is
the last no-idle machine of the flowshop. Calculate the start and completion time from
front to back (Si,j and Ci,j, respectively) in π in machines Mi (i = 1, ..., h) using the
procedure explained at Subsection 2.3.2 for j = 1, . . . , n− 1.

Step (2): Calculate the start and completion times from back to front for sequence
π in machines Mi (i = h, . . . , 1), S ′i,j and C ′i,j (j = n− 1, . . . , 1) (Subsection 2.3.2).

Step (3): For all positions of the sequence π (l = 1, . . . , n), go through the following
steps:

47

Step (3.1): Insert job Jk in position l of the sequence π, resulting in π = {π1, . . . , πk−1, Jk,

πk+1, . . . , πn−1}.

Step (3.2): Calculate the completion time of job Jk in machine Mi, Ci,[k]. The delay
for starting processing the jobs is denoted by ai.

{
sij,k = 0 ∀j, k ∈ J, j 6= k if Mi ∈M ′ (2.33)S1,[k] = C1,[k−1] + s1

[k−1],[k]

C1,[k] = S1,[k] + p1,[k]

(2.34)

S2,[k] = max(C1,[k−1] + s1
[k−1],[k], C1,[k])

C2,[k] = S2,[k] + p1,[k]

a2 =

max(C1,[k] − C2,[k−1], 0) if Mi ∈M ′

0 otherwise

(2.35)

Si,[k] = max(Ci,[k−1] + ai−1 + si[k−1],[k], Ci−1,[k])

Ci,[k] = Si,[k] + pi,[k]

ai = ai−1 +

max(Ci−1,[k] − (Ci,[k−1] + ai−1), 0) if Mi ∈M ′

0 otherwise

i = 3, ..., h

(2.36)

Step (3.3): Obtain the completion time of the last job in machine Mh, Ch,[n], of the
complete sequence π = {π1, . . . , πk−1, πk, πk+1, . . . , πn}, through the expressions below.

48

{
sij,k = 0 ∀j, k ∈ J, j 6= k if Mi ∈M ′ (2.37){
L1 = C1,[k] + C ′1,[k+1] + s1

[k],[k+1] (2.38)

L2 = C2,[k] + C ′2,[k+1] + s2
[k],[k+1]

L = max (L1, L2)

a2 =

max (L− L2, 0) if M2 ∈M ′

0 otherwise

(2.39)

Li = Ci,[k] + ai−1 + C ′i,[k+1] + si[k],[k+1]

L = max (L,Li)

ai = ai−1 +

max (L− Li, 0) if Mi ∈M ′

0 otherwise

i = 3, ..., h

(2.40)

Ch,[n] = L (2.41)

Step (4): Calculate the completion time of jobs (j = n− 1, . . . , 1) in the last no-idle
machine Mh.

Ch,[j] = Ch,[n] −
n∑

k=j+1
ph,[k] (2.42)

Step (5): Use the regular calculation method (Subsection 2.3.2) to determine the
completion time for the remaining machines (i = h+ 1, . . . ,m) and the total flowtime of
the sequence, ∑n

j=1 Cm,j or the total tardiness, ∑n
j=1 Tj = max(Cm,j − dj, 0).

Steps (1) and (2) have complexity O (nh) and are carried out only once for each
insertion of job Jk at the n positions of the sequence. Steps (3.2) and (3.3) have complexity
O(h) and are within the iteration of Step (3) which is carried out n times. Step (4) has
complexity O(n) and is carried out only once. Step (5) has the complexity of the regular
evaluation method of O(n2(m− h)), except for the fact that it is carried out in the last
m− h machines. Therefore, to evaluate the total flowtime of the job insertion of Jk in all
n positions of the sequence π results in complexity O(nh + n2h). Thus, the complexity
of the method will vary from case to case. If the no-idle machine Mh is the last machine
of the Mm system, i.e., h = m, the complexity will be the best possible O(nm). In the
worst case, if the last no-idle machine Mh is the first machine M1, h = 1, steps (1-4) of
the acceleration method will not be used, resulting in the same complexity of the regular
evaluation method, i.e. O(n2m).

49

In the next chapters, the mixed no-idle PFSP with setup times will be studied
under different criteria. The following objective functions will be addressed: makespan,
total flowtime and total tardiness.

51

3 THE MIXED NO-IDLE PFSP WITH SETUP TIMES AND MAKESPAN
MIMIZATION

The makespan criterion has attracted the attention in the last decades (ROSSI;
NAGANO; NETO, 2016). This is mainly due to the importance that companies give
to maximize the utilization of the resources, which is possible when the makespan of
a processing sequence is minimized (MACCARTHY; LIU, 1993). To achieve this goal,
algorithms are used to generate good solutions in an efficient way.

Recently, constructive heuristics have shown state-of-the-art performance for the
PFSP where the aim is to minimize the makespan (RAD; RUIZ; BOROOJERDIAN, 2009;
RIBAS; COMPANYS; TORT-MARTORELL, 2010; FERNANDEZ-VIAGAS; FRAMI-
NAN, 2014; ROSSI; NAGANO; NETO, 2016; FERNANDEZ-VIAGAS; RUIZ; FRAM-
INAN, 2017). Some of these constructive heuristics were successfully modified for the
no-idle and setup time problems with great success (RUIZ; VALLADA; FERNÁNDEZ-
MARTÍNEZ, 2009; VANCHIPURA; SRIDHARAN; BABU, 2014). Constructive methods
are often used as a solution method, as they provide good solutions in a simple and
efficient way. Furthermore, since metaheuristics require a procedure that generates initial
quality solutions quickly, constructive heuristics are usually used to initiate metaheuristics
(FERNANDEZ-VIAGAS; LEISTEN; FRAMINAN, 2016). Most of the constructive heuris-
tics are based on the NEH of Nawaz, Enscore e Ham (1983) and apply the acceleration
method from Taillard (1990) in order to efficiently evaluate the makespan and, conse-
quently, reduce the computational complexity. Due to the aforementioned reasons, this
work focuses on the proposal of a constructive heuristic for the mixed no-idle PFSP with
sequence dependent setup times. In order to increase the efficiency of our proposed method,
an acceleration procedure for calculating the makespan of a permutation sequence in the
insertion neighbourhood is provided in detail. Moreover, a straightforward and general
method to calculate the makespan for the problem is presented. As this problem has not
yet been studied in the literature, the main constructive heuristics of the no-idle PFSP
and PFSP with sequence dependent setup times were adapted aiming to provide a basis
for comparison for the proposed method. Two extensive benchmarks were generated with
the objective of comparing the implemented constructive methods using computational
and statistical experiments. The results show that the proposed method outperforms the
methods adapted from the literature.

This chapter is organised as follows. Section 3.1 presents an extensive literature
review of the no-idle PFSP and PFSP with sequence dependent setup times. Section 3.2
proposes the new constructive heuristic. In Section 3.3, the computational and statistical
experiments among the constructive heuristics are compared. Finally, Section 3.4 draws
the main conclusions of this study.

52

3.1 Literature review

As the mixed no-idle PFSP with sequence dependent setup times has not yet been
studied in the literature, a review was carried out covering papers addressing the no-idle
PFSP with makespan (Cmax) minimization and the PFSP with a sequence dependent
flowshop for the makespan criterion.

3.1.1 The no-idle PFSP

Vachajitpan (1982) was the first to study the no-idle PFSP with makespan min-
imization, also known as Fm|prmu, no − idle|Cmax. In his work, a mixed-integer linear
programming (MILP) model and a Branch-and-Bound (B&B) method were proposed.
Woollam (1986) was the first to develop heuristics for the problem. Baptiste e Hguny
(1997) proposed a B&B method. The authors also proved that the problem is NP-Hard.
Bagga (2003), Saadani, Guinet e Moalla (2003) and Kamburowski (2004) studied the three-
machine problem, F3|prmu, no− idle|Cmax. Bagga (2003) presented an MILP model and
a B&B procedure for the problem. Saadani, Guinet e Moalla (2003) developed heuristics
and a lower bound based on the Johnson (1954) rule. Furthermore, Kamburowski (2004)
proposed a representation in the form of networks and presented some paradoxes by which
the reduction of processing times can increase the makespan and vice-versa.

Saadani, Guinet e Moalla (2005) proposed a heuristic based on the Traveling
Salesman Problem (TSP) for the Fm|prmu, no − idle|Cmax problem. In another paper
Narain e Bagga (2005b) presented four variants of the Fm|prmu, no− idle|Cmax problem
with dominant machines.

Kalczynski e Kamburowski (2005) proposed a heuristic based on the Johnson (1954)
rule. Later, the same authors, Kalczynski e Kamburowski (2007a) presented some relations
between the Fm|prmu, no− idle|Cmax e Fm|prmu, no− wait|Cmax problems.

Baraz e Mosheiov (2008) developed a heuristic comprising two phases, which
outperformed the method proposed by Saadani, Guinet e Moalla (2005). In the first stage,
all unscheduled jobs are tested in the last position of a partial sequence, and the job
resulting in the lowest makespan is attached to the sequence. The first phase is completed
when all the n jobs are scheduled. In the second phase, a pairwise job interchange procedure
is performed, where all possible pairs of jobs are tested, and only those interchanges that
reduce the makespan value are performed.

Pan e Wang (2008b) presented a hybrid discrete particle swarm algorithm (HDPSO).
An acceleration mechanism (based on the method proposed by Taillard (1990) was also
demonstrated to calculate the makespan for the insertion neighbourhood. The proposed
algorithm was compared with the heuristics from Kalczynski e Kamburowski (2005),
Baraz e Mosheiov (2008) and Tasgetiren et al. (2007) in the Taillard benchmark Taillard

53

(1993). The HDPSO method presented significantly better solutions in an acceptable
computational time.

Pan e Wang (2008a) developed a discrete differential evolution algorithm (DDE)
for the Fm|prmu, no− idle|Cmax problem. The DDELS algorithm was compared to the
methods proposed by Kalczynski e Kamburowski (2005) and Baraz e Mosheiov (2008).

Ruiz, Vallada e Fernández-Martínez (2009) carried out an extensive literature review
involving the no-idle PFSP. The authors also presented heuristics and an Iterated Greedy
(IG) algorithm based on the work of Ruiz e Stützle (2007). Among the proposed heuristics,
the authors highlighted the FRB3 heuristic adapted from Rad, Ruiz e Boroojerdian (2009),
as well as the GH-BM2. The GH-BM2 is a modification of the heuristic from Baraz
e Mosheiov (2008), where the first phase is substituted by an adaptation of the NEH
heuristic, and in the second phase, an insertion neighbourhood is performed instead of the
pairwise interchange procedure. The proposed heuristics were compared with the methods
by Kalczynski e Kamburowski (2005) and Baraz e Mosheiov (2008). The IG algorithm
significantly outperformed the DDE and HDPSO algorithms from Pan e Wang (2008a)
and Pan e Wang (2008b) and FRB5 from Rad, Ruiz e Boroojerdian (2009).

Goncharov e Sevastyanov (2009) presented an approximation algorithm with com-
plexity O(n2m2) ensuring a theoretical performance. The authors proved that given an
instance of the flowshop problem with no-idle constraints, m machines and n jobs, a
permutation schedule π can be constructed in O(n2m2) time with absolute guarantee that:

Cmax(π)− C∗max ≤ Cmax(π)−B ≤ ((m− 1)2 + 1)pmax

B =
m−1∑
i=1

(li − li+1)+ + lm

li =
n∑
j=1

pi,j

where Cmax(π) is the makespan of the permutation π, C∗max is the optimum makespan, B
is the lower bound on the optimum makespan, li is the machine load, pi,j is the processing
time of the job Jj on machine Mi, pmax denotes the maximum processing time considering
all jobs and machines (pmax = maxi,j pi,j).

Deng e Gu (2012) developed the Hybrid Discrete Differential Evolution (HDDE)
algorithm and an acceleration method. Based on an extensive comparison, it was concluded
that the HDDE algorithm performs better than the IG method Rad, Ruiz e Boroojerdian
(2009), HDPSO Pan e Wang (2008b) and DDELS Pan e Wang (2008a).

Tasgetiren et al. (2013b) presented an IG algorithm variable, called vIG-DE. The
Iterated Greedy (IG) algorithms proposed by Ruiz e Stützle (2007) and Framinan e
Leisten (2008) were also reimplemented. The vIG-DE algorithm outperformed the DDE
and HDPSO metaheuristics from Pan e Wang (2008a) and Pan e Wang (2008b) and the

54

HDDE from Deng e Gu (2012).

An Invasive Weed Optimisation algorithm (IWO) was proposed by Zhou, Chen e
Zhou (2014). The method outperformed the PSOvns metaheuristics from Tasgetiren et
al. (2007) and HDPSO from Pan e Wang (2008b), and the constructive methods from
Kalczynski e Kamburowski (2005) and Baraz e Mosheiov (2008).

Shao, Pi e Shao (2017) proposed a memetic algorithm with a hybrid node and
edge histogram (MANEH) and outperformed the algorithms from Pan e Wang (2008b),
Pan e Wang (2008a), Ruiz, Vallada e Fernández-Martínez (2009), Deng e Gu (2012) and
Tasgetiren et al. (2013b) in Ruiz, Vallada e Fernández-Martínez (2009) benchmark.

As stated early, another important variant of the no-idle problem recently studied
by Pan e Ruiz (2014) is the mixed no-idle flowshop problem with makespan criterion. The
authors presented an MILP model and an IG algorithm. The IG algorithm was compared
to the HDPSO algorithms from Pan e Wang (2008b), DDE from Pan e Wang (2008a),
HDDE from Deng e Gu (2012) and the HGA from Ruiz, Maroto e Alcaraz (2006). Based
on extensive statistical and computational comparisons, it was demonstrated that the
proposed IG is statistically better than all the other compared methods.

Despite the significant number of papers addressing the no-idle PFSP problem, the
consideration of setup times has not yet been studied in the literature. Table 2 presents a
summary of the algorithms proposed for the mixed no-idle PFSP with makespan. In fact,
the existence of setup times is incompatible with a pure no-idle environment, since the
machines require uninterrupted processing from the moment program processing starts.
However, in a mixed no-idle environment Pan e Ruiz (2014), it is possible to have setup
times in the productive stages in which machine standstill is allowed.

55

Ta
bl
e
2:

Su
m
m
ar
y
of

wo
rk
s
ad

dr
es
sin

g
th
e
no

-id
le

PF
SP

.
Ye

ar
R
ef
er
en

ce
N
M

a
A
lg
or
ith

m
(n

ot
at

io
n)

O
ut
pe

rf
or
m
ed

by
19

82
Va

ch
aj
itp

an
(1
98

2)
m

M
IL
P,

B
&
B

19
86

W
oo

lla
m

(1
98

6)
m

C
H

(C
A

M
P2

,N
AW

A
Z
)

19
97

B
ap

tis
te

e
H
gu

ny
(1
99

7)
m

B
&
B

20
03

B
ag

ga
(2
00

3)
3

M
IL
P,

B
&
B

20
03

Sa
ad

an
i,
G
ui
ne

t
e
M
oa

lla
(2
00

3)
3

C
H

(H
)

20
05

Sa
ad

an
i,
G
ui
ne

t
e
M
oa

lla
(2
00

5)
m

C
H

B
ar
az

e
M
os
he

io
v
(2
00

8)
;

R
ui
z,

Va
lla

da
e
Fe

rn
án

de
z-
M
ar
tín

ez
(2
00

9)
20

05
K
al
cz
yn

sk
ie

K
am

bu
ro
w
sk
i(
20

05
)

m
C
H

(K
K
)

Pa
n
e
W
an

g
(2
00

8a
);

R
ui
z,

Va
lla

da
e
Fe

rn
án

de
z-
M
ar
tín

ez
(2
00

9)
;

Zh
ou

,C
he

n
e
Zh

ou
(2
01

4)
20

08
B
ar
az

e
M
os
he

io
v
(2
00

8)
m

C
H

(I
m

pr
ov

ed
G

re
ed

y
-

IG
a)

R
ui
z,

Va
lla

da
e
Fe

rn
án

de
z-
M
ar
tín

ez
(2
00

9)
;

Zh
ou

,C
he

n
e
Zh

ou
(2
01

4)
20

08
Pa

n
e
W
an

g
(2
00

8b
)

m
H
yb

rid
PS

O
(H

D
PS

O
)

R
ui
z,

Va
lla

da
e
Fe

rn
án

de
z-
M
ar
tín

ez
(2
00

9)
;

D
en

g
e
G
u
(2
01

2)
;

Ta
sg
et
ire

n
et

al
.(
20

13
b)
;

Zh
ou

,C
he

n
e
Zh

ou
(2
01

4)
;

Sh
ao

,P
ie

Sh
ao

(2
01

7)
20

08
Pa

n
e
W
an

g
(2
00

8a
)

m
D
E

(D
D

E
)

R
ui
z,

Va
lla

da
e
Fe

rn
án

de
z-
M
ar
tín

ez
(2
00

9)
;

D
en

g
e
G
u
(2
01

2)
;

Ta
sg
et
ire

n
et

al
.(
20

13
b)
;Z

ho
u,

C
he

n
e
Zh

ou
(2
01

4)
;

Sh
ao

,P
ie

Sh
ao

(2
01

7)
20

09
R
ui
z,

Va
lla

da
e
Fe

rn
án

de
z-
M
ar
tín

ez
(2
00

9)
m

C
H

(G
H

-B
M

2,
FR

B
3,

FR
B

4)
D
en

g
e
G
u
(2
01

2)
;T

as
ge
tir

en
et

al
.(

20
13

b)
;

IG
(I

G
LS
)

Sh
ao

,P
ie

Sh
ao

(2
01

7)
20

09
G
on

ch
ar
ov

e
Se

va
st
ya

no
v
(2
00

9)
m

A
A

20
12

D
en

g
e
G
u
(2
01

2)
m

H
yb

rid
D
E

(H
D

D
E
)

Ta
sg
et
ire

n
et

al
.(

20
13

b)
;Z

ho
u,

C
he

n
e
Zh

ou
(2
01

4)
;

Sh
ao

,P
ie

Sh
ao

(2
01

7)
20

13
Ta

sg
et
ire

n
et

al
.(
20

13
b)

m
IG

w
ith

D
E

(v
IG

-D
E
)

Sh
ao

,P
ie

Sh
ao

(2
01

7)
20

14
Zh

ou
,C

he
n
e
Zh

ou
(2
01

4)
m

IW
O

(I
W

O
)

20
17

Sh
ao

,P
ie

Sh
ao

(2
01

7)
m

M
E

(M
A

N
EH

)

N
ot
at
io
n:

M
IL
P,

M
ix
ed

-in
te
ge
r
Li
ne

ar
Pr

og
ra
m
m
in
g
m
od

el
;B

&
B
,B

ra
nc
h-
an

d-
B
ou

nd
;C

H
,C

on
st
ru
ct
iv
e
H
eu

ris
tic

;P
SO

,P
ar
tic

le
Sw

ar
m

O
pt
im

iz
at
io
n
A
lg
or
ith

m
s;

D
E,

D
iff
er
en
tia

lE
vo
lu
tio

n
A
lg
or
ith

m
;I
G
,I
te
ra
te
d
G
re
ed
y
A
lg
or
ith

m
;A

A
,A

pp
ro
xi
m
at
e
A
lg
or
ith

m
s;

IW
O
,I
nv
as
iv
e
W
ee
d

O
pt
im

iz
at
io
n
A
lg
or
ith

m
;M

E,
M
em

et
ic

A
lg
or
ith

m
.

a
N
um

be
r
of

m
ac
hi
ne

s.
b
A
lso

kn
ow

n
as

G
H
-B

M
in

R
ui
z,

Va
lla

da
e
Fe

rn
án

de
z-
M
ar
tín

ez
(2
00

9)
.

56

3.1.2 The PFSP with sequence dependent setup times

Corwin e Esogbue (1974) were one of the first to address the PFSP with sequence
dependent setup times. The authors proposed a dynamic programming formulation for the
two-machine problem (F2|prmu, sij,k|Cmax) where the setup times are sequence dependent
on the first machine and sequence-independent on the second machine. For the same
problem, Uskup e Smith (1975) developed a B&B algorithm. Considering the two-machine
problem, Gupta e Darrow (1986) presented approximate algorithms. The experimental
results concluded that the proposed algorithms presented good solutions when compared
to the optimal solution for the problems.

Various exact methods were proposed for the m machine problem, Fm|prmu,
sij,k|Cmax. Srikar e Ghosh (1986) developed an MILP model. Stafford Jr e Tseng (1990)
improved the MILP from Srikar e Ghosh (1986) with three new MILP models. B&B and
Branch-and-Cut (B&C) algorithms were proposed by Ríos-Mercado e Bard (1998a) and
Ríos-Mercado e Bard (1999). Stafford Jr e Tseng (2002) developed two MILP models,
which are based on the work of Tseng e Stafford Jr (2001). Ríos-Mercado e Bard (2003) also
formulated two MILP models. The first is related to the Asymmetric Traveling Salesman
Problem (ATSP). The second is derived from a model proposed by Srikar e Ghosh (1986).
The two models were compared using a branch-and-cut algorithm, which showed that the
approach related to the ATSP was outperformed in terms of the computational time.

Simons Jr (1992) were the first to propose heuristics for the flowshop sequence
dependent setup times. Two heuristics were presented, TOTAL and SETUP, for the Fm|
prmu, sij,k|Cmax. In the case of TOTAL, a distance matrix between pairs of jobs is obtained
considering the sum of the processing times of the jobs and the setup times in all the
machines, whereas in the SETUP only the setup times are considered. The heuristics
outperformed the MINCOT and MINIT methods adapted from (GUPTA, 1972).

Das, Gupta e Khumawala (1995) presented a savings index heuristic algorithm,
denoted as SI, to find a minimum or approximately minimum makespan of a sequence.
Using the same approach, Tseng, Gupta e Stafford Jr (2006) developed a penalty-based
heuristic algorithm to find an approximate minimum makespan schedule. The method was
compared to the work of Das, Gupta e Khumawala (1995) and showed better results.

Ríos-Mercado e Bard (1998b) proposed a greedy randomized adaptive search proce-
dure (GRASP) based on insertion movements and an adaptation of the NEH constructive
heuristic of Nawaz, Enscore e Ham (1983), called NEHT-RB, for the Fm|prmu, sij,k|Cmax.
The NEHT-RB also used the Taillard (1990) makespan acceleration in the construction
phase of the NEH heuristic. The NEHT-RB and GRASP methods presented better results
than the SETUP Simons Jr (1992), although the GRASP is considerably slower than both
methods. Later on, Ríos-Mercado et al. (1999) proposed an improvement of the GRASP

57

denoted as HYBRID.

Ruiz, Maroto e Alcaraz (2005) proposed two Genetic Algorithms (GA), and showed
that the obtained results outperform the methods from the literature NEHT-RB of Ríos-
Mercado e Bard (1998b), GRASP of Ríos-Mercado et al. (1999), SETUP and TOTAL of
(Simons Jr, 1992) and SI of Das, Gupta e Khumawala (1995). The methods were compared
in an extensive benchmark based on the instances of Taillard (1993).

Gajpal, Rajendran e Ziegler (2006) developed an Ant Colony algorithm, which
obtained better results, as compared to those solutions given by the ant colony algorithm
of Stützle (1997), called the MMAS (Max-Min Ant System), and the GRASP heuristic
from Ríos-Mercado e Bard (1998b).

Ruiz e Stützle (2008) presented two Iterated Greedy algorithms (IG) for the
Fm|prmu, sij,k|Cmax. The methods performed better than those of Ruiz, Maroto e Alcaraz
(2005) in the benchmark proposed by Ruiz, Maroto e Alcaraz (2005).

Vanchipura e Sridharan (2013) proposed a constructive heuristic, denoted as FJSRA
(Fictitious Job Setup Ranking Algorithm), for the Fm|prmu, sij,k|Cmax. The heuristic is
based on the formation of fictional jobs and the construction of the final sequence using
these fictitious jobs applying the NEHT-RB construction procedure. Initially the heuristic
calculates for each pair of jobs j and k the sum of the setup times between the jobs
(sstj,k = ∑m

i=1 s
i
j,k). Then, the pairs of jobs are ordered in non-descending order of sstj,k.

The n/2 pairs of jobs that have the smallest value of sstj,k are considered as fictitious
jobs. For each fictitious job the total processing time is calculated. Then, the heuristic
uses the NEHT-RB heuristic to construct the final sequence, inserting at each iteration
the fictitious jobs is in all the possible positions of the partial sequence and choosing the
position that minimizes the makespan. The procedure continues until n/2 fictitious jobs
have been sequenced.

In Vanchipura, Sridharan e Babu (2014), a neighbourhood search known as variable
neighbourhood descent (VND) was used to improve the FJSRA constructive heuristic.
The new method was called FJSRA-VND. The VND method uses insertion movements to
improve the solutions obtained from the FJSRA.

More recently, several metaheuristics were proposed for the Fm |prmu, sij,k| Cmax.
Mirabi (2011) proposes an Ant Colony Optimization (ACO) algorithm and showed better
results than the algorithm from Ruiz, Maroto e Alcaraz (2005). Mirabi (2014) developed a
Hybrid Genetic Algorithm (HGA) and compared it to the fuzzy algorithm adapted from
Sheibani (2010), which was originally proposed for the Fm|prmu|Cmax. Wang et al. (2014)
presented Iterated Local Search (ILS) algorithms for the Fm|prmu, sij,k|Cmax, which resulted
in better solutions when compared to the method from Ruiz e Stützle (2008). Benkalai
et al. (2017) proposed an enhanced migrating birds optimization (EMBO) metaheuristic

58

and the results were compared to their MBO from their previous work (BENKALAI et
al., 2016). Sioud e Gagné (2018) also presented a migrating birds optimization (MBO)
metaheuristic and compared the results with the FJSRA-VND method proposed by
Vanchipura, Sridharan e Babu (2014), HGA by Mirabi (2014) and the adapted algorithms
from Pan e Ruiz (2012), which was originally proposed for the Fm|prmu|

∑
Cj . The works

from Sioud e Gagné (2018) and Benkalai et al. (2017) still need to be compared.

As shown in the literature review, at the moment the no-idle and mixed no-idle
conditions have not yet been considered for the sequence dependent flowshop problem in
the literature. Although several metaheuristics were proposed for the problem, only a few
constructive heuristics were presented. The main constructive methods are the NEHT-RB,
FJSRA and FJSRA-VND. Moreover, the FJSRA and FJSRA-VND heuristics perform
better than the NEHT-RB heuristic. Table 3 shows a summary of algorithms proposed for
the problem.

59

Ta
bl
e
3:

Su
m
m
ar
y
of

wo
rk
s
ad

dr
es
sin

g
th
e
PF

SP
w
ith

se
qu

en
ce

de
pe

nd
en
t
se
tu
p
tim

es
.

Ye
ar

R
ef
er
en

ce
N
M

a
A
lg
or
ith

m
(n

ot
at

io
n)

O
ut
pe

rf
or
m
ed

by
19

74
C
or
w
in

e
Es

og
bu

e
(1
97

4)
2

D
P

19
75

U
sk
up

e
Sm

ith
(1
97

5)
2

B
&
B

19
86

G
up

ta
e
D
ar
ro
w

(1
98

6)
2

A
A

19
86

Sr
ik
ar

e
G
ho

sh
(1
98

6)
m

M
IL
P

St
aff

or
d
Jr

e
Ts

en
g
(1
99

0)
19

90
St
aff

or
d
Jr

e
Ts

en
g
(1
99

0)
m

M
IL
P

19
92

Si
m
on

s
Jr

(1
99

2)
m

C
H

(S
ET

U
P,

T
O

TA
L)

R
ui
z,

M
ar
ot
o
e
A
lc
ar
az

(2
00

5)
19

95
D
as
,G

up
ta

e
K
hu

m
aw

al
a
(1
99

5)
m

SI
R
ui
z,

M
ar
ot
o
e
A
lc
ar
az

(2
00

5)
;G

aj
pa

l,
R
aj
en

dr
an

e
Zi
eg
le
r
(2
00

6)
19

98
R
ío
s-
M
er
ca
do

e
B
ar
d
(1
99

8a
)

m
B
&
B
,B

&
C

19
98

R
ío
s-
M
er
ca
do

e
B
ar
d
(1
99

8b
)

m
C
H

(N
EH

T
-R

B
)

R
ío
s-
M
er
ca
do

et
al
.(
19

99
);
R
ui
z,

M
ar
ot
o
e
A
lc
ar
az

(2
00

5)
;

IH
(G

R
A

SP
G
aj
pa

l,
R
aj
en

dr
an

e
Zi
eg
le
r
(2
00

6)
;V

an
ch
ip
ur
a
e
Sr
id
ha

ra
n
(2
01

3)
;

Va
nc
hi
pu

ra
,S

rid
ha

ra
n
e
B
ab

u
(2
01

4)
19

99
R
ío
s-
M
er
ca
do

et
al
.(

19
99

)
m

IH
(H

Y
B

R
ID

)
19

99
R
ío
s-
M
er
ca
do

e
B
ar
d
(1
99

9)
m

B
&
B
,B

&
C

20
02

St
aff

or
d
Jr

e
Ts

en
g
(2
00

2)
m

M
IL
P

20
03

R
ío
s-
M
er
ca
do

e
B
ar
d
(2
00

3)
m

M
IL
P

20
05

R
ui
z,

M
ar
ot
o
e
A
lc
ar
az

(2
00

5)
m

H
yb

rid
G
A

(H
G

A
)

R
ui
z
e
St
üt
zl
e
(2
00

8)
;M

ira
bi

(2
01

1)
20

06
G
aj
pa

l,
R
aj
en

dr
an

e
Zi
eg
le
r
(2
00

6)
m

A
C
O

(P
A

C
A
)

20
08

R
ui
z
e
St
üt
zl
e
(2
00

8)
m

IG
(I

G
_

R
S,

IG
_

R
S L

S)
W
an

g
et

al
.(

20
14

)
20

11
M
ira

bi
(2
01

1)
m

A
C
O

(A
C

O
)

20
13

Va
nc
hi
pu

ra
e
Sr
id
ha

ra
n
(2
01

3)
m

C
H

(F
JS

R
A
)

Va
nc
hi
pu

ra
,S

rid
ha

ra
n
e
B
ab

u
(2
01

4)
20

14
Va

nc
hi
pu

ra
,S

rid
ha

ra
n
e
B
ab

u
(2
01

4)
m

C
H

(F
JS

R
A

-V
N

D
)

Si
ou

d
e
G
ag

né
(2
01

8)
20

14
M
ira

bi
(2
01

4)
m

H
yb

rid
G
A

(H
G

A
)

Si
ou

d
e
G
ag

né
(2
01

8)
20

14
W
an

g
et

al
.(
20

14
)

m
IL
S
(M

R
SI

LS
)

20
17

B
en

ka
la
ie

t
al
.(

20
17

)
m

M
B
O

(M
B

O
)

20
18

Si
ou

d
e
G
ag

né
(2
01

8)
m

M
B
O

(E
M

B
O
)

N
ot
at
io
n:

D
P,

D
yn

am
ic

Pr
og

ra
m
m
in
g
Fo

rm
ul
at
io
n;

M
IL
P,

M
ix
ed

-in
te
ge
r
Li
ne

ar
Pr

og
ra
m
m
in
g
m
od

el
;B

&
B
,B

ra
nc
h-
an

d-
B
ou

nd
;B

&
C
,

B
ra
nc
h-
an

d-
C
ut
;A

A
,A

pp
ro
xi
m
at
e
A
lg
or
ith

m
s;

SI
,S

av
in
g
In
de
x
A
lg
or
ith

m
;G

A
,G

en
et
ic

A
lg
or
ith

m
s;

C
H
,C

on
st
ru
ct
iv
e
H
eu
ris

tic
;I
H
,I
m
pr
ov
em

en
t

H
eu

ris
tic

;A
C
O
,A

nt
C
ol
on

y
O
pt
im

iz
at
io
n
A
lg
or
ith

m
s;

IG
,I
te
ra
te
d
G
re
ed

y
A
lg
or
ith

m
;I
LS

,I
te
ra
te
d
Lo

ca
lS

ea
rc
h;

M
B
O
,M

ig
ra
tio

n
B
ird

O
pt
im

iz
at
io
n
A
lg
or
ith

m
s.

a
N
um

be
r
of

m
ac
hi
ne

s.

60

3.2 A new constructive heuristic

Constructive heuristics are broadly used in scheduling problems to efficiently obtain
good quality solutions (LIU; REEVES, 2001; NAGANO; MOCCELLIN, 2002; FRAMINAN;
LEISTEN; RUIZ-USANO, 2002; FRAMINAN; LEISTEN, 2003; DONG; HUANG; CHEN,
2008; RAD; RUIZ; BOROOJERDIAN, 2009; KALCZYNSKI; KAMBUROWSKI, 2009;
LAHA; SARIN, 2009; RIBAS; COMPANYS; TORT-MARTORELL, 2010; PAN; RUIZ,
2013; FERNANDEZ-VIAGAS; FRAMINAN, 2014; FERNANDEZ-VIAGAS; FRAMINAN,
2015; BENAVIDES; RITT, 2016; FERNANDEZ-VIAGAS; LEISTEN; FRAMINAN, 2016;
RIBAS; COMPANYS; TORT-MARTORELL, 2017; LIU; JIN; PRICE, 2017; HUANG et
al., 2017).

The constructive heuristic proposed in this work was called RN. The heuristic
inserts d jobs using a greedy heuristic, and then the rest of the n− d are inserted into the
sequence using an NEH heuristic variant.

3.2.1 Greedy heuristic

Recently, greedy heuristics have been extensively used in the literature (LIU;
REEVES, 2001; PAN; WANG, 2012; PAN; RUIZ, 2013; FERNANDEZ-VIAGAS; FRAMI-
NAN, 2015; ROSSI; NAGANO; SAGAWA, 2017; PESSOA; ANDRADE, 2017; NAGANO;
ROSSI; TOMAZELLA, 2017; NAGANO; ROSSI; MARTARELLI, 2018). This type of
heuristic appends the jobs iteratively to the last position of the sequence according to an
index based on the properties of the problem. At each iteration, the job that obtained the
lowest or highest index value is chosen to be inserted in the last position of the sequence.
This procedure is repeated until n jobs have been sequenced.

As the object of study of this work is the mixed no-idle flowshop problem with
sequence dependent setup, the index used in our proposal takes into account: (a) idle time
between the jobs, which in this case is allowed in regular machines, (b) the setup times
between jobs in regular machines. Thus, the index was developed in order to consider
these two properties of the problem.

Suppose a partial sequence with k jobs π = {π1, . . . , πk}. Jj is the candidate job to
be tested in position k + 1 in the sequence π and U is the set of unscheduled jobs (U /∈ π).
The index of the candidate job Jj in a sequence with k jobs is denoted by δk,j. The index
has two components in its formulation.

The first component Ik,j evaluates the impact on idle times of the insertion of
job Jj in the last position of sequence π, i.e. πk+1 = Jj, resulting in the partial sequence
π′ = {π1, . . . , πk, πk+1}. In order to improve the speed of the method and also make it
possible to be used in environments where all machines are no-idle, the index considers
that the idle times between jobs πk and πk+1 are allowed in all machines. However,

61

𝑀1

𝑀2

𝑀𝑖−1

𝑀𝑖

𝑀𝑖+1

𝑀𝑚

𝜋𝑘−1

𝜋𝑘−1

𝜋𝑘−1

𝜋𝑘−1

𝜋𝑘−1

𝜋𝑘−1

𝜋𝑘

𝜋𝑘

𝜋𝑘

𝜋𝑘

𝜋𝑘

𝜋𝑘

𝜋𝑘+1

𝜋𝑘+1

𝜋𝑘+1

𝜋𝑘+1

𝜋𝑘+1

𝜋𝑘+1

𝑠 𝑘 ,[𝑘+1]
𝑖−1

𝐶𝑖−1,[𝑘] 𝐹𝑖−1𝐶1,[𝑘] 𝐹1

Figure 6: Earliest completion time for the candidate job π[k+1] in machine Mi.

among the jobs already sequenced (π1, π2, . . . , π[k]) the normal condition of the problem
is considered where there is a mix between regular and no-idle machines. Therefore, the
earliest completion times in machine Mi (i = {1, . . . ,m}) for job πk+1, called Fi (Figure 6),
can be calculated using Expressions (3.1) and (3.2). In order to simplify the expressions,
consider sij,k = 0 ∀j, k ∈ J, j 6= k in the no-idle machines (Mi ∈M ′).

F1 = C1,[k] + p1,[k+1] + s1
[k],[k+1] (3.1)

Fi = max
(
Ci,[k] + si[k],[k+1], Fi−1

)
+ pi,[k+1] ∀i = {2, . . . ,m} (3.2)

Completion time Ci,[k] can be calculated using the method described in Section
2.3.2. Based on the calculated earliest completion times, Fi, it is possible to obtain the
value of Ik,j using Expression (3.3) can be obtained.

Ik,j =
m∑
i=2

max
(
Fi − pi,[k+1] − Ci,[k] − si[k],[k+1], 0

)
∀j ∈ U (3.3)

The second component is denoted by SSDk,j and is the sum of the setup times
between jobs πk and πk+1 in machines m, Expression (3.4).

SSDk,j =
m∑
i=1

si[k],[k+1] ∀j ∈ U (3.4)

To select the jobs to be inserted in the first position of the sequence (k = 1), index
δk,j takes into account only the earliest start time of the candidate jobs in the machines,
Si,[k]. Finally, the index value δk,j can be calculated by Expression (3.5).

δk,j =

∑m
i=2 si,[k] ∀j ∈ U if k = 1

Ik,j + SSDk,j ∀j ∈ U if k 6= 1
(3.5)

62

𝑀1

𝑀2

𝑀3

𝜋1 𝜋2 𝜋3 𝜋4 𝜋5

𝐼0,1
2 𝐼1,2

2 𝐼2,3
2 𝐼3,4

2

𝑝2,1

𝑆3,1

𝐼0,1
2 𝐼3,4

3

𝐼0,1
3

Figure 7: Idles times and starting times for the jobs in a permutation flowshop without
no-idle machines.

𝐼0,1
2 𝐼1,2

2 𝐼2,3
2 𝐼3,4

2

𝑀1

𝑀2

𝑀3

𝜋1 𝜋2 𝜋3 𝜋4 𝜋5

𝑝2,1

𝑆3,1𝐼0,1
3

𝐼0,1
2 𝐼1,2

2 𝐼2,3
2 𝐼3,4

2

Figure 8: Idles times and starting times for the jobs in a permutation flowshop with no-idle
machines.

