Universidade de S&o Paulo
Escola de Engenharia de S&o Carlos

Fernando Luis Rossi

Uma contribuicéo para o problema de programacao mixed no-idle flowshop com tempos
de preparacdo dependentes da sequéncia: analises e métodos de solucdo

Sao Carlos
2019

University of S&o Paulo
Sé&o Carlos School of Engineering

Fernando Luis Rossi

A contribution for the mixed no-idle flowshop scheduling problem with sequence-
dependent setup times: analysis and solutions procedures

Sao Carlos
2019

Fernando Luis Rossi

Uma contribuicéo para o problema de programacao mixed no-idle flowshop com tempos

e preparacdo dependentes da sequéncia: anélises e métodos de solucéo

Tese apresentada a Escola de Engenharia de
Sdo Carlos da Universidade de Séo Paulo,
para obtencdo do titulo de Doutor em
Ciéncias - Programa de Pds-Graduacdo em
Engenharia de Producao.

Area de concentragdo: Pesquisa Operacional

Supervisor: Prof. Dr. Marcelo Seido Nagano

Sdo Carlos

2019

AUTORIZO A REPRODUGAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalogréafica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Rossi, Fernando Luis

R831u Uma contribuic¢do para o problema de programacgédo
mixed no-idle flowshop com tempos de preparacdo
dependentes da sequéncia: andlises e métodos de solucgédo
/ Fernando Luis Rossi; orientador Marcelo Seido Nagano.
S&o Carlos, 2019.

Tese (Doutorado) - Programa de Pds-Graduacdo em
Engenharia de Producdo e Area de Concentracdo em
Processos e Gestdo de Operacgdes -- Escola de Engenharia

de S&o Carlos da Universidade de Sao Paulo, 2019.

1. Flowshop. 2. No-idle. 3. Tempos de Preparacéo.
4. Heuristicas. I. Titulo.

Eduardo Graziosi Silva - CRB - 8/8907

Fernando Luis Rossi

A contribution for the mixed no-idle flowshop scheduling problem with sequence-

dependent setup times: analysis and solutions procedures

Doctoral Dissertation presented to the
Graduate Program in Production Engineering
of the Sdo Carlos School of Engineering at
University of Sdo Paulo to obtain the degree
of Doctor of Science.

Concentration Area: Operational Research

Supervisor: Prof. Dr. Marcelo Seido Nagano

Sdo Carlos

2019

| AUTHORIZE THE TOTAL OR PARTIAL REPRODUCTION OF THIS WORK,
THROUGH ANY CONVENTIONAL OR ELECTRONIC MEANS, FOR STUDY AND
RESEARCH PURPOSES, SINCE THE SOURCE IS CITED.

Catalog card prepared by Patron Service at “Prof. Dr. Sergio
Rodrigues Fontes” Library at EESC/USP

Rossi, Fernando Luis

R831c A Contribution for the mixed no-idle flowshop
scheduling problem with sequence-dependent setup
times : analysis and solutions procedures / Fernando Luis
Rossi ; Thesis directed by Marcelo Seido Nagano. —-- Sé&o
Carlos, 2019.

Doctoral (Dissertation) - Graduate Program in
Production Engineering and Research Area in Process and
Operations Management — Sdo Carlos School of Engineering,
at University of S&o Paulo, 2019.

1. Flowshop. 2. No-idle. 3. Setup times.
4. Heuristics. I. Title.

Elena Luzia Palloni Gongalves — CRB 8/4464

FOLHA DE JULGAMENTO

e e

Candidato: Bacharel FERNANDO LUIS ROSSI.

Titulo da tese: "Uma contribuicdo para o problema de programagdo mixed
no-idle flowshop com tempos de preparagdo dependentes da sequéncia:
andlises e métodos de solugcdo”.

Data da defesa: 03/07/2019.

Comissdo Julgadora: Resultado:
Prof. Dr. Marcelo Seido Nagano A - K
(Orientador) DWW (a

(Escola de Engenharia de Séo Carlos/EESC)

Prof. Associado Evandro Eduardo Seron Ruiz //ﬂ?@[//lz/é’
(Faculdade de Filosofia, Ciéncias e Letras de RibeirGo Pre’ro/FFCLRP -USP)

Prof. Dr. Roberto Fernandes Tavares Neto 4%'4 w/
(Universidade Federal de S&o Carlos/UFSCar)

Prof. Dr. Paulo Rogério Politano ASROVADO
(Universidade Federal de S&o Carlos/UFSCar)
/(S A (d
7é

Profa. Associada Débora Pretti Ronconi
(Escola Politécnica/EP-USP)

Coordenador do Programa de Pés-Graduagdo em Engenharia de
Producdo:
Prof. Dr. Marcelo Seido Nagano

Presidente da Comissdo de Pos-Graduagdo:
Prof. Titular Murilo Araujo Romero

This work is wholeheartedly dedicated to my wife, daughter and beloved parents, who have
been our source of inspiration and gave us strength when we thought of giving up, who
continually provide their moral, spiritual, emotional, and financial support.

To our brothers, sisters, relatives, mentor, friends, and classmates who shared their words
of advice and encouragement to finish this study.

And lastly, we dedicated this book to the Almighty God, thank you for the guidance,
strength, power of mind, protection and skills and for giving us a healthy life. All of these,

we offer to you.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Prof. Marcelo Seido
Nagano for the continuous support of my Ph.D study and related research, for his patience,
motivation, and immense knowledge. His guidance helped me in all the time of research
and writing of this thesis. I could not have imagined having a better advisor and mentor
for my Ph.D study.

I also want to be thankful with my colleagues in the Department of Managment of
Federal Institute of Sao Paulo. Although each of them has been really important to carry
out this Thesis, I want to be specially grateful to the support of Rodolfo Butcher, Cynthia

Regina Fischer, Hania Cecilia Pilan and Francisco Manoel Filho.

“Computers are like Old Testament gods; lots of rules and no mercy.”
Joseph Campbell, The Power of Myth.

RESUMO

Rossi, F. Uma contribuicao para o problema de programacgdo mixed no-idle
flowshop com tempos de preparacao dependentes da sequéncia: analises e
métodos de solugao. 2019. 176p. Tese (Doutorado) - Escola de Engenharia de Sao
Carlos, Universidade de Sao Paulo, Sao Carlos, 2019.

Neste trabalho é abordado o problema de programacao de producao em ambiente mixed
no-idle flowshop com tempos de preparacao dependente da sequéncia. Este ambiente de
producao ainda nao foi estudado na literatura, apesar de estar presente na dinamica
dos sistemas produtivos. No ambiente no-idle flowshop, as maquinas que compéem o
sistema nao podem ficar ociosas e todas as tarefas sao executadas ininterruptamente.
Geralmente os motivos sdo associados a fatores econémicos ou tecnolégicos, onde uma
maquina parada influencia diretamente o desempenho do sistema produtivo. O ambiente
no-idle flowshop esta presente no processamento de fibra de vidro, producao de circuitos
integrados, em siderirgicas, dentre outros. Entanto, assumir que todas as maquinas nao
fiquem ociosas no ambiente produtivo geralmente nao é realistico. Uma situagao mais
realista é considerar o ambiente misto, onde apenas algumas maquinas que compoem o
sistema executam as tarefas ininterruptamente, enquanto as outras permitem a ociosidade
normalmente. Neste caso, o ambiente é chamado de mixed no-idle flowshop. Na extensao
estudada neste trabalho, tempos de preparacao que antecedem o processamento das
tarefas sao considerados nas maquinas em que é permitida a parada. Este é o primeiro
trabalho a abordar o problema mixed no-idle flowshop com tempos de preparacao. Nesta
Tese, métodos heuristicos eficientes para resolugao do problema mixed no-idle flowshop
foram propostos. Para demonstrar a performance dos métodos desenvolvidos, foram
realizadas extensas comparacgoes com métodos considerados estado-da-arte na literatura.
Os resultados mostram que as heuristicas propostas fornecem solugoes de qualidade com

eficiéncia computacional, superando os métodos da literatura.

Palavras-chave: Flowshop, No-idle, Tempos de Preparacao, Heuristicas

ABSTRACT

Rossi, F. A contribution for the mixed no-idle flowshop scheduling problem
with sequence-dependent setup times: analysis and solutions procedures. 2019.
176p. Tese (Doutorado) - Escola de Engenharia de Sdo Carlos, Universidade de Sao Paulo,
Sao Carlos, 2019.

In this work the mixed no-idle permutation flowshop with sequence-depdent setup times
scheduling problem is approached. This production environment has not yet been studied
in the literature, despite being present in the dynamics of production systems. In the
no-idle flowshop environment, the machines cannot be idle and all jobs are processed
uninterruptedly. Generally, the reasons are associated with economic or technological
factors, where a stationary machine directly influences the performance of the production
system. The no-idle flowshop is present in the manufacturing of fiberglass, production
of integrated circuits, in steelworks, among others. However, assuming that all machines
cannot be idle is often unrealistic. A more realistic situation would consider a mixed
environment, where only a few machines perform the jobs uninterruptedly, while the other
allow idleness. In this case, the environment is called mixed no-idle flowshop. In the problem
extension studied in this work, setup times are considered on machines where idleness
is allowed. This is the first work that addresses the mixed no-idle flow shop scheduling
problem with setup times. In this Thesis, efficient heuristic methods for solving the mixed
no-idle flowshop with setup times scheduling problem are proposed. To demonstrate the
performance of the new methods, extensive comparisons with state-of-the-art methods
from literature are performed. The results show that the proposed heuristics provide
high quality solutions with computational efficiency, outperforming the methods from the

literature.

Keywords: Flowshop, No-idle, Setup Times, Heuristics

Figure 1 —
Figure 2 —
Figure 3 —
Figure 4 —
Figure 5 —
Figure 6 —
Figure 7 —

Figure 8 —

Figure 9 —

Figure 10 —

Figure 11 —

Figure 12 —
Figure 13 —

Figure 14 —
Figure 15 —

Figure 16 —
Figure 17 —
Figure 18 —

LIST OF FIGURES

Optimum solution for the PFSP without no-idle. 36
The same solution of Figure 1, now with no-idle machines. 36
Optimum solution for the no-idle PFSP. 36
The mixed no-idle PFSP. 37
The mixed no-idle PFSP with sequence-dependent setup times. 37
Earliest completion time for the candidate job 744y in machine M;. . . 59

Idles times and starting times for the jobs in a permutation flowshop
without no-idle machines. 60

Idles times and starting times for the jobs in a permutation flowshop

with no-idle machines. oo 60
ARPD and ARPT values for compared heuristics. The Pareto dominat-
ing heuristic is depicted in green. L o0 80

Means plot for the heuristics in all distributions for the benchmark from
Pan e Ruiz (2014). All means have 95% confidence intervals 82
Means plot for the heuristics in all distributions for the benchmark from
Ruiz, Maroto e Alcaraz (2005). All means have 95% confidence intervals 83
ARPD vs ACPU for the compared heuristics. 116
Means plot for the heuristics in all distributions with 95% confidence
intervals. 119
Percentage of ties between partial sequences. 130

Means plot for the heuristics in all distributions with 95% confidence

intervals. L 138
ARPD grouped by number of jobs. 139
ARPD grouped by number of jobs. 140

Means plot for the metaheuristics in all distributions with 95% confi-

dence intervals and 7,,,,, =500 -n-m. 151

Table 1 —
Table 2 —
Table 3 —

Table 4 —

Table 5 —

Table 6 —

Table 7 —

Table 8 —

Table 9 —

Table 10 —

Table 11 —

Table 12 —

Table 13 —

Table 14 —

Table 15 —

LIST OF TABLES

Small example with three machines and three jobs. 35
Summary of works addressing the no-idle PESP. 53
Summary of works addressing the PFSP with sequence dependent setup
times. o7
ARPD values for the parameter tuning of RN, heuristic. The best results
are highlighted in bold. 70

Summary of the results in the benchmark adapted from Pan e Ruiz (2014). 71
ARPD values for the compared heuristics in the all distributions grouped
by number of jobs in the benchmark adapted from Pan e Ruiz (2014).
The values in bold are the best ARPD, in each line. 72
ARPD values for the compared heuristics in the all distributions grouped
by number of machines in the benchmark adapted from Pan e Ruiz
(2014). The values in bold are the best ARPD, in each line. 73
ARPD values for the compared heuristics in the SSD50 distribution in
the benchmark adapted from Pan e Ruiz (2014). The values in bold are
the best ARPD, ineach line. 74
ARPD values for the compared heuristics in the SSD100 distribution in
the benchmark adapted from Pan e Ruiz (2014). The values in bold are
the best ARPD, ineach line. 75
ARPD values for the compared heuristics in the SSD125 distribution in
the benchmark adapted from Pan e Ruiz (2014). The values in bold are
the best ARPD, ineach line. 76
Average CPU values and ARPT for the compared heuristics grouped by
number of jobs in the benchmark adapted from Pan e Ruiz (2014). The
values in bold are the best results, in each line. 7
Average CPU values for the compared heuristics grouped by number of
machines in the benchmark adapted from Pan e Ruiz (2014). The values
in bold are the best results, in each line. 78
Tukey test results of the best heuristics, with significance level of 95% in
the benchmark from Pan e Ruiz (2014). The values in bold mean that
there is a significant statistical difference between the algorithms in the
first and second column. oo 81
ARPD results in the benchmark from Pan e Ruiz (2014) without sequence
dependent setup times. The values in bold are the best results, in each line. 84
Average CPU times in the benchmark from Pan e Ruiz (2014) without

sequence dependent setup times.o 84

Table 16 —

Table 17 —

Table 18 —

Table 19 —

Table 20 —

Table 21 —

Table 22 —

Table 23 —

Table 24 —

Table 25 —

Table 26 —

Table 27 —
Table 28 —
Table 29 —
Table 30 —
Table 31 —
Table 32 —
Table 33 —
Table 34 —

Summary of the results in the benchmark adapted from Ruiz, Maroto e
Alcaraz (2005).
ARPD values for the compared heuristics in the all distributions intervals
in the benchmark adapted from Ruiz, Maroto e Alcaraz (2005). The
values in bold are the best ARPD, in each line.
ARPD values for the compared heuristics in the SSD10 distribution
interval in the benchmark adapted from Ruiz, Maroto e Alcaraz (2005).
The values in bold are the best ARPD, in each line.
ARPD values for the compared heuristics in the SSD50 distribution
interval in the benchmark adapted from Ruiz, Maroto e Alcaraz (2005).
The values in bold are the best ARPD, in each line.
ARPD values for the compared heuristics in the SSD100 distribution
interval in the benchmark adapted from Ruiz, Maroto e Alcaraz (2005).
The values in bold are the best ARPD, in each line.
ARPD values for the compared heuristics in the SSD125 distribution
interval in the benchmark adapted from Ruiz, Maroto e Alcaraz (2005).
The values in bold are the best ARPD, in each line.
Average CPU times and ARPT for the compared heuristics in the all
distributions intervals in the benchmark adapted from Ruiz, Maroto e
Alcaraz (2005). The values in bold are the best CPU times, in each line.
Tukey test results of the best heuristics, with significance level of 95%
in the benchmark from Ruiz, Maroto e Alcaraz (2005). The values in
bold mean that there is a significant statistical difference between the
algorithms in the first and second column.
ARPD results in the benchmark from Ruiz, Maroto e Alcaraz (2005)
without no-idle machines. The values in bold are the best CPU times, in
each line.
Average CPU times in the benchmark from Ruiz, Maroto e Alcaraz (2005)
without no-idle machines. 0oL
APRD and percentage of optimum solutions for the proposed RNy
heuristic. L
Average and maximum CPU time for the MILP model.
Parameter testing with different values ford.
ARPD and ACPU for the compared heuristics.
ARPD for each set of problems arranged by the number of jobs.

ACPU for each set of problems arranged by the number of jobs..
APRD for the proposed heuristics when compared to optimal solutions.
Percentage of optimum solutions for the proposed heuristics.

Average and maximum CPU time for the MILP model.

91

Table 35 — ARPD and ACPU values for the compared heuristics in different distri-
butions and due date scenarios. L.
Table 36 — ARPD values for the compared heuristics for all setup times distributions
and due dates scenarios. The best results are highlighted in bold.
Table 37 — ACPU values for the compared heuristics for all setup times distributions
and due dates scenarios.
Table 38 — ARPD values for the compared heuristics in the SSD-50 distribution and

T=1. .
Table 39 — ARPD values for the compared heuristics in the SSD-50 distribution and
T = 3 o
Table 40 — ARPD values for the compared heuristics in the SSD-100 distribution
and 7=1. e
Table 41 — ARPD values for the compared heuristics in the SSD-100 distribution
and T =3.
Table 42 — ARPD values for the compared heuristics in the SSD-125 distribution
and 7=1.
Table 43 — ARPD values for the compared heuristics in the SSD-125 distribution
and 7 =3. . ..
Table 44 — ARPD values for the metaheuristics in different distributions and due
date times.

Table 45 — ARPD values for the metaheuristics for all setup times distributions and
due dates scenarios. The best results are highlighted in bold.
Table 46 — ARPD values for the compared metaheuristics in the SSD-50 distribution

and 7=1.
Table 47 — ARPD values for the compared metaheuristics in the SSD-50 distribution
and 7 =3. . ..
Table 48 — ARPD values for the compared metaheuristics in the SSD-100 distribution
and 7=1.
Table 49 — ARPD values for the compared metaheuristics in the SSD-100 distribution
and T =3.
Table 50 — ARPD values for the compared metaheuristics in the SSD-125 distribution
and 7=1.

Table 51 — ARPD values for the compared metaheuristics in the SSD-125 distribution

and T = 3. . .

150

AA

ACO

B&B

B&C

CH

DE

DP

GA

IG

IH

ILS

IWO

MBO

ME

MILP

PFSP

PSO

SI

LIST OF ABBREVIATIONS AND ACRONYMS

Approximate Algorithms

Ant Colony Optimization Algorithms
Branch-and-Bound

Branch-and-Cut

Constructive Heuristic

Differential Evolution Algorithm
Dynamic Programming Formulation
Genetic Algorithms

Iterated Greedy Algorithm

Improvement Heuristic

Iterated Local Search

Invasive Weed Optimization Algorithm
Migration Bird Optimization Algorithms.
Memetic Algorithm.

Mixed-integer Linear Programming model
Permutation Flowshop Scheduling Problem
Particle Swarm Optimization Algorithms

Saving Index Algorithm

2.1
2.2
2.3
23.1
2.3.2
2.3.3
2.3.4

3.1
311
3.1.2
3.2
3.2.1
3.2.2
3.23
3.3
331
33.1.1
3.3.1.2
3.3.13
3314
3.3.2
3.33
3.3.4
3.35

3.3.6

3.3.7
3.4

CONTENTS

INTRODUCTION e e e e e e e e e e e 29
Objectives and outline of the Thesis. 31
PROBLEM STATEMENT 33
Notations 34
The no-idle and mixed no-idle PFSP 35
The mixed no-idle PFSP with sequence dependent setup times . . . 37
Mixed integer linear programming model 38
Makespan, total flowtime and total tardiness calculation 40

Acceleration method to calculate the makespan for the insertion neighbourhood 41

Acceleration method to calculate the total flowtime or the total tardiness . 43

THE MIXED NO-IDLE PFSP WITH SETUP TIMES AND MAKESPAN

MIMIZATION e e e e e e e e e e 49
Literature review 50
The no-idle PFSP 50
The PFSP with sequence dependent setup times 54
A new constructive heuristic00 58
Greedy heuristic 58
NEH heuristic variant 61
The RN, heuristic e 62
Computational and statistical experiments 63
Instances generation Lo 63
Benchmark for the parameter tuning for the RN, 64
Benchmark adapted from Pan e Ruiz (2014) 65
Benchmark adapted from Ruiz, Maroto e Alcaraz (2005) 66
Benchmark for the MILP model evaluation 66
Compared Heuristics 66
Performance measures 68
Parameter settingsof RN, oL 69
Comparison between heuristics in the benchmark adapted from Pan e Ruiz

(2014) 69
Comparison between heuristics in the benchmark adapted from Ruiz, Maroto

e Alcaraz (2005) 82
Evaluation of the MILP model and the RN, heuristic 92
Conclusion 96

4.1

4.1.1
4.1.2
4.1.3

4.2

421
422
4.3

43.1
4.3.2
4.3.3
4.3.4
4.3.5
4.4

5.1
5.1.1
512
5.2
5.3
53.1
5.3.2
533
534
5.35
5.4

6.1
6.2
6.3

THE MIXED NO-IDLE PFSP WITH SETUP TIMES AND TOTAL

FLOWTIME MINIMIZATION 99
Literature Review 99
Heuristics for the F|prmu|Cyue, problemo oo o000 99
Heuristics for the F'|prmu|>> C; problem 100
Heuristics for the F|prmu,no — idle|Cyq. and F|prmu, mixzed no —

idle|Cpag problems o oo 101
Proposed heuristics 102
The index function for nodes evaluation 103
The H1(N), H2(N, k) and H3(N) heuristics 105
Computational and statistical experiments 108
Instances generationo Lo 108
Compared heuristics 109
Performance measures 113
Parameter tunning for the HI(N), H2(N, k) and H3(N) 113
Comparison 114
Conclusion 122

THE MIXED NO-IDLE PFSP WITH SETUP TIMES AND TOTAL

TARDINESS MINIMISATION 125
Literature Review 125
The F,|prmu| > T problem oo 126
The F,,|prmu, no —idle] > T problem 128
Proposed Heuristics 129
Computational and statistical experiments 132
Instances generation Lo Lo 132
Compared heuristics 134
Performance measures 135
Comparisons between heuristics L. 136
Comparisons between metaheuristics 149
Conclusion 159
CONCLUSIONS, RESULTS AND FUTURE RESEARCH 161
Conclusions 161
Results 164
Future research lines 164

BIBLIOGRAPHY e 167

31

1 INTRODUCTION

In the past decades, following the massive globalization of markets, companies
worldwide struggle in a more competitive market, where corporations from different
regions must battle for common customers. As a consequence, efficiency in the production
processes of the companies have become more essential than ever (SLACK et al., 2009).
Thus, production management is a important aspect for firms to remain competitive.
Production management comprises decision making related to many issues, as example
the master scheduling, material requirements planning, capacity planning, production
scheduling (VOLLMANN, 2005). Between these, production scheduling performs an crucial
role on resource productivity and client service (FERNANDEZ-VIAGAS, 2016). Companies
around the world must meet promised delivery times, and failing to meet them can result
in significant customer losses (LIU; REEVES, 2001).

Production scheduling is a decision process that deals with the allocation of
resources to the jobs in a given period of time in order to optimize one or more objectives
(PINEDO, 2016). With the objective of determining the best schedule for the shop floor,
constraints and the objective of the shop have to be considered. The complexity of the
scheduling problem increases and becomes NP-hard even for small scheduling problems
(FRAMINAN; LEISTEN, 2003). Also, scheduling decisions should be made in short time
intervals requiring a rapid response time, due to several aspects such as the lifetime of
a schedule, the delay in the suppliers, arrivals of new jobs to be processed, rescheduling
due to failures while processing a job (FERNANDEZ-VIAGAS, 2016). Therefore, the
development of fast and efficient solution procedures for solving manufacturing scheduling

problems is decisive for companies’ efficiency.

Currently, many processing layouts have been utilized by manufacturing industries.
The Permutation Flowshop Scheduling Problem (PFSP) has been extensively studied in
the literature with several papers published that deal with flowshops and other related
problems (RAD; RUIZ; BOROOJERDIAN, 2009). The main reason for this is that the
flowshop layout is the common configuration in many real manufacturing scenarios, as it
presents several advantages over more general job shop configuration, and, in addition,
many job shops are indeed a flow shop for most of the jobs (FERNANDEZ-VIAGAS,
2016). Another reason is that many models and solutions methods for different constraints

and layouts have their origins in the PFSP.

The flowshop environment is present in many relevant industry segments such
as metallurgical, chemical, and pharmaceutical industries. In certain situations in which
profitability is improved by means of (a) maximizing the use of resources, (b) reducing

work-in-process inventory or (c) better meeting deadlines, scheduling methods have the

32

minimization criteria of (a) maximum completion time of a sequence or makespan, (b)
total flowtime or (c) total tardiness (MACCARTHY; LIU, 1993). These three objectives
are the most relevant for the flowshop environment (LIU; REEVES, 2001; FRAMINAN;
LEISTEN, 2003; FERNANDEZ-VIAGAS; FRAMINAN;, 2015).

More specifically, in a PFSP a set jobs is processed on machines with the objective
of minimising a certain criterion. In a permutation flowshop, the order in which each
machine processes the jobs is identical for all machines. In this Thesis, the mixed no-idle
PFSP with sequence dependent setup times is studied, which is a variation of the no-idle
PFSP. In the no-idle PFSP, machines are not allowed to be idle after a job sequence begins.
This condition occurs when their operating costs are high enough to make idle machines
economically prohibitive or technological constraints do not allow machines to stop after
the process is started. Briefly, in a no-idle environment, machines must process all the
jobs of the sequence without interruption. Due to this, when necessary, some jobs must be

delayed to ensure that the no-idle constraint is met.

However, in practice we rarely see an environment where there are only no-idle
machines (PAN; RUIZ, 2014). In a real production system, it is more common to have a
mixed environment in which no-idle machines and idle machines coexist. (PAN; RUIZ,
2014) were the first to formally define this type of mixed production system in a flowshop
environment (mixed no-idle PFSP). The mixed no-idle environment can be found in
steel production using the continuous casting process as described by (PAN; RUIZ, 2014).
Another example arises from the production of truck engine blocks in a foundry (SAADANTI;
GUINET; MOALLA, 2003). In more detail, this includes casting sand moulds and sand
cores. The moulds are filled up with molten metal and they prevent the metal from filling
some spaces. The production system is defined by four main activities: the core production
shop; the smelting step; the casting line; and the finishing step. The smelting step, casting
line and some core production machines must work continuously due to both technical

and economic reasons, while the other operations can work with idle times.

Within the flowshop problem, another important consideration is the existence
of setup times that precede the jobs. Some example of setup operations are obtaining
tools, cleaning machines, positioning raw material, adjustments, inspections and other
activities. There is a distinction between two types of setup: a) sequence independent
setup (s;;), when the setup time of machine M; only depends on job J;; b) sequence
dependent setup (s;k), when the setup time of machine M; depends on the previous job
J; and the current job J,. The setups times can also be described as anticipatory or
non-anticipatory. Anticipatory setups are those that can be performed on the machine
as soon as this machine finishes the previous job in the sequence. Otherwise, a setup is
non-anticipatory. Literature reviews addressing the scheduling problem with setup can be
found in Allahverdi, Gupta e Aldowaisan (1999), Allahverdi e Soroush (2008), Allahverdi

33

et al. (2008), Allahverdi (2015).

In an environment in which all machines are no-idle, the setup time makes no
practical sense, as the machine requires continuous processing. However, in a mixed no-idle
environment, the existence of setup times is acceptable, and therefore the setup times on
regular machines can be considered, which allows idleness. For example, in the continuous
casting process in the steel industry, setup times for the machine to accommodate the
iron load to be processed or to separate the specific alloying elements for the steel to be
produced can be considered. Therefore, the setup times would occur in the stages in which
idle times are allowed. For example, the setup times in the finishing step can result from

cleaning and adjustment operations needed in the machines and tools used at this stage.

In this work, this special variant of the PFSP is denoted as mixed no-idle PFSP
with sequence-dependent setup times. Succinctly, in this new problem, no-idle machines
coexist with stages that allow iddleness, in these stages sequence-dependent setup times
between the jobs are considered. To the best of our knowledge, this problem has not yet
been studied in the literature, although it can be found in the dynamics of productive

systems.

1.1 Objectives and outline of the Thesis

As stated in the previous section, the goal of this Thesis is to study the mixed
no-idle PFSP with sequence-dependent setup times, both deeply analysing the problem
under different criteria and developing new efficient methods to solve the problem. To

carry out this goal, the following general research objectives are identified:

OBJ1. To provide in-depth analysis of the mixed no-idle PFSP with sequence-dependent
setup times, presenting mathematical models, formulations and calculations methods for

different objective functions;

OBJ2. To review the no-idle PFSP, PFSP with setup times and classical PFSP liter-
ature for the most common objectives, i.e. makespan, total flowtime or total tardiness

minimisation;

OBJ3. To provide efficient methods to solve the mixed no-idle PFSP with sequence

dependent setup times for makespan, total flowtime or total tardiness minimisation;

OBJ4. To demonstrate the efficiency and good performance of the new proposed methods

thought extensive computational and statistical experiments.

To achieve these objectives, the Thesis have been structured in five chapters as

follows:

34

In Chapter 2 the problem under consideration is stated, where mathematical
formulation and calculation methods for the different objective functions are provided in
detail. Chapters 3, 4 and 5, the mixed no-idle is analysed under different minimization
criteria along three chapters (Chapter 3 - makespan, Chapter 4- total flowtime, Chapter 5
- total tardiness). In each chapter, the main contributions in the literature are reviewed
and the state-of-the-art algorithms are presented. We propose new heuristics algorithms to
solve the mixed no-idle PFSP under each objective. We developed each heuristics in order
to exploit the specific structure of the problem to both reduce the computational times of
them and improve the quality of the solutions. Additionally, they are tested in extensive
computational evaluations, comparing them with the state-of-the-art algorithms under
the same conditions. Finally, in Chapter 6, the conclusions of this research and future

research lines are discussed.

35

2 PROBLEM STATEMENT

The PFSP in industrial environments are frequent, complex and have characteristics
peculiar to each company (NAGANO; MOCCELLIN, 2002). In the scope of Operational
Research, such problems are represented by models, in most cases mathematical, and must
contain the variables and parameters that explain and represent significantly the behaviour
of the problems treated (PINEDO, 2016). The problem consists of the determination of
the sequence of n jobs which achieves the minimal objective function value when all jobs
are processed, in the order, on the m machines of the flow shop. The following additional

hypotheses are usually assumed for the PFSP:

o Processing times are known and deterministic.

« No preemption is allowed.

» Transportation times can be considered either insignificant or constant.
o FEach job can be processed by at most one machine at the same time.

o Release times are set to 0.

o Each machine can process only one job at the same time.

o All machines are available on the whole scheduling horizon.

o Unlimited in-process inventory is considered.

To obtain the solution of the problem of production scheduling many methods
of solution have been proposed. According to Framinan, Leisten e Ruiz-Usano (2005),
these methods are mainly: efficient methods of optimal solutions, enumerative methods of
optimal solutions, heuristic and metaheuristics methods. Among the efficient methods of
optimal solutions, the best known method is Johnson (1954), which determines the optimal
solution for the PFSP with two machines and n jobs in a polynomial time. The enumerative
methods determine the optimal solution of the problem, but at a high computational cost.
Among these, the most studied are the branch & bound procedures (BAPTISTE; HGUNY,
1997; BAGGA, 2003). The last type of solution method is the heuristic and metaheuristics
methods, which provide good quality solutions at a computational time that is not very

high compared to the other solution methods.

The heuristic methods can be classified in several ways, the most usual being to
classify them in: constructive heuristic methods and improvement methods. In the case

of constructive heuristic methods, the solution of the problem is obtained: directly from

36

the ordering of jobs according to priority indexes calculated according to the processing
times of the jobs, such as the methods proposed by Palmer (1965) and Koulamas (1998);
choosing the best sequence of jobs from a set of sequences (CAMPBELL; DUDEK; SMITH,
1970; HUNDAL; RAJGOPAL, 1988); or from the construction of partial sequences of a set
of jobs (subsequences) until a complete sequence is obtained (for example, Nawaz, Enscore
e Ham (1983)). In the case of the improvement methods, an initial solution is obtained
and, later, by means of some iterative procedure, a better solution is sought than the
current one in relation to the adopted measure of performance. Thus, the improvement
methods start from an initial solution and look for a better solution in their neighbourhood.
Two widely used neighbourhoods are the pairwise exchange and the insertion of jobs
(FRAMINAN; GUPTA; LEISTEN, 2004). In the pairwise exchange, all possible exchanges
of pairs in a sequence are performed; therefore, if we have a sequence with n tasks, we will
have n(n — 1)/2 possible pairwise exchanges. In the insertion method, a job of the current
sequence is removed and subsequently tested in all possible positions, resulting in n(n — 1)

sequences generated by the insertion procedure.

Finally, a metaheuristic can be seen as a general-purpose heuristic method designed
to guide the solution toward promising regions of the search space containing high quality
solutions (DORIGO et al., 2008). In addition, metaheuristics may move to not necessary
improving solutions, which constitutes the main mechanism to avoid stopping at local
optima Crainic e Toulouse (2003). Some examples are the particle swarm algorithm
proposed by Pan e Wang (2008b), the evolutionary algorithms of Tasgetiren et al. (2011)
and Deng e Gu (2012) or the bee colony algorithm of Tasgetiren et al. (2013b). Before
the problem is formally described, the notations used in the expressions are presented in

detail in the next section.

2.1 Notations

The notations used to describe the problem are detailed bellow.

J; 1 job to be processed,;

M; : machine or stage;

pij : processing time of job J; in machine M; (i=1,...,m;j=1,...,n);
d; : the due date of job J;;

7 : sequence of processing;

mj or [j] : defines a job occupying the jth position of the sequence;

U : set of jobs that have not yet been sequenced;

37

C;,; : the completion time of job J; in machine M;;

S;; © the start time of job J; in machine M;;

C;; : the completion time calculated from back to front of J; in machine M;;
Crnaz, Cmj : the makespan or the completion time of the sequence;

> Ty, 25—y max(Cp,; — d;,0) : the total tardiness of the sequence;

> Cjy Y0y Crj or 2 Cj(m) : total flowtime of the sequence T;

Si; : the start date calculated from back to front of J; in machine M;;

M’ : set of no-idle machines. Machines that do not belong to M’ are defined as regular

machines, which allow stopping and also have setup time between jobs.

st @ setup time in machine M; between jobs J; and Ji, (k < n, k # j).

2.2 The no-idle and mixed no-idle PFSP

As mentioned before, a variant of the PFSP is caused when idleness is not allowed on
machines (no-idle). Cases like these are common and important in practical situations where,
for example, machines with high economic value added are used in the production process.
Allowing these machines to be idle many times may not be financially desirable. Clear
examples of this arise in the production of integrated circuits through photolithography
(RUIZ; VALLADA; FERNANDEZ-MARTINEZ, 2009). Other examples can be seen in
sectors where the machines are of low value, but the machines can not be easily restarted
or stand still because the costs would be very high, for example, the ceramics industry
uses kilns that use large amounts of gas while operating, in this case, idleness should be
avoided, since it would take several days to stop the oven due to a large thermal inertia
for heating. In all these cases, idleness should be avoided, either for economic reasons
or for technological reasons inherent to the process. In order to understand and better
illustrate the no-idle PFSP, an example is presented with three machines and three jobs.

The processing times of the jobs are given in Table 1.

Table 1: Small example with three machines and three jobs.

Jobs Jl JQ Jg
M, 21 10 23
My 27 20 15
My 7 12 33

A simple way to represent the solution of a production scheduling problem is to

use the Gantt Chart. Figure 1 presents a Gantt Chart of an optimal solution for the small

38

mt = UZ']SJl} Cmax = 88
My || B | h
m | L n ks R
M, ’ J2 ‘ ‘ E ‘]1

Figure 1: Optimum solution for the PFSP without no-idle.

Tno—idle = {2,J3,J1} Crnax = 94
MmolL | s R
M, e s [
M, L | Js b

Figure 2: The same solution of Figure 1, now with no-idle machines.

T no—iate = UsrJ2,J1} Crnax =92

Figure 3: Optimum solution for the no-idle PFSP.

PFSP example presented in Table 1, note that the problem does not yet considers no-idle

machines.

Considering a PFSP with makespan criterion, enumerating all possible solutions,
the optimal solution is provided by the sequence ©* = {J5, Js, J; }, resulting in a makespan
of 88 (Figure 1). On the other hand, if it is considered the no-idle PFSP, the same solution
results in a worse non-optimal makespan of 94 (Figure 2). The optimal solution for the
same problem when no-idle machines are considered is another one, 7, ;.. = {Js, J2, J1},
with makespan 92 (Figure 3). Thus, the existence of no-idle machines can lead to a different

optimal solution.

The small example presented shows that the no-idle machines significantly impact
the solutions for the problem. As stated before, the problems studied is an extension of the

no-idle PFSP, denoted as mixed-noidle PFSP with sequence-dependent setup times. In the

39

Tmixed no—idle = U2,J3:J1}

My || B | h
M, . |l B | R
M, ‘ J2 ‘ I3 ‘]1 ‘

Figure 4: The mixed no-idle PFSP.

*

T mixed no—idle,s]i-,k = {]3']2r]1}

W
M, ‘]3 !]2- ‘]1‘

Setup times

Figure 5: The mixed no-idle PFSP with sequence-dependent setup times.

mixed no-idle PFSP, some machines allow idleness, while the other are no-idle. Figure 4
illustrates the mixed no-idle PFSP under the processing times presented in Table 1, where

only machine M, allow idleness and M; and M3 are no-idle machines.

As stated before, in the machines that allow idleness, setup times can occur between
the jobs. Figure 5 shows a small example where only machine M; is no-idle, M, and
Ms allow idleness and have setup times between the jobs. In the next section we will
present the detailed definition and formalization of the mixed no-idle PFSP with sequence

dependent setup times, which is the object of study of this work.

2.3 The mixed no-idle PFSP with sequence dependent setup times

Formally, the problem under consideration can be defined as follows. A set of
n jobs J = {Ji,...,J,} must be processed in the same order by a set of m machines
M = {M,,..., M,,} with the objective of minimising a certain criterion, namely, in this
work, makespan, total flowtime or total tardiness. A processing sequence is defined by
m={m,...,m}, m; or [j] defines a job in the jth position of the sequence. The processing
time of job J; in machine M, is p;; (Vi = {1,...,m}, Vj = {1,...,n}). The completion
time of job J; in machine M; is called C; ; and the starting date is .S; ;. The makespan
(Crnaz Or Chae (7)) is equal to the completion time of the last job in the last machine

Chn [for the sequence 7. The total flowtime is the sum of the completions times of the

40

jobs in the last machine M,,, >-7_; Cy, ;. The total tardiness is the sum of the tardiness
of all jobs, 3%, max(C,,; — d — j), while d; is the due date of job J;. Machines that
are no-idle belong to a set defined by M’. The machines that do not belong to M’ are
defined as regular machines, which allow idle and also have a setup time between jobs.
The sequence-dependent setup times are considered in the regular machines M; (M; € M)

between jobs J; and Jy, (k < n, k # j), and are denoted as s .

According to Graham et al. (1979), a scheduling problem can be defined in a
notation comprising three fields «|f3|y, in which « represents the machine environment
considered (single machine, parallel machine, flowshop, jobshop or openshop) and the
number of machines, § the technological constraints (sequence dependent setup times,
unavailability of machines, no-wait, no-idle, mixed no-idle, permutation) and v is the
performance criterion (makespan, tardiness, total flowtime, among others). Thus, the
problem considered in this work can be defined as F,,|prmu, mixed no — idle, 3§7k|(0max,
> Cj, or > T;) where F,, defines that the machine environment is a flowshop with m
machines and prmu (permutation) means that the jobs are processed in the same order

by all the machines.

2.3.1 Mixed integer linear programming model

We extended the MILP model of Pan e Ruiz (2014) in order to consider the
sequence dependent setup times for the regular machines (M; ¢ M’). The decision variable
is defined by X, where X, = 1 if jobs J; is the kth job of the sequence 7 and X =0
otherwise. The relation between the adjacent jobs is controlled by the decision variable
Yk, as Y ; = 1if job J; is in position k in the sequence and is immediately preceded by
Jj; otherwise, it equals zero (VI,j € {1,...,n}, Vk € {2,...,n}). The decision variables

are detailed below:

1 if J; is in position & in the sequence

Xj,k -

0 otherwise

1 if J; is in position k in the sequence and
Yirj = is preceded by J;, 7 # [

0 otherwise

The mixed integer programming model is provided as follows. The objective function,
Z, is defined in (2.1) and minimises the makespan, total flowtime or the total tardiness.
The set (2.2) and (2.3) state that each job is attributed to one position and vice-versa.
Constraints (2.4) and (2.5) ensures that each job precedes only one job and follows exactly
one job, and these two jobs are not the same. Constraint (2.6) ensures that there is no
precedence for the job in the first position of the sequence, as when £ = 1 no job precedes
Jj, therefore Y;; ;=0 (Vl,5 € {1,...,n}). Constraint (2.7) establish that the completion

41

time of the job in the first position is greater than or equal to its processing time in the
first machine. Constraint (2.8) ensures that a job cannot be processed on a machine before
its completion on the preceding machine. In constraints (2.9) and (2.10) the job completion
time is equal to the completion time of the previous job plus the processing time if the
machine is no-idle. For regular machines, the completion time is greater than or equal to
the previous job plus the processing time and setup time between the jobs. Constraints
(2.11), (2.12) and (2.13) give the domains of the variables.

Crin for the makespan criterion
Minimize Z = § 37, Cpn for the total flowtime criterion (2.1)

i1 Ty = max(Cy, j — d;,0) for the total tardiness criterion

Subject to:
N Xin=1, Vje{l,...,n} (2.2)
k=1
> Xjp=1 Vke{l,...,n} (2.3)
j=1
Xj,k:ZY;,k,j? VJE {1,,”} Vk € {2,,”} (24)
=1
Xik=> Yipyy, Vie{l,...,n}Vke{l,....n—1} (2.5)
=1
}/1717]‘ =0, Vj,le {1, ce ,n} (26)
Cl,k 2 ZXng 'pl,ja vk € {1, e ,n} (27)
j=1
Cir>Cimip+ > Xjn-piy Vke{l,...,n}, Vie{2,...,m} (2.8)
j=1
Ci,k = Ci,k—l -+ ZXJ'J‘? “Dijs Vi € M’, vk € {2, - ,n} (29)
j=1
Ci,k > Oi,k—l + Zvak *Dij + Z ZYE»W . Sij, Vi §é M/, Vk € {2, .. ,n} (2.10)
j=1 j=11l=1
Cix >0 Vke{l,....n}, Vie{l,...,m} (2.11)
Xir€{0,1} Vke{l,...,n}, Vie{l,...,m} (2.12)
Yir; €{0,1} Vi kle{l,....,n} (2.13)

According to Pan e Ruiz (2014), the mixed no-idle PFSP is A"P-Hard in the strong
sense. Therefore, as our problem is a special case of the mixed no-idle PFSP where setup

times are considered in the regular machines, the new problem studied in this work in also

NP-Hard.

42

2.3.2 Makespan, total lowtime and total tardiness calculation

As the mixed no-idle PFSP with sequence-dependent setup times has not yet been
studied in the literature, we present a method to evaluate the makespan of a permutation
sequence. Supposing a sequence m = {7y, g, ..., T_1, 7, ..., T} where m (I ={1,...,n})
represents a job in position [of sequence w. To simplify the expressions, the notation
[l] denotes the job in the position I of sequence 7, i.e. m = [I]. Sy and C;) denote the
earliest start and completion time of job [I] in machine M;, respectively. The Cyq4s (7) can

be obtained adopting the following steps.

Step (1): In order to simplify the calculations, consider that the setup time is equal
to zero between the jobs .J; and Jj Vj, k € J,j # k in a no-idle machine M, € M.

si,=0 VjkelJj#k ifMyeM (2.14)
Step (2): The earliest start and completion times for the machines M; (Vi =
{1,...,m}) can be calculated as follows:

Step (2.1): For the jobs (I = {1,...,n}), calculate the earliest start and completion

times in machine M; without considering if the machine is no-idle.

Com =0 (2.15)
Siy = Cic1 g (2.16)
Cin = Siu) + pi (2.17)
Sifi) = max (Cz‘,[l—l} + 3%171],[117 Ci—l,[l]) (2.18)
Cimy = Sim + piy (2.19)
Step (2.2): The completion time values are recalculated to { = {n —1,...,1}, now
considering if machine M; allows or not idleness among the jobs.
Ci’ I + max Ci, I+1] — Pifi+1] — C’i, 1 0 if machine Mz S M/
Cig = [([I+1] [1+1] (1) (2.20)

Ci otherwise

Step (2.3): If ¢ = m, then calculate the objective function, otherwise return to Step

(2.1) and consider the next machine M;, .
o If the objective is to minimize the makespan, Cpp (7) = Chpy)
o If the objective is to minimize the total flowtime, >~ Cj, Y271 Cp j;
o If the objective is to minimize the total tardiness, 3> T}, >°7_, max(Cy, ; — d;,0).

Steps (2.1) and (2.2) are iterated for m machines and have worst case complexity

of O(n). As a result, the makespan evaluation procedure has worst case complexity of
O(nm).

43

2.3.3 Acceleration method to calculate the makespan for the insertion neighbourhood

The insertion neighbourhood is extensively used in the PFSP (RUIZ; VALLADA;
FERNANDEZ-MARTINEZ, 2009; RUIZ; STUTZLE, 2007; RAD; RUIZ; BOROOJER-
DIAN, 2009). The insertion neighbourhood in a 7 sequence with n jobs is the result of
movements of inserting the jobs into the sequence. An insertion movement consists of
removing job m; from the sequence, and then 7; is reinserted into all positions of 7, except

for its original position.

The insertion neighbourhood is generated by applying this insertion movement to
each job in the sequence. The first to propose acceleration methods for insertion neighbour-
hood was Taillard (1990) for the PFSP with makespan criterion. Since then, acceleration
methods have been extensively used in the literature (RAD; RUIZ; BOROOJERDIAN;
2009; FERNANDEZ-VIAGAS; FRAMINAN, 2014; ROSSI; NAGANO; NETO, 2016), even
for other variations of the problem (PAN; WANG, 2008b; PAN; WANG, 2008a; RUIZ; VAL-
LADA; FERNANDEZ-MARTINEZ, 2009; RIBAS; COMPANYS; TORT-MARTORELL,
2010; TASGETIREN et al., 2013a; INCE et al., 2016; NAGANO; ROSSI; TOMAZELLA,
2017; PAGNOZZI; STUTZLE, 2017).

Pan e Ruiz (2014) explained and demonstrated an acceleration method to evaluate
the makespan of an insertion neighbourhood for the mixed no-idle PFSP. We extended
the acceleration procedure for the variant discussed in this study, the mixed no-idle PFSP

with a sequence dependent setup.

The speed-up procedure described below can be used to evaluate the makespan of

an insertion neighbourhood. S} ; and (7 ;, denote the start and completion time for the

2,77
job J; in the machine M; calculated backwards.

Step (1): Considering a partial sequence m = {m,...,m,_1}. Calculate the earliest
start and completion time for sequence 7 in machines M; (i = 1,...,m), S;; and C;;
(7=A1,...,n—1}) (Section 2.3.2).

Step (2): Calculate the earliest start and completion time backwards in the sequence
7 in machines M; (i = {m,...,1}), S;; and C}; (j = {n —1,...,1}) (Section 2.3.2).

Step (3): For all the positions in the sequence 7 (I = {1,...,n}), go through the
following steps: Step (3.1): Insert job Ji in position [of m, resulting in the complete

sequence T = {71, ..., Te_1, Sy Thalys-->Tn_1}-
Step (3.2): Calculate the earliest completion time of job J; in machine M;, denoted
by C; k) using Expressions (2.21)-(2.24). The delay at the beginning of processing the jobs

in machine M;, so that there is no idleness, is defined by a;.

44

{s4=0 Vikelj#k #M e (2.21)
Sy = Cy k11 + SH
L,[k] 1,[k=1] [k—1],[k] (2.22)
Chik = Suk + Piw
a1y = max(Cy,pe—1] + 851y > Cr,m1)
Com) = Sam +
2,[k] 2,[k] T P2,[k] (2.23)
maX(CL[k] — 02,[]6,1}, O) if M, e M’
a9 =
0 otherwise
S,k = max(Cj 1] + aj—1 + kafl],[kp Ci—1x)
Cik) = Sik) + ik
maX(Ci_L[k] - (Ci,[k—l} —+ CLi_l), O) if Mz S M’ (224)
a; = aj—1 +
0 otherwise
Vi=4{3,...,m}

Expression (2.21) defines that the setup times are non-existent in the no-idle
machines. Expression (2.22) calculates the starting and completion times for the job in
position k in the first machine is calculated. Expression (2.23) calculates the start and
completion for the second machine, and max(Cy) — Cor—1],0) defines the right shift
delay in the start time for the job in position £ if it is a no-idle machine. Expression
(2.24) calculates the start and completion time is calculated for the other machines, and
max(Ci_1,k — (Ci k1) + ai—1),0) is the shift delay.

Step (3.3): The makespan (C,,q,) of the complete sequence m = {my,..., m_1, Tk,

Thkt1,- -+, Tn—1} can be calculated by Expressions (2.25)-(2.29).

45

{8317,{ —0 Vjkedj+k ifMeM (2.25)
{L1 — Chg + Clpoyny + Sk s (2.26)
Ly = Copy + Cé,[kﬂ] + S[Qk],[kﬂl
L =max (L, L
max (L — L270) if My e M’
a9 =
0 otherwise
Li = Cipg + aix + Cf) + Sy)
L =max (L, L;)
max (L — L;,0) if M; € M’ (2.28)
a; = aj—1 +
0 otherwise
Vi={3,...,m}
Coww =1L (2.29)

Expression (2.26) defines Ly as the sum of the earliest completion time calculated
backwards, Step (2), and forward, Step (3), in the first machine with the setup time
between position k£ and k + 1 in the first machine. In set (2.27)-(2.28), the value of L; is
calculated for the other machines. Expression (2.29) define the makespan for the sequence.

Note that the makespan (Ci,q.)is the maximum value of L; (Vi = {1,...,m}).

Steps (1) and (2) are followed only once for each insertion of job J at the n
positions of the 7 sequence and the complexity is O (nm). Steps (3.2) and (3.3) have
complexity O(m) and are within the iteration of the step (3) which is carried out n times
(I =A{1,...,n}). Therefore, evaluating the C,,,, of the insertion of Ji in all the n positions
of sequence 7 results in complexity O(nm). If the evaluation method described in Section

2.3.2 was used, the same insertion procedure would have a complexity O(n?*m).

2.3.4 Acceleration method to calculate the total lowtime or the total tardiness

Pan e Ruiz (2014) proposed an acceleration method to evaluate the makespan in
an insertion neighbourhood of the mixed no-idle flowshop problem. In the previous section,
this acceleration method was adpated for the problem under consideration with makespan
criterion. However, a problem arises when adapting the proposed method directly to the
mixed no-idle problem with total flowtime or total tardiness criteria as this method can
only determine the completion time of the last job in the machines. Furthermore, the

method does not take into consideration the existence of setup times between the jobs.

46

Considering that in order to evaluate the total flowtime we need to know the completion
time of all jobs, and not only the last one, and also considering that there is a setup time
between the jobs, it is not possible to directly adapt the acceleration method. However,
a partial acceleration method can be developed for the insertion neighbourhood can be

proposed considering the following;:

The completion time of all jobs in no-idle machine M; can be determined if the
completion time of the last job in machine M; (C;) and the processing times of the jobs
in the same machine (p; ;) are known.

Considering [, f” as the idle time between jobs J; and Jj, in the regular machine M;

(allows idle times), the completion time of the job in the last position in machine M; is:

Cz,[n} = C@[nfl] + I[in—l],[n] + Pi[n] (230)

On the other hand, if M; is a no-idle machine, then [, [in—l},[n} = 0, which results in:

Ciin] = Cijn—1) + Din) (2.31)

Otherwise:

Cin—1) = Cin] — Pi[n) (2.32)
Cin-21 = Cin] — Pi,jn] — Pi,jn—1]

Ciy=Cifm) = > Pilk
k=j+1
Supposing that M, (1 < h < m) is the last no-idle machine of the flowshop,
we can apply an acceleration mechanism adapted from Pan e Ruiz (2014) to calculate
the completion time of the last job in M), which is denoted as C}, . Then, calculate
recursively the completion times for the remaining jobs. For machines M}, 1, My o, ...,
M, the procedure of regular calculation (Subsection 2.3.2) can be used to calculate the

completion times of the jobs in the last machine M,,.

The procedure below describes the step-by-step procedure of the acceleration
method.

Step (1): Considering an incomplete sequence m = {my,...,m,_1}, and that M}, is
the last no-idle machine of the flowshop. Calculate the start and completion time from
front to back (S;; and C;;, respectively) in 7 in machines M; (i = 1,...,h) using the

procedure explained at Subsection 2.3.2 for j =1,...,n — 1.

Step (2): Calculate the start and completion times from back to front for sequence
7 in machines M; (i = h,...,1), S;; and C}; (j =n—1,...,1) (Subsection 2.3.2).

Step (3): For all positions of the sequence 7 (I = 1,...,n), go through the following
steps:

47

Step (3.1): Insert job Jj in position [of the sequence , resulting in 7 = {my, ..., m_1, Ji,
Th41y - - - aﬂ-n—l}'
Step (3.2): Calculate the completion time of job Jj in machine M;, C; . The delay

for starting processing the jobs is denoted by a;.

{s;k =0 VjkeJj#k if M; e M (2.33)
Sy = Clk—1) + Sk
L,[k] 1,[k—1] [k—1],[K] (2.34)
Crk = S,k + PLk
o,y = max(Ch, k-1 + Sp_1) > Crim)
Coi) = So i +
2,[K] 2,[k] T P1,[k] (2‘35>
maX(CL[k} — C27[k_1], 0) if M, € M’
a9 =
0 otherwise
S,k = max(C; 1) + a1 + ka_l],[kp Ci—1,k)
Ci k) = Sik) + Pifk)
max(C'i_L[k] - (Cz',[k—l] + ai_l), O) lf Mz - M/ (236)
a; = a;—1 +
0 otherwise
1=3,...,h

Step (3.3): Obtain the completion time of the last job in machine Mj,, Cj,), of the

complete sequence m = {7y, ..., Tk_1, Tk, Tkt1,- - -, Tn }, through the expressions below.

48

{8§,k=0 VikeJj#k if M;eM (2.37)
{Ll = Cl,[k} -+ Ci[k+1] —+ S[lk],[k+l] (238)
Ly = Co g + O3 o) + Sfig ey
L =max (L, L
maX(L—Lg,O) if MQEM,
a9 —
0 otherwise
Li = Cipg + a1 + O'L{,[k+1] + ka],[kﬂ}
L =max (L, L;)
max (L — L;,0) if M; € M’ (2.40)
a; = Gj—1 +
0 otherwise
i=3,...,h
Chp = L (2.41)

Step (4): Calculate the completion time of jobs (j =n—1,...,1) in the last no-idle

machine Mj,.

Chpi) = Chpl = 2. Prjh (2.42)
k=j+1
Step (5): Use the regular calculation method (Subsection 2.3.2) to determine the
completion time for the remaining machines (i = h+1,...,m) and the total flowtime of
the sequence, 3-7_; Cy, ; or the total tardiness, >37_; T = max(C,y, ; — d;,0).

Steps (1) and (2) have complexity O (nh) and are carried out only once for each
insertion of job Ji at the n positions of the sequence. Steps (3.2) and (3.3) have complexity
O(h) and are within the iteration of Step (3) which is carried out n times. Step (4) has
complexity O(n) and is carried out only once. Step (5) has the complexity of the regular
evaluation method of O(n?(m — h)), except for the fact that it is carried out in the last
m — h machines. Therefore, to evaluate the total flowtime of the job insertion of Jj in all
n positions of the sequence 7 results in complexity O(nh + n?h). Thus, the complexity
of the method will vary from case to case. If the no-idle machine M, is the last machine
of the M, system, i.e., h = m, the complexity will be the best possible O(nm). In the
worst case, if the last no-idle machine M, is the first machine M, h = 1, steps (1-4) of
the acceleration method will not be used, resulting in the same complexity of the regular

evaluation method, i.e. O(n?*m).

49

In the next chapters, the mixed no-idle PFSP with setup times will be studied
under different criteria. The following objective functions will be addressed: makespan,

total flowtime and total tardiness.

51

3 THE MIXED NO-IDLE PFSP WITH SETUP TIMES AND MAKESPAN
MIMIZATION

The makespan criterion has attracted the attention in the last decades (ROSSI;
NAGANO; NETO, 2016). This is mainly due to the importance that companies give
to maximize the utilization of the resources, which is possible when the makespan of
a processing sequence is minimized (MACCARTHY; LIU, 1993). To achieve this goal,

algorithms are used to generate good solutions in an efficient way.

Recently, constructive heuristics have shown state-of-the-art performance for the
PFSP where the aim is to minimize the makespan (RAD; RUIZ; BOROOJERDIAN;, 2009;
RIBAS; COMPANYS; TORT-MARTORELL, 2010; FERNANDEZ-VIAGAS; FRAMI-
NAN, 2014; ROSSI; NAGANO; NETO, 2016; FERNANDEZ-VIAGAS; RUIZ; FRAM-
INAN, 2017). Some of these constructive heuristics were successfully modified for the
no-idle and setup time problems with great success (RUIZ; VALLADA,; FERNANDEZ-
MARTINEZ, 2009; VANCHIPURA; SRIDHARAN; BABU, 2014). Constructive methods
are often used as a solution method, as they provide good solutions in a simple and
efficient way. Furthermore, since metaheuristics require a procedure that generates initial
quality solutions quickly, constructive heuristics are usually used to initiate metaheuristics
(FERNANDEZ-VIAGAS; LEISTEN; FRAMINAN, 2016). Most of the constructive heuris-
tics are based on the NEH of Nawaz, Enscore e Ham (1983) and apply the acceleration
method from Taillard (1990) in order to efficiently evaluate the makespan and, conse-
quently, reduce the computational complexity. Due to the aforementioned reasons, this
work focuses on the proposal of a constructive heuristic for the mixed no-idle PFSP with
sequence dependent setup times. In order to increase the efficiency of our proposed method,
an acceleration procedure for calculating the makespan of a permutation sequence in the
insertion neighbourhood is provided in detail. Moreover, a straightforward and general
method to calculate the makespan for the problem is presented. As this problem has not
yet been studied in the literature, the main constructive heuristics of the no-idle PFSP
and PFSP with sequence dependent setup times were adapted aiming to provide a basis
for comparison for the proposed method. Two extensive benchmarks were generated with
the objective of comparing the implemented constructive methods using computational
and statistical experiments. The results show that the proposed method outperforms the

methods adapted from the literature.

This chapter is organised as follows. Section 3.1 presents an extensive literature
review of the no-idle PFSP and PFSP with sequence dependent setup times. Section 3.2
proposes the new constructive heuristic. In Section 3.3, the computational and statistical
experiments among the constructive heuristics are compared. Finally, Section 3.4 draws

the main conclusions of this study.

52

3.1 Literature review

As the mixed no-idle PFSP with sequence dependent setup times has not yet been
studied in the literature, a review was carried out covering papers addressing the no-idle
PFSP with makespan (C,,,;) minimization and the PFSP with a sequence dependent

flowshop for the makespan criterion.

3.1.1 The no-idle PFSP

Vachajitpan (1982) was the first to study the no-idle PFSP with makespan min-
imization, also known as F,,|prmu,no — idle|C,q,. In his work, a mixed-integer linear
programming (MILP) model and a Branch-and-Bound (B&B) method were proposed.
Woollam (1986) was the first to develop heuristics for the problem. Baptiste e Hguny
(1997) proposed a B&B method. The authors also proved that the problem is NP-Hard.
Bagga (2003), Saadani, Guinet e Moalla (2003) and Kamburowski (2004) studied the three-
machine problem, F3|prmu, no — idle|C,,... Bagga (2003) presented an MILP model and
a B&B procedure for the problem. Saadani, Guinet e Moalla (2003) developed heuristics
and a lower bound based on the Johnson (1954) rule. Furthermore, Kamburowski (2004)
proposed a representation in the form of networks and presented some paradoxes by which

the reduction of processing times can increase the makespan and vice-versa.

Saadani, Guinet e Moalla (2005) proposed a heuristic based on the Traveling
Salesman Problem (TSP) for the F,,|prmu,no — idle|C,. problem. In another paper
Narain e Bagga (2005b) presented four variants of the F,|prmu,no — idle|Cy,q, problem

with dominant machines.

Kalezynski e Kamburowski (2005) proposed a heuristic based on the Johnson (1954)
rule. Later, the same authors, Kalczynski e Kamburowski (2007a) presented some relations

between the F,|prmu,no — idle|C,q, e Fp|prmu, no — wait|Ch,q, problems.

Baraz e Mosheiov (2008) developed a heuristic comprising two phases, which
outperformed the method proposed by Saadani, Guinet e Moalla (2005). In the first stage,
all unscheduled jobs are tested in the last position of a partial sequence, and the job
resulting in the lowest makespan is attached to the sequence. The first phase is completed
when all the n jobs are scheduled. In the second phase, a pairwise job interchange procedure
is performed, where all possible pairs of jobs are tested, and only those interchanges that

reduce the makespan value are performed.

Pan e Wang (2008b) presented a hybrid discrete particle swarm algorithm (HDPSO).
An acceleration mechanism (based on the method proposed by Taillard (1990) was also
demonstrated to calculate the makespan for the insertion neighbourhood. The proposed

algorithm was compared with the heuristics from Kalczynski e Kamburowski (2005),
Baraz e Mosheiov (2008) and Tasgetiren et al. (2007) in the Taillard benchmark Taillard

53

(1993). The HDPSO method presented significantly better solutions in an acceptable

computational time.

Pan e Wang (2008a) developed a discrete differential evolution algorithm (DDE)
for the F,,|prmu,no — idle|Cy,q4. problem. The DDELS algorithm was compared to the
methods proposed by Kalczynski e Kamburowski (2005) and Baraz e Mosheiov (2008).

Ruiz, Vallada e Fernandez-Martinez (2009) carried out an extensive literature review
involving the no-idle PFSP. The authors also presented heuristics and an Iterated Greedy
(IG) algorithm based on the work of Ruiz e Stiitzle (2007). Among the proposed heuristics,
the authors highlighted the FRB3 heuristic adapted from Rad, Ruiz e Boroojerdian (2009),
as well as the GH-BM2. The GH-BM2 is a modification of the heuristic from Baraz
e Mosheiov (2008), where the first phase is substituted by an adaptation of the NEH
heuristic, and in the second phase, an insertion neighbourhood is performed instead of the
pairwise interchange procedure. The proposed heuristics were compared with the methods
by Kalczynski e Kamburowski (2005) and Baraz e Mosheiov (2008). The IG algorithm
significantly outperformed the DDE and HDPSO algorithms from Pan e Wang (2008a)
and Pan e Wang (2008b) and FRB5 from Rad, Ruiz e Boroojerdian (2009).

Goncharov e Sevastyanov (2009) presented an approximation algorithm with com-
plexity O(n?m?) ensuring a theoretical performance. The authors proved that given an
instance of the flowshop problem with no-idle constraints, m machines and n jobs, a

permutation schedule 7 can be constructed in O(n*m?) time with absolute guarantee that:

Cmax(”) - C';:]ax é Cmaaz(’]r) - B é ((m - 1)2 + 1)pmax
m—1
B=3 (li—lis1)" +ln
=1
l; = Zpi,j
7j=1

where Clq.(7) is the makespan of the permutation 7, C* is the optimum makespan, B
is the lower bound on the optimum makespan, /; is the machine load, p; ; is the processing
time of the job J; on machine M;, py,q, denotes the maximum processing time considering

all jobs and machines (pyq, = max;; p; ;).

Deng e Gu (2012) developed the Hybrid Discrete Differential Evolution (HDDE)
algorithm and an acceleration method. Based on an extensive comparison, it was concluded
that the HDDE algorithm performs better than the IG method Rad, Ruiz e Boroojerdian
(2009), HDPSO Pan e Wang (2008b) and DDELS Pan e Wang (2008a).

Tasgetiren et al. (2013b) presented an IG algorithm variable, called vIG-DE. The
Iterated Greedy (IG) algorithms proposed by Ruiz e Stiitzle (2007) and Framinan e
Leisten (2008) were also reimplemented. The vIG-DE algorithm outperformed the DDE
and HDPSO metaheuristics from Pan e Wang (2008a) and Pan e Wang (2008b) and the

54

HDDE from Deng e Gu (2012).

An Invasive Weed Optimisation algorithm (IWO) was proposed by Zhou, Chen e
Zhou (2014). The method outperformed the PSOvns metaheuristics from Tasgetiren et
al. (2007) and HDPSO from Pan e Wang (2008b), and the constructive methods from
Kalczynski e Kamburowski (2005) and Baraz e Mosheiov (2008).

Shao, Pi e Shao (2017) proposed a memetic algorithm with a hybrid node and
edge histogram (MANEH) and outperformed the algorithms from Pan ¢ Wang (2008b),
Pan e Wang (2008a), Ruiz, Vallada e Fernandez-Martinez (2009), Deng e Gu (2012) and
Tasgetiren et al. (2013b) in Ruiz, Vallada e Ferndandez-Martinez (2009) benchmark.

As stated early, another important variant of the no-idle problem recently studied
by Pan e Ruiz (2014) is the mixed no-idle flowshop problem with makespan criterion. The
authors presented an MILP model and an IG algorithm. The IG algorithm was compared
to the HDPSO algorithms from Pan e Wang (2008b), DDE from Pan e Wang (2008a),
HDDE from Deng e Gu (2012) and the HGA from Ruiz, Maroto e Alcaraz (2006). Based
on extensive statistical and computational comparisons, it was demonstrated that the

proposed 1G is statistically better than all the other compared methods.

Despite the significant number of papers addressing the no-idle PFSP problem, the
consideration of setup times has not yet been studied in the literature. Table 2 presents a
summary of the algorithms proposed for the mixed no-idle PFSP with makespan. In fact,
the existence of setup times is incompatible with a pure no-idle environment, since the
machines require uninterrupted processing from the moment program processing starts.
However, in a mixed no-idle environment Pan e Ruiz (2014), it is possible to have setup

times in the productive stages in which machine standstill is allowed.

55

"(600g) ZOUINIRIN-ZOPURILIO O BPR[[BA ‘ZINY Ul N{-HY) S& UMOUY OS[Y o "SOUIYIRW JO IOQUINY

TTWJLIOS[Y OIJoWN ‘AN WY)LIos[y uoneziund(
POOAN PAISRAUT ‘O] ‘SWILIOS[Y dojewrxolddy ‘Y ‘WUIIOF[Y APoolr) pojela)] ‘O ‘WIIOS[Y UOTIN[OAY [RIJUSISHI(] ‘H (] SWYILIOZy uorjezruiyd()
wremG opINRed ‘OSd OIISLINOY SAIDNIISUO)) ‘HY) ‘punog-pur-ypoueiq ‘g [oPOW SUTIUIRIZOI] IRIUIT I989JUT-POXI]N ‘TN ‘UOIIRION

(HANVIN) AN w (L10Z) oeys @ 1J ‘oeys L10%
(OMI) OMI w (¥10z) noyz o woyp) ‘noyz $10g
(L10T) o®ys @ 14 ‘oeys (Ad-H1o) da yms DI (0 (A€T0Z) Te 10 woaelSse], €107
(L10T) o®ys @ 1J ‘oeys
{(¥102) noyz o woyp ‘noyy (qerog) e 10 UdIjesse], (HadH) 4d Puqaey w (z102) N o Sue(q ZI10T
ATAYS w (6007) AouRAISRASG B AOIRYDUOY) 600G
(L102) o®rys @ 1 ‘oeyg (8791) DI

((9€10z) Te 90 weayesse], {(z10z) 1D ° Sue (Fgyd ‘€98 ‘CWd-HD) HO w (600g) ZOUINIRIN-ZOPURUID] © BPR[[BA ‘ZINY 6008
(L10Z) oeys o 1q ‘oeys
“(¥10z) noyyz o uayy) ‘noyyz (qer0g) e 10 UdIesse],
Amﬁomv nr) o Sua(J
(600z) ZoUIMIRIN-ZOPURUIO] O BPR[[RA ‘ZIY (@aa) aa w (e800z) Surp\ © uBRg 8008
(L10z) o®ys o 1 ‘orys
“(v10g) noyyz o wey) ‘noyy,
((q€102) Te 10 uaIjeSsE],
ANHONV no) o Sua(J

1(6007) ZOUIMRIN-ZOPURTLIS RPR[[RA ‘ZIY (OSdaH) OSd PHqAH w (48007) Suep @ wed 800
(710g) noyz o wat) ‘noyyz,
“(600g) ZoUNIRN-ZOPURUIS & ePR[[RA ‘ZMY] (oD] - fipsasy pacosdwy) HD — w (800¢) AOTOUSOIN o zereq 800G

(710g) noyz o wa) ‘noyyz,
{(600g) ZoUILIRIN-ZOPURWIO] © RPR[[RA ‘ZINY

“(eg00z) Suepy o ueq (3131) °HD w (G00z) BIsmonquiey] o MSUAzZorey] GO0
(6007) ZoUI)IRIN-ZOPURILIO O BPR[[RA ‘ZINY]
“(800T) AOIUSOIN © zereq HD w (G00Z) ®BIBOIN © joummy) ‘TuUepees GO0Z
(H) HD ¢ (€002) ®IBOIN © joumy) ‘Tuepees €00
qa3d ‘dTIN ¢ (€00z) ©88eg €00%
and w (L66T) Aun3y o oysuideq 2661
(ZVMVN ‘edWVD) HD w (9861) weoopy 9861
azd ‘dTIN w (z861) uedyrleyoer Z86T
£Aq peurrojreding (uoypgou) WYILIOSY NN Q0URIOJOY IedX

"dSAd [PI-0u oY) SUISSOIppe SY{IoM JO ATewwung :g o[qe],

56

3.1.2 The PFSP with sequence dependent setup times

Corwin e Esogbue (1974) were one of the first to address the PFSP with sequence
dependent setup times. The authors proposed a dynamic programming formulation for the
two-machine problem (F|prmu, 3§’k|Cmaa)) where the setup times are sequence dependent
on the first machine and sequence-independent on the second machine. For the same
problem, Uskup e Smith (1975) developed a B&B algorithm. Considering the two-machine
problem, Gupta e Darrow (1986) presented approximate algorithms. The experimental
results concluded that the proposed algorithms presented good solutions when compared

to the optimal solution for the problems.

Various exact methods were proposed for the m machine problem, F,,|prmu,
5% 1|Cmaz- Srikar e Ghosh (1986) developed an MILP model. Stafford Jr e Tseng (1990)
improved the MILP from Srikar e Ghosh (1986) with three new MILP models. B&B and
Branch-and-Cut (B&C) algorithms were proposed by Rios-Mercado e Bard (1998a) and
Rios-Mercado e Bard (1999). Stafford Jr e Tseng (2002) developed two MILP models,
which are based on the work of Tseng e Stafford Jr (2001). Rios-Mercado e Bard (2003) also
formulated two MILP models. The first is related to the Asymmetric Traveling Salesman
Problem (ATSP). The second is derived from a model proposed by Srikar e Ghosh (1986).
The two models were compared using a branch-and-cut algorithm, which showed that the

approach related to the ATSP was outperformed in terms of the computational time.

Simons Jr (1992) were the first to propose heuristics for the flowshop sequence
dependent setup times. Two heuristics were presented, TOTAL and SETUP, for the F,|
prmau, s§7k|Cmaz. In the case of TOTAL, a distance matrix between pairs of jobs is obtained
considering the sum of the processing times of the jobs and the setup times in all the
machines, whereas in the SETUP only the setup times are considered. The heuristics
outperformed the MINCOT and MINIT methods adapted from (GUPTA, 1972).

Das, Gupta e Khumawala (1995) presented a savings index heuristic algorithm,
denoted as SI, to find a minimum or approximately minimum makespan of a sequence.
Using the same approach, Tseng, Gupta e Stafford Jr (2006) developed a penalty-based
heuristic algorithm to find an approximate minimum makespan schedule. The method was

compared to the work of Das, Gupta e Khumawala (1995) and showed better results.

Rios-Mercado e Bard (1998b) proposed a greedy randomized adaptive search proce-
dure (GRASP) based on insertion movements and an adaptation of the NEH constructive
heuristic of Nawaz, Enscore e Ham (1983), called NEHT-RB, for the Fy,[prmu, s} .|Cpaq-
The NEHT-RB also used the Taillard (1990) makespan acceleration in the construction
phase of the NEH heuristic. The NEHT-RB and GRASP methods presented better results
than the SETUP Simons Jr (1992), although the GRASP is considerably slower than both
methods. Later on, Rios-Mercado et al. (1999) proposed an improvement of the GRASP

o7

denoted as HYBRID.

Ruiz, Maroto e Alcaraz (2005) proposed two Genetic Algorithms (GA), and showed
that the obtained results outperform the methods from the literature NEHT-RB of Rios-
Mercado e Bard (1998b), GRASP of Rios-Mercado et al. (1999), SETUP and TOTAL of
(Simons Jr, 1992) and SI of Das, Gupta ¢ Khumawala (1995). The methods were compared

in an extensive benchmark based on the instances of Taillard (1993).

Gajpal, Rajendran e Ziegler (2006) developed an Ant Colony algorithm, which
obtained better results, as compared to those solutions given by the ant colony algorithm
of Stiitzle (1997), called the MMAS (Max-Min Ant System), and the GRASP heuristic
from Rios-Mercado e Bard (1998b).

Ruiz e Stiitzle (2008) presented two Iterated Greedy algorithms (IG) for the
Fo|prmu, s§7k|C’maz. The methods performed better than those of Ruiz, Maroto e Alcaraz
(2005) in the benchmark proposed by Ruiz, Maroto e Alcaraz (2005).

Vanchipura e Sridharan (2013) proposed a constructive heuristic, denoted as FJSRA
(Fictitious Job Setup Ranking Algorithm), for the Fy,|prmu, s} ;|Cpae. The heuristic is
based on the formation of fictional jobs and the construction of the final sequence using
these fictitious jobs applying the NEHT-RB construction procedure. Initially the heuristic
calculates for each pair of jobs j and k the sum of the setup times between the jobs
(sstjx = i~ s%;). Then, the pairs of jobs are ordered in non-descending order of sst; .
The n/2 pairs of jobs that have the smallest value of sst;; are considered as fictitious
jobs. For each fictitious job the total processing time is calculated. Then, the heuristic
uses the NEHT-RB heuristic to construct the final sequence, inserting at each iteration
the fictitious jobs is in all the possible positions of the partial sequence and choosing the
position that minimizes the makespan. The procedure continues until n/2 fictitious jobs

have been sequenced.

In Vanchipura, Sridharan e Babu (2014), a neighbourhood search known as variable
neighbourhood descent (VND) was used to improve the FJSRA constructive heuristic.
The new method was called FJSRA-VND. The VND method uses insertion movements to
improve the solutions obtained from the FJSRA.

More recently, several metaheuristics were proposed for the F, |prmu, s;k] Crnaz-
Mirabi (2011) proposes an Ant Colony Optimization (ACO) algorithm and showed better
results than the algorithm from Ruiz, Maroto e Alcaraz (2005). Mirabi (2014) developed a
Hybrid Genetic Algorithm (HGA) and compared it to the fuzzy algorithm adapted from
Sheibani (2010), which was originally proposed for the F,,|prmu|Ci,q.. Wang et al. (2014)
presented Tterated Local Search (ILS) algorithms for the £, [prmu, s} ;| Crnaz, which resulted
in better solutions when compared to the method from Ruiz e Stiitzle (2008). Benkalai

et al. (2017) proposed an enhanced migrating birds optimization (EMBO) metaheuristic

58

and the results were compared to their MBO from their previous work (BENKALAT et
al., 2016). Sioud e Gagné (2018) also presented a migrating birds optimization (MBO)
metaheuristic and compared the results with the FJSRA-VND method proposed by
Vanchipura, Sridharan e Babu (2014), HGA by Mirabi (2014) and the adapted algorithms
from Pan e Ruiz (2012), which was originally proposed for the F,,|prmu|y_ C;. The works
from Sioud e Gagné (2018) and Benkalai et al. (2017) still need to be compared.

As shown in the literature review, at the moment the no-idle and mixed no-idle
conditions have not yet been considered for the sequence dependent flowshop problem in
the literature. Although several metaheuristics were proposed for the problem, only a few
constructive heuristics were presented. The main constructive methods are the NEHT-RB,
FJSRA and FJSRA-VND. Moreover, the FJSRA and FJSRA-VND heuristics perform
better than the NEHT-RB heuristic. Table 3 shows a summary of algorithms proposed for
the problem.

59

"SOUIDRUL JO IOQUINN o

‘SWILI0S[y uoryeziuiyd(

pirg woneISIiN ‘OgIN UoIeag [@00] pojeIo)] ‘ST ‘WYILIOS[Y ApPoalr) pojels)] ‘O SwWiuos[y uoreziund(Auojo) juy ‘QOV ‘Onsumney
JuoteAOIdw] “HJ ‘OTISLINOY SAIJONIISUO)) ‘H) SWYILIOS[Y OI19Ur) ‘YI) (WILIOS[Y Xopu[Sularg ‘IS swyinios[y ojewrxorddy ‘yy (mn)-pue-ygouriqg
‘N9 ‘punog-pue-ypourig ‘g {OPOW SUIWRISOIJ IROUlT JOSOJUI-POXIIN ‘JTIIN ‘UOIFe[NUWLIO] SUTIWRISOIJ oTWeuA(] ‘J(J ‘UOIIRION

(ogma) OdIN w (870%) oudey o pnorg 810g
(ogam) oan w (L102) ‘T8 10 Te[euDg LTOT
(STISYW) STI w (7102) 'Te 90 Suep $10G
(810¢) ousen) o pnorg (VOH) VO PuqiH w (¥102) 19BN $10¢
(810¢) ousen o pnorg (ANA-VYSrd) HD w (§10g) nqeq o uereypug ‘emdrpues $10g
(¥102) nqeq o uereyplg ‘emdrgouey (Vysrd) HO w (€102) uereypug o emdipoues €107
(00V) 0DV w (TT02) RN TT0Z
(F102) T8 10 Suepr (ST9y O ‘SY OI) DI w (8002) o1z3m3s @ zmyy 800C
(Vovd) 0DV w (900g) 013017, © ueIpuLley ‘Tedler 900z
(1102) 1qeary £(8002) O1Z3nIS © zmy (VOH) VD Pugig w (G00Z) zereo[y o 0j0IRN ‘ZIY GO0T
dTIN w (€00g) preq o OpedIN-SOIY] €008
dTIN w (200g) Suesy, @ 1f pIogels g00g
oRd ‘dmd w (6661) preq o OpedIDIN-SOIY 6661
(arygAd) Hi w (666T) Te 30 OPBOIDIN-SOIY G661
(¥102) nqeq o uereyplig ‘emdiyoue)

‘(€10¢) uereyprig o endupueA (900g) 18017 o weipusley ‘Tedlen dSvyD) HI
{(¢00g) zeIRITY © 00TRIN ‘ZINY {(666T) T8 10 OPBIISIN-SOI] (GY-LHAN) HD w (A866T) preg © OpeIIN-SOIY 8661
0d ‘axwd w (BQ66T) PIeg © OpeOISIN-SOIY 8661
(900z) 103017, o ueIpuLley ‘Tedlen {(¢O0g) zeIed[y © 0301y ‘ZIy IS w (666T) eremewnyy] o eydny ‘se G661
(G00g) zexeory o ojorey ‘Zzy (TVLOL ‘dALAS) HD w (2661) 1 suowis g661
dTIN w (0661) SuosT, @ 1f pIopess (66T
(0661) Suosy, @ 1f piogels dTIN w (986T) ysouD o IexIS 986T
VvV z (986T) morre(] o eydny) 9861
and 4 (GL6T) yswg o dns;sn) GL6T
da C (¥261) oNqS0SH 0 UIMIO) FL6T
Aq pewzojredinQ (uoyvgou) WYIIOIY AN Q0URIOJOY IedX

‘sowury dnjoes juopuadop souonbes Ypm JS J) SUISSOIPPR SYIOM JO ATewrming :¢ o[qr],

60

3.2 A new constructive heuristic

Constructive heuristics are broadly used in scheduling problems to efficiently obtain
good quality solutions (LIU; REEVES, 2001; NAGANO; MOCCELLIN, 2002; FRAMINAN;
LEISTEN; RUIZ-USANO, 2002; FRAMINAN; LEISTEN, 2003; DONG; HUANG; CHEN,
2008; RAD; RUIZ; BOROOJERDIAN, 2009; KALCZYNSKI; KAMBUROWSKI, 2009;
LAHA; SARIN, 2009; RIBAS; COMPANYS; TORT-MARTORELL, 2010; PAN; RUIZ,
2013; FERNANDEZ-VIAGAS; FRAMINAN, 2014; FERNANDEZ-VIAGAS; FRAMINAN,
2015; BENAVIDES; RITT, 2016; FERNANDEZ-VIAGAS; LEISTEN; FRAMINAN, 2016;
RIBAS; COMPANYS; TORT-MARTORELL, 2017; LIU; JIN; PRICE, 2017; HUANG et
al., 2017).