At each iteration, the candidate job chosen to be appended is the one that presents
the lowest index value δk,j. Thus, index δk,j favours the job that results in the lowest values
of Ik,j and SSDk,j. The principle behind this method is that if the idle time is minimised
between jobs πk and πk+1, the makespan will also be reduced due to better utilisation of
the machines.

For example, in Figure 7 we have a small example with three machines and five jobs,
where all machines allow idle and only M3 have setup times between the jobs. Considering
I ik,j as the idle time between jobs Jj and Jk in the machine Mi i = {1, . . . ,m}, the
makespan can be obtained as follows:

Cmax =
n∑
j=1

p3,j +
n∑
j=0

I3
j,j+1 (3.6)

If we consider machines M1 and M2 as no-idle, we have the situation demonstrated
in Figure 8. Note that the idle times in machine M2 results in the delay for the starting
time of machines M2 and M3. This time, the makespan can be calculated as follows:

Cmax =
n∑
j=1

p3,j +
n∑
j=0

I3
j,j+1 (3.7)

n∑
j=0

I3
j,j+1 =

n∑
j=0

I2
j,j+1 + p2,1 (3.8)

From the expressions above, we can see that minimizing the idle times between the
jobs, the makespan of the sequence can be improved.

63

For the same reason, it is also interesting that the setup times between jobs πk and
πk+1 in the machines are minimised. Our index is partially based on the Shortest Setup
Time (SST) first rule, which is often used when setup times are involved. This rule implies
that whenever a job is completed, the job with the smallest setup time is selected to go
next. This SST rule is equivalent to the Nearest Neighbour rule for the Travelling Salesman
Problem (TSP). The SST rule is known to lead to reasonable schedules (PINEDO, 2016).
After inserting d jobs using the greedy method, the heuristic RN uses an NEH heuristic
variant to construct the rest of the sequence.

3.2.2 NEH heuristic variant

The NEH heuristic from Nawaz, Enscore e Ham (1983) was originally proposed
for the PFSP with the makespan criterion. The heuristic has two phases. In the first
phase, the NEH orders the jobs in non-ascending order of the sum of their processing
times, also known as the LPT (Longest Processing Time) rule. In the second phase, a
sequence is constructed by evaluating partial sequences using the jobs from the initial
order provided by the first phase. Suppose a sequence already determined for the k − 1
first jobs, k partial sequences are obtained by inserting job k into the k possible positions
of the current sequence. From these k generated partial sequences, the one with the lowest
makespan is maintained as the current sequence for the k first jobs of the first phase
ordering. Afterwards, the job in position k + 1 in the first phase is considered analogously,
and so on until the n jobs have been sequenced.

The NEH variant used in the RN heuristic has two main modifications. The first
is to replace the LPT rule by the prioritisation of the jobs that have a greater standard
deviation (STD) of the processing times in the machines. As demonstrated in Dong, Huang
e Chen (2008), for problems with makespan criterion, better solutions can be obtained
when this initial ordering is used instead of the LPT.

The second important modification is to carry out a small local search using the
insertion neighbourhood in the partial sequence generated at the end of each NEH insertion
procedure. Therefore, after a job from the initial order is inserted into the sequence by
the NEH insertion, reinsertion movements of jobs in the partial sequence are performed.
In this movement, an adjacent job pair is removed, πk and πk+1 (k = {1, . . . , n − 1}),
from the current sequence, and then this pair is reinserted into the partial sequence. The
first job of the pair πk is evaluated in all positions, choosing the position that provides
the least Cmax, and afterwards the second job πk+1 is considered analogously. This type
of neighbourhood search when performed within the NEH heuristic iterations allows a
better optimisation of the partial sequences, which results in better final solutions (LAHA;
SARIN, 2009; RAD; RUIZ; BOROOJERDIAN, 2009; ROSSI; NAGANO; NETO, 2016).

However, if we are to consider all pairs of adjacent jobs possible for reinsertion,

64

the method becomes computationally costly. Considering the acceleration mechanism
proposed in Section 2.3.3, the computational complexity of the NEH heuristic is O (n2m).
In the worst case scenario, we will have n− 1 pairs of possible adjacent jobs. Therefore,
performing the reinsertion procedure for each of the pairs after each NEH iteration results
in a computational complexity of O (n3m), one more order of complexity. To solve this
problem, we limit the number of jobs to be inserted at each iteration. In order to do this,
we resorted to the proposal of the FRB4x heuristic from Rad, Ruiz e Boroojerdian (2009)
to insert only the x jobs that are positioned around the job just inserted by the NEH. This
intelligent limitation makes the reinsertion mechanism more efficient while maintaining
partial sequence optimisation. For this reason, our proposed method can be denoted as
RNx, where x limits the number of jobs selected for reinsertion.

To the best of our knowledge, this is the first time that a limited local search based
on reinserting pairs of jobs has been proposed as an extension of the NEH heuristic. The
FRB3 and FRB4x (RAD; RUIZ; BOROOJERDIAN, 2009) applied a local search based
on insertion movements where only one job is removed from the sequence and tested in
all positions. As mentioned before, FRB4x limits the number of reinserted jobs, while
FRB3 reinserts all jobs from the partial sequence. More recently, the heuristic from Rossi,
Nagano e Neto (2016) used a local search based on reinserting pairs of jobs. However, in
this heuristic all adjacent pairs of jobs are reinserted in the sequence, which results in a
costly computational procedure. To counter this inefficiency, the RNx heuristic limits the
number of pairs of jobs selected for reinsertion, while keeping the optimization of partial
sequences generated by the NEH.

3.2.3 The RNx heuristic

Combining the greedy method with the NEH heuristic variant, we have the proposed
heuristic called RNx. Algorithm 2 presents the pseudocode of the RNx heuristic. Note that
the RNx has two parameters. The first, called d, controls how many jobs will be inserted
using the greedy heuristic (Section 3.2.1). The second, denoted by x, controls how many
jobs will be reinserted after each iteration of the NEH heuristic variant (Section 3.2.2).

Algorithm 1 shows that initially d jobs are inserted from the unscheduled set of jobs
U = {J1, . . . , Jn}, choosing the jobs based on the lowest value of the index δk,j (Section
3.2.1). When the chosen job is inserted in the last position of the sequence π, the same job
is removed from the set U (U = U − Jj). After d jobs have been scheduled, the heuristic
inserts the n−d remaining jobs with the NEH variant. Firstly, the jobs from U are ordered
by the non-ascending order of the standard deviation of the processing times (STDj),
generating a list of jobs α = {α1, . . . , αn−d}. The first job from list α (α1) is tested in all
positions of π and is inserted in the best position, denoted as b. The jobs in the x positions
around b are selected to be reinserted using a local search based on the reinsertion of pairs

65

Algorithm 1 RNx heuristic
π = ∅
U = {J1, . . . , Jn}
for k = 1 to d do

Select the job Jj ∈ U with the lowest δk,j (Equation 3.5)
Place it at the end of π.
U = U − Jj

end for
Order the jobs in U according to the non-ascending order of STDj, generating α =
{α1, . . . , αn−d}.
for l = 1 to n− d do

Insert job αl in π in the position b that results in the lowest Cmax
for k = max (1, b− x) to min (l, b+ x), step k = k + 2 do

π′ = π
Remove the jobs π′k and π′k+1 from π′.
Insert the job π′k in the position of that results in the lowest Cmax.
Insert the job π′k+1 in the position of that results in the lowest Cmax.
if Cmax (π′) < Cmax (π) then

π = π′

end if
end for

end for

of jobs. For example, when the pair of jobs πk and πk+1 (x− b ≤ k < x+ b) is chosen for
reinsertion, both are removed from the sequence, then the first job πk is reinserted in the
best position, and the next job of the pair πk+1 is also reinserted. The same procedure is
applied for the next pair πk+2 and πk+3, and so on until all pairs around the position b
are reinserted. The next job from the list α (α2) is considered analogously. The algorithm
continues until the sequence is completed with n scheduled jobs.

3.3 Computational and statistical experiments

3.3.1 Instances generation

For a more careful analysis of our method, we generated four different computational
experiments: the parameter tuning for the RNx, the computational evaluation with a
benchmark adapted from Pan e Ruiz (2014), the comparison of the same heuristics in
a set of problems from the setup times literature from Ruiz, Maroto e Alcaraz (2005),
and finally the evaluation of the MILP model. For each computational experiment we
generated a different benchmark. The instances and results used in our computational
experiments are available as supplementary material.

66

3.3.1.1 Benchmark for the parameter tuning for the RNx

In order to avoid an overfitting of parameter d of our proposed RNx heuristic we
calibrated it in a different set of problems to those used for comparisons with the heuristics
from the literature. The benchmark is generated with combinations between a number of
jobs n = {60, 120, 240, 360} and a number of machines m = {20, 40}, totalling 4× 2 = 8
possible combinations. Five replications were generated for each combination, resulting in
8× 5 = 40 problems per combination. We considered the mixed-idle scenarios used in a
benchmark proposed by Pan e Ruiz (2014), except for the scenario where all machines are
no-idle and no setup time is allowed:

• Group 1: The first 50% of the machines are no-idle, the rest are regular machines.

• Group 2: The first 50% of the machines are regular, the rest are no-idle machines.

• Group 3: The machines alternate between regular and no-idle.

• Group 4: 25% of the machines are randomly no-idle.

• Group 5: 50% of the machines are randomly no-idle.

• Group 6: 75% of the machines are randomly no-idle.

The processing times were generated randomly with a uniform distribution [1,99].
As we are addressing the mixed no-idle PFSP with dependent-sequence setup times,
we consider the setup times in the machines that allow idleness. The setup times were
generated with three different distributions:

• SSD-40: the distribution of setup times is limited to 40% of the limit for the
processing time interval. That is, the setup times were generated according to a
uniform distribution in the interval [1, 39].

• SSD-80: the distribution of setup times is limited to 80% of the limit for the
processing time interval. That is, the setup times were generated according to a
uniform distribution in the interval [1, 79].

• SSD-120: the distribution of setup times is limited to 120% of the limit for the
processing time interval. That is, the setup times were generated according to a
uniform distribution in the interval [1, 119].

For each of the three setup time distribution, the different mixed no-idle scenarios
from Pan e Ruiz (2014) were considered. With 40 problem instances per combination,
the benchmark results in a total of 40× 3× 6 = 720 instances plus 40 problems for the
parameter tuning benchmark.

67

3.3.1.2 Benchmark adapted from Pan e Ruiz (2014)

As stated before, Pan e Ruiz (2014) proposed a benchmark for the mixed no-
idle PFSP. In more detail, seven groups of instances were generated with different
mixed no-idle scenarios, varying the number of no-idle machines in the environment.
Each one of the groups contains problems with combinations between a number of
jobs n = {50, 100, 150, 200, 250, 300, 350, 400, 450, 500} and a number of machines m =
{10, 20, 30, 40, 50}, totalling 10 × 5 = 50 possible combinations. Five replications were
generated for each combination, resulting in a total of 50× 5 = 250 problems per group.
As there are seven groups, in total the set has 7× 250 = 1750 problems. Pan e Ruiz (2014)
used a uniform distribution [1,99] to generate the processing times. The benchmark can
be found at http://soa.iti.es/problem-instances.

In this work, we address the mixed no-idle flowshop problem with the additional
condition of sequence dependent setup times on regular machines. Therefore, the benchmark
problems proposed by Pan e Ruiz (2014) were extended to our problem. We considered
the same scenarios considered in Pan e Ruiz (2014), with exception of the scenario where
all machines are no-idle and no setup time is allowed. The pure no-idle scenario was not
considered as FJSRA and FJSRA-VND need setup times to generate the fictitious jobs
using the setup ranking algorithm (SRA). Thus, a total of six scenarios were used, the
same described in the previous section (Group 1-6). We used the same processing times
generated by Pan e Ruiz (2014) and added sequence dependent setup times to regular
machines with three different distributions:

• SSD-50: setup times with uniform distribution in the interval [1, 49] (limited to 50%
of the limit for the processing time interval).

• SSD-100: setup times with uniform distribution in the interval [1, 99] (limited to
100% of the limit for the processing time interval).

• SSD-125: setup times with uniform distribution in the interval [1, 124] (limited to
125% of the limit for the processing time interval).

Therefore, the new benchmark adapted from Pan e Ruiz (2014) for the mixed
no-idle PFSP consists of three sequence dependent setup times of distribution intervals
(SSD-50, SSD-100, SSD125) and six mixed no-idle scenarios. Thus, the total number
of tests for the benchmark is 6 × 3 × 250 = 4500 instances. In order to evaluate the
performance of heuristics without the setup times, we also compared the heuristics in the
original benchmark from Pan e Ruiz (2014), which does not consider the dependent setup
times in the machines. In this case, only the mixed no-idle condition was considered.

http://soa.iti.es/problem-instances

68

3.3.1.3 Benchmark adapted from Ruiz, Maroto e Alcaraz (2005)

As our also problem deals with setup times, to generate a more comprehensive
comparison we also compared the heuristics in a benchmark the literature on sequence
dependent setup times literature. For this purpose, we used the set of problems proposed
by Ruiz, Maroto e Alcaraz (2005), which was also used in Ruiz e Stützle (2008), and is
publicly available at http://soa.iti.es/problem-instances. The tests contain four different
sequence dependent setup time ratios (SSD-10, SSD-50, SSD-100 and SSD-125). For
example, the instance set SSD-10 consists of 120 instances where the processing times
are those of Taillard (1993) benchmark and where the sequence dependent setup times
are 10% of the processing times. In the instance set SSD-50, the setup times are 50%
of the processing times and the instance sets SSD-100 and SSD-125 have setup times
that are 100% and 125% of the processing times respectively. Therefore, the setup times
are uniformly distributed in the range [1, 9], [1, 49], [1, 99] and [1, 124] for the instance
sets SSD-10, SSD-50, SSD-100 and SSD-125, respectively. This results in four problem
sets and a total of 120 × 4 = 480 different instances. As we are addressing the mixed
no-idle flowshop problem, we considered the same six mixed described in the previous
section for each one of the four groups. The total number of problems in the benchmark is
6× 480 = 2880.

Again, to evaluate the performance of heuristics without the no-idle machines,
we also compared the heuristics in the original benchmark from Ruiz, Maroto e Alcaraz
(2005), which does not consider no-idle machines. In this benchmark, all machines allow
idle and dependent setup times are considered in all machines.

3.3.1.4 Benchmark for the MILP model evaluation

For the MILP formulated in Section 2.3.1 we set a maximum elapsed CPU time limit
of three hours to optimally solve the problems. With this time termination criterion, the
MILP can optimally solve problems with up to 20 jobs and 5 machines. Thus, for the MILP
evaluation we considered the following combination between number of jobs and machines
{n,m} = {10, 5}, {10, 10}, {15, 5}, {15, 10}, {20, 5}. Five replications were generated for
each combination with processing times generated using the uniform distribution [1, 99] .
The same six mixed no-idle groups used in the previous benchmarks were used. For the
setup time generation we used the distributions SSD-50, SSD-100 and SSD-125. With
these settings, 5× 5× 3× 7 = 525 instances were created.

3.3.2 Compared Heuristics

As mentioned previously, the F |prmu, mixed no− idle, sij,k|Cmax problem has not
yet been studied in the literature. For this reason, there are no proposed heuristics or
metaheuristics for the problem. In order to create a basis for comparison for our RNx

http://soa.iti.es/problem-instances

69

heuristic (Section 3.2), we adapted constructive heuristics from Fm|prmu, no− idle|Cmax
and Fm|prmu, sij,k|Cmax.

According to the review carried out in Section 3.1, many heuristics have already
been proposed for the Fm|prmu, no − idle|Cmax and Fm|prmu, sij,k|Cmax problems. We
selected the main methods to be adapted and compared in the problem addressed in
this work. The adapted heuristics were modified only in the makespan evaluation of the
sequences considering that the mixed no-idle flowshop with the sequence dependent setup
times is considered. Thus, the structure of the constructive heuristics remain unchanged,
where the makespan evaluation the only modification made. To evaluate the makespan
of a sequence, we used the formulas presented in Section 2.3.2. We also implemented
the acceleration method described in Section 2.3.3 to calculate the makespan in the
insertion neighbourhood when presented, which allowed a large increase in the heuristics’
speed. It is important to notice that the constructive phase of the FJSRA heuristic uses
an insertion neighbourhood based on inserting of fictitious jobs, which is incompatible
with the acceleration procedure. Therefore, it was not possible to apply the acceleration
method to the constructive phase of FSJRA and FSJRA-VND. The heuristics selected for
comparison are as follows:

• NEH: well-known heuristic from Nawaz, Enscore e Ham (1983).

• GH-BM: heuristic from Baraz e Mosheiov (2008).

• GH-BM2: modification of the GH-BM heuristic by Ruiz, Vallada e Fernández-
Martínez (2009).

• FRB4x: heuristic proposed by Rad, Ruiz e Boroojerdian (2009). It was adapted to
the mixed no-idle PFSP by Pan e Ruiz (2014). As explained in Section 3.2, x jobs are
reinserted around the newly inserted job by the NEH heuristic. In our comparison,
we used the values of x = {10, 30, 50, 70}.

• FRB3: heuristic proposed by Rad, Ruiz e Boroojerdian (2009). In this method, all jobs
are reinserted after each NEH iteration. It was implemented for the Fm|prmu, no−
idle|Cmax problem in Ruiz, Vallada e Fernández-Martínez (2009).

• FJSRA: heuristic proposed by Vanchipura e Sridharan (2013) for the Fm|prmu, sij,k|Cmax
problem.

• FJSRA-VND: heuristic proposed by Vanchipura, Sridharan e Babu (2014) for the
Fm| prmu, sij,k|Cmax problem.

• RNx: proposed heuristic in this work (Section 3.2). It is a result of the combi-
nation between an greedy method and a NEH variant, which comprises job pair

70

reinsertion movements. The parameter x limits the number of pairs of jobs se-
lected for reinsertions in the NEH variant. In our comparison we used the values of
x = {10, 30, 50, 70}.

3.3.3 Performance measures

The performance measure used was the Relative Percentage Deviation (RPD)
calculated according to Expression (3.9):

RPD
(
Cmax (πh)

)
= 100 ·

(
Cmax (πh)− C∗max

)
/C∗max (3.9)

The value of Cmax (πh) is the makespan provided by the sequence πh generated
by heuristic h. C∗max is the best solution found among all the compared heuristics. The
Average Relative Percentage Deviation is denoted as ARPD. It can be observed that the
lower the RPD value, the better the heuristic performance, since the closer its solutions
will be to the best result found among all the methods compared.

The Average CPU Time (ACT) in seconds and the Average Relative Percentage
computational Time (ARPT) were used to evaluate the computational efficiency of the
heuristics.

Fernandez-Viagas e Framinan (2015) detected that the ACT presents several
problems when used to evaluate heuristics with different stopping criteria and proposed
the ARPT indicator. We use the improved ARPT version of Fernandez-Viagas, Ruiz e
Framinan (2017) and Fernandez-Viagas e Framinan (2017):

ACTt =
∑H
h=1 Tth
H

∀t = {1, . . . , T} (3.10)

RPTth = Tth − ACTt
ACTt

+ 1 ∀t = {1, . . . , T}, ∀h = {1, . . . , H} (3.11)

ARPTh =
∑T
t=1 RPTth

T
∀h = {1, . . . , H} (3.12)

where Tth is the CPU time of heuristic h in the instance t, ACTt is the Average CPU time
considering all the heuristics in the instance t, H is the number of heuristics considered in
the evaluation, T is the number of instances in the test bed.

All the compared heuristics were implemented in C ++, compiled with Intel C
++ 16.0, and run on an Intel Xeon E5-2680 processor running at 2.7 GHz with 16 GB of
RAM. To solve the MILP model, we used the IBM CPLEX Optimization Studio (version
12.8) with Python Application Programming Interface (API).

71

3.3.4 Parameter settings of RNx

As described in Section 3.2, the proposed heuristic RNx has two parameters.
The first parameter, called d, defines the extent to which the solution is constructed by
the greedy heuristic (Section 3.2.1). The second parameter, called x, limits the number
of jobs to be reinserted in sequence after each insertion of the NEH heuristic variant
(Section 3.2.2). This parameter tuning aims to determine which value of d results in
better solutions considering the set of values of parameter x. For the first parameter,
the values of d = {0.1n, 0.2n, 0.3n, 0.4n, 0.5n, 0.6n, 0.7n, 0.8n, 0.9n} were tested, i.e. when
d = 0.1n, 10% of the sequence is constructed using the greedy method, and the remaining
90% is constructed by the NEH heuristic variant. For the second parameter, the values
of x = {10, 30, 50, 70} were used. A factorial experiment was carried out between the
parameters, generating 9× 4 = 36 different combinations. The set of test problems defined
in Section 3.3.1 was used. The ARPDs resulting from the set of problems grouped by
number of jobs are presented in Table 4. The results show that the best performance,
considering all the problems and all values of x, is obtained from parameter d = 0.4n with
an ARPD of 1.50. Therefore, the parameter values d = 0.4n and x = {10, 30, 50, 70} were
used in the comparisons made in this section.

3.3.5 Comparison between heuristics in the benchmark adapted from Pan e Ruiz (2014)

The results obtained from the evaluated heuristics are summarized in 5 and were
grouped by sub-sets of problems with the same number of jobs in Tables 6, 8, 9 and 10.
Each one of the tables presents the result of a group of problems related to a setup time
distribution, SSD50, SSD100 and SSD125. Tables 6 and 7 present the ARPDs considering
all the setup time distributions, grouped by the number of jobs and number of machines,
respectively. The mean computational time in seconds of each heuristic considering all
distributions is shown in Tables 11 and 12.

72

Table 4: ARPD values for the parameter tuning of RNx heuristic. The best results are
highlighted in bold.

Heuristic n
Parameter d values
0.1n 0.2n 0.3n 0.4n 0.5n 0.6n 0.7n 0.8n 0.9n

RN10 60 2.44 2.39 2.54 2.41 2.49 2.71 2.79 3.39 4.70
120 2.58 2.66 2.59 2.58 2.62 2.62 2.85 3.33 4.32
240 2.73 2.61 2.55 2.48 2.45 2.42 2.49 2.81 3.61
360 2.73 2.57 2.45 2.42 2.28 2.26 2.25 2.52 3.08
Average 2.62 2.56 2.53 2.47 2.46 2.50 2.60 3.01 3.93

RN30 60 1.56 1.60 1.59 1.43 1.75 1.70 1.81 2.20 3.02
120 1.68 1.51 1.65 1.54 1.61 1.67 1.87 2.07 3.04
240 1.54 1.51 1.43 1.37 1.46 1.40 1.54 1.74 2.48
360 1.60 1.55 1.42 1.40 1.34 1.31 1.38 1.59 2.17
Average 1.59 1.54 1.52 1.44 1.54 1.52 1.65 1.90 2.68

RN50 60 1.45 1.28 1.31 1.33 1.50 1.30 1.55 1.88 2.40
120 1.21 1.24 1.30 1.20 1.29 1.37 1.50 1.84 2.47
240 1.12 1.07 1.02 0.99 1.00 1.01 1.12 1.39 2.07
360 1.15 1.05 1.03 0.95 0.90 0.88 1.02 1.18 1.70
Average 1.23 1.16 1.17 1.12 1.17 1.14 1.30 1.57 2.16

RN70 60 1.41 1.29 1.32 1.35 1.44 1.29 1.53 1.82 2.49
120 1.05 1.03 0.97 0.97 1.08 1.03 1.32 1.46 2.26
240 0.92 0.86 0.78 0.75 0.80 0.76 1.01 1.17 1.74
360 0.90 0.84 0.77 0.75 0.64 0.69 0.73 0.98 1.47
Average 1.07 1.00 0.96 0.96 0.99 0.94 1.15 1.36 1.99

Average 1.63 1.56 1.54 1.50 1.54 1.53 1.67 1.96 2.69

73

Table 5: Summary of the results in the benchmark adapted from Pan e Ruiz (2014).

Heuristic
ARPD Average

CPU Time
ARPT

SSD50 SSD100 SSD125 Average
RN70 0.42 0.37 0.35 0.38 11.37 1.29
RN50 0.64 0.60 0.57 0.61 8.52 1.04
RN30 1.00 0.96 0.94 0.96 5.38 0.72
FRB3 0.75 1.15 1.36 1.09 39.24 3.04
FRB470 1.45 2.05 2.33 1.94 11.69 1.35
RN10 1.97 1.93 1.93 1.95 1.92 0.29
FRB450 1.63 2.26 2.52 2.14 8.74 1.09
FJSRA-VND 2.47 2.16 2.19 2.27 18.78 1.55
FRB430 2.04 2.70 2.99 2.57 5.72 0.76
FJSRA 4.11 3.39 3.37 3.62 17.07 1.41
FRB410 3.09 3.97 4.27 3.78 2.00 0.30
GH-BM2 4.60 5.46 5.77 5.28 0.49 0.08
NEH 6.15 6.98 7.28 6.80 0.16 0.03
GH-BM 11.15 11.38 10.88 11.14 11.21 1.05

74

Ta
bl
e
6:

A
R
PD

va
lu
es

fo
rt

he
co
m
pa

re
d
he

ur
ist

ics
in

th
e
al
ld

ist
rib

ut
io
ns

gr
ou

pe
d
by

nu
m
be

ro
fj
ob

s
in

th
e
be

nc
hm

ar
k
ad

ap
te
d
fro

m
Pa

n
e

Ru
iz

(2
01
4)
.T

he
va
lu
es

in
bo

ld
ar
e
th
e
be

st
A
R
PD

,i
n
ea
ch

lin
e.

n
N
EH

G
H
-B

M
G
H
-B

M
2

FR
B4

10
FR

B4
30

FR
B4

50
FR

B4
70

FR
B3

FJ
SR

A
FJ

SR
A
-

V
N
D

R
N

10
R
N

30
R
N

50
R
N

70

50
6.
08

9.
70

4.
07

2.
64

1.
70

1.
53

1.
53

1.
39

6.
18

3.
49

1.
71

0.
87

0.
66

0.
66

10
0

6.
66

10
.7
8

4.
82

3.
32

2.
26

1.
91

1.
71

1.
36

5.
29

3.
21

1.
95

1.
00

0.
72

0.
42

15
0

6.
70

10
.9
0

5.
08

3.
47

2.
37

1.
83

1.
74

1.
17

4.
24

2.
66

1.
94

1.
00

0.
59

0.
41

20
0

6.
79

11
.1
5

5.
24

3.
67

2.
50

1.
98

1.
81

1.
02

3.
91

2.
50

2.
01

0.
97

0.
61

0.
34

25
0

6.
84

11
.2
6

5.
33

3.
81

2.
52

2.
13

1.
86

1.
00

3.
45

2.
22

1.
92

0.
90

0.
54

0.
27

30
0

6.
85

11
.2
2

5.
44

3.
93

2.
68

2.
22

2.
00

1.
05

2.
98

1.
91

1.
94

0.
91

0.
55

0.
32

35
0

6.
90

11
.4
0

5.
52

4.
08

2.
84

2.
36

2.
12

1.
01

2.
74

1.
78

2.
00

0.
99

0.
60

0.
33

40
0

7.
21

11
.9
0

5.
85

4.
31

2.
97

2.
43

2.
25

0.
99

2.
66

1.
74

1.
97

1.
00

0.
56

0.
33

45
0

6.
97

11
.4
7

5.
68

4.
21

2.
93

2.
45

2.
18

0.
94

2.
43

1.
62

1.
98

0.
99

0.
60

0.
36

50
0

7.
03

11
.5
9

5.
77

4.
33

2.
99

2.
52

2.
23

0.
91

2.
35

1.
60

2.
02

1.
01

0.
63

0.
37

Av
er
ag
e

6.
80

11
.1
4

5.
28

3.
78

2.
57

2.
14

1.
94

1.
09

3.
62

2.
27

1.
95

0.
96

0.
61

0.
38

75

Ta
bl
e
7:

A
R
PD

va
lu
es

fo
rt

he
co
m
pa

re
d
he
ur
ist

ics
in

th
e
al
ld

ist
rib

ut
io
ns

gr
ou

pe
d
by

nu
m
be

ro
fm

ac
hi
ne
s
in

th
e
be

nc
hm

ar
k
ad

ap
te
d
fro

m
Pa

n
e
Ru

iz
(2
01
4)
.T

he
va
lu
es

in
bo

ld
ar
e
th
e
be

st
A
R
PD

,i
n
ea
ch

lin
e.

m
N
EH

G
H
-B

M
G
H
-B

M
2

FR
B4

10
FR

B4
30

FR
B4

50
FR

B4
70

FR
B3

FJ
SR

A
FJ

SR
A
-

V
N
D

R
N

10
R
N

30
R
N

50
R
N

70

10
8.
70

14
.6
4

6.
75

4.
95

3.
49

2.
99

2.
80

1.
79

3.
17

2.
00

2.
19

1.
02

0.
64

0.
38

20
7.
46

12
.1
8

5.
86

4.
22

2.
84

2.
36

2.
17

1.
21

3.
49

2.
20

2.
11

1.
03

0.
64

0.
41

30
6.
48

10
.5
9

5.
07

3.
56

2.
38

1.
98

1.
77

0.
96

3.
61

2.
28

1.
91

0.
98

0.
61

0.
37

40
5.
87

9.
54

4.
52

3.
18

2.
16

1.
74

1.
56

0.
76

3.
91

2.
45

1.
79

0.
90

0.
58

0.
36

50
5.
50

8.
73

4.
20

2.
97

2.
00

1.
62

1.
41

0.
71

3.
93

2.
43

1.
73

0.
89

0.
57

0.
38

Av
er
ag
e

6.
80

11
.1
4

5.
28

3.
78

2.
57

2.
14

1.
94

1.
09

3.
62

2.
27

1.
95

0.
96

0.
61

0.
38

76

Ta
bl
e
8:

A
R
PD

va
lu
es

fo
rt

he
co
m
pa

re
d
he

ur
ist

ics
in

th
e
SS

D
50

di
st
rib

ut
io
n
in

th
e
be

nc
hm

ar
k
ad

ap
te
d
fro

m
Pa

n
e
Ru

iz
(2
01

4)
.T

he
va
lu
es

in
bo

ld
ar
e
th
e
be

st
A
R
PD

,i
n
ea
ch

lin
e.

n
N
EH

G
H
-B

M
G
H
-B

M
2

FR
B4

10
FR

B4
30

FR
B4

50
FR

B4
70

FR
B3

FJ
SR

A
FJ

SR
A
-

V
N
D

R
N

10
R
N

30
R
N

50
R
N

70

50
5.
96

9.
77

3.
94

2.
24

1.
39

1.
28

1.
28

1.
24

7.
09

3.
91

1.
74

0.
96

0.
65

0.
65

10
0

6.
23

10
.6
0

4.
32

2.
81

1.
86

1.
55

1.
34

1.
01

5.
99

3.
41

1.
84

0.
96

0.
68

0.
39

15
0

6.
12

10
.8
5

4.
46

2.
97

2.
00

1.
41

1.
32

0.
88

4.
73

2.
84

1.
94

1.
02

0.
59

0.
36

20
0

6.
18

11
.0
2

4.
53

3.
00

2.
01

1.
49

1.
38

0.
70

4.
36

2.
60

1.
93

1.
02

0.
59

0.
36

25
0

6.
18

11
.2
9

4.
65

3.
09

1.
97

1.
62

1.
36

0.
66

3.
92

2.
41

1.
91

0.
90

0.
55

0.
24

30
0

6.
10

11
.3
5

4.
70

3.
15

2.
07

1.
63

1.
44

0.
67

3.
36

2.
07

1.
96

0.
91

0.
61

0.
35

35
0

6.
21

11
.5
9

4.
81

3.
33

2.
21

1.
75

1.
53

0.
61

3.
13

1.
95

2.
06

1.
03

0.
67

0.
40

40
0

6.
15

11
.7
5

4.
80

3.
41

2.
20

1.
75

1.
60

0.
60

3.
03

1.
92

2.
08

1.
08

0.
63

0.
45

45
0

6.
19

11
.6
6

4.
87

3.
36

2.
28

1.
92

1.
60

0.
56

2.
80

1.
80

2.
10

1.
07

0.
69

0.
51

50
0

6.
21

11
.6
2

4.
95

3.
49

2.
38

1.
90

1.
66

0.
55

2.
67

1.
76

2.
13

1.
09

0.
77

0.
51

Av
er
ag
e

6.
15

11
.1
5

4.
60

3.
09

2.
04

1.
63

1.
45

0.
75

4.
11

2.
47

1.
97

1.
00

0.
64

0.
42

77

Ta
bl
e
9:

A
R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
he
ur
ist

ic
s
in

th
e
SS

D
10
0
di
st
rib

ut
io
n
in

th
e
be

nc
hm

ar
k
ad

ap
te
d
fro

m
Pa

n
e
R
ui
z
(2
01
4)
.T

he
va
lu
es

in
bo

ld
ar
e
th
e
be

st
A
R
PD

,i
n
ea
ch

lin
e.

n
N
EH

G
H
-B

M
G
H
-B

M
2

FR
B4

10
FR

B4
30

FR
B4

50
FR

B4
70

FR
B3

FJ
SR

A
FJ

SR
A
-

V
N
D

R
N

10
R
N

30
R
N

50
R
N

70

50
6.
06

9.
62

4.
01

2.
80

1.
69

1.
44

1.
44

1.
26

5.
73

3.
22

1.
60

0.
85

0.
71

0.
71

10
0

6.
89

11
.0
2

5.
05

3.
47

2.
40

2.
06

1.
86

1.
50

4.
97

3.
08

2.
05

0.
99

0.
72

0.
42

15
0

6.
82

11
.1
3

5.
24

3.
51

2.
42

1.
87

1.
77

1.
20

3.
99

2.
56

1.
93

0.
97

0.
66

0.
43

20
0

6.
92

11
.4
5

5.
44

3.
87

2.
52

2.
08

1.
86

1.
14

3.
74

2.
47

2.
04

0.
92

0.
66

0.
31

25
0

6.
91

11
.4
5

5.
40

3.
92

2.
62

2.
25

1.
99

1.
08

3.
26

2.
14

1.
93

0.
85

0.
52

0.
27

30
0

6.
93

11
.4
0

5.
50

4.
10

2.
82

2.
34

2.
10

1.
05

2.
75

1.
80

1.
97

0.
94

0.
53

0.
28

35
0

7.
00

11
.5
8

5.
64

4.
26

2.
97

2.
49

2.
20

1.
09

2.
56

1.
64

1.
95

1.
00

0.
51

0.
34

40
0

7.
91

12
.6
1

6.
50

4.
81

3.
36

2.
78

2.
51

1.
22

2.
43

1.
62

1.
97

1.
06

0.
54

0.
26

45
0

7.
12

11
.7
0

5.
84

4.
45

3.
07

2.
55

2.
34

1.
01

2.
28

1.
55

1.
94

1.
00

0.
60

0.
31

50
0

7.
24

11
.8
7

6.
00

4.
52

3.
13

2.
72

2.
38

0.
99

2.
23

1.
52

1.
97

0.
98

0.
58

0.
35

Av
er
ag
e

6.
98

11
.3
8

5.
46

3.
97

2.
70

2.
26

2.
05

1.
15

3.
39

2.
16

1.
93

0.
96

0.
60

0.
37

78

Ta
bl
e
10
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
he
ur
ist

ic
s
in

th
e
SS

D
12
5
di
st
rib

ut
io
n
in

th
e
be

nc
hm

ar
k
ad

ap
te
d
fro

m
Pa

n
e
R
ui
z
(2
01
4)
.T

he
va
lu
es

in
bo

ld
ar
e
th
e
be

st
A
R
PD

,i
n
ea
ch

lin
e.

n
N
EH

G
H
-B

M
G
H
-B

M
2

FR
B4

10
FR

B4
30

FR
B4

50
FR

B4
70

FR
B3

FJ
SR

A
FJ

SR
A
-

V
N
D

R
N

10
R
N

30
R
N

50
R
N

70

50
6.
21

9.
70

4.
24

2.
89

2.
00

1.
86

1.
86

1.
66

5.
71

3.
34

1.
81

0.
81

0.
63

0.
63

10
0

6.
85

10
.7
3

5.
10

3.
68

2.
53

2.
12

1.
92

1.
58

4.
93

3.
15

1.
97

1.
05

0.
76

0.
43

15
0

7.
17

10
.7
3

5.
54

3.
93

2.
71

2.
20

2.
12

1.
44

3.
99

2.
57

1.
97

1.
01

0.
51

0.
42

20
0

7.
29

10
.9
9

5.
76

4.
15

2.
97

2.
39

2.
18

1.
23

3.
64

2.
43

2.
06

0.
98

0.
58

0.
37

25
0

7.
42

11
.0
4

5.
94

4.
40

2.
96

2.
52

2.
22

1.
27

3.
18

2.
12

1.
93

0.
95

0.
54

0.
31

30
0

7.
51

10
.9
0

6.
13

4.
53

3.
17

2.
70

2.
46

1.
43

2.
82

1.
87

1.
88

0.
89

0.
51

0.
33

35
0

7.
48

11
.0
4

6.
10

4.
64

3.
33

2.
85

2.
63

1.
33

2.
52

1.
73

2.
00

0.
93

0.
63

0.
26

40
0

7.
57

11
.3
6

6.
24

4.
72

3.
34

2.
77

2.
63

1.
16

2.
52

1.
69

1.
88

0.
88

0.
50

0.
26

45
0

7.
59

11
.0
4

6.
34

4.
82

3.
44

2.
88

2.
58

1.
25

2.
22

1.
52

1.
89

0.
89

0.
51

0.
27

50
0

7.
65

11
.3
0

6.
35

4.
98

3.
45

2.
95

2.
66

1.
20

2.
15

1.
51

1.
95

0.
96

0.
54

0.
27

Av
er
ag
e

7.
28

10
.8
8

5.
77

4.
27

2.
99

2.
52

2.
33

1.
36

3.
37

2.
19

1.
93

0.
94

0.
57

0.
35

79

Ta
bl
e
11
:A

ve
ra
ge

C
PU

va
lu
es

an
d
A
R
PT

fo
r
th
e
co
m
pa

re
d
he
ur
ist

ic
s
gr
ou

pe
d
by

nu
m
be

r
of

jo
bs

in
th
e
be

nc
hm

ar
k
ad

ap
te
d
fro

m
Pa

n
e

Ru
iz

(2
01
4)
.T

he
va
lu
es

in
bo

ld
ar
e
th
e
be

st
re
su
lts

,i
n
ea
ch

lin
e.

n
N
EH

G
H
-B

M
G
H
-B

M
2

FR
B4

10
FR

B4
30

FR
B4

50
FR

B4
70

FR
B3

FJ
SR

A
FJ

SR
A
-

V
N
D

R
N

10
R
N

30
R
N

50
R
N

70

50
0.
00

0.
03

0.
01

0.
03

0.
06

0.
06

0.
06

0.
07

0.
01

0.
01

0.
03

0.
05

0.
06

0.
06

10
0

0.
01

0.
28

0.
04

0.
13

0.
31

0.
45

0.
52

0.
61

0.
10

0.
12

0.
13

0.
31

0.
43

0.
50

15
0

0.
03

0.
99

0.
09

0.
32

0.
87

1.
30

1.
58

2.
40

0.
54

0.
60

0.
32

0.
80

1.
19

1.
49

20
0

0.
05

2.
37

0.
16

0.
63

1.
81

2.
69

3.
40

6.
47

1.
72

1.
89

0.
60

1.
56

2.
38

3.
10

25
0

0.
09

4.
63

0.
27

1.
09

3.
16

4.
66

6.
12

14
.2
0

4.
21

4.
64

1.
02

2.
73

4.
25

5.
55

30
0

0.
13

8.
00

0.
42

1.
72

4.
93

7.
36

9.
82

25
.9
2

8.
74

9.
63

1.
58

4.
39

6.
87

9.
10

35
0

0.
19

12
.7
1

0.
60

2.
48

7.
10

10
.7
9

14
.4
8

43
.6
9

16
.0
8

17
.6
9

2.
34

6.
54

10
.3
7

13
.8
4

40
0

0.
26

19
.0
3

0.
82

3.
44

9.
75

14
.9
7

20
.1
7

66
.2
5

27
.9
8

30
.8
3

3.
29

9.
25

14
.7
2

19
.7
3

45
0

0.
34

27
.0
8

1.
08

4.
50

12
.8
4

19
.8
7

26
.6
9

96
.7
5

44
.2
2

48
.6
7

4.
34

12
.3
1

19
.5
9

26
.3
8

50
0

0.
44

36
.9
6

1.
38

5.
67

16
.3
8

25
.2
7

34
.0
5

13
6.
05

67
.0
8

73
.7
5

5.
59

15
.8
5

25
.3
1

33
.9
9

Av
er
ag
e

0.
16

11
.2
1

0.
49

2.
00

5.
72

8.
74

11
.6
9

39
.2
4

17
.0
7

18
.7
8

1.
92

5.
38

8.
52

11
.3
7

A
R
PT

0.
03

1.
05

0.
08

0.
30

0.
76

1.
09

1.
35

3.
04

1.
41

1.
55

0.
29

0.
72

1.
04

1.
29

80

Ta
bl
e
12
:A

ve
ra
ge

C
PU

va
lu
es

fo
r
th
e
co
m
pa

re
d
he
ur
ist

ic
s
gr
ou

pe
d
by

nu
m
be

r
of

m
ac
hi
ne
s
in

th
e
be

nc
hm

ar
k
ad

ap
te
d
fro

m
Pa

n
e
R
ui
z

(2
01
4)
.T

he
va
lu
es

in
bo

ld
ar
e
th
e
be

st
re
su
lts

,i
n
ea
ch

lin
e.

m
N
EH

G
H
-B

M
G
H
-B

M
2

FR
B4

10
FR

B4
30

FR
B4

50
FR

B4
70

FR
B3

FJ
SR

A
FJ

SR
A
-

V
N
D

R
N

10
R
N

30
R
N

50
R
N

70

10
0.
04

3.
48

0.
12

0.
48

1.
43

2.
20

2.
91

9.
86

17
.1
0

18
.7
9

0.
46

1.
29

2.
03

2.
75

20
0.
09

7.
34

0.
27

1.
13

3.
33

5.
11

6.
89

22
.5
9

17
.0
5

18
.7
6

1.
07

3.
06

4.
85

6.
56

30
0.
15

11
.2
1

0.
47

1.
92

5.
53

8.
46

11
.3
3

37
.1
1

17
.0
4

18
.7
2

1.
85

5.
19

8.
23

11
.0
4

40
0.
22

15
.0
4

0.
68

2.
78

7.
87

12
.0
2

16
.1
6

54
.1
1

17
.0
6

18
.8
1

2.
68

7.
46

11
.8
1

15
.7
1

50
0.
29

18
.9
7

0.
90

3.
68

10
.4
3

15
.9
3

21
.1
6

72
.5
3

17
.0
9

18
.8
3

3.
56

9.
90

15
.6
8

20
.8
0

Av
er
ag
e

0.
16

11
.2
1

0.
49

2.
00

5.
72

8.
74

11
.6
9

39
.2
4

17
.0
7

18
.7
8

1.
92

5.
38

8.
52

11
.3
7

81

Among the heuristics in the literature, the one that presented the best results
was the FRB3 that surpassed the NEH, GH-BM, GH-BM2 and FRB4x methods by a
significant difference. Note that the FRB3 obtained an ARPD of 0.75 compared to 6.15 of
the NEH heuristic in the SSD50 distribution (Table 8). However, FRB3 is considerably
more computational complex than the rest of the heuristic methods, with an average
computation time of approximately 39 seconds, compared to 0.16 seconds of the NEH
heuristic and around 2 seconds of our proposed RN10 heuristic (Tables 11 and 12). Moreover,
it can be observed that FRB3 has the highest ARPT with 3.04 compared to 0.16 from
NEH. Among the heuristics in the literature of less complexity which obtained the best
results was FRB470, with an ARPD of 1.94 and an average CPU time of around 12 seconds
considering all the setup time distributions. Moreover, the results grouped by the number
of machines provided in Tables 7 and 12 show a strong influence of the number of machines
in the ARPD and average CPU time values. The general trend is that better results
are obtained as the number of machines increase (FRB3 obtains an ARPD of 1.79 when
m = 10 and 0.71 for m = 50). The only exception is the RN70 heuristics where the ARPD
remains stable as the number of machines increases.

Considering all the heuristics, the proposed RN70 method obtained the best results
considering all distributions, with an ARPD of 0.38, an average CPU time of about 11
seconds and an ARPT of 1.29, compared to an ARPD of 1.09, an average CPU time
of approximately 39 seconds and an ARPT of 3.04 of the FRB3 heuristic. That is, the
RN70 heuristic is clearly better as it produces better solutions in less computational
time. The highest average CPU time by the FRB3 was already expected as the FRB3
method reinserts all the jobs of the sequence at each iteration, resulting in a complex
neighbourhood search procedure. Therefore, the strategy used in the FRB4x and RNx to
limit the number of jobs to be reinserted by means of the parameter x has demonstrated
an efficient way to improve the quality of the final solution without the method becoming
very computationally intensive. The results also show that the quality of the solution
is improved in the FRB4x and RNx heuristics as the value of x increases. However, the
average computational time and ARPT values are also increased as more reinsertions
are performed. The heuristics from the setup times literature, FJSRA and FJSRA-VND,
present good APRD results, especially when the distribution intervals increase (SSD100
and SSD125), however the average CPU times and ARPT values are worse when compared
to the RNx heuristic (x = {10, 30, 50, 70}). These results are due to the SRA (setup ranking
algorithm), which is used to create the fictitious job for the FJSRA and FJSRA-VND, and
is being computationally intensive. To make matters worse, the acceleration procedure
from Section 2.3.3 cannot be applied to the construction phase of both heuristics. Figure
9 shows the ARPD values and ARPT of the heuristics. The dominant heuristics are
highlighted in green, while the remaining are in red.

Although Tables 6, 7, 11 and 12 show that the proposed method is clearly better

82

ARPT
3.002.502.001.501.00.50.00

A
R

PD

12.00

11.00

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

.00

RN 70
RN 50

RN 30

RN 10

NEH

GH-BM2

GH-BM

FRB4 70

FRB4 50
FRB4 30

FRB4 10

FRB3

FJSRA-VND

FJSRA

Figure 9: ARPD and ARPT values for compared heuristics. The Pareto dominating
heuristic is depicted in green.

than the best heuristics in the literature, a statistical analysis should be performed to
prove that the differences in the ARPD values are in fact statistically significant. Figure
10 presents the measurements with 95% confidence intervals in the different setup time
distributions. It can be stated that heuristics have statistically different averages. The best
heuristics in the literature (FRB4x and FRB3) obtain consistently worse results as the
intervals of distributions increase. In contrast, the RNx heuristic has a stable performance,
with slightly better results in the SSD100 and SSD125 distributions. This shows that the
proposed heuristic is favoured when setup times are longer. Table 13 presents the Tukey
test, grouped by number of jobs, that shows that the main compared heuristics have
statistically different means. Therefore, the presented results and the statistical analyses
carried out show that the proposed RNx method is better than the heuristics adapted
from the literature, both in solution quality and in computational efficiency.

Although the experiments show that the proposed heuristics work well for the

83

Table 13: Tukey test results of the best heuristics, with significance level of 95% in the
benchmark from Pan e Ruiz (2014). The values in bold mean that there is a
significant statistical difference between the algorithms in the first and second
column.

n
Heuristic
(I)

Heuristic
(J)

Mean Difference
(I-J)

Standard
Error

Significance

50 - 100a FRB470 FRB3 0.242 0.050 0.000
RN70 1.078 0.050 0.000

FRB3 FRB470 -0.242 0.050 0.000
RN70 0.836 0.050 0.000

RN70 FRB470 -1.078 0.050 0.000
FRB3 -0.836 0.050 0.000

150 - 200 FRB470 FRB3 0.674 0.043 0.000
RN70 1.398 0.043 0.000

FRB3 FRB470 -0.674 0.043 0.000
RN70 0.724 0.043 0.000

RN70 FRB470 -1.398 0.043 0.000
FRB3 -0.724 0.043 0.000

250 - 300 FRB470 FRB3 0.902 0.047 0.000
RN70 1.631 0.047 0.000

FRB3 FRB470 -0.902 0.047 0.000
RN70 0.729 0.047 0.000

RN70 FRB470 -1.631 0.047 0.000
FRB3 -0.729 0.047 0.000

350 - 400 FRB470 FRB3 1.184 0.049 0.000
RN70 1.857 0.049 0.000

FRB3 FRB470 -1.184 0.049 0.000
RN70 0.673 0.049 0.000

RN70 FRB470 -1.857 0.049 0.000
FRB3 -0.673 0.049 0.000

450 - 500 FRB470 FRB3 1.277 0.049 0.000
RN70 1.835 0.049 0.000

FRB3 FRB470 -1.277 0.049 0.000
RN70 0.557 0.049 0.000

RN70 FRB470 -1.835 0.049 0.000
FRB3 -0.557 0.049 0.000

a Instances with 50 and 100 jobs.

84

Distribution
All InstancesSSD125SSD100SSD50

A
R

PD

2.25

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

RN 70
FRB4 70
FRB3

Heuristics

Figure 10: Means plot for the heuristics in all distributions for the benchmark from Pan e
Ruiz (2014). All means have 95% confidence intervals

mixed no-idle instances with sequence dependent setup times, it is important to know
the performance of our heuristic on (mixed) no-idle instances only (without sequence-
dependent setup times). Tables 14 and 15 show that RN70 (APRD value of 0.44) presents
similar results to FRB3 (ARPD value of 0.23), which obtained the best performance
between the compared heuristics. Thus, we conclude that the proposed strategy can also
obtain a good performance also for the mixed no-idle PFSP without setup times.

3.3.6 Comparison between heuristics in the benchmark adapted from Ruiz, Maroto e
Alcaraz (2005)

We evaluated the RNx heuristic on the instances from the literature with setup
times proposed by Ruiz, Maroto e Alcaraz (2005). The results are summarized in Table
16. The ARPD values grouped by number of jobs are shown in Table 17, and presented
in more detail in Tables 18, 19, 20, 21 and 22. The results are similar to those from the

85

Distribution
All InstancesSSD125SSD100SSD50SSD10

A
R

PD

2.50

2.25

2.00

1.75

1.50

1.25

1.00

0.75

0.50

RN 70
FRB4 70
FRB3

Heuristics

Figure 11: Means plot for the heuristics in all distributions for the benchmark from Ruiz,
Maroto e Alcaraz (2005). All means have 95% confidence intervals

benchmark of Pan e Ruiz (2014). It can be observed that the RNx obtained better results
in all distributions. For example, RN70 obtained an ARPD of 0.60, 0.73, 0.84 and 0.82
for distribution intervals SSD10, SSD50, SSD100 and SSD125, respectively, compared to
0.63, 1.21, 1.85 and 2.07 from FRB3 and 0.83, 1.61, 2.44 and 2.56 from FRB470. In terms
of computational efficiency, the RNx (x = {10, 30, 50, 70}) presented lower average CPU
times and ARPT when compared to FRB3. On average, the FRB3 consumes in average
around 7 seconds compared to RN70 with approximately 2 seconds and has an ARPT of
2.32, compared to 1.33 from RN70. The RN10 heuristic shows exceptional efficiency with
an ARPT of 0.58, compared to 2.32 and 1.37 of FRB3 and FRB470, respectively. Figure
11 shows the ARPD results with 95% confidence intervals.

86

Table 14: ARPD results in the benchmark from Pan e Ruiz (2014) without sequence
dependent setup times. The values in bold are the best results, in each line.

n NEH GH-BM2 FRB470 FRB3
FJSRA-
VND

RN70

50 5.22 2.91 0.75 0.90 5.11 0.68
100 5.04 2.88 0.74 0.55 4.69 0.49
150 4.39 2.52 0.74 0.25 4.17 0.53
200 3.86 2.23 0.66 0.16 3.51 0.47
250 3.44 2.00 0.60 0.13 3.27 0.44
300 3.26 1.90 0.60 0.10 3.04 0.42
350 3.03 1.77 0.50 0.08 2.83 0.38
400 2.66 1.52 0.48 0.07 2.49 0.35
450 2.56 1.50 0.47 0.04 2.37 0.35
500 2.39 1.40 0.43 0.04 2.19 0.35
Average 3.59 2.06 0.60 0.23 3.37 0.44

Table 15: Average CPU times in the benchmark from Pan e Ruiz (2014) without sequence
dependent setup times.

n NEH GH-BM2 FRB470 FRB3
FJSRA-
VND

RN70

50 0.00 0.01 0.06 0.07 0.07 0.07
100 0.02 0.04 0.50 0.60 0.55 0.55
150 0.05 0.10 1.41 2.23 1.60 1.62
200 0.08 0.22 3.13 5.98 3.43 3.45
250 0.12 0.30 5.51 11.64 5.92 5.96
300 0.20 0.47 8.21 19.84 9.13 8.93
350 0.29 0.70 12.10 32.17 13.14 13.00
400 0.38 0.96 16.05 49.95 17.57 17.60
450 0.46 1.22 21.05 73.95 22.94 22.73
500 0.64 1.53 27.26 106.40 28.63 28.54
Average 0.22 0.56 9.53 30.28 10.30 10.24

87

Table 16: Summary of the results in the benchmark adapted from Ruiz, Maroto e Alcaraz
(2005).

Heuristic
ARPD Average

CPU Time
ARPT

SSD10 SSD50 SSD100 SSD125 Average
RN70 0.60 0.73 0.84 0.82 0.74 2.01 1.33
RN50 0.66 0.84 0.95 0.93 0.85 1.52 1.22
RN30 0.78 1.05 1.22 1.22 1.07 0.96 1.01
FRB3 0.63 1.21 1.85 2.07 1.44 6.70 2.32
RN10 1.35 1.80 2.11 2.12 1.85 0.34 0.58
FRB470 0.83 1.61 2.44 2.56 1.86 1.93 1.37
FRB450 0.91 1.70 2.60 2.71 1.98 1.44 1.25
FRB430 1.10 1.93 2.85 3.04 2.23 0.92 1.01
FJSRA-VND 3.22 2.93 3.03 2.91 3.03 6.39 1.29
FRB410 1.60 2.75 3.84 4.16 3.09 0.35 0.53
GH-BM2 2.48 4.48 5.68 6.07 4.68 0.08 0.16
FJSRA 6.80 5.39 5.12 5.03 5.58 5.80 1.19
NEH 4.26 6.45 7.78 8.37 6.72 0.02 0.03
GH-BM 7.18 11.44 13.01 12.83 11.11 2.22 0.72

88

Ta
bl
e
17
:A

R
PD

va
lu
es

fo
rt

he
co
m
pa

re
d
he

ur
ist

ics
in

th
e
al
ld

ist
rib

ut
io
ns

in
te
rv
al
si

n
th
e
be

nc
hm

ar
k
ad

ap
te
d
fro

m
Ru

iz,
M
ar
ot
o
e
A
lca

ra
z

(2
00
5)
.T

he
va
lu
es

in
bo

ld
ar
e
th
e
be

st
A
R
PD

,i
n
ea
ch

lin
e.

n
m

N
EH

G
H
-B

M
G
H
-B

M
2

FR
B4

10
FR

B4
30

FR
B4

50
FR

B4
70

FR
B3

FJ
SR

A
FJ

SR
A
-

V
N
D

R
N

10
R
N

30
R
N

50
R
N

70

20
5

6.
07

10
.8
9

3.
77

2.
54

2.
10

2.
10

2.
10

1.
74

7.
20

3.
45

1.
57

1.
41

1.
41

1.
41

20
10

6.
38

10
.4
9

3.
89

2.
04

1.
91

1.
91

1.
91

1.
49

8.
45

4.
10

1.
96

1.
51

1.
51

1.
51

20
20

5.
48

8.
20

3.
29

1.
82

1.
47

1.
47

1.
47

1.
56

7.
89

3.
64

1.
59

1.
19

1.
19

1.
19

50
5

6.
81

11
.8
9

4.
65

3.
05

2.
27

2.
14

2.
14

1.
74

5.
01

2.
65

1.
56

0.
89

0.
74

0.
74

50
10

7.
28

11
.9
9

4.
85

3.
19

1.
99

1.
78

1.
78

1.
77

6.
53

3.
74

1.
87

0.
93

0.
82

0.
82

50
20

6.
36

10
.1
8

4.
30

2.
57

1.
88

1.
63

1.
63

1.
46

7.
59

4.
07

1.
83

0.
88

0.
71

0.
71

10
0

5
7.
22

12
.0
3

5.
21

3.
55

2.
53

2.
27

2.
08

1.
82

3.
79

2.
31

1.
82

0.
90

0.
62

0.
39

10
0

10
7.
07

12
.1
2

5.
17

3.
37

2.
48

1.
95

1.
74

1.
41

4.
78

2.
85

2.
02

1.
04

0.
76

0.
52

10
0

20
6.
64

10
.8
5

4.
75

3.
16

2.
11

1.
74

1.
63

1.
25

5.
92

3.
44

2.
03

1.
14

0.
68

0.
57

20
0

10
7.
43

12
.5
5

5.
61

3.
94

2.
70

2.
33

2.
05

1.
33

3.
12

1.
90

1.
97

0.
97

0.
55

0.
39

20
0

20
6.
94

11
.0
2

5.
12

3.
67

2.
40

2.
00

1.
67

0.
94

4.
17

2.
51

1.
97

0.
92

0.
57

0.
30

50
0

20
6.
91

11
.1
4

5.
53

4.
15

2.
89

2.
45

2.
12

0.
81

2.
57

1.
63

1.
98

1.
03

0.
60

0.
39

Av
er
ag
e

6.
72

11
.1
1

4.
68

3.
09

2.
23

1.
98

1.
86

1.
44

5.
58

3.
03

1.
85

1.
07

0.
85

0.
74

89

Ta
bl
e
18
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
he
ur
ist

ic
s
in

th
e
SS

D
10

di
st
rib

ut
io
n
in
te
rv
al

in
th
e
be

nc
hm

ar
k
ad

ap
te
d
fro

m
R
ui
z,

M
ar
ot
o
e

A
lc
ar
az

(2
00
5)
.T

he
va
lu
es

in
bo

ld
ar
e
th
e
be

st
A
R
PD

,i
n
ea
ch

lin
e.

n
m

N
EH

G
H
-B

M
G
H
-B

M
2

FR
B4

10
FR

B4
30

FR
B4

50
FR

B4
70

FR
B3

FJ
SR

A
FJ

SR
A
-

V
N
D

R
N

10
R
N

30
R
N

50
R
N

70

20
5

3.
42

7.
39

1.
88

1.
11

1.
03

1.
03

1.
03

0.
98

8.
20

3.
58

0.
75

0.
91

0.
91

0.
91

20
10

5.
21

8.
56

3.
08

1.
68

1.
54

1.
54

1.
54

1.
05

10
.6
8

4.
53

1.
73

1.
08

1.
08

1.
08

20
20

5.
48

7.
29

2.
97

1.
45

1.
09

1.
09

1.
09

1.
32

10
.9
1

4.
87

1.
45

1.
38

1.
38

1.
38

50
5

2.
83

5.
65

1.
55

0.
96

0.
69

0.
55

0.
55

0.
44

4.
49

1.
86

0.
79

0.
42

0.
34

0.
34

50
10

4.
91

8.
28

2.
92

1.
78

1.
15

0.
93

0.
93

0.
93

8.
23

4.
00

1.
43

0.
57

0.
64

0.
64

50
20

5.
04

8.
70

3.
09

2.
30

1.
57

1.
22

1.
22

1.
06

10
.4
7

5.
03

2.
00

1.
10

0.
73

0.
73

10
0

5
2.
69

5.
05

1.
57

0.
91

0.
57

0.
47

0.
41

0.
37

2.
89

1.
39

0.
67

0.
30

0.
27

0.
13

10
0

10
3.
74

6.
69

2.
11

1.
43

0.
93

0.
62

0.
56

0.
41

5.
27

2.
63

1.
27

0.
60

0.
60

0.
34

10
0

20
5.
22

8.
20

2.
98

2.
30

1.
27

1.
03

0.
77

0.
56

8.
13

4.
19

1.
89

0.
96

0.
66

0.
65

20
0

10
3.
44

6.
32

2.
06

1.
42

0.
83

0.
67

0.
48

0.
18

3.
42

1.
70

1.
18

0.
55

0.
34

0.
26

20
0

20
5.
00

7.
66

2.
92

1.
98

1.
29

0.
84

0.
66

0.
24

5.
65

3.
01

1.
62

0.
70

0.
53

0.
30

50
0

20
4.
12

6.
42

2.
65

1.
83

1.
20

0.
97

0.
77

0.
08

3.
32

1.
85

1.
47

0.
83

0.
50

0.
42

Av
er
ag
e

4.
26

7.
18

2.
48

1.
60

1.
10

0.
91

0.
83

0.
63

6.
80

3.
22

1.
35

0.
78

0.
66

0.
60

90

Ta
bl
e
19
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
he
ur
ist

ic
s
in

th
e
SS

D
50

di
st
rib

ut
io
n
in
te
rv
al

in
th
e
be

nc
hm

ar
k
ad

ap
te
d
fro

m
R
ui
z,

M
ar
ot
o
e

A
lc
ar
az

(2
00
5)
.T

he
va
lu
es

in
bo

ld
ar
e
th
e
be

st
A
R
PD

,i
n
ea
ch

lin
e.

n
m

N
EH

G
H
-B

M
G
H
-B

M
2

FR
B4

10
FR

B4
30

FR
B4

50
FR

B4
70

FR
B3

FJ
SR

A
FJ

SR
A
-

V
N
D

R
N

10
R
N

30
R
N

50
R
N

70

20
5

5.
97

10
.3
7

3.
99

2.
10

1.
79

1.
79

1.
79

1.
47

6.
46

3.
05

1.
50

1.
44

1.
44

1.
44

20
10

6.
22

10
.7
3

3.
76

1.
73

1.
66

1.
66

1.
66

1.
33

8.
49

3.
95

1.
79

1.
41

1.
41

1.
41

20
20

5.
17

8.
45

3.
32

1.
93

1.
44

1.
44

1.
44

1.
58

7.
41

3.
28

1.
52

1.
03

1.
03

1.
03

50
5

6.
34

11
.8
6

4.
18

2.
65

1.
82

1.
72

1.
72

1.
31

5.
07

2.
79

1.
57

0.
68

0.
65

0.
65

50
10

7.
11

12
.1
5

4.
56

3.
03

1.
85

1.
54

1.
54

1.
45

6.
26

3.
70

1.
95

0.
98

0.
88

0.
88

50
20

6.
69

10
.4
2

4.
35

2.
40

1.
82

1.
50

1.
50

1.
32

7.
61

4.
17

1.
52

0.
85

0.
65

0.
65

10
0

5
6.
43

11
.7
9

4.
70

2.
86

2.
00

1.
82

1.
62

1.
50

3.
60

2.
23

1.
72

0.
87

0.
51

0.
30

10
0

10
6.
66

12
.2
8

4.
80

2.
95

2.
01

1.
61

1.
55

1.
03

4.
60

2.
77

1.
96

1.
02

0.
75

0.
50

10
0

20
6.
65

11
.5
9

4.
76

2.
87

1.
81

1.
59

1.
56

1.
20

5.
63

3.
28

1.
94

1.
07

0.
75

0.
63

20
0

10
6.
77

12
.7
5

5.
01

3.
18

2.
12

1.
86

1.
56

1.
03

3.
00

1.
82

1.
93

0.
91

0.
61

0.
30

20
0

20
6.
64

12
.0
6

4.
91

3.
45

2.
13

1.
73

1.
55

0.
68

3.
97

2.
47

1.
97

1.
02

0.
62

0.
38

50
0

20
6.
76

12
.8
1

5.
47

3.
85

2.
66

2.
10

1.
87

0.
67

2.
58

1.
70

2.
24

1.
27

0.
75

0.
53

Av
er
ag
e

6.
45

11
.4
4

4.
48

2.
75

1.
93

1.
70

1.
61

1.
21

5.
39

2.
93

1.
80

1.
05

0.
84

0.
73

91

Ta
bl
e
20
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
he
ur
ist

ic
s
in

th
e
SS

D
10
0
di
st
rib

ut
io
n
in
te
rv
al

in
th
e
be

nc
hm

ar
k
ad

ap
te
d
fro

m
R
ui
z,

M
ar
ot
o
e

A
lc
ar
az

(2
00
5)
.T

he
va
lu
es

in
bo

ld
ar
e
th
e
be

st
A
R
PD

,i
n
ea
ch

lin
e.

n
m

N
EH

G
H
-B

M
G
H
-B

M
2

FR
B4

10
FR

B4
30

FR
B4

50
FR

B4
70

FR
B3

FJ
SR

A
FJ

SR
A
-

V
N
D

R
N

10
R
N

30
R
N

50
R
N

70

20
5

7.
19

13
.0
0

4.
93

3.
42

3.
01

3.
01

3.
01

2.
46

7.
03

3.
71

2.
08

1.
89

1.
89

1.
89

20
10

6.
63

11
.1
0

4.
54

2.
40

2.
33

2.
33

2.
33

1.
73

7.
31

4.
15

2.
17

1.
57

1.
57

1.
57

20
20

5.
83

8.
46

3.
62

1.
92

1.
83

1.
83

1.
83

1.
55

6.
95

3.
26

1.
52

1.
17

1.
17

1.
17

50
5

8.
33

14
.9
1

5.
62

3.
83

2.
75

2.
73

2.
73

1.
99

5.
07

2.
81

2.
00

1.
20

0.
91

0.
91

50
10

8.
27

13
.9
2

5.
73

3.
85

2.
47

2.
33

2.
33

2.
34

5.
87

3.
90

2.
18

1.
14

0.
79

0.
79

50
20

6.
80

10
.8
7

4.
75

2.
95

2.
00

1.
89

1.
89

1.
76

6.
19

3.
60

1.
81

0.
84

0.
80

0.
80

10
0

5
9.
38

15
.4
7

6.
82

4.
72

3.
58

3.
13

2.
97

2.
58

4.
21

2.
67

2.
40

1.
27

0.
89

0.
60

10
0

10
8.
55

14
.8
2

6.
57

4.
31

3.
15

2.
58

2.
17

1.
96

4.
88

3.
18

2.
31

1.
14

0.
93

0.
58

10
0

20
7.
03

12
.0
6

5.
35

3.
52

2.
59

2.
16

2.
07

1.
48

5.
08

3.
29

2.
24

1.
23

0.
60

0.
57

20
0

10
9.
49

16
.0
5

7.
41

5.
37

3.
91

3.
30

3.
04

1.
94

3.
18

2.
15

2.
47

1.
19

0.
64

0.
56

20
0

20
7.
82

12
.4
5

6.
05

4.
44

2.
98

2.
66

2.
09

1.
25

3.
57

2.
30

2.
03

0.
94

0.
60

0.
27

50
0

20
8.
09

12
.9
5

6.
74

5.
30

3.
63

3.
19

2.
77

1.
13

2.
05

1.
38

2.
16

1.
07

0.
64

0.
33

Av
er
ag
e

7.
78

13
.0
1

5.
68

3.
84

2.
85

2.
60

2.
44

1.
85

5.
12

3.
03

2.
11

1.
22

0.
95

0.
84

92

Ta
bl
e
21
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
he
ur
ist

ic
s
in

th
e
SS

D
12
5
di
st
rib

ut
io
n
in
te
rv
al

in
th
e
be

nc
hm

ar
k
ad

ap
te
d
fro

m
R
ui
z,

M
ar
ot
o
e

A
lc
ar
az

(2
00
5)
.T

he
va
lu
es

in
bo

ld
ar
e
th
e
be

st
A
R
PD

,i
n
ea
ch

lin
e.

n
m

N
EH

G
H
-B

M
G
H
-B

M
2

FR
B4

10
FR

B4
30

FR
B4

50
FR

B4
70

FR
B3

FJ
SR

A
FJ

SR
A
-

V
N
D

R
N

10
R
N

30
R
N

50
R
N

70

20
5

7.
69

12
.8
1

4.
29

3.
51

2.
56

2.
56

2.
56

2.
03

7.
12

3.
48

1.
96

1.
41

1.
41

1.
41

20
10

7.
47

11
.5
8

4.
20

2.
35

2.
11

2.
11

2.
11

1.
86

7.
30

3.
76

2.
15

1.
96

1.
96

1.
96

20
20

5.
45

8.
61

3.
26

1.
99

1.
52

1.
52

1.
52

1.
80

6.
28

3.
17

1.
85

1.
17

1.
17

1.
17

50
5

9.
75

15
.1
2

7.
24

4.
76

3.
82

3.
54

3.
54

3.
22

5.
42

3.
15

1.
88

1.
27

1.
06

1.
06

50
10

8.
81

13
.6
3

6.
20

4.
10

2.
51

2.
32

2.
32

2.
38

5.
76

3.
36

1.
93

1.
04

0.
96

0.
96

50
20

6.
91

10
.7
2

5.
02

2.
61

2.
14

1.
92

1.
92

1.
70

6.
07

3.
49

1.
99

0.
71

0.
68

0.
68

10
0

5
10
.3
8

15
.8
1

7.
73

5.
69

3.
99

3.
65

3.
33

2.
82

4.
45

2.
94

2.
50

1.
16

0.
81

0.
52

10
0

10
9.
32

14
.6
9

7.
20

4.
78

3.
82

2.
98

2.
69

2.
24

4.
36

2.
81

2.
54

1.
41

0.
77

0.
65

10
0

20
7.
68

11
.5
7

5.
90

3.
93

2.
77

2.
17

2.
11

1.
75

4.
82

3.
01

2.
04

1.
29

0.
71

0.
42

20
0

10
10
.0
2

15
.0
9

7.
98

5.
79

3.
94

3.
50

3.
14

2.
18

2.
89

1.
94

2.
32

1.
23

0.
63

0.
45

20
0

20
8.
30

11
.9
2

6.
59

4.
83

3.
21

2.
76

2.
37

1.
58

3.
48

2.
25

2.
24

1.
02

0.
52

0.
25

50
0

20
8.
68

12
.3
7

7.
27

5.
63

4.
08

3.
54

3.
08

1.
34

2.
34

1.
61

2.
04

0.
97

0.
52

0.
27

Av
er
ag
e

8.
37

12
.8
3

6.
07

4.
16

3.
04

2.
71

2.
56

2.
07

5.
03

2.
91

2.
12

1.
22

0.
93

0.
82

93

Ta
bl
e
22
:A

ve
ra
ge

CP
U

tim
es

an
d
A
R
PT

fo
rt

he
co
m
pa

re
d
he
ur
ist

ics
in

th
e
al
ld

ist
rib

ut
io
ns

in
te
rv
al
s
in

th
e
be

nc
hm

ar
k
ad

ap
te
d
fro

m
Ru

iz,
M
ar
ot
o
e
A
lc
ar
az

(2
00
5)
.T

he
va
lu
es

in
bo

ld
ar
e
th
e
be

st
C
PU

tim
es
,i
n
ea
ch

lin
e.

n
m

N
EH

G
H
-B

M
G
H
-B

M
2

FR
B4

10
FR

B4
30

FR
B4

50
FR

B4
70

FR
B3

FJ
SR

A
FJ

SR
A
-

V
N
D

R
N

10
R
N

30
R
N

50
R
N

70

20
5

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

20
10

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

20
20

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

50
5

0.
00

0.
00

0.
00

0.
00

0.
01

0.
01

0.
01

0.
01

0.
00

0.
00

0.
00

0.
01

0.
01

0.
01

50
10

0.
00

0.
01

0.
00

0.
01

0.
02

0.
02

0.
02

0.
03

0.
00

0.
00

0.
01

0.
02

0.
02

0.
02

50
20

0.
00

0.
02

0.
00

0.
02

0.
04

0.
04

0.
04

0.
06

0.
00

0.
00

0.
02

0.
04

0.
04

0.
04

10
0

5
0.
00

0.
03

0.
00

0.
01

0.
04

0.
05

0.
06

0.
09

0.
08

0.
09

0.
02

0.
04

0.
06

0.
06

10
0

10
0.
00

0.
07

0.
01

0.
04

0.
08

0.
12

0.
14

0.
21

0.
09

0.
10

0.
04

0.
09

0.
13

0.
14

10
0

20
0.
01

0.
17

0.
02

0.
08

0.
19

0.
28

0.
33

0.
46

0.
09

0.
10

0.
09

0.
20

0.
28

0.
32

20
0

10
0.
01

0.
64

0.
04

0.
17

0.
40

0.
61

0.
80

1.
75

1.
64

1.
80

0.
17

0.
45

0.
68

0.
88

20
0

20
0.
03

1.
46

0.
09

0.
38

0.
96

1.
46

1.
89

3.
92

1.
65

1.
83

0.
39

1.
00

1.
52

1.
94

50
0

20
0.
23

24
.2
1

0.
75

3.
47

9.
29

14
.6
6

19
.9
0

73
.9
1

65
.9
9

72
.7
3

3.
35

9.
62

15
.4
6

20
.7
4

Av
er
ag
e

0.
02

2.
22

0.
08

0.
35

0.
92

1.
44

1.
93

6.
70

5.
80

6.
39

0.
34

0.
96

1.
52

2.
01

A
R
PT

0.
03

0.
72

0.
16

0.
53

1.
01

1.
25

1.
37

2.
32

1.
19

1.
29

0.
58

1.
01

1.
22

1.
33

94

Furthermore, a statistical test with FRB470, FRB3 and RN70 was generated to
show that the averages are statistically different. The results from the statistical tests are
presented in Table 23. From the tests we can see that the RN70 is statically better than the
best heuristics from the literature in the benchmark from Ruiz, Maroto e Alcaraz (2005).

It is worth assessing the performance of our heuristic on instances with sequence-
dependent setup times only (without no-idle machines). The ARPD and average CPU
times for the compared heuristics are presented in Tables 24 and 25. The results show
that this time around RN70 obtained the best ARPD values for all instance groups (0.34
compared 0.73 of FRB3). Therefore, we conclude that the proposed method generates
high quality solutions even when no-idle machines are not considered.

3.3.7 Evaluation of the MILP model and the RNx heuristic

As the RN70 heuristic presented the best results in the previous comparisons, we
chose to compare it to the optimal solutions found by the MILP model presented in
Section 2.3.1. Table 26 presents the results in terms of ARPD and percentage of optimal
solutions found by the RN70. The ARPD represents the distance of the solutions found
by the RN70 relative to the optimal solution obtained by the MILP for the instance set.
The results show that the RN70 found near optimum solutions, with an ARPD of 4.12
when we consider all the instances, and in the best case 3.34 for the SSD50 distribution
interval. In addition, on average 4% of the solutions found by the RN70 heuristic are
optimal. The best results are achieved when n = 10 and m = 5, where the percentage
of optimal solutions found can reach up to 17% for the SSD50 and SSD100 distribution
intervals. Thus, together with the results presented in the previous benchmarks, we can
conclude that the RN70 heuristic obtained good solutions and sometimes optimal with
excellent computational efficiency. Table 27 shows how the MILP CPU time requirements
increased throughout increase over the different number of jobs and machines and the
maximum CPU time for each set of instances. We can see that the average CPU time
significantly as the number of jobs and machines increased, with up to 8643 seconds (2
hours and 24 minutes) in the worst-case scenario for the set of instances with n = 20,
m = 5 and SSD50 distribution.