The constructive heuristic proposed in this work was called RN. The heuristic
inserts d jobs using a greedy heuristic, and then the rest of the n — d are inserted into the

sequence using an NEH heuristic variant.

3.2.1 Greedy heuristic

Recently, greedy heuristics have been extensively used in the literature (LIU;
REEVES, 2001; PAN; WANG, 2012; PAN; RUIZ, 2013; FERNANDEZ-VIAGAS; FRAMI-
NAN, 2015; ROSSI; NAGANO; SAGAWA, 2017; PESSOA; ANDRADE, 2017; NAGANO;
ROSSI; TOMAZELLA, 2017; NAGANO; ROSSI; MARTARELLI, 2018). This type of
heuristic appends the jobs iteratively to the last position of the sequence according to an
index based on the properties of the problem. At each iteration, the job that obtained the
lowest or highest index value is chosen to be inserted in the last position of the sequence.

This procedure is repeated until n jobs have been sequenced.

As the object of study of this work is the mixed no-idle flowshop problem with
sequence dependent setup, the index used in our proposal takes into account: (a) idle time
between the jobs, which in this case is allowed in regular machines, (b) the setup times
between jobs in regular machines. Thus, the index was developed in order to consider

these two properties of the problem.

Suppose a partial sequence with k jobs 7 = {my,..., m}. J; is the candidate job to
be tested in position k£ + 1 in the sequence 7 and U is the set of unscheduled jobs (U ¢ 7).
The index of the candidate job J; in a sequence with k jobs is denoted by dj ;. The index

has two components in its formulation.

The first component I ; evaluates the impact on idle times of the insertion of
job J; in the last position of sequence 7, i.e. w41 = J;, resulting in the partial sequence
7' = {m,...,m, Tkr1}. In order to improve the speed of the method and also make it
possible to be used in environments where all machines are no-idle, the index considers

that the idle times between jobs m; and 7., are allowed in all machines. However,

61

Ciix) Fr o Gy Fiq

Ml \\\\\\%. ‘ Tg—1 ‘ T Tr+1

@

M;_q
M :
Miyq ‘”k 1‘ Tk ‘ ‘”k+1 ‘

\
N

Figure 6: Earliest completion time for the candidate job ;1] in machine M.

among the jobs already sequenced (7, my, ..., 7)) the normal condition of the problem
is considered where there is a mix between regular and no-idle machines. Therefore, the
earliest completion times in machine M; (i = {1,...,m}) for job 741, called F; (Figure 6),
can be calculated using Expressions (3.1) and (3.2). In order to simplify the expressions,
consider s;k =0Vj,k € J,j+#k in the no-idle machines (M; € M").

Ol Jk P11 3[k), [k+1] (3.1)
F; = max (C@[k] + S[k]7[k+1], E—l) + Dkt Vi= {2,...,m} (3.2)

Completion time Cj can be calculated using the method described in Section
2.3.2. Based on the calculated earliest completion times, Fj, it is possible to obtain the

value of [, ; using Expression (3.3) can be obtained.

=Y max (F = pipsy) — Cipry — Sy 0) Vi€ U (3.3)
The second component is denoted by SSDy, ; and is the sum of the setup times

between jobs 7 and 71 in machines m, Expression (3.4).

i=1

To select the jobs to be inserted in the first position of the sequence (k = 1), index
Jr,; takes into account only the earliest start time of the candidate jobs in the machines,
Si.ik- Finally, the index value 6y ; can be calculated by Expression (3.5).
Do Sik] VieU ifk=1

Gy =14 = (3.5)
Li;+8SDy; VieU ifk#1

62

I\ A E2

v ——<N\\NElL T K k0

Figure 7: Idles times and starting times for the jobs in a permutation flowshop without
no-idle machines.

M N7 | o [m [
M, B, 15 1% I, &\\\\& ‘ ‘ ‘ |
w —rrmso N\ E KT

Ig,l §53,1

Figure 8: Idles times and starting times for the jobs in a permutation flowshop with no-idle
machines.

At each iteration, the candidate job chosen to be appended is the one that presents
the lowest index value d, ;. Thus, index d, ; favours the job that results in the lowest values
of It ; and SSDy ;. The principle behind this method is that if the idle time is minimised
between jobs 7, and 71, the makespan will also be reduced due to better utilisation of

the machines.

For example, in Figure 7 we have a small example with three machines and five jobs,
where all machines allow idle and only Mj5 have setup times between the jobs. Considering
I} ; as the idle time between jobs .J; and Ji in the machine M; i = {1,...,m}, the

makespan can be obtained as follows:
Cma:p = Zp&j + Z I]?),jJrl (36)
j=1 =0

If we consider machines M; and M, as no-idle, we have the situation demonstrated
in Figure 8. Note that the idle times in machine M5 results in the delay for the starting

time of machines My and Mj3. This time, the makespan can be calculated as follows:

Craz = Zp&j + Z If,jﬂ (3.7)
J=1 j=0

Y L= I +pea (3.8)

3=0 j=0

From the expressions above, we can see that minimizing the idle times between the

jobs, the makespan of the sequence can be improved.

63

For the same reason, it is also interesting that the setup times between jobs 7 and
Tr+1 in the machines are minimised. Our index is partially based on the Shortest Setup
Time (SST) first rule, which is often used when setup times are involved. This rule implies
that whenever a job is completed, the job with the smallest setup time is selected to go
next. This SST rule is equivalent to the Nearest Neighbour rule for the Travelling Salesman
Problem (TSP). The SST rule is known to lead to reasonable schedules (PINEDO, 2016).
After inserting d jobs using the greedy method, the heuristic RN uses an NEH heuristic

variant to construct the rest of the sequence.

3.2.2 NEH heuristic variant

The NEH heuristic from Nawaz, Enscore e Ham (1983) was originally proposed
for the PFSP with the makespan criterion. The heuristic has two phases. In the first
phase, the NEH orders the jobs in non-ascending order of the sum of their processing
times, also known as the LPT (Longest Processing Time) rule. In the second phase, a
sequence is constructed by evaluating partial sequences using the jobs from the initial
order provided by the first phase. Suppose a sequence already determined for the £ — 1
first jobs, k partial sequences are obtained by inserting job k into the k possible positions
of the current sequence. From these k generated partial sequences, the one with the lowest
makespan is maintained as the current sequence for the k first jobs of the first phase
ordering. Afterwards, the job in position k + 1 in the first phase is considered analogously,

and so on until the n jobs have been sequenced.

The NEH variant used in the RN heuristic has two main modifications. The first
is to replace the LPT rule by the prioritisation of the jobs that have a greater standard
deviation (ST'D) of the processing times in the machines. As demonstrated in Dong, Huang
e Chen (2008), for problems with makespan criterion, better solutions can be obtained

when this initial ordering is used instead of the LPT.

The second important modification is to carry out a small local search using the
insertion neighbourhood in the partial sequence generated at the end of each NEH insertion
procedure. Therefore, after a job from the initial order is inserted into the sequence by
the NEH insertion, reinsertion movements of jobs in the partial sequence are performed.
In this movement, an adjacent job pair is removed, 7y and 7y (K = {1,...,n — 1}),
from the current sequence, and then this pair is reinserted into the partial sequence. The
first job of the pair 7 is evaluated in all positions, choosing the position that provides
the least)., and afterwards the second job 7.1 is considered analogously. This type
of neighbourhood search when performed within the NEH heuristic iterations allows a

better optimisation of the partial sequences, which results in better final solutions (LAHA;
SARIN, 2009; RAD; RUIZ; BOROOJERDIAN, 2009; ROSSI; NAGANO; NETO, 2016).

However, if we are to consider all pairs of adjacent jobs possible for reinsertion,

64

the method becomes computationally costly. Considering the acceleration mechanism
proposed in Section 2.3.3, the computational complexity of the NEH heuristic is O (n*m).
In the worst case scenario, we will have n — 1 pairs of possible adjacent jobs. Therefore,
performing the reinsertion procedure for each of the pairs after each NEH iteration results
in a computational complexity of O (n*m), one more order of complexity. To solve this
problem, we limit the number of jobs to be inserted at each iteration. In order to do this,
we resorted to the proposal of the FRB4, heuristic from Rad, Ruiz e Boroojerdian (2009)
to insert only the = jobs that are positioned around the job just inserted by the NEH. This
intelligent limitation makes the reinsertion mechanism more efficient while maintaining
partial sequence optimisation. For this reason, our proposed method can be denoted as

RN,, where x limits the number of jobs selected for reinsertion.

To the best of our knowledge, this is the first time that a limited local search based
on reinserting pairs of jobs has been proposed as an extension of the NEH heuristic. The
FRB3 and FRB4, (RAD; RUIZ; BOROOJERDIAN, 2009) applied a local search based
on insertion movements where only one job is removed from the sequence and tested in
all positions. As mentioned before, FRB4, limits the number of reinserted jobs, while
FRBS3 reinserts all jobs from the partial sequence. More recently, the heuristic from Rossi,
Nagano e Neto (2016) used a local search based on reinserting pairs of jobs. However, in
this heuristic all adjacent pairs of jobs are reinserted in the sequence, which results in a
costly computational procedure. To counter this inefficiency, the RN, heuristic limits the
number of pairs of jobs selected for reinsertion, while keeping the optimization of partial

sequences generated by the NEH.

3.2.3 The RN, heuristic

Combining the greedy method with the NEH heuristic variant, we have the proposed
heuristic called RNy. Algorithm 2 presents the pseudocode of the RN, heuristic. Note that
the RN, has two parameters. The first, called d, controls how many jobs will be inserted
using the greedy heuristic (Section 3.2.1). The second, denoted by x, controls how many

jobs will be reinserted after each iteration of the NEH heuristic variant (Section 3.2.2).

Algorithm 1 shows that initially d jobs are inserted from the unscheduled set of jobs
U=A{Ji,...,Jn}, choosing the jobs based on the lowest value of the index Jj ; (Section
3.2.1). When the chosen job is inserted in the last position of the sequence 7, the same job
is removed from the set U (U = U — J;). After d jobs have been scheduled, the heuristic
inserts the n — d remaining jobs with the NEH variant. Firstly, the jobs from U are ordered
by the non-ascending order of the standard deviation of the processing times (ST'D;),
generating a list of jobs a = {ay, ..., a,_q}. The first job from list a (o) is tested in all
positions of 7 and is inserted in the best position, denoted as b. The jobs in the x positions

around b are selected to be reinserted using a local search based on the reinsertion of pairs

65

Algorithm 1 RN, heuristic
=10
U=A{J1,...,Jn}
for k=1toddo
Select the job J; € U with the lowest 0y ; (Equation 3.5)
Place it at the end of 7.
U=U—-J;
end for
Order the jobs in U according to the non-ascending order of ST'D;, generating a =
{al, ce ,an_d}.
for|=1ton—ddo
Insert job «; in 7 in the position b that results in the lowest C,, 4.
for k = max (1,0 — x) to min ({,b+ x), step k = k+ 2 do
=
Remove the jobs 7, and 7, from 7.
Insert the job 7, in the position of that results in the lowest Cyyqz-
Insert the job m ; in the position of that results in the lowest Ci;q,-
if Crae (1) < Chige (1) then
™=
end if
end for
end for

of jobs. For example, when the pair of jobs m; and 741 (x —b < k < z + b) is chosen for
reinsertion, both are removed from the sequence, then the first job 7 is reinserted in the
best position, and the next job of the pair 741 is also reinserted. The same procedure is
applied for the next pair 7.5 and 7,43, and so on until all pairs around the position b
are reinserted. The next job from the list o (a) is considered analogously. The algorithm

continues until the sequence is completed with n scheduled jobs.

3.3 Computational and statistical experiments
3.3.1 Instances generation

For a more careful analysis of our method, we generated four different computational
experiments: the parameter tuning for the RN,, the computational evaluation with a
benchmark adapted from Pan e Ruiz (2014), the comparison of the same heuristics in
a set of problems from the setup times literature from Ruiz, Maroto e Alcaraz (2005),
and finally the evaluation of the MILP model. For each computational experiment we
generated a different benchmark. The instances and results used in our computational

experiments are available as supplementary material.

66

3.3.1.1 Benchmark for the parameter tuning for the RN,

In order to avoid an overfitting of parameter d of our proposed RN, heuristic we
calibrated it in a different set of problems to those used for comparisons with the heuristics
from the literature. The benchmark is generated with combinations between a number of
jobs n = {60, 120,240,360} and a number of machines m = {20, 40}, totalling 4 x 2 = 8
possible combinations. Five replications were generated for each combination, resulting in
8 X 5 = 40 problems per combination. We considered the mixed-idle scenarios used in a
benchmark proposed by Pan e Ruiz (2014), except for the scenario where all machines are

no-idle and no setup time is allowed:

Group 1: The first 50% of the machines are no-idle, the rest are regular machines.
o Group 2: The first 50% of the machines are regular, the rest are no-idle machines.
o Group 3: The machines alternate between regular and no-idle.

o Group 4: 25% of the machines are randomly no-idle.

o Group 5: 50% of the machines are randomly no-idle.

o Group 6: 75% of the machines are randomly no-idle.

The processing times were generated randomly with a uniform distribution [1,99].
As we are addressing the mixed no-idle PFSP with dependent-sequence setup times,
we consider the setup times in the machines that allow idleness. The setup times were

generated with three different distributions:

o SSD-40: the distribution of setup times is limited to 40% of the limit for the
processing time interval. That is, the setup times were generated according to a

uniform distribution in the interval [1, 39].

o SSD-80: the distribution of setup times is limited to 80% of the limit for the
processing time interval. That is, the setup times were generated according to a

uniform distribution in the interval [1, 79].

o SSD-120: the distribution of setup times is limited to 120% of the limit for the
processing time interval. That is, the setup times were generated according to a

uniform distribution in the interval [1, 119].

For each of the three setup time distribution, the different mixed no-idle scenarios
from Pan e Ruiz (2014) were considered. With 40 problem instances per combination,
the benchmark results in a total of 40 x 3 x 6 = 720 instances plus 40 problems for the

parameter tuning benchmark.

67

3.3.1.2 Benchmark adapted from Pan e Ruiz (2014)

As stated before, Pan e Ruiz (2014) proposed a benchmark for the mixed no-
idle PFSP. In more detail, seven groups of instances were generated with different
mixed no-idle scenarios, varying the number of no-idle machines in the environment.
Each one of the groups contains problems with combinations between a number of
jobs n = {50, 100, 150, 200, 250, 300, 350,400, 450,500} and a number of machines m =
{10, 20, 30,40, 50}, totalling 10 x 5 = 50 possible combinations. Five replications were
generated for each combination, resulting in a total of 50 x 5 = 250 problems per group.
As there are seven groups, in total the set has 7 x 250 = 1750 problems. Pan e Ruiz (2014)
used a uniform distribution [1,99] to generate the processing times. The benchmark can

be found at http://soa.iti.es/problem-instances.

In this work, we address the mixed no-idle flowshop problem with the additional
condition of sequence dependent setup times on regular machines. Therefore, the benchmark
problems proposed by Pan e Ruiz (2014) were extended to our problem. We considered
the same scenarios considered in Pan e Ruiz (2014), with exception of the scenario where
all machines are no-idle and no setup time is allowed. The pure no-idle scenario was not
considered as FJSRA and FJSRA-VND need setup times to generate the fictitious jobs
using the setup ranking algorithm (SRA). Thus, a total of six scenarios were used, the
same described in the previous section (Group 1-6). We used the same processing times
generated by Pan e Ruiz (2014) and added sequence dependent setup times to regular

machines with three different distributions:

e SSD-50: setup times with uniform distribution in the interval [1, 49] (limited to 50%

of the limit for the processing time interval).

e SSD-100: setup times with uniform distribution in the interval [1, 99] (limited to
100% of the limit for the processing time interval).

« SSD-125: setup times with uniform distribution in the interval [1, 124] (limited to
125% of the limit for the processing time interval).

Therefore, the new benchmark adapted from Pan e Ruiz (2014) for the mixed
no-idle PFSP consists of three sequence dependent setup times of distribution intervals
(SSD-50, SSD-100, SSD125) and six mixed no-idle scenarios. Thus, the total number
of tests for the benchmark is 6 x 3 x 250 = 4500 instances. In order to evaluate the
performance of heuristics without the setup times, we also compared the heuristics in the
original benchmark from Pan e Ruiz (2014), which does not consider the dependent setup

times in the machines. In this case, only the mixed no-idle condition was considered.

http://soa.iti.es/problem-instances

68

3.3.1.3 Benchmark adapted from Ruiz, Maroto e Alcaraz (2005)

As our also problem deals with setup times, to generate a more comprehensive
comparison we also compared the heuristics in a benchmark the literature on sequence
dependent setup times literature. For this purpose, we used the set of problems proposed
by Ruiz, Maroto e Alcaraz (2005), which was also used in Ruiz e Stiitzle (2008), and is
publicly available at http://soa.iti.es/problem-instances. The tests contain four different
sequence dependent setup time ratios (SSD-10, SSD-50, SSD-100 and SSD-125). For
example, the instance set SSD-10 consists of 120 instances where the processing times
are those of Taillard (1993) benchmark and where the sequence dependent setup times
are 10% of the processing times. In the instance set SSD-50, the setup times are 50%
of the processing times and the instance sets SSD-100 and SSD-125 have setup times
that are 100% and 125% of the processing times respectively. Therefore, the setup times
are uniformly distributed in the range [1, 9], [1, 49], [1, 99] and [1, 124] for the instance
sets SSD-10, SSD-50, SSD-100 and SSD-125, respectively. This results in four problem
sets and a total of 120 x 4 = 480 different instances. As we are addressing the mixed
no-idle flowshop problem, we considered the same six mixed described in the previous
section for each one of the four groups. The total number of problems in the benchmark is
6 x 480 = 2880.

Again, to evaluate the performance of heuristics without the no-idle machines,
we also compared the heuristics in the original benchmark from Ruiz, Maroto e Alcaraz
(2005), which does not consider no-idle machines. In this benchmark, all machines allow

idle and dependent setup times are considered in all machines.

3.3.1.4 Benchmark for the MILP model evaluation

For the MILP formulated in Section 2.3.1 we set a maximum elapsed CPU time limit
of three hours to optimally solve the problems. With this time termination criterion, the
MILP can optimally solve problems with up to 20 jobs and 5 machines. Thus, for the MILP
evaluation we considered the following combination between number of jobs and machines
{n,m} = {10,5}, {10,10}, {15,5},{15,10}, {20, 5}. Five replications were generated for
each combination with processing times generated using the uniform distribution [1, 99] .
The same six mixed no-idle groups used in the previous benchmarks were used. For the
setup time generation we used the distributions SSD-50, SSD-100 and SSD-125. With

these settings, 5 X 5 X 3 x 7 = 525 instances were created.

3.3.2 Compared Heuristics

As mentioned previously, the F|prmu, mized no — idle, s§’k|me problem has not
yet been studied in the literature. For this reason, there are no proposed heuristics or

metaheuristics for the problem. In order to create a basis for comparison for our RN,

http://soa.iti.es/problem-instances

69

heuristic (Section 3.2), we adapted constructive heuristics from F,|prmu,no — idle|Ci,qy

and F,,|prmu, s§7k|0max.

According to the review carried out in Section 3.1, many heuristics have already
been proposed for the F,|prmu,no — idle|Cpq. and F,,|prmu, s§7k|0max problems. We
selected the main methods to be adapted and compared in the problem addressed in
this work. The adapted heuristics were modified only in the makespan evaluation of the
sequences considering that the mixed no-idle flowshop with the sequence dependent setup
times is considered. Thus, the structure of the constructive heuristics remain unchanged,
where the makespan evaluation the only modification made. To evaluate the makespan
of a sequence, we used the formulas presented in Section 2.3.2. We also implemented
the acceleration method described in Section 2.3.3 to calculate the makespan in the
insertion neighbourhood when presented, which allowed a large increase in the heuristics’
speed. It is important to notice that the constructive phase of the FJSRA heuristic uses
an insertion neighbourhood based on inserting of fictitious jobs, which is incompatible
with the acceleration procedure. Therefore, it was not possible to apply the acceleration
method to the constructive phase of FSJRA and FSJRA-VND. The heuristics selected for

comparison are as follows:

o NEH: well-known heuristic from Nawaz, Enscore e Ham (1983).
« GH-BM: heuristic from Baraz e Mosheiov (2008).

o GH-BM2: modification of the GH-BM heuristic by Ruiz, Vallada e Fernandez-
Martinez (2009).

o FRB4,: heuristic proposed by Rad, Ruiz e Boroojerdian (2009). It was adapted to
the mixed no-idle PFSP by Pan e Ruiz (2014). As explained in Section 3.2, = jobs are
reinserted around the newly inserted job by the NEH heuristic. In our comparison,
we used the values of = = {10, 30, 50, 70}.

« FRB3: heuristic proposed by Rad, Ruiz e Boroojerdian (2009). In this method, all jobs
are reinserted after each NEH iteration. It was implemented for the F,,|prmu,no —
idle|Cpar problem in Ruiz, Vallada e Fernandez-Martinez (2009).

o FJSRA: heuristic proposed by Vanchipura e Sridharan (2013) for the F,,, |prmu, 3; | Crmaz

problem.

o FJSRA-VND: heuristic proposed by Vanchipura, Sridharan e Babu (2014) for the

Fon| prmu, 8% 4 |Crnaz problem.

« RN,: proposed heuristic in this work (Section 3.2). It is a result of the combi-

nation between an greedy method and a NEH variant, which comprises job pair

70

reinsertion movements. The parameter z limits the number of pairs of jobs se-
lected for reinsertions in the NEH variant. In our comparison we used the values of

z = {10,30, 50, 70}.

3.3.3 Performance measures

The performance measure used was the Relative Percentage Deviation (RPD)

calculated according to Expression (3.9):

(3.9)

RPD(Conaz (14)) = 100 (Conaz (78) = Cohg) / Cna

The value of Cy,q (75,) is the makespan provided by the sequence 7, generated

by heuristic h. C}, ... is the best solution found among all the compared heuristics. The
Average Relative Percentage Deviation is denoted as ARPD. It can be observed that the
lower the RPD value, the better the heuristic performance, since the closer its solutions

will be to the best result found among all the methods compared.

The Average CPU Time (ACT) in seconds and the Average Relative Percentage
computational Time (ARPT) were used to evaluate the computational efficiency of the

heuristics.

Fernandez-Viagas e Framinan (2015) detected that the ACT presents several
problems when used to evaluate heuristics with different stopping criteria and proposed
the ARPT indicator. We use the improved ARPT version of Fernandez-Viagas, Ruiz e
Framinan (2017) and Fernandez-Viagas e Framinan (2017):

H
T,
ACTt:Zh}lth Vt={1,...,T} (3.10)
Ty, — ACT;
RPTy, =2 _"""'41 wvt={1,....,T}, VYh={1,...,H 3.11
th ACE + {7) }7 {7) } ()
I RPT,
ARPTh:W Vh={1,... H} (3.12)

where T}, is the CPU time of heuristic h in the instance t, ACT; is the Average CPU time
considering all the heuristics in the instance ¢, H is the number of heuristics considered in

the evaluation, T is the number of instances in the test bed.

All the compared heuristics were implemented in C ++, compiled with Intel C
++ 16.0, and run on an Intel Xeon E5-2680 processor running at 2.7 GHz with 16 GB of
RAM. To solve the MILP model, we used the IBM CPLEX Optimization Studio (version
12.8) with Python Application Programming Interface (API).

71

3.3.4 Parameter settings of RN,

As described in Section 3.2, the proposed heuristic RN, has two parameters.
The first parameter, called d, defines the extent to which the solution is constructed by
the greedy heuristic (Section 3.2.1). The second parameter, called z, limits the number
of jobs to be reinserted in sequence after each insertion of the NEH heuristic variant
(Section 3.2.2). This parameter tuning aims to determine which value of d results in
better solutions considering the set of values of parameter z. For the first parameter,
the values of d = {0.1n,0.2n,0.3n, 0.4n,0.5n,0.6n,0.7n,0.8n,0.9n} were tested, i.e. when
d = 0.1n, 10% of the sequence is constructed using the greedy method, and the remaining
90% is constructed by the NEH heuristic variant. For the second parameter, the values
of x = {10,30,50,70} were used. A factorial experiment was carried out between the
parameters, generating 9 x 4 = 36 different combinations. The set of test problems defined
in Section 3.3.1 was used. The ARPDs resulting from the set of problems grouped by
number of jobs are presented in Table 4. The results show that the best performance,
considering all the problems and all values of x, is obtained from parameter d = 0.4n with
an ARPD of 1.50. Therefore, the parameter values d = 0.4n and z = {10, 30,50, 70} were

used in the comparisons made in this section.

3.3.5 Comparison between heuristics in the benchmark adapted from Pan e Ruiz (2014)

The results obtained from the evaluated heuristics are summarized in 5 and were
grouped by sub-sets of problems with the same number of jobs in Tables 6, 8, 9 and 10.
Each one of the tables presents the result of a group of problems related to a setup time
distribution, SSD50, SSD100 and SSD125. Tables 6 and 7 present the ARPDs considering
all the setup time distributions, grouped by the number of jobs and number of machines,
respectively. The mean computational time in seconds of each heuristic considering all

distributions is shown in Tables 11 and 12.

72

Table 4: ARPD values for the parameter tuning of RN, heuristic. The best results are
highlighted in bold.

Parameter d values

0.1n 02n 03n 04n 0.5n 06n 0.7n 0.8n 0.9n

Heuristic n

RNyg 60 244 239 254 241 249 271 279 339 4.70
120 258 2.66 259 2,58 262 262 285 333 432
240 2.73 261 255 248 245 242 249 281 361
360 273 257 245 242 228 226 2.25 252 3.08
Average 2.62 256 253 247 2.46 250 260 3.01 3.93
RN3g 60 1.56 160 159 1.43 1.75 170 181 220 3.02
120 1.68 1.51 165 154 1.61 1.67 187 207 3.04
240 1.54 151 143 1.37 146 140 154 1.74 248
360 1.60 155 142 140 134 1.31 138 159 2.17
Average 1.59 154 152 1.44 154 152 165 190 2.68
RNj5o 60 145 1.28 131 133 150 1.30 155 1.88 2.40
120 1.21 124 130 1.20 1.29 137 150 1.84 247
240 1.12 1.07 1.02 0.99 100 101 1.12 1.39 2.07
360 1.15 1.05 1.03 095 090 0.88 1.02 1.18 1.70
Average 1.23 1.16 1.17 1.12 1.17 1.14 130 1.57 2.16
RN7o 60 141 1.29 132 135 144 129 153 1.82 249
120 1.05 1.03 0.97 097 1.08 1.03 132 146 2.26
240 092 086 0.78 0.75 080 0.76 1.01 1.17 1.74
360 090 084 077 075 0.64 069 0.73 098 147

Average 1.07 1.00 096 096 099 0.94 1.15 136 1.99
Average 1.63 156 154 1.50 154 153 167 196 2.69

Table 5: Summary of the results in the benchmark adapted from Pan e Ruiz (2014).

Heuristic ARPD Average ARPT
SSD50 SSD100 SSD125 Average CPU Time
RN~ 0.42 0.37 0.35 0.38 11.37 1.29
RNs5o 0.64 0.60 0.57 0.61 8.52 1.04
RNj3 1.00 0.96 0.94 0.96 5.38 0.72
FRB3 0.75 1.15 1.36 1.09 39.24 3.04
FRB47 1.45 2.05 2.33 1.94 11.69 1.35
RNy 1.97 1.93 1.93 1.95 1.92 0.29
FRB45 1.63 2.26 2.52 2.14 8.74 1.09
FJSRA-VND 247 2.16 2.19 2.27 18.78 1.55
FRB43 2.04 2.70 2.99 2.57 5.72 0.76
FJSRA 4.11 3.39 3.37 3.62 17.07 1.41
FRB44 3.09 3.97 4.27 3.78 2.00 0.30
GH-BM2 4.60 5.46 5.77 5.28 0.49 0.08
NEH 6.15 6.98 7.28 6.80 0.16 0.03

GH-BM 11.15 11.38 10.88 11.14 11.21 1.05

74

8¢'0 190 960 G6'T LTC ¢9°€ 60T 761 jANd L9°C 8L€ 8¢'G PI'TT 08°9 o8emoay
L0 €90 T0T @0%C 091 Gee 1670 €C¢C [4)é 66°C eev LLS 66 1T €02 00¢
9€'0 090 660 86T 91 eve 7670 8T°¢ hié €6'¢ ey 89°G LV 1T L1679 oSy
€€°'0 990 00T L6'T VLT 99°¢ 66°0 Gc'c eve L6°C €% 8¢ 06'TT 1¢'L 00V
€€'0 090 660 00¢ 8L'T vL¢C 10°T ¢l'e 9¢¢ ¥8°¢C 807 ¢G'q 0¥’ 1T 069 0s€
¢e0 990 160 V6 16°T 86°C q0'T 00°¢ [qaxé 89°C €6'¢ (4 GC'IT 489 00€
420 ¥90 060 ¢<C6'T [aaxé aye 00°T 98T €re 45 Né I8°€ €eg 9¢'IT 789 0G¢
¥e'0 190 L60 10¢C 0s¢ 16°€ 0T I8°T 86T 06°¢ L9°€ Vg ST'IT 6.9 00¢
Iy'0 650 00T ¥61 99°¢ vev LT'T VLT €81 LEC JAS 80°G 060T 0.9 0CST
¢v'o <¢L0 00T 96T 1¢'€ 6¢°¢G 9¢'T ILT 16°T 9¢'C ¢e€ e8T 8L0T 999 00T
99°0 990 80 ILTT 6V°€ 819 6€°T e€aql €aql 0LT ¥9°¢ L0V 0L6 809 0¢
OINY %NY %NY O'TNY -<Mmm\m/ Vasrd ¢dud “padd pdyud %vgud °'%wddud CND-HD IWA-HD HAN U

UIY UO®d UL ‘(Y 159 A1) I P[Oq UL sonfea oY T, *(F10¢) 21y
5 ueJ wolj paydepe yrewryouaq o) Ul sqol Jo requmnu £q padnoisd suornqrIisIp [[e 9y} ul sorsumay pareduwod a1} 10J sonfes (JHV :9 9[qr],

75

8¢'0 190 960 961 L3¢ ¢9'€ 60T V61 v1i¢ L49°C 8L°¢ 8C'G PI'TT 089 ofemay
8€'0 190 680 €L €v'e €6'¢ 1270 v 91 00°¢ L6°C 0cv €Ly 099 0¢
9€'0 830 060 6.1 Sié 16°€ 9.0 9¢'1 VLT 91'c 81°€ 45Ny va'6 L8G 0¥
L0 190 860 16T 8C'C 19°€ 960 LLT 86T 8EC 9¢°¢ L0°G 6G°0T 8%9 0€
I¥'0 ¥90 €017 II¢ 0¢'¢ 6V°'¢ 1¢'T LT°C 9€¢ ¥8°¢ ey 98¢ 8T'¢l 972 0¢
8¢'0 V790 ¢<c0T ©6I%¢ 00°¢ LT°€ 6L°T 08¢ 66°C 6V'€ 96V GL9 POvL 0L'8 0T
OINY %NY NY OTNY -<;MM/NM VaSrd ¢dud padd %pdyud %vgud °'%wddud CND-HD IWd-HD HAN wh

OUIL P UL {(IJYY 159 oY) o€ p[oq Ul sanfea oY, *(F10g) 2N o Ued
wolj pajdepe YILWYOUS(oY} Ul SOUIDRW JO Ioqunu Aq padnoid suornqrIjsip [[e 9} ul sorjsumey pareduwrod o) 10f senfea (JHV L o[qRIL

76

¢v'o 790 00T L6T Lve Ity 6L 0 YT €91 ¥0°¢ 60°€ 09v GT'TT GT'9 ofemway

IS0 LL0 60T €17 9LT 9% SS0 99T 06T €T S G6'y 29IT 129 00
IS0 690 L0T 0IC 08'T 08¢ 950 09T c6'1 80T 9¢°¢ L8V 99'TT 619 0S¥
GF'0 €90 80T 80T c6'T €0'¢ 090 09T GLT 02 SRS 08 GLTT GT'9 00¥
07’0 190 €0T 90%C G6'T ere 190 €a'T GLT 10°C eee 187 6511 129 0S¢
Ge'0 190 I60 96T L0C 9¢'¢ 290 PP €9'T L0°C qr'e 0L¥ Ge'IT 019 00€
¥2'0 G50 060 16T 7'e c6'c 990 9¢'T e9'T L6'T 60°€ G9'y 65’ TT 8T'9 05
9¢'0 650 0T €61 09'C 9¢y 0L0 €T 67T 10°C 00°¢ esy c0'TT 819 008
9€°0 690 ¢0T 6T 78°C €Ly 880 ee'T 71 00 L6°C oFF ¢80T CI'9 0ST
680 890 960 8T e 66G 10T Vel Gq'T 98'T 18°C ey 09'0T €29 00T
G9°0 S90 960 LT 16°¢ 60L VT 8C'T 8C'T 66T (A 76°¢ 116 96°G 05
ANA
OINY %NY ENY O'™NY NS VUSrd eddd %“pddd %pdyud %vgdd O%Wdyud cNd-HD IWd-HD HAN u

UL Yoro UL YV 1899 9y3 oIe p[oq ut
sonfeA oy [, "(F107) zy o ued woly pejdepe yIRWPUI] 9} Ul UOINGLIISIP ()G(ISS O3 Ul SorsLmnoy pareduwod o1y 10§ sonfea ((JHV :8 O[qR],

77

€0 090 960 €61 9T°¢ 6E°¢ ar'1 G0°¢ 9¢'¢ 0L°C L6°€ 9¥°¢ 8E'TT 86’9 oFeroAy
G€'0 890 860 L6 ¢Sl €C'C 660 8E€C ¢L'C €re 4% 009 L8TIT V'L 00¢
€0 090 00T 7¥6'1 S 8C¢C 10°T vee Gee L0°€ v 784G 0L TT ¢T'L oSy
9¢'0 P$90 90T L6'T 91 eve GGl 14°¢ 8LC 9¢¢ 18¥ 069 19¢l 16'L 00v
€0 190 00T ¢6'T 791 9¢¢ 60T 0¢'¢ 6V°C L6°C 9V ¥79°¢ 8G'IT 002 0s€
8¢'0 €90 ¥60 L6T 08T GLC q0'T 0T¢ vee G8'C % 0§°¢ OV'IT €69 00€
420 ¢90 980 €61 v1i¢ 9¢'¢ 80T 66T SYaé ¢9'C 66'¢ 0¥°¢ Sy 1T 169 0Ge
€0 990 ¢60 V0¢C Lve VL€ VIl 981 80°C G)é L8€ a Sy’ 1T ¢69 00¢
€70 990 L60 €61 9¢¢ 66°€ 0C'1 LLT L8T [4ixé 16°€ Ve g €r'IT 289 0ST
¢v'0 ¢L0 660 90¢C 80°¢ L6V 0G°'T 981 90°¢ 0¥¢ Ve G0 c¢O'IT 689 00T
TL°0 T1L0 G680 0971 GG'e €Lq 9¢'1 47! 47! 691 08¢ 10°¥ ¢96 909 0¢
OINY %NY NY OTNY -<MM/NW VaSrd ¢dud “padd %pdyud %ygud °'%wddud cND-HD INd-HD HAN u

"QUI Yord Ul ‘(Y V 1$0q 9} aIe P[oq UT Sonfea
oL, "(F107) zmy o urd wolj pejdepe YIRWYDUS(oY) Ul UOMNALIISIP O0T(SS Y} Ul so1ysumay pareduod oy} 10j sonfea (JJHV :6 o[qRL

78

ge’0 L90 ¥60 €61 61°¢C LE°€ 9¢T €ee [45)é 66°C LSV LLG 88°0T 8C'L oFemay

L2°0 7SO0 960 S6'T 16T STc 03T 99°C G6C Gr'e 86 Ge'9 0¢'TT G994 00
L2°0 190 680 68T es'1 A 86T 88°C 7he c8'¥ 7€'9 7O IT 694 0S¥
92°0 090 880 88T 69'T ¢S 91T €9°C LLT ve'e oLy 729 9¢'TT LS. 00¥
92°0 €90 €60 00T gLl ¢Sc eeT €9°C G8'C eee 79 01’9 VO IT 8¥'L 0S¢
€e°0 190 680 88T 18T e8C EFT 9T 0L LT esy er’9 0601 TG'L 00
I€0 750 G60 €61 ere 8T'E LT aae raee 96 0r'¥y 76°C O Il Ti'L 05
LE°0 8%°0 860 90T er'e 79¢ €01 81'C 6£°C L6°C ST'¥ 9L°G 66'0T 6&'L 008
gr'o 190 10T L6 187G 66'¢ TP ere 03¢ LG €6'¢ RS €L0T LT'L 0ST
€7'0 9.0 S0T 16T qr'e €67 891 e6'1 ere €9 89°¢ 0T €L0T G89 00T
€9°0 €90 T80 IS8T 7e'e ILG 991 98'T 98'T 00 68°C Ve 0L'6 129 05
ANA
OINY %NY ENY O'™NY NS VUSrd eddd %“pddd %pdyud %vgdd O%Wdyud cNd-HD IWd-HD HAN u

"QUI[PRD UL ‘(TJYV 150q 9} oIr P[O(UI Son[eA
ot T, "(F10g) zmy o ued wolj paojdepe SIewyoua(oY) Ul UWOMNLIISIP GZT(SS 9Y) Ul SO1ISLNey pareduod o1y 10 sonfes IV 0T O[qR],

79

6¢1 ¥0O'T ¢L0 620 Ga'1 71 v0'€ Ge'1 60T 9L°0 0€0 80°0 ¢0'T €0°0 LdYVv
LETT ¢98 BEG @61 8L°8T LOLT ¥C'6€ 6911 VL8 LG 00°¢ 6¥°0 ICTT 910 9demAy
66'€€ 1€4c G¥4T 69°¢ GL¢L 80°L9 G09€T G0ve LG'GC 8€91 L9°¢ 8€T 969¢ ¥¥°0 009
8€'9¢ 6961 Tl FETV L9'8Y ¢y GL796 69°9¢ L8°61 78¢l 0y 80T 80°L¢ ¥€0 0sv
€L6T oLVl 49C6 6¢°€ €8°0¢ 86°L¢ 9C99 LT°0G L6VI GL6 e ¢80 €06l 92°0 00V
P8EL LEOT V49 FEC 69°L1T 8091 69°€Y ! 6L.°0T 0T 8¥'¢ 09°0 IL¢1 610 0s€e
0T'6 89 6€F% 89T €96 VL8 C6'9C ¢86 9¢'L €6V L1 v o 008 €T°0 00€
g¢'¢ 9@y €Lc a0l 797 ey 0cvl ¢l'9 997 9r'e 60T LT0 €97 600 04¢
ore 8€C 99T 090 681 L1 Lv9 0y°€ 69°C I8°T €90 910 Le¢ €00 00¢
6V'T 6I'T 080 ¢€0 09°0 740 0¥°'¢ 8G°T 0€'T L8°0 ¢€0 60°0 660 €0°0 0ST
0s0 €vo T1€0 €10 ¢lo 010 19°0 ¢S0 9¥°0 1€°0 €10 700 8¢'0 T00 00T
900 900 S00 €00 10°0 1070 L0°0 900 900 90°0 €00 10°0 €00 000 04
aNA
INY “NY NY YINY VUSLA Vasrd ¢dud “pdud *vadd %pdyud “'vadd CNd-HD NG HD HUN u

"OUI[[O®D UL ‘SMSOI 189q T} oI P[Oq UL sonfes oy T, (F10g) 2y
o urd wogj paydepe yrewyouaq o) ul sqol Jo oqumu Aq padnois sorpsumoy poreduwrod o) 10j T JYV PUR son[eA) 98RIOAY T 9[qR],

80

LETT ¢98 8EG CTO'T 8L'ST LOLT ¥C°6€ 6911 VL8 LG 00°¢ 6¥°0 ICTT 9T°0 9demAy

080 89GT 066 99°€ €881 60°LT €S9cL 9T'1¢ €6GT €701 89°'¢ 060 L6'8T 620 0S

TLGT I8TIT 9FL 89T 1881 90°LT TI%S 9191 @0al 18°L 8.°C 89°0 70'ST TT0 0

VOIT €28 61'G G8'1 CL8T FOLT TTLE €ETT 978 €8¢ c6'1 L¥0 11T ST°0 0€

969 G8F 90¢ LO0T 9L'8T GO'LT 6S9°CC 68°9 I1°G €e'e er'1 L20 7€'L 60°0 0%

GLZ €0C 6T 970 6L8T OT'LT 986 16°C 02 ev'T 870 ero 87'¢ %00 01
aNA

OINY %NY NY O'™NY NS VUSrd eddd %“pddd %pdyud %vgdd O%wdyud CcNd-HD IWd-HD HAN w

"9UI[Do Ul ‘S)[Nsal 189q o1} aIe p[oq Ul senfea oy T, (F107)
ZIy o ueJ wolj pajdepe yIRWYDUI(S} Ul soulydel JOo Joqunu Aq podnois sorsumasy pareduiod o) I0J sonfeA N J) 98RIOAY :ZT 9[(R],

81

Among the heuristics in the literature, the one that presented the best results
was the FRB3 that surpassed the NEH, GH-BM, GH-BM2 and FRB4, methods by a
significant difference. Note that the FRB3 obtained an ARPD of 0.75 compared to 6.15 of
the NEH heuristic in the SSD50 distribution (Table 8). However, FRB3 is considerably
more computational complex than the rest of the heuristic methods, with an average
computation time of approximately 39 seconds, compared to 0.16 seconds of the NEH
heuristic and around 2 seconds of our proposed RNy heuristic (Tables 11 and 12). Moreover,
it can be observed that FRB3 has the highest ARPT with 3.04 compared to 0.16 from
NEH. Among the heuristics in the literature of less complexity which obtained the best
results was FRB47q, with an ARPD of 1.94 and an average CPU time of around 12 seconds
considering all the setup time distributions. Moreover, the results grouped by the number
of machines provided in Tables 7 and 12 show a strong influence of the number of machines
in the ARPD and average CPU time values. The general trend is that better results
are obtained as the number of machines increase (FRB3 obtains an ARPD of 1.79 when
m = 10 and 0.71 for m = 50). The only exception is the RN heuristics where the ARPD

remains stable as the number of machines increases.