95

Table 23: Tukey test results of the best heuristics, with significance level of 95% in the
benchmark from Ruiz, Maroto e Alcaraz (2005). The values in bold mean that
there is a significant statistical difference between the algorithms in the first and
second column.

n
Heuristic
(I)

Heuristic
(J)

Mean Difference
(I-J)

Standard
Error

Significance

20 FRB470 FRB3 0.228 0.086 0.022
RN70 0.456 0.086 0.000

FRB3 FRB470 -0.228 0.086 0.022
RN70 0.228 0.086 0.022

RN70 FRB470 -0.456 0.086 0.000
FRB3 -0.228 0.086 0.022

50 FRB470 FRB3 0.193 0.072 0.021
RN70 1.091 0.072 0.000

FRB3 FRB470 -0.193 0.072 0.021
RN70 0.898 0.072 0.000

RN70 FRB470 -1.091 0.072 0.000
FRB3 -0.898 0.072 0.000

100 FRB470 FRB3 0.326 0.065 0.000
RN70 1.326 0.065 0.000

FRB3 FRB470 -0.326 0.065 0.000
RN70 1.000 0.065 0.000

RN70 FRB470 -1.326 0.065 0.000
FRB3 -1.000 0.065 0.000

200 FRB470 FRB3 0.726 0.073 0.000
RN70 1.515 0.073 0.000

FRB3 FRB470 -0.726 0.073 0.000
RN70 0.789 0.073 0.000

RN70 FRB470 -1.515 0.073 0.000
FRB3 -0.789 0.073 0.000

500 FRB470 FRB3 1.316 0.095 0.000
RN70 1.733 0.095 0.000

FRB3 FRB470 -1.316 0.095 0.000
RN70 0.417 0.095 0.000

RN70 FRB470 -1.733 0.095 0.000
FRB3 -0.417 0.095 0.000

96

Table 24: ARPD results in the benchmark from Ruiz, Maroto e Alcaraz (2005) without
no-idle machines. The values in bold are the best CPU times, in each line.

n m NEH GH-BM2 FRB470 FRB3
FJSRA-
VND

RN70

20 5 4.79 3.04 1.61 1.30 3.27 0.82
20 10 3.93 2.44 1.57 1.06 3.64 0.67
20 20 2.84 1.80 1.07 0.78 3.36 0.68
50 5 4.99 3.28 1.40 0.95 2.09 0.18
50 10 4.15 3.02 0.98 0.67 3.01 0.33
50 20 3.33 2.51 0.76 0.44 3.62 0.40
100 5 5.61 4.36 1.50 1.17 1.87 0.13
100 10 4.30 3.36 0.95 0.51 2.14 0.21
100 20 3.43 2.63 0.64 0.55 2.77 0.18
200 10 4.61 3.86 1.10 0.58 1.24 0.10
200 20 3.42 2.85 0.83 0.29 1.79 0.15
500 20 3.64 3.22 1.32 0.41 0.68 0.22

Average 4.09 3.03 1.15 0.73 2.46 0.34

Table 25: Average CPU times in the benchmark from Ruiz, Maroto e Alcaraz (2005)
without no-idle machines.

n m NEH GH-BM2 FRB470 FRB3
FJSRA-
VND

RN70

20 5 0.00 0.00 0.00 0.00 0.00 0.00
20 10 0.00 0.00 0.00 0.00 0.00 0.00
20 20 0.00 0.00 0.00 0.00 0.00 0.00
50 5 0.00 0.00 0.01 0.01 0.00 0.01
50 10 0.00 0.00 0.01 0.01 0.00 0.01
50 20 0.00 0.00 0.03 0.03 0.01 0.03
100 5 0.00 0.00 0.04 0.05 0.02 0.05
100 10 0.00 0.01 0.09 0.11 0.04 0.11
100 20 0.01 0.02 0.25 0.28 0.10 0.29
200 10 0.01 0.04 0.68 1.01 0.26 0.75
200 20 0.03 0.09 1.59 2.64 0.69 1.90
500 20 0.22 0.65 14.61 47.63 5.33 16.07
Average 0.02 0.07 1.44 4.31 0.54 1.60

97

Table 26: APRD and percentage of optimum solutions for the proposed RN70 heuristic.

Distribution n m ARPD
Percentage of
Optimal Solutions

SSD50 10 5 2.88 17%
10 10 2.92 7%
15 5 3.61 0%
15 10 3.06 0%
20 5 4.22 0%
Average 3.34 5%

SSD100 10 5 2.85 17%
10 10 3.50 0%
15 5 4.88 3%
15 10 4.42 0%
20 5 5.63 0%
Average 4.26 4%

SSD125 10 5 4.56 10%
10 10 3.23 7%
15 5 6.23 0%
15 10 3.97 3%
20 5 5.88 0%
Average 4.77 4%

Average 4.12 4%

98

Table 27: Average and maximum CPU time for the MILP model.

Distribution n m
CPU Time
Average Maximum

SSD50 10 5 1.07 1.93
10 10 2.36 12.17
15 5 19.47 106.81
15 10 158.08 1284.62
20 5 687.79 8643.28
Average 173.75 2009.76

SSD100 10 5 0.79 1.84
10 10 2.21 13.54
15 5 10.68 55.13
15 10 398.78 3671.78
20 5 135.26 810.05
Average 109.54 910.47

SSD125 10 5 0.86 2.03
10 10 1.99 10.64
15 5 15.05 71.40
15 10 527.22 3124.45
20 5 279.20 2808.88
Average 164.86 1203.48

3.4 Conclusion

In this chapter, the scheduling problem in a mixed no-idle PFSP with sequence
dependent setup times was studied. Considering a comprehensive literature review carried
out on the no-idle PFSP, it was found that the mixed no-idle PFSP with setup dependent
times has not yet been studied despite it being present in current production systems. In
a mixed no-idle environment, not all machines need to be in continuous processing. As
the problem had not yet been addressed in the literature, an MILP and ways to evaluate
the makespan of a sequence were proposed. An acceleration method for assessing the
makespan of an insertion neighbourhood was also developed.

A new constructive heuristic, called RNx, is proposed in this chapter in order to
provide the problem with a solution method that obtained good results with computational
efficiency. For comparison purposes, the best heuristics of the no-idle flowshop problem
with makespan criterion were adapted to the addressed problem.

99

Based on the statistical comparisons carried out, it was found that the FRB3 method
offers the best performance among the main methods adapted in the literature. However,
the analyses showed that the proposed RNx method surpassed the FRB3 heuristic in terms
of solution quality and computational efficiency. The statistical results also show that the
means are significantly different. Therefore, the proposed heuristic can be considered as
an important contribution to the state of the art in constructive heuristics for the no-idle
PFSP problem and the variant studied in this chapter. In the next chapter, the mixed
no-idle PFSP with total flowtime criterion will be presented.

101

4 THE MIXED NO-IDLE PFSP WITH SETUP TIMES AND TOTAL FLOWTIME
MINIMIZATION

In this chapter, the total flowtime minimisation criterion is addressed given its
relevance to the current production dynamics due to its relationship with minimising
in-process inventory (LIU; REEVES, 2001). As this is the first time that this problem
has been studied, the most efficient heuristics proposed for the no-idle and mixed no-
idle PFSP problems with makespan criterion (denoted by Fm|prmu, no− idle|Cmax and
Fm|prmu,mixed no− idle|Cmax, according to Graham et al. (1979), as well as PFSP with
makespan and total flowtime minimisation (Fm|prmu|Cmax e Fm|prmu|

∑
Cj , respectively)

were adapted and tested with the purpose of generating a basis of comparison for the
proposed heuristics. Moreover, a method for calculating the makespan of a permutation
sequence and an acceleration method for the insertion neighbourhood are provided in
detail. The heuristics were compared through computational and statistical experiments in
an extensive benchmark with 4500 instances. Experiments with the MILP formulation are
presented in order to compared the proposed heuristics with optimal solutions for small
sized problems instances. The results obtained demonstrate that the proposed heuristics
offer high quality solutions with computational efficiency.

The chapter is organised as follows: Section 4.1 analyses the state of the art in
heuristics. Section 4.2 proposes new heuristics. In Section 4.3, computational and statistical
experiments are performed among the compared heuristics and the MILP model. Finally,
Section 4.4 draws the main conclusions of the study.

4.1 Literature Review

This chapter focuses on the state of the art of constructive and improvement
heuristics, as well as on the proposal of new heuristics to address the problem.

As mentioned earlier, the mixed no-idle PFSP with a sequence-dependent setup
times has not yet been studied in the literature. Therefore, heuristics proposed for other
related problems were adapted to our problem. Basically, the following topics were reviewed:
heuristics for the PFSP with makepsan criterion (Fm|prmu|Cmax), PFSP with total flow-
time criterion (Fm|prmu|

∑
Cj), no-idle and mixed no-idle PFSP with makespan criterion

(Fm|prmu, no− idle|Cmax, Fm|prmu, mixed no− idle|Cmax).

4.1.1 Heuristics for the F |prmu|Cmax problem

The first studies on heuristics for the PFSP with the makespan criterion can be seen
in Palmer (1965), Campbell, Dudek e Smith (1970), Gupta (1971), Dannenbring (1977),
Hundal e Rajgopal (1988), Sevast’janov (1995) and Koulamas (1998). Certainly, the most

102

efficient heuristic for the problem is the well known NEH heuristic of Nawaz, Enscore e Ham
(1983) and Fernandez-Viagas e Framinan (2014). Many extensions of this heuristic have been
proposed and can be found in the literature (NAGANO; MOCCELLIN, 2002; FRAMINAN;
LEISTEN, 2003; LOW; YEH; HUANG, 2004; KALCZYNSKI; KAMBUROWSKI, 2007b;
KALCZYNSKI; KAMBUROWSKI, 2008; DONG; HUANG; CHEN, 2008; KALCZYNSKI;
KAMBUROWSKI, 2009; RAD; RUIZ; BOROOJERDIAN, 2009; RIBAS; COMPANYS;
TORT-MARTORELL, 2010; KALCZYNSKI; KAMBUROWSKI, 2011; FERNANDEZ-
VIAGAS; FRAMINAN, 2014; ROSSI; NAGANO; NETO, 2016).

Studies by Rad, Ruiz e Boroojerdian (2009), Fernandez-Viagas e Framinan (2014)
and Rossi, Nagano e Neto (2016), point out that currently, the best heuristics for the
problem are: NEH from Nawaz, Enscore e Ham (1983), FRB3 and FRB4k from Rad, Ruiz
e Boroojerdian (2009), NEH FF from Fernandez-Viagas e Framinan (2014). The FRB3
and FRB4k heuristics are both extensions of the NEH heuristic. In the FRB3 heuristic, a
local search based on the insertion movements is integrated with the NEH. The principle
behind the heuristic is to optimize the partials sequences generated by the NEH heuristic.
The FRB4k limits the number of jobs selected for insertion with the parameter k. In
this way, the method partially keeps the optimization of the partial sequences without
losing computational efficient. The FRB3 and FRB4k presented better quality of solution
when compared to the NEH heuristic in exchange of additional computational time. The
NEH FF (FERNANDEZ-VIAGAS; LEISTEN; FRAMINAN, 2016) is also an extension
that apply a tie-breaking method for the partial sequences generated by the NEH. The
tie-breaking mechanism is based on the estimation of the idle times in the machines.

4.1.2 Heuristics for the F |prmu|∑Cj problem

Various studies have focused on studying PFSP with a total flowtime criterion, since
its minimisation is important in many practical situations, especially when the objective is
to reduce the inventory or the costs involved in maintaining it (RAJENDRAN; ZIEGLER,
1997). Also, several heuristics have been proposed (RAJENDRAN, 1993; WOO; YIM,
1998; LIU; REEVES, 2001; FRAMINAN; LEISTEN; RUIZ-USANO, 2002; FRAMINAN;
LEISTEN, 2003; FRAMINAN; LEISTEN; RUIZ-USANO, 2005; NAGANO; MOCCELLIN,
2008; LAHA; SARIN, 2009). Pan e Ruiz (2013), Fernandez-Viagas e Framinan (2015)
and Rossi, Nagano e Sagawa (2017) carried out an extensive computational comparison
among the heuristics for the problem. According to the performed experiments, the main
constructive heuristics are: RZ from Rajendran e Ziegler (1997), LR(x) from Liu e Reeves
(2001), LR-NEH(x) from Pan e Ruiz (2013), FF(x) and FF-NEH(x) from Fernandez-
Viagas e Framinan (2015) and FF-RN from Rossi, Nagano e Sagawa (2017). Regarding
improvement heuristics, the following ones were highlighted: ICH1, ICH2 and ICH3 from
Li, Wang e Wu (2009), PR1(x) from Pan e Ruiz (2013) FF-ICH1, FF-ICH2, FF-ICH3,
FF-PR1 from Fernandez-Viagas e Framinan (2015).

103

Concerning constructive heuristics, the RZ was proposed by Rajendran e Ziegler
(1997), and consists of two phases. First, the jobs are ordered using a new priority rule
based on the lower bounds of the completions times of the jobs. Then, a method based on
insertion movements is applied on the sequence generated by the first phase. The LR(x)
from Liu e Reeves (2001) constructs the sequences by iteratively inserting unscheduled
jobs in the final position of the sequence until all jobs have been scheduled. The parameter
x controls how many sequences will be generated by the method, being the one with the
lowest total flowtime chosen as solution. Pan e Ruiz (2013) developed the LR-NEH(x)
that uses the LR(x) in conjunction to the NEH heuristic to construct the solution. Many
heuristics, for total flowtime minimisation use the LR(x) method as an initial solution
(ICH1, PR1) or to construct part of the sequence (LR-NEH(x)). That is, developing
an improved version of the LR(x) could lead, indirectly, to improving the heuristics
that use it. Along these lines, Fernandez-Viagas e Framinan (2015) developed a new
version of the LR(x) which is denoted by FF(x). Based on computational comparisons, it
was demonstrated that this new version surpasses the LR(x) heuristic, providing better
solutions with less computational complexity. The LR-NEH(x) also was modified, replacing
the LR(x) by the FF(x), and was denoted as FF-NEH(x). The FF-RN(x, y) from Rossi,
Nagano e Sagawa (2017) is based on the FF-NEH(x) algorithm. The method performs a
reinsertion of jobs in the partial sequences generated by the NEH heuristic, and similarly
to FRB4k, the parameter y limits the number of reinsertions.

Regarding improvement heuristics, Li, Wang e Wu (2009) proposed the ICH1, ICH2
and ICH3 methods. In these heuristics, local searches based on insertion and permutation
movements are used to improve the solution generated by the LR(x) heuristic. In PR1(x)
Pan e Ruiz (2013), a local search using insertion movements is applied in the solution
given by the LR-NEH(x) method. Fernandez-Viagas, Leisten e Framinan (2016) proposed
the FF-ICH1, FF-ICH2, FF-ICH3 and FF-PR1 heuristics, which are improved versions
of the ICH1, ICH2 and ICH3 and PR1(x) heuristics, respectively. In these versions,
the LR(x) and LR-NEH(x) heuristics are replaced by the new FF(x) and FF-NEH(x)
methods. Fernandez-Viagas e Framinan (2015) shows that their proposals provided better
results both in terms of quality of solution and computational efficiency. Thus, the best
constructive heuristics from the literature are the RZ, FF(x), FF-NEH(x) and FF-RN(x,
y), and for the improvement heuristics are the FF-ICH1(x), FF-ICH2(x), FF-ICH3(x) and
FF-PRI(x).

4.1.3 Heuristics for the F |prmu, no − idle|Cmax and F |prmu, mixed no − idle|Cmax
problems

Concerning the F |prmu, no − idle|Cmax, problem, various studies have focused
on developing exact methods (B&B, mixed integer linear programming - MILP, and
polynomial exact algorithms) or on investigating the properties and variants of the

104

problem (ADIRI; POHORYLES, 1982; VACHAJITPAN, 1982; BAPTISTE; HGUNY,
1997; ČEPEK et al., 2000; SAADANI; GUINET; MOALLA, 2003; BAGGA, 2003; KAM-
BUROWSKI, 2004; NARAIN; BAGGA, 2005a; NARAIN; BAGGA, 2005b; KALCZYNSKI;
KAMBUROWSKI, 2007a; GONCHAROV; SEVASTYANOV, 2009; NAGANO; ROSSI;
TOMAZELLA, 2017; CHENG; SUN; YU, 2007; SUN et al., 2010; NG et al., 2011; SUN et
al., 2012). Likewise, many other studies focus on developing heuristics and metaheuristics
for the problem (WOOLLAM, 1986; KALCZYNSKI; KAMBUROWSKI, 2005; SAADANI;
GUINET; MOALLA, 2005; PAN; WANG, 2008b; BARAZ; MOSHEIOV, 2008; PAN;
WANG, 2008a; RUIZ; VALLADA; FERNÁNDEZ-MARTÍNEZ, 2009; TASGETIREN et
al., 2011; DENG; GU, 2012; TASGETIREN et al., 2013b; TASGETIREN et al., 2013a;
ZHOU; CHEN; ZHOU, 2014; SHEN; WANG; WANG, 2015).

According to studies conducted by Ruiz, Vallada e Fernández-Martínez (2009), Pan
e Ruiz (2014), Nagano, Rossi e Tomazella (2017) and Nagano, Rossi e Martarelli (2018),
currently the most efficient heuristics for this problem are: GH-BM2, FRB3 and FRB4k by
Ruiz, Vallada e Fernández-Martínez (2009). The FRB3 and FRB4k heuristics are known
for the F |prmu|Cmax, whereas the GH-BM2 heuristic is an improvement of the GH-BM
heuristic by Baraz e Mosheiov (2008). In the experiments GH-BM2 showed considerably
better results when compared to the GH-BM.

4.2 Proposed heuristics

In this study, we developed three heuristics based on beam search. Beam-search-
based heuristics combine the diversification of the population-based metaheuristics with the
computational efficiency of the constructive heuristics (FERNANDEZ-VIAGAS; LEISTEN;
FRAMINAN, 2016; FERNANDEZ-VIAGAS; RUIZ; FRAMINAN, 2017; FERNANDEZ-
VIAGAS; VALENTE; FRAMINAN, 2018). In a beam search algorithm, partial sequences
(also called nodes) are generated at each iteration by inserting jobs in the last position
of the sequence. The best ranked N nodes generated are selected to be used in the next
iteration. The method continues until nodes with complete sequences of n jobs are obtained;
then the best ranked node is chosen to be the final solution of the method.

As FRB3 and FRB4k heuristics obtained excellent results in previous studies (RAD;
RUIZ; BOROOJERDIAN, 2009; ROSSI; NAGANO; NETO, 2016), we decided to use
their variants in conjunction with the beam-search concept presented previously. Moreover,
we resorted to the idea of the LR-NEH(x) heuristic by Pan e Ruiz (2013), except for
the fact that d jobs are inserted using a beam-search-based procedure and the remaining
n− d jobs are inserted by variants of the FRB3 and FRB4k heuristics. This combination
resulted in two heuristics, H1(N) and H2(N, k), that use versions of the FRB3 and FRB4k
heuristics, respectively, for constructing the remainder of the sequence. N denotes the
number of nodes selected at each iteration; k is the number of jobs selected for reinsertion.

105

Additionally, an improvement heuristic, H3(N), was developed that carries out a local
search, RZ from Rajendran e Ziegler (1997) in the final solution generated by the H1(N)
method. The local search is based on the insertion neighbourhood and its high performance
has already been demonstrated in various studies (FRAMINAN; GUPTA; LEISTEN, 2004;
LI; WANG; WU, 2009; FERNANDEZ-VIAGAS; FRAMINAN, 2015). Before describing
the proposed heuristics in more detail, it is important to define the index function used to
evaluate the nodes generated by the heuristic.

4.2.1 The index function for nodes evaluation

In order to meet the constraints of the mixed no-idle PFSP with sequence-dependent
setup and the total flowtime minimisation we modified the index present in the LR(x)
heuristic from Liu e Reeves (2001). Formally, a node, denoted by ηvl , is linked to a partial
sequence πv with l jobs, πv = {πv1 , . . . , πvl } and to a set of jobs that have not yet been
sequenced, Uv. A node ηvl can be branched generating other nodes, ηvl+1, by inserting a
job that has not yet been sequenced, Jj ∈ Uv, in the last position l + 1 de πv, resulting in
πv = {πv1 , . . . , πvl , πvl+1}, where πvl+1 = Jj. Then, an initial node ηvl is branched into other
nodes, denoted by ηvl+1, each one with a different job Jj ∈ Uv in the last position of πv.
The principle behind the index is to evaluate three results from the insertion of job Jj
in the last position: idle time generated, immediate effect of the job inserted in the last
position and influence of the jobs that have not yet been sequenced.

The idle time of the generated node ηvl+1 is denoted by IT vl . However, this evaluation
can lose relevance in mixed no-idle scenarios where most machines do not allow idleness.
Thus, supposing a sequence πv = {πv1 , . . . , πvl , πvl+1} of node ηvl+1, to calculate the completion
times of the first l jobs of πv, the normal condition studied in this work is considered, i.e.
the mixed no-idle flowshop sequence-dependent setup, making it possible, in this case, to
use the calculation method described in Subsection 2.3.2. However, for job Jj, inserted at
position l + 1, πvl+1, the completion times consider only the setup times, and all machines
are considered regular ones. These completion times of job Jj in machine Mi, denoted by
Fi,[l+1], can be calculated using the expressions below.

When job Jj is inserted in the first position, l = 1:

F1,[1] = p1,[1]

Fi,[1] = Fi−1,[1] + pi,[1]

i = 2, . . . ,m

(4.1)

106

For all remaining positions:
F1,[l+1] = C1,[l] + s1

[l],[l+1] + p1,[l+1]

Fi,[l+1] = max
(
Ci,[l] + si[l],[l+1], Fi−1,[l+1]

)
+ pi,[l+1]

i = 2, . . . ,m

(4.2)

Note that the completion times of the job occupying position l (Ci,[l]) remain
unchanged if we change the job which occupies position l+1 within the sequence. Therefore,
it is possible to pre-calculate Ci,[l] and use the same values to calculate the completion
times of any job Jj that is inserted in position l+1. This enables us to quickly calculate the
completion times Fi,[l+1]. After the completion times Fi,[l+1] are calculated, the calculation
of IT vl continues in the same way as is done in the LR(x) heuristic.

IT vl = (n− l − 2) ·
m∑
i=2

m ·max{Fi−1,[l+1] − Ci,[l] − si[l],[l+1], 0}
i+ l · (m− i)/(n− 2) (4.3)

The immediate effect of inserting job Jj in the last position l+ 1, FT vl , is evaluated
using the completion time of job Jj that occupies the last position, l + 1, in the last
machine Mm, Fm,[l+1]. The aim is to choose those nodes with the lowest added completion
time generated by the insertion of the job, thus reducing the total flowtime.

FT vl = Fm,[l+1] (4.4)

The influence of jobs that have not yet been sequenced, denoted by AT vl , is estimated
by the completion time of the last machine of an artificial job, µ, which is inserted at
the next position after job Jj, Fm,µ. That is, a partial sequence is generated with l + 2
jobs πv = {πv1 , . . . , πvl , πvl+1, π

v
l+2}, where the last position is occupied by the artificial job

µ, πvl+2 = µ. Artificial job µ is assigned with processing and setup times in the machines.
Thus, the setup time between the candidate job and the jobs that have not yet been
sequenced can be minimised, resulting in a better final solution. The processing times,
pi,µ, and the setup times, siµ, of the artificial job µ can be determined according to the
expressions below.

pi,µ =
∑
Jh∈U,Jh 6=Jj

pi,h

n− l − 1 (4.5)

siµ =
∑
Jh∈U,Jh 6=Jj

sij,h

n− l − 1 (4.6)

The influence of the jobs that have not yet been sequenced, denoted by AT vl , can
be calculated using the expressions below.

F1,µ = F1,[l+1] + s1
µ + p1,µ

Fi,µ = max
(
Fi,[l+1] + siµ, Fi−1,µ

)
+ pi,µ

i = 2, ...,m

(4.7)

AT vl = Fm,µ (4.8)

107

Finally, index ϕvl , that evaluates the generated nodes, ηvl+1, is defined below. The
N selected nodes are those that present the lowest value of ϕvl .

ϕvl = IT vl + FT vl + AT vl (4.9)

4.2.2 The H1(N), H2(N, k) and H3(N) heuristics

The first heuristic, H1(N), initially generates n partial sequences (nodes) with only
one job, resulting in an initial set of nodes ηh0 = {η1

0, . . . , η
n
0 }. Then, the set of nodes ηh0 is

evaluated using the index ϕh0 (h = 1, . . . , n). The N nodes that obtained the best (lowest)
values of ϕh0 are selected for the next step. For each node selected, ηv0 (v = 1, . . . , N), new
partial sequences are generated by inserting jobs Jj ∈ U v that have not yet been sequenced
of node ηv0 at the last position of the sequence πv. This results in a new set of nodes,
ηh1 = {η1

1, η
2
1, . . .}, each one linked to a partial sequence with two jobs, πv = {πv1 , πv2 , . . .}.

As each node will generate n− 1 new nodes, there will be N · (n− 1) nodes to be evaluated
at this iteration. All generated nodes are evaluated using the index ϕv1. The N best nodes
are selected for the next branching. The method continues iteratively until nodes with
partial sequences of d jobs are obtained. Then, the partial sequence πv of node ηvd with the
lowest total flowtime is selected to be the solution for this part of the method. The rest of
the sequence is constructed using a variant of the FRB3 heuristic, as described below.

At the end of this beam-search-based procedure, there will be a sequence π with d
jobs and n− d jobs still to be sequenced that belong to the set denoted by U . The jobs in
U are sorted by a non-descending order of the sum of the processing times (SPT rule).
The first job of the order is inserted in the best position of the π sequence. Afterwards, a
procedure, based on the insertion neighbourhood, is performed. Instead of reinserting the
jobs one by one as the FRB3 heuristic does, our proposal does this reinsertion in pairs of
adjacent jobs, πl and πl+1. Rossi, Nagano e Neto (2016) already demonstrated that this
kind of reinsertion in pairs of jobs results in a better optimisation of partial sequences.
During this movement, the jobs from the pair are removed from the sequence and the
first job, πl, is tested in all positions of the sequence, and the best position is selected
for insertion; then, the second job, πl+1 is considered analogously. Afterwards, the second
pair, {πl+2, πl+3}, is reinserted and so forth, {πl+4, πl+5}, until the last pair, {πn−1, πn}, is
done. When the reinsertion is finished, the method inserts the second job from the initial
ordering, and then the same reinsertion movements in pairs, as explained above. The next
jobs of the initial ordering are considered in the same way. The method continues until
the complete sequence with n jobs is obtained.

However, it is clear that the reinsertion procedure at each iteration in the heuristic
H1(N) is computationally intensive, since, at each iteration n/2 pairs of jobs are reinserted
and each job from the pair has to be tested in all positions of the sequence. In the
heuristic H2(N, k) , the number of reinsertions to be performed is limited, following the

108

same principle of the FRB4k heuristic. Thus, if a job of the initial order was inserted
in position j, it will be considered the pairs of jobs around this position, {πj−k, πj−k+1},
{πj−k+2, πj−k+3}, . . ., {πj+k−1, πj+k}. This allows the method to keep the optimisation of
the partial sequences without affecting the computational efficiency.

Finally, the H3(N) heuristic carries out a local search RZ, based on insertion
neighbourhood, in the solution generated by the H1(N). The insertion neighbourhood
is repeated until the solution does not get any better. The jobs to be reinserted in the
sequences follow the order of a reference sequence πref , which is equal to the best solution
found until that moment. The pseudocode presented in Algorithm 2 shows the beam search
procedure used in the proposed heuristics for generating the sequence π with d jobs. The
heuristics H1(N), H2(N, k) and H3(N) are described in detail in Algorithms 3, 4 and 5,
respectively.

Algorithm 2 Beam search based procedure.
U is the set of unscheduled jobs, U = {J1, J2, ..., Jn}.
Uj denotes the job occupying the jth position in the set U .
for h = 1 to n do

Generate the node ηh0 .
πh = {Jh}
Uh = U − Jh
Evaluate the node ηh0 using the index function ϕh0 .

end for
Order the generated nodes ηh0 in non-desceding order of ϕh0 .
Select the N first ranked nodes ηh0 to be the new set of nodes ηv0 = {η1

0, η
2
0, ..., η

N
0 }.

for l = 1 to d− 1 do
h = 1
for v = 1 to N do

for j = 1 to n− l do
Generate the node ηhl+1 from ηvl .
Insert the job Uj from U v in the l + 1 position of πv, resulting πh.
Evaluate the node ηhl+1 using the index function ϕhl .
Uh = U v − Uj
h = h+ 1

end for
end for
Order the generated nodes ηhl+1 in non-desceding order of ϕhl .
Select the N first ranked nodes to be the new set of nodes ηvl+1.

end for
Select the sequence πv of the node ηvd that results in the lowest ∑Cj(πv).
π = πv

U = U v

return π = {π1, ..., πd} and U .

109

Algorithm 3 H1(N) heuristic
Call the beam search based procedure (Algorithm 2).
Order the jobs in U according to the lowest value of the sum of processing times,
resulting in α = {α1, α2, ..., αn−d}.
for l = 1 to n− d do

Insert job αl in π in the position that results in the lowest ∑Cj.
for j = 1 to l + d− 1, step j = j + 2 do

π′ = π
Remove the jobs π′j and π′j+1 from π′.
Insert the job π′j in the position of that results in the lowest ∑Cj.
Insert the job π′j+1 in the position of that results in the lowest ∑Cj.
if ∑Cj(π′) < ∑

Cj(π) then
π = π′

end if
end for

end for
return π = {π1, ..., πn}.

Algorithm 4 H2(N) heuristic
Call the beam search based procedure (Algorithm 2).
Order the jobs in U according to the lowest value of the sum of processing times,
resulting in α = {α1, α2, ..., αn−d}.
for l = 1 to n− d do

Insert job αl in π in the position b that results in the lowest ∑Cj.
for j = max(1, b− k) to min(l + d− 1, b+ k), step j = j + 2 do

π′ = π
Remove the jobs π′j and π′j+1 from π′.
Insert the job π′j in the position of that results in the lowest ∑Cj.
Insert the job π′j+1 in the position of that results in the lowest ∑Cj.
if ∑Cj(π′) < ∑

Cj(π) then
π = π′

end if
end for

end for
return π = {π1, ..., πn}.

110

Algorithm 5 H3(N) heuristic
π =H1(N) (Algorithm 3)
Improvement = true
while Improvement = true do

πref = π
for j = 1 to n do

Improvement = false
π′ = π
Remove job πrefj from π′.
Insert the job πrefj in the position of π′ that results in the lowest ∑Cj.
if ∑Cj(π′) <

∑
Cj(π) then

π = π′

Improvement = true
end if

end for
end while
return π = {π1, ..., πn}.

4.3 Computational and statistical experiments

4.3.1 Instances generation

In this study, we used an adaptation of the benchmark proposed by Pan e Ruiz
(2014) for the mixed no-idle PFSP problem. We modified the set of tests in order to
consider the sequence-dependent setup times of the sequence between jobs in regular
machines. We also generated a set of instances to compare the proposed heuristics with
the MILP formulation in small sized problems instances.

The benchmark from Pan e Ruiz (2014) consists of seven groups with different
mixed no-idle scenarios. The problems are generated through combinations from a number
of jobs n = {50, 100, 150, 200, 250, 300, 350, 400, 450, 500} and a number of machines
m = {10, 20, 30, 40, 50}, making a total of 50 possible combinations and five replications
for each combination (50× 5 = 250 problems per group). The processing times of the jobs
were generated using a uniform distribution within the range U [1, 99]. The groups have
the following mixed no-idle scenarios:

• Group 1: Only the first 50% of machines are no-idle.

• Group 2: The first 50% machines are regular, the remaining are no-idle machines

• Group 3: The machines alternate between regular and no-idle.

• Group 4: 25% of machines are randomly no-idle.

• Group 5: 50% of machines are randomly no-idle.

• Group 6: 75% of machines are randomly no-idle.

111

For each group of problems, the setup time between jobs only for the regular
machines was considered. Three groups of distribution were used: SSD-50, SSD-100,
SSD-125. We used the processing times generated by Pan e Ruiz (2014)

• SSD-50: setup times were generated according to a uniform distribution in the range
U [1, 49].

• SSD-100: setup times were generated according to a uniform distribution in the
range U [1, 99].

• SSD-125: setup times were generated according to a uniform distribution in the
range U [1, 124].

As there are 6× 250 = 1500 problems with different mixed no-idle scenarios, the
result is a total of 3× 1500 = 4500 test problems when the three distributions of setup
time are considered.

For the MILP formulated in Section 2.3.1 we set a maximum elapsed CPU time limit
of four hours to optimally solve the problems. With this time termination criterion, the
MILP can optimally solve problems with up to 20 jobs and 5 machines. Thus, for the MILP
evaluation we considered the following combination between number of jobs and machines
{n,m} = {10, 5}, {10, 10}, {15, 5}, {15, 10}, {20, 5}. Five replication were generated for
each combination with processing times generated using the uniform distribution [1, 99] .
The same six mixed no-idle groups used in the previous benchmarks were used. For the
setup times generation we used the distributions SSD-50, SSD-100 and SSD-125. With
this settings, 5× 5× 3× 6 = 450 instances were created.

4.3.2 Compared heuristics

Based on the literature review, we identified the heuristics that could be best
adapted to our problem. The methods chosen for comparing the classic permutation
flowshop problem (Fm|prmu|Cmax), PFSP with total flowtime criterion Fm|prmu|Cj and
no-idle and mixed no-idle PFSP with makespan criterion Fm|prmu, no− idle|Cmax are
listed below. These heuristics from the literature were compared with those proposed
in this work. Parameters were selected considering those that obtained the best quality
solution and computational efficiency in the experiments performed.

• Proposed heuristics.

– H1(N), N = {10, 20}.

– H2(N, k), k = {5, 10}, N = {10, 20}.

– H3(N), N = {10}.

112

• Heuristics adapted from the PFSP with makespan criterion problem, F | prmu|Cmax.
The heuristics were adapted taking into account the non-descending sum of the
processing times (Shortest Processing Time - SPT) initial ordering rather than the
non-ascending order (Longest Processing Time - LPT), since it was demonstrated
that the SPT ordering gives better results when the total flowtime minimisation
criterion is under consideration. Although the NEH FF proposed by Fernandez-
Viagas e Framinan (2014) showed good performance, it is not possible to adapt the
NEH FF heuristic to our problem as the heuristic has procedures based on specific
properties of the F |prmu|Cmax problem; thus, this NEH FF was not considered in
this computational experiment.

– NEH from Nawaz, Enscore e Ham (1983): The heuristic has two phases. In
the first phase, jobs are ordered following the LPT rule. As mentioned, in our
adapted version, the SPT initial ordering was used instead of the LPT. In the
second phase, at each iteration, a job ordered in the first phase is evaluated
in all positions of the sequence, and the best position is chosen. The next job
from the initial order is considered analogously, and so forth until the n jobs
have been sequenced.

– FRB3 from Rad, Ruiz e Boroojerdian (2009): The FRB3 heuristic carries out a
local search based on using the insertion neighbourhood in the partial sequences
generated by the NEH heuristic. The method performs reinsertions of all jobs
from the sequences in all possible positions after each NEH iteration.

– FRB4k from Rad, Ruiz e Boroojerdian (2009): in FRB4k a limited local search is
carried out, where ±k jobs that are positioned around the job recently inserted
by the NEH heuristic are selected be to be reinserted in the sequence.

• Heuristics adapted from the PFSP with total flowtime criterion, Fm|prmu|
∑
Cj.

The improvement heuristics ICH2, ICH3, FF-ICH2 and FF-ICH3 use intensive local
searches based on permutation movements of pairs of jobs. It is worth highlighting
that the acceleration method (Subsection 2.3.4), which allows a significant reduction
of computational complexity, cannot be used to evaluate the total flowtime resulting
from the permutation of jobs, since it is targeted only for the insertion neighbourhood.
As a consequence, these methods become computationally inefficient and therefore,
were not selected for adaptation and comparison. As the heuristics FF(x), FF-
NEH(x), FF-ICH1(x) and FF-PR1(x) are improved and more recent versions of
heuristics LR(x), LR-NEH(x), ICH1 and PR1, only the first group of heuristics was
selected for adaptation.

– RZ from Rajendran e Ziegler (1997): This heuristic has two phases. In the first
phase, m sequences are generated by ordering the jobs Jj (j = 1, . . . , n) in

113

non-descending order of Tj (Expression 4.10), and the best solution is chosen as
seed sequence. From Expression 4.10, note that each sequence is generated by an
iteration of k (k = 1, . . . ,m), as each iteration generates a distinct ordering for
the jobs, and consequently different sequences. In our adaptation we maintained
this method to generate the seed sequence for the RZ heuristic.

Tj =
m∑
i=k

(m− i+ 1) · pi,j k = 1, ...,m (4.10)

In the second phase, the seed sequence is improved by inserting jobs within
partial sequences, which are successively obtained.

– FF(x) from Fernandez-Viagas e Framinan (2015): First, this heuristic generates
an initial ordering of the jobs according to a non-descending order of an index
function, ξ′j,k, which takes into consideration the idle time of the machines.
The first job of the initial ordering is chosen to occupy the first position of
the sequence. Afterwards, at each iteration, all jobs Jj belonging to the set of
jobs that have not yet been sequenced (Jj ∈ U) are tested in position k + 1
of the current sequence. The candidate job with the lowest index value ξ′j,k
is permanently inserted in position (k + 1) of the sequence. The procedure
ends when n jobs have been sequenced. Heuristic FF(x) can generate multiple
complete sequences by choosing a different job to occupy the first position
of the sequence. From this choice, the method generates a complete sequence
using the same procedure described previously. Parameter x defines the number
of complete sequences that will be generated by the heuristic. The ξ′j,k index
from a candidate job Jj in the k + 1 position can be calculated as the following
expressions.

ξ′j,k = (n− k − 2)
a

· IT ′j,k + AT ′j,k (4.11)

IT ′j,k =
m∑
i=2

m ·max{Ci−1,j − Ci,j, 0}

i− b+ k · m− i+ b

n− 2

(4.12)

AT ′j,k = Cm,j (4.13)

As this study considers the existence of setup times and also no-idle machines,
we adapted the ξ′j,k index in order to consider the conditions addressed in this
chapter. For the first k jobs of the partial sequence, the completion times are
calculated taking into account the existence of set-up times and the mixed
no-idle condition. However, only for the completion times of candidate job Jj
is it considered that all machines are regular, as well as the setup existence.
Therefore, the IT ′j,k, component that measures idleness can be evaluated even
when most are no-idle machines. As stated in Section 4.1, (FERNANDEZ-
VIAGAS; FRAMINAN, 2015) replaced the procedure LR(x), used by several

114

existing heuristics, by the new method FF(x), resulting in better versions of the
heuristics LR-NEH(x) and PR1(x) from Pan e Ruiz (2013) and ICH1, ICH2
and ICH3 from Li, Wang e Wu (2009), called: FF-NEH(x), FF-PR1(x) and
FF-ICH1, respectively, which are detailed below.

– FF-NEH(x): The FF-NEH(x) is an improved version of the LR-NEH(x) from
Pan e Ruiz (2013), which replaces the LR(x) heuristic by the FF(x). The
heuristic first generates a partial sequence of d jobs using the FF(x); then the
remaining n− d jobs are inserted into the partial sequence through the NEH
heuristic.

– FF-PRI1(x): This method is an improvement heuristic based on the PR1(x)
Pan e Ruiz (2013). The heuristic improves each of the solutions generated by
the FF-NEH(x) method using the iRZ local search, which is based on insertion
neighbourhood movements.