Considering all the heuristics, the proposed RN7o method obtained the best results
considering all distributions, with an ARPD of 0.38, an average CPU time of about 11
seconds and an ARPT of 1.29, compared to an ARPD of 1.09, an average CPU time
of approximately 39 seconds and an ARPT of 3.04 of the FRB3 heuristic. That is, the
RNy heuristic is clearly better as it produces better solutions in less computational
time. The highest average CPU time by the FRB3 was already expected as the FRB3
method reinserts all the jobs of the sequence at each iteration, resulting in a complex
neighbourhood search procedure. Therefore, the strategy used in the FRB4, and RN, to
limit the number of jobs to be reinserted by means of the parameter x has demonstrated
an efficient way to improve the quality of the final solution without the method becoming
very computationally intensive. The results also show that the quality of the solution
is improved in the FRB4, and RN, heuristics as the value of = increases. However, the
average computational time and ARPT values are also increased as more reinsertions
are performed. The heuristics from the setup times literature, FJSRA and FJSRA-VND,
present good APRD results, especially when the distribution intervals increase (SSD100
and SSD125), however the average CPU times and ARPT values are worse when compared
to the RN, heuristic (x = {10, 30, 50, 70}). These results are due to the SRA (setup ranking
algorithm), which is used to create the fictitious job for the FJSRA and FJSRA-VND, and
is being computationally intensive. To make matters worse, the acceleration procedure
from Section 2.3.3 cannot be applied to the construction phase of both heuristics. Figure
9 shows the ARPD values and ARPT of the heuristics. The dominant heuristics are

highlighted in green, while the remaining are in red.

Although Tables 6, 7, 11 and 12 show that the proposed method is clearly better

82

12.00 —
GH-BM
11.00 - A4
10.00 —

9.00

8.00 -

7.00 ‘NEH
a
é 6.00 -
< GH-BM2

®
5.00
4.00] F“B“ 10 FISRA
L 4
3.00 FRB4 30
DS FIJSRA-VND
RN 10 FRB4 50
2.00— V'S
30 FRB4 70 FRB3
1.00 ® RN 50 1 4
PN RN 70
L 4
.00 T T T T T T T
.00 50 1.00 1.50 2.00 2.50 3.00
ARPT

Figure 9: ARPD and ARPT values for compared heuristics. The Pareto dominating
heuristic is depicted in green.

than the best heuristics in the literature, a statistical analysis should be performed to
prove that the differences in the ARPD values are in fact statistically significant. Figure
10 presents the measurements with 95% confidence intervals in the different setup time
distributions. It can be stated that heuristics have statistically different averages. The best
heuristics in the literature (FRB4, and FRB3) obtain consistently worse results as the
intervals of distributions increase. In contrast, the RN, heuristic has a stable performance,
with slightly better results in the SSD100 and SSD125 distributions. This shows that the
proposed heuristic is favoured when setup times are longer. Table 13 presents the Tukey
test, grouped by number of jobs, that shows that the main compared heuristics have
statistically different means. Therefore, the presented results and the statistical analyses
carried out show that the proposed RN, method is better than the heuristics adapted

from the literature, both in solution quality and in computational efficiency.

Although the experiments show that the proposed heuristics work well for the

83

Table 13: Tukey test results of the best heuristics, with significance level of 95% in the
benchmark from Pan e Ruiz (2014). The values in bold mean that there is a
significant statistical difference between the algorithms in the first and second

column.
i Heuristic Heuristic Mean Difference Standard Significance
(I) (J) (I-J) Error
50 - 100> FRB47y FRB3 0.242 0.050 0.000
RN~ 1.078 0.050 0.000
FRB3 FRB4;, -0.242 0.050 0.000
RN~ 0.836 0.050 0.000
RN~ FRB4;, -1.078 0.050 0.000
FRB3 -0.836 0.050 0.000
150 - 200 FRB4;, FRB3 0.674 0.043 0.000
RN~ 1.398 0.043 0.000
FRB3 FRB4;, -0.674 0.043 0.000
RN~ 0.724 0.043 0.000
RN~ FRB4;, -1.398 0.043 0.000
FRB3 -0.724 0.043 0.000
250 - 300 FRB47;y FRB3 0.902 0.047 0.000
RN~ 1.631 0.047 0.000
FRB3 FRB4;, -0.902 0.047 0.000
RN~ 0.729 0.047 0.000
RN~ FRB4;, -1.631 0.047 0.000
FRB3 -0.729 0.047 0.000
350 - 400 FRB47p FRB3 1.184 0.049 0.000
RN~ 1.857 0.049 0.000
FRB3 FRB4;, -1.184 0.049 0.000
RN~ 0.673 0.049 0.000
RN~ FRB4;, -1.857 0.049 0.000
FRB3 -0.673 0.049 0.000
450 - 500 FRB4;y FRB3 1.277 0.049 0.000
RN~ 1.835 0.049 0.000
FRB3 FRB4,, -1.277 0.049 0.000
RN~ 0.557 0.049 0.000
RN~ FRB4;, -1.835 0.049 0.000
FRB3 -0.557 0.049 0.000

 Instances with 50 and 100 jobs.

84

Heuristics

I FRB3
2.25 I FRB4 70
I RN 70

2.00

1.75

1.50—

ARPD

1.254
1.00
0.75 -

0.50

:I\E_._ _

—

M

0.25 T T T T
SSD50 SSD100 SSD125 All Instances

Distribution

Figure 10: Means plot for the heuristics in all distributions for the benchmark from Pan e
Ruiz (2014). All means have 95% confidence intervals

mixed no-idle instances with sequence dependent setup times, it is important to know
the performance of our heuristic on (mixed) no-idle instances only (without sequence-
dependent setup times). Tables 14 and 15 show that RN7o (APRD value of 0.44) presents
similar results to FRB3 (ARPD value of 0.23), which obtained the best performance
between the compared heuristics. Thus, we conclude that the proposed strategy can also

obtain a good performance also for the mixed no-idle PFSP without setup times.

3.3.6 Comparison between heuristics in the benchmark adapted from Ruiz, Maroto e
Alcaraz (2005)

We evaluated the RN, heuristic on the instances from the literature with setup
times proposed by Ruiz, Maroto e Alcaraz (2005). The results are summarized in Table
16. The ARPD values grouped by number of jobs are shown in Table 17, and presented

in more detail in Tables 18, 19, 20, 21 and 22. The results are similar to those from the

85

Heuristics
I FRB3
2.50 I FRB4 70
I RN 70
2.25-
2.00
1.75
g
< 1.50
1.25
1.00 -
0.75
0.50 T T T T T
SSD10 SSD50 SSD100 SSD125 All Instances
Distribution

Figure 11: Means plot for the heuristics in all distributions for the benchmark from Ruiz,
Maroto e Alcaraz (2005). All means have 95% confidence intervals

benchmark of Pan e Ruiz (2014). It can be observed that the RNy obtained better results
in all distributions. For example, RN7y obtained an ARPD of 0.60, 0.73, 0.84 and 0.82
for distribution intervals SSD10, SSD50, SSD100 and SSD125, respectively, compared to
0.63, 1.21, 1.85 and 2.07 from FRB3 and 0.83, 1.61, 2.44 and 2.56 from FRB47,. In terms
of computational efficiency, the RN, (x = {10,30,50,70}) presented lower average CPU
times and ARPT when compared to FRB3. On average, the FRB3 consumes in average
around 7 seconds compared to RN7y with approximately 2 seconds and has an ARPT of
2.32, compared to 1.33 from RN7y. The RN;q heuristic shows exceptional efficiency with
an ARPT of 0.58, compared to 2.32 and 1.37 of FRB3 and FRB47,, respectively. Figure
11 shows the ARPD results with 95% confidence intervals.

86

Table 14: ARPD results in the benchmark from Pan e Ruiz (2014) without sequence
dependent setup times. The values in bold are the best results, in each line.

FJSRA-

n NEH GH-BM2 FRB4;,, FRB3 RN7g
VND
50 5.22 2091 0.75 0.90 5.11 0.68
100 5.04 288 0.74 0.55 4.69 0.49
150 439 252 0.74 0.25 4.17 0.53
200 3.86 2.23 0.66 0.16 3.51 0.47
250 3.44 2.00 0.60 0.13 3.27 0.44
300 3.26 1.90 0.60 0.10 3.04 0.42
350 3.03 177 0.50 0.08 2.83 0.38
400 2.66 1.52 0.48 0.07 249 0.35
450 2.56 1.50 0.47 0.04 237 0.35
500 239 1.40 0.43 0.04 219 0.35
Average 3.59 2.06 0.60 0.23 3.37 0.44

Table 15: Average CPU times in the benchmark from Pan e Ruiz (2014) without sequence
dependent setup times.

n NEH GH-BM2 FRB4;, FRB3 FISRA- RN7g
VND
20 0.00 0.01 0.06 0.07 0.07 0.07
100 0.02 0.04 0.50 0.60 0.55 0.55
150 0.05 0.10 1.41 2.23 1.60 1.62
200 0.08 0.22 3.13 5.98 3.43 3.45
250 0.12 0.30 5.51 11.64 5.92 5.96
300 0.20 047 8.21 19.84 9.13 8.93
350 0.29 0.70 12.10 32.17 13.14 13.00
400 0.38 0.96 16.05 49.95 17.57 17.60
450 0.46 1.22 21.05 73.95 2294 22.73
200 0.64 1.53 27.26 106.40 28.63 28.54

Average 0.22 0.56 9.53 30.28 10.30 10.24

87

Table 16: Summary of the results in the benchmark adapted from Ruiz, Maroto e Alcaraz

(2005).
Heuristic ARPD Average ARPT
SSD10 SSD50 SSD100 SSD125 Average CPU Time
RN~ 0.60 0.73 0.84 0.82 0.74 2.01 1.33
RNj5q 0.66 0.84 0.95 0.93 0.85 1.52 1.22
RN3g 0.78 1.05 1.22 1.22 1.07 0.96 1.01
FRB3 0.63 1.21 1.85 2.07 1.44 6.70 2.32
RNyq 1.35 1.80 2.11 2.12 1.85 0.34 0.58
FRB4, 0.83 1.61 2.44 2.56 1.86 1.93 1.37
FRB45 0.91 1.70 2.60 2.71 1.98 1.44 1.25
FRB43 1.10 1.93 2.85 3.04 2.23 0.92 1.01
FJSRA-VND 3.22 2.93 3.03 2.91 3.03 6.39 1.29
FRB44 1.60 2.75 3.84 4.16 3.09 0.35 0.53
GH-BM2 2.48 4.48 5.68 6.07 4.68 0.08 0.16
FJSRA 6.80 5.39 5.12 5.03 5.58 5.80 1.19
NEH 4.26 6.45 7.78 8.37 6.72 0.02 0.03

GH-BM 7.18 11.44 13.01 12.83 11.11 2.22 0.72

vL0 G480 L0T G681 €0'€ 8G'G Wi 981 86T €CC 60°€ 89V ITTT ¢L9 9demay

6€°0 090 €0T 86T €91 L49°C 18°0 ¢l'e e 68°C arv €4'¢ PI'TT 169 0¢ 00¢
0€'0 L90 ¢60 L6'T 16°C LTV 7670 29T 00°¢ 0v'c L9°€ [0Tl #69 0C 00¢
6€°0 G690 L60 L6'T 06T ¢l'e eel G0°¢ €ee 0L°C v6°€ 19°¢ g¢cr €¥’L 01 00¢
LS80 890 WVIT €00 e 64 GC'1 €91 VLT 11°¢ 91°€ QLY ¢80T %99 0c¢ 00T
¢¢’'0 9.0 7¥0T <¢0¢ 48'C 8LV 1 VLT G6°'T 8¥'¢ LE€ LT°G ¢l'el L0°L 0T 00T
6€°0 ¢90 060 <C8'T 1€¢ 6L°€ ¢8'1 80°C LCC €4'c gg e 1¢°¢ e0cr ¢c’L ¢ 001
IL°0 TIL0 880 €871 L0V 6574 91 €91 €91 881 L9°¢C 0V 80T 9€9 0¢ 09
¢80 ¢80 €60 IS8T VL€ €49 LLT 8LT 8LT 66T 61°€ a8y 66'1T ®82'L 01 09
v.0 7.0 680 991 499°c 10°¢ VLT v1'¢ ANE LT G0°¢ 99v 68'1T 189 ¢ 09
6L°T 61T 6T 69T 79°€ 68°L 941 Lyl LV v 8’1 6C¢ 0¢'8 8¥'¢ 0¢ 0¢
9T 19T TI9T 961 0rv @'y 67Vl 16°T 16°T 16°T v0°¢ 68°¢ 6v'0r 8€9 0T 0¢
T I¥F1T IvrT L91 av'e 0¢'L VLT 0T'¢)yé 0T'c va¢e LLE 68°0T L09 ¢ 0¢
aNA

NY “NY %NY UINY VMSEA VUSrd eddd %“pdyd %pdyud %vgdd °%dyud CIN-HD IWd-HD HAN w u

88

OUIL RS UL {(IJYY 159 oY) aIe p[oq Ul sanfea oY1, *(¢00¢)
ZeIed[y @ OJ0IRJN ‘ZINY wolj pojdepe YIRWDUI(S} Ul S[RAIUI SUOIINLIISIP [[® S} Ul SO)SLIMNSY pareduwiod o) 10J senfes (JJYV LT °[qRL

89

09°0 990 8L0 GET GG'e 089 €90 €80 1670 OT'T 091 8¥'¢ 8T'L 9TV 9ddemAy
¢v’o 090 €80 LV G8'T ¢€'c 800 LL0 L6°0 0C'T €81 499°¢ ¢v'9 ¢y 0¢ 009
00 €90 0L0 T91 10°€ g9'¢ vC0 99°0 780 6C'1 861 [qixé 99°'L 00'¢ 0¢ 00¢
9¢0 vEO0 990 BIT 04T ¢r'e 8T°0 8%°0 190 €80 4! 90°¢ ¢€9 Ve 01 00¢
G990 990 960 68T 617 ery 990 LL0 €01 LCT 0¢¢ 86°C 0¢8 ¢¢'S 0c 00T
¥e'0 090 090 Lg'T €9°¢ LG 170 9¢0 ¢9°0 €60 17! I1°¢ 699 vLE 0T 00T
€10 Lg0 0€0 190 6€1 68°C LE0 170 70 L9°0 16°0 LGT ¢0¢ 69¢ ¢ 001
€L°0 €L0 O0I'rt 00%¢ €0’ Ly 01 90T 44! GGl LG°T 0€c 60°¢ 0L8 V0S¢ 0c 09
¥9°0 790 LG0 €V 00v €8 €670 €60 €60 Gr'r1 8LT qixeé 8¢y 167 0T 09
ve'o ¥E0 <0 6L°0 981 6V'v 70 gao Gggo 690 960 a1 g9¢ €®¢c ¢ 09
8€'T 8ET KET GVl L8V 16°0T C€'T 60T 60T 60T 91 L6°C 6¢’L 8V'¢ 0C 0¢
80T 80T 80T €LT €qy 89°0T GO'T va1 va1 va1 891 80°¢ 9¢'8 I¢¢ 0T 0¢
6'0 160 160 4.0 8G°€ 0C'8 86°0 €01 €01 e0'T IT°T 881 6L ore ¢ 0¢
INY %NY NY O'NY -<MM/MW VUSrd egud %“pdud %pdyud %*vgdd °%dyud CcIN-HD IWd-HD HAN w u

"QUI[Yoo Ul ‘qQYV 159q o1} aIe p[oq Ul senfea oy [, "(G007) ZeIRI[Y
9 0joIR[N ‘ZINY wolj pajdepe NIRWDUS(o) Ul [RAIDIUT UOINLIISIP OT(ISS oY} Ul somsumay pareduod oy} 10] senfea (qJYV 8T 9[qR],

€40 P80 GOT 08T €6°C 6€°G 1¢'T 191 0LT €61 GLC YV PPIT G679 ofemoay

€6°0 GL0 LCT 7¥¢°¢C 0LT 8G'C L9°0 18T)é 99°¢ 8¢ Lvq I8¢t 9.9 0¢ 009
8€'0 <C90 0T L6'T Lve L6°€ 89°0 a1 LT €re av'e 1677 90¢ct 799 0c¢ 00¢
0’0 190 160 €61 681 00°¢ €01 9¢'1 981 [qeé 8T°€ 10°¢ GLer LL9 01 00¢
€9°0 GL0 L0T 7¥6'1 8C€ €9°¢ 0C'T 9¢'1 6G°T 18T L8°¢C 9LV 65 1T 999 0c¢ 00T
00 GL0 ¢<cO0OT 961 LLT 09v €01 Ga'1 191 10°¢ G6°C 08% 8c¢cl 999 01 00T
0€'0 190 80 ¢CLT €CC 09°€ 06T 91 81 00°¢ 98¢ 0L¥ 6L TT €79 ¢ 00T
¢9°'0 990 980 ¢Sl LTV 19°L el 0G°'T 06T G8'1 0v¢ Gy ¢v’or 699 0¢ 09
88°0 880 860 G6'T 0L°€ 9¢'9 9y'1 Pa1 Pa1 G8'T €0'€ 9¢v ¢rer 11°L 01 09
G9°0 990 890 L9 6L.°C L0°G 1€°T L1 L1 ¢8'1 G99°¢ 8TV 981l ¥€9 ¢ 09
€0°T €0T €0T <91 8C'€ 7L 86T 47! 47! 47! €61 ¢Ee '8 LTS 0C¢ 0¢
Wi 1Tt IvlT 6.1 G6°¢ 6V'8 €€'1 991 991 991 LT 9L°€ eLor ¢¢9 01 0¢
W't wir vwr 091 G0'¢ 979 A 6L°T 6L°T 6L°T 01°¢ 66°€ L0 L6¢ 9 0C
aNA

NY “NY %NY UINY VMSEA VUSrd eddd %“pdyd %pdyud %vgdd °%dyud CIN-HD IWd-HD HAN w u

90

"QUI[oo Ul ‘qJYV 359q o1} aIe p[oq Ul senfea oy], "(G00Z) ZeIvI[Y
9 0joIR]N ‘ZINY wogj pajdepe NIRWPUI(o) Ul [RAIDJUT UOTNLIISIP OG(ISS Y} UI so1simey pareduod oy} 10J senfea (qJMV 6T 2[RI,

91

¥8'0 G660 <¢cT T1I¢ €0'€ [81 e 09°¢ G8'C V8¢ 89°¢ T0°€T 8L, 9SemoAy
€e'0 790 L0T 9I¢C 8CT G0¢ €l'T LL°C 61°¢ €9¢ 0€°¢ vL.9 G6'¢cl 608 0c 009
420 090 960 €0¢C 0€¢ L9°€ GC'1 60°C 99°¢ 86°C vy G0'9 Gy'¢cl ¢8L 0c¢ 00¢
9¢'0 790 O6I'T L¥¢ ar'e 8T°€ 761 v0'€ 0€€ 16°€ LE°G 7L G091 6¥'6 0T 00¢
LS80 090 €CT 7¥¢'@ 6¢°€ 80°¢ 8V'1 L0°¢ 91'¢ 64°C (GRS Ge'g 90¢ct €0°L 0c¢ 00T
8¢'0 €60 VIT 1I€¢C 8T°€ 881 96°T L1°C 8GC ar'e €% LS99 ¢8YL 998 0T 00T
09°0 680 LZT 0OF¢ L9¢C ey 8G'C L6°C €re 8G°€ oLy ¢89 LyGl 8€6 ¢ 001
08°0 080 ¥80 IS8T 09°€ 619 9L'1 681 681 00°¢ G6°¢C QL 180T 089 0c 0%
6.0 6.0 VI'T B8IC 06°€ L8°G vee €ee €ee Ve G8'¢ €LG ¢6cl Le8 0 09
160 160 0¢'T 00%¢ 18°C L0°G 66T €LC €LC GLC €8¢ 94 6yr €€8 ¢ 09
LT°'T LTT LT'T C9'1 9¢'€ G6'9 a1 €81 €81 €81 61 ¢9€ 97’8 €8¢ 0¢ 0¢
L9°T L9T L9T LT°C ar'y 1€°L LT €€C €e'e €ee 0¥'c ey or'tr €99 01 0¢
68°'T 68T 681 80C 1L°€ €0, 9y°¢ 10°€ 10°€ 10°€ ove €6V 00er 6L ¢ 0¢
INY %NY NY O'NY -<MM/M,W VUSrd egud %“pdud %pdyud %*vgdd °%dyud CcIN-HD IWd-HD HAN w u

"QUI[Yoo Ul ‘qQYV 159q o1} aIe p[oq Ul senfea oy [, "(G007) ZeIRI[Y
9 0j0IR\ ‘ZINY] w0l pajdepe YILWDUS] S} Ul [BAIUI UOTINGLIISIP OOT(ISS Y3 UI SO1)sLnay pareduod o) 10§ senfea ((JHV 0 °[9R],

¢80 €60 ¢l ¢lc 16°¢C €0'g L0°¢C 9¢¢ 1L°¢ 70'€ 9TV L09 €8°CT L€'8 ofemoay

L2'0 ¢90 L60 7V0C 191 vee 23! 80°€ vae 80V €9°¢ L. Le¢l 898 0¢ 00¢
gc’0 ¢¢0 ¢T0T 7WvCe Gc'c 8Y'€ 8G°1 LEC 9L¢ 1¢°€ €87 649 ¢6'IT 0€'8 0 00¢
Sv'0 €90 €T ¢€¢ V61 68°C 8¢ vIe 0s€ v6°€ 6L°G 86°L 60°¢T <¢00r O 00¢
¢v'o 1.0 62T V0¢C 10°€ 8V GLT 11°¢ L1°C LLC €6'¢ 06°G LSTT 89°L 0¢ 00T
¢9'0 LLO IvVI ©¥EC I8¢ 9¢v V¢ 69°C 86°C 8¢ 8LV 0g'L 697l ¢€6 0T 00T
¢¢’0 I80 9I'T 097C 76°C i G8'C €ee 99°¢ 66°€¢ 69°¢ €L 89T 8€0T 9 00T
89°0 890 TI.L0 661 6V'¢ 209 0L°T 61 ! vi¢ 19°C 60 ¢L0r 169 0¢ 09
96°0 960 FOT €671 9€°¢ 9L°G 8€C GE'C ¢EC 16°¢ 0Ty 029 €9er I8%8 0 09
90'T 90T LCT 881 are G GG'e vae vae 8¢ 9LV Vel ¢rar 9L6 9 09
LT'T LT'T LT'T G8TT LT°€ 8¢9 08T ¢q'l ¢Sl ¢Sl 661 9¢'¢ 198 ¢ 0c 0C
96T 96T 96T GI'C 9L€ 0€L 981 I1°¢ IT°¢ IT°¢ Gee 0cv 8¢ 1T L¥y'L 01 0¢
T ¥l T 961 8F'€ ¢l'L €0¢ 9¢¢ 9¢¢ 96¢ 16°€ 6CV I8¢t 69L ¢ 0¢
aNA
NY “NY %®NY OINY VMSLA VaSrd ¢dud “pgdd %pdud %pdud °'wddd CND-HD INd-HD HAN W u

92

"QUI[oo Ul ‘qJYV 359q o1} aIe p[oq Ul senfea oy], "(G00Z) ZeIvI[Y
9 0j0IR\ ‘ZINY] w0l pajdepe YILWDUS] S} Ul [BAIUT UOTINJLIISIP GZT(JSS Y} UT SO13SLmay pareduwod o) 10j sonfea (JJMV 1 °[9R],

93

€T ¢¢1T 10T 890 6C'1 61T (434 LET 'l 10°T €90 910 ¢L0 €00 L1LdYVv
10¢ ¢91 960 ¥E€0 6€°9 08°G 0.9 €61 47! ¢6°0 geo 80°0 ¢e’c TO'0 8eIoAy
vL0¢ 94l ¢96 GE€ €L el 6699 T6°€EL 06°6T 971 6¢°6 Ve gL 0 Icvye €¢°0 0¢ 009
v6'T ¢S'1T 00T 6€0 €81 991 c6°€ 681 91 960 8¢0 60°0 9%'T €0°0 0¢ 00¢
880 890 SG¥0 LTO 08T 791 QLT 080 19°0 0¥°0 LT°0 700 ¥9°0 TO°0 0T 00¢
¢€0 80 020 600 01°0 60°0 970 €e0 8¢0 61°0 80°0 ¢c00 LT'0 TO0 0Z 00T
yIo €ro 600 ¥00 01°0 60°0 1¢°0 v1°0 ¢l0 80°0 700 10°0 L0'0 00°0 OT 00T
900 900 %00 <00 60°0 80°0 60°0 900 G00 700 10°0 000 €00 000 ¢ 00T
v0'0 ¥00 ¥00 <00 00°0 000 900 70°0 70°0 700 00 00°0 ¢00 000 0c 09
¢00 ¢00 <¢00 100 0070 00°0 €00 ¢00 ¢00 ¢00 10°0 0070 10°0 000 OT 0¢
100 100 100 000 00°0 00°0 10°0 10°0 10°0 10°0 0070 000 000 000 ¢ 09
000 000 000 000 000 00°0 000 000 00°0 00°0 000 000 000 000 0c 0c
000 000 000 000 00°0 000 00°0 00°0 000 000 00°0 00°0 000 00°0 Or 0¢
000 000 000 000 0070 00°0 0070 000 00°0 00°0 0070 0070 000 000 ¢ 0¢
OINY NY N4 YINY -<MMW VaSrd edud %“pddud %pdyud %*vgdd °'%dyud CIN-HD Wd-HD HAN w U

"9UI[o®e Ul ‘sawll))) 159 [} 8Iv P[Oq Ul senjea oy], "(G)(g) ZeIRI[Y o 0JOIR]\
‘zmy] wolj pajdepe YIeW DU S} Ul SRAIDIUI SUOIINGLIISIP [[® O} Ul SOIISLMoY poledurod o) 10] [, JYV PU® souwll) ()) 98RIDAY g7 O[qR],

94

Furthermore, a statistical test with FRB4;,, FRB3 and RN,, was generated to
show that the averages are statistically different. The results from the statistical tests are
presented in Table 23. From the tests we can see that the RNy is statically better than the

best heuristics from the literature in the benchmark from Ruiz, Maroto e Alcaraz (2005).

It is worth assessing the performance of our heuristic on instances with sequence-
dependent setup times only (without no-idle machines). The ARPD and average CPU
times for the compared heuristics are presented in Tables 24 and 25. The results show
that this time around RN7q obtained the best ARPD values for all instance groups (0.34
compared 0.73 of FRB3). Therefore, we conclude that the proposed method generates

high quality solutions even when no-idle machines are not considered.

3.3.7 Evaluation of the MILP model and the RN, heuristic

As the RNyq heuristic presented the best results in the previous comparisons, we
chose to compare it to the optimal solutions found by the MILP model presented in
Section 2.3.1. Table 26 presents the results in terms of ARPD and percentage of optimal
solutions found by the RN7y. The ARPD represents the distance of the solutions found
by the RN7q relative to the optimal solution obtained by the MILP for the instance set.
The results show that the RNy found near optimum solutions, with an ARPD of 4.12
when we consider all the instances, and in the best case 3.34 for the SSD50 distribution
interval. In addition, on average 4% of the solutions found by the RNy heuristic are
optimal. The best results are achieved when n = 10 and m = 5, where the percentage
of optimal solutions found can reach up to 17% for the SSD50 and SSD100 distribution
intervals. Thus, together with the results presented in the previous benchmarks, we can
conclude that the RNy, heuristic obtained good solutions and sometimes optimal with
excellent computational efficiency. Table 27 shows how the MILP CPU time requirements
increased throughout increase over the different number of jobs and machines and the
maximum CPU time for each set of instances. We can see that the average CPU time
significantly as the number of jobs and machines increased, with up to 8643 seconds (2
hours and 24 minutes) in the worst-case scenario for the set of instances with n = 20,
m = 5 and SSD50 distribution.

95

Table 23: Tukey test results of the best heuristics, with significance level of 95% in the

benchmark from Ruiz, Maroto e Alcaraz (2005). The values in bold mean that
there is a significant statistical difference between the algorithms in the first and
second column.

Heuristic Heuristic Mean Difference Standard

n Significance
(I) (J) (I-J) Error
20 FRB4,y FRB3 0.228 0.086 0.022
RN~ 0.456 0.086 0.000
FRB3 FRB47;, -0.228 0.086 0.022
RN~ 0.228 0.086 0.022
RN~ FRB47 -0.456 0.086 0.000
FRB3 -0.228 0.086 0.022
50 FRB4;¢ FRB3 0.193 0.072 0.021
RN~ 1.091 0.072 0.000
FRB3 FRB47y -0.193 0.072 0.021
RN~ 0.898 0.072 0.000
RN~ FRB47, -1.091 0.072 0.000
FRB3 -0.898 0.072 0.000
100 FRB4;y FRB3 0.326 0.065 0.000
RN~ 1.326 0.065 0.000
FRB3 FRB47 -0.326 0.065 0.000
RN~ 1.000 0.065 0.000
RN~ FRB47, -1.326 0.065 0.000
FRB3 -1.000 0.065 0.000
200 FRB4;y FRB3 0.726 0.073 0.000
RN~ 1.515 0.073 0.000
FRB3 FRB47, -0.726 0.073 0.000
RN~ 0.789 0.073 0.000
RN, FRB4,, -1.515 0.073 0.000
FRB3 -0.789 0.073 0.000
500 FRB4;, FRB3 1.316 0.095 0.000
RN~ 1.733 0.095 0.000
FRB3 FRB4;, -1.316 0.095 0.000
RN~ 0.417 0.095 0.000
RN~ FRB47y -1.733 0.095 0.000

FRB3 -0.417 0.095 0.000

96

Table 24: ARPD results in the benchmark from Ruiz, Maroto e Alcaraz (2005) without
no-idle machines. The values in bold are the best CPU times, in each line.

n m NEH GH-BM2 FRB4;, FRB3 FISRA- RN~
VND
20 5 479 3.04 1.61 1.30 3.27 0.82
20 10 3.93 244 1.57 1.06 3.64 0.67
20 20 2.84 1.80 1.07 0.78 3.36 0.68
50 5 4.99 3.28 1.40 0.95 2.09 0.18
50 10 4.15 3.02 0.98 0.67 3.01 0.33
50 20 3.33 251 0.76 044 3.62 0.40
100 5 561 4.36 1.50 1.17 187 0.13
100 10 4.30 3.36 0.95 0.51 2.14 0.21
100 20 343 2.63 0.64 0.55 2.77 0.18
200 10 4.61 3.86 1.10 0.58 1.24 0.10
200 20 3.42 285 0.83 0.29 1.79 0.15
500 20 3.64 3.22 1.32 0.41 0.68 0.22
Average 4.09 3.03 1.15 0.73 2.46 0.34

Table 25: Average CPU times in the benchmark from Ruiz, Maroto e Alcaraz (2005)
without no-idle machines.

n m NEH GH-BM2 FRB4;, FRB3 FISRA- RN
VND
20 5 0.00 0.00 0.00 0.00 0.00 0.00
20 10 0.00 0.00 0.00 0.00 0.00 0.00
20 20 0.00 0.00 0.00 0.00 0.00 0.00
50 5 0.00 0.00 0.01 0.01 0.00 0.01
50 10 0.00 0.00 0.01 0.01 0.00 0.01
50 20 0.00 0.00 0.03 0.03 0.0 0.03
100 5 0.00 0.00 0.04 0.05 0.02 0.05
100 10 0.00 0.01 0.09 0.11 0.04 0.11
100 20 0.01 0.02 0.25 028 0.10 0.29
200 10 0.01 0.04 0.68 1.0l 0.26 0.75
200 20 0.03 0.09 1.59 2.64 0.69 1.90
500 20 0.22 0.65 14.61 47.63 5.33 16.07

Average 0.02 0.07 1.44 4.31 0.54 1.60

97

Table 26: APRD and percentage of optimum solutions for the proposed RNy heuristic.

Percentage of
Distribution n m ARPD

Optimal Solutions

SSD50 10 5 2.88 17%
10 10 2.92 7%
15 5 3.61 0%
15 10 3.06 0%
20 5 4.22 0%
Average 3.34 5%

SSD100 10 5 2.85 17%
10 10 3.50 0%
15 5 4.88 3%
15 10 4.42 0%
20 5 5.63 0%
Average 4.26 4%

SSD125 10 5 4.56 10%
10 10 3.23 %
15 5 6.23 0%
15 10 3.97 3%
20 5 5.88 0%
Average 4.77 4%

Average 4.12 4%

98

Table 27: Average and maximum CPU time for the MILP model.

. CPU Time
Distribution n m

Average Maximum
SSD50 10 5 1.07 1.93
10 10 2.36 12.17
15 5 19.47 106.81
15 10 158.08 1284.62
20 5 687.79 8643.28
Average 173.75 2009.76
SSD100 10 5 0.79 1.84
10 10 221 13.54
15 5 10.68 55.13
15 10 398.78 3671.78
20 5 135.26 810.05
Average 109.54 910.47
SSD125 10 5 0.86 2.03
10 10 1.99 10.64
15 5 15.05 71.40
15 10 527.22 3124.45
20 5 279.20 2808.88
Average 164.86 1203.48

3.4 Conclusion

In this chapter, the scheduling problem in a mixed no-idle PFSP with sequence
dependent setup times was studied. Considering a comprehensive literature review carried
out on the no-idle PFSP, it was found that the mixed no-idle PFSP with setup dependent
times has not yet been studied despite it being present in current production systems. In
a mixed no-idle environment, not all machines need to be in continuous processing. As
the problem had not yet been addressed in the literature, an MILP and ways to evaluate
the makespan of a sequence were proposed. An acceleration method for assessing the

makespan of an insertion neighbourhood was also developed.

A new constructive heuristic, called RN, is proposed in this chapter in order to
provide the problem with a solution method that obtained good results with computational
efficiency. For comparison purposes, the best heuristics of the no-idle flowshop problem

with makespan criterion were adapted to the addressed problem.

99

Based on the statistical comparisons carried out, it was found that the FRB3 method
offers the best performance among the main methods adapted in the literature. However,
the analyses showed that the proposed RN, method surpassed the FRB3 heuristic in terms
of solution quality and computational efficiency. The statistical results also show that the
means are significantly different. Therefore, the proposed heuristic can be considered as
an important contribution to the state of the art in constructive heuristics for the no-idle
PFEFSP problem and the variant studied in this chapter. In the next chapter, the mixed

no-idle PFSP with total flowtime criterion will be presented.

101

4 THE MIXED NO-IDLE PFSP WITH SETUP TIMES AND TOTAL FLOWTIME
MINIMIZATION

In this chapter, the total flowtime minimisation criterion is addressed given its
relevance to the current production dynamics due to its relationship with minimising
in-process inventory (LIU; REEVES, 2001). As this is the first time that this problem
has been studied, the most efficient heuristics proposed for the no-idle and mixed no-
idle PFSP problems with makespan criterion (denoted by F,|prmu,no — idle|Cypq, and
F|prmu, mized no — idle|Cyqy, according to Graham et al. (1979), as well as PFSP with
makespan and total flowtime minimisation (F,|prmu|Che, € Fy|prmu| Y C;, respectively)
were adapted and tested with the purpose of generating a basis of comparison for the
proposed heuristics. Moreover, a method for calculating the makespan of a permutation
sequence and an acceleration method for the insertion neighbourhood are provided in
detail. The heuristics were compared through computational and statistical experiments in
an extensive benchmark with 4500 instances. Experiments with the MILP formulation are
presented in order to compared the proposed heuristics with optimal solutions for small
sized problems instances. The results obtained demonstrate that the proposed heuristics

offer high quality solutions with computational efficiency.

The chapter is organised as follows: Section 4.1 analyses the state of the art in
heuristics. Section 4.2 proposes new heuristics. In Section 4.3, computational and statistical
experiments are performed among the compared heuristics and the MILP model. Finally,

Section 4.4 draws the main conclusions of the study.

4.1 Literature Review

This chapter focuses on the state of the art of constructive and improvement

heuristics, as well as on the proposal of new heuristics to address the problem.

As mentioned earlier, the mixed no-idle PFSP with a sequence-dependent setup
times has not yet been studied in the literature. Therefore, heuristics proposed for other
related problems were adapted to our problem. Basically, the following topics were reviewed:
heuristics for the PFSP with makepsan criterion (F,,|prmu|Ci,..), PFSP with total flow-
time criterion (£, |prmu|Y_ C;), no-idle and mixed no-idle PFSP with makespan criterion

(B |prmu, no —idle|Cpaz, Fin|prmu, mized no — idle|Caz)-

4.1.1 Heuristics for the F|prmu|C,,q, problem

The first studies on heuristics for the PFSP with the makespan criterion can be seen
in Palmer (1965), Campbell, Dudek e Smith (1970), Gupta (1971), Dannenbring (1977),
Hundal e Rajgopal (1988), Sevast’janov (1995) and Koulamas (1998). Certainly, the most

102

efficient heuristic for the problem is the well known NEH heuristic of Nawaz, Enscore e Ham
(1983) and Fernandez-Viagas e Framinan (2014). Many extensions of this heuristic have been
proposed and can be found in the literature (NAGANO; MOCCELLIN, 2002; FRAMINAN;
LEISTEN, 2003; LOW; YEH; HUANG, 2004; KALCZYNSKI; KAMBUROWSKI, 2007b;
KALCZYNSKI; KAMBUROWSKI, 2008; DONG; HUANG; CHEN;, 2008; KALCZYNSKI;
KAMBUROWSKI, 2009; RAD; RUIZ; BOROOJERDIAN, 2009; RIBAS; COMPANYS;
TORT-MARTORELL, 2010; KALCZYNSKI; KAMBUROWSKI, 2011; FERNANDEZ-
VIAGAS; FRAMINAN, 2014; ROSSI; NAGANO; NETO, 2016).

Studies by Rad, Ruiz e Boroojerdian (2009), Fernandez-Viagas e Framinan (2014)
and Rossi, Nagano e Neto (2016), point out that currently, the best heuristics for the
problem are: NEH from Nawaz, Enscore e Ham (1983), FRB3 and FRB4;, from Rad, Ruiz
e Boroojerdian (2009), NEH FF from Fernandez-Viagas e Framinan (2014). The FRB3
and FRB4,, heuristics are both extensions of the NEH heuristic. In the FRB3 heuristic, a
local search based on the insertion movements is integrated with the NEH. The principle
behind the heuristic is to optimize the partials sequences generated by the NEH heuristic.
The FRB4; limits the number of jobs selected for insertion with the parameter k. In
this way, the method partially keeps the optimization of the partial sequences without
losing computational efficient. The FRB3 and FRB4;, presented better quality of solution
when compared to the NEH heuristic in exchange of additional computational time. The
NEH FF (FERNANDEZ-VIAGAS; LEISTEN; FRAMINAN, 2016) is also an extension
that apply a tie-breaking method for the partial sequences generated by the NEH. The

tie-breaking mechanism is based on the estimation of the idle times in the machines.