– FF-ICH1(x): The FF-ICH1(x) replaces the LR(x) heuristics used in the ICH1
by the FF(x) from Fernandez-Viagas e Framinan (2015). The ICH1 is a improve-
ment heuristics that combines the local search based on insertion movements in
conjunction with an efficient iterative method that is repeated until the solution
is no longer improved or until a certain stop criterion is met.

– FF-RN(x, y) from Rossi, Nagano e Sagawa (2017): This method is based on
the FF-NEH(x) algorithm from Fernandez-Viagas e Framinan (2015), with the
difference that a reinsertion of jobs in the partial sequences generated by the
NEH heuristic is performed. In order to make the method computationally
viable, the authors limit the selection of y jobs to be reinserted at each iteration.
The jobs are selected for reinsertion using an weight index W ′, being the job to
be prioritized the one that results in the lowest total flowtime when removed
from the current sequence.

• Heuristics adapted from the no-idle and mixed no-idle PFSP with makespan criterion,
Fm|prmu, no − idle|Cmax and Fm|prmu, mixed no − idle|Cmax. The initial LPT
ordering of the GH-BM2 heuristic was replaced by the SPT rule as in this study we
aim to minimise the total flowtime but not the makespan.

– GH-BM2 from Ruiz, Vallada e Fernández-Martínez (2009): This heuristic is
a better version of the heuristic from Baraz e Mosheiov (2008). The GH-BM
has two phases. In the first phase, the heuristic adds jobs at the end of the
sequence, selecting the one that results in the lowest makespan when inserted
in the last position. In the second phase, pairs are swapped, testing all the
possible matches and swapping them, which result in a lower makespan value.
The GH-BM2 replaced the first phase of the heuristic by the NEH from Nawaz,

115

Enscore e Ham (1983) and the pairwise exchange procedure was carried out in
the second phase for an insertion neighbourhood.

4.3.3 Performance measures

The performance measures used to compare the heuristics were: quality solution
and computational efficiency. The quality solution was evaluated by the relative deviation
(DRt

h) of the heuristic h in problem t, and can be calculated by the expression below.

DRt
h = 100 ·

∑
Cj (πh)t −

∑
Cj(π∗)t∑

Cj(π∗)t
(4.14)

where ∑Cj (πh)t is the total flowtime provided by the sequence πh through the heuristic
h for problem t. ∑Cj(π∗)t is the best solution found among all heuristics compared for
problem t. It can be seen that as the lower is the value of DRt

h, the closer the heuristic’s
solution will be to the best result found. The mean average of the relative values (ARPDh)
of a heuristic h in conjunction with N problems can be calculated by the expression below:

ARPDh =
∑N
t=1 DR

t
h

N
(4.15)

To assess the computational efficiency, the average time in seconds was used (average
CPU - ACPU). All compared heuristics were implemented in C++, compiled using Intel
C++ and executed in an Intel Xeon E5-2680 @ 2.7 GHz with 16 GB RAM memory. To
solve the MILP model we used the IBM CPLEX Optimization Studio (version 12.8) with
Python Application Programming Interface (API).

4.3.4 Parameter tunning for the H1(N), H2(N, k) and H3(N)

The heuristics H1(N), H2(N, k) and H3(N) have an important parameter d that
controls the number of jobs that will be inserted through the beam-search-based procedure.
Tests with values d = {n/4, n/2, 3n/4} were carried out aimed at evaluating the heuristics
behavior in terms of their quality solution (Average Relative Percentage Deviation - ARPD)
and computational efficiency (ACPU). As the H3(N) heuristic uses the H1(N) heuristic
for generating the initial solution, only the heuristics H1(N) and H2(N, k) were tested.
The heuristics were tested with the number of nodes N = {10, 20} and the number of
reinsertions k = {5, 10}. Table 28 present the results in ARPD and ACPU, considering
the average resulting from the possible combinations of N = {10, 20} and k = {5, 10}.

116

Table 28: Parameter testing with different values for d.

Heuristic d value ARPD ACPU
H1 n/4 0.75 218.43

n/2 0.79 204.86
3n/4 1.24 163.27

H2 n/4 4.15 18.46
n/2 4.17 19.65
3n/4 4.79 17.20

In heuristic H1(N), the tests show very similar ARPDs when d = {n/4, n/2}
(0.75 and 0.79), although the ACPU is considerably larger for d = n/4 (218.4 against
204.8 seconds). Thus, the slightly lower ARPD does not worth the worse computational
efficiency when d = n/4. For d = 3n/4, the ACPU is smaller (163.2 seconds), and
the ARPD becomes considerably worse (1.24). This shows that the beam-search-based
procedure is computationally efficient because the heuristic speeds up when the number
of jobs inserted through the beam-search procedure increases. Therefore, for heuristics
H1(N) and H3(N), the best results are obtained when d = n/2 and this value will be used
for the subsequent experiments. The results are similar for heuristic H2(N, k), where for
d = {n/4, n/2}, the ARPDs are close (4.15 and 4.17), respectively and d = {3n/4} with
ACPU smaller (17.2 seconds), although the ARPD is worse (4.79). Thus, for heuristic
H2(N, k), the best performance considering both ARPD and ACPU is also achieved when
d = n/2.

4.3.5 Comparison

The results of the heuristics comparison (Subsection 4.3.2) in the set of test
problems (Subsection 4.3.1) are presented in Table 29, in terms of solution quality (ARPD)
and computational efficiency (ACPU). The best ARPD results achieved were through
the improvement heuristic H3(10) with 0.63, although at a ACPU of 221 seconds. This
was a result already expected, since the H3(N) heuristic applies a local search based on
insertion neighbourhood in the solution generated by the H1(N) heuristic; this results in
better quality solutions in exchange for additional computational time. After that, the
best results are obtained by the proposed heuristic, H1(N) (N = {10, 20}), with ARPDs
0.78 and 0.79. After that, the one with the best performance was the heuristic adapted
from the literature, FRB3, with ARPD of 1.94 and ACPU of 198.5 seconds. However, the
proposed method, H1(20) obtained ARPD considerably smaller (0.78), with ACPU very
close to 208 seconds, respectively. The proposed heuristic, H2(N, k) N = {10, 20} and
k = {5, 10}) is the third best, with particular emphasis on H2(20, 10) that obtained ARPD
of 3.65 and ACPU of 25 seconds. The heuristic H2(N, k) obtained worse solutions when
compared to heuristics H1(N) and FRB3, although its ACPU is much smaller, resulting
in a good trade-off between ARPD and ACPU. Given these results, heuristic H2(10, 10)

117

Table 29: ARPD and ACPU for the compared heuristics.

Heuristics ARPD ACPUSSD50 SSD100 SSD125 Average
H3(10) 0.57 0.65 0.69 0.63 221.07
H1(20) 0.79 0.80 0.76 0.78 207.64
H1(10) 0.76 0.79 0.82 0.79 202.09
FRB3 1.59 2.00 2.22 1.94 198.47
H2(20, 10) 3.83 3.65 3.46 3.65 25.09
H2(10, 10) 3.86 3.76 3.62 3.75 20.22
FF-RN(5, 10) 4.47 4.50 4.44 4.47 59.61
H2(20, 5) 4.90 4.56 4.28 4.58 19.21
FRB410 4.33 4.73 4.90 4.65 14.71
H2(10, 5) 4.91 4.72 4.46 4.70 14.08
FF-RN(1, 10) 5.31 5.43 5.35 5.37 11.29
FF-RN(5, 5) 5.69 5.50 5.41 5.54 45.65
FRB45 5.29 5.61 5.91 5.60 8.71
FF-PR1(10) 5.76 6.14 5.90 5.93 41.57
FF-PR1(5) 5.77 6.16 5.95 5.96 30.92
FF-PR1(1) 5.77 6.17 6.01 5.98 20.52
FF-ICH1(5) 5.84 6.64 6.55 6.34 31.93
FF-ICH1(10) 5.84 6.64 6.55 6.34 42.43
FF-ICH1(1) 5.84 6.64 6.55 6.34 24.70
FF-RN(1, 5) 6.59 6.43 6.33 6.45 8.54
GH-BM2 6.95 7.44 7.68 7.36 2.52
NEH FT 9.26 9.48 9.66 9.47 0.79
FF-NEH(10) 14.22 10.33 9.06 11.21 5.78
FF-NEH(5) 14.60 10.70 9.44 11.58 3.00
RZ 11.99 14.05 14.85 13.63 2.06
FF(10) 25.99 18.42 16.11 20.18 0.44
FF(5) 26.57 18.94 16.62 20.71 0.22

outperformed heuristic FRB4k (k = {5, 10}) adapted from the literature, which obtained
ARPD of 4.65 and 5.60, respectively. No significant change was observed on the ARPD of
heuristics H1(N), H2(N, k) and H3(N), as the distribution setup times changed.

It is worth noticing that the heuristics adapted from the F |prmu|∑Cj problem
(RZ, FF(x), FF-NEH(x), x = {5, 10}, FF-ICH1(x) and FF-PR1(x), FF-RN(x, y)) did not
achieve good results, even considering that the problem in this study also addressed the
total flowtime minimisation. Among the methods adapted from this problem, the best
heuristic was the FF-RN(5, 10) with ARPD of 4.47 and ACPU of 59.6 seconds. The heuristic
GH-BM2, adapted from the F |no− idle|Cmax problem, proved to be computationally very
efficient with ACPU of only 0.8 seconds, while at the same time providing reasonably
quality solutions with ARPD of 7.36. It can be observed that heuristics FF-NEH(x) and
FF(x) benefit from the relevance increase of the setup times in the problem. Note that
for FF-NEH(10) in the SSD50 distribution, the ARPD is 14.22 and for the SSD125 set,

118

ACPU
225.00200.00175.00150.00125.00100.0075.0050.0025.00.00

A
R

PD

22.00

21.00

20.00

19.00

18.00

17.00

16.00

15.00

14.00

13.00

12.00

11.00

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

.00

RZ

NEH FT

H3(10)

H2(20, 5)

H2(20, 10)

H2(10, 5)
H2(10, 10)

H1(20)

H1(10)

GH-BM2

FRB4 5
FRB4 10

FRB3

FF-RN(5, 5) FF-RN(5, 10)

FF-RN(1, 5)

FF-RN(1, 10)

FF-PR1(5)
FF-PR1(10)

FF-PR1(1)

FF-NEH(5)

FF-NEH(10)

FF-ICH1(5)

FF-ICH1(10)

FF-ICH1(1)

FF(5)

FF(10)

Figure 12: ARPD vs ACPU for the compared heuristics.

the ARPD is 9.06; i.e., a relevant difference in performance. For the other heuristics, no
significant change was observed in the results as the setup times distribution were changed.
The results are shown in Figure 12, where it can be observed that the proposed heuristics
H1(N), H2(N, k) and H3(N) are dominants in terms of ARPD and ACPU. The results, in
more detail, with a variation in the number of jobs n, are presented in Tables 30 and 31.

119

Ta
bl
e
30
:A

R
PD

fo
r
ea
ch

se
t
of

pr
ob

le
m
s
ar
ra
ng

ed
by

th
e
nu

m
be

r
of

jo
bs
.

H
eu
ris

tic
N
um

be
r
of

jo
bs

Av
er
ag
e

50
10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

R
Z

9.
62

11
.6
3

12
.7
0

13
.2
8

13
.9
3

14
.4
0

14
.7
3

15
.4
3

15
.1
4

15
.4
4

13
.6
3

N
EH

FT
8.
43

9.
00

9.
14

9.
42

9.
64

9.
58

9.
68

10
.0
7

9.
75

9.
95

9.
47

G
H
-B

M
2

5.
76

6.
47

6.
85

7.
29

7.
54

7.
58

7.
77

8.
18

7.
95

8.
16

7.
36

FR
B4

5
4.
26

4.
94

5.
23

5.
51

5.
73

5.
79

5.
96

6.
24

6.
11

6.
25

5.
60

FR
B4

10
3.
36

4.
02

4.
25

4.
62

4.
77

4.
85

4.
96

5.
27

5.
18

5.
27

4.
65

FR
B3

2.
27

2.
01

2.
05

1.
94

1.
89

1.
90

1.
83

1.
93

1.
81

1.
74

1.
94

FF
(5
)

18
.2
4

19
.7
1

20
.2
6

20
.5
1

21
.3
1

21
.1
9

21
.4
0

21
.8
2

21
.3
0

21
.3
6

20
.7
1

FF
(1
0)

17
.3
3

19
.0
2

19
.6
5

19
.9
8

20
.8
1

20
.7
3

20
.9
4

21
.4
0

20
.9
2

20
.9
9

20
.1
8

FF
-N

EH
(5
)

9.
77

10
.7
8

11
.1
0

11
.3
8

11
.7
4

11
.9
4

12
.0
7

12
.5
0

12
.1
9

12
.3
2

11
.5
8

FF
-N

EH
(1
0)

9.
10

10
.2
8

10
.6
9

11
.0
2

11
.4
2

11
.6
4

11
.7
6

12
.2
0

11
.9
0

12
.0
4

11
.2
1

FF
-IC

H
1(
1)

4.
51

5.
32

5.
92

6.
27

6.
36

6.
63

6.
90

7.
05

7.
11

7.
37

6.
34

FF
-IC

H
1(
5)

4.
51

5.
32

5.
92

6.
27

6.
36

6.
63

6.
90

7.
05

7.
11

7.
37

6.
34

FF
-IC

H
1(
10
)

4.
51

5.
32

5.
92

6.
27

6.
36

6.
63

6.
90

7.
05

7.
11

7.
37

6.
34

FF
-P

R
1(
1)

4.
34

5.
09

5.
48

5.
86

6.
06

6.
34

6.
46

6.
68

6.
69

6.
84

5.
98

FF
-P

R
1(
5)

4.
29

5.
05

5.
44

5.
83

6.
03

6.
33

6.
45

6.
68

6.
68

6.
83

5.
96

FF
-P

R
1(
10
)

4.
17

4.
98

5.
41

5.
82

6.
02

6.
31

6.
44

6.
67

6.
68

6.
82

5.
93

FF
-R

N
(1
,5

)
4.
72

5.
39

5.
89

6.
35

6.
63

6.
79

6.
84

7.
28

7.
22

7.
36

6.
45

FF
-R

N
(1
,1

0)
3.
70

4.
36

4.
87

5.
32

5.
44

5.
66

5.
78

6.
14

6.
10

6.
27

5.
37

FF
-R

N
(5
,5

)
3.
15

4.
30

4.
80

5.
42

5.
76

5.
94

6.
15

6.
56

6.
53

6.
72

5.
54

FF
-R

N
(5
,1

0)
2.
29

3.
23

3.
78

4.
33

4.
66

4.
83

5.
06

5.
45

5.
43

5.
64

4.
47

H
1(
10
)

1.
45

1.
02

0.
93

0.
80

0.
71

0.
68

0.
60

0.
60

0.
58

0.
54

0.
79

H
1(
20
)

1.
43

1.
08

0.
97

0.
79

0.
71

0.
60

0.
63

0.
59

0.
51

0.
52

0.
78

H
2(
10
,5

)
3.
65

4.
10

4.
29

4.
70

4.
78

4.
82

4.
95

5.
23

5.
20

5.
27

4.
70

H
2(
10
,1

0)
2.
81

3.
17

3.
39

3.
69

3.
87

3.
87

4.
01

4.
21

4.
15

4.
29

3.
75

H
2(
20
,5

)
3.
58

3.
96

4.
26

4.
60

4.
65

4.
71

4.
85

5.
02

5.
00

5.
15

4.
58

H
2(
20
,1

0)
2.
74

3.
04

3.
33

3.
60

3.
71

3.
74

3.
88

4.
12

4.
10

4.
20

3.
65

H
3(
10
)

1.
11

0.
78

0.
73

0.
64

0.
58

0.
57

0.
49

0.
51

0.
48

0.
44

0.
63

120
Ta

bl
e
31
:A

C
PU

fo
r
ea
ch

se
t
of

pr
ob

le
m
s
ar
ra
ng

ed
by

th
e
nu

m
be

r
of

jo
bs
.

H
eu
ris

tic
N
um

be
r
of

jo
bs

Av
er
ag
e

50
10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

R
Z

0.
01

0.
06

0.
22

0.
50

0.
94

1.
59

2.
37

3.
49

4.
81

6.
56

2.
06

N
EH

FT
0.
00

0.
03

0.
08

0.
18

0.
33

0.
58

0.
89

1.
37

1.
89

2.
57

0.
79

G
H
-B

M
2

0.
01

0.
08

0.
26

0.
60

1.
13

1.
91

2.
91

4.
33

6.
04

7.
96

2.
52

FR
B4

5
0.
04

0.
28

0.
89

2.
05

3.
81

6.
49

9.
94

14
.8
3

20
.7
4

27
.9
8

8.
71

FR
B4

10
0.
07

0.
46

1.
49

3.
41

6.
39

10
.8
6

16
.7
6

25
.0
3

34
.6
8

47
.9
5

14
.7
1

FR
B3

0.
13

1.
63

7.
84

23
.3
8

53
.7
1

10
8.
52

19
2.
41

32
8.
51

50
6.
66

76
1.
88

19
8.
47

FF
(5
)

0.
00

0.
02

0.
05

0.
09

0.
14

0.
20

0.
28

0.
37

0.
48

0.
59

0.
22

FF
(1
0)

0.
01

0.
04

0.
09

0.
17

0.
27

0.
40

0.
56

0.
74

0.
95

1.
17

0.
44

FF
-N

EH
(5
)

0.
02

0.
10

0.
34

0.
75

1.
41

2.
29

3.
44

5.
02

7.
16

9.
49

3.
00

FF
-N

EH
(1
0)

0.
04

0.
21

0.
64

1.
44

2.
60

4.
45

6.
67

9.
90

13
.8
6

18
.0
2

5.
78

FF
-IC

H
1(
1)

0.
06

0.
45

1.
75

4.
33

8.
91

16
.1
7

24
.8
6

43
.9
2

63
.1
5

83
.3
6

24
.7
0

FF
-IC

H
1(
5)

0.
09

0.
65

2.
86

7.
08

14
.3
0

25
.4
5

38
.8
5

56
.5
6

74
.4
8

99
.0
0

31
.9
3

FF
-IC

H
1(
10
)

0.
15

1.
11

4.
30

10
.3
0

20
.7
4

35
.4
6

50
.9
4

71
.2
3

98
.2
7

13
1.
80

42
.4
3

FF
-P

R
1(
1)

0.
05

0.
41

1.
55

4.
01

7.
78

14
.4
7

23
.9
3

36
.0
5

49
.2
6

67
.6
6

20
.5
2

FF
-P

R
1(
5)

0.
11

0.
74

2.
60

6.
40

12
.5
4

22
.0
4

36
.0
3

50
.8
5

73
.3
8

10
4.
53

30
.9
2

FF
-P

R
1(
10
)

0.
14

1.
10

3.
87

9.
14

17
.9
5

31
.4
8

48
.8
4

69
.4
1

98
.7
1

13
5.
01

41
.5
7

FF
-R

N
(1
,5

)
0.
03

0.
24

0.
81

1.
90

3.
64

6.
24

9.
67

14
.4
4

20
.4
4

27
.9
5

8.
54

FF
-R

N
(1
,1

0)
0.
05

0.
34

1.
13

2.
64

5.
16

8.
50

12
.7
3

19
.2
2

26
.8
6

36
.2
2

11
.2
9

FF
-R

N
(5
,5

)
0.
17

1.
27

4.
29

10
.1
3

19
.6
1

33
.7
6

52
.8
2

77
.4
2

10
9.
35

14
7.
68

45
.6
5

FF
-R

N
(5
,1

0)
0.
25

1.
75

5.
81

13
.4
0

25
.6
6

44
.2
3

68
.8
2

10
3.
47

14
2.
95

18
9.
71

59
.6
1

H
1(
10
)

0.
18

1.
92

8.
74

26
.0
9

59
.3
1

11
9.
37

20
2.
58

35
4.
81

58
0.
70

85
7.
04

22
1.
07

H
1(
20
)

0.
14

1.
59

7.
56

23
.2
9

54
.4
9

10
9.
22

18
7.
62

33
0.
71

52
3.
82

78
2.
41

20
2.
09

H
2(
10
,5

)
0.
17

1.
80

8.
17

24
.3
5

56
.6
5

11
3.
72

20
0.
60

34
0.
18

53
0.
62

80
0.
13

20
7.
64

H
2(
10
,1

0)
0.
08

0.
45

1.
48

3.
52

6.
73

10
.8
8

16
.1
3

23
.8
1

32
.9
7

44
.7
7

14
.0
8

H
2(
20
,5

)
0.
09

0.
60

2.
05

4.
95

9.
27

15
.2
3

23
.2
5

34
.8
3

47
.5
2

64
.3
7

20
.2
2

H
2(
20
,1

0)
0.
10

0.
62

2.
19

5.
44

10
.0
7

15
.4
7

22
.5
7

32
.6
4

44
.4
5

58
.5
3

19
.2
1

H
3(
10
)

0.
15

0.
81

2.
62

6.
31

12
.3
5

20
.0
2

28
.8
9

42
.4
7

58
.6
6

78
.6
1

25
.0
9

121

Furthermore, the statistical Tukey test was performed aimed at verifying if there
is a statistical difference at 95% confidence level among the means obtained through the
best tested methods (FRB3, FRB4k, H1(N), H2(N, k) and H3(N)). The results obtained
from the test are shown in Figure 13. It can be observed from this figure that there is
no overlapping of the range of error bars at the 95% confidence level, demonstrating,
therefore, that the methods compared are statistically different. Given these results, it
can be concluded that the proposed heuristics H1(N), H2(N, k) and H3(N) surpass those
adapted from the literature.

A
R

PD

6.00

5.50

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.63

3.65
3.75

0.780.79

5.60

4.65

1.94

Heuristics

H
3(

10
)

H
1(

20
)

H
1(

10
)

FR
B

3

H
2(

20
, 1

0)

H
2(

10
, 1

0)

FR
B

4
10

FR
B

4
5

Figure 13: Means plot for the heuristics in all distributions with 95% confidence intervals.

As the proposed heuristics presented the best results in the previous comparison,
we choose the H1(N), H2(N, k) and H(N) to be compared against the optimal solutions
found by the MILP formulation (Section 2.3.1). We used the set of parameters N = {10}
and k = {5}. The Table 32 presents the results in terms of ARPD and Table 33 shows the
percentage of optimal solutions found by the proposed heuristics. The ARPD represents the
distance of the solutions found by the proposed heuristics relative to the optimal solution

122

obtained by the MILP for the instance set. The results show that the proposed heuristics
find near optimum solutions, with an ARPD of 4.34, 4.99 and 3.75 for the H1(10), H2(20,
5) and H3(10), respectively, when we considers all the instances. In addition, in average
6.67%, 7.11% and 10.67% of the solutions found by the H1(10), H2(20, 5) and H3(10)
heuristics are optimal, respectively. The best results are achieved when n = 10 and m = 5,
where the percentage of optimal solutions found can reach up to 30% for the SSD-100 and
SS-D125 distributions intervals. Table 34 shows that the MILP CPU time requirements
grow considerably as the number of jobs and machines increases. As can be seen the
maximum CPU time can reach up to 3 hours and 36 minutes (129738 seconds) in the worst
case scenario for the set of instances with n = 20, m = 5 and SS-D125 distribution. Thus,
together with the results presented in the previous benchmarks we can conclude that the
our proposed heuristics obtain high quality solutions with computational efficiency.

Table 32: APRD for the proposed heuristics when compared to optimal solutions.

Distribution n m H1(10) H2(10, 5) H3(10)
SSD-50 10 5 3.02 3.43 2.77

10 10 2.48 2.82 2.07
15 5 4.46 4.35 3.81
15 10 4.18 4.55 3.23
20 5 5.04 5.98 4.63

SSD-100 10 5 3.18 3.08 2.71
10 10 3.14 3.58 2.41
15 5 4.96 6.50 4.23
15 10 5.11 4.91 4.48
20 5 6.19 7.84 5.74

SSD-125 10 5 2.66 3.37 1.90
10 10 2.54 2.87 2.23
15 5 6.51 7.56 5.36
15 10 4.46 6.04 3.77
20 5 7.18 7.96 6.83

Average 4.34 4.99 3.75

123

Table 33: Percentage of optimum solutions for the proposed heuristics.

Distribution n m H1(10) H2(10, 5) H3(10)
SSD-50 10 5 6.67 6.67 16.67

10 10 16.67 10.00 20.00
15 5 6.67 6.67 10.00
15 10 0.00 3.33 0.00
20 5 0.00 0.00 3.33

SSD-100 10 5 20.00 30.00 26.67
10 10 10.00 6.67 16.67
15 5 3.33 0.00 6.67
15 10 0.00 0.00 3.33
20 5 0.00 0.00 0.00

SSD-125 10 5 20.00 23.33 30.00
10 10 16.67 10.00 20.00
15 5 0.00 10.00 6.67
15 10 0.00 0.00 0.00
20 5 0.00 0.00 0.00

Average 6.67 7.11 10.67

124

Table 34: Average and maximum CPU time for the MILP model.

Distribution n m Average Maximum CPU time
SSD-50 10 5 1.06 2.11

10 10 1.87 3.56
15 5 14.80 71.62
15 10 585.47 5981.66
20 5 478.49 5958.69

SSD-100 10 5 0.98 1.94
10 10 2.56 13.93
15 5 10.73 51.08
15 10 653.41 7191.43
20 5 148.59 1598.09

SSD-125 10 5 1.19 5.94
10 10 2.77 11.31
15 5 32.89 264.33
15 10 167.48 1369.74
20 5 2430.59 12973.83

Average 302.19 12973.83

4.4 Conclusion

In this chapter, for the first time, the mixed no-idle PFSP with sequence-dependent
setup times and total flowtime minimisation is addressed. Based on a literature review
conducted on related problems, high quality heuristic methods were selected in order to
adapt them to the problem under study. Moreover, the constructive heuristics H1(N) and
H2(N, k) and the improvement heuristic H3(N) were developed. The heuristics were based
on the beam search algorithm. At each iteration, nodes are generated by inserting jobs in
the last position of partial sequences. The nodes are evaluated through an index function
developed according to the generated idleness and to the influence of the job inserted and
of the jobs that have not yet been sequenced in the sequence. The best ranked sequences
(nodes) are selected to remain for the next iteration. Additionally, the beam search strategy
was combined with a constructive procedure that uses variants of the FRB3 and FRB4k
heuristic to construct a final solution; thus, the method can optimise the partial sequences
(nodes) generated.

The proposed methods were exhaustively compared through statistical and compu-
tational experiments with adapted heuristics in an extensive set of problems with 4500
instances. Heuristics H1(N) and H3(N) obtained the best results, delivering considerably

125

better solutions than FRB3 (the best method adapted from the literature). Another high-
light was the constructive heuristic H2(N, k), with a good trade-off between computational
cost and quality solution. The statistical tests that were carried out demonstrated that
the solutions generated by the proposed heuristics are statistically better than those
obtained by the adapted methods. The proposed heuristics were also compared with the
optimal solutions found by the MILP formulation. The results showed that our proposal
can generate near optimal solutions for small sized problems instances. Therefore, based
on the results presented, it can be asserted that the proposed methods are an important
contribution to the state of the art in heuristics for the problem considered in this study.
In the next chapter address the mixed no-idle PFSP with total tardiness criterion.

127

5 THE MIXED NO-IDLE PFSP WITH SETUP TIMES AND TOTAL TARDI-
NESS MINIMISATION

The total tardiness criterion is essential for the current production systems, as
surveys of industrial scheduling practice show that meeting customer due dates is a critical
concern for many manufacturing systems (RAMAN, 1995). According to Sen e Gupta
(1984), when a job is not completed by its due date, certain costs are incurred, i.e. direct
dealing with the customer, paperwork, telephone calls, executive time taken up; penalty
clauses in the contract; loss of goodwill resulting in an increased probability of losing the
customer for some or all future jobs or perhaps in a damaged reputation which will turn
other customers away; and expediting (the job is moved quickly through the machines at
the possible cost of extra set-ups, double handling of material, inefficient use of workmen
and machinery).

In this chapter, the total tardiness minimisation criterion in a mixed no-idle
PFSP is addressed given its relevance for the current manufacturing systems. As this
is the first time that this problem has been studied, the most efficient heuristics and
metaheuristics proposed for the no-idle PFSP problems with total tardiness criterion
(denoted by Fm|prmu, no− idle|Cmax, according to Graham et al. (1979)), as well as the
PFSP with total tardiness minimisation (Fm|prmu|

∑
Tj, respectively) were adapted and

tested with the purpose of generating a basis of comparison for the proposed heuristics.
The methods were compared through computational and statistical experiments in an
new benchmark. The results obtained demonstrate that the proposed methods offer high
quality solutions with computational efficiency.

The chapter is organised as follows: Section 5.1 analyses the state of the art in
heuristics and metaheuristics. Section 5.2 proposes new methods. In Section 5.3, computa-
tional and statistical experiments are performed among the compared heuristics. Finally,
Section 5.4 draws the main conclusions of the chapter.

5.1 Literature Review

As mentioned earlier, the mixed no-idle PFSP with a sequence-dependent setup
times has not yet been studied in the literature. Therefore, we provide a background on
heuristics and metaheuristics proposed for other related problems. Basically, the following
problems were reviewed: PFSP with total tardiness criterion (Fm|prmu|

∑
Tj), no-idle

PFSP with total tardiness criterion (Fm|prmu, no− idle|
∑
Tj).

128

5.1.1 The Fm|prmu|
∑
Tj problem

The first to study the Fm|prmu|
∑
Tj problem was Gelders e Sambandam (1978).

They developed four constructive heuristics. Later, the well known NEH heuristic of Nawaz,
Enscore e Ham (1983) was adapted by Kim (1993). The NEH heuristic has two phases. In
the first phase, jobs are previously ordered in a non-ascending order of the sum of their
processing times, also known as Longest Processing Time (LPT). In the second phase,
at each iteration, a job ordered in the first phase is evaluated in all possible positions
of the programmed jobs partial sequence. The next job from the ordering is considered
analogously, and so forth until the n jobs have been sequenced. The NEHEDD differs from
NEH by ordering the jobs in the first phase in non-increasing order of due dates (Earliest
Due Date dispatch rule – EDD), and by evaluating the sub-sequences during the second
phase by their total tardiness instead of their makespan. Kim, Lim e Park (1996) also
developed the ENS1 and ENS2 heuristics that start from the NEHedd solution and apply
an improvement procedure based on insertion and interchange of jobs, respectively.

Parthasarathy e Rajendran (1998) proposed a simulated annealing (denoted as
SAH) algorithm with two perturbation schemes, the Random Insertion Perturbation
Scheme and the Curtailed Random Insertion Perturbation Scheme. The proposed SA
algorithm with two schemes is evaluated against the heuristic from Kim (1993).

Armentano e Ronconi (1999) developed a tabu search-based algorithm, and com-
pared their proposal with the NEH heuristic and with a Branch-and-Bound algorithm.
Four different scenarios of due dates were tested.

Hasija e Rajendran (2004) presented a heuristic algorithm based on the simulated
annealing (denoted as HR in this work). The proposed algorithm uses two different
perturbation schemes and a new improvement scheme. The authors compared their
metaheuristic with the algorithms from Parthasarathy e Rajendran (1998) and Armentano
e Ronconi (1999)

Framinan e Leisten (2008) proposed a hybrid algorithm (HA) that uses the Variable
Neighbourhood Search (VNS) concept of varying the neighbourhood, but apply it to the
destruction and construction phases of the IG algorithm from Ruiz e Stützle (2007). The
algorithm is compared with the work from Parthasarathy e Rajendran (1998) and Hasija
e Rajendran (2004)

Vallada e Ruiz (2010) developed three genetic algorithms (GAPR, GAPR2, and
GADV) that included techniques like path relinking, local search and a procedure to
control the diversity of the population. The algorithms outperformed Hasija e Rajendran
(2004) and Parthasarathy e Rajendran (1998). The best results were obtained by the
GAPR.

An evolutionary algorithm (EA) was proposed by Cura (2015) that outperformed

129

both GAPR by Vallada e Ruiz (2010) and HR by Hasija e Rajendran (2004). The algorithm
included a mating procedure specifically designed for the problem, a local search with two
different neighbourhood sizes, and a revision procedure.

Li et al. (2015) proposed six different composite heuristics (denoted as CHi (i =
{1, . . . , 6}). Each composite heuristic used NEHEDD as initial solution and apply an
improvement procedure based on insertion or/and interchange neighbourhood. Also,
Trajectory Scheduling Methods (TSM) are presented and compared against Vallada e Ruiz
(2010).

Fernandez-Viagas e Framinan (2015) evaluated NEHEDD and identified a significant
number of ties between sub-sequences within the same set, especially in the initial stages
of the second phase, when the partial sequence contains a small number of jobs. The
authors then developed tie-breaking criteria which substantially improve the heuristics
performance. A total of five criteria were proposed: First position (first tie – FT); Last
position (last tie – LT); Smallest makespan (MS); Smallest total flowtime (TF); Smallest
total earliness (TE).

Karabulut (2016) proposed an the iterated greedy algorithm, denoted as KIG, The
proposed iterated greedy algorithm applied a new formula for temperature calculation for
acceptance criterion and the algorithm is hybridized with a random search algorithm. The
performance of the proposed method is tested against the iterated greedy from Ruiz e
Stützle (2007).

Fernandez-Viagas, Valente e Framinan (2018) proposed a beam-search-based con-
structive heuristic (denoted as BS) that estimates the quality of partial sequences without
a complete evaluation of their objective function. In addition, using this constructive
heuristic as initial solution, eight variations of an iterated-greedy-based algorithm are pro-
posed. The BS heuristic outperformed the NEHedd by Kim (1993) and the heuristics from
Fernandez-Viagas e Framinan (2015) in terms of quality of solutions and computational
effort. Regarding the computational evaluation of metaheuristics, the best algorithms were
the Iterated Algorithm with Random Adjacent Swap (IA RAS) and the Iterated Algorithm
with Greedy Insertion and Insertion Local Search (IA GI ILS). The methods outperformed
the algorithms HA by Fernandez-Viagas e Framinan (2015), GAPR by Vallada e Ruiz
(2010), EA by Cura (2015) and KIG by Karabulut (2016).

To summarise, many heuristics and metaheuristics algorithms have been proposed
in the literature to solve the Fm|prmu|

∑
Tj problem. The most promising metaheuristics

was proposed by Fernandez-Viagas, Valente e Framinan (2018), that outperformed several
other algorithms from previous studies. Under the above considerations, the main methods
for the aforementioned problem are listed below:

• Heuristics:

130

– NEHEDD by (KIM, 1993).

– CHi (i = {1, . . . , 6}) by Li et al. (2015).

– BS heuristic by Fernandez-Viagas, Valente e Framinan (2018).

• Metaheuristics:

– IA RAS by Fernandez-Viagas, Valente e Framinan (2018).

– IA GI ILS by Fernandez-Viagas, Valente e Framinan (2018).

5.1.2 The Fm|prmu, no− idle|
∑
Tj problem

The total tardiness criterion in a no-idle PFSP was studied only recently by
Tasgetiren et al. (2011). They proposed a Differential Evolution Algorithm with Variable
Parameter Search (vpsDE). The algorithm was compared with a method known as Random
Key Genetic Algorithm (RKGA) from Bean (1994). The method proposed by Tasgetiren
et al. (2011) outperformed the RKGA, providing statistically better solutions.

The Discrete Artificial Bee Colony (DABC) was proposed by Tasgetiren et al.
(2013a). The authors also developed an acceleration method to calculate total tardiness for
the insertion neighbour applied to the Fm|no− idle, prmu|

∑
Tj problem. The results show

that the DABC method was highly competitive when compared to a genetic algorithm.

A constructive heuristic for the Fm|no− idle, prmu|
∑
Tj was presented in Nagano,

Rossi e Tomazella (2017), denoted as I(fj,d)-ICH. The heuristic was compared to the
FRB3 heuristic from Ruiz, Vallada e Fernández-Martínez (2009) and the NEHEDD by Kim
(1993) adapted in this case for the no-idle PFSP. The proposed heuristic is a combination
of two procedures: I(fj, d) and Insertion Constructive Heuristic (ICH). I(fj, d) generates
a partial sequence containing n · d jobs (0 ≤ d ≤ 1), rounded to the nearest integer, by
allocating each unscheduled job at the last available position and using a minimization
criterion fj to choose which of the sub-sequences is kept to the next step. Three criteria are
suggested for this method: makespan (fj = Cmax); total flowtime (fj = ∑

Cj); and total
earliness (fj = ∑

Ej = ∑
max(0, dj − Cj)). The ICH procedure consists of the insertion

of jobs in a partial sequence and reinsertion movements, which reinserts a pair of jobs at
once. The best results were obtained by the I(∑Cj, 0.6)-ICH version.

Shao, Pi e Shao (2017) developed a hybrid discrete teaching-learning-based meta-
heuristics (HDTLM). The HDTLM applies a probabilistic model based on the selected
elite learners where the best learner is employed to generate a series of position sequences,
and the concept of consensus permutation is employed to replace the mean individual. In
the discrete learning phase, according to different levels of learners, the whole class is first
divided into two classes, one is the elite class, and the other is the ordinary class, and then
all of learners in these two classes would be assigned into three layers (top layer, middle

131

layer, bottom layer), and the proposed learning phase adopts the order of top-down to
spread the knowledge. The HDTLM outperformed the algorithms vpsDE by Tasgetiren et
al. (2011) and DABC by Tasgetiren et al. (2013a)

According to the studies from Shao, Pi e Shao (2017) and Nagano, Rossi e Tomazella
(2017) we can identify the most promising heuristics and metaheuristics proposed for the
Fm|prmu, no− idle|

∑
Tj, which are the following:

• Heuristics:

– I(∑Cj, 0.6)-ICH by Nagano, Rossi e Tomazella (2017).

• Metaheuristics:

– DABC by Tasgetiren et al. (2013a).

– HDTLM by Shao, Pi e Shao (2017).

5.2 Proposed Heuristics

In this study, we developed a heuristic based on the beam search algorithm.
Beam-search-based heuristics were developed with success for many scheduling problems
(FERNANDEZ-VIAGAS; LEISTEN; FRAMINAN, 2016; FERNANDEZ-VIAGAS; VA-
LENTE; FRAMINAN, 2018). In a beam search algorithm, partial sequences (nodes) are
generated at each iteration by appending jobs in the last position of the sequence. The
best ranked N nodes generated are selected to be used in the next iteration, and so on.
The method continues until nodes with complete sequences of n jobs are obtained; then
the best ranked node is chosen to be the final solution of the method.