4.1.2 Heuristics for the F|prmu|Y_ C; problem

Various studies have focused on studying PFSP with a total flowtime criterion, since
its minimisation is important in many practical situations, especially when the objective is
to reduce the inventory or the costs involved in maintaining it (RAJENDRAN; ZIEGLER,
1997). Also, several heuristics have been proposed (RAJENDRAN, 1993; WOO; YIM,
1998; LIU; REEVES, 2001; FRAMINAN; LEISTEN; RUIZ-USANO, 2002; FRAMINAN;
LEISTEN, 2003; FRAMINAN; LEISTEN; RUIZ-USANO, 2005; NAGANO; MOCCELLIN,
2008; LAHA; SARIN, 2009). Pan e Ruiz (2013), Fernandez-Viagas e Framinan (2015)
and Rossi, Nagano e Sagawa (2017) carried out an extensive computational comparison
among the heuristics for the problem. According to the performed experiments, the main
constructive heuristics are: RZ from Rajendran e Ziegler (1997), LR(z) from Liu e Reeves
(2001), LR-NEH(z) from Pan e Ruiz (2013), FF(z) and FF-NEH(z) from Fernandez-
Viagas e Framinan (2015) and FF-RN from Rossi, Nagano e Sagawa (2017). Regarding
improvement heuristics, the following ones were highlighted: ICH1, ICH2 and ICH3 from
Li, Wang e Wu (2009), PR1(z) from Pan e Ruiz (2013) FF-ICH1, FF-ICH2, FF-ICH3,
FF-PR1 from Fernandez-Viagas e Framinan (2015).

103

Concerning constructive heuristics, the RZ was proposed by Rajendran e Ziegler
(1997), and consists of two phases. First, the jobs are ordered using a new priority rule
based on the lower bounds of the completions times of the jobs. Then, a method based on
insertion movements is applied on the sequence generated by the first phase. The LR(x)
from Liu e Reeves (2001) constructs the sequences by iteratively inserting unscheduled
jobs in the final position of the sequence until all jobs have been scheduled. The parameter
x controls how many sequences will be generated by the method, being the one with the
lowest total flowtime chosen as solution. Pan e Ruiz (2013) developed the LR-NEH((x)
that uses the LR(z) in conjunction to the NEH heuristic to construct the solution. Many
heuristics, for total flowtime minimisation use the LR(z) method as an initial solution
(ICH1, PR1) or to construct part of the sequence (LR-NEH(z)). That is, developing
an improved version of the LR(x) could lead, indirectly, to improving the heuristics
that use it. Along these lines, Fernandez-Viagas e Framinan (2015) developed a new
version of the LR(z) which is denoted by FF(x). Based on computational comparisons, it
was demonstrated that this new version surpasses the LR(x) heuristic, providing better
solutions with less computational complexity. The LR-NEH(z) also was modified, replacing
the LR(z) by the FF(x), and was denoted as FF-NEH(x). The FF-RN(z, y) from Rossi,
Nagano e Sagawa (2017) is based on the FF-NEH(x) algorithm. The method performs a
reinsertion of jobs in the partial sequences generated by the NEH heuristic, and similarly

to FRB4,,, the parameter y limits the number of reinsertions.

Regarding improvement heuristics, Li, Wang e Wu (2009) proposed the ICH1, ICH2
and ICH3 methods. In these heuristics, local searches based on insertion and permutation
movements are used to improve the solution generated by the LR(z) heuristic. In PR1(x)
Pan e Ruiz (2013), a local search using insertion movements is applied in the solution
given by the LR-NEH(x) method. Fernandez-Viagas, Leisten e Framinan (2016) proposed
the FF-ICH1, FF-ICH2, FF-ICH3 and FF-PR1 heuristics, which are improved versions
of the ICH1, ICH2 and ICH3 and PR1(x) heuristics, respectively. In these versions,
the LR(z) and LR-NEH(x) heuristics are replaced by the new FF(z) and FF-NEH(z)
methods. Fernandez-Viagas e Framinan (2015) shows that their proposals provided better
results both in terms of quality of solution and computational efficiency. Thus, the best
constructive heuristics from the literature are the RZ, FF(z), FF-NEH(x) and FF-RN(z,
y), and for the improvement heuristics are the FF-ICH1(x), FF-ICH2(z), FF-ICH3(z) and
FF-PRI(x).

4.1.3 Heuristics for the F|prmu,no — idle|Cpq and F|prmu, mized no — idle|Chqy
problems

Concerning the F|prmu,no — idle|Cyuq, problem, various studies have focused
on developing exact methods (B&B, mixed integer linear programming - MILP, and

polynomial exact algorithms) or on investigating the properties and variants of the

104

problem (ADIRI; POHORYLES, 1982; VACHAJITPAN, 1982; BAPTISTE; HGUNY,
1997; CEPEK et al., 2000; SAADANI; GUINET; MOALLA, 2003; BAGGA, 2003; KAM-
BUROWSKI, 2004; NARAIN; BAGGA, 2005a; NARAIN; BAGGA, 2005b; KALCZYNSKI;
KAMBUROWSKI, 2007a; GONCHAROV; SEVASTYANOV, 2009; NAGANQO; ROSSI;
TOMAZELLA, 2017; CHENG; SUN; YU, 2007; SUN et al., 2010; NG et al., 2011; SUN et
al., 2012). Likewise, many other studies focus on developing heuristics and metaheuristics
for the problem (WOOLLAM, 1986; KALCZYNSKI; KAMBUROWSKI, 2005; SAADANTI;
GUINET; MOALLA, 2005; PAN; WANG, 2008b; BARAZ; MOSHEIOV, 2008; PAN;,
WANG, 2008a; RUIZ; VALLADA; FERNANDEZ-MARTINEZ, 2009; TASGETIREN et
al., 2011; DENG; GU, 2012; TASGETIREN et al., 2013b; TASGETIREN et al., 2013a;
ZHOU; CHEN; ZHOU, 2014; SHEN; WANG; WANG, 2015).

According to studies conducted by Ruiz, Vallada e Fernandez-Martinez (2009), Pan
e Ruiz (2014), Nagano, Rossi e Tomazella (2017) and Nagano, Rossi e Martarelli (2018),
currently the most efficient heuristics for this problem are: GH-BM2, FRB3 and FRB4; by
Ruiz, Vallada e Ferndndez-Martinez (2009). The FRB3 and FRB4; heuristics are known
for the F|prmu|Cyna., whereas the GH-BM2 heuristic is an improvement of the GH-BM
heuristic by Baraz e Mosheiov (2008). In the experiments GH-BM2 showed considerably
better results when compared to the GH-BM.

4.2 Proposed heuristics

In this study, we developed three heuristics based on beam search. Beam-search-
based heuristics combine the diversification of the population-based metaheuristics with the
computational efficiency of the constructive heuristics (FERNANDEZ-VIAGAS; LEISTEN;
FRAMINAN, 2016; FERNANDEZ-VIAGAS; RUIZ; FRAMINAN, 2017; FERNANDEZ-
VIAGAS; VALENTE; FRAMINAN, 2018). In a beam search algorithm, partial sequences
(also called nodes) are generated at each iteration by inserting jobs in the last position
of the sequence. The best ranked N nodes generated are selected to be used in the next
iteration. The method continues until nodes with complete sequences of n jobs are obtained;

then the best ranked node is chosen to be the final solution of the method.

As FRB3 and FRB4;, heuristics obtained excellent results in previous studies (RAD;
RUIZ; BOROOJERDIAN;, 2009; ROSSI; NAGANO; NETO, 2016), we decided to use
their variants in conjunction with the beam-search concept presented previously. Moreover,
we resorted to the idea of the LR-NEH(x) heuristic by Pan e Ruiz (2013), except for
the fact that d jobs are inserted using a beam-search-based procedure and the remaining
n — d jobs are inserted by variants of the FRB3 and FRB4;, heuristics. This combination
resulted in two heuristics, H1(N) and H2(N, k), that use versions of the FRB3 and FRB4;
heuristics, respectively, for constructing the remainder of the sequence. N denotes the

number of nodes selected at each iteration; k is the number of jobs selected for reinsertion.

105

Additionally, an improvement heuristic, H3(V), was developed that carries out a local
search, RZ from Rajendran e Ziegler (1997) in the final solution generated by the H1(NV)
method. The local search is based on the insertion neighbourhood and its high performance
has already been demonstrated in various studies (FRAMINAN; GUPTA; LEISTEN, 2004;
LI; WANG; WU, 2009; FERNANDEZ-VIAGAS; FRAMINAN, 2015). Before describing
the proposed heuristics in more detail, it is important to define the index function used to

evaluate the nodes generated by the heuristic.

4.2.1 The index function for nodes evaluation

In order to meet the constraints of the mixed no-idle PFSP with sequence-dependent
setup and the total flowtime minimisation we modified the index present in the LR(x)
heuristic from Liu e Reeves (2001). Formally, a node, denoted by 7/, is linked to a partial
sequence ¥ with [jobs, 7¥ = {7},... 7/} and to a set of jobs that have not yet been
sequenced, U,. A node 7, can be branched generating other nodes, 7, by inserting a
job that has not yet been sequenced, J; € U,, in the last position [4+ 1 de 7, resulting in
v ={ny,...,), 7,1}, where 7, = J;. Then, an initial node 7; is branched into other
nodes, denoted by 77, ,, each one with a different job J; € U, in the last position of 7.
The principle behind the index is to evaluate three results from the insertion of job J;
in the last position: idle time generated, immediate effect of the job inserted in the last

position and influence of the jobs that have not yet been sequenced.

The idle time of the generated node 7/, ; is denoted by I'T;”. However, this evaluation
can lose relevance in mixed no-idle scenarios where most machines do not allow idleness.
Thus, supposing a sequence 7 = {77, ..., 7}, 7/, } of node 1y, |, to calculate the completion
times of the first [jobs of ¥, the normal condition studied in this work is considered, i.e.
the mixed no-idle flowshop sequence-dependent setup, making it possible, in this case, to
use the calculation method described in Subsection 2.3.2. However, for job J;, inserted at
position [+ 1, 7}, |, the completion times consider only the setup times, and all machines
are considered regular ones. These completion times of job J; in machine M;, denoted by

F; 141, can be calculated using the expressions below.

When job J; is inserted in the first position, | = 1:

Fin = Fioyp) + iy (4.1)

106

For all remaining positions:

Fijgy=Cip + 3[1”,[”1] + P1,ji4+1)
Fii41) = max (Ci,[l] + 8l s E—L[Hu) + Di ity (4.2)

1=2,....m

Note that the completion times of the job occupying position [(C;) remain
unchanged if we change the job which occupies position [+ 1 within the sequence. Therefore,
it is possible to pre-calculate C ;; and use the same values to calculate the completion
times of any job J; that is inserted in position [4-1. This enables us to quickly calculate the
completion times Fj 4q]. After the completion times Fj ;) are calculated, the calculation

of ITY continues in the same way as is done in the LR(x) heuristic.

m om - maz{ Fiy i) — Cip — sty ey 0
TP =(n—1-2)- ’ - 4
=) Z:ZQ i+l-(m—1i)/(n—2) (43)

The immediate effect of inserting job J; in the last position [+1, F'T}’, is evaluated
using the completion time of job J; that occupies the last position, [4 1, in the last
machine M,,, Fy, j4+1]. The aim is to choose those nodes with the lowest added completion

time generated by the insertion of the job, thus reducing the total flowtime.

FTY = Fp i) (4.4)

The influence of jobs that have not yet been sequenced, denoted by AT}, is estimated
by the completion time of the last machine of an artificial job, p, which is inserted at
the next position after job J;, F,, ,. That is, a partial sequence is generated with [+ 2
jobs ¥ = {m{,..., 7, 7 1, o}, where the last position is occupied by the artificial job
W, Ty = p. Artificial job p is assigned with processing and setup times in the machines.
Thus, the setup time between the candidate job and the jobs that have not yet been
sequenced can be minimised, resulting in a better final solution. The processing times,
Diu, and the setup times, sfm of the artificial job p can be determined according to the
expressions below.

o ZJhEU,Jh;ﬁJj Pin

i = 4.5
p K n — l _ 1 ()
; ZJheUJh;AJ. Séh
= : J_D 4.6
*n n—1—1 (4.6)

The influence of the jobs that have not yet been sequenced, denoted by AT}’, can

be calculated using the expressions below.
Fi, = Fl,[l+1] + Slll» + P
F;,, = max <Fi,[l+1] + 52” Efl,u) + Dip (4.7)
1=2,....m

ATY = F,, (4.8)

107

Finally, index ¢}, that evaluates the generated nodes, 7, , is defined below. The

N selected nodes are those that present the lowest value of ¢j.
o = IT + FT + AT/ (4.9)

4.2.2 The HI(N), H2(N, k) and H3(N) heuristics

The first heuristic, H1(N), initially generates n partial sequences (nodes) with only
one job, resulting in an initial set of nodes g = {n}, ..., ni}. Then, the set of nodes nl is
evaluated using the index ! (h=1,...,n). The N nodes that obtained the best (lowest)
values of p} are selected for the next step. For each node selected, ny (v =1,..., N), new
partial sequences are generated by inserting jobs J; € U" that have not yet been sequenced
of node 7y at the last position of the sequence 7¥. This results in a new set of nodes,
nt = {nt,n?, ...}, each one linked to a partial sequence with two jobs, 7% = {7¥, 7y, ...}.
As each node will generate n — 1 new nodes, there will be N - (n — 1) nodes to be evaluated
at this iteration. All generated nodes are evaluated using the index ¢{. The N best nodes
are selected for the next branching. The method continues iteratively until nodes with
partial sequences of d jobs are obtained. Then, the partial sequence 7 of node 7} with the
lowest total flowtime is selected to be the solution for this part of the method. The rest of

the sequence is constructed using a variant of the FRB3 heuristic, as described below.

At the end of this beam-search-based procedure, there will be a sequence 7 with d
jobs and n — d jobs still to be sequenced that belong to the set denoted by U. The jobs in
U are sorted by a non-descending order of the sum of the processing times (SPT rule).
The first job of the order is inserted in the best position of the 7w sequence. Afterwards, a
procedure, based on the insertion neighbourhood, is performed. Instead of reinserting the
jobs one by one as the FRB3 heuristic does, our proposal does this reinsertion in pairs of
adjacent jobs, m; and m,1. Rossi, Nagano e Neto (2016) already demonstrated that this
kind of reinsertion in pairs of jobs results in a better optimisation of partial sequences.
During this movement, the jobs from the pair are removed from the sequence and the
first job, m, is tested in all positions of the sequence, and the best position is selected
for insertion; then, the second job, 7, is considered analogously. Afterwards, the second
pair, {m 2, T3}, is reinserted and so forth, {m 4, 745}, until the last pair, {m,_1, 7}, is
done. When the reinsertion is finished, the method inserts the second job from the initial
ordering, and then the same reinsertion movements in pairs, as explained above. The next
jobs of the initial ordering are considered in the same way. The method continues until

the complete sequence with n jobs is obtained.

However, it is clear that the reinsertion procedure at each iteration in the heuristic
H1(N) is computationally intensive, since, at each iteration n/2 pairs of jobs are reinserted
and each job from the pair has to be tested in all positions of the sequence. In the

heuristic H2(N, k) , the number of reinsertions to be performed is limited, following the

108

same principle of the FRB4; heuristic. Thus, if a job of the initial order was inserted
in position j, it will be considered the pairs of jobs around this position, {m;_g, Tj—k+1},
{7mj—kt2, Tj—k+3}, - - {mj4u—1,Tj4x}. This allows the method to keep the optimisation of

the partial sequences without affecting the computational efficiency.

Finally, the H3(N) heuristic carries out a local search RZ, based on insertion
neighbourhood, in the solution generated by the H1(N). The insertion neighbourhood
is repeated until the solution does not get any better. The jobs to be reinserted in the
sequences follow the order of a reference sequence 77/, which is equal to the best solution
found until that moment. The pseudocode presented in Algorithm 2 shows the beam search
procedure used in the proposed heuristics for generating the sequence m with d jobs. The
heuristics HI(N), H2(N, k) and H3(N) are described in detail in Algorithms 3, 4 and 5,

respectively.

Algorithm 2 Beam search based procedure.
U is the set of unscheduled jobs, U = {J1, Ja, ..., J, }.
U; denotes the job occupying the jth position in the set U.
for h=1ton do
Generate the node 7.
" = {Jn}
Uh=U—J,
Evaluate the node nf using the index function ¢f.
end for
Order the generated nodes 7! in non-desceding order of ¢f.
Select the N first ranked nodes n{ to be the new set of nodes ng = {n3,n,...,nd' }.
for{=1tod—1do
h=1
for v=1to N do
for j=1ton—1[do
Generate the node 7}, from 7}.
Insert the job U; from U" in the [+ 1 position of 7, resulting 7.
Evaluate the node 7", using the index function ¢}
Uh=0"-U;
h=h+1
end for
end for
Order the generated nodes n}',; in non-desceding order of ¢}
Select the NV first ranked nodes to be the new set of nodes 7, ;.
end for
Select the sequence 7¥ of the node 7 that results in the lowest Y C;(7").
="
U=0"

return 7 = {my, ..., 7y} and U.

109

Algorithm 3 H1(NV) heuristic

Call the beam search based procedure (Algorithm 2).
Order the jobs in U according to the lowest value of the sum of processing times,
resulting in o = {ay, ag, ..., ty_q}-
for{=1ton—ddo
Insert job a; in 7 in the position that results in the lowest - Cj.
for j=1tol+d—1,stepj=j+2do
=
Remove the jobs 7 and 7}, ; from .
Insert the job 7 in the position of that results in the lowest 3- Cj.
Insert the job 7/, in the position of that results in the lowest 3= Cj.
if ZOJ‘(’RJ) <> Oj(ﬂ') then
=
end if
end for
end for
return T = {my, ..., T, }.

Algorithm 4 H2(N) heuristic

Call the beam search based procedure (Algorithm 2).
Order the jobs in U according to the lowest value of the sum of processing times,
resulting in o = {ay, g, ..., 4y_q}-
for(=1ton—ddo
Insert job ; in 7 in the position b that results in the lowest)~ Cj.
for j = max(1,b— k) tomin(l +d — 1,b+ k), step j = j + 2 do
7=
Remove the jobs 7 and 7, from 7'.
Insert the job 7’ in the position of that results in the lowest 3= Cj.
Insert the job 7, in the position of that results in the lowest 3= Cj.
if ZCj(ﬂ'/) <y Oj(ﬂ') then
=
end if
end for
end for
return m = {my, ..., }.

110

Algorithm 5 H3(NV) heuristic
7 =H1(N) (Algorithm 3)
Improvement = true
while Improvement = true do
el =1
for j =1tondo
Improvement = false
7=
Remove job W;ef from =’

Insert the job W;ef in the position of 7’ that results in the lowest Y C;.
if > Cj(ﬂ'/) <3 Oj(ﬂ') then
T=mn
Improvement = true
end if
end for
end while
return © = {my, ..., T, }.

4.3 Computational and statistical experiments
4.3.1 Instances generation

In this study, we used an adaptation of the benchmark proposed by Pan e Ruiz
(2014) for the mixed no-idle PFSP problem. We modified the set of tests in order to
consider the sequence-dependent setup times of the sequence between jobs in regular
machines. We also generated a set of instances to compare the proposed heuristics with

the MILP formulation in small sized problems instances.

The benchmark from Pan e Ruiz (2014) consists of seven groups with different
mixed no-idle scenarios. The problems are generated through combinations from a number
of jobs n = {50, 100, 150, 200, 250, 300, 350, 400, 450, 500} and a number of machines
m = {10, 20, 30,40, 50}, making a total of 50 possible combinations and five replications
for each combination (50 x 5 = 250 problems per group). The processing times of the jobs
were generated using a uniform distribution within the range U[1,99]. The groups have

the following mixed no-idle scenarios:

e Group 1: Only the first 50% of machines are no-idle.

o Group 2: The first 50% machines are regular, the remaining are no-idle machines
e Group 3: The machines alternate between regular and no-idle.

o Group 4: 25% of machines are randomly no-idle.

o Group 5: 50% of machines are randomly no-idle.

o Group 6: 75% of machines are randomly no-idle.

111

For each group of problems, the setup time between jobs only for the regular
machines was considered. Three groups of distribution were used: SSD-50, SSD-100,
SSD-125. We used the processing times generated by Pan e Ruiz (2014)

e SSD-50: setup times were generated according to a uniform distribution in the range
U[1,49].

e SSD-100: setup times were generated according to a uniform distribution in the
range U[1,99].

e SSD-125: setup times were generated according to a uniform distribution in the
range U[1, 124].

As there are 6 x 250 = 1500 problems with different mixed no-idle scenarios, the
result is a total of 3 x 1500 = 4500 test problems when the three distributions of setup

time are considered.

For the MILP formulated in Section 2.3.1 we set a maximum elapsed CPU time limit
of four hours to optimally solve the problems. With this time termination criterion, the
MILP can optimally solve problems with up to 20 jobs and 5 machines. Thus, for the MILP
evaluation we considered the following combination between number of jobs and machines
{n,m} = {10, 5}, {10, 10}, {15,5},{15,10}, {20, 5}. Five replication were generated for
each combination with processing times generated using the uniform distribution [1, 99] .
The same six mixed no-idle groups used in the previous benchmarks were used. For the
setup times generation we used the distributions SSD-50, SSD-100 and SSD-125. With

this settings, 5 x 5 x 3 X 6 = 450 instances were created.

4.3.2 Compared heuristics

Based on the literature review, we identified the heuristics that could be best
adapted to our problem. The methods chosen for comparing the classic permutation
flowshop problem (F),|prmu|Ciuq.), PESP with total flowtime criterion F,,|prmu|C; and
no-idle and mixed no-idle PFSP with makespan criterion F,|prmu, no — idle|C,,q, are
listed below. These heuristics from the literature were compared with those proposed
in this work. Parameters were selected considering those that obtained the best quality

solution and computational efficiency in the experiments performed.

e Proposed heuristics.
— H1(N), N = {10, 20}.
— H2(N, k), k = {5,10}, N = {10, 20}.
— H3(N), N ={10}.

112

 Heuristics adapted from the PFSP with makespan criterion problem, F| prmu|Ciqz-

The heuristics were adapted taking into account the non-descending sum of the
processing times (Shortest Processing Time - SPT) initial ordering rather than the
non-ascending order (Longest Processing Time - LPT), since it was demonstrated
that the SPT ordering gives better results when the total flowtime minimisation
criterion is under consideration. Although the NEH FF proposed by Fernandez-
Viagas e Framinan (2014) showed good performance, it is not possible to adapt the
NEH FF heuristic to our problem as the heuristic has procedures based on specific
properties of the F|prmu|C,., problem; thus, this NEH FF was not considered in

this computational experiment.

— NEH from Nawaz, Enscore ¢ Ham (1983): The heuristic has two phases. In
the first phase, jobs are ordered following the LPT rule. As mentioned, in our
adapted version, the SPT initial ordering was used instead of the LPT. In the
second phase, at each iteration, a job ordered in the first phase is evaluated
in all positions of the sequence, and the best position is chosen. The next job
from the initial order is considered analogously, and so forth until the n jobs

have been sequenced.

— FRB3 from Rad, Ruiz e Boroojerdian (2009): The FRB3 heuristic carries out a
local search based on using the insertion neighbourhood in the partial sequences
generated by the NEH heuristic. The method performs reinsertions of all jobs

from the sequences in all possible positions after each NEH iteration.

— FRB4,, from Rad, Ruiz e Boroojerdian (2009): in FRB4,, a limited local search is
carried out, where £k jobs that are positioned around the job recently inserted

by the NEH heuristic are selected be to be reinserted in the sequence.

« Heuristics adapted from the PFSP with total flowtime criterion, F,,|prmu| Y- C;.

The improvement heuristics ICH2, ICH3, FF-ICH2 and FF-ICH3 use intensive local
searches based on permutation movements of pairs of jobs. It is worth highlighting
that the acceleration method (Subsection 2.3.4), which allows a significant reduction
of computational complexity, cannot be used to evaluate the total flowtime resulting
from the permutation of jobs, since it is targeted only for the insertion neighbourhood.
As a consequence, these methods become computationally inefficient and therefore,
were not selected for adaptation and comparison. As the heuristics FF(z), FF-
NEH(z), FF-ICH1(z) and FF-PR1(z) are improved and more recent versions of
heuristics LR(x), LR-NEH(x), ICH1 and PR1, only the first group of heuristics was

selected for adaptation.

— RZ from Rajendran e Ziegler (1997): This heuristic has two phases. In the first

phase, m sequences are generated by ordering the jobs J; (j = 1,...,n) in

113

non-descending order of 7 (Expression 4.10), and the best solution is chosen as
seed sequence. From Expression 4.10, note that each sequence is generated by an
iteration of k (k = 1,...,m), as each iteration generates a distinct ordering for
the jobs, and consequently different sequences. In our adaptation we maintained

this method to generate the seed sequence for the RZ heuristic.

=S =it 1)py k=1,m (4.10)
i=k

In the second phase, the seed sequence is improved by inserting jobs within

partial sequences, which are successively obtained.

FF(x) from Fernandez-Viagas e Framinan (2015): First, this heuristic generates
an initial ordering of the jobs according to a non-descending order of an index
function, {’;k, which takes into consideration the idle time of the machines.
The first job of the initial ordering is chosen to occupy the first position of
the sequence. Afterwards, at each iteration, all jobs J; belonging to the set of
jobs that have not yet been sequenced (J; € U) are tested in position k + 1
of the current sequence. The candidate job with the lowest index value &},
is permanently inserted in position (k + 1) of the sequence. The procedure
ends when n jobs have been sequenced. Heuristic FF(z) can generate multiple
complete sequences by choosing a different job to occupy the first position
of the sequence. From this choice, the method generates a complete sequence
using the same procedure described previously. Parameter x defines the number
of complete sequences that will be generated by the heuristic. The &}, index

from a candidate job J; in the k + 1 position can be calculated as the following

expressions.
(n—k—2)

G = T+ AT, (4.11)
~om - maz{Ci_1; — C;;,0}

[T :Z _ m—1+0b (4.12)
=2 g —b4+k —F

n—2
ATJ{Jc =Cnj (4.13)

As this study considers the existence of setup times and also no-idle machines,
we adapted the & index in order to consider the conditions addressed in this
chapter. For the first k jobs of the partial sequence, the completion times are
calculated taking into account the existence of set-up times and the mixed
no-idle condition. However, only for the completion times of candidate job J;
is it considered that all machines are regular, as well as the setup existence.
Therefore, the I T](7k, component that measures idleness can be evaluated even
when most are no-idle machines. As stated in Section 4.1, (FERNANDEZ-
VIAGAS; FRAMINAN, 2015) replaced the procedure LR(z), used by several

114

existing heuristics, by the new method FF(z), resulting in better versions of the
heuristics LR-NEH(z) and PR1(z) from Pan e Ruiz (2013) and ICH1, ICH2
and ICH3 from Li, Wang ¢ Wu (2009), called: FF-NEH(z), FF-PR1(z) and
FF-ICH1, respectively, which are detailed below.

— FF-NEH(z): The FF-NEH(z) is an improved version of the LR-NEH(z) from
Pan e Ruiz (2013), which replaces the LR(z) heuristic by the FF(z). The
heuristic first generates a partial sequence of d jobs using the FF(z); then the
remaining n — d jobs are inserted into the partial sequence through the NEH

heuristic.

— FF-PRI1(z): This method is an improvement heuristic based on the PR1(x)
Pan e Ruiz (2013). The heuristic improves each of the solutions generated by
the FF-NEH(z) method using the iRZ local search, which is based on insertion

neighbourhood movements.

— FF-ICH1(z): The FF-ICH1(z) replaces the LR(z) heuristics used in the ICH1
by the FF(z) from Fernandez-Viagas e Framinan (2015). The ICH1 is a improve-
ment heuristics that combines the local search based on insertion movements in
conjunction with an efficient iterative method that is repeated until the solution

is no longer improved or until a certain stop criterion is met.

— FF-RN(z, y) from Rossi, Nagano e Sagawa (2017): This method is based on
the FF-NEH(x) algorithm from Fernandez-Viagas e Framinan (2015), with the
difference that a reinsertion of jobs in the partial sequences generated by the
NEH heuristic is performed. In order to make the method computationally
viable, the authors limit the selection of y jobs to be reinserted at each iteration.
The jobs are selected for reinsertion using an weight index W', being the job to
be prioritized the one that results in the lowest total flowtime when removed

from the current sequence.

o Heuristics adapted from the no-idle and mixed no-idle PFSP with makespan criterion,
Folprmu, no — idle|Crq, and Fy,|prmu, mized no — idle|Cyqy. The initial LPT
ordering of the GH-BM2 heuristic was replaced by the SPT rule as in this study we

aim to minimise the total flowtime but not the makespan.

— GH-BM2 from Ruiz, Vallada e Fernandez-Martinez (2009): This heuristic is
a better version of the heuristic from Baraz e Mosheiov (2008). The GH-BM
has two phases. In the first phase, the heuristic adds jobs at the end of the
sequence, selecting the one that results in the lowest makespan when inserted
in the last position. In the second phase, pairs are swapped, testing all the

possible matches and swapping them, which result in a lower makespan value.
The GH-BM2 replaced the first phase of the heuristic by the NEH from Nawaz,

115

Enscore e Ham (1983) and the pairwise exchange procedure was carried out in

the second phase for an insertion neighbourhood.

4.3.3 Performance measures

The performance measures used to compare the heuristics were: quality solution
and computational efficiency. The quality solution was evaluated by the relative deviation

(DRY) of the heuristic h in problem ¢, and can be calculated by the expression below.

Y Cj(my) = X Ci(n*)!
> Cj(m)t

DR}, =100 - (4.14)

where 3 C; (7rh)t is the total flowtime provided by the sequence 7, through the heuristic
h for problem ¢. 3 C;(7*)" is the best solution found among all heuristics compared for
problem ¢. It can be seen that as the lower is the value of DR}, the closer the heuristic’s
solution will be to the best result found. The mean average of the relative values (ARPD;,)

of a heuristic A in conjunction with N problems can be calculated by the expression below:

Y, DR,

ARPD), = N

(4.15)

To assess the computational efficiency, the average time in seconds was used (average
CPU - ACPU). All compared heuristics were implemented in C++, compiled using Intel
C++ and executed in an Intel Xeon E5-2680 @ 2.7 GHz with 16 GB RAM memory. To
solve the MILP model we used the IBM CPLEX Optimization Studio (version 12.8) with
Python Application Programming Interface (API).

4.3.4 Parameter tunning for the H1(N), H2(N, k) and H3(N)

The heuristics H1(N), H2(N, k) and H3(N) have an important parameter d that
controls the number of jobs that will be inserted through the beam-search-based procedure.
Tests with values d = {n/4,n/2,3n/4} were carried out aimed at evaluating the heuristics
behavior in terms of their quality solution (Average Relative Percentage Deviation - ARPD)
and computational efficiency (ACPU). As the H3(N) heuristic uses the H1(V) heuristic
for generating the initial solution, only the heuristics H1(N) and H2(N, k) were tested.
The heuristics were tested with the number of nodes N = {10,20} and the number of
reinsertions k = {5, 10}. Table 28 present the results in ARPD and ACPU, considering
the average resulting from the possible combinations of N = {10,20} and k = {5, 10}.

116

Table 28: Parameter testing with different values for d.

Heuristic d value ARPD ACPU

H1 n/d 0.75 218.43
n/2 0.79 204.86
3n/4 1.24 163.27

H2 n/4 4.15 18.46
n/2 4.17 19.65
3n/4 4.79 17.20

In heuristic HI(N), the tests show very similar ARPDs when d = {n/4,n/2}
(0.75 and 0.79), although the ACPU is considerably larger for d = n/4 (218.4 against
204.8 seconds). Thus, the slightly lower ARPD does not worth the worse computational
efficiency when d = n/4. For d = 3n/4, the ACPU is smaller (163.2 seconds), and
the ARPD becomes considerably worse (1.24). This shows that the beam-search-based
procedure is computationally efficient because the heuristic speeds up when the number
of jobs inserted through the beam-search procedure increases. Therefore, for heuristics
H1(N) and H3(N), the best results are obtained when d = n/2 and this value will be used
for the subsequent experiments. The results are similar for heuristic H2(N, k), where for
d={n/4,n/2}, the ARPDs are close (4.15 and 4.17), respectively and d = {3n/4} with
ACPU smaller (17.2 seconds), although the ARPD is worse (4.79). Thus, for heuristic
H2(N, k), the best performance considering both ARPD and ACPU is also achieved when
d=n/2.

4.3.5 Comparison

The results of the heuristics comparison (Subsection 4.3.2) in the set of test
problems (Subsection 4.3.1) are presented in Table 29, in terms of solution quality (ARPD)
and computational efficiency (ACPU). The best ARPD results achieved were through
the improvement heuristic H3(10) with 0.63, although at a ACPU of 221 seconds. This
was a result already expected, since the H3(N) heuristic applies a local search based on
insertion neighbourhood in the solution generated by the H1(/N) heuristic; this results in
better quality solutions in exchange for additional computational time. After that, the
best results are obtained by the proposed heuristic, HI(N) (N = {10,20}), with ARPDs
0.78 and 0.79. After that, the one with the best performance was the heuristic adapted
from the literature, FRB3, with ARPD of 1.94 and ACPU of 198.5 seconds. However, the
proposed method, H1(20) obtained ARPD considerably smaller (0.78), with ACPU very
close to 208 seconds, respectively. The proposed heuristic, H2(N, k) N = {10,20} and
k = {5,10}) is the third best, with particular emphasis on H2(20, 10) that obtained ARPD
of 3.65 and ACPU of 25 seconds. The heuristic H2(N, k) obtained worse solutions when
compared to heuristics HI(N) and FRB3, although its ACPU is much smaller, resulting
in a good trade-off between ARPD and ACPU. Given these results, heuristic H2(10, 10)

117

Table 29: ARPD and ACPU for the compared heuristics.
ARPD

Heuristics SSD50 SSDI00 SSD125 Average "CPU
H3(10) 057 065 060 063 221.07
H1(20) 0.79 080 076 078 207.64
H1(10) 0.76 079 082 079 202.09
FRB3 159 200 222 194 19847

H2(20, 10) 383 3.65 3.46 3.65 25.09
H2(10,10) 3.86 3.76 3.62 3.75 20.22
FF-RN(5, 10) 4.47 4.50 4.44 4.47 59.61

H2(20, 5) 4.90 4.56 4.28 4.58 19.21
FRB449 4.33 4.73 4.90 4.65 14.71
H2(10, 5) 4.91 4.72 4.46 4.70 14.08

FF-RN(1,10) 531 5.43 5.35 5.37 11.29
FF-RN(5,5) 569 5.50 5.41 5.54 45.65
FRBA; 529 5.61 5.91 5.60 8.71

FF-PR1(10) 576 6.4 5.90 5.93 41.57
FF-PR1(5) 577 6.16 5.95 5.96 30.92
FF-PR1(1) 577 617 6.0l 5.98 20.52
FF-ICH1(5) 584 6.64 6.55 6.34 31.93
FF-ICH1(10) 584 6.64 6.55 6.34 42.43
FF-ICHI1(1) 584 6.64 6.55 6.34 24.70
FF-RN(1,5) 659 6.43 6.33 6.45 8.54
GH-BM?2 695 744 7.68 7.36 2.52
NEH FT 926 9.48 9.66 9.47 0.79

FF-NEH(10) 14.22 10.33 9.06 11.21 5.78
FF-NEH(5) 14.60 10.70 9.44 11.58 3.00

RZ 11.99 14.05 14.85 13.63 2.06
FF(10) 25.99 18.42 16.11 20.18 0.44
FF(5) 26.57 18.94 16.62 20.71 0.22

outperformed heuristic FRB4,, (k = {5,10}) adapted from the literature, which obtained
ARPD of 4.65 and 5.60, respectively. No significant change was observed on the ARPD of
heuristics H1(NNV), H2(NV, k) and H3(N), as the distribution setup times changed.

It is worth noticing that the heuristics adapted from the F|prmul 3> C; problem
(RZ, FF(z), FF-NEH(z), x = {5, 10}, FF-ICH1(z) and FF-PR1(z), FF-RN(z, y)) did not
achieve good results, even considering that the problem in this study also addressed the
total flowtime minimisation. Among the methods adapted from this problem, the best
heuristic was the FF-RN(5, 10) with ARPD of 4.47 and ACPU of 59.6 seconds. The heuristic
GH-BM2, adapted from the F'|no — idle|C,,4, problem, proved to be computationally very
efficient with ACPU of only 0.8 seconds, while at the same time providing reasonably
quality solutions with ARPD of 7.36. It can be observed that heuristics FF-NEH(z) and
FF(x) benefit from the relevance increase of the setup times in the problem. Note that
for FF-NEH(10) in the SSD50 distribution, the ARPD is 14.22 and for the SSD125 set,

118

22.00]
21.00 o
20.00 10
19.00
18.00
17.00
16.00 -
15.00
14.00 &
13.00

12.00 1 FE-NEH(S)

11.00 - FE-NEH(10)

ARPD

10.00 — NEHFT
9.00

8.00— GH-BM2
7 FF-ICHI(1)

7.00 - FE-RN(1, 5) FF-ICHI(S)
A FF-PR1(5)
Y g\n-lcm(lo)
~ eRB4AS FEPRI(IY
5.00 - FRRN(L, 10) LaB4 10 FF-RNGS, 5) FF-RN(S, 10)
H2(10, 5)
4.004 H2(10, 10), 1220, 5)

6.00 = FF-PRI(10),

\HZ 20, 10;
3.00 2010

FRB3
2.00—

100 HI00) 30

HI(20)
00 T T T T T T T T T T
.00 25.00 50.00 75.00 100.00 125.00 150.00 175.00 200.00 225.00

ACPU

Figure 12: ARPD vs ACPU for the compared heuristics.

the ARPD is 9.06; i.e., a relevant difference in performance. For the other heuristics, no
significant change was observed in the results as the setup times distribution were changed.
The results are shown in Figure 12, where it can be observed that the proposed heuristics

H1(N), H2(N, k) and H3(N) are dominants in terms of ARPD and ACPU. The results, in

more detail, with a variation in the number of jobs n, are presented in Tables 30 and 31.