As the I(∑Cj)-ICH heuristic from Nagano, Rossi e Tomazella (2017) obtained
excellent results, we decided to use their variants in conjunction with the beam-search
concept presented by (FERNANDEZ-VIAGAS; VALENTE; FRAMINAN, 2018). Our
heuristic construct part sequence using the beam-search concept, inserting d unscheduled
jobs, then the rest of the jobs are inserted using a variation of the NEHEDD heuristic
(denoted as ICH). We choose to construct part of the sequence using the beam-search-based
heuristic in reason of the number of ties generated between partial sequences in the initial
iterations of the NEH heuristic (i.e. a problem with 50 jobs and 10 machines in Figure 14),
which was already pointed out by Fernandez-Viagas e Framinan (2015). This significant
number of ties is mostly due to many partial sequences resulting in total tardiness equal
to zero in the initial iterations. Before describing the proposed heuristics in more detail,
it is important to define the index function used to evaluate the nodes generated by the
heuristic.

132

Iteration
49

48
47

46
45

44
43

42
41

40
39

38
37

36
35

34
33

32
31

30
29

28
27

26
25

24
23

22
21

20
19

18
17

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2

Pe
rc

en
ta

ge
 o

f T
ie

s (
%

)

70.00

60.00

50.00

40.00

30.00

20.00

10.00

Figure 14: Percentage of ties between partial sequences.

Formally, a node, denoted by ηvl , is linked to a partial sequence πv with l jobs,
πv = {πv1 , . . . , πvl } and to a set of jobs that have not yet been sequenced, Uv. A node ηvl
can be branched generating other nodes, ηvl+1, by inserting a job that has not yet been
sequenced, Jj ∈ Uv, in the last position l + 1 de πv, resulting in πv = {πv1 , . . . , πvl , πvl+1},
where πvl+1 = Jj. Then, an initial node ηvl is branched into other nodes, denoted by ηvl+1,
each one with a different job Jj ∈ Uv in the last position of πv. The principle behind the
index is to evaluate three results from the insertion of job Jj in the last position: idle time
generated, immediate effect of the job inserted in the last position and influence of the
jobs that have not yet been sequenced.

The idle time of the generated node ηvl+1 is denoted by IT vl+1. However, this
evaluation can lose relevance in when most machines are no-idle. Thus, supposing a
sequence πv = {πv1 , . . . , πvl , πvl+1} of node ηvl+1, to calculate the completion times of the
first l jobs of πv the method uses the calculation method described in Subsection 2.3.2.
However, for the job Jj, inserted at position l + 1, πvl+1, the completion times consider
only the setup times, and all machines are considered as regular (allow idleness). These
completion times of job Jj in machine Mi, denoted by C∗i,[l+1], can be calculated using the
expressions below.

133

When job Jj is inserted in the first position, l = 1:

C∗1,[1] = p1,[1]

C∗i,[1] = Cregular
i−1,[1] + pi,[1]

i = 2, . . . ,m

(5.1)

For all remaining positions:
C∗1,[l+1] = C1,[l] + s1

[l],[l+1] + p1,[l+1]

C∗i,[l+1] = max
(
Ci,[l] + si[l],[l+1], C

∗
i−1,[l+1]

)
+ pi,[l+1]

i = 2, . . . ,m

(5.2)

Note that the completion times of the job occupying position l (Ci,[l]) remain
unchanged if we change the job which occupies position l+1 within the sequence. Therefore,
it is possible to pre-calculate Ci,[l] and use the same values to calculate the completion
times of any job Jj that is inserted in position l + 1. This enables us to quickly calculate
the completion times C∗i,[l+1]. After the completion times C∗i,[l+1] are calculated. Finally,
the sum of the idle times between the jobs, IT vl , are calculated as follows.

IT vl+1 =
m∑
i=2

max
(
C ′i−1,[l+1] − Ci,[l] − si[l],[l+1], 0

)
(5.3)

The immediate effect of inserting job Jj in the last position l+ 1, is evaluated using
the completion time of job Jj that occupies the last position, l+1, in the last machine Mm,
also denoted as MKj = C ′m,[l+1], the earliness Ej = max(d[k] − C ′[k],m) and the tardiness
Tj = max(C ′[l+1],m − d[l+1], 0).

Finally, index Ivl , that evaluates the generated nodes, ηvl+1, is defined below. We
used weighted factors in the index to balance the effect of each component of the present
expression. The notation |M ′| represents the number of no-idle machines. The N selected
nodes are those that present the lowest value of Ivl+1.

Ivl+1 = |M
′| · (n− k − 1)
4 · (m− 1) · ITj +MKj + (k + 2.00) · (Ej + Tj) (5.4)

At the end of this beam-search-based procedure, there will be a sequence π with d
jobs and n− d jobs still to be sequenced that belong to the set denoted by U . The first
job of U is inserted in the best position of the π sequence. Afterwards, a procedure, based
on the ICH from Nagano, Rossi e Tomazella (2017), is performed. The ICH procedure
consists of the insertion of jobs in a partial sequence and reinsertion movements. Differently
from FRB3, which reinserts a single job on each step, ICH reinserts a pair of jobs at

134

once. The purpose of this change is to allow a bigger perturbation on the partial sequence,
broadening the search area for a better result. The procedure starts with a partial sequence
π containing n · d jobs, and performs (n− d) iterations to insert the remaining jobs in U .
The insertion is done similarly to NEH, taking the first job from set U and testing it in all
positions of π, choosing as a partial solution the one with smallest total tardiness value.
Then, the procedure reinserts the jobs from the current sequence. Instead of reinserting the
jobs one by one as the FRB3 heuristic does, the ICH pairs of adjacent jobs are reinserted,
πl and πl+1. Rossi, Nagano e Neto (2016), Nagano, Rossi e Tomazella (2017) already
demonstrated that this kind of reinsertion in pairs of jobs results in a better optimisation
of partial sequences. During this movement, the jobs from the pair are removed from
the sequence and the first job, πl, is tested in all positions of the sequence, and the best
position is selected for insertion; then, the second job, πl+1 is considered analogously.
Afterwards, the second pair, {πl+2, πl+3}, is reinserted and so forth, {πl+4, πl+5}, until the
last pair, {πn−1, πn}, is done. When the reinsertion is finished, the method inserts the
second job from the initial ordering, and then the same reinsertion movements in pairs, as
explained above. The next jobs of the initial ordering are considered in the same way. The
method continues until the complete sequence with n jobs is obtained. After the sequence
is completed with n jobs the heuristic carries out a simple local search based on insertion
neighbourhood. This improvement procedure reinserts all jobs in all positions, when a
better solution is found the current best solution is updated.

The pseudocode presented in Algorithm 6 shows the beam search procedure used in
the proposed heuristics for generating the sequence π with d jobs. The heuristic BS-ICH(N)
is described in detail in Algorithms 7.

5.3 Computational and statistical experiments

5.3.1 Instances generation

In this chapter’s comparison we generated a mixed no-idle scenario where the
machines alternate between no-idle and regular machines. Each problem is generated with
combinations between a number of jobs n = {50, 100, 150, 200, 250, 300} and a number of
machines m = {10, 30, 50}, totalling 6× 3 = 18 possible combinations. Three replications
were generated for each combination, resulting in a total of 18 × 3 = 54 problems. We
used an uniform distribution [1,99] to generated the processing times.

In this chapter, we address the mixed no-idle flowshop problem with the additional
condition of sequence-dependent setup times on regular machines. We added sequence-
dependent setup times to regular machines with three different distributions:

• SSD-50: setup times with uniform distribution in the interval [1, 49] (limited to 50%
of the limit for the processing time interval).

135

Algorithm 6 Beam search based procedure.
U is the set of unscheduled jobs, U = {J1, J2, ..., Jn}.
Uj denotes the job occupying the jth position in the set U .
for h = 1 to n do

Generate the node ηh0 .
πh = {Jh}
Uh = U − Jh
Evaluate the node ηh0 using the index function ϕh0 .

end for
Order the generated nodes ηh0 in non-desceding order of ϕh0 .
Select the N first ranked nodes ηh0 to be the new set of nodes ηv0 = {η1

0, η
2
0, ..., η

N
0 }.

for l = 1 to d− 1 do
h = 1
for v = 1 to N do

for j = 1 to n− l do
Generate the node ηhl+1 from ηvl .
Insert the job Uj from U v in the l + 1 position of πv, resulting πh.
Evaluate the node ηhl+1 using the index function ϕhl .
Uh = U v − Uj
h = h+ 1

end for
end for
Order the generated nodes ηhl+1 in non-desceding order of ϕhl .
Select the N first ranked nodes to be the new set of nodes ηvl+1.

end for
Select the sequence πv of the node ηvd that results in the lowest ∑Tj(πv).
π = πv

U = U v

return π = {π1, ..., πd} and U .

• SSD-100: setup times with uniform distribution in the interval [1, 99] (limited to
100% of the limit for the processing time interval).

• SSD-125: setup times with uniform distribution in the interval [1, 124] (limited to
125% of the limit for the processing time interval).

The due dates were generated using the parameter τ = 1, 3, where the due date
of job Jj is dj = τ ·∑m

i=1 pi,j. Therefore, the new benchmark for the mixed no-idle PFSP
consists of three sequence-dependent setup times distribution intervals (SSD-50, SSD-100,
SSD-125) with 54 problems for each distribution. For each problem, two due date scenario
were tested, when τ = 1 and τ = 3. Thus, the total number of tests for the benchmark is
54× 3× 2 = 324 instances.

136

Algorithm 7 BS-ICH(N) heuristic
Call the beam search based procedure (Algorithm 2).
for l = 1 to n− d do

Insert job Ul in π in the position that results in the lowest ∑Tj.
for j = 1 to l + d− 1, step j = j + 2 do

π′ = π
Remove the jobs π′j and π′j+1 from π′.
Insert the job π′j in the position of that results in the lowest ∑Tj.
Insert the job π′j+1 in the position of that results in the lowest ∑Tj.
if ∑Tj(π′) < ∑

Tj(π) then
π = π′

end if
end for

end for
for j = 1 to n do

π′ = π
Remove job πrefj from π′.
Insert the job πrefj in the position of π′ that results in the lowest ∑Tj.
if ∑Tj(π′) <

∑
Tj(π) then

π = π′

end if
end for
return π = {π1, ..., πn}.

5.3.2 Compared heuristics

Based on the literature review, we identified the heuristics and metaheuristics that
could be best adapted to our problem. The methods chosen are listed below. These heuristics
and metaheuristics from the literature were compared with those proposed in this work.
The adapted heuristics were modified only in the total tardiness evaluation of the sequences
with the purpose that the mixed no-idle flowshop with the sequence-dependent setup times
is considered in the objective function. To evaluate the total tardiness of a sequence, we used
the method presented in Section 2.3.2. We also implemented the acceleration procedure
described in Section 2.3.4, which allowed a large increase in calculation speed. The BS
heuristic from (FERNANDEZ-VIAGAS; VALENTE; FRAMINAN, 2018) could not be
adapted for the addressed problem, as the index used to evaluate the nodes are based on idle
times, and explore specific characteristic from the F | prmu|∑Tj problem. As the IA RAS,
CH2, CH3, CH4, CH5 and CH6 are partially or manly based on permutation of jobs and
could not benefit from the acceleration method (Section 2.3.4) we excluded these methods
from the comparisons, as they would be in severe disadvantage compared to the other
methods. In the IA GI ILS ((FERNANDEZ-VIAGAS; VALENTE; FRAMINAN, 2018)), we
substitute the BS heuristic for our proposed version BS-ICH, this new version was denoted
IG GI ILS in this work. We integrated the BS-ICH heuristic in the initialization phase of
the metaheuristics DABC and HDTLM. These new versions were denoted as DABCBS-ICH

137

and HTLMBS-ICH, and only one individual is generated using the BS-ICH for the initial
population. For the stop rule, the metaheuristics were run with Tmax = t · n · m/1000
seconds with t = {250, 500}.

• Proposed heuristics.

– BS-ICH

• Proposed metaheuristics:

– DABCBS-ICH, based on the DABC from Tasgetiren et al. (2013a);

– HDTLMBS-ICH, based on the HTLM from Shao, Pi e Shao (2017);

– IG GI ILSBS-ICH, based on the IA GI ILS from Fernandez-Viagas, Valente e
Framinan (2018).

• Heuristics and metaheuristics adapted from the PFSP with total tardiness criterion,
F | prmu|∑Tj.

– Heuristics:

∗ CH1 by Li et al. (2015);
∗ BS heuristic by Fernandez-Viagas, Valente e Framinan (2018).

• Heuristics and metaheuristics adapted from the no-idle PFSP with total tardiness
criterion, Fm|prmu, no− idle|

∑
Cj.

– Heuristics:

∗ I(∑Cj, 0.6)-ICH by Nagano, Rossi e Tomazella (2017).

– Metaheuristics:

∗ DABC by Tasgetiren et al. (2013a);
∗ HDTLM by Shao, Pi e Shao (2017).

5.3.3 Performance measures

The performance measures used to compare the heuristics were: quality solution
and computational efficiency. The quality solution was evaluated by the relative deviation
(DRt

h) of the heuristic h in problem t, and can be calculated by the expression below.

DRt
h = 100 ·

∑
Tj (πh)t −

∑
Tj(π∗)t∑

Tj(π∗)t
(5.5)

where ∑Tj (πh)t is the total tardiness provided by the sequence πh through the heuristic
h for problem t. The best solution for problem t is denoted by ∑Tj(π∗)t. It can be seen
that as the lower is the value of DRt

h, the closer the heuristic’s solution will be to the

138

best result found. The mean average of the relative values (ARPDh) of a heuristic h in
conjunction with N problems can be calculated by the expression below:

ARPDh =
∑N
t=1 DR

t
h

N
(5.6)

To assess the computational efficiency, the average time in seconds was used (average
CPU - ACPU). All compared heuristics were implemented in C++, compiled using Intel
C++ and executed in an Intel Xeon E5-2680 @ 2.7 GHz with 16 GB RAM memory.

5.3.4 Comparisons between heuristics

The results for the compared heuristics presented in Section 5.3.2 in the set of
test problems described in Section 5.3.1 are presented in Table 35, in terms of solution
quality (ARPD) and computational efficiency (ACPU). The results for all setup times
distributions and due dates scenarios are presented in Table 36. The complete results
for different setup times and due dates times scenarios are presented in Tables 38, 39,
40, 41, 42 and 43. The ACPU values are presented in Table 37. The results clearly show
that the new proposed heuristic BS-ICH(N) (N = {2, 10, 15, n/10}) presented the best
results, with an ARPD of 2.90 and an ACPU around of 13 seconds for N = n/10. After
that, the one with the best performance was the heuristics adapted from the literature,
I(CT)-ICH and CH1, with worse ARPD of 5.27 and 6.64 and approximately ACPU of 13
and 1.2 seconds, respectively. The CH1 presented a good trade-off between computational
efficiency and quality of solution. The NEHEDD with different tie breaking mechanism
(LT, TE, TF, FT, MK) obtained the worst results, and no significant different between
the versions were found. Figure 15 shows that the proposed heuristics BS-ICH(n/10) is
significant different at 95% confidence level when compared to the CH1 and I(CT)-ICH
heuristics. Therefore, the core idea behind BS-ICH of using a beam-search based heuristic
in conjunction with the improved NEH extension turned up to be a important contribution
for the state-of-the-art in heuristics.

When we compare different distributions, the BS-ICH obtained the best results in
the SSD-125, with an ARPD of 2.83 for BS-ICH(n/10). Considering all setup and due
dates scenarios, the best overall results is obtained by BS-ICH(n/10) when n = {250}
and m = {50} with a resulted ARPD of 0.84. The heuristics usually presents best ARPD
when τ = 1. In addition, best solutions are obtained by BS-ICH, I(CT)-ICH and CH1 as
the number of machines and jobs grow (Figures 16 and 17). Thus, the heuristics benefit
from problems with large instances.

139

Ta
bl
e
35
:A

R
PD

an
d
A
C
PU

va
lu
es

fo
r
th
e
co
m
pa

re
d
he
ur
ist

ic
s
in

di
ffe

re
nt

di
st
rib

ut
io
ns

an
d
du

e
da

te
sc
en
ar
io
s.

H
eu
ris

tic
s

SS
D
-5
0

Av
er
ag
e

τ
=
{1
,3
}

SS
D
-1
00

Av
er
ag
e

τ
=
{1
,3
}

SS
D
-1
25

Av
er
ag
e

τ
=
{1
,3
}

A
R
PD

A
C
PU

τ
=

1
τ

=
3

τ
=

1
τ

=
3

τ
=

1
τ

=
3

BS
-IC

H
(n
/1
0)

2.
74

3.
30

3.
02

2.
80

2.
92

2.
86

2.
58

3.
07

2.
83

2.
90

12
.8
3

BS
-IC

H
(1
0)

2.
60

3.
31

2.
96

2.
85

2.
82

2.
83

2.
95

3.
01

2.
98

2.
92

12
.8
1

BS
-IC

H
(2
)

3.
06

3.
36

3.
21

2.
81

3.
01

2.
91

2.
94

3.
28

3.
11

3.
08

12
.8
2

BS
-IC

H
(1
5)

2.
95

3.
42

3.
18

2.
93

3.
01

2.
97

2.
87

3.
33

3.
10

3.
08

12
.8
1

I(
C
T
)-
IC

H
5.
14

5.
76

5.
45

5.
13

5.
47

5.
30

4.
90

5.
24

5.
07

5.
27

12
.7
6

C
H
1

6.
31

7.
16

6.
74

6.
33

6.
85

6.
59

6.
38

6.
84

6.
61

6.
64

1.
19

N
EH

E
D

D
LT

9.
50

10
.7
1

10
.1
1

9.
42

10
.0
0

9.
71

9.
66

9.
89

9.
77

9.
86

0.
13

N
EH

E
D

D
T
E

9.
51

10
.9
3

10
.2
2

9.
37

10
.0
1

9.
69

9.
69

9.
89

9.
79

9.
90

0.
12

N
EH

E
D

D
T
F

9.
51

10
.6
0

10
.0
5

9.
37

10
.1
2

9.
74

9.
69

10
.1
7

9.
93

9.
91

0.
08

N
EH

E
D

D
FT

9.
51

10
.8
2

10
.1
7

9.
37

10
.2
8

9.
83

9.
69

9.
96

9.
82

9.
94

0.
07

N
EH

E
D

D
M
K

9.
50

10
.9
3

10
.2
1

9.
42

10
.0
9

9.
75

9.
66

10
.1
3

9.
89

9.
95

0.
13

140

Heuristics
BS-ICH(n/10)I(CT)-ICHCH1

A
R

PD

7.50

7.00

6.50

6.00

5.50

5.00

4.50

4.00

3.50

3.00

2.50

2.00

5.27

6.64

2.90

Figure 15: Means plot for the heuristics in all distributions with 95% confidence intervals.

141

Number of Jobs
30025020015010050

A
R

PD

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

.00

3.68

4.174.18

5.06

6.45

8.09

5.43

5.81

5.22

6.66

7.76

8.99

1.471.581.45

3.20

4.16

5.57

I(CT)-ICH
CH1
BS-ICH(n/10)

Heuristics

Figure 16: ARPD grouped by number of jobs.

142

Number of Machines
503010

A
R

PD

11.00

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

2.95

4.03

8.84

3.81

5.28

10.85

1.80

2.50

4.42

I(CT)-ICH
CH1
BS-ICH(n/10)

Heuristics

Figure 17: ARPD grouped by number of jobs.

143

Ta
bl
e
36
:A

R
PD

va
lu
es

fo
rt

he
co
m
pa

re
d
he

ur
ist

ics
fo
ra

ll
se
tu
p
tim

es
di
st
rib

ut
io
ns

an
d
du

e
da

te
ss

ce
na

rio
s.
Th

e
be

st
re
su
lts

ar
e
hi
gh

lig
ht
ed

in
bo

ld
.

n
m

N
EH

E
D

D

FT
N
EH

E
D

D

LT
N
EH

E
D

D

M
K

N
EH

E
D

D

T
F

N
EH

E
D

D

T
E

C
H
1

I(
C
T
)-

IC
H

BS
-

IC
H
(2
)

BS
-

IC
H
(1
0)

BS
-

IC
H
(1
5)

BS
-

IC
H
(n
/1
0)

50
10

22
.5
4

22
.0
2

23
.2
1

22
.6
9

22
.3
2

15
.0
5

13
.5
5

10
.4
6

9.
51

9.
56

9.
04

50
30

10
.4
6

10
.4
3

10
.5
3

10
.2
7

10
.0
8

7.
01

6.
44

4.
84

4.
11

4.
42

4.
65

50
50

7.
25

6.
99

7.
09

7.
07

7.
16

4.
93

4.
29

3.
08

3.
32

3.
29

3.
01

10
0

10
19
.7
7

19
.8
2

19
.5
9

19
.1
8

20
.4
2

13
.0
8

11
.2
3

6.
78

7.
07

6.
50

7.
07

10
0

30
8.
04

7.
68

8.
05

8.
32

7.
78

5.
61

4.
33

3.
08

2.
78

3.
26

2.
78

10
0

50
6.
49

6.
58

6.
44

6.
44

6.
57

4.
57

3.
79

2.
65

2.
62

2.
75

2.
62

15
0

10
15
.8
7

15
.8
9

15
.9
3

15
.9
3

15
.7
5

11
.2
4

8.
84

4.
58

5.
00

5.
46

5.
46

15
0

30
7.
51

7.
32

7.
33

7.
43

7.
43

5.
14

3.
70

2.
70

2.
23

2.
49

2.
49

15
0

50
5.
34

5.
31

5.
29

5.
28

5.
20

3.
61

2.
65

1.
73

1.
72

1.
66

1.
66

20
0

10
12
.8
1

12
.5
4

12
.7
6

12
.6
3

12
.7
1

7.
91

6.
54

2.
11

1.
80

2.
52

1.
24

20
0

30
6.
65

6.
68

6.
72

6.
70

6.
82

4.
29

3.
27

1.
58

1.
55

1.
81

1.
50

20
0

50
5.
13

5.
20

5.
21

5.
21

5.
22

3.
47

2.
74

1.
71

1.
53

1.
71

1.
63

25
0

10
15
.2
1

15
.2
9

15
.2
2

15
.2
2

15
.1
8

9.
70

7.
12

2.
86

2.
62

3.
11

2.
25

25
0

30
7.
11

7.
09

7.
17

7.
17

6.
96

4.
88

3.
44

1.
70

1.
75

1.
64

1.
65

25
0

50
4.
34

4.
46

4.
31

4.
40

4.
37

2.
84

1.
95

0.
87

0.
76

0.
80

0.
84

30
0

10
12
.3
2

12
.3
3

12
.2
2

12
.2
9

12
.1
9

8.
11

5.
78

1.
86

1.
39

1.
56

1.
45

30
0

30
7.
08

6.
96

7.
01

7.
00

7.
09

4.
74

3.
01

1.
76

1.
83

1.
81

1.
90

30
0

50
4.
98

4.
96

5.
06

5.
11

4.
96

3.
42

2.
25

1.
06

1.
04

1.
14

1.
05

Av
er
ag
e

9.
94

9.
86

9.
95

9.
91

9.
90

6.
64

5.
27

3.
08

2.
92

3.
08

2.
90

144
Ta

bl
e
37
:A

C
PU

va
lu
es

fo
r
th
e
co
m
pa

re
d
he
ur
ist

ic
s
fo
r
al
ls

et
up

tim
es

di
st
rib

ut
io
ns

an
d
du

e
da

te
s
sc
en
ar
io
s.

n
m

N
EH

E
D

D

FT
N
EH

E
D

D

LT
N
EH

E
D

D

M
K

N
EH

E
D

D

T
F

N
EH

E
D

D

T
E

C
H
1

I(
C
T
)-

IC
H

BS
-

IC
H
(2
)

BS
-

IC
H
(1
0)

BS
-

IC
H
(1
5)

BS
-

IC
H
(n
/1
0)

50
10

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
04

0.
04

0.
04

0.
04

0.
04

50
30

0.
00

0.
00

0.
00

0.
00

0.
00

0.
02

0.
08

0.
08

0.
09

0.
09

0.
08

50
50

0.
00

0.
01

0.
01

0.
00

0.
01

0.
03

0.
12

0.
13

0.
14

0.
14

0.
13

10
0

10
0.
01

0.
01

0.
01

0.
01

0.
01

0.
09

0.
52

0.
53

0.
54

0.
55

0.
54

10
0

30
0.
01

0.
02

0.
02

0.
01

0.
02

0.
15

0.
86

0.
87

0.
88

0.
89

0.
87

10
0

50
0.
02

0.
03

0.
03

0.
02

0.
03

0.
22

1.
26

1.
26

1.
27

1.
28

1.
24

15
0

10
0.
02

0.
02

0.
03

0.
02

0.
02

0.
22

1.
52

1.
56

1.
57

1.
58

1.
57

15
0

30
0.
04

0.
06

0.
06

0.
04

0.
06

0.
50

3.
77

3.
70

3.
72

3.
72

3.
62

15
0

50
0.
06

0.
09

0.
10

0.
06

0.
09

0.
81

5.
78

5.
73

5.
71

5.
72

5.
50

20
0

10
0.
06

0.
09

0.
09

0.
06

0.
09

0.
81

7.
87

8.
11

8.
02

8.
09

8.
00

20
0

30
0.
08

0.
12

0.
13

0.
08

0.
12

1.
25

10
.6
6

10
.8
3

10
.6
7

10
.6
5

10
.3
8

20
0

50
0.
10

0.
16

0.
17

0.
11

0.
16

1.
66

13
.9
8

14
.1
7

14
.0
6

13
.5
7

13
.7
4

25
0

10
0.
06

0.
10

0.
10

0.
07

0.
10

1.
02

10
.7
7

10
.8
9

10
.9
3

10
.8
1

10
.9
5

25
0

30
0.
11

0.
19

0.
19

0.
12

0.
18

1.
65

19
.6
7

20
.1
5

19
.5
3

19
.5
5

19
.7
6

25
0

50
0.
21

0.
34

0.
36

0.
23

0.
32

3.
41

35
.0
6

35
.6
9

35
.5
6

35
.8
7

35
.7
5

30
0

10
0.
15

0.
26

0.
24

0.
16

0.
24

2.
70

30
.9
2

31
.2
5

31
.2
3

31
.4
5

31
.3
7

30
0

30
0.
14

0.
24

0.
23

0.
15

0.
24

2.
31

28
.7
4

28
.3
2

28
.7
5

28
.2
9

28
.7
3

30
0

50
0.
28

0.
48

0.
48

0.
30

0.
45

4.
46

58
.0
1

57
.4
0

57
.8
0

58
.2
9

58
.7
3

Av
er
ag
e

0.
07

0.
13

0.
13

0.
08

0.
12

1.
19

12
.7
6

12
.8
2

12
.8
1

12
.8
1

12
.8
3

145

Ta
bl
e
38
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
he
ur
ist

ic
s
in

th
e
SS

D
-5
0
di
st
rib

ut
io
n
an

d
τ

=
1.

n
m

N
EH

E
D

D
FT

N
EH

E
D

D

LT
N
EH

E
D

D

M
K

N
EH

E
D

D

T
F

N
EH

E
D

D

T
E

C
H
1

I(
C
T
)-

IC
H

BS
-

IC
H
(2
)

BS
-

IC
H
(1
0)

BS
-

IC
H
(1
5)

BS
-

IC
H
(n
/1
0)

50
10

18
.3
4

18
.3
4

18
.3
4

18
.3
4

18
.3
4

12
.0
4

11
.9
8

9.
23

7.
76

8.
60

7.
98

50
30

9.
99

9.
99

9.
99

9.
99

9.
99

6.
73

6.
68

5.
35

4.
97

4.
39

4.
96

50
50

6.
58

6.
58

6.
58

6.
58

6.
58

4.
25

3.
65

2.
87

2.
44

3.
11

3.
14

10
0

10
19
.4
9

19
.4
9

19
.4
9

19
.4
9

19
.4
9

13
.2
7

10
.8
2

7.
66

5.
94

7.
60

5.
94

10
0

30
8.
63

8.
63

8.
63

8.
63

8.
63

6.
13

4.
57

3.
24

2.
67

3.
29

2.
67

10
0

50
6.
25

6.
25

6.
25

6.
25

6.
25

4.
42

3.
90

2.
83

2.
85

2.
78

2.
85

15
0

10
15
.3
5

15
.3
5

15
.3
5

15
.3
5

15
.3
5

11
.2
7

9.
29

4.
97

4.
33

4.
78

4.
78

15
0

30
7.
94

7.
94

7.
94

7.
94

7.
94

5.
40

3.
07

2.
90

2.
18

2.
48

2.
48

15
0

50
5.
26

5.
26

5.
26

5.
26

5.
26

3.
66

2.
92

1.
90

1.
52

1.
49

1.
49

20
0

10
11
.8
5

11
.8
5

11
.8
5

11
.8
5

11
.8
5

7.
51

5.
32

1.
73

0.
80

1.
87

1.
34

20
0

30
6.
78

6.
78

6.
78

6.
78

6.
78

4.
54

3.
56

1.
72

1.
31

1.
86

1.
73

20
0

50
5.
67

5.
67

5.
67

5.
67

5.
67

3.
69

3.
16

1.
74

1.
68

2.
24

1.
60

25
0

10
14
.7
1

14
.7
1

14
.7
1

14
.7
1

14
.7
1

8.
90

6.
85

2.
72

2.
52

2.
68

2.
50

25
0

30
6.
92

6.
92

6.
92

6.
92

6.
92

4.
61

3.
75

1.
39

1.
42

1.
58

1.
41

25
0

50
4.
14

3.
87

3.
87

4.
14

4.
14

2.
35

2.
14

0.
65

0.
56

0.
69

0.
51

30
0

10
11
.5
3

11
.5
3

11
.5
3

11
.5
3

11
.5
3

6.
83

5.
56

1.
44

1.
23

1.
06

1.
05

30
0

30
6.
52

6.
52

6.
52

6.
52

6.
52

4.
58

2.
82

1.
53

1.
36

1.
42

1.
82

30
0

50
5.
30

5.
30

5.
30

5.
30

5.
30

3.
39

2.
55

1.
24

1.
26

1.
13

1.
15

Av
er
ag
e

9.
51

9.
50

9.
50

9.
51

9.
51

6.
31

5.
14

3.
06

2.
60

2.
95

2.
74

146
Ta

bl
e
39
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
he
ur
ist

ic
s
in

th
e
SS

D
-5
0
di
st
rib

ut
io
n
an

d
τ

=
3.

n
m

N
EH

E
D

D
FT

N
EH

E
D

D

LT
N
EH

E
D

D

M
K

N
EH

E
D

D

T
F

N
EH

E
D

D

T
E

C
H
1

I(
C
T
)-

IC
H

BS
-

IC
H
(2
)

BS
-

IC
H
(1
0)

BS
-

IC
H
(1
5)

BS
-

IC
H
(n
/1
0)

50
10

29
.7
7

25
.7
5

30
.3
6

25
.1
2

30
.4
7

20
.4
4

16
.9
4

14
.0
7

13
.0
9

12
.5
9

11
.7
0

50
30

13
.1
7

14
.1
2

14
.4
8

13
.3
0

13
.3
9

8.
90

8.
55

5.
64

5.
60

6.
95

7.
05

50
50

9.
07

8.
72

8.
30

8.
30

8.
66

5.
70

4.
59

3.
99

4.
42

3.
53

3.
76

10
0

10
21
.4
4

23
.1
3

21
.0
7

21
.0
1

24
.3
9

14
.0
0

11
.7
3

7.
12

6.
57

6.
10

6.
57

10
0

30
8.
28

8.
30

9.
20

9.
95

7.
72

5.
52

5.
02

3.
91

3.
04

3.
72

3.
04

10
0

50
6.
55

7.
63

6.
53

6.
53

7.
25

4.
23

3.
91

2.
47

3.
05

2.
15

3.
05

15
0

10
17
.8
0

17
.3
5

17
.4
2

17
.4
2

17
.2
1

12
.8
8

9.
69

4.
56

5.
09

7.
20

7.
20

15
0

30
8.
11

7.
28

7.
86

8.
48

6.
75

5.
15

3.
07

2.
82

2.
23

2.
43

2.
43

15
0

50
5.
37

5.
66

5.
44

5.
43

5.
30

4.
03

2.
92

1.
84

1.
77

1.
92

1.
92

20
0

10
13
.5
8

11
.8
6

13
.3
2

12
.5
8

12
.7
9

7.
79

5.
85

1.
77

2.
57

1.
69

0.
72

20
0

30
6.
59

6.
36

6.
86

6.
73

6.
68

3.
97

3.
45

1.
52

1.
41

1.
24

1.
53

20
0

50
5.
16

5.
28

5.
41

5.
41

5.
78

3.
53

2.
81

1.
49

1.
79

1.
85

1.
55

25
0

10
14
.5
8

14
.8
1

14
.3
2

14
.2
9

14
.5
2

8.
75

7.
20

1.
92

2.
48

3.
02

2.
47

25
0

30
6.
20

7.
18

6.
98

6.
98

6.
58

4.
73

3.
77

1.
42

1.
37

1.
45

1.
11

25
0

50
4.
72

5.
09

4.
48

4.
76

4.
88

3.
11

2.
67

0.
89

1.
01

0.
77

0.
98

30
0

10
11
.9
9

12
.1
5

12
.0
5

11
.8
7

11
.5
6

7.
77

5.
60

2.
09

1.
42

1.
89

1.
68

30
0

30
7.
24

7.
06

7.
19

7.
15

7.
40

4.
74

3.
28

1.
80

1.
67

1.
70

1.
78

30
0

50
5.
15

5.
15

5.
46

5.
41

5.
34

3.
66

2.
60

1.
20

1.
03

1.
33

0.
94

Av
er
ag
e

10
.8
2

10
.7
1

10
.9
3

10
.6
0

10
.9
3

7.
16

5.
76

3.
36

3.
31

3.
42

3.
30

147

Ta
bl
e
40
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
he
ur
ist

ic
s
in

th
e
SS

D
-1
00

di
st
rib

ut
io
n
an

d
τ

=
1.

n
m

N
EH

E
D

D
FT

N
EH

E
D

D

LT
N
EH

E
D

D

M
K

N
EH

E
D

D

T
F

N
EH

E
D

D

T
E

C
H
1

I(
C
T
)-

IC
H

BS
-

IC
H
(2
)

BS
-

IC
H
(1
0)

BS
-

IC
H
(1
5)

BS
-

IC
H
(n
/1
0)

50
10

20
.5
9

20
.5
9

20
.5
9

20
.5
9

20
.5
9

13
.4
2

12
.3
5

9.
49

8.
65

7.
74

7.
97

50
30

9.
06

9.
06

9.
06

9.
06

9.
06

5.
57

3.
98

3.
42

2.
99

2.
88

3.
62

50
50

6.
55

6.
55

6.
55

6.
55

6.
55

4.
89

4.
31

2.
52

3.
42

3.
67

2.
95

10
0

10
16
.6
1

17
.5
0

17
.5
0

16
.6
1

16
.6
1

12
.0
6

9.
95

6.
69

7.
46

6.
13

7.
46

10
0

30
7.
84

7.
84

7.
84

7.
84

7.
84

5.
65

4.
19

2.
45

2.
63

2.
97

2.
63

10
0

50
6.
36

6.
42

6.
36

6.
36

6.
36

3.
99

3.
34

2.
70

2.
32

2.
60

2.
32

15
0

10
15
.1
6

15
.1
6

15
.1
6

15
.1
6

15
.1
6

10
.5
6

8.
28

3.
87

5.
68

5.
74

5.
74

15
0

30
6.
94

6.
94

6.
94

6.
94

6.
94

4.
61

3.
77

2.
37

2.
05

2.
28

2.
28

15
0

50
5.
37

5.
37

5.
37

5.
37

5.
37

3.
59

2.
64

1.
55

1.
43

1.
48

1.
48

20
0

10
11
.2
1

11
.2
1

11
.2
1

11
.2
1

11
.2
1

7.
20

7.
87

1.
08

1.
26

2.
16

0.
77

20
0

30
7.
13

7.
13

7.
13

7.
13

7.
13

4.
83

3.
30

1.
66

2.
31

1.
87

1.
61

20
0

50
4.
71

4.
71

4.
71

4.
71

4.
71

3.
61

2.
59

1.
64

1.
21

1.
45

1.
96

25
0

10
15
.2
7

15
.2
7

15
.2
7

15
.2
7

15
.2
7

9.
14

8.
01

3.
36

2.
49

3.
87

2.
31

25
0

30
7.
18

7.
18

7.
18

7.
18

7.
18

5.
17

3.
58

1.
47

2.
11

1.
73

1.
82

25
0

50
4.
38

4.
38

4.
38

4.
38

4.
38

2.
77

1.
72

0.
88

0.
78

0.
81

1.
02

30
0

10
12
.6
3

12
.6
3

12
.6
3

12
.6
3

12
.6
3

8.
63

6.
79

2.
54

1.
21

1.
67

1.
48

30
0

30
6.
95

6.
95

6.
95

6.
95

6.
95

4.
86

3.
20

1.
89

2.
13

2.
24

2.
09

30
0

50
4.
75

4.
75

4.
75

4.
75

4.
75

3.
35

2.
48

1.
07

1.
12

1.
42

0.
97

Av
er
ag
e

9.
37

9.
42

9.
42

9.
37

9.
37

6.
33

5.
13

2.
81

2.
85

2.
93

2.
80

148
Ta

bl
e
41
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
he
ur
ist

ic
s
in

th
e
SS

D
-1
00

di
st
rib

ut
io
n
an

d
τ

=
3.

n
m

N
EH

E
D

D

FT
N
EH

E
D

D

LT
N
EH

E
D

D

M
K

N
EH

E
D

D

T
F

N
EH

E
D

D

T
E

C
H
1

I(
C
T
)-
IC

H
BS

-
C
H
(2
)

BS
-

IC
H
(1
0)

BS
-

IC
H
(1
5)

BS
-

IC
H
(n
/1
0)