119

€90 ¥F0 SF0 IS0 6V0 LGS0 8G0 ¥90 €L0 8.0 1T (01)¢H
co'e 0zF OI'F <¢I'v S88€ FLE ILE 09¢ €8¢ F0E FLT (0T ‘0z)cH
8¢'F CGI'¢ 00C ¢0SC S8V ILF G9F 09F 9TF 96°€ SG€ (¢ ‘0z)cH
cLe 62F SV 1TV 10V LS'E L8'E€ 69¢ 68 LIE IS8T (01 ‘01)2H
0LV LTS 0TS €S S6F 8% 8LV 0LV 62V 01V S9¢ (¢ ‘01)CH
8L°0 2¢0 IS0 650 €90 090 TIL0 6.0 L60 SOT €F1 (0z)1H
6L°0 ¥S0 80 090 090 890 IL0 080 €0 20T SPI (01)TH
VY 79¢ €S SFS 90'¢ €8F 99F €8V 8Le €2t 62T (0T ‘QNU-AA
pe'e gL9 €99 969 6T F6'SG 9LG TFS 08V 08V cre (G GNY-AI
L8°G .29 019 FI'9 8LG 99°¢ FFG gec L8F 9¢F oLe (0T ‘TINU-AA
Gv'9 9¢L TTL 8TL F89 6L9 €99 €€9 68G¢ 68¢ oLV (G T)NY-AI
€6'¢ 789 899 L99 FFO I€9 209 e8¢ IFC 86V LIV (0D)TUd-dd
96'¢ €89 899 899 GO €9 €09 €8¢ FFS G0S 6CF (e)19d-a4
86'¢ ¥89 699 899 9¥9 FE9 909 98¢ SFC 60C FETF (D19d-Aa4
pe'9 LeL 1T SOL 069 €99 99 LT9 T6C €S ISV (01)THDI-AA
pe'9 LeL ITL SOL 069 €99 99 LT9 T6C ¢eS 16T (Q)THDI-AA
pe'9 LeL ITL SOL 069 €99 99 LT9 6¢ ¢es 16TV (DIHDI-AA
11T $02l 0611 022l 9L1T ¥9° 1T ¢FIT COTT 6901 S8Z0T 016 (0T)HAN-AA
QG'TT ¢€¢l 612l 0GCl L0Cl ¥6TT FLIT S¢TIT OT'TT 80T 226 (G)HAN-AA
81°0¢ 6602 60z OVIT #6002 €L0¢ 1807 8661 G961 TO6T €€LI (01)d4d
1,02 9¢1¢ 0£1¢ ¢81¢ 0F'1c 61°'1¢ T1€1¢ 160¢ 9207 T1L6T V&Sl (6)dd
P6T WLT IST €61 €T 06T 68T ¥6T G0¢ 10T LT3 eqyd
0¥ L3¢ ST LTS 96V S8V LLF T9F STV 0V 9g'e 0T A
09°¢ Sz9 119 ¥29 96G 6LG €L¢ 19G €S F6TV 9TF I
9¢’L 9T’ G6'L 8T8 LLL SGL ¥SL 6TL G899 LV9 9LG CING-HD
76 G666 GL6 LOOT 896 846 96 I¥6 FI6 006 €F'S IJd HAN
€o'eT FF'ST PI'GT €VST €LFT OFFI €6'€T 8Tl 0.2l €911 296 74
oFuony 0% 0GP 00F 0GE 008 09z 002 01 001 05 —

sqol jo requuny

'sqol Jo requmu o) Aq poSurLre swo[qoId Jo 398 Yoeo 10} (IJHV :0€ o[qRL

120

60°GC 19'8L 99'8G¢ LV'ZF 688¢ ¢00Z GETl TI€9 ¢9T IS0 GI0 (01)eH
16T €G8¢ GFFP ¥9°Ce L9CC LVST L00T FFS 61C €90 010 (0T ‘02)2H
2e0T LEV9 TSl €8FE Grer €¢Sl LT6 S6TF S0T 090 600 (¢ ‘0z)zH
SUFT LLVF L6C€ I8'€C €191 S80I €L9 IGEe SFT S0 800 (0T ‘01)2H
$9°20¢ €1°008 T908S ST0FE 0900 TLEIT 699G Ge¥Fg LT'S 08T LTO (¢ ‘0T)zH
60207 TF'T8L T8'€TE TL0SE TOLST TT60T 6V FS 62'€C 99L 6ST ¥1°0 (0z)TH
L0'TZT TO'LG8 0L08G T8TGE 8GT0Z LE6IT 1€6S 6092 FL'8 T6T ST0 (o1)1H
196G TL68T G6CPT LP'E0T T8'89 €CFF 996Z OFel I8¢ GLT <20 (0T ‘©INY-AA
GO'GY 89°LFT GE60T gFLL T8TC 9L€e 1961 €101 6¢F L1 L0 (G ‘CINY-AA
61T T29¢ 9897 ¢T6l €Lcl 098 9IS ¥9¢ EI'T ¥&0 <00 (0T ‘T)NY-AA
ve's ¢6LT FROT VRRFT 296 ¥T9 F9€ 06T I80 ¥20 €00 (G T)NYU-AJ
LSV TOGET TL'86 TP69 FS'SP SFTE G6LT ¥I'6 8¢ 01T FT0 (01)T9d-Ad
2608 €STOT 8e'€L G®0G €09¢ F0TE TSl 0V9 09T L0 IT0 (S)19d-a4
2e0z 99°L9 9Z6F €098 €6'€C LVVI 8LL 10T SST IF0 00 (D19d-a4
ev'ch O8'TET L2'86 €TTIL ¥6°0¢ 9¥'Se FL0Z 0£0T 0y TT'T <10 (01)THOI-AA
¢6'T¢ 0066 SPFL 999G G8'8¢ GFGT 0€FI 80°L 98T G900 600 (G)THOI-AA
0L7C 9¢'€8 GT'€9 g6eh 98Fc LT9T 168 €7 GLT <SP0 900 (I)THDI-AA
QLG TOST 98€T 066 L99 SFF 09C FFT ¥90 120 ¥00 (0T)HAN-AJ
00¢ 6V6 9T, 0 FFE 62C IFT GL0 FE0 010 200 (G)HAN-AJ
P0 LTT G660 FL0 990 O0F0 230 LT'0 600 ¥O'0 100 (01)ad
ge0 690 SF0 L80 8¢0 020 FIO 600 SO0 TO0 000 (¢)dd
L7'S6T 8'T9L 99906 TG'8TE TPC6T ¢G'S0T T1.€S 8€'€C F8L €91 €10 ey
ILVT S6°LF 89FE €06z 9L9T 980T 6£9 IFE 6FT 9¥0 L00 Oy
IL'8 86LC F¥L0T €8FT ¥66 6F9 ISE G0T 680 830 F00 PaUd
gec 96L F09 eev 16T 16T €I'T 090 920 800 T0°0 CING-HD
6L°0 LGC 68T L&T 680 8G0 €80 8T'0 800 €00 000 L4 HAN
907 999 IS8T 6F€ L€T 69T F60 050 TZ0 900 1070 A
oFetony 00G 0S¥ 00¥ 0S¢ 00¢ 0SZ 00% OST 00T 0 -

sqol jo Tequuny

‘sqol Jo Toquunu oY) Aq peSueire swo(qold Jo 30s yoeo 10J NJOV 1€ 9[RI,

121

Furthermore, the statistical Tukey test was performed aimed at verifying if there
is a statistical difference at 95% confidence level among the means obtained through the
best tested methods (FRB3, FRB4,, H1(N), H2(N, k) and H3(N)). The results obtained
from the test are shown in Figure 13. It can be observed from this figure that there is
no overlapping of the range of error bars at the 95% confidence level, demonstrating,
therefore, that the methods compared are statistically different. Given these results, it
can be concluded that the proposed heuristics H1(V), H2(N, k) and H3(V) surpass those

adapted from the literature.

6.00 -
5.60
5.50 = L
5.00
4.65
I
4.50
4.00 375
- 3.65
I
3.50
3.00 -
2.50
1.94
2.00— -
1.50
1.00 0.79 0.78
= o el 0.63
=0
0.50 T T T T T T T T
5 2 3 3 2 s 3 3
- = = = -
= 2 = s T = 2
) & &
o T

Figure 13: Means plot for the heuristics in all distributions with 95% confidence intervals.

As the proposed heuristics presented the best results in the previous comparison,
we choose the H1(N), H2(N, k) and H(N) to be compared against the optimal solutions
found by the MILP formulation (Section 2.3.1). We used the set of parameters N = {10}
and k = {5}. The Table 32 presents the results in terms of ARPD and Table 33 shows the
percentage of optimal solutions found by the proposed heuristics. The ARPD represents the

distance of the solutions found by the proposed heuristics relative to the optimal solution

122

obtained by the MILP for the instance set. The results show that the proposed heuristics
find near optimum solutions, with an ARPD of 4.34, 4.99 and 3.75 for the H1(10), H2(20,
5) and H3(10), respectively, when we considers all the instances. In addition, in average
6.67%, 7.11% and 10.67% of the solutions found by the H1(10), H2(20, 5) and H3(10)
heuristics are optimal, respectively. The best results are achieved when n = 10 and m = 5,
where the percentage of optimal solutions found can reach up to 30% for the SSD-100 and
SS-D125 distributions intervals. Table 34 shows that the MILP CPU time requirements
grow considerably as the number of jobs and machines increases. As can be seen the
maximum CPU time can reach up to 3 hours and 36 minutes (129738 seconds) in the worst
case scenario for the set of instances with n = 20, m = 5 and SS-D125 distribution. Thus,
together with the results presented in the previous benchmarks we can conclude that the

our proposed heuristics obtain high quality solutions with computational efficiency.

Table 32: APRD for the proposed heuristics when compared to optimal solutions.

Distribution n m HI(10) H2(10, 5) H3(10)

SSD-50 10 5 3.02 3.43 2.77
10 10 2.48 2.82 2.07
15 5 4.46 4.35 3.81
15 10 4.18 4.55 3.23
20 5 5.04 2.98 4.63
SSD-100 10 5 3.18 3.08 2.71
10 10 3.14 3.58 241
15 5 496 6.50 4.23
15 10 5.11 4.91 4.48
20 5 6.19 7.84 5.74
SSD-125 10 5 2.66 3.37 1.90
10 10 2.54 2.87 2.23
15 5 6.51 7.56 5.36
15 10 4.46 6.04 3.77
20 5 718 7.96 6.83

Average 4.34 4.99 3.75

123

Table 33: Percentage of optimum solutions for the proposed heuristics.

Distribution n m HI1(10) H2(10, 5) H3(10)
SSD-50 10 5 6.67 6.67 16.67
10 10 16.67 10.00 20.00
15 5 6.67 6.67 10.00
15 10 0.00 3.33 0.00
20 5 0.00 0.00 3.33
SSD-100 10 5 20.00 30.00 26.67
10 10 10.00 6.67 16.67
15 5 3.33 0.00 6.67
15 10 0.00 0.00 3.33
20 5 0.00 0.00 0.00
SSD-125 10 5 20.00 23.33 30.00
10 10 16.67 10.00 20.00
15 5 0.00 10.00 6.67
15 10 0.00 0.00 0.00
20 5 0.00 0.00 0.00
Average 6.67 7.11 10.67

124

Table 34: Average and maximum CPU time for the MILP model.

Distribution n m Average Maximum CPU time
SSD-50 10 5 1.06 2.11

10 10 1.87 3.56

15 5 14.80 71.62

15 10 58547 5981.66

20 5 478.49 5958.69
SSD-100 10 5 098 1.94

10 10 2.56 13.93

15 5 10.73 51.08

15 10 65341 7191.43

20 5 148.59 1598.09
SSD-125 10 5 1.19 5.94

10 10 2.77 11.31

15 5 3289 264.33

15 10 16748 1369.74

20 5 2430.59 12973.83
Average 302.19 12973.83

4.4 Conclusion

In this chapter, for the first time, the mixed no-idle PFSP with sequence-dependent
setup times and total flowtime minimisation is addressed. Based on a literature review
conducted on related problems, high quality heuristic methods were selected in order to
adapt them to the problem under study. Moreover, the constructive heuristics H1(/V) and
H2(N, k) and the improvement heuristic H3(/V) were developed. The heuristics were based
on the beam search algorithm. At each iteration, nodes are generated by inserting jobs in
the last position of partial sequences. The nodes are evaluated through an index function
developed according to the generated idleness and to the influence of the job inserted and
of the jobs that have not yet been sequenced in the sequence. The best ranked sequences
(nodes) are selected to remain for the next iteration. Additionally, the beam search strategy
was combined with a constructive procedure that uses variants of the FRB3 and FRB4,
heuristic to construct a final solution; thus, the method can optimise the partial sequences

(nodes) generated.

The proposed methods were exhaustively compared through statistical and compu-
tational experiments with adapted heuristics in an extensive set of problems with 4500

instances. Heuristics H1(/V) and H3(N) obtained the best results, delivering considerably

125

better solutions than FRB3 (the best method adapted from the literature). Another high-
light was the constructive heuristic H2(N, k), with a good trade-off between computational
cost and quality solution. The statistical tests that were carried out demonstrated that
the solutions generated by the proposed heuristics are statistically better than those
obtained by the adapted methods. The proposed heuristics were also compared with the
optimal solutions found by the MILP formulation. The results showed that our proposal
can generate near optimal solutions for small sized problems instances. Therefore, based
on the results presented, it can be asserted that the proposed methods are an important
contribution to the state of the art in heuristics for the problem considered in this study.

In the next chapter address the mixed no-idle PFSP with total tardiness criterion.

127

5 THE MIXED NO-IDLE PFSP WITH SETUP TIMES AND TOTAL TARDI-
NESS MINIMISATION

The total tardiness criterion is essential for the current production systems, as
surveys of industrial scheduling practice show that meeting customer due dates is a critical
concern for many manufacturing systems (RAMAN, 1995). According to Sen e Gupta
(1984), when a job is not completed by its due date, certain costs are incurred, i.e. direct
dealing with the customer, paperwork, telephone calls, executive time taken up; penalty
clauses in the contract; loss of goodwill resulting in an increased probability of losing the
customer for some or all future jobs or perhaps in a damaged reputation which will turn
other customers away; and expediting (the job is moved quickly through the machines at
the possible cost of extra set-ups, double handling of material, inefficient use of workmen

and machinery).

In this chapter, the total tardiness minimisation criterion in a mixed no-idle
PFSP is addressed given its relevance for the current manufacturing systems. As this
is the first time that this problem has been studied, the most efficient heuristics and
metaheuristics proposed for the no-idle PFSP problems with total tardiness criterion
(denoted by F,|prmu,no — idle|C,qz, according to Graham et al. (1979)), as well as the
PFSP with total tardiness minimisation (£, |prmul - T}, respectively) were adapted and
tested with the purpose of generating a basis of comparison for the proposed heuristics.
The methods were compared through computational and statistical experiments in an
new benchmark. The results obtained demonstrate that the proposed methods offer high

quality solutions with computational efficiency.

The chapter is organised as follows: Section 5.1 analyses the state of the art in
heuristics and metaheuristics. Section 5.2 proposes new methods. In Section 5.3, computa-
tional and statistical experiments are performed among the compared heuristics. Finally,

Section 5.4 draws the main conclusions of the chapter.

5.1 Literature Review

As mentioned earlier, the mixed no-idle PFSP with a sequence-dependent setup
times has not yet been studied in the literature. Therefore, we provide a background on
heuristics and metaheuristics proposed for other related problems. Basically, the following
problems were reviewed: PFSP with total tardiness criterion (F,|prmu| 3 T};), no-idle
PFSP with total tardiness criterion (F,,|prmu, no — idle| > Tj).

128

5.1.1 The F,,|prmul| Y. T; problem

The first to study the F,,|prmu|Y_T; problem was Gelders e Sambandam (1978).
They developed four constructive heuristics. Later, the well known NEH heuristic of Nawaz,
Enscore e Ham (1983) was adapted by Kim (1993). The NEH heuristic has two phases. In
the first phase, jobs are previously ordered in a non-ascending order of the sum of their
processing times, also known as Longest Processing Time (LPT). In the second phase,
at each iteration, a job ordered in the first phase is evaluated in all possible positions
of the programmed jobs partial sequence. The next job from the ordering is considered
analogously, and so forth until the n jobs have been sequenced. The NEHgpp differs from
NEH by ordering the jobs in the first phase in non-increasing order of due dates (Earliest
Due Date dispatch rule — EDD), and by evaluating the sub-sequences during the second
phase by their total tardiness instead of their makespan. Kim, Lim e Park (1996) also
developed the ENS1 and ENS2 heuristics that start from the NEHedd solution and apply

an improvement procedure based on insertion and interchange of jobs, respectively.

Parthasarathy e Rajendran (1998) proposed a simulated annealing (denoted as
SAH) algorithm with two perturbation schemes, the Random Insertion Perturbation
Scheme and the Curtailed Random Insertion Perturbation Scheme. The proposed SA

algorithm with two schemes is evaluated against the heuristic from Kim (1993).

Armentano e Ronconi (1999) developed a tabu search-based algorithm, and com-
pared their proposal with the NEH heuristic and with a Branch-and-Bound algorithm.

Four different scenarios of due dates were tested.

Hasija e Rajendran (2004) presented a heuristic algorithm based on the simulated
annealing (denoted as HR in this work). The proposed algorithm uses two different
perturbation schemes and a new improvement scheme. The authors compared their
metaheuristic with the algorithms from Parthasarathy e Rajendran (1998) and Armentano
e Ronconi (1999)

Framinan e Leisten (2008) proposed a hybrid algorithm (HA) that uses the Variable
Neighbourhood Search (VNS) concept of varying the neighbourhood, but apply it to the
destruction and construction phases of the IG algorithm from Ruiz e Stiitzle (2007). The
algorithm is compared with the work from Parthasarathy e Rajendran (1998) and Hasija
e Rajendran (2004)

Vallada e Ruiz (2010) developed three genetic algorithms (GAPR, GAPR2, and
GADV) that included techniques like path relinking, local search and a procedure to
control the diversity of the population. The algorithms outperformed Hasija e Rajendran
(2004) and Parthasarathy e Rajendran (1998). The best results were obtained by the
GAPR.

An evolutionary algorithm (EA) was proposed by Cura (2015) that outperformed

129

both GAPR by Vallada e Ruiz (2010) and HR by Hasija e Rajendran (2004). The algorithm
included a mating procedure specifically designed for the problem, a local search with two

different neighbourhood sizes, and a revision procedure.

Li et al. (2015) proposed six different composite heuristics (denoted as CH; (i =
{1,...,6}). Each composite heuristic used NEHgpp as initial solution and apply an
improvement procedure based on insertion or/and interchange neighbourhood. Also,
Trajectory Scheduling Methods (TSM) are presented and compared against Vallada e Ruiz
(2010).

Fernandez-Viagas e Framinan (2015) evaluated NEHgpp and identified a significant
number of ties between sub-sequences within the same set, especially in the initial stages
of the second phase, when the partial sequence contains a small number of jobs. The
authors then developed tie-breaking criteria which substantially improve the heuristics
performance. A total of five criteria were proposed: First position (first tie — FT); Last
position (last tie — LT); Smallest makespan (MS); Smallest total flowtime (TF); Smallest
total earliness (TE).

Karabulut (2016) proposed an the iterated greedy algorithm, denoted as KIG, The
proposed iterated greedy algorithm applied a new formula for temperature calculation for
acceptance criterion and the algorithm is hybridized with a random search algorithm. The

performance of the proposed method is tested against the iterated greedy from Ruiz e
Stiitzle (2007).

Fernandez-Viagas, Valente e Framinan (2018) proposed a beam-search-based con-
structive heuristic (denoted as BS) that estimates the quality of partial sequences without
a complete evaluation of their objective function. In addition, using this constructive
heuristic as initial solution, eight variations of an iterated-greedy-based algorithm are pro-
posed. The BS heuristic outperformed the NEHedd by Kim (1993) and the heuristics from
Fernandez-Viagas e Framinan (2015) in terms of quality of solutions and computational
effort. Regarding the computational evaluation of metaheuristics, the best algorithms were
the Iterated Algorithm with Random Adjacent Swap (IA RAS) and the Iterated Algorithm
with Greedy Insertion and Insertion Local Search (IA GI ILS). The methods outperformed
the algorithms HA by Fernandez-Viagas e Framinan (2015), GAPR by Vallada e Ruiz
(2010), EA by Cura (2015) and KIG by Karabulut (2016).

To summarise, many heuristics and metaheuristics algorithms have been proposed
in the literature to solve the F,,,|prmu| Y T; problem. The most promising metaheuristics
was proposed by Fernandez-Viagas, Valente e Framinan (2018), that outperformed several
other algorithms from previous studies. Under the above considerations, the main methods

for the aforementioned problem are listed below:

o Heuristics:

130

— NEHgpp by (KIM, 1993).
— CH, (i={1,...,6}) by Li et al. (2015).

— BS heuristic by Fernandez-Viagas, Valente e Framinan (2018).
« Metaheuristics:

— IA RAS by Fernandez-Viagas, Valente e Framinan (2018).
— IA GI ILS by Fernandez-Viagas, Valente e Framinan (2018).

5.1.2 The F,,|prmu, no —idle| Y. T; problem

The total tardiness criterion in a no-idle PFSP was studied only recently by
Tasgetiren et al. (2011). They proposed a Differential Evolution Algorithm with Variable
Parameter Search (vpsDE). The algorithm was compared with a method known as Random
Key Genetic Algorithm (RKGA) from Bean (1994). The method proposed by Tasgetiren
et al. (2011) outperformed the RKGA, providing statistically better solutions.

The Discrete Artificial Bee Colony (DABC) was proposed by Tasgetiren et al.
(2013a). The authors also developed an acceleration method to calculate total tardiness for
the insertion neighbour applied to the F,,,|no —idle, prmul| Y- T; problem. The results show
that the DABC method was highly competitive when compared to a genetic algorithm.

A constructive heuristic for the F,|no —idle, prmu| Y- T; was presented in Nagano,
Rossi e Tomazella (2017), denoted as I(f;,d)-ICH. The heuristic was compared to the
FRB3 heuristic from Ruiz, Vallada e Fernandez-Martinez (2009) and the NEHgpp by Kim
(1993) adapted in this case for the no-idle PFSP. The proposed heuristic is a combination
of two procedures: I(f;, d) and Insertion Constructive Heuristic (ICH). I(f;, d) generates
a partial sequence containing n - d jobs (0 < d < 1), rounded to the nearest integer, by
allocating each unscheduled job at the last available position and using a minimization
criterion f; to choose which of the sub-sequences is kept to the next step. Three criteria are
suggested for this method: makespan (f; = Cqz); total flowtime (f; = > C;); and total
earliness (f; = X E; = > max(0,d; — C;)). The ICH procedure consists of the insertion
of jobs in a partial sequence and reinsertion movements, which reinserts a pair of jobs at
once. The best results were obtained by the I(3- C;, 0.6)-ICH version.

Shao, Pi e Shao (2017) developed a hybrid discrete teaching-learning-based meta-
heuristics (HDTLM). The HDTLM applies a probabilistic model based on the selected
elite learners where the best learner is employed to generate a series of position sequences,
and the concept of consensus permutation is employed to replace the mean individual. In
the discrete learning phase, according to different levels of learners, the whole class is first
divided into two classes, one is the elite class, and the other is the ordinary class, and then

all of learners in these two classes would be assigned into three layers (top layer, middle

131

layer, bottom layer), and the proposed learning phase adopts the order of top-down to
spread the knowledge. The HDTLM outperformed the algorithms vpsDE by Tasgetiren et
al. (2011) and DABC by Tasgetiren et al. (2013a)

According to the studies from Shao, Pi e Shao (2017) and Nagano, Rossi e Tomazella
(2017) we can identify the most promising heuristics and metaheuristics proposed for the

F,|prmu, no —idle| Y T;, which are the following:

o Heuristics:
— I(> Cj, 0.6)-ICH by Nagano, Rossi e Tomazella (2017).
o Metaheuristics:

— DABC by Tasgetiren et al. (2013a).

— HDTLM by Shao, Pi e Shao (2017).

5.2 Proposed Heuristics

In this study, we developed a heuristic based on the beam search algorithm.
Beam-search-based heuristics were developed with success for many scheduling problems
(FERNANDEZ-VIAGAS; LEISTEN; FRAMINAN, 2016; FERNANDEZ-VIAGAS; VA-
LENTE; FRAMINAN, 2018). In a beam search algorithm, partial sequences (nodes) are
generated at each iteration by appending jobs in the last position of the sequence. The
best ranked NV nodes generated are selected to be used in the next iteration, and so on.
The method continues until nodes with complete sequences of n jobs are obtained; then

the best ranked node is chosen to be the final solution of the method.

As the I(3° C;)-ICH heuristic from Nagano, Rossi e Tomazella (2017) obtained
excellent results, we decided to use their variants in conjunction with the beam-search
concept presented by (FERNANDEZ-VIAGAS; VALENTE; FRAMINAN, 2018). Our
heuristic construct part sequence using the beam-search concept, inserting d unscheduled
jobs, then the rest of the jobs are inserted using a variation of the NEHgpp heuristic
(denoted as ICH). We choose to construct part of the sequence using the beam-search-based
heuristic in reason of the number of ties generated between partial sequences in the initial
iterations of the NEH heuristic (i.e. a problem with 50 jobs and 10 machines in Figure 14),
which was already pointed out by Fernandez-Viagas e Framinan (2015). This significant
number of ties is mostly due to many partial sequences resulting in total tardiness equal
to zero in the initial iterations. Before describing the proposed heuristics in more detail,
it is important to define the index function used to evaluate the nodes generated by the

heuristic.

132

70.00

60.00 —

50.00 -1

40.00

Percentage of Ties (%)

30.00 -

20.00 -

10.00

I | I I T I T T T T I T I T T T T T I T I I I T
2|4|6|8|10|12|14|16|18|20|22|24|26|28|30|32|34|36|38|40|42|44|46|48|
305 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Figure 14: Percentage of ties between partial sequences.

Formally, a node, denoted by 7/, is linked to a partial sequence 7% with [jobs,
m’ ={n},..., 7} and to a set of jobs that have not yet been sequenced, U,. A node 7}
can be branched generating other nodes, 7/, ,, by inserting a job that has not yet been
sequenced, J; € U,, in the last position [+ 1 de 7, resulting in 7¥ = {n},..., 7}, 7}, },
where 77 ; = J;. Then, an initial node 7;" is branched into other nodes, denoted by 71/, ;,
each one with a different job J; € U, in the last position of 7. The principle behind the
index is to evaluate three results from the insertion of job J; in the last position: idle time
generated, immediate effect of the job inserted in the last position and influence of the

jobs that have not yet been sequenced.

The idle time of the generated node ny,; is denoted by IT} ,. However, this
evaluation can lose relevance in when most machines are no-idle. Thus, supposing a
sequence ¥ = {n},..., 7/, 7/, } of node 1y, to calculate the completion times of the
first [jobs of ¥ the method uses the calculation method described in Subsection 2.3.2.
However, for the job J;, inserted at position [+ 1, 7/ ;, the completion times consider
only the setup times, and all machines are considered as regular (allow idleness). These
completion times of job J; in machine M;, denoted by C7,y, can be calculated using the

expressions below.

133

When job J; is inserted in the first position, | = 1:

Cf,m = P11]

* regular
Cing = i—g,[l] + P[] (5.1)
1=2,...,m

For all remaining positions:

CT,[lJrl] = CI,[Z] + 5[1”,[[+1] + P1,[141]
Ci 1) = max (CM” + {41 C;—L[Hl]) T Difi+ (5:2)

1=2,....,m

Note that the completion times of the job occupying position [(C;p) remain
unchanged if we change the job which occupies position [+ 1 within the sequence. Therefore,
it is possible to pre-calculate C; ;) and use the same values to calculate the completion
times of any job J; that is inserted in position [+ 1. This enables us to quickly calculate
the completion times C7 (ARIE After the completion times Cy [41] are calculated. Finally,

the sum of the idle times between the jobs, IT}", are calculated as follows.
IS, = Z maxr (02—1,[l+1] —Cin — Sfl],[lﬂ}a 0) (5.3)
i=2

The immediate effect of inserting job J; in the last position [+1, is evaluated using
the completion time of job J; that occupies the last position, [+ 1, in the last machine M,,,
also denoted as M K; = C}, 4, the earliness E; = max(dj) — Cjy,,) and the tardiness
Tj = maX(C[’lH]’m — d[l+l]7 0).

Finally, index I, that evaluates the generated nodes, 7, , is defined below. We
used weighted factors in the index to balance the effect of each component of the present
expression. The notation |M’| represents the number of no-idle machines. The N selected

nodes are those that present the lowest value of I, ;.

M=k
+1 = 4(m_1)

1
) IT; + MK; + (k+2.00) - (E; +Tj) (5.4)

At the end of this beam-search-based procedure, there will be a sequence m with d
jobs and n — d jobs still to be sequenced that belong to the set denoted by U. The first
job of U is inserted in the best position of the 7w sequence. Afterwards, a procedure, based
on the ICH from Nagano, Rossi e Tomazella (2017), is performed. The ICH procedure
consists of the insertion of jobs in a partial sequence and reinsertion movements. Differently

from FRB3, which reinserts a single job on each step, ICH reinserts a pair of jobs at

134

once. The purpose of this change is to allow a bigger perturbation on the partial sequence,
broadening the search area for a better result. The procedure starts with a partial sequence
7 containing n - d jobs, and performs (n — d) iterations to insert the remaining jobs in U.
The insertion is done similarly to NEH, taking the first job from set U and testing it in all
positions of 7, choosing as a partial solution the one with smallest total tardiness value.
Then, the procedure reinserts the jobs from the current sequence. Instead of reinserting the
jobs one by one as the FRB3 heuristic does, the ICH pairs of adjacent jobs are reinserted,
m and m41. Rossi, Nagano e Neto (2016), Nagano, Rossi e Tomazella (2017) already
demonstrated that this kind of reinsertion in pairs of jobs results in a better optimisation
of partial sequences. During this movement, the jobs from the pair are removed from
the sequence and the first job, 7, is tested in all positions of the sequence, and the best
position is selected for insertion; then, the second job, m,; is considered analogously.
Afterwards, the second pair, {m 2, 43}, is reinserted and so forth, {m 4, m 45}, until the
last pair, {m,_1,m,}, is done. When the reinsertion is finished, the method inserts the
second job from the initial ordering, and then the same reinsertion movements in pairs, as
explained above. The next jobs of the initial ordering are considered in the same way. The
method continues until the complete sequence with n jobs is obtained. After the sequence
is completed with n jobs the heuristic carries out a simple local search based on insertion
neighbourhood. This improvement procedure reinserts all jobs in all positions, when a

better solution is found the current best solution is updated.

The pseudocode presented in Algorithm 6 shows the beam search procedure used in
the proposed heuristics for generating the sequence 7 with d jobs. The heuristic BS-ICH(N)
is described in detail in Algorithms 7.

5.3 Computational and statistical experiments
5.3.1 Instances generation

In this chapter’s comparison we generated a mixed no-idle scenario where the
machines alternate between no-idle and regular machines. Each problem is generated with
combinations between a number of jobs n = {50,100, 150, 200, 250, 300} and a number of
machines m = {10, 30, 50}, totalling 6 x 3 = 18 possible combinations. Three replications
were generated for each combination, resulting in a total of 18 x 3 = 54 problems. We

used an uniform distribution [1,99] to generated the processing times.

In this chapter, we address the mixed no-idle flowshop problem with the additional
condition of sequence-dependent setup times on regular machines. We added sequence-

dependent setup times to regular machines with three different distributions:

« SSD-50: setup times with uniform distribution in the interval [1, 49] (limited to 50%

of the limit for the processing time interval).

135

Algorithm 6 Beam search based procedure.
U is the set of unscheduled jobs, U = {J;, Jo, ..., Ju }.
U; denotes the job occupying the jth position in the set U.
for h=1ton do
Generate the node nf.
" = {Jn}
Uh=U - J,
Evaluate the node 7 using the index function ¢f.
end for
Order the generated nodes n{ in non-desceding order of .
Select the N first ranked nodes nf to be the new set of nodes ng = {ng, n2,...,n3"}.
for{=1tod—1do
h=1
for v=1to N do
for j=1ton—1do
Generate the node nf',; from n}.
Insert the job U; from U” in the [+ 1 position of 7, resulting 7.
Evaluate the node nf",; using the index function ¢
Uh=0v -
h=h+1
end for
end for
Order the generated nodes nth in non-desceding order of (/.
Select the N first ranked nodes to be the new set of nodes n, ;.
end for
Select the sequence 7 of the node 1} that results in the lowest Y T} (7").
™=
U=0"
return 7 = {my, ..., 7z} and U.

« SSD-100: setup times with uniform distribution in the interval [1, 99] (limited to

100% of the limit for the processing time interval).

« SSD-125: setup times with uniform distribution in the interval [1, 124] (limited to
125% of the limit for the processing time interval).

The due dates were generated using the parameter 7 = 1,3, where the due date
of job J; is dj = 7 - X2, p; j. Therefore, the new benchmark for the mixed no-idle PFSP
consists of three sequence-dependent setup times distribution intervals (SSD-50, SSD-100,
SSD-125) with 54 problems for each distribution. For each problem, two due date scenario
were tested, when 7 = 1 and 7 = 3. Thus, the total number of tests for the benchmark is
54 x 3 x 2 = 324 instances.

136

Algorithm 7 BS-ICH(N) heuristic
Call the beam search based procedure (Algorithm 2).
for{=1ton—ddo
Insert job U in 7 in the position that results in the lowest) Tj.
for j=1tol+d—1,stepj=j+2do
=
Remove the jobs 7 and 7 from 7'.
Insert the job 7’ in the position of that results in the lowest 3 T}.
Insert the job %, in the position of that results in the lowest 3 Tj.
if > T;(n") < > Tj(m) then
T=nn
end if
end for
end for
for j =1tondo
=7
Remove job 7r§ef from 7',
Insert the job W;Gf in the position of 7’ that results in the lowest > 7}.
if > T;(n’") < X T;(n) then
=
end if
end for
return © = {my, ..., 7, }.

5.3.2 Compared heuristics

Based on the literature review, we identified the heuristics and metaheuristics that
could be best adapted to our problem. The methods chosen are listed below. These heuristics
and metaheuristics from the literature were compared with those proposed in this work.
The adapted heuristics were modified only in the total tardiness evaluation of the sequences
with the purpose that the mixed no-idle flowshop with the sequence-dependent setup times
is considered in the objective function. To evaluate the total tardiness of a sequence, we used
the method presented in Section 2.3.2. We also implemented the acceleration procedure
described in Section 2.3.4, which allowed a large increase in calculation speed. The BS
heuristic from (FERNANDEZ-VIAGAS; VALENTE; FRAMINAN, 2018) could not be
adapted for the addressed problem, as the index used to evaluate the nodes are based on idle
times, and explore specific characteristic from the F'| prmu|Y. T; problem. As the IA RAS,
CH2, CH3, CH4, CH5 and CH6 are partially or manly based on permutation of jobs and
could not benefit from the acceleration method (Section 2.3.4) we excluded these methods
from the comparisons, as they would be in severe disadvantage compared to the other
methods. In the IA GI ILS ((FERNANDEZ-VIAGAS; VALENTE; FRAMINAN, 2018)), we
substitute the BS heuristic for our proposed version BS-ICH, this new version was denoted
IG GI ILS in this work. We integrated the BS-ICH heuristic in the initialization phase of
the metaheuristics DABC and HDTLM. These new versions were denoted as DABCgg.1cH

137

and HTLMgg.1ch, and only one individual is generated using the BS-ICH for the initial
population. For the stop rule, the metaheuristics were run with 7}, = t - n - m/1000

seconds with ¢t = {250, 500}.

Proposed heuristics.
— BS-ICH
o Proposed metaheuristics:

— DABCgs.1cH, based on the DABC from Tasgetiren et al. (2013a);

— HDTLMgg.1cn, based on the HTLM from Shao, Pi e Shao (2017);

— IG GI ILSgs.1cH, based on the IA GI ILS from Fernandez-Viagas, Valente e
Framinan (2018).

o Heuristics and metaheuristics adapted from the PFSP with total tardiness criterion,
F| prmul> T;.
— Heuristics:

« CHI by Li et al. (2015);
* BS heuristic by Fernandez-Viagas, Valente e Framinan (2018).

o Heuristics and metaheuristics adapted from the no-idle PFSP with total tardiness
criterion, F,|prmu, no —idle| Y C;.
— Heuristics:
« 1(>2Cj, 0.6)-ICH by Nagano, Rossi e Tomazella (2017).
— Metaheuristics:

* DABC by Tasgetiren et al. (2013a);
«x HDTLM by Shao, Pi e Shao (2017).

5.3.3 Performance measures

The performance measures used to compare the heuristics were: quality solution
and computational efficiency. The quality solution was evaluated by the relative deviation

(DRY) of the heuristic h in problem ¢, and can be calculated by the expression below.

STy ()" — S Ty(n*)!
> Ty(m)t

DR}, =100 - (5.5)
where) T; (ﬂ'h)t is the total tardiness provided by the sequence 7, through the heuristic
h for problem ¢. The best solution for problem ¢ is denoted by Y- T;(7*)*. It can be seen

that as the lower is the value of DR}, the closer the heuristic’s solution will be to the

138

best result found. The mean average of the relative values (ARPDj,) of a heuristic h in

conjunction with N problems can be calculated by the expression below:

Y, DR},

ARPD), = N

(5.6)
To assess the computational efficiency, the average time in seconds was used (average

CPU - ACPU). All compared heuristics were implemented in C++, compiled using Intel
C++ and executed in an Intel Xeon E5-2680 @ 2.7 GHz with 16 GB RAM memory.

5.3.4 Comparisons between heuristics

The results for the compared heuristics presented in Section 5.3.2 in the set of
test problems described in Section 5.3.1 are presented in Table 35, in terms of solution
quality (ARPD) and computational efficiency (ACPU). The results for all setup times
distributions and due dates scenarios are presented in Table 36. The complete results
for different setup times and due dates times scenarios are presented in Tables 38, 39,
40, 41, 42 and 43. The ACPU values are presented in Table 37. The results clearly show
that the new proposed heuristic BS-ICH(N) (N = {2,10,15,n/10}) presented the best
results, with an ARPD of 2.90 and an ACPU around of 13 seconds for N = n/10. After
that, the one with the best performance was the heuristics adapted from the literature,
[(CT)-ICH and CH1, with worse ARPD of 5.27 and 6.64 and approximately ACPU of 13
and 1.2 seconds, respectively. The CH1 presented a good trade-off between computational
efficiency and quality of solution. The NEHgpp with different tie breaking mechanism
(LT, TE, TF, FT, MK) obtained the worst results, and no significant different between
the versions were found. Figure 15 shows that the proposed heuristics BS-ICH(n/10) is
significant different at 95% confidence level when compared to the CH1 and I(CT)-ICH
heuristics. Therefore, the core idea behind BS-ICH of using a beam-search based heuristic
in conjunction with the improved NEH extension turned up to be a important contribution

for the state-of-the-art in heuristics.

When we compare different distributions, the BS-ICH obtained the best results in
the SSD-125, with an ARPD of 2.83 for BS-ICH(n/10). Considering all setup and due
dates scenarios, the best overall results is obtained by BS-ICH(n/10) when n = {250}
and m = {50} with a resulted ARPD of 0.84. The heuristics usually presents best ARPD
when 7 = 1. In addition, best solutions are obtained by BS-ICH, I(CT)-ICH and CH1 as
the number of machines and jobs grow (Figures 16 and 17). Thus, the heuristics benefit

from problems with large instances.

139

€10 966 686 €T°0T 996 GL6 6007 TF6 1201 €601 096 SIN ITHHN
L00 ¥6'6 786 966 696 €86 STOT LE6 LT0T 2801 166 Ld 999IHHN
800 166 €66 LT0OI 696 VL6 TI'0T LE6 G0'0T 0901 1S6 AL 99IHHIN
g0 066 6L6 686 696 696 1001 LE6 gT0T €601 1§66 WAL 99IHHN
er0 986 LL6 636 996 1.6 0001 GV6 IT0T 1207 096 LT 99HHAN
61T 799 199 789 8€9 669 G689 £€£9 pL9 9T°L TE9 THD
9LCT LTS L0G VTS 067 08¢ LFS €I¢ CpC 9LG PIG HOI-(LO)I
1821 80°€ 01'¢ €8¢ L87% L6C 10¢ €6 81'¢ ohe 96c (SDHDI-SA
Z8Cl 80°¢ IT¢ ST€ ¥67C 16c 10 18T ¢ 98¢ 90°€ (c)HOI-sd
I8CT @6 86 10€ S6C €8C 8T 98T 96¢ 1e¢ 09¢ (01)HOI-SA
€8CT 06C €8C L0 89T 98z @6T 08T c0¢ oge vLe (01/wHDI-SA
{fe1t=1 ¢=2 1=2 {g'1}=2 ¢=1 [=212 {gT}=12 ¢=1 T=1
(oY Addy ogeIoAY Gg1-dss dBemay 00T-dSS 98emay 05-dSS PR

"SOLTRTAOS 9)BP ONP PUR SUOINGLIISTP JUIDPIP UT SOIISLINSY paredurod oy} I0] sonfea NJOV Pue qJHV ¢ 9[qel

140

7.50

7.00

©6.64
6.50

6.00 -

5.50
$5.27

5.00

ARPD

4.50—

4.00

3.50

3007 ©2.90

2.50—

2.00 T T T
CHI I(CT)-ICH BS-ICH(1/10)

Heuristics

Figure 15: Means plot for the heuristics in all distributions with 95% confidence intervals.

141

ARPD

Heuristics

—— BS-ICH(1/10)

I(CT)-ICH

10.00
9.00- 8.99 —— CHI
8.00— 8.09\
7.76
7.00 7 \
6.66
6.45
6.00]
5.81 —
> 5 22/ 5.43
5.00 5.06 '
. 4.18 4.17
4,00 416
\ 3.68
3.20
3.00]
2.00
145— 158 — 147
1.007
.00 T T T T T T
50 100 150 200 250 300
Number of Jobs

Figure 16: ARPD grouped by number of jobs.

142

11.00
10.85 Heuristics

— BS-ICH(1/10)
10.00 = —— CHI
I(CT)-ICH

9007 584
8.00

7.00—

6.00 —

ARPD

5.28
5.00

4.42

4.00 - 4.03
3.81

3.007 2.95

250
2.00] \

1.00 T T T
10 30 50

1.80

Number of Machines

Figure 17: ARPD grouped by number of jobs.

143

06°C 80°¢ T6°C 80¢ LTS ¥99 06°6 16°6 <6°6 98°6 766 odeiony
G0'T PTT V0T 90T STT Tbe 96 1A 90°G 96 86F 0% 00€
061 18T €T 9LT 10€ FLE 60°L 00°L 1072 96°9 80°L 0¢ 00€
Cr'1 9G°T 6€°'1 98T 8LC IT'S 61°CT 62°CT dad eeel geer 0T 00€
780 08°0 9L°0 180 G6T V8T LET 0v'y ey 9%y PEY 0S8 06T
G’ 791 QLT 0.1 ¥Fe S8F 96°9 AW AW 60°L 1L 08 09T
eT'T ITe 29°C 98z Tl'L 0L6 8T°CT ce el ceCl 62°CT 16T 01 09C
€91 LT €8T LT ¥LT Lve r&als 16°G 12°G 02°G €re 0S¢ 00T
0S'T 18T ¢G'T 8¢T LTE€ 6TTF 89 0L9 cL9 89°9 €99 0¢ 00T
Vel rdeite 08T Iz ¥89 16°L 1,721 €9°el 9L°CT L 1821 01 007
99°'1 99°'1 cL1 eL1T e9C 19°€ 02°G G 62°G 1€°G 7S 0S8 0CT
67°C 6V°C €T'T 0Lz 0L€e ¥T°G evL evL S &) 16°L 0 06T
97°¢ 97°C 00¢ 8SF 788 TTII GLCT €6°CT €6°GT 68°GT L8GT 0T 0¢T
z9°C N z9°C Gz 6LE LST 289 779 779 869 679 0% 001
8LC 9z°¢ 8LC 80¢ €€V 196 8L 28 0’8 89°L 708 0¢ 00T
L0°L 0S°9 L0°L 8L'9 €TTT S0°€T Sl ST°6T 6561 Z86T LL6T 0T 00T
10°¢ 63°C zee 80¢ 6TV €67 912 L0°L 60°L 669 ¢zl 0S 09
coy vy IT¥ &Y ¥F9 10 80°0T L30T €q 01 eror 9%°0T 0¢ 0%
70'6 96°6 196 9P0T SGET CO°CT 3eTT 69T 1G°€T c0°ce 7Gee 0T 09
(01/wHpl (sDHOI (0DHDI (3)HDI HOI L AL MIN L1 Ld
-Sd -Sd -Sd -sd -(LD)I HID AN 999N 99N 99N A9IHEN v
‘proq ur

U@@QWJQWAQ od® SYMSad 359 9l J, 'SOLIRULIS S93ep olp pue SUOINLIISIPp Souwll} QS@@@ [[e I0J SorsuInay U@H@QEOO 93 I0J sonfea YV -9¢ 91981,

144

€8°21 18721 18TT 8Tl 9LGl 6IT g1°0 80°0 €10 €10 L0°0 oSerony
€L'8G 628G 08°28 OVLS 108¢ 9V¥ Al 0€°0 870 87°0 8Z0 05 00¢
€L'8T 62°ST GL'ST TEST VL'ST 1ET izdll ¢1°0 €z0 izall PT°0 0¢ 00
LE°TE A €z’Ie GTIE T0E 0LT iall 91°0 iall 9z°0 ¢1'0 0T 00€
GLGE 18°GE 9¢°Ge 69°GE 90°¢E TP €0 all 9¢°0 7e0 120 0% 06T
9L°61 GC61 €61 C10z L96T GOT 81°0 z1°0 61°0 61°0 IT0 0¢ 06T
¢6°01 18701 €601 6801 LLOT 20T 01°0 L0°0 01°0 01°0 900 0T 0S¢
pLET L8°€T 90FT LIFT S6'€T 99T 91°0 IT°0 LT°0 91°0 01°0 05 00g
8¢°01 ¢9°01 L90T €80T 9901 6Gz'1 z10 80°0 €10 z1o 800 0¢ 00T
00'8 60'8 z0'8 I8 8L 180 60°0 90°0 60°0 60°0 90°0 0T 00g
0G°G LG 16 €Le 8LG T80 60°0 90°0 01°0 60°0 90°0 05 0SI
X3 N3 N3 0L¢ LLE 090 90°0 700 90°0 90°0 700 0 0ST
26T 8C'T 16T 9¢'T ST T 200 200 €00 z0°0 20’0 0T 0ST
7T 1 8z’ LT1 92’1 9¢T TT0 €00 200 €00 €00 20’0 05 00T
L8°0 63°0 880 LS80 980 SI°0 200 10°0 200 200 100 0¢ 00T
780 660 780 €0 T80 6070 10°0 10°0 10°0 10°0 100 0T 00T
€10 P10 P10 ¢10 ero €00 10°0 00°0 10°0 10°0 000 05 0%
80°0 60°0 60°0 800 800 200 00°0 00°0 000 000 000 0¢ 0%
70°0 700 700 700 F00 100 00°0 000 000 000 000 0T 0%
(01/w)HDI (¢1)HODI (0D)HDI (Z)HDI HOI AL AL SMIN il Ld
-sd -sd -sd -sd -(ID)I M AM@gHN IEHEN IEHEN IEHEN TN “o

"SOLIRUDS S9)RP NP PuR SUOINLIISIP sowl) dnjoes [[e 107 sorpsumnay pareduoo o) 10§ senfea NJOV L& 9[R],

145

VLG e 09°C 90¢ FI'S 1€9 166 166 066 0S°6 166 oferony
GT'T €'l 9z’ FZT 9ST 6EE 0€'C 0€'C 0€°G 0€°¢ 0€°¢ 05 00
281 vl 9¢'T €T 78T 8ST 69 269 269 g9 26’9 08 00€
G0’ 90'T €z’ T 99'G €89 €q1T €q' 1T €q1T €q1T €11 0T 00€
16°0 69°0 9¢'0 G900 PI'T GET PIY PIY L8°€ L8°€ VIV 0S¢ 05T
51 8C'T vl 6T SLe 197 69 69 69 69 269 0€ 03
0G°C 89°C g gL't S89 068 L1 L1 L1 L1 ILFT 0T 0ST
09'T are 89'T PLT 9T'E 69°€ L9°C L9°C L9°G L9°G L9C 0% 00
€Ll 98'T TeT cLT 9%'e ¥SY 8L°9 8L°9 8L°9 8L°9 8L9 0¢ 00
Pe'l L8’ 080 €41 €S IS G811 G811 G8'T1 G811 6T 0T 00z
671 671 G 06T T 99°€ 9z°¢ 9z°C 9z°C 9z°G 9z'¢ 0G 0SI
8V°C 8V°C 81°C 06z L0 OV¢ V6L 6°L 6L 6L V6L 0¢ 0SI
LY LT ¢y L6V 6T6 LTIT GeQT GegT GeQT GeGT Ge'qT 0T 06T
87 8L°C N € 06'¢ abY 6Z'9 6Z'9 6z'9 6z'9 6Z'9 0S 001
L9°C 62°¢ L9C VTe LeT €19 €9'8 €9'8 €9°'8 €9°'8 €98 0¢ 001
76°G 09°L 76°C 99°L T80T LZ'ET 6761 6761 6761 6761 6761 01 001
ANS [AK3 e 18T <9t STV 8G9 8G9 8G9 8G9 8G9 0S¢ 06
96°F 687 L6V GEC 899 €L 66°6 66°6 66°6 66°6 666 0¢ 0%
86°L 09'8 9L €Z’6 8611 F0°Cl ST ST ST pesT Pe'8T 01 0
(o1/w)HDI (ST)HOI (01HDI ()HDI HOI L AL MIN L1
-Sd -S¢ -sd s -(LD)1 H aqaggy Ay AdEgy dddpgy O CUHAN e

T = L puR UWOHNQISIP 0G-ISS O Ul Sopsunay paredurod oYy 10§ sonfea AUV 8¢ 9[qRL

146

0€'¢ e Iee 9ge 9LG 9T €6°01 09°01 €6°01 12701 Z8°0T oSeioay
76°0 ee'l €T 02T 097 99°€ Feg 17°G 97°G aT'g ST'G 0S 00
8L 0L 9T 08T 8TE WLV Nigl) o) 61°L 90°L Fz'L 08 00€
89’1 631 vl 60C 096G LLL 9¢'1T 1811 60Tl 61°el 66'TT 0T 00€
86°0 LL0O 10T 680 L9C IT°€ 887 9.7 ST'¥ 60°G cLv 05 09T
11 ¢l L1 TrTLLE eLY 8G9 86°9 86°9 8T°L 029 0€ 0SC
it X3 8v'c 6T 0L GLS 2G ¥ 6271 zeF1 I8F1 8GFT 0T 09
GG'1 ¢’ 6.1 67’1 18T €9 8L°G 17°G 19°G 8C°G 91°¢ 0S¢ 00%
€1 7l 171 ST SVE L6€ 899 €L9 989 9¢°9 659 0¢ 00
L0 69'1 LT LLT 968G 6LL 6L°CT 8G°TT zeel 98°11 8¢'¢l 0T 00
261 26’1 LT P81 T6T €0F 0€°C s s 99°G LE°G 0S5 06T
€T €T €T T L0e QI¢C L9 81'S 98°L S I8 0€ 091
0z'L 0z'L 606 99F 696 88Tl 12°L1 Th LT Th LT GeLT 08°LT 0T 0ST
G0'¢ G1°g ¢ LFT 16€ €CF 6z'L €69 €69 €9°L 66’9 0S 001
70°¢ TL'e 70 16€ 20G TS¢ L. 56°6 0Z'6 0€'8 8Z'S 0¢ 00T
LG9 01°9 L9 gL €LIT 00FT 68T 1012 L0°1¢ €1°ee PP1Z 01 001
9L°€ €ae vy 66'€ 697 0LC 99°8 0¢'S 0¢'S L8 L06 0% 09
G0'L 6°9 09¢ ¥9G¢ SG8 068 62°¢T 0e'el il CI¥1 LTET 08 09
0L'T1 65°C1 60€T LOVT 69T FH0C LV0€ 21'Se 9¢°0¢ N LL6T 0T 09
(01/wHDI (¢1)HDI (0DHDI (Z)HDI HOI AL AL SMIN L1
-5d -Sdl -S4 -sd (101 M qaaygy acaygy adaggy acaggy PRHAN

"¢ = 1 puR UONNLIISIP ()G-(ISS O3 Ul sorsumoy poreduwon oy 10J sonfes (IdHV :6€ °[qRI,

147

08°C €6°C €87 187 €IS €€9 LE°6 LE°6 Tr6 Tr6 Le°6 oBerony
L6°0 Tl eIl L0T 8VE g QLT QLT QLT QLT 6T 0G 00€
60°C At €1'g 68T 03¢ 98F 69 6°9 6°9 6°9 669 0€ 00€
S L9°T 121 PGz 6L°9 €98 €9°CT €9°CT €9°CT €9°CT €9zl 0T 00€
20’1 18°0 8L0 880 TlLT LLT 8¢Y 8T 8¢Y 8¢Y 8¢ 09 0S¢
8T €Ll Ire LT 8G¢ LTG 81°L 8T°L 8T) 8T°L 0€ 0S¢
16T L8°€ 6V°C 9e'¢ 108 FI°6 LTCT LTCT LTCT LTCT LTST 0T 06T
961 ¢l 121 79T 69T 19°€ IL¥ IL¥ IL¥ IL¥ L% 0% 007
19T 18T 1T 99T 0g'¢ €8T)))) ¢r'L 08 00T
LLO 91°C 9z'1 SOT L8L 0T 1311 1311 1211 1311 IZTT 01 00C
S| S| erl GGl 79T 69 LE°C LE°C LE°C LE°G LEC 06 0ST
8C'C 8C°C C0c LT LLE 197 769 769 769 769 769 0¢ 0SI
PLG PLG 89°¢ 8¢ 8T8 9¢0T 91°GT 91°¢T 91°GT 91°GT 91°¢T 0T 06T
€T 09°C zeT 0LT VEE 66€ 9¢'9 9¢°9 9¢'9 v 9€'9 0G00I
€9°C L6°T €9°C ¢z 6TV 69 8L PS8°L PS8°L PS°L pSL 0 001
9%°L €19 9% 699 S66 90°CI 19°91 19°91 0G°LT 0G°LT 1991 0T 001
6T L9°€ e TsT 1€V 68F 669 669 669 6’9 66’9 0S¢ 0%
29°¢ 88°C 66°C e 86'C LG'C 90°6 90°6 90°6 90°6 90'6 0¢ 06
L6°L i) €98 6V6 GeTl Thel 6507 65°0T 60T 650 65°0¢ 0T 0C
(o1/w)HDI (ST)HOI (01HDI ()HDI HOI L AL MIN L1
-Sd -S¢ -sd s -(LD)1 H aqaggy Ay AdEgy dddpgy O CUHAN e

‘T = L pue uonnqrIsip 00T-SS oY} Ul so13sumay paredwod oy 10f sonjes (JJHV 0F [qR],

T6°C 10°€ 8c 10°€ VG 689 10°01 Z1°01 60°0T 00701 80T oSetoay
6e'l €Tl FOT L0 2CT LT Sy 87 87 06'F 98F 0S¢ 00€
8C'C LS'T €eT LT 67'¢ 667) €e’l €l 65°L crL 08 00€
78’1 9¢°C 890 TFT 689 88°% G6°C1 6¢°¢1 28Tl L8°CT PPEl 01 00
7870 0270 260 S6°0 6LT 9LT 127 T PrF 96F 197 0S 0SC
Pl €c'l 8LT OF1 8e’e 167 179 90°L 90°L 88°9 80°L 0¢ 06T
21t L9°€ 0e'e L6€ 29’8 ¥8°01 2091 G191 G191 70°91 g9l 01 092
0G'1 LG LT W 0L'C €€¢€ 96°'F 88F 88F L8 P8F 0S¢ 002
86°0 68°C PST 680 gz 007 LTL 9T"L 9T"L iy 659 08¢ 00Z
GGl PLT 0T 80°C LTS 08'L €Gel €9°C1 €9°C1 6L°C1 LE€T 0T 002
69'1 691 oe' T LLT 26'C TLE 0¥'G GLG 6L°C 67°C 109 0% 0SI
17°C 17'C L0C L€ 07 8TG 8L 569 569 Sia) gzl 0g 09T
177 177 T 90°G 06'S ¥50T 8091 LGl LGl 6z'91 6G'ST 0T 0GT
86°C 0S'¢ 86'C 0S°C 8v'e LI'G 189 L9°9 L9°9 669 L0, 0% 00T
65°C z9°¢ 65°C STE 0% €8¢ 87'L 128 178 €8°9 FZ'8 08 001
69 L0°S 669 987G 6201 F8F1 6512 LG°LT 7161 ersT 7.0z 0T 001
€9°C 9G°¢ 0e'¢ LTE LY €T iy ia)) el G0'L 8Z’L 0% 09
Si N 12e v Ty L9 €6 81°01 6601 1201 9%’ 11 0¢ 0G
69°01 166 €z’6 116 1671 91°G1 26'0C 68'GC 06°€C €8°¢T 0e'¢c 0T 09
(01/wHpI (STHOI (0DHDI (2)HD AL AL MIN L1 Ld
-S4l -5 sS4 -sd HOTIO)I THO adapgy adipgEy AEpgN ddeggy ddEggy
% ‘¢ = L pue uolnquIsIp 00T-SS oY} Ul soysumoy poredwod oy 10§ sonfes qJYV T O[qBL

149

8G°C L8°C €6'c V6T 067 8¢9 69°6 69°6 99°6 99°6 696 oBeroAy
7L0 0L°0 790 980 9FT Ig¢ 76V 76V 76V 76V V6v 0S 00€
el 671 6’1 6T SFT 05T 189 189 189 189 189 0¢ 00€
LT1 8Vl aNe CI'T LTS TIPS Gzl Gzl Gzl Gzl ¢e'zl 0T 00€
96°0 €6°0 ¢L0 290 ILT S0°€ LEY LEY LEY LEY LEV 0S¢ 08
26T 62’1 t0c LTT T 69F V'L V'L V'L V'L Vel 08 09T
0¢'T et 18T ST €T'9 GS0T PPeCT PPeCT PPeCT PPeCT PPCT 01 0SC
08'T 0G'T 191 e 8¢T 8gE LTC LT°C LT°G LTG LTC 0S¢ 00T
ST aLT ST'T 62c LI'E €eV 8Z'9 8Z'9 8Z'9 8C'9 829 0¢ 00
e 1 61F 1Lz ¥vLe 619 CES I8¢l I8¢l I8¢l I8¢l ISET 0T 00T
9T 9T aNe VT L0 S0°€ cLy cLy cLY cLY eLy 09 0ST
€C'g €C'T €6°C 6v'c 6TV 10°C LT'L LT LT LT LTL 0 0ST
X3 X3 Gy eFv ISL VIOT 9671 9671 9671 96 %1 96FT 0T 0ST
0°C 18T 0z 0gT V6E FEE €z'9 €z'9 €z'9 €z'9 €z'9 0% 001
IN ¢r'e €L'T 06z 09 8LV 012 012 659 659 0T, 0¢ 00T
7S°L 8G9 PSL 0F9 0TI 0LTT 67°0C 67°0C 67°0C 67°0C 670z 01 001
LT 29°C 0 S0t VOV T9F 8G9 8G9 8G9 8G9 8G9 0S¢ 06
29°¢ 3G ece I SI'L Tl 60°6 60°6 60°6 60°6 606 0¢ 0%
¥z 'L LL8 6V'8 €L8 L9TIT 08°%I 8V°1¢C 8V°1¢C 8V°1¢C V1T 8¥'1z 01 0¢
(o1/w)HDI (ST)HOI (01HDI ()HDI HOI L AL MIN L1
-Sd -S¢ -sd s -(LD)1 H aqaggy Ay AdEgy dddpgy O CUHAN e

‘T = L pue UOTINLISIP CZT-(JSS 9} Ul So13SLNay paredwod oy I10f sonjes (JJHV ¢ °19R],

150

L0°€ ce'e 106 8¢ ¥TS ¥89 63°6 LT°0T €101 686 96'6 oSeIoAy
el 171 eT'T 060 06T €9°€ 887 PG 60°G oLy 687 05 00€
P1°C AN g1 €0c €8T 8LV 0g'L LT LTL 0L €c’L 08 00€
07’1 26'0 291 2T L9F LTS Gl L6°TT L6°TT ¢TI 1021 0T 00€
6.0 €60 960 61T 79T G67C i PeF PeF 167 76'¢ 06 06T
L1°C 92°C LLT 82T ¥Te 9I°¢C Nil) 992 992 LT F0'S 08 0SC
8T ¢1'g 9¢'c 99T TS 00T e1°e1 9%°G1 9%°G1 9%°G1 e1'el 0T 09
9¢°1 891 ITT .81 69T ST€ 76 Fes eg PG IT°¢ 0% 00C
191 eLT PGl TrT V6T 80T 889 19 19 819 169 0€ 002
81 9%°¢ Ve LTe 968G 088 F0'el 1L°€l 1L°€l 1L°€l FO'el 0T 002
€9'1 €9'1 €1 681 e 19°€ ere 91°G 91°G e 1€°6 0S¢ 0ST
8T 8T 161 2T SOF ThS G6°L e1'L e1'L e1'L L9, 0€ 0GT
899 899 VG 8T GF6 80Tl LGl 66°0T 66°9T 6291 ¢ro9T 0T 0GT
67°C 65°C 6v'c L0€ 0TV 1TS 96°9 659 659 €79 9%'9 0% 001
12°€ €c'e Ige 11e 1€F LLG 60'S T8 6L°L 16°L LT'8 0¢ 00T
€9°. &) €9°L 969 FGTI 6GTI 2661 L8°61 L8°61 G861 LS6T 0T 001
6L°C 8T'€ e wT IFT 067 769 6T"L 61°L €79 PrL 06 09
0z 62F 8¢y GTe G8L 8EL 866 66°6 66°6 8G°6 66'6 0¢ 0G
69’8 9101 086 I1°¢l €¥el T1¥91 €1°2e €L 65T €1°ze 8L°1Z 0T 0¢
(01/wHDI (¢1)HDI (0DHDI (Z)HDI HOI AL AL SMIN L1
-5d -Sdl -S4 -sd (101 M qaaygy acaygy adaggy acaggy PRHAN

‘g = L pU® UOHNQIISIP GZ[-SS O Ul soysumoy pareduiod oYy 10§ sonfes UV ‘€F O[qeL,

151

5.3.5 Comparisons between metaheuristics

The results for the metaheuristics are presented in Table 44. The ARPD for all
setup times distributions and due dates scenarios are presented in Table 45. The detailed
results are shown in Tables 46, 47, 48, 49, 50 and 51. The best results was achieved by the
DABCgs 1cn with an ARPD of 0.71 for ¢t = {500}. The use of BS-ICH in the initialization
of the metaheuristics considerably improves the results. As example, the DABC without
the BS-ICH results in an ARPD of 1.16, compared to the DABCgs.1cy with a much lower
ARPD of 0.71, the same thing happens with HTLM. From the results, while in the original
problem (£, |prmu, no—1idle| ¥ T}), the HTLM obtained best results, the DABC proposal
obtains best solutions when the mixed no-idle PFSP with setup times is considered. The
IG GI ILS shows good results for large problems (n > 200) and worse solutions in smaller
instances. This behaviour can be seen in all setup time distributions and due date times
scenarios. We also test the metaheuristics to verify if the ARPD are statistically different

in a 95% confidence interval (Figure 18).

While the metaheuristics outperformed the heuristics by a large margin, it is
important to note the difference in efficiency. For example, DABCgg_jcy obtains very
similar results to BS-ICH(n/10) when n > 250 and m > 10. When n = 250 and m = 50,
DABCgs.1cn obtain an ARPD of 0.49 for ¢ = 500, that is a Ty,0 = t-n - m/1000 =
500 - 250 - 50/1000 = 6.250 seconds, while the BS-ICH(n/10) has an ACPU around 36
seconds and an ARPD of 0.84 for the same problem instance group. Therefore, the results
shows that the BS-ICH(n/10) is highly competitive even when compared to metaheuristics.
In addition, the use of BS-ICH with the metaheuristics is a valid proposal as it statistically

improves the solution quality of the metaheuristics.

152

90°C 65C 98T 0T 0%¢ 63¢ Tl 89T 69T 9971 0% =N'TLH
18°1 €6'T G0C IS8T 68T F¥8T G661 09T ¢S9T 89T 0% =1Hava
GLT L6'T €0C 161 98T 88T G681 Wl SPT LET 00¢ ="NTLH
oLT LT 9LT 0LT G9T 99T G991 LLT €0 19T 0% =191 ID DI
96T LT €LT 691 9¢'T ¥9T 6V Sl SFT 9gT 0% =7 HOISENTIH
ec1 P&T 69T PO 4780 NS R A 6T L8T 0€1 005 =791 1D DI
or'T LT 09T ST Wi 1eT I€T 8¢T €81 g1 008=?HOISENTTH
9T'T 0T €FT LT'T 9T'T SI'T €I 10T 860 GO'T 0s=7Hgva
€Tl CI'T SCT VO 61T GCT VI 90T 90T GO'T 0%e=?HOISAZqy(
1L°0 €40 980 190 7.0 080 890 990 G9°0 .90 008 =7 HOISELqy(]
— {e1t=12 ¢=2 1=2 {¢'1}=2 ¢=12 1=212 {g'1}=12 ¢=1 [=1 sl
SEEACIN GCI-4sS odeIaay 001-dSS odeIay 0$-dSS
"SOUITY) 9)eP oNp pue SUOIINJLIISIP JUSISJIP UL SOIISTINSYRIQW 91} 10] sonfea (JJYUV T 9[qeL

153

2,00
Q175
150 O1.53
O1.42
116
1.00 —
0.71
0.50
0.00 T T T T T
HTLM IG GIILS HTLM BS-ICH DABC DABC BS-ICH

Figure 18: Means plot for the metaheuristics in all distributions with 95% confidence

intervals and 7T},,,, = 500 - n - m.

154

€qT T QLT 120 9TT LT 96T 907¢ €T 18T oSeray
10°0 160 €T @80 67T 1€°0 160 8GT €60 LLT 0% 00€
00°0 LT 66T S 860 9T SET 99T ¢¢T 0 00€
€70 oz TgE @@l LET L0 T e 06T T6F 0T 00€
61°0 190 680 670 6.0 620 790 90T 190 LET 0% 09
61°0 PPT 98T 0eT GPT FG0 PST 107% SFT 0TC 0f 09
L0°0 PET 06€ €9T 08¢ 8L°0 T V9T 88T L0C 01 09
€10 0z STT 880 680 90 T o LUT I€T 0% 007
0L'0 GI'T 9T 0L'0 180 08°0 6IT 08T PIT ST 08 00C
08'T LTT 09T o0 961 08'T PET TET 060 86T 0T 007
06°0 680 680 0€'0 9£0 00'T 60 20T 890 080 09 09T
qI'T 1C1T Ol 660 8€°0 LT T LT GI'T 0T 0€ 06T
66°0 887 €ge T 8eT 28T twe eLe ¢l'c 18 0T 0ST
8L°0 9zT 6CT €0 TE0 68°0 T EFT €90 ¢L0 0% 00T
61 peT bl 91'0 L1°0 V6T 66T 29T 190 190 0€ 00T
L0°2 LT 0V Ge’0 9€°0 L0°2 ere 17T 20z €T 0T 00T
Ly €90 SV0 800 010 16T 1.0 990 ¢c0 020 0S5 09
LT 180 880 800 710 GLT POT 01T W0 PE0 08 09
269 61T 80C 70 92°0 €6'9 A ¢ 680 1.0 0T 09
ST ID DI HOUSENTIH WILH HOrsapgyvd 0dvd | ST ID DI HOSENILH IWILH Horsdpgyva pdavd
00G = 7 ot =1
'Ploq

Ul pojySIYSIY oIe S)HMSAI 1S9 Y], "SOLIRUIIS S9Jep oNp pPUR SUOIINLIISIP sowil} dnjes [[& I0] so1IsLINaye)oul oY) 0] senjea (JJHV G o[qRI,

155

0€T 44! LET 190 GO°'T 16T 9¢T 991 G0°'T 80'T odeIoAy
00°0 4! 1€°T €80 8€T 9¢°0 4! 47! G6°0 LLT 0G 00€
0070 9¢'T L1 vl 06T 6¢°0 9¢T 06T €91 98'T 0¢ 00€
€0 LT°T 10°¢ €L0 A7 99°0 8T'T 19°¢ LL0 €y 01 00€
020 770 070 7€0 960 120 770 €90 o 90'T 09 09¢
0070 7670 GLT 80T 0€T 8€0 0C'T 96T Gel 86T 0¢ 04¢
10°0 vee L8°¢C el 0€€ GO'T vee L6°C L1 9% 01 04¢
¢lo 0€'T 0€'T 80T L6°0 6€°0 23! ¢Sl 9¢'1 Iv'T 0S¢ 00¢
7€0 0T'T 061 70T g8°0 evo 0T'1 L9T vl Iv'T 0€ 002
080 1.0 8€0 160 6E1 080 9.0 g4 €l'T 6I1'¢c 0 00¢
99°0 1270 66°0 6€°0 0¥°0 0L°0 08°0 80T ¢L0 660 09 091
€01 960 00T I7T°0 16°0 G0'T L0°T €C'1 90T 9I'T 0€ 0941
[ZAY 0€C GL'C €'l 1 47! 09°¢ 6L°C VI'¢ 06'c 0T 09T
960 47! 47! 050 960 V0T 941 16T 88°0 980 09 001
66T €r'1 vl ¢l0 G00 66T 671 eVl L20 va'0 0€ 00T
¥6°¢ e €e'1 8¥°0 0¢0 76°¢ 45é 00°¢ 68T ¥1I'¢ 01 00T
0T 860 650 L0°0 11°0 G0'1 ¢L0 09°0 ¢€0 LT0 08 09
8L°€ LL°0 ¢L0 ¢l0 80°0 88°¢ 61T Gl'l gg0 9¢0 0¢ 09
9¢°¢ vl 121 9¢0 11T°0 946G L9T €C'1 6¥°0 9.0 01 09
ST 1D DI WISENTIH IWILH BUS€Epgva odvda | STIID DI HOSEWTIH WILH HoSEHgva Davda w "

00¢ =1

0sc =1

‘T = 4 puR UOTNLIISTP ()G-(JSS oY) UT sorjstInayejowr paredurod o) 10J sonea (JJ¥V :9F °9[9RI,

156

L8T eeT S| 90 860 €0'¢c 8V'1 691 90T ¢G'T odemony
€00 960 Vel 9.0 9¢T ¢€0 96°0 991 68°0 L8T 09 00€
000 L9°T 991 vl 681 9%°0 L9°T 10°¢ 091 ¢l'c 0€ 00€
020 LT'T 6¢°C €a'l1 vee 19°0 0C'1 6€°C €aq'l ¥Ov 0T 00€
€0 09°0 10°T 860 76°0 1€°0 €L0 IT°T 8L°0 97’1 09 0%¢
€c0 Vel 0G°'T 9.0 GQI'r1 1970 Vel 8G°T 880 19T 0¢€ 0%4¢
€00 [qaxé 09°€ v1i'¢ 9¢¢ 19°0 [aaxeé 8¢V 1€°C LLYV 0T 09¢
€e0 'l 86°0 79°0 L8970 9%°0 8T'T G0'T L6°0 ¢0'T 0S¢ 002
970 €60 c0'T 490 8L°0 960 L1670 9¢T GG'1 0Tt 0€ 00¢
L9°C 8V'1 €490 ¢l'0 1671 L49°C 991 80T ¢S50 0¢c 01 00¢
¢6°0 080 9.0 €ro 61°0 G6°0 980 9.0 €90 LL°0 09 0941
6C'1 €01 780 €ro 0¢0 gel I¢'T 0C'1 ¢6°0 1.0 0€ 041
0€T 08¢ 61°¢ 671 G6°0 V1 Vo€ 0L°¢ GC'e ¢l'c 0T 09I
IT°T 8T'T LET 1€°0 00°0 ITT 0C'1 245! 770 av'0 09 00T
ev'e 61T 9¢'T 910 G00 16°¢ 0€'T a1 L9°0 70 0€ 00T
LG9 [4ixeé 991 0¢0 6¢°0 L899 16°¢ 991 691 ¢9'T 0T 00T
14°¢ 8%°0 ¢G 0 ¢l0 910 96°¢ 19°0 790 61°0 8¢0 09 09
66°C 9.0 9¢'1 G00 izl 66°C L6°0 qe1 90 8¢'0 0€ 09
¢S 0l 6L°T ev'e 9%°0 8T°0 ¢G0T 96°¢ 9¢¢ 1670 81’0 0T 09
ST ID DI HSENTIH IWILH HoUSEDgva Davda | ST ID DI HTSEWTIH IWTLH HPUS€EHgva pdavda w "
00¢ =1 09c =1

"¢ = L pue uonnquIisIp 0G-(ISS 9y} Ul sonsumnoayriomwt poreduros oYy 10J sonfes (VY L 2[9RIL

157

47! et 681 89°0 er'l G991 ! GG PI'T G6'T odeIoAY
00°0 00T 47! ¢6°0 Vel €co 00T L9T ¢6°0 L8'T 0S¢ 00€
0070 P81 06T eel L6°T 740 06T Lv'e oVl 69'¢c 0¢ 00€
020 80T 167G 91 G 650 80T 919 91 G0'9 0T 00€
7170 040 OT'T Ggeo GL0 0€0 €L0 LT'T [ZA0) €c’T 09 09¢
740 LT G6°T1 Ge1 ¢Sl 180 V61 0¢¢ 091 ¢e'c 0¢ 04¢
000 é Y 1¢°1 9¢¢ 10°T L3¢ @8Y L4971 10°¢ 0T 0%¢
000 60T 91 1670 060 10 0T'T 891 LTT LET 09 002
6’1 06T 91’1 ¢L0 86°0 9¢'1 Va1 91’1 Gao'T 19T 0€ 002
9¢'1 10°T 980 89°0 Gc'1 9¢'1 10°T 90T 89°0 90°¢ 0I 00¢
¢80 790 g9°0 L20 €c0 880 1670 LL0 9¢0 0L0 09 0941
680 Vel Ge'1 G¥°0 €¥0 Vel 8Y'1 LET 61T 860 0€ 091
88°0 98°C 6S°€ 0v'1 1€°T ¢l'l qce L9°€ 65°€ q0'¢ 0T 041
6.0 9¢1 61T ¢S50 010 e0'T 8CT a1 490 180 09 001
¢8'1 86°0 0G'T €ro 90°0 €81 e€el LLT 7.0 170 0€ 00T
9L ¢EC €8¢ 8€0 6€°0 9L ere 9¢'€ €61 9¢'¢c 01 00T
el 650 9¥°0 000 90°0 ¢e'l1 7.0 960 120 0¢0 09 09
Lv'c 1270 7.0 G0°0 0¢0 Lve 88°0 86°0 8¢0 9¢'0 0 09
019 €80 0€'T €00 LT°0 019 8T'T ¢l'e 19°0 990 01 09
ST ID DI HSENTILH WILH HoUSEDgva Davda | ST 1D DI HISEWTIH WTILH HPUs€EHgva pdavda w "
006 =1 0G¢c = 1%

‘T = L pue uonnqriysip 00T-SS oY} Ul sonsumayejowt paredurod oy} 10J sonfes (JHV 8% o8l

158

91 16T 88T 080 8T'T 991 V91 6¢°C Gc'1 P8’ T o8Iy
10°0 00T Vel ITT 0C'T 70 00°T 8G°T Q! 9L T 09 00€
000 8C'C 04°¢ 891 1v'C G6°0 Gee ¥8°¢ I8°T L6¢ 0€ 00€
010 89°0 8V €91 967 L20 890 Ggc'q 08T ¢6'G 0T 00€
6€°0 790 060 99°0 99°0 1670 99°0 80T 780 ge'T 09 0%¢
LE0 9¢'1 0¥'1 GGl 8€T 90 941 891 0€T 00¢c 0¢ 04¢
Ggco GLC Y 6€1 LSV ¢80 ol'e 91°¢ 0LT 09'¢ 01 04¢
L0 V'l 't ¢6°0 10°T L9870 9¢'1 a1 S8T'T ev'T 09 00¢
7670 Gc'1 880 960 1670 G6°0 6C1 GO0°'T 1670 9¢'T 0€ 00¢
0T €80 G681 ¢€0 LGT 0T €8°0 L0°€ eeT 89'¢c 01 00¢
0.0 0T 86°0 6¢°0 ¢S50 060 01 9T'1 g80 080 09 091
€1 vl LG°T 7.0 8€0 6¢°1 8’1 €91 €a'1 90'T 0€ 04T
€81 G0'¢ ¢G'e L1 €c'l 8EC 6V°€ 8¢V 90°€ 0¥'¢c O 041
1.0 9¢'1 671 g¥°0 860 12L°0 S S 7.0 ¢80 0§ 00T
991 76°0 Vel 910 ¢00 L9°T 660 71 650 08°0 0€ 001
469 10°€ are 8L°0 000 469 are 88°€ 60°C LET 0T 00T
6€1 69°0 050 700 e€ro 6E1 ¢L0 0.0 60°0 aro 0¢ 09
GL'T 00T 88°0 ¢00 010 08T 40! ¢6°0 8¢0 91’0 0€ 09
199 8€C [qeé ¢9°0 9¢0 199 6¥°¢C 6€°C 01 er’o 01 09
ST ID DI HSENTIH IWILH HoUSEDgva Davda | ST ID DI HTSEWTIH IWTLH HPUS€EHgva pdavda w "
00¢ =1 09c =1

‘¢ = 1 pur uonnqLISIp O0T-(ISS oY} Ul sorjsumoyeow pareduod o 10J sonea (JJYV 67 °[qRL

159

45! 45! 16°T 19°0 LT°T 0LT 691 GGG 0! I8'T oferony
00°0 90 01 €50 G0'T1 61°0 90 9¢'T 09°0 ar't 09 00€
0070 791 €0¢ G80 88T 050 6L°T 9¥°¢ 90T 6v'¢c 0¢ 00€
€1 96°T 81°€ [qa! 8¢V el 96°1 1Ty GGl ¢8% 01 00€
020 7.0 86°0 740 10°T 1€°0 7.0 9T'1 99°0 0€'T 09 09¢
0070 84T jANE 9¢T 6E1 050 991 0¢¢ S veec 0€ 049¢
€ro Gee 68V Gr'r1 ey L9°0 4ié 1.6 1¢'T €rae 0r 04c¢
60°0 61T 9¢'T G6°0 980 geo ge1 8Y'1 8€T 8€'T 09 00¢
LG0 9T'1 gel L8°0 70T 6L°0 91’1 el G6°0 LT 0€ 008
1L°¢ [45é IT€ 00°0 Ve 1L°C ¢S'C €Le 6.0 96¢ 0I 00¢
G0'T ¢6°0 060 8¢0 geo 4! €01 00T 0G0 08°0 09 0941
0G'T 9¢'1 781 €50 LL°0 0G'T GL'T 68T ar't ver 0€ 091
980 [qé 6V°€ 96°0 6L°0 9¢'1 e LTV LTC vee 01 0491
0S¢0 e€r'l 86°0 1¢°0 ¢G 0 09°0 S8T'T 0¥'1 €90 gg'0 09 00T
0LT AN} LC'T gr'o 90°0 0LT 4! LET 0G0 8¢'0 0€ 00T
8L 19°€ Ggee 9T'1 ¢l0 78'L LLE Ggee S 98'T 0T 00T
60T €L0 0¥°0 v¢0 000 ar'1 9.0 €90 6¢°0 €c0 09 09
80°¢ GL0 180 L0°0 0¢0 80°C ¢6°0 0T €e0 vo 0€ 0¢
€19 G0¢ 1€°C 1¢°0 LE0 719 are va'e 00T 9¢'T 01 09
ST 1D DI WISENTIH IWILH BUS€Epgva odvda | STIID DI HOSEWTIH WILH HoSEHgva Davda w "
006 =1 0G¢c = 1%

‘T = L pue uonNqLIjsIp ¢z I-(SS oY} Ul sonsumayejowt paredurod oy} 10§ sonfea (qJHV 0G o[98l

160

Ga'1 091 €0°¢ 980 eVl 9LT LT 9¢¢ Gc'1 G0'c oFeIdAY
700 80T 1671 €60 6E1 L0 80°T QLT 00°T ¢6'T 09 00€
000 0G'T v1i'¢ 8LT 6C'C [ZA0) 0G'T 8G'C €81 8T'€ 0€ 00€
¢S0 ¢q'l vae €60 ¢y L8°0 ¢Sl ¥6°€ 00T o'y 0T 00€
00°0 1670 G6°0 8%°0 080 110 16°0 0C'T gg o 0¢'T 09 0%¢
000 671 eve v0°¢ 96°T ve0 19T 9¥°¢ €re 9%'¢ 0¢ 04¢
000 8C'C 79°€ 96°¢ arv €90 9¢¢ a8y 9L°¢ 9¢'¢ 01 04¢
000 L0°T ! 6.0 10°T 9¢0 60T 8V'1 86°0 ¢¢'T 08 002
99°0 160 90T 69°0 €L 0 €L 0 80°T 8T LTT ¢0'T 0 00¢
e OT'T 1€°C 860 Gce ve Gc'1 0€€ 7670 ¢§v 0T 002
6’1 g4 90T G¥°0 670 91 €C'1 el 8.0 ¢80 0§ 091
86°0 ¢6°0 16°0 70 000 0¢'T 0€'1 871 90T LT'T 0€ 041
€e0 8TV eLv 681 09°¢ 1970 vy VLY 00°€ vIv 01 0941
790 61T Vel Ggco 6€°0 €80 GGl Ge1 av°0 .0 09 00T
761 €0¢c 781 9¢0 6.0 761 1T°¢ Sraré 960 ve'1 0€ 00T
€9°L 80°€ 7€ 0€0 ar'1 €9°L oL'€ IT€ 90°¢ €€'c 01T 00T
0G°T 1270 GL0 €00 ¢l0 LG9T ¢L0 8L°0 120 vro 09 09
LT€ L8°0 €8°0 0¢0 ¢00 LCE 9T'1 61T 1€°0 €0 0e 09
¢L9 66°C 01°€ 980 170 ¢L'9 9¢'€ 09°€ 6C'1 80 01 0¢
ST ID DI HSENTIH IWILH HoUSEDgva Davda | ST ID DI HTSEWTIH IWTLH HPUS€EHgva pdavda w "

00¢ =1

09c =1

‘¢ = 1 puR UONNLIISIP GZT-(ISS OY) Ul sorjsumoye)ow pareduod o 10J sonfea (JJYV 1S 9[qRL

161

5.4 Conclusion

In this chapter, the mixed no-idle PFSP with sequence-dependent setup times
and total flowtime minimisation is studied. Based on a literature review conducted on
related problems, the best heuristic and metaheuristics were adapted to the problem. In
addition, a new heuristic, denoted as BS-ICH, was proposed. We integrated the BS-ICH
with the metaheuristics from the literature. The proposed methods were exhaustively
compared through statistical and computational experiments with adapted heuristics and
metaheuristics. Among the heuristics, the best results were achieved by the BS-ICH(n/10),
delivering considerably better solutions than [(CT)-ICH, which was the best method from
the F,,|prmu, no — idle| > T; problem. According to the results, the used of the BS-ICH
in conjunction with the metaheuristics considerably improves the solution quality of the
metaheuristics. As a result, the best metaheuristic was the DABCgg_1cy, which is the
DABC algorithm with the BS-ICH used in the initial population generation. Thus, based
on the results presented, it can be asserted that the proposed method is a significant
contribution for the state of the art in heuristics and metaheuristics for the problem

considered in this chapter.