50
10

23
.3
0

23
.8
3

23
.9
0

25
.8
9

20
.9
2

15
.1
6

14
.9
1

9.
11

9.
25

9.
51

10
.6
9

50
30

11
.4
6

10
.7
1

10
.5
5

10
.1
8

9.
34

6.
75

4.
42

4.
25

3.
21

3.
40

4.
46

50
50

7.
28

7.
05

7.
32

7.
24

7.
67

5.
23

4.
74

3.
17

3.
30

3.
56

2.
65

10
0

10
20
.7
4

18
.4
3

19
.1
4

17
.5
7

21
.5
9

14
.8
4

10
.2
9

5.
85

6.
95

5.
07

6.
95

10
0

30
8.
24

6.
83

8.
27

8.
27

7.
28

5.
83

4.
40

3.
28

2.
39

3.
62

2.
39

10
0

50
7.
07

6.
55

6.
67

6.
67

6.
81

5.
17

3.
48

2.
50

2.
98

3.
50

2.
98

15
0

10
15
.5
5

16
.2
5

15
.7
2

15
.7
2

16
.0
8

10
.5
4

8.
50

5.
06

4.
85

4.
41

4.
41

15
0

30
7.
22

7.
46

6.
95

6.
95

7.
82

5.
28

4.
05

3.
37

2.
07

2.
41

2.
41

15
0

50
6.
01

5.
49

5.
79

5.
75

5.
40

3.
72

2.
92

1.
77

1.
35

1.
69

1.
69

20
0

10
13
.3
7

12
.7
9

12
.6
3

12
.6
3

13
.5
3

7.
80

8.
17

2.
08

1.
02

1.
74

1.
55

20
0

30
6.
59

7.
04

7.
16

7.
16

7.
17

4.
00

3.
22

0.
85

1.
54

2.
39

0.
98

20
0

50
4.
84

4.
87

4.
88

4.
88

4.
96

3.
33

2.
70

1.
44

1.
77

1.
57

1.
50

25
0

10
16
.1
2

16
.0
4

16
.1
5

16
.1
5

16
.0
2

10
.8
4

8.
62

3.
97

3.
30

3.
67

2.
12

25
0

30
7.
08

6.
88

7.
06

7.
06

6.
41

4.
91

3.
38

1.
40

1.
78

1.
53

1.
44

25
0

50
4.
51

4.
56

4.
44

4.
44

4.
21

2.
76

1.
79

0.
95

0.
92

0.
70

0.
84

30
0

10
13
.4
4

12
.8
7

12
.8
2

13
.3
9

12
.9
5

8.
88

6.
89

2.
42

0.
68

2.
36

1.
84

30
0

30
7.
42

7.
39

7.
33

7.
33

7.
54

4.
99

3.
49

1.
74

2.
35

1.
87

2.
28

30
0

50
4.
86

4.
90

4.
82

4.
82

4.
52

3.
27

2.
52

1.
07

1.
04

1.
13

1.
35

Av
er
ag
e

10
.2
8

10
.0
0

10
.0
9

10
.1
2

10
.0
1

6.
85

5.
47

3.
01

2.
82

3.
01

2.
92

149

Ta
bl
e
42
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
he
ur
ist

ic
s
in

th
e
SS

D
-1
25

di
st
rib

ut
io
n
an

d
τ

=
1.

n
m

N
EH

E
D

D
FT

N
EH

E
D

D

LT
N
EH

E
D

D

M
K

N
EH

E
D

D

T
F

N
EH

E
D

D

T
E

C
H
1

I(
C
T
)-

IC
H

BS
-

IC
H
(2
)

BS
-

IC
H
(1
0)

BS
-

IC
H
(1
5)

BS
-

IC
H
(n
/1
0)

50
10

21
.4
8

21
.4
8

21
.4
8

21
.4
8

21
.4
8

12
.8
0

11
.6
7

8.
73

8.
49

8.
77

7.
24

50
30

9.
09

9.
09

9.
09

9.
09

9.
09

6.
72

7.
15

5.
12

3.
53

4.
58

3.
62

50
50

6.
58

6.
58

6.
58

6.
58

6.
58

4.
62

4.
04

3.
05

3.
30

2.
62

2.
75

10
0

10
20
.4
9

20
.4
9

20
.4
9

20
.4
9

20
.4
9

12
.7
0

12
.0
4

6.
40

7.
84

6.
58

7.
84

10
0

30
7.
10

6.
59

6.
59

7.
10

7.
10

4.
78

3.
50

2.
50

2.
73

2.
43

2.
73

10
0

50
6.
23

6.
23

6.
23

6.
23

6.
23

4.
44

3.
94

2.
30

2.
05

2.
87

2.
05

15
0

10
14
.9
6

14
.9
6

14
.9
6

14
.9
6

14
.9
6

10
.1
4

7.
81

4.
43

4.
55

3.
92

3.
92

15
0

30
7.
17

7.
17

7.
17

7.
17

7.
17

5.
01

4.
19

2.
49

2.
93

2.
53

2.
53

15
0

50
4.
73

4.
73

4.
73

4.
73

4.
73

3.
05

2.
07

1.
40

2.
12

1.
76

1.
76

20
0

10
13
.8
1

13
.8
1

13
.8
1

13
.8
1

13
.8
1

8.
35

6.
19

2.
74

2.
71

4.
19

1.
22

20
0

30
6.
28

6.
28

6.
28

6.
28

6.
28

4.
33

3.
17

2.
29

1.
18

1.
75

1.
52

20
0

50
5.
27

5.
27

5.
27

5.
27

5.
27

3.
38

2.
58

2.
42

1.
61

1.
50

1.
80

25
0

10
15
.4
4

15
.4
4

15
.4
4

15
.4
4

15
.4
4

10
.5
5

6.
13

2.
54

2.
57

2.
24

1.
30

25
0

30
7.
24

7.
24

7.
24

7.
24

7.
24

4.
69

2.
92

2.
27

2.
02

1.
29

1.
92

25
0

50
4.
37

4.
37

4.
37

4.
37

4.
37

3.
08

1.
71

0.
62

0.
75

0.
93

0.
96

30
0

10
12
.3
5

12
.3
5

12
.3
5

12
.3
5

12
.3
5

8.
41

5.
17

1.
15

2.
12

1.
48

1.
27

30
0

30
6.
81

6.
81

6.
81

6.
81

6.
81

4.
50

2.
45

1.
55

1.
92

1.
49

1.
32

30
0

50
4.
94

4.
94

4.
94

4.
94

4.
94

3.
31

1.
46

0.
86

0.
64

0.
70

0.
74

Av
er
ag
e

9.
69

9.
66

9.
66

9.
69

9.
69

6.
38

4.
90

2.
94

2.
95

2.
87

2.
58

150
Ta

bl
e
43
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
he
ur
ist

ic
s
in

th
e
SS

D
-1
25

di
st
rib

ut
io
n
an

d
τ

=
3.

n
m

N
EH

E
D

D
FT

N
EH

E
D

D

LT
N
EH

E
D

D

M
K

N
EH

E
D

D

T
F

N
EH

E
D

D

T
E

C
H
1

I(
C
T
)-

IC
H

BS
-

IC
H
(2
)

BS
-

IC
H
(1
0)

BS
-

IC
H
(1
5)

BS
-

IC
H
(n
/1
0)

50
10

21
.7
8

22
.1
3

24
.5
9

24
.7
3

22
.1
3

16
.4
1

13
.4
3

12
.1
1

9.
80

10
.1
6

8.
65

50
30

9.
99

9.
58

9.
99

9.
99

9.
58

7.
38

7.
85

5.
25

4.
38

4.
29

4.
20

50
50

7.
44

6.
43

7.
19

7.
19

6.
94

4.
90

4.
41

2.
85

3.
02

3.
28

2.
79

10
0

10
19
.8
7

19
.8
5

19
.8
7

19
.8
7

19
.9
2

11
.5
9

12
.5
4

6.
96

7.
63

7.
52

7.
63

10
0

30
8.
17

7.
91

7.
79

8.
11

8.
09

5.
77

4.
31

3.
11

3.
21

3.
53

3.
21

10
0

50
6.
46

6.
43

6.
59

6.
59

6.
56

5.
21

4.
20

3.
07

2.
49

2.
59

2.
49

15
0

10
16
.4
2

16
.2
9

16
.9
9

16
.9
9

15
.7
2

12
.0
8

9.
45

4.
58

5.
47

6.
68

6.
68

15
0

30
7.
67

7.
13

7.
13

7.
13

7.
95

5.
42

4.
05

2.
27

1.
91

2.
82

2.
82

15
0

50
5.
31

5.
32

5.
16

5.
16

5.
12

3.
61

2.
42

1.
89

2.
13

1.
63

1.
63

20
0

10
13
.0
4

13
.7
1

13
.7
1

13
.7
1

13
.0
4

8.
80

5.
85

3.
27

2.
44

3.
46

1.
82

20
0

30
6.
51

6.
48

6.
12

6.
12

6.
88

4.
08

2.
94

1.
42

1.
54

1.
73

1.
61

20
0

50
5.
11

5.
44

5.
34

5.
34

4.
94

3.
25

2.
59

1.
57

1.
11

1.
68

1.
36

25
0

10
15
.1
3

15
.4
6

15
.4
6

15
.4
6

15
.1
3

10
.0
4

5.
92

2.
65

2.
36

3.
15

2.
82

25
0

30
8.
04

7.
17

7.
66

7.
66

7.
40

5.
16

3.
24

2.
28

1.
77

2.
26

2.
17

25
0

50
3.
94

4.
51

4.
34

4.
34

4.
24

2.
95

1.
64

1.
19

0.
56

0.
93

0.
75

30
0

10
12
.0
1

12
.4
5

11
.9
7

11
.9
7

12
.1
5

8.
17

4.
67

1.
52

1.
67

0.
92

1.
40

30
0

30
7.
53

7.
02

7.
27

7.
27

7.
30

4.
78

2.
83

2.
03

1.
52

2.
14

2.
14

30
0

50
4.
85

4.
72

5.
09

5.
45

4.
88

3.
53

1.
90

0.
90

1.
13

1.
11

1.
13

Av
er
ag
e

9.
96

9.
89

10
.1
3

10
.1
7

9.
89

6.
84

5.
24

3.
28

3.
01

3.
33

3.
07

151

5.3.5 Comparisons between metaheuristics

The results for the metaheuristics are presented in Table 44. The ARPD for all
setup times distributions and due dates scenarios are presented in Table 45. The detailed
results are shown in Tables 46, 47, 48, 49, 50 and 51. The best results was achieved by the
DABCBS-ICH with an ARPD of 0.71 for t = {500}. The use of BS-ICH in the initialization
of the metaheuristics considerably improves the results. As example, the DABC without
the BS-ICH results in an ARPD of 1.16, compared to the DABCBS-ICH with a much lower
ARPD of 0.71, the same thing happens with HTLM. From the results, while in the original
problem (Fm|prmu, no− idle|

∑
Tj), the HTLM obtained best results, the DABC proposal

obtains best solutions when the mixed no-idle PFSP with setup times is considered. The
IG GI ILS shows good results for large problems (n ≥ 200) and worse solutions in smaller
instances. This behaviour can be seen in all setup time distributions and due date times
scenarios. We also test the metaheuristics to verify if the ARPD are statistically different
in a 95% confidence interval (Figure 18).

While the metaheuristics outperformed the heuristics by a large margin, it is
important to note the difference in efficiency. For example, DABCBS-ICH obtains very
similar results to BS-ICH(n/10) when n ≥ 250 and m ≥ 10. When n = 250 and m = 50,
DABCBS-ICH obtain an ARPD of 0.49 for t = 500, that is a Tmax = t · n · m/1000 =
500 · 250 · 50/1000 = 6.250 seconds, while the BS-ICH(n/10) has an ACPU around 36
seconds and an ARPD of 0.84 for the same problem instance group. Therefore, the results
shows that the BS-ICH(n/10) is highly competitive even when compared to metaheuristics.
In addition, the use of BS-ICH with the metaheuristics is a valid proposal as it statistically
improves the solution quality of the metaheuristics.

152

Ta
bl
e
44
:A

R
PD

va
lu
es

fo
r
th
e
m
et
ah

eu
ris

tic
s
in

di
ffe

re
nt

di
st
rib

ut
io
ns

an
d
du

e
da

te
tim

es
.

H
eu
ris

tic
s

SS
D
-5
0

Av
er
ag
e

τ
=
{1
,3
}

SS
D
-1
00

Av
er
ag
e

τ
=
{1
,3
}

SS
D
-1
25

Av
er
ag
e

τ
=
{1
,3
}

A
R
PD

τ
=

1
τ

=
3

τ
=

1
τ

=
3

τ
=

1
τ

=
3

D
A
BC

B
S-

IC
H

,t
=

50
0

0.
67

0.
65

0.
66

0.
68

0.
80

0.
74

0.
61

0.
86

0.
73

0.
71

D
A
BC

B
S-

IC
H

,t
=

25
0

1.
05

1.
06

1.
06

1.
14

1.
25

1.
19

1.
04

1.
25

1.
15

1.
13

D
A
BC

t
=

50
0

1.
05

0.
98

1.
01

1.
13

1.
18

1.
16

1.
17

1.
43

1.
30

1.
16

H
T
LM

B
S-

IC
H

,t
=

50
0

1.
22

1.
33

1.
28

1.
31

1.
51

1.
41

1.
54

1.
60

1.
57

1.
42

IG
G
II

LS
t

=
50

0
1.
30

1.
87

1.
59

1.
44

1.
45

1.
44

1.
54

1.
55

1.
54

1.
53

H
T
LM

B
S-

IC
H

,t
=

25
0

1.
36

1.
48

1.
42

1.
49

1.
64

1.
56

1.
69

1.
73

1.
71

1.
56

IG
G
II

LS
t

=
25

0
1.
51

2.
03

1.
77

1.
65

1.
66

1.
65

1.
70

1.
76

1.
73

1.
72

H
T
LM

t
=

50
0

1.
37

1.
45

1.
41

1.
85

1.
88

1.
86

1.
91

2.
03

1.
97

1.
75

D
A
BC

t
=

25
0

1.
68

1.
52

1.
60

1.
95

1.
84

1.
89

1.
81

2.
05

1.
93

1.
81

H
T
LM

t
=

25
0

1.
66

1.
69

1.
68

2.
12

2.
29

2.
20

2.
22

2.
36

2.
29

2.
06

153

Metaheuristics
DABC BS-ICHDABCHTLM BS-ICHIG GI ILSHTLM

A
R

PD

2.00

1.50

1.00

0.50

0.00

1.53

1.42

1.75

0.71

1.16

Figure 18: Means plot for the metaheuristics in all distributions with 95% confidence
intervals and Tmax = 500 · n ·m.

154
Ta

bl
e
45
:A

R
PD

va
lu
es

fo
r
th
e
m
et
ah

eu
ris

tic
s
fo
r
al
ls

et
up

tim
es

di
st
rib

ut
io
ns

an
d
du

e
da

te
s
sc
en

ar
io
s.

Th
e
be

st
re
su
lts

ar
e
hi
gh

lig
ht
ed

in
bo

ld
.

n
m

t
=

25
0

t
=

50
0

D
A
BC

D
A
BC

B
S-

IC
H

H
T
LM

H
T
LM

B
S-

IC
H

IG
G
II

LS
D
A
BC

D
A
BC

B
S-

IC
H

H
T
LM

H
T
LM

B
S-

IC
H

IG
G
II

LS
50

10
0.
71

0.
89

2.
41

2.
43

6.
93

0.
26

0.
41

2.
08

1.
92

6.
92

50
30

0.
34

0.
41

1.
10

1.
04

2.
75

0.
14

0.
08

0.
88

0.
81

2.
72

50
50

0.
20

0.
22

0.
65

0.
71

1.
51

0.
10

0.
08

0.
48

0.
63

1.
47

10
0

10
1.
93

2.
02

2.
71

3.
13

7.
07

0.
36

0.
55

2.
40

2.
77

7.
07

10
0

30
0.
67

0.
61

1.
62

1.
39

1.
94

0.
17

0.
16

1.
46

1.
24

1.
92

10
0

50
0.
72

0.
63

1.
43

1.
35

0.
89

0.
31

0.
37

1.
29

1.
26

0.
78

15
0

10
2.
81

2.
72

3.
73

3.
22

1.
37

1.
38

1.
45

3.
33

2.
88

0.
99

15
0

30
1.
07

1.
15

1.
47

1.
44

1.
27

0.
38

0.
39

1.
25

1.
21

1.
15

15
0

50
0.
80

0.
68

1.
02

0.
97

1.
00

0.
36

0.
30

0.
89

0.
89

0.
90

20
0

10
2.
98

0.
90

2.
24

1.
34

1.
80

1.
96

0.
45

1.
50

1.
27

1.
80

20
0

30
1.
35

1.
14

1.
30

1.
19

0.
80

0.
81

0.
70

1.
16

1.
15

0.
70

20
0

50
1.
31

1.
17

1.
46

1.
27

0.
36

0.
89

0.
88

1.
28

1.
20

0.
13

25
0

10
5.
07

1.
88

4.
64

2.
46

0.
78

3.
80

1.
63

3.
90

2.
34

0.
07

25
0

30
2.
10

1.
48

2.
01

1.
54

0.
54

1.
45

1.
30

1.
86

1.
44

0.
19

25
0

50
1.
27

0.
67

1.
06

0.
64

0.
29

0.
79

0.
49

0.
89

0.
61

0.
19

30
0

10
4.
91

1.
30

4.
24

1.
27

0.
72

4.
37

1.
25

3.
52

1.
26

0.
43

30
0

30
2.
55

1.
56

2.
38

1.
76

0.
58

1.
99

1.
43

1.
99

1.
72

0.
00

30
0

50
1.
77

0.
93

1.
58

0.
97

0.
31

1.
29

0.
85

1.
33

0.
97

0.
01

Av
er
ag
e

1.
81

1.
13

2.
06

1.
56

1.
72

1.
16

0.
71

1.
75

1.
42

1.
53

155

Ta
bl
e
46
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
m
et
ah

eu
ris

tic
s
in

th
e
SS

D
-5
0
di
st
rib

ut
io
n
an

d
τ

=
1.

n
m

t
=

25
0

t
=

50
0

D
A
BC

D
A
BC

B
S-

IC
H

H
T
LM

H
T
LM

B
S-

IC
H

IG
G
II

LS
D
A
BC

D
A
BC

B
S-

IC
H

H
T
LM

H
T
LM

B
S-

IC
H

IG
G
II

LS
50

10
0.
76

0.
49

1.
23

1.
57

5.
56

0.
11

0.
26

1.
21

1.
47

5.
56

50
30

0.
26

0.
55

1.
12

1.
19

3.
88

0.
08

0.
12

0.
72

0.
77

3.
78

50
50

0.
17

0.
32

0.
60

0.
72

1.
05

0.
11

0.
07

0.
59

0.
58

1.
02

10
0

10
2.
14

1.
89

2.
00

2.
52

5.
94

0.
20

0.
48

1.
33

2.
18

5.
94

10
0

30
0.
54

0.
27

1.
43

1.
49

1.
99

0.
05

0.
12

1.
43

1.
13

1.
99

10
0

50
0.
86

0.
88

1.
51

1.
56

1.
04

0.
56

0.
50

1.
44

1.
44

0.
96

15
0

10
2.
90

2.
14

2.
79

2.
60

1.
44

1.
41

1.
23

2.
75

2.
30

0.
74

15
0

30
1.
16

1.
06

1.
23

1.
07

1.
05

0.
51

0.
11

1.
00

0.
96

1.
03

15
0

50
0.
92

0.
72

1.
08

0.
80

0.
70

0.
40

0.
39

0.
99

0.
71

0.
66

20
0

10
2.
19

1.
13

1.
22

0.
76

0.
80

1.
39

0.
97

0.
38

0.
71

0.
80

20
0

30
1.
41

1.
43

1.
67

1.
10

0.
43

0.
85

1.
04

1.
50

1.
10

0.
34

20
0

50
1.
41

1.
26

1.
52

1.
34

0.
39

0.
97

1.
08

1.
30

1.
30

0.
12

25
0

10
4.
66

1.
72

2.
97

2.
34

1.
05

3.
30

1.
32

2.
87

2.
34

0.
01

25
0

30
1.
98

1.
35

1.
96

1.
20

0.
38

1.
30

1.
08

1.
75

0.
94

0.
00

25
0

50
1.
06

0.
43

0.
63

0.
44

0.
21

0.
56

0.
34

0.
40

0.
44

0.
20

30
0

10
4.
23

0.
77

3.
61

1.
18

0.
66

4.
14

0.
73

2.
01

1.
17

0.
32

30
0

30
1.
86

1.
63

1.
90

1.
36

0.
29

1.
50

1.
47

1.
71

1.
36

0.
00

30
0

50
1.
77

0.
95

1.
44

1.
14

0.
26

1.
38

0.
83

1.
31

1.
14

0.
00

Av
er
ag
e

1.
68

1.
05

1.
66

1.
36

1.
51

1.
05

0.
67

1.
37

1.
22

1.
30

156
Ta

bl
e
47
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
m
et
ah

eu
ris

tic
s
in

th
e
SS

D
-5
0
di
st
rib

ut
io
n
an

d
τ

=
3.

n
m

t
=

25
0

t
=

50
0

D
A
BC

D
A
BC

B
S-

IC
H

H
T
LM

H
T
LM

B
S-

IC
H

IG
G
II

LS
D
A
BC

D
A
BC

B
S-

IC
H

H
T
LM

H
T
LM

B
S-

IC
H

IG
G
II

LS
50

10
0.
18

0.
91

2.
56

2.
96

10
.5
2

0.
18

0.
46

2.
43

1.
79

10
.5
2

50
30

0.
28

0.
62

1.
35

0.
97

2.
99

0.
24

0.
05

1.
26

0.
76

2.
99

50
50

0.
28

0.
19

0.
64

0.
61

2.
56

0.
16

0.
12

0.
22

0.
48

2.
51

10
0

10
1.
62

1.
69

1.
65

2.
51

6.
57

0.
29

0.
20

1.
65

2.
42

6.
57

10
0

30
0.
44

0.
67

1.
52

1.
30

2.
51

0.
05

0.
16

1.
36

1.
19

2.
43

10
0

50
0.
45

0.
44

1.
54

1.
20

1.
11

0.
00

0.
31

1.
37

1.
18

1.
11

15
0

10
2.
12

2.
25

2.
70

3.
04

1.
48

0.
95

1.
49

2.
19

2.
80

1.
30

15
0

30
0.
71

0.
92

1.
20

1.
21

1.
35

0.
20

0.
13

0.
84

1.
03

1.
29

15
0

50
0.
77

0.
63

0.
76

0.
86

0.
95

0.
19

0.
13

0.
76

0.
80

0.
92

20
0

10
2.
50

0.
52

1.
08

1.
66

2.
57

1.
91

0.
12

0.
53

1.
48

2.
57

20
0

30
1.
10

1.
22

1.
36

0.
97

0.
56

0.
78

0.
65

1.
03

0.
93

0.
46

20
0

50
1.
02

0.
97

1.
05

1.
18

0.
46

0.
57

0.
64

0.
98

1.
12

0.
33

25
0

10
4.
77

2.
31

4.
28

2.
22

0.
61

3.
36

2.
14

3.
60

2.
22

0.
03

25
0

30
1.
61

0.
88

1.
58

1.
34

0.
51

1.
15

0.
76

1.
50

1.
34

0.
23

25
0

50
1.
46

0.
78

1.
11

0.
73

0.
31

0.
94

0.
58

1.
01

0.
60

0.
23

30
0

10
4.
04

1.
53

2.
39

1.
20

0.
61

3.
34

1.
53

2.
39

1.
17

0.
20

30
0

30
2.
12

1.
60

2.
01

1.
67

0.
46

1.
89

1.
47

1.
65

1.
67

0.
00

30
0

50
1.
87

0.
89

1.
66

0.
96

0.
32

1.
36

0.
76

1.
34

0.
96

0.
03

Av
er
ag
e

1.
52

1.
06

1.
69

1.
48

2.
03

0.
98

0.
65

1.
45

1.
33

1.
87

157

Ta
bl
e
48
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
m
et
ah

eu
ris

tic
s
in

th
e
SS

D
-1
00

di
st
rib

ut
io
n
an

d
τ

=
1.

n
m

t
=

25
0

t
=

50
0

D
A
BC

D
A
BC

B
S-

IC
H

H
T
LM

H
T
LM

B
S-

IC
H

IG
G
II

LS
D
A
BC

D
A
BC

B
S-

IC
H

H
T
LM

H
T
LM

B
S-

IC
H

IG
G
II

LS
50

10
0.
66

0.
61

2.
12

1.
18

6.
10

0.
17

0.
03

1.
30

0.
83

6.
10

50
30

0.
56

0.
28

0.
98

0.
88

2.
47

0.
20

0.
05

0.
74

0.
71

2.
47

50
50

0.
20

0.
21

0.
56

0.
74

1.
32

0.
06

0.
00

0.
46

0.
59

1.
32

10
0

10
2.
26

1.
93

3.
26

3.
13

7.
46

0.
39

0.
38

2.
83

2.
32

7.
46

10
0

30
0.
71

0.
74

1.
77

1.
33

1.
83

0.
06

0.
13

1.
50

0.
98

1.
82

10
0

50
0.
87

0.
65

1.
25

1.
38

1.
03

0.
10

0.
52

1.
19

1.
36

0.
79

15
0

10
3.
05

3.
59

3.
67

3.
25

1.
12

1.
31

1.
40

3.
59

2.
86

0.
88

15
0

30
0.
98

1.
19

1.
37

1.
48

1.
24

0.
43

0.
45

1.
35

1.
34

0.
89

15
0

50
0.
70

0.
56

0.
77

0.
91

0.
88

0.
23

0.
27

0.
65

0.
64

0.
82

20
0

10
3.
06

0.
68

1.
06

1.
01

1.
26

1.
25

0.
68

0.
86

1.
01

1.
26

20
0

30
1.
51

1.
05

1.
16

1.
54

1.
36

0.
98

0.
72

1.
16

1.
50

1.
25

20
0

50
1.
37

1.
27

1.
68

1.
10

0.
11

0.
90

0.
91

1.
46

1.
09

0.
00

25
0

10
5.
01

1.
57

4.
85

2.
27

1.
01

3.
36

1.
21

4.
22

2.
10

0.
00

25
0

30
2.
35

1.
60

2.
20

1.
94

0.
87

1.
52

1.
35

1.
95

1.
71

0.
54

25
0

50
1.
23

0.
74

1.
17

0.
73

0.
30

0.
75

0.
35

1.
10

0.
70

0.
14

30
0

10
6.
05

1.
46

6.
16

1.
08

0.
59

5.
42

1.
46

5.
51

1.
08

0.
20

30
0

30
2.
69

1.
42

2.
47

1.
90

0.
54

1.
97

1.
33

1.
90

1.
84

0.
00

30
0

50
1.
87

0.
92

1.
67

1.
00

0.
23

1.
34

0.
92

1.
44

1.
00

0.
00

Av
er
ag
e

1.
95

1.
14

2.
12

1.
49

1.
65

1.
13

0.
68

1.
85

1.
31

1.
44

158
Ta

bl
e
49
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
m
et
ah

eu
ris

tic
s
in

th
e
SS

D
-1
00

di
st
rib

ut
io
n
an

d
τ

=
3.

n
m

t
=

25
0

t
=

50
0

D
A
BC

D
A
BC

B
S-

IC
H

H
T
LM

H
T
LM

B
S-

IC
H

IG
G
II

LS
D
A
BC

D
A
BC

B
S-

IC
H

H
T
LM

H
T
LM

B
S-

IC
H

IG
G
II

LS
50

10
0.
43

1.
05

2.
39

2.
49

6.
51

0.
36

0.
62

2.
12

2.
38

6.
51

50
30

0.
16

0.
38

0.
92

1.
14

1.
80

0.
10

0.
02

0.
88

1.
00

1.
75

50
50

0.
15

0.
09

0.
70

0.
72

1.
39

0.
13

0.
04

0.
50

0.
69

1.
39

10
0

10
1.
37

2.
09

3.
88

3.
15

6.
95

0.
00

0.
78

3.
15

3.
01

6.
95

10
0

30
0.
80

0.
52

1.
41

0.
99

1.
67

0.
02

0.
16

1.
34

0.
94

1.
66

10
0

50
0.
82

0.
74

1.
55

1.
55

0.
71

0.
58

0.
45

1.
49

1.
26

0.
71

15
0

10
2.
40

3.
06

4.
28

3.
49

2.
38

1.
23

1.
72

3.
22

3.
05

1.
83

15
0

30
1.
06

1.
53

1.
63

1.
85

1.
29

0.
38

0.
74

1.
57

1.
43

1.
23

15
0

50
0.
80

0.
85

1.
16

1.
02

0.
90

0.
52

0.
29

0.
98

1.
02

0.
70

20
0

10
2.
68

1.
33

3.
07

0.
83

1.
02

1.
57

0.
32

1.
82

0.
83

1.
02

20
0

30
1.
36

0.
91

1.
05

1.
29

0.
95

0.
51

0.
56

0.
88

1.
25

0.
94

20
0

50
1.
43

1.
18

1.
55

1.
56

0.
57

1.
01

0.
92

1.
15

1.
43

0.
27

25
0

10
5.
60

1.
70

5.
16

3.
12

0.
82

4.
27

1.
39

4.
18

2.
75

0.
25

25
0

30
2.
00

1.
30

1.
68

1.
56

0.
67

1.
38

1.
22

1.
40

1.
56

0.
37

25
0

50
1.
35

0.
84

1.
08

0.
66

0.
51

0.
66

0.
66

0.
90

0.
64

0.
39

30
0

10
5.
92

1.
80

5.
25

0.
68

0.
27

4.
95

1.
63

4.
48

0.
68

0.
10

30
0

30
2.
97

1.
81

2.
84

2.
35

0.
95

2.
41

1.
68

2.
50

2.
28

0.
00

30
0

50
1.
76

1.
24

1.
58

1.
00

0.
47

1.
20

1.
11

1.
34

1.
00

0.
01

Av
er
ag
e

1.
84

1.
25

2.
29

1.
64

1.
66

1.
18

0.
80

1.
88

1.
51

1.
45

159

Ta
bl
e
50
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
m
et
ah

eu
ris

tic
s
in

th
e
SS

D
-1
25

di
st
rib

ut
io
n
an

d
τ

=
1.

n
m

t
=

25
0

t
=

50
0

D
A
BC

D
A
BC

B
S-

IC
H

H
T
LM

H
T
LM

B
S-

IC
H

IG
G
II

LS
D
A
BC

D
A
BC

B
S-

IC
H

H
T
LM

H
T
LM

B
S-

IC
H

IG
G
II

LS
50

10
1.
36

1.
00

2.
54

3.
15

6.
14

0.
37

0.
21

2.
31

2.
05

6.
13

50
30

0.
47

0.
33

1.
02

0.
92

2.
08

0.
20

0.
07

0.
87

0.
75

2.
08

50
50

0.
23

0.
29

0.
63

0.
76

1.
15

0.
00

0.
24

0.
40

0.
73

1.
09

10
0

10
1.
86

2.
45

2.
35

3.
77

7.
84

0.
12

1.
16

2.
35

3.
61

7.
84

10
0

30
0.
28

0.
50

1.
37

1.
14

1.
70

0.
06

0.
15

1.
27

1.
14

1.
70

10
0

50
0.
55

0.
63

1.
40

1.
18

0.
60

0.
22

0.
21

0.
98

1.
13

0.
50

15
0

10
2.
24

2.
27

4.
17

2.
44

1.
26

0.
79

0.
96

3.
49

2.
12

0.
86

15
0

30
1.
34

1.
15

1.
89

1.
75

1.
50

0.
77

0.
53

1.
84

1.
56

1.
50

15
0

50
0.
80

0.
50

1.
00

1.
03

1.
14

0.
35

0.
28

0.
90

0.
92

1.
05

20
0

10
2.
96

0.
79

3.
73

2.
52

2.
71

2.
41

0.
00

3.
11

2.
52

2.
71

20
0

30
1.
71

0.
95

1.
35

1.
16

0.
79

1.
04

0.
57

1.
35

1.
16

0.
57

20
0

50
1.
38

1.
38

1.
48

1.
35

0.
35

0.
86

0.
95

1.
36

1.
19

0.
09

25
0

10
5.
13

1.
21

5.
71

2.
42

0.
57

4.
34

1.
15

4.
89

2.
35

0.
13

25
0

30
2.
24

1.
65

2.
20

1.
65

0.
50

1.
39

1.
36

2.
14

1.
58

0.
00

25
0

50
1.
30

0.
66

1.
16

0.
74

0.
31

1.
01

0.
54

0.
98

0.
74

0.
20

30
0

10
4.
82

1.
22

4.
11

1.
96

1.
32

4.
28

1.
22

3.
18

1.
96

1.
23

30
0

30
2.
49

1.
06

2.
46

1.
79

0.
50

1.
88

0.
85

2.
03

1.
64

0.
00

30
0

50
1.
45

0.
60

1.
36

0.
62

0.
19

1.
05

0.
53

1.
02

0.
62

0.
00

Av
er
ag
e

1.
81

1.
04

2.
22

1.
69

1.
70

1.
17

0.
61

1.
91

1.
54

1.
54

160
Ta

bl
e
51
:A

R
PD

va
lu
es

fo
r
th
e
co
m
pa

re
d
m
et
ah

eu
ris

tic
s
in

th
e
SS

D
-1
25

di
st
rib

ut
io
n
an

d
τ

=
3.

n
m

t
=

25
0

t
=

50
0

D
A
BC

D
A
BC

B
S-

IC
H

H
T
LM

H
T
LM

B
S-

IC
H

IG
G
II

LS
D
A
BC

D
A
BC

B
S-

IC
H

H
T
LM

H
T
LM

B
S-

IC
H

IG
G
II

LS
50

10
0.
87

1.
29

3.
60

3.
26

6.
72

0.
41

0.
86

3.
10

2.
99

6.
72

50
30

0.
33

0.
31

1.
19

1.
16

3.
27

0.
02

0.
20

0.
83

0.
87

3.
27

50
50

0.
14

0.
21

0.
78

0.
72

1.
57

0.
12

0.
03

0.
75

0.
71

1.
50

10
0

10
2.
33

2.
06

3.
11

3.
72

7.
63

1.
15

0.
30

3.
11

3.
08

7.
63

10
0

30
1.
24

0.
96

2.
25

2.
11

1.
94

0.
79

0.
26

1.
84

2.
03

1.
94

10
0

50
0.
74

0.
45

1.
35

1.
22

0.
83

0.
39

0.
25

1.
24

1.
19

0.
64

15
0

10
4.
14

3.
00

4.
74

4.
47

0.
51

2.
60

1.
89

4.
73

4.
18

0.
33

15
0

30
1.
17

1.
06

1.
48

1.
30

1.
20

0.
00

0.
41

0.
91

0.
92

0.
98

15
0

50
0.
82

0.
78

1.
32

1.
23

1.
46

0.
49

0.
45

1.
06

1.
22

1.
25

20
0

10
4.
52

0.
94

3.
30

1.
25

2.
44

3.
25

0.
58

2.
31

1.
10

2.
44

20
0

30
1.
02

1.
27

1.
18

1.
08

0.
73

0.
73

0.
69

1.
06

0.
97

0.
66

20
0

50
1.
22

0.
98

1.
48

1.
09

0.
26

1.
01

0.
79

1.
41

1.
07

0.
00

25
0

10
5.
26

2.
76

4.
85

2.
36

0.
63

4.
15

2.
56

3.
64

2.
28

0.
00

25
0

30
2.
46

2.
13

2.
46

1.
51

0.
34

1.
96

2.
04

2.
43

1.
49

0.
00

25
0

50
1.
20

0.
55

1.
20

0.
51

0.
11

0.
80

0.
48

0.
95

0.
51

0.
00

30
0

10
4.
42

1.
00

3.
94

1.
52

0.
87

4.
12

0.
93

3.
54

1.
52

0.
52

30
0

30
3.
18

1.
83

2.
58

1.
50

0.
74

2.
29

1.
78

2.
14

1.
50

0.
00

30
0

50
1.
92

1.
00

1.
75

1.
08

0.
37

1.
39

0.
93

1.
51

1.
08

0.
04

Av
er
ag
e

2.
05

1.
25

2.
36

1.
73

1.
76

1.
43

0.
86

2.
03

1.
60

1.
55

161

5.4 Conclusion

In this chapter, the mixed no-idle PFSP with sequence-dependent setup times
and total flowtime minimisation is studied. Based on a literature review conducted on
related problems, the best heuristic and metaheuristics were adapted to the problem. In
addition, a new heuristic, denoted as BS-ICH, was proposed. We integrated the BS-ICH
with the metaheuristics from the literature. The proposed methods were exhaustively
compared through statistical and computational experiments with adapted heuristics and
metaheuristics. Among the heuristics, the best results were achieved by the BS-ICH(n/10),
delivering considerably better solutions than I(CT)-ICH, which was the best method from
the Fm|prmu, no− idle|

∑
Tj problem. According to the results, the used of the BS-ICH

in conjunction with the metaheuristics considerably improves the solution quality of the
metaheuristics. As a result, the best metaheuristic was the DABCBS-ICH, which is the
DABC algorithm with the BS-ICH used in the initial population generation. Thus, based
on the results presented, it can be asserted that the proposed method is a significant
contribution for the state of the art in heuristics and metaheuristics for the problem
considered in this chapter.

163

6 CONCLUSIONS, RESULTS AND FUTURE RESEARCH

6.1 Conclusions

In this Thesis, we have addressed the mixed no-idle permutation flowshop scheduling
problem. This is the first time that this problem is studied in the literature. It has been
showed that the problem has relevance in real manufacturing layouts, and deals with
establishing the sequence of jobs in the shop according to a specific objective function
under specific characteristics of the problem, namely the setup times between the jobs
and the mixed no-idle machines.

The goal of this Thesis was therefore to provide a further insight into this important
problem, both deeply analysing and developing new efficient methods to solve it. In order
to deal with this goal, several general research objectives were identified in Section 1.1,
which have been addressed along the four parts of this Thesis as follows:

OBJ1. To provide in-depth analysis of the mixed no-idle PFSP with sequence-
dependent setup times, presenting mathematical models, formulations and
calculations methods for the addressed objective functions.

In Section 2.3 the mixed no-idle PFSP with sequence-dependent setup times was
formally presented. We developed an MILP formulation for the problem in Section 2.3.1,
the variables and expressions were explained in detail. As the problem was not yet studied
in the literature, we presented methods for calculation for the makespan, total flowtime
and total tardiness criteria (Section 2.3.2). As explained, the acceleration procedure is
essential to provide efficiency for the new proposed methods. In Section 2.3.3 and 2.3.4 we
provide acceleration methods to calculate the makespan, total flowtime and total tardiness
in an insertion neighbourhood.