163

6 CONCLUSIONS, RESULTS AND FUTURE RESEARCH

6.1 Conclusions

In this Thesis, we have addressed the mixed no-idle permutation flowshop scheduling
problem. This is the first time that this problem is studied in the literature. It has been
showed that the problem has relevance in real manufacturing layouts, and deals with
establishing the sequence of jobs in the shop according to a specific objective function
under specific characteristics of the problem, namely the setup times between the jobs

and the mixed no-idle machines.

The goal of this Thesis was therefore to provide a further insight into this important
problem, both deeply analysing and developing new efficient methods to solve it. In order
to deal with this goal, several general research objectives were identified in Section 1.1,

which have been addressed along the four parts of this Thesis as follows:

OBJ1. To provide in-depth analysis of the mixed no-idle PFSP with sequence-
dependent setup times, presenting mathematical models, formulations and

calculations methods for the addressed objective functions.

In Section 2.3 the mixed no-idle PFSP with sequence-dependent setup times was
formally presented. We developed an MILP formulation for the problem in Section 2.3.1,
the variables and expressions were explained in detail. As the problem was not yet studied
in the literature, we presented methods for calculation for the makespan, total flowtime
and total tardiness criteria (Section 2.3.2). As explained, the acceleration procedure is
essential to provide efficiency for the new proposed methods. In Section 2.3.3 and 2.3.4 we
provide acceleration methods to calculate the makespan, total flowtime and total tardiness

in an insertion neighbourhood.

OBJ2.To review the mno-idle PFSP, PFSP with setup times and classical
PFSP literature for the most common objectives, i.e. makespan, total flow-

time or total tardiness minimisation.

The mixed no-idle PFSP with setup times and makespan minimization was consid-
ered in Chapter 3. As the problem is new, we reviewed the no-idle PFSP and the PFSP
with setup times under makespan criterion (denoted as F,,|prmu, no — idle|Ci,q, and
F,|prmu, s;'-,k]C’max, respectively). The literature review covered the last 35 years, where
many heuristics and metaheuristics were developed for the problem. We classified the
methods and presented if the algorithm was outperformed by another method from the
literature (Tables 2 and 3).

164

Chapter 4 studied the mixed no-idle PFSP with setup times and total flowtime.
For this problem, the following topics were reviewed: heuristics for the PFSP with makep-
san criterion (F,|prmu|Cye,), PFSP with total flow-time criterion (F,|prmu|_ C}),
no-idle and mixed no-idle PFSP with makespan criterion (F,,|prmu, no — idle|Caz,
Flprmu, mized no — idle|Cyuqz). In the review, over 50 papers were reviewed. Most of

the heuristics proposed in the literature are variants of the traditional NEH.

In Chapter 5 the total tardiness criterion was addressed. The following problems
were reviewed: PFSP with total tardiness criterion (F,,|prmu|> T;), no-idle PFSP with
total tardiness criterion (F,|prmu, no —idle| Y- T};). Both heuristics and metaheuristics

algorithms were reviewed.

OBJ3. To provide efficient methods to solve the mixed no-idle PFSP with se-
quence dependent setup times for makespan, total flowtime or total tardiness

minimisation.

Based on the state-of-the-wart in heuristics, we developed several methods in order
to solve the mixed no-idle PFSP with setup times under different criteria. All the new
methods were tailor-made for their specific problems. Delving into particular characteristics
of each criteria with the objective to give an edge for the new heuristics. The main proposed

methods are summarised as follows:

o A efficient constructive heuristic, denoted as RN, was proposed in Chapter 4
(makespan criterion). The heuristic inserts d jobs using a greedy heuristic, and
then the rest of the n — d are inserted into the sequence using an NEH heuristic
variant. The heuristic takes account the idle times between the jobs and the setup
times to generate a index that chooses the jobs to be inserted. The NEH variant is
based on reinsertion procedures that optimized the partials sequences generated by
the NEH.

o Three heuristics based on beam search, called H1, H2 and H3, were proposed in
Chapter 5 (total flowtime criterion). In developed beam search algorithms, partial
sequences are generated at each iteration by inserting jobs in the last position of
the sequence. The best ranked N nodes generated are selected to be used in the
next iteration. The method continues until nodes with complete sequences of n — d
jobs are obtained; then the best ranked node is chosen to be the final solution of
the method. The rest of the sequence are constructed using a variants of the FRB3
and FRB4 heuristics. The H3 is an improvement heuristic, which carries out a local

search in the final solution generated by the H1 method.

o In Chapter 5, a new heuristic, denoted as BS-ICH, was proposed. The concept is

similar to the heuristics from Chapters 3 and 4, with the exception of the new

165

index which takes into account the specific characteristics of the total tardiness
criterion. The new method was also integrated in the initial phases of metaheuristics

procedures from the literature.

OBJj. To demonstrate the efficiency and good performance of the new pro-

posed methods thought extensive computational and statistical experiments.

In this Thesis, each proposed heuristic was always compared with the state-of-the-
art algorithms adapted from related scheduling problems. As the mixed no-idle PFSP with
setup times is new, we developed a new benchmark with up to 4500 problems instances to
test the algorithms. The indicators to measure the computational effort and the solution
quality were also explained. To carry out a fair, comparison we presented in detail the
compared methods, as well the same programming language C++ and the same computer
were used to compare all methods. To ensure the repeatability and reproducibility of our
proposed heuristic, we included a clear pseudo code (Algorithm 2) in this Thesis. The
results and problem instances are available at laor.prod.eesc.usp.br, as recommended by the
Good Laboratory Practice for Optimization Research (GLP4OPT) practices (KENDALL

et al., 2016). The following computational results were presented in each chapter:

 For the makespan minimization (Chapter 3), the analyses showed that the proposed
RN, method surpassed the state-of-the-art algorithms both in solution quality and
computational efficiency. Algorithms adapted from the F|prmu,no — idle|C,,q, and
Flprmu, s ;,|Cimae problems. The statistical results also show that the means are
significantly different. In addition, the proposed methods generated near optimal

solutions for small size problems.

« For the total flowtime criterion (Chapter 4), heuristics H1(/V) and H3(N) obtained
the best results, delivering better solutions than the best methods adapted from the
literature. The constructive heuristic H2(V, k) presented a good trade-off between
computational cost and quality solution. Thought statistical tests, were demonstrated
that the solutions generated by the proposed heuristics are statistically better than
those obtained by the adapted methods. The proposed heuristics were also compared
with the optimal solutions found by the MILP formulation. The results showed that

our proposal can generate near optimal solutions in some cases.

» For the total tardiness criterion, addressed in Chapter 5, both heuristics and meta-
heuristics were tested. The proposed method BS-ICH showed the best results,
outperforming several methods from the literature. Also, the new heuristic was used
in conjunction with metaheuristics. The results show that the used of BS-ICH with

metaheuristics significantly improves the solution quality of the algorithms. As a

http://www.laor.prod.eesc.usp.br

166

6.2

result, the proposed methods can be seen as a contribution towards the development

of new and better metaheuristics and not restricted only to heuristics methods.

Results

The following papers were published in indexed journals throughout the development

of this Thesis.

6.3

ROSSI, F. L.; NAGANO, M. S. Heuristics for the mixed no-idle flowshop with
sequence-dependent setup times and total flowtime criterion. Expert Systems
with Applications, v. 125, p. 40-54, 2019.

ROSSI, F. L.; NAGANO, M. S.; SAGAWA, J. K. An effective constructive heuristic
for permutation flow shop scheduling problem with total flow time criterion. The
International Journal of Advanced Manufacturing Technology, v. 90, n. 1,
p. 93-107, 2017. ISSN 1433-3015.

NAGANO, M. S.; ROSSI, F. L.; MARTARELLI, N. J. High-performing heuristics to
minimize flowtime in no-idle permutation flowshop. Engineering Optimization,
Taylor & Francis, v. 0, n. 0, p. 1-14, 2018.

NAGANO, M. S.; ROSSL, F. L.; TOMAZELLA, C. P. A new efficient heuristic method
for minimizing the total tardiness in a no-idle permutation flow shop. Production
Engineering, v. 11, n. 4, p. 523-529, 2017.

ROSSI, F. L.; NAGANO, M. S.; NETO, R. F. T. Evaluation of high performance
constructive heuristics for the flow shop with makespan minimization. The In-
ternational Journal of Advanced Manufacturing Technology, v. 87, n. 1, p.
125-136, 2016.

Future research lines

For future work, the constructive heuristic proposed in Chapters 3, 4 and 5 can be

considered for other flowshop scheduling problems. Furthermore, since the second phase

of the heuristic RN (Section 3.2.2) does not consider the setup times (except for the

makespan calculation) it can be easily adapted, including for those problems without

no-idle machines or setup times.

The proposal of metaheuristics for the problem remains open with the aim of

providing high-quality solutions. The literature review showed that several metaheuristics

were proposed for related problems. Therefore, in future studies, the methods developed

in Chapters 3 and 4 could be integrated and compared with metaheuristics procedures.

167

Finally, the mixed no-idle machines and the sequence-dependent setup times can
be extended to other manufacturing layouts, i.e hybrid flowshop, job shop, distributed

flowshop, among others.

169

BIBLIOGRAPHY

ADIRI, I.; POHORYLES, D. Flowshop/no-idle or no-wait scheduling to minimize the
sum of completion times. Naval Research Logistics Quarterly, Wiley Subscription
Services, Inc., A Wiley Company, v. 29, n. 3, p. 495-504, 1982.

ALLAHVERDI, A. The third comprehensive survey on scheduling problems with setup
times/costs. European Journal of Operational Research, Elsevier, v. 246, n. 2, p.
345-378, 2015.

ALLAHVERDI, A.; GUPTA, J. N. D.; ALDOWAISAN, T. A review of scheduling
research involving setup considerations. Omega, Elsevier, v. 27, n. 2, p. 219-239, 1999.

ALLAHVERDI, A. et al. A survey of scheduling problems with setup times or costs.
European journal of operational research, Elsevier, v. 187, n. 3, p. 985-1032, 2008.

ALLAHVERDI, A.; SOROUSH, H. M. The significance of reducing setup times/setup
costs. European Journal of Operational Research, v. 187, n. 3, p. 978-984, 2008.

ARMENTANO, V. A.; RONCONI, D. P. Tabu search for total tardiness minimization in
flowshop scheduling problems. Computers & Operations Research, v. 26, n. 3, p.
219-235, 1999.

BAGGA, P. C. Minimizing total elapsed time subject to zero total idle time of machines
in n x 3 flowshop problem. Indian J. pure appl. Math, v. 34, n. 2, p. 219-228, 2003.

BAPTISTE, P.; HGUNY, L. K. A branch and bound algorithm for the F/no- idle/Cmax.
In: Proceedings of the international conference on industrial engineering and
production management, IEPM. [S.l.: s.n.|, 1997. v. 97, p. 429-438.

BARAZ, D.; MOSHEIOV, G. A note on a greedy heuristic for flow-shop makespan
minimization with no machine idle-time. European Journal of Operational
Research, Elsevier, v. 184, n. 2, p. 810-813, 2008.

BEAN, J. C. Genetic algorithms and random keys for sequencing and optimization.
ORSA journal on computing, INFORMS, v. 6, n. 2, p. 154-160, 1994.

BENAVIDES, A. J.; RITT, M. Two simple and effective heuristics for minimizing the
makespan in non-permutation flow shops. Computers & Operations Research, v. 66,
n. Supplement C, p. 160-169, 2016.

BENKALALI I. et al. The migrating birds optimization metaheuristic for the permutation
flow shop with sequence dependent setup times. IFAC-PapersOnLine, Elsevier, v. 49,
n. 12, p. 408-413, 2016.

. Improving the migrating birds optimization metaheuristic for the permutation flow
shop with sequence-dependent set-up times. International Journal of Production
Research, Taylor & Francis, v. 55, n. 20, p. 6145-6157, 2017.

CAMPBELL, H. G.; DUDEK, R. A.; SMITH, M. L. A Heuristic Algorithm for the n Job,
m Machine Sequencing Problem. Management Science, INFORMS, v. 16, n. 10, p.
B630-B637, 1970.

170

CEPEK, O. et al. Note: On the two-machine no-idle flowshop problem. Naval Research
Logistics (NRL), Wiley Online Library, v. 47, n. 4, p. 353-358, 2000.

CHENG, M.; SUN, S.; YU, Y. A note on flow shop scheduling problems with a learning
effect on no-idle dominant machines. Applied Mathematics and Computation,
Elsevier, v. 184, n. 2, p. 945-949, 2007.

CORWIN, B. D.; ESOGBUE, A. O. Two machine flow shop scheduling problems with
sequence dependent setup times: {A} dynamic programming approach. Naval Research
Logistics Quarterly, Wiley Online Library, v. 21, n. 3, p. 515-524, 1974.

CRAINIC, T. G.; TOULOUSE, M. Parallel strategies for meta-heuristics. In: Handbook
of metaheuristics. [S.1.]: Springer, 2003. p. 475-513.

CURA, T. An evolutionary algorithm for the permutation flowshop scheduling problem
with total tardiness criterion. International Journal of Operational Research,
Inderscience Publishers, v. 22, n. 3, p. 366-384, 2015.

DANNENBRING, D. G. An Evaluation of Flow Shop Sequencing Heuristics.
Management Science, v. 23, n. 11, p. 1174-1182, 1977.

DAS, S. R.; GUPTA, J. N. D.; KHUMAWALA. A savings index heuristic algorithm for
flowshop scheduling with sequence dependent set-up times. Journal of the Operational
Research Society, Springer, v. 46, n. 11, p. 1365-1373, 1995.

DENG, G.; GU, X. A hybrid discrete differential evolution algorithm for the no-idle
permutation flow shop scheduling problem with makespan criterion. Computers and
Operations Research, v. 39, n. 9, p. 2152-2160, 2012.

DONG, X.; HUANG, H.; CHEN, P. An improved NEH-based heuristic for the permutation
flowshop problem. Computers and Operations Research, v. 35, n. 12, p. 3962-3968,
2008.

DORIGO, M. et al. Ant Colony Optimization and Swarm Intelligence: 6th
International Conference, ANTS 2008, Brussels, Belgium, September 22-24,
2008, Proceedings. [S.l.]: Springer, 2008. v. 5217.

FERNANDEZ-VIAGAS, V. The permutation flowshop scheduling problem: analysis,
solution procedures and problem extensions. 2016.

FERNANDEZ-VIAGAS, V.; FRAMINAN, J. M. On insertion tie-breaking rules
in heuristics for the permutation flowshop scheduling problem. Computers and
Operations Research, v. 45, p. 6067, 2014.

. NEH-based heuristics for the permutation flowshop scheduling problem to
minimise total tardiness. Computers & Operations Research, v. 60, p. 27-36, 2015.

. A beam-search-based constructive heuristic for the {PFSP} to minimise total
flowtime. Computers & Operations Research, Elsevier, v. 81, p. 167-177, 2017.

FERNANDEZ-VIAGAS, V.; LEISTEN, R.; FRAMINAN, J. M. A computational
evaluation of constructive and improvement heuristics for the blocking flow shop to
minimise total lowtime. Expert Systems with Applications, v. 61, n. Supplement C,
p. 290-301, 2016.

171

FERNANDEZ-VIAGAS, V.; RUIZ, R.; FRAMINAN, J. M. A new vision of approximate
methods for the permutation flowshop to minimise makespan: {S}tate-of-the-art and

computational evaluation. European Journal of Operational Research, Elsevier,
v. 257, n. 3, p. 707721, 2017.

FERNANDEZ-VIAGAS, V.; VALENTE, J. M. S.; FRAMINAN, J. M. Iterated-greedy-
based algorithms with beam search initialization for the permutation flowshop to minimise
total tardiness. Expert Systems with Applications, v. 94, p. 58-69, 2018.

FRAMINAN, J. M.; GUPTA, J. N. D.; LEISTEN, R. A Review and Classification

of Heuristics for Permutation Flow-Shop Scheduling with Makespan Objective. The
Journal of the Operational Research Society, Palgrave Macmillan Journals, v. 55,
n. 12, p. 1243-1255, 2004. ISSN 01605682, 14769360.

FRAMINAN, J. M.; LEISTEN, R. An efficient constructive heuristic for flowtime
minimisation in permutation flow shops. Omega, v. 31, n. 4, p. 311-317, 2003.

. Total tardiness minimization in permutation flow shops: a simple approach based
on a variable greedy algorithm. International Journal of Production Research,
Taylor & Francis, v. 46, n. 22, p. 6479-6498, 2008.

FRAMINAN, J. M.; LEISTEN, R.; RUIZ-USANO, R. Efficient heuristics for flowshop
sequencing with the objectives of makespan and flowtime minimisation. European
Journal of Operational Research, v. 141, n. 3, p. 559-569, 2002.

. Comparison of heuristics for flowtime minimisation in permutation flowshops.
Computers and Operations Research, Pergamon, v. 32, n. 5, p. 1237-1254, may
2005.

GAJPAL, Y.; RAJENDRAN, C.; ZIEGLER, H. An ant colony algorithm for scheduling in
flowshops with sequence-dependent setup times of jobs. The International Journal of
Advanced Manufacturing Technology, Springer, v. 30, n. 5-6, p. 416-424, 2006.

GELDERS, L. F.; SAMBANDAM, N. Four simple heuristics for scheduling a flow-shop.
International Journal of Production Research, Taylor & Francis, v. 16, n. 3, p.
221-231, 1978.

GONCHAROV, Y.; SEVASTYANOV, S. The flow shop problem with no-idle constraints:
A review and approximation. European Journal of Operational Research, Elsevier,
v. 196, n. 2, p. 450-456, 2009.

GRAHAM, R. L. et al. Optimization and Approximation in Deterministic Sequencing and
Scheduling: a Survey. Annals of Discrete Mathematics, v. 5, p. 287-326, 1979.

GUPTA, J. N. D. A Functional Heuristic Algorithm for the Flowshop Scheduling Problem.
Journal of the Operational Research Society, v. 22, n. 1, p. 39-47, mar 1971. ISSN
1476-9360.

. Heuristic algorithms for multistage flowshop scheduling problem. AITE
Transactions, Taylor & Francis, v. 4, n. 1, p. 11-18, 1972.

GUPTA, J. N. D.; DARROW, W. P. The two-machine sequence dependent flowshop
scheduling problem. European Journal of Operational Research, Elsevier, v. 24,
n. 3, p. 439-446, 1986.

172

HASIJA, S.; RAJENDRAN, C. Scheduling in flowshops to minimize total tardiness of
jobs. International Journal of Production Research, Taylor & Francis, v. 42, n. 11,
p. 2289-2301, 2004.

HUANG, J. D. et al. Minimizing makespan in a two-stage flow shop with parallel
batch-processing machines and re-entrant jobs. Engineering Optimization, Taylor &
Francis, v. 49, n. 6, p. 1010-1023, 2017.

HUNDAL, T. S.; RAJGOPAL, J. An extension of Palmer’s heuristic for the flow shop
scheduling problem. International Journal of Production Research, Taylor &
Francis, v. 26, n. 6, p. 1119-1124, 1988.

INCE, Y. et al. A discrete artificial bee colony algorithm for the permutation flowshop
scheduling problem with sequence-dependent setup times. In: IEEE. Evolutionary
Computation (CEC), 2016 IEEE Congress on. [S.1.], 2016. p. 3401-3408.

JOHNSON, S. M. Optimal two-and three-stage production schedules with setup times
included. Naval Research Logistics (NRL), Wiley Online Library, v. 1, n. 1, p. 61-68,
1954.

KALCZYNSKI, P. J.; KAMBUROWSKI, J. A Heuristic for Minimizing the Makespan in
No-idle Permutation Flow Shops. Comput. Ind. Eng., Pergamon Press, Inc., Tarrytown,
NY, USA, v. 49, n. 1, p. 146-154, 2005.

. On no-wait and no-idle flow shops with makespan criterion. European journal
of Operational research, Elsevier, v. 178, n. 3, p. 677-685, 2007.

. On the NEH heuristic for minimizing the makespan in permutation flow shops.
Omega, v. 35, n. 1, p. 53-60, 2007.

. An improved NEH heuristic to minimize makespan in permutation flow shops.
Computers and Operations Research, v. 35, n. 9, p. 3001-3008, 2008.

. An empirical analysis of the optimality rate of flow shop heuristics. European
Journal of Operational Research, v. 198, n. 1, p. 93-101, 2009.

. On Recent Modifications And Extensions Of The Neh Heuristic For Flow Shop
Sequencing. Foundations of Computing and Decision Sciences, Vol. 36, N, p.
18-33, 2011.

KAMBUROWSKI, J. More on three-machine no-idle flow shops. Computers &
Industrial Engineering, Elsevier, v. 46, n. 3, p. 461-466, 2004.

KARABULUT, K. A hybrid iterated greedy algorithm for total tardiness minimization
in permutation flowshops. Computers & Industrial Engineering, v. 98, p. 300-307,
2016.

KENDALL, G. et al. Good laboratory practice for optimization research. Journal of the
Operational Research Society, Taylor & Francis, v. 67, n. 4, p. 676689, 2016.

KIM, Y.-D. Heuristics for Flowshop Scheduling Problems Minimizing Mean Tardiness.
Journal of the Operational Research Society, v. 44, n. 1, p. 19-28, jan 1993. ISSN
1476-9360.

173

KIM, Y.-D.; LIM, H.-G.; PARK, M.-W. Search heuristics for a flowshop scheduling
problem in a printed circuit board assembly process. European Journal of Operational
Research, v. 91, n. 1, p. 124-143, 1996.

KOULAMAS, C. A new constructive heuristic for the flowshop scheduling problem.
European Journal of Operational Research, v. 105, n. 1, p. 66-71, 1998.

LAHA, D.; SARIN, S. C. A heuristic to minimize total flow time in permutation flow
shop. Omega, v. 37, n. 3, p. 734-739, 2009.

LI, X. et al. Trajectory Scheduling Methods for minimizing total tardiness in a flowshop.
Operations Research Perspectives, v. 2, p. 13-23, 2015.

LI, X.; WANG, Q.; WU, C. Efficient composite heuristics for total flowtime minimization
in permutation flow shops. Omega, v. 37, n. 1, p. 155-164, 2009.

LIU, J.; REEVES, C. R. Constructive and composite heuristic solutions to the P//sum
C__i scheduling problem. European Journal of Operational Research, v. 132, n. 2,
p. 439-452, 2001.

LIU, W.; JIN, Y.; PRICE, M. A new improved NEH heuristic for permutation flowshop
scheduling problems. International Journal of Production Economics, v. 193, n.
Supplement C, p. 21-30, 2017.

LOW, C.; YEH, J.-Y.; HUANG, K.-I. A robust simulated annealing heuristic for flow
shop scheduling problems. The International Journal of Advanced Manufacturing
Technology, v. 23, p. 762-767, 2004.

MACCARTHY, B. L.; LIU, J. Addressing the gap in scheduling research: a review of
optimization and heuristic methods in production scheduling. International Journal of
Production Research, Taylor & Francis, v. 31, n. 1, p. 59-79, 1993.

MIRABI, M. Ant colony optimization technique for the sequence-dependent flowshop
scheduling problem. The International Journal of Advanced Manufacturing
Technology, Springer, v. 55, n. 1-4, p. 317-326, 2011.

. A novel hybrid genetic algorithm to solve the sequence-dependent permutation flow-
shop scheduling problem. The International Journal of Advanced Manufacturing
Technology, Springer, v. 71, n. 1-4, p. 429-437, 2014.

NAGANO, M. S.; MOCCELLIN, J. V. A high quality solution constructive heuristic for
flow shop sequencing. Journal of the Operational Research Society, v. 53, n. 12, p.
1374-1379, 2002.

. Reducing Mean Flow Time in Permutation Flow Shop. The Journal of the
Operational Research Society, Palgrave Macmillan Journals, v. 59, n. 7, p. 939-945,
2008. ISSN 01605682, 14769360.

NAGANO, M. S.; ROSSI, F. L.; MARTARELLI, N. J. High-performing heuristics to
minimize flowtime in no-idle permutation flowshop. Engineering Optimization, Taylor
& Francis, v. 0, n. 0, p. 1-14, 2018.

174

NAGANO, M. S.; ROSSI, F. L.; TOMAZELLA, C. P. A new efficient heuristic method
for minimizing the total tardiness in a no-idle permutation flow shop. Production
Engineering, v. 11, n. 4, p. 523-529, 2017.

NARAIN, L.; BAGGA, P. C. Flowshop/no-idle scheduling to minimise the mean flowtime.
The ANZIAM Journal, Cambridge University Press, v. 47, n. 2, p. 265275, 2005.

. Flowshop/no-idle scheduling to minimize total elapsed time. Journal of Global
Optimization, Springer, v. 33, n. 3, p. 349-367, 2005.

NAWAZ, M.; ENSCORE, E. E.; HAM, I. A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega, v. 11, n. 1, p. 91-95, 1983.

NG, C. T. et al. Flowshop scheduling of deteriorating jobs on dominating machines.
Computers & Industrial Engineering, Elsevier, v. 61, n. 3, p. 647-654, 2011.

PAGNOZZI, F.; STUTZLE, T. Speeding up local search for the insert neighborhood in
the weighted tardiness permutation flowshop problem. Optimization Letters, Springer,
v. 11, n. 7, p. 1283-1292, 2017.

PALMER, D. S. Sequencing Jobs Through a Multi-Stage Process in the Minimum Total
Time—A Quick Method of Obtaining a Near Optimum. Journal of the Operational
Research Society, v. 16, n. 1, p. 101-107, mar 1965.

PAN, Q.-K.; RUIZ, R. Local search methods for the flowshop scheduling problem with
flowtime minimization. European Journal of Operational Research, Elsevier, v. 222,
n. 1, p. 31-43, 2012.

. A comprehensive review and evaluation of permutation flowshop heuristics to
minimize flowtime. Computers and Operations Research, v. 40, n. 1, p. 117-128,
2013.

. An effective iterated greedy algorithm for the mixed no-idle permutation flowshop
scheduling problem. Omega, v. 44, p. 41-50, 2014.

PAN, Q.-K.; WANG, L. A novel differential evolution algorithm for no-idle permutation
flow-shop scheduling problems. European Journal of Industrial Engineering, v. 2,
n. 3, p. 279-297, 2008.

. No-idle permutation flow shop scheduling based on a hybrid discrete particle swarm
optimization algorithm. The International Journal of Advanced Manufacturing
Technology, v. 39, n. 7, p. 796-807, nov 2008.

. Effective heuristics for the blocking flowshop scheduling problem with makespan
minimization. Omega, Elsevier, v. 40, n. 2, p. 218-229, 2012.

PARTHASARATHY, S.; RAJENDRAN, C. SCHEDULING TO MINIMIZE MEAN
TARDINESS AND WEIGHTED MEAN TARDINESS IN FLOWSHOP AND
FLOWLINE-BASED MANUFACTURING CELL. Computers & Industrial
Engineering, v. 34, n. 2, p. 531-546, 1998.

PESSOA, L. S.; ANDRADE, C. E. Heuristics for a flowshop scheduling problem with
stepwise job objective function. European Journal of Operational Research,
Elsevier, 2017.

175

PINEDO, M. L. Scheduling: theory, algorithms, and systems. [S.l.]: Springer, 2016.

RAD, S. F.; RUIZ, R.; BOROOJERDIAN, N. New high performing heuristics for
minimizing makespan in permutation flowshops. Omega, v. 37, n. 2, p. 331-345, 2009.

RAJENDRAN, C. Heuristic algorithm for scheduling in a flowshop to minimize total
flowtime. International Journal of Production Economics, v. 29, n. 1, p. 6573,
1993.

RAJENDRAN, C.; ZIEGLER, H. An efficient heuristic for scheduling in a flowshop
to minimize total weighted flowtime of jobs. European Journal of Operational
Research, v. 103, n. 1, p. 129-138, 1997.

RAMAN, N. Minimum tardiness scheduling in flow shops: Construction and evaluation of
alternative solution approaches. Journal of Operations Management, v. 12, n. 2, p.
131-151, 1995.

RIBAS, I.; COMPANYS, R.; TORT-MARTORELL, X. Comparing three-step heuristics
for the permutation flow shop problem. Computers and Operations Research, v. 37,
n. 12, p. 2062-2070, 2010.

. Efficient heuristics for the parallel blocking flow shop scheduling problem. Expert
Systems with Applications, v. 74, n. Supplement C, p. 41-54, 2017.

RIOS-MERCADO, R. Z.; BARD, J. F. Computational experience with a branch-and-cut
algorithm for flowshop scheduling with setups. Computers & Operations Research,
v. 25, n. 5, p. 351-366, 1998.

. Heuristics for the flow line problem with setup costs. European Journal of
Operational Research, Elsevier, v. 110, n. 1, p. 76-98, 1998.

. A branch-and-bound algorithm for permutation flow shops with sequence-dependent
setup times. ITE transactions, Springer, v. 31, n. 8, p. 721-731, 1999.

. The flow shop scheduling polyhedron with setup times. Journal of
Combinatorial Optimization, Springer, v. 7, n. 3, p. 291-318, 2003.

RIOS-MERCADO, R. Z. et al. An enhanced TSP-based heuristic for makespan
minimization in a flow shop with setup times. Journal of Heuristics, Springer, v. 5,
n. 1, p. 53-70, 1999.

ROSSI, F. L.; NAGANO, M. S.; NETO, R. F. T. Evaluation of high performance
constructive heuristics for the flow shop with makespan minimization. The International
Journal of Advanced Manufacturing Technology, v. 87, n. 1, p. 125-136, 2016.

ROSSI, F. L.; NAGANO, M. S.; SAGAWA, J. K. An effective constructive heuristic
for permutation flow shop scheduling problem with total flow time criterion. The

International Journal of Advanced Manufacturing Technology, v. 90, n. 1, p.
93-107, 2017.

RUIZ, R.; MAROTO, C.; ALCARAZ, J. Solving the flowshop scheduling problem with
sequence dependent setup times using advanced metaheuristics. European Journal of
Operational Research, Elsevier, v. 165, n. 1, p. 34-54, 2005.

176

. Two new robust genetic algorithms for the flowshop scheduling problem. Omega,
Elsevier, v. 34, n. 5, p. 461-476, 2006.

RUIZ, R.; STUTZLE, T. A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational
Research, v. 177, n. 3, p. 2033-2049, 2007.

. An iterated greedy heuristic for the sequence dependent setup times flowshop
problem with makespan and weighted tardiness objectives. European Journal of
Operational Research, Elsevier, v. 187, n. 3, p. 1143-1159, 2008.

RUIZ, R.; VALLADA, E.; FERNANDEZ-MARTINEZ, C. Scheduling in Flowshops with
No-Idle Machines. In: CHAKRABORTY, U. K. (Ed.). Computational Intelligence in
Flow Shop and Job Shop Scheduling. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009. p. 21-51.

SAADANI, N. E. H.; GUINET, A.; MOALLA, M. Three stage no-idle flow-shops.
Computers & industrial engineering, Elsevier, v. 44, n. 3, p. 425-434, 2003.

. A travelling salesman approach to solve the F/no-idle/Cmax problem. European
Journal of Operational Research, v. 161, n. 1, p. 11-20, 2005.

SEN, T.; GUPTA, S. K. A state-of-art survey of static scheduling research involving due
dates. Omega, v. 12, n. 1, p. 63-76, 1984.

SEVAST’JANOV, S. Vector Summation in Banach Space and Polynomial Algorithms for
Flow Shops and Open Shops. Mathematics of Operations Research, v. 20, n. 1, p.
90-103, 1995.

SHAO, W.; PI, D.; SHAO, Z. Memetic algorithm with node and edge histogram for
no-idle flow shop scheduling problem to minimize the makespan criterion. Applied Soft
Computing, v. 54, n. Supplement C, p. 164-182, 2017.

SHEIBANI, K. A fuzzy greedy heuristic for permutation flow-shop scheduling. Journal
of the Operational Research Society, Springer, v. 61, n. 5, p. 813-818, 2010.

SHEN, J.-n.; WANG, L.; WANG, S.-y. A bi-population EDA for solving the
no-idle permutation flow-shop scheduling problem with the total tardiness criterion.
Knowledge-Based Systems, Elsevier, v. 74, p. 167-175, 2015.

Simons Jr, J. V. Heuristics in flow shop scheduling with sequence dependent setup times.
Omega, Elsevier, v. 20, n. 2, p. 215-225, 1992.

SIOUD, A.; GAGNE, C. Enhanced migrating birds optimization algorithm for the
permutation flow shop problem with sequence dependent setup times. European
Journal of Operational Research, Elsevier, v. 264, n. 1, p. 66-73, 2018.

SLACK, N. et al. Administracdo da producao. [S.1.]: Atlas Sao Paulo, 2009. v. 2.

SRIKAR, B. N.; GHOSH, S. A {MILP} model for the n-job, m-stage flowshop with
sequence dependent set-up times. International Journal of Production Research,
Taylor & Francis, v. 24, n. 6, p. 14591474, 1986.

177

Stafford Jr, E. F.; TSENG, F. T. On the Srikar-Ghosh MILP model for the iV x M SDST
flowshop problem. The International Journal Of Production Research, Taylor &
Francis, v. 28, n. 10, p. 1817-1830, 1990.

. Two models for a family of flowshop sequencing problems. European Journal of
Operational Research, Elsevier, v. 142, n. 2, p. 282-293, 2002.

STUTZLE, T. An Ant Approach to the Flow Shop Problem. In: In Proceedings
of the 6th European Congress on Intelligent Techniques & Soft Computing
(EUFIT’98. [S.1.]: Verlag, 1997. p. 1560-1564.

SUN, L. L. L. et al. A note on flow shop scheduling problems with deteriorating jobs on
no-idle dominant machines. European Journal of Operational Research, Elsevier,
v. 200, n. 1, p. 309-311, 2010.

SUN, L.-Y. L.-H. L.-Y. et al. Flow shop makespan minimization scheduling with
deteriorating jobs under dominating machines. International Journal of Production
Economics, Elsevier, v. 138, n. 1, p. 195-200, 2012.

TAILLARD, E. Some efficient heuristic methods for the flow shop sequencing problem.
European journal of Operational research, Elsevier, v. 47, n. 1, p. 65-74, 1990.

. Benchmarks for basic scheduling problems. european journal of operational
research, Elsevier, v. 64, n. 2, p. 278-285, 1993.

TASGETIREN, M. F. et al. A particle swarm optimization algorithm for makespan and
total flowtime minimization in the permutation flowshop sequencing problem. European
journal of operational research, Elsevier, v. 177, n. 3, p. 1930-1947, 2007.

. A differential evolution algorithm for the no-idle flowshop scheduling problem with
total tardiness criterion. International Journal of Production Research, Taylor &
Francis, v. 49, n. 16, p. 5033-5050, 2011.

. A discrete artificial bee colony algorithm for the no-idle permutation flowshop
scheduling problem with the total tardiness criterion. Applied Mathematical
Modelling, Elsevier, v. 37, n. 10, p. 6758-6779, 2013.

. A variable iterated greedy algorithm with differential evolution for the no-idle
permutation flowshop scheduling problem. Computers and Operations Research,
v. 40, n. 7, p. 1729-1743, 2013.

TSENG, F. T.; GUPTA, J. N. D.; Stafford Jr, E. F. A penalty-based heuristic algorithm
for the permutation flowshop scheduling problem with sequence-dependent set-up times.
Journal of the Operational Research Society, Taylor & Francis, v. 57, n. 5, p.
541-551, 2006.

TSENG, F. T.; Stafford Jr, E. F. Two MILP models for the N x M SDST flowshop
sequencing problem. International Journal of Production Research, Taylor &
Francis, v. 39, n. 8, p. 1777-1809, 2001.

USKUP, E.; SMITH, S. B. A branch-and-bound algorithm for two-stage production-
sequencing problems. Operations Research, INFORMS, v. 23, n. 1, p. 118-136,
1975.

178

VACHAJITPAN, P. Job sequencing with continuous machine operation. Computers &
Industrial Engineering, Elsevier, v. 6, n. 3, p. 255-259, 1982.

VALLADA, E.; RUIZ, R. Genetic algorithms with path relinking for the minimum
tardiness permutation flowshop problem. Omega, v. 38, n. 1, p. 57-67, 2010.

VANCHIPURA, R.; SRIDHARAN, R. Development and analysis of constructive heuristic
algorithms for flow shop scheduling problems with sequence-dependent setup times. The
International Journal of Advanced Manufacturing Technology, v. 67, n. 5, p.
1337-1353, jul 2013.

VANCHIPURA, R.; SRIDHARAN, R.; BABU, A. S. Improvement of constructive
heuristics using variable neighbourhood descent for scheduling a flow shop with sequence
dependent setup time. Journal of Manufacturing Systems, v. 33, n. 1, p. 65-75, 2014.

VOLLMANN, T. E. Manufacturing planning and control for supply chain
management. [S.1.: s.n.|, 2005.

WANG, Y. et al. Iterated local search algorithms for the sequence-dependent setup times
flow shop scheduling problem minimizing makespan. In: Foundations of Intelligent
Systems. [S.1.]: Springer, 2014. p. 329-338.

WOO, H.-S.; YIM, D.-S. A heuristic algorithm for mean flowtime objective in flowshop
scheduling. Computers and Operations Research, v. 25, n. 3, p. 175-182, 1998.

WOOLLAM, C. R. Flowshop with no idle machine time allowed. Computers &
industrial engineering, Elsevier, v. 10, n. 1, p. 69-76, 1986.

ZHOU, Y.; CHEN, H.; ZHOU, G. Invasive weed optimization algorithm for optimization
no-idle flow shop scheduling problem. Neurocomputing, v. 137, p. 285-292, 2014.

	Dedication
	Acknowledgements
	Epigraph
	RESUMO
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Objectives and outline of the Thesis

	Problem Statement
	Notations
	The no-idle and mixed no-idle PFSP
	The mixed no-idle PFSP with sequence dependent setup times
	Mixed integer linear programming model
	Makespan, total flowtime and total tardiness calculation
	Acceleration method to calculate the makespan for the insertion neighbourhood
	Acceleration method to calculate the total flowtime or the total tardiness

	The mixed no-idle PFSP with setup times and makespan mimization
	Literature review
	The no-idle PFSP
	The PFSP with sequence dependent setup times

	A new constructive heuristic
	Greedy heuristic
	NEH heuristic variant
	The RNx heuristic

	Computational and statistical experiments
	Instances generation
	Benchmark for the parameter tuning for the RNx
	Benchmark adapted from Pan2014
	Benchmark adapted from ruiz2005solving
	Benchmark for the MILP model evaluation

	Compared Heuristics
	Performance measures
	Parameter settings of RNx
	Comparison between heuristics in the benchmark adapted from Pan2014
	Comparison between heuristics in the benchmark adapted from ruiz2005solving
	Evaluation of the MILP model and the RNx heuristic

	Conclusion

	The mixed no-idle PFSP with setup times and total flowtime minimization
	Literature Review
	Heuristics for the F | prmu | Cmax problem
	Heuristics for the F | prmu | Cj problem
	Heuristics for the F | prmu, no-idle | Cmax and F | prmu, mixedno-idle | Cmax problems

	Proposed heuristics
	The index function for nodes evaluation
	The H1(N), H2(N,k) and H3(N) heuristics

	Computational and statistical experiments
	Instances generation
	Compared heuristics
	Performance measures
	Parameter tunning for the H1(N), H2(N, k) and H3(N)
	Comparison

	Conclusion

	The mixed no-idle PFSP with setup times and total tardiness minimisation
	Literature Review
	The Fm|prmu|Tj problem
	The Fm|prmu, no-idle|Tj problem

	Proposed Heuristics
	Computational and statistical experiments
	Instances generation
	Compared heuristics
	Performance measures
	Comparisons between heuristics
	Comparisons between metaheuristics

	Conclusion

	Conclusions, results and future research
	Conclusions
	Results
	Future research lines

	Bibliography