OBJ2.To review the no-idle PFSP, PFSP with setup times and classical
PFSP literature for the most common objectives, i.e. makespan, total flow-
time or total tardiness minimisation.

The mixed no-idle PFSP with setup times and makespan minimization was consid-
ered in Chapter 3. As the problem is new, we reviewed the no-idle PFSP and the PFSP
with setup times under makespan criterion (denoted as Fm|prmu, no − idle|Cmax and
Fm|prmu, sij,k|Cmax, respectively). The literature review covered the last 35 years, where
many heuristics and metaheuristics were developed for the problem. We classified the
methods and presented if the algorithm was outperformed by another method from the
literature (Tables 2 and 3).

164

Chapter 4 studied the mixed no-idle PFSP with setup times and total flowtime.
For this problem, the following topics were reviewed: heuristics for the PFSP with makep-
san criterion (Fm|prmu|Cmax), PFSP with total flow-time criterion (Fm|prmu|

∑
Cj),

no-idle and mixed no-idle PFSP with makespan criterion (Fm|prmu, no − idle|Cmax,
Fm|prmu, mixed no− idle|Cmax). In the review, over 50 papers were reviewed. Most of
the heuristics proposed in the literature are variants of the traditional NEH.

In Chapter 5 the total tardiness criterion was addressed. The following problems
were reviewed: PFSP with total tardiness criterion (Fm|prmu|

∑
Tj), no-idle PFSP with

total tardiness criterion (Fm|prmu, no− idle|
∑
Tj). Both heuristics and metaheuristics

algorithms were reviewed.

OBJ3. To provide efficient methods to solve the mixed no-idle PFSP with se-
quence dependent setup times for makespan, total flowtime or total tardiness
minimisation.

Based on the state-of-the-wart in heuristics, we developed several methods in order
to solve the mixed no-idle PFSP with setup times under different criteria. All the new
methods were tailor-made for their specific problems. Delving into particular characteristics
of each criteria with the objective to give an edge for the new heuristics. The main proposed
methods are summarised as follows:

• A efficient constructive heuristic, denoted as RN, was proposed in Chapter 4
(makespan criterion). The heuristic inserts d jobs using a greedy heuristic, and
then the rest of the n − d are inserted into the sequence using an NEH heuristic
variant. The heuristic takes account the idle times between the jobs and the setup
times to generate a index that chooses the jobs to be inserted. The NEH variant is
based on reinsertion procedures that optimized the partials sequences generated by
the NEH.

• Three heuristics based on beam search, called H1, H2 and H3, were proposed in
Chapter 5 (total flowtime criterion). In developed beam search algorithms, partial
sequences are generated at each iteration by inserting jobs in the last position of
the sequence. The best ranked N nodes generated are selected to be used in the
next iteration. The method continues until nodes with complete sequences of n− d
jobs are obtained; then the best ranked node is chosen to be the final solution of
the method. The rest of the sequence are constructed using a variants of the FRB3
and FRB4 heuristics. The H3 is an improvement heuristic, which carries out a local
search in the final solution generated by the H1 method.

• In Chapter 5, a new heuristic, denoted as BS-ICH, was proposed. The concept is
similar to the heuristics from Chapters 3 and 4, with the exception of the new

165

index which takes into account the specific characteristics of the total tardiness
criterion. The new method was also integrated in the initial phases of metaheuristics
procedures from the literature.

OBJ4. To demonstrate the efficiency and good performance of the new pro-
posed methods thought extensive computational and statistical experiments.

In this Thesis, each proposed heuristic was always compared with the state-of-the-
art algorithms adapted from related scheduling problems. As the mixed no-idle PFSP with
setup times is new, we developed a new benchmark with up to 4500 problems instances to
test the algorithms. The indicators to measure the computational effort and the solution
quality were also explained. To carry out a fair, comparison we presented in detail the
compared methods, as well the same programming language C++ and the same computer
were used to compare all methods. To ensure the repeatability and reproducibility of our
proposed heuristic, we included a clear pseudo code (Algorithm 2) in this Thesis. The
results and problem instances are available at laor.prod.eesc.usp.br, as recommended by the
Good Laboratory Practice for Optimization Research (GLP4OPT) practices (KENDALL
et al., 2016). The following computational results were presented in each chapter:

• For the makespan minimization (Chapter 3), the analyses showed that the proposed
RNx method surpassed the state-of-the-art algorithms both in solution quality and
computational efficiency. Algorithms adapted from the F |prmu, no− idle|Cmax and
F |prmu, sij,k|Cmax problems. The statistical results also show that the means are
significantly different. In addition, the proposed methods generated near optimal
solutions for small size problems.

• For the total flowtime criterion (Chapter 4), heuristics H1(N) and H3(N) obtained
the best results, delivering better solutions than the best methods adapted from the
literature. The constructive heuristic H2(N, k) presented a good trade-off between
computational cost and quality solution. Thought statistical tests, were demonstrated
that the solutions generated by the proposed heuristics are statistically better than
those obtained by the adapted methods. The proposed heuristics were also compared
with the optimal solutions found by the MILP formulation. The results showed that
our proposal can generate near optimal solutions in some cases.

• For the total tardiness criterion, addressed in Chapter 5, both heuristics and meta-
heuristics were tested. The proposed method BS-ICH showed the best results,
outperforming several methods from the literature. Also, the new heuristic was used
in conjunction with metaheuristics. The results show that the used of BS-ICH with
metaheuristics significantly improves the solution quality of the algorithms. As a

http://www.laor.prod.eesc.usp.br

166

result, the proposed methods can be seen as a contribution towards the development
of new and better metaheuristics and not restricted only to heuristics methods.

6.2 Results

The following papers were published in indexed journals throughout the development
of this Thesis.

• ROSSI, F. L.; NAGANO, M. S. Heuristics for the mixed no-idle flowshop with
sequence-dependent setup times and total flowtime criterion. Expert Systems
with Applications, v. 125, p. 40–54, 2019.

• ROSSI, F. L.; NAGANO, M. S.; SAGAWA, J. K. An effective constructive heuristic
for permutation flow shop scheduling problem with total flow time criterion. The
International Journal of Advanced Manufacturing Technology, v. 90, n. 1,
p. 93–107, 2017. ISSN 1433-3015.

• NAGANO, M. S.; ROSSI, F. L.; MARTARELLI, N. J. High-performing heuristics to
minimize flowtime in no-idle permutation flowshop. Engineering Optimization,
Taylor & Francis, v. 0, n. 0, p. 1–14, 2018.

• NAGANO, M. S.; ROSSI, F. L.; TOMAZELLA, C. P. A new efficient heuristic method
for minimizing the total tardiness in a no-idle permutation flow shop. Production
Engineering, v. 11, n. 4, p. 523–529, 2017.

• ROSSI, F. L.; NAGANO, M. S.; NETO, R. F. T. Evaluation of high performance
constructive heuristics for the flow shop with makespan minimization. The In-
ternational Journal of Advanced Manufacturing Technology, v. 87, n. 1, p.
125–136, 2016.

6.3 Future research lines

For future work, the constructive heuristic proposed in Chapters 3, 4 and 5 can be
considered for other flowshop scheduling problems. Furthermore, since the second phase
of the heuristic RN (Section 3.2.2) does not consider the setup times (except for the
makespan calculation) it can be easily adapted, including for those problems without
no-idle machines or setup times.

The proposal of metaheuristics for the problem remains open with the aim of
providing high-quality solutions. The literature review showed that several metaheuristics
were proposed for related problems. Therefore, in future studies, the methods developed
in Chapters 3 and 4 could be integrated and compared with metaheuristics procedures.

167

Finally, the mixed no-idle machines and the sequence-dependent setup times can
be extended to other manufacturing layouts, i.e hybrid flowshop, job shop, distributed
flowshop, among others.

169

BIBLIOGRAPHY

ADIRI, I.; POHORYLES, D. Flowshop/no-idle or no-wait scheduling to minimize the
sum of completion times. Naval Research Logistics Quarterly, Wiley Subscription
Services, Inc., A Wiley Company, v. 29, n. 3, p. 495–504, 1982.

ALLAHVERDI, A. The third comprehensive survey on scheduling problems with setup
times/costs. European Journal of Operational Research, Elsevier, v. 246, n. 2, p.
345–378, 2015.

ALLAHVERDI, A.; GUPTA, J. N. D.; ALDOWAISAN, T. A review of scheduling
research involving setup considerations. Omega, Elsevier, v. 27, n. 2, p. 219–239, 1999.

ALLAHVERDI, A. et al. A survey of scheduling problems with setup times or costs.
European journal of operational research, Elsevier, v. 187, n. 3, p. 985–1032, 2008.

ALLAHVERDI, A.; SOROUSH, H. M. The significance of reducing setup times/setup
costs. European Journal of Operational Research, v. 187, n. 3, p. 978–984, 2008.

ARMENTANO, V. A.; RONCONI, D. P. Tabu search for total tardiness minimization in
flowshop scheduling problems. Computers & Operations Research, v. 26, n. 3, p.
219–235, 1999.

BAGGA, P. C. Minimizing total elapsed time subject to zero total idle time of machines
in n x 3 flowshop problem. Indian J. pure appl. Math, v. 34, n. 2, p. 219–228, 2003.

BAPTISTE, P.; HGUNY, L. K. A branch and bound algorithm for the F/no- idle/Cmax.
In: Proceedings of the international conference on industrial engineering and
production management, IEPM. [S.l.: s.n.], 1997. v. 97, p. 429–438.

BARAZ, D.; MOSHEIOV, G. A note on a greedy heuristic for flow-shop makespan
minimization with no machine idle-time. European Journal of Operational
Research, Elsevier, v. 184, n. 2, p. 810–813, 2008.

BEAN, J. C. Genetic algorithms and random keys for sequencing and optimization.
ORSA journal on computing, INFORMS, v. 6, n. 2, p. 154–160, 1994.

BENAVIDES, A. J.; RITT, M. Two simple and effective heuristics for minimizing the
makespan in non-permutation flow shops. Computers & Operations Research, v. 66,
n. Supplement C, p. 160–169, 2016.

BENKALAI, I. et al. The migrating birds optimization metaheuristic for the permutation
flow shop with sequence dependent setup times. IFAC-PapersOnLine, Elsevier, v. 49,
n. 12, p. 408–413, 2016.

. Improving the migrating birds optimization metaheuristic for the permutation flow
shop with sequence-dependent set-up times. International Journal of Production
Research, Taylor & Francis, v. 55, n. 20, p. 6145–6157, 2017.

CAMPBELL, H. G.; DUDEK, R. A.; SMITH, M. L. A Heuristic Algorithm for the n Job,
m Machine Sequencing Problem. Management Science, INFORMS, v. 16, n. 10, p.
B630–B637, 1970.

170

ČEPEK, O. et al. Note: On the two-machine no-idle flowshop problem. Naval Research
Logistics (NRL), Wiley Online Library, v. 47, n. 4, p. 353–358, 2000.

CHENG, M.; SUN, S.; YU, Y. A note on flow shop scheduling problems with a learning
effect on no-idle dominant machines. Applied Mathematics and Computation,
Elsevier, v. 184, n. 2, p. 945–949, 2007.

CORWIN, B. D.; ESOGBUE, A. O. Two machine flow shop scheduling problems with
sequence dependent setup times: {A} dynamic programming approach. Naval Research
Logistics Quarterly, Wiley Online Library, v. 21, n. 3, p. 515–524, 1974.

CRAINIC, T. G.; TOULOUSE, M. Parallel strategies for meta-heuristics. In: Handbook
of metaheuristics. [S.l.]: Springer, 2003. p. 475–513.

CURA, T. An evolutionary algorithm for the permutation flowshop scheduling problem
with total tardiness criterion. International Journal of Operational Research,
Inderscience Publishers, v. 22, n. 3, p. 366–384, 2015.

DANNENBRING, D. G. An Evaluation of Flow Shop Sequencing Heuristics.
Management Science, v. 23, n. 11, p. 1174–1182, 1977.

DAS, S. R.; GUPTA, J. N. D.; KHUMAWALA. A savings index heuristic algorithm for
flowshop scheduling with sequence dependent set-up times. Journal of the Operational
Research Society, Springer, v. 46, n. 11, p. 1365–1373, 1995.

DENG, G.; GU, X. A hybrid discrete differential evolution algorithm for the no-idle
permutation flow shop scheduling problem with makespan criterion. Computers and
Operations Research, v. 39, n. 9, p. 2152–2160, 2012.

DONG, X.; HUANG, H.; CHEN, P. An improved NEH-based heuristic for the permutation
flowshop problem. Computers and Operations Research, v. 35, n. 12, p. 3962–3968,
2008.

DORIGO, M. et al. Ant Colony Optimization and Swarm Intelligence: 6th
International Conference, ANTS 2008, Brussels, Belgium, September 22-24,
2008, Proceedings. [S.l.]: Springer, 2008. v. 5217.

FERNANDEZ-VIAGAS, V. The permutation flowshop scheduling problem: analysis,
solution procedures and problem extensions. 2016.

FERNANDEZ-VIAGAS, V.; FRAMINAN, J. M. On insertion tie-breaking rules
in heuristics for the permutation flowshop scheduling problem. Computers and
Operations Research, v. 45, p. 60–67, 2014.

. NEH-based heuristics for the permutation flowshop scheduling problem to
minimise total tardiness. Computers & Operations Research, v. 60, p. 27–36, 2015.

. A beam-search-based constructive heuristic for the {PFSP} to minimise total
flowtime. Computers & Operations Research, Elsevier, v. 81, p. 167–177, 2017.

FERNANDEZ-VIAGAS, V.; LEISTEN, R.; FRAMINAN, J. M. A computational
evaluation of constructive and improvement heuristics for the blocking flow shop to
minimise total flowtime. Expert Systems with Applications, v. 61, n. Supplement C,
p. 290–301, 2016.

171

FERNANDEZ-VIAGAS, V.; RUIZ, R.; FRAMINAN, J. M. A new vision of approximate
methods for the permutation flowshop to minimise makespan: {S}tate-of-the-art and
computational evaluation. European Journal of Operational Research, Elsevier,
v. 257, n. 3, p. 707–721, 2017.

FERNANDEZ-VIAGAS, V.; VALENTE, J. M. S.; FRAMINAN, J. M. Iterated-greedy-
based algorithms with beam search initialization for the permutation flowshop to minimise
total tardiness. Expert Systems with Applications, v. 94, p. 58–69, 2018.

FRAMINAN, J. M.; GUPTA, J. N. D.; LEISTEN, R. A Review and Classification
of Heuristics for Permutation Flow-Shop Scheduling with Makespan Objective. The
Journal of the Operational Research Society, Palgrave Macmillan Journals, v. 55,
n. 12, p. 1243–1255, 2004. ISSN 01605682, 14769360.

FRAMINAN, J. M.; LEISTEN, R. An efficient constructive heuristic for flowtime
minimisation in permutation flow shops. Omega, v. 31, n. 4, p. 311–317, 2003.

. Total tardiness minimization in permutation flow shops: a simple approach based
on a variable greedy algorithm. International Journal of Production Research,
Taylor & Francis, v. 46, n. 22, p. 6479–6498, 2008.

FRAMINAN, J. M.; LEISTEN, R.; RUIZ-USANO, R. Efficient heuristics for flowshop
sequencing with the objectives of makespan and flowtime minimisation. European
Journal of Operational Research, v. 141, n. 3, p. 559–569, 2002.

. Comparison of heuristics for flowtime minimisation in permutation flowshops.
Computers and Operations Research, Pergamon, v. 32, n. 5, p. 1237–1254, may
2005.

GAJPAL, Y.; RAJENDRAN, C.; ZIEGLER, H. An ant colony algorithm for scheduling in
flowshops with sequence-dependent setup times of jobs. The International Journal of
Advanced Manufacturing Technology, Springer, v. 30, n. 5-6, p. 416–424, 2006.

GELDERS, L. F.; SAMBANDAM, N. Four simple heuristics for scheduling a flow-shop.
International Journal of Production Research, Taylor & Francis, v. 16, n. 3, p.
221–231, 1978.

GONCHAROV, Y.; SEVASTYANOV, S. The flow shop problem with no-idle constraints:
A review and approximation. European Journal of Operational Research, Elsevier,
v. 196, n. 2, p. 450–456, 2009.

GRAHAM, R. L. et al. Optimization and Approximation in Deterministic Sequencing and
Scheduling: a Survey. Annals of Discrete Mathematics, v. 5, p. 287–326, 1979.

GUPTA, J. N. D. A Functional Heuristic Algorithm for the Flowshop Scheduling Problem.
Journal of the Operational Research Society, v. 22, n. 1, p. 39–47, mar 1971. ISSN
1476-9360.

. Heuristic algorithms for multistage flowshop scheduling problem. AIIE
Transactions, Taylor & Francis, v. 4, n. 1, p. 11–18, 1972.

GUPTA, J. N. D.; DARROW, W. P. The two-machine sequence dependent flowshop
scheduling problem. European Journal of Operational Research, Elsevier, v. 24,
n. 3, p. 439–446, 1986.

172

HASIJA, S.; RAJENDRAN, C. Scheduling in flowshops to minimize total tardiness of
jobs. International Journal of Production Research, Taylor & Francis, v. 42, n. 11,
p. 2289–2301, 2004.

HUANG, J. D. et al. Minimizing makespan in a two-stage flow shop with parallel
batch-processing machines and re-entrant jobs. Engineering Optimization, Taylor &
Francis, v. 49, n. 6, p. 1010–1023, 2017.

HUNDAL, T. S.; RAJGOPAL, J. An extension of Palmer’s heuristic for the flow shop
scheduling problem. International Journal of Production Research, Taylor &
Francis, v. 26, n. 6, p. 1119–1124, 1988.

INCE, Y. et al. A discrete artificial bee colony algorithm for the permutation flowshop
scheduling problem with sequence-dependent setup times. In: IEEE. Evolutionary
Computation (CEC), 2016 IEEE Congress on. [S.l.], 2016. p. 3401–3408.

JOHNSON, S. M. Optimal two-and three-stage production schedules with setup times
included. Naval Research Logistics (NRL), Wiley Online Library, v. 1, n. 1, p. 61–68,
1954.

KALCZYNSKI, P. J.; KAMBUROWSKI, J. A Heuristic for Minimizing the Makespan in
No-idle Permutation Flow Shops. Comput. Ind. Eng., Pergamon Press, Inc., Tarrytown,
NY, USA, v. 49, n. 1, p. 146–154, 2005.

. On no-wait and no-idle flow shops with makespan criterion. European journal
of Operational research, Elsevier, v. 178, n. 3, p. 677–685, 2007.

. On the NEH heuristic for minimizing the makespan in permutation flow shops.
Omega, v. 35, n. 1, p. 53–60, 2007.

. An improved NEH heuristic to minimize makespan in permutation flow shops.
Computers and Operations Research, v. 35, n. 9, p. 3001–3008, 2008.

. An empirical analysis of the optimality rate of flow shop heuristics. European
Journal of Operational Research, v. 198, n. 1, p. 93–101, 2009.

. On Recent Modifications And Extensions Of The Neh Heuristic For Flow Shop
Sequencing. Foundations of Computing and Decision Sciences, Vol. 36, N, p.
18–33, 2011.

KAMBUROWSKI, J. More on three-machine no-idle flow shops. Computers &
Industrial Engineering, Elsevier, v. 46, n. 3, p. 461–466, 2004.

KARABULUT, K. A hybrid iterated greedy algorithm for total tardiness minimization
in permutation flowshops. Computers & Industrial Engineering, v. 98, p. 300–307,
2016.

KENDALL, G. et al. Good laboratory practice for optimization research. Journal of the
Operational Research Society, Taylor & Francis, v. 67, n. 4, p. 676–689, 2016.

KIM, Y.-D. Heuristics for Flowshop Scheduling Problems Minimizing Mean Tardiness.
Journal of the Operational Research Society, v. 44, n. 1, p. 19–28, jan 1993. ISSN
1476-9360.

173

KIM, Y.-D.; LIM, H.-G.; PARK, M.-W. Search heuristics for a flowshop scheduling
problem in a printed circuit board assembly process. European Journal of Operational
Research, v. 91, n. 1, p. 124–143, 1996.

KOULAMAS, C. A new constructive heuristic for the flowshop scheduling problem.
European Journal of Operational Research, v. 105, n. 1, p. 66–71, 1998.

LAHA, D.; SARIN, S. C. A heuristic to minimize total flow time in permutation flow
shop. Omega, v. 37, n. 3, p. 734–739, 2009.

LI, X. et al. Trajectory Scheduling Methods for minimizing total tardiness in a flowshop.
Operations Research Perspectives, v. 2, p. 13–23, 2015.

LI, X.; WANG, Q.; WU, C. Efficient composite heuristics for total flowtime minimization
in permutation flow shops. Omega, v. 37, n. 1, p. 155–164, 2009.

LIU, J.; REEVES, C. R. Constructive and composite heuristic solutions to the P//sum
C_i scheduling problem. European Journal of Operational Research, v. 132, n. 2,
p. 439–452, 2001.

LIU, W.; JIN, Y.; PRICE, M. A new improved NEH heuristic for permutation flowshop
scheduling problems. International Journal of Production Economics, v. 193, n.
Supplement C, p. 21–30, 2017.

LOW, C.; YEH, J.-Y.; HUANG, K.-I. A robust simulated annealing heuristic for flow
shop scheduling problems. The International Journal of Advanced Manufacturing
Technology, v. 23, p. 762–767, 2004.

MACCARTHY, B. L.; LIU, J. Addressing the gap in scheduling research: a review of
optimization and heuristic methods in production scheduling. International Journal of
Production Research, Taylor & Francis, v. 31, n. 1, p. 59–79, 1993.

MIRABI, M. Ant colony optimization technique for the sequence-dependent flowshop
scheduling problem. The International Journal of Advanced Manufacturing
Technology, Springer, v. 55, n. 1-4, p. 317–326, 2011.

. A novel hybrid genetic algorithm to solve the sequence-dependent permutation flow-
shop scheduling problem. The International Journal of Advanced Manufacturing
Technology, Springer, v. 71, n. 1-4, p. 429–437, 2014.

NAGANO, M. S.; MOCCELLIN, J. V. A high quality solution constructive heuristic for
flow shop sequencing. Journal of the Operational Research Society, v. 53, n. 12, p.
1374–1379, 2002.

. Reducing Mean Flow Time in Permutation Flow Shop. The Journal of the
Operational Research Society, Palgrave Macmillan Journals, v. 59, n. 7, p. 939–945,
2008. ISSN 01605682, 14769360.

NAGANO, M. S.; ROSSI, F. L.; MARTARELLI, N. J. High-performing heuristics to
minimize flowtime in no-idle permutation flowshop. Engineering Optimization, Taylor
& Francis, v. 0, n. 0, p. 1–14, 2018.

174

NAGANO, M. S.; ROSSI, F. L.; TOMAZELLA, C. P. A new efficient heuristic method
for minimizing the total tardiness in a no-idle permutation flow shop. Production
Engineering, v. 11, n. 4, p. 523–529, 2017.

NARAIN, L.; BAGGA, P. C. Flowshop/no-idle scheduling to minimise the mean flowtime.
The ANZIAM Journal, Cambridge University Press, v. 47, n. 2, p. 265–275, 2005.

. Flowshop/no-idle scheduling to minimize total elapsed time. Journal of Global
Optimization, Springer, v. 33, n. 3, p. 349–367, 2005.

NAWAZ, M.; ENSCORE, E. E.; HAM, I. A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega, v. 11, n. 1, p. 91–95, 1983.

NG, C. T. et al. Flowshop scheduling of deteriorating jobs on dominating machines.
Computers & Industrial Engineering, Elsevier, v. 61, n. 3, p. 647–654, 2011.

PAGNOZZI, F.; STÜTZLE, T. Speeding up local search for the insert neighborhood in
the weighted tardiness permutation flowshop problem. Optimization Letters, Springer,
v. 11, n. 7, p. 1283–1292, 2017.

PALMER, D. S. Sequencing Jobs Through a Multi-Stage Process in the Minimum Total
Time—A Quick Method of Obtaining a Near Optimum. Journal of the Operational
Research Society, v. 16, n. 1, p. 101–107, mar 1965.

PAN, Q.-K.; RUIZ, R. Local search methods for the flowshop scheduling problem with
flowtime minimization. European Journal of Operational Research, Elsevier, v. 222,
n. 1, p. 31–43, 2012.

. A comprehensive review and evaluation of permutation flowshop heuristics to
minimize flowtime. Computers and Operations Research, v. 40, n. 1, p. 117–128,
2013.

. An effective iterated greedy algorithm for the mixed no-idle permutation flowshop
scheduling problem. Omega, v. 44, p. 41–50, 2014.

PAN, Q.-K.; WANG, L. A novel differential evolution algorithm for no-idle permutation
flow-shop scheduling problems. European Journal of Industrial Engineering, v. 2,
n. 3, p. 279–297, 2008.

. No-idle permutation flow shop scheduling based on a hybrid discrete particle swarm
optimization algorithm. The International Journal of Advanced Manufacturing
Technology, v. 39, n. 7, p. 796–807, nov 2008.

. Effective heuristics for the blocking flowshop scheduling problem with makespan
minimization. Omega, Elsevier, v. 40, n. 2, p. 218–229, 2012.

PARTHASARATHY, S.; RAJENDRAN, C. SCHEDULING TO MINIMIZE MEAN
TARDINESS AND WEIGHTED MEAN TARDINESS IN FLOWSHOP AND
FLOWLINE-BASED MANUFACTURING CELL. Computers & Industrial
Engineering, v. 34, n. 2, p. 531–546, 1998.

PESSOA, L. S.; ANDRADE, C. E. Heuristics for a flowshop scheduling problem with
stepwise job objective function. European Journal of Operational Research,
Elsevier, 2017.

175

PINEDO, M. L. Scheduling: theory, algorithms, and systems. [S.l.]: Springer, 2016.

RAD, S. F.; RUIZ, R.; BOROOJERDIAN, N. New high performing heuristics for
minimizing makespan in permutation flowshops. Omega, v. 37, n. 2, p. 331–345, 2009.

RAJENDRAN, C. Heuristic algorithm for scheduling in a flowshop to minimize total
flowtime. International Journal of Production Economics, v. 29, n. 1, p. 65–73,
1993.

RAJENDRAN, C.; ZIEGLER, H. An efficient heuristic for scheduling in a flowshop
to minimize total weighted flowtime of jobs. European Journal of Operational
Research, v. 103, n. 1, p. 129–138, 1997.

RAMAN, N. Minimum tardiness scheduling in flow shops: Construction and evaluation of
alternative solution approaches. Journal of Operations Management, v. 12, n. 2, p.
131–151, 1995.

RIBAS, I.; COMPANYS, R.; TORT-MARTORELL, X. Comparing three-step heuristics
for the permutation flow shop problem. Computers and Operations Research, v. 37,
n. 12, p. 2062–2070, 2010.

. Efficient heuristics for the parallel blocking flow shop scheduling problem. Expert
Systems with Applications, v. 74, n. Supplement C, p. 41–54, 2017.

RÍOS-MERCADO, R. Z.; BARD, J. F. Computational experience with a branch-and-cut
algorithm for flowshop scheduling with setups. Computers & Operations Research,
v. 25, n. 5, p. 351–366, 1998.

. Heuristics for the flow line problem with setup costs. European Journal of
Operational Research, Elsevier, v. 110, n. 1, p. 76–98, 1998.

. A branch-and-bound algorithm for permutation flow shops with sequence-dependent
setup times. IIE transactions, Springer, v. 31, n. 8, p. 721–731, 1999.

. The flow shop scheduling polyhedron with setup times. Journal of
Combinatorial Optimization, Springer, v. 7, n. 3, p. 291–318, 2003.

RÍOS-MERCADO, R. Z. et al. An enhanced TSP-based heuristic for makespan
minimization in a flow shop with setup times. Journal of Heuristics, Springer, v. 5,
n. 1, p. 53–70, 1999.

ROSSI, F. L.; NAGANO, M. S.; NETO, R. F. T. Evaluation of high performance
constructive heuristics for the flow shop with makespan minimization. The International
Journal of Advanced Manufacturing Technology, v. 87, n. 1, p. 125–136, 2016.

ROSSI, F. L.; NAGANO, M. S.; SAGAWA, J. K. An effective constructive heuristic
for permutation flow shop scheduling problem with total flow time criterion. The
International Journal of Advanced Manufacturing Technology, v. 90, n. 1, p.
93–107, 2017.

RUIZ, R.; MAROTO, C.; ALCARAZ, J. Solving the flowshop scheduling problem with
sequence dependent setup times using advanced metaheuristics. European Journal of
Operational Research, Elsevier, v. 165, n. 1, p. 34–54, 2005.

176

. Two new robust genetic algorithms for the flowshop scheduling problem. Omega,
Elsevier, v. 34, n. 5, p. 461–476, 2006.

RUIZ, R.; STÜTZLE, T. A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational
Research, v. 177, n. 3, p. 2033–2049, 2007.

. An iterated greedy heuristic for the sequence dependent setup times flowshop
problem with makespan and weighted tardiness objectives. European Journal of
Operational Research, Elsevier, v. 187, n. 3, p. 1143–1159, 2008.

RUIZ, R.; VALLADA, E.; FERNÁNDEZ-MARTÍNEZ, C. Scheduling in Flowshops with
No-Idle Machines. In: CHAKRABORTY, U. K. (Ed.). Computational Intelligence in
Flow Shop and Job Shop Scheduling. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009. p. 21–51.

SAADANI, N. E. H.; GUINET, A.; MOALLA, M. Three stage no-idle flow-shops.
Computers & industrial engineering, Elsevier, v. 44, n. 3, p. 425–434, 2003.

. A travelling salesman approach to solve the F/no-idle/Cmax problem. European
Journal of Operational Research, v. 161, n. 1, p. 11–20, 2005.

SEN, T.; GUPTA, S. K. A state-of-art survey of static scheduling research involving due
dates. Omega, v. 12, n. 1, p. 63–76, 1984.

SEVAST’JANOV, S. Vector Summation in Banach Space and Polynomial Algorithms for
Flow Shops and Open Shops. Mathematics of Operations Research, v. 20, n. 1, p.
90–103, 1995.

SHAO, W.; PI, D.; SHAO, Z. Memetic algorithm with node and edge histogram for
no-idle flow shop scheduling problem to minimize the makespan criterion. Applied Soft
Computing, v. 54, n. Supplement C, p. 164–182, 2017.

SHEIBANI, K. A fuzzy greedy heuristic for permutation flow-shop scheduling. Journal
of the Operational Research Society, Springer, v. 61, n. 5, p. 813–818, 2010.

SHEN, J.-n.; WANG, L.; WANG, S.-y. A bi-population EDA for solving the
no-idle permutation flow-shop scheduling problem with the total tardiness criterion.
Knowledge-Based Systems, Elsevier, v. 74, p. 167–175, 2015.

Simons Jr, J. V. Heuristics in flow shop scheduling with sequence dependent setup times.
Omega, Elsevier, v. 20, n. 2, p. 215–225, 1992.

SIOUD, A.; GAGNÉ, C. Enhanced migrating birds optimization algorithm for the
permutation flow shop problem with sequence dependent setup times. European
Journal of Operational Research, Elsevier, v. 264, n. 1, p. 66–73, 2018.

SLACK, N. et al. Administração da produção. [S.l.]: Atlas São Paulo, 2009. v. 2.

SRIKAR, B. N.; GHOSH, S. A {MILP} model for the n-job, m-stage flowshop with
sequence dependent set-up times. International Journal of Production Research,
Taylor & Francis, v. 24, n. 6, p. 1459–1474, 1986.

177

Stafford Jr, E. F.; TSENG, F. T. On the Srikar-Ghosh MILP model for the iV x M SDST
flowshop problem. The International Journal Of Production Research, Taylor &
Francis, v. 28, n. 10, p. 1817–1830, 1990.

. Two models for a family of flowshop sequencing problems. European Journal of
Operational Research, Elsevier, v. 142, n. 2, p. 282–293, 2002.

STÜTZLE, T. An Ant Approach to the Flow Shop Problem. In: In Proceedings
of the 6th European Congress on Intelligent Techniques & Soft Computing
(EUFIT’98. [S.l.]: Verlag, 1997. p. 1560–1564.

SUN, L. L. L. et al. A note on flow shop scheduling problems with deteriorating jobs on
no-idle dominant machines. European Journal of Operational Research, Elsevier,
v. 200, n. 1, p. 309–311, 2010.

SUN, L.-Y. L.-H. L.-Y. et al. Flow shop makespan minimization scheduling with
deteriorating jobs under dominating machines. International Journal of Production
Economics, Elsevier, v. 138, n. 1, p. 195–200, 2012.

TAILLARD, E. Some efficient heuristic methods for the flow shop sequencing problem.
European journal of Operational research, Elsevier, v. 47, n. 1, p. 65–74, 1990.

. Benchmarks for basic scheduling problems. european journal of operational
research, Elsevier, v. 64, n. 2, p. 278–285, 1993.

TASGETIREN, M. F. et al. A particle swarm optimization algorithm for makespan and
total flowtime minimization in the permutation flowshop sequencing problem. European
journal of operational research, Elsevier, v. 177, n. 3, p. 1930–1947, 2007.

. A differential evolution algorithm for the no-idle flowshop scheduling problem with
total tardiness criterion. International Journal of Production Research, Taylor &
Francis, v. 49, n. 16, p. 5033–5050, 2011.

. A discrete artificial bee colony algorithm for the no-idle permutation flowshop
scheduling problem with the total tardiness criterion. Applied Mathematical
Modelling, Elsevier, v. 37, n. 10, p. 6758–6779, 2013.

. A variable iterated greedy algorithm with differential evolution for the no-idle
permutation flowshop scheduling problem. Computers and Operations Research,
v. 40, n. 7, p. 1729–1743, 2013.

TSENG, F. T.; GUPTA, J. N. D.; Stafford Jr, E. F. A penalty-based heuristic algorithm
for the permutation flowshop scheduling problem with sequence-dependent set-up times.
Journal of the Operational Research Society, Taylor & Francis, v. 57, n. 5, p.
541–551, 2006.

TSENG, F. T.; Stafford Jr, E. F. Two MILP models for the N x M SDST flowshop
sequencing problem. International Journal of Production Research, Taylor &
Francis, v. 39, n. 8, p. 1777–1809, 2001.

USKUP, E.; SMITH, S. B. A branch-and-bound algorithm for two-stage production-
sequencing problems. Operations Research, INFORMS, v. 23, n. 1, p. 118–136,
1975.

178

VACHAJITPAN, P. Job sequencing with continuous machine operation. Computers &
Industrial Engineering, Elsevier, v. 6, n. 3, p. 255–259, 1982.

VALLADA, E.; RUIZ, R. Genetic algorithms with path relinking for the minimum
tardiness permutation flowshop problem. Omega, v. 38, n. 1, p. 57–67, 2010.

VANCHIPURA, R.; SRIDHARAN, R. Development and analysis of constructive heuristic
algorithms for flow shop scheduling problems with sequence-dependent setup times. The
International Journal of Advanced Manufacturing Technology, v. 67, n. 5, p.
1337–1353, jul 2013.

VANCHIPURA, R.; SRIDHARAN, R.; BABU, A. S. Improvement of constructive
heuristics using variable neighbourhood descent for scheduling a flow shop with sequence
dependent setup time. Journal of Manufacturing Systems, v. 33, n. 1, p. 65–75, 2014.

VOLLMANN, T. E. Manufacturing planning and control for supply chain
management. [S.l.: s.n.], 2005.

WANG, Y. et al. Iterated local search algorithms for the sequence-dependent setup times
flow shop scheduling problem minimizing makespan. In: Foundations of Intelligent
Systems. [S.l.]: Springer, 2014. p. 329–338.

WOO, H.-S.; YIM, D.-S. A heuristic algorithm for mean flowtime objective in flowshop
scheduling. Computers and Operations Research, v. 25, n. 3, p. 175–182, 1998.

WOOLLAM, C. R. Flowshop with no idle machine time allowed. Computers &
industrial engineering, Elsevier, v. 10, n. 1, p. 69–76, 1986.

ZHOU, Y.; CHEN, H.; ZHOU, G. Invasive weed optimization algorithm for optimization
no-idle flow shop scheduling problem. Neurocomputing, v. 137, p. 285–292, 2014.

	Dedication
	Acknowledgements
	Epigraph
	RESUMO
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Objectives and outline of the Thesis

	Problem Statement
	Notations
	The no-idle and mixed no-idle PFSP
	The mixed no-idle PFSP with sequence dependent setup times
	Mixed integer linear programming model
	Makespan, total flowtime and total tardiness calculation
	Acceleration method to calculate the makespan for the insertion neighbourhood
	Acceleration method to calculate the total flowtime or the total tardiness

	The mixed no-idle PFSP with setup times and makespan mimization
	Literature review
	The no-idle PFSP
	The PFSP with sequence dependent setup times

	A new constructive heuristic
	Greedy heuristic
	NEH heuristic variant
	The RNx heuristic

	Computational and statistical experiments
	Instances generation
	Benchmark for the parameter tuning for the RNx
	Benchmark adapted from Pan2014
	Benchmark adapted from ruiz2005solving
	Benchmark for the MILP model evaluation

	Compared Heuristics
	Performance measures
	Parameter settings of RNx
	Comparison between heuristics in the benchmark adapted from Pan2014
	Comparison between heuristics in the benchmark adapted from ruiz2005solving
	Evaluation of the MILP model and the RNx heuristic

	Conclusion

	The mixed no-idle PFSP with setup times and total flowtime minimization
	Literature Review
	Heuristics for the F | prmu | Cmax problem
	Heuristics for the F | prmu | Cj problem
	Heuristics for the F | prmu, no-idle | Cmax and F | prmu, mixedno-idle | Cmax problems

	Proposed heuristics
	The index function for nodes evaluation
	The H1(N), H2(N,k) and H3(N) heuristics

	Computational and statistical experiments
	Instances generation
	Compared heuristics
	Performance measures
	Parameter tunning for the H1(N), H2(N, k) and H3(N)
	Comparison

	Conclusion

	The mixed no-idle PFSP with setup times and total tardiness minimisation
	Literature Review
	The Fm|prmu|Tj problem
	The Fm|prmu, no-idle|Tj problem

	Proposed Heuristics
	Computational and statistical experiments
	Instances generation
	Compared heuristics
	Performance measures
	Comparisons between heuristics
	Comparisons between metaheuristics

	Conclusion

	Conclusions, results and future research
	Conclusions
	Results
	Future research lines

	Bibliography

