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RESUMO

SOUZA, G. S. C. AVALIACAO DO COMPORTAMENTO DE PLACAS
LAMINADAS DE MATERIAL COMPOSITO SOB CISALHAMENTO
APOS CARREGAMENTO DE IMPACTO. 2021. 145p. Dissertacao
(Mestrado) - Escola de Engenharia de Sao Carlos, Universidade de Sdo Paulo, 2021.

Materiais compoésitos laminados de matriz polimérica reforcados por fibras (MPRF)
representam, na industria aerondutica, a maior revolucao desde o advento da turbina
a jato. Possuindo alta rigidez e resisténcia especifica, estes encontram cada vez mais
espaco em aplicagoes de alta performance e, especialmente, em aeronaves. Contudo,
atualmente existem limitagoes em seu uso atreladas a complexidade na previsao do
comportamento destes materiais sob carregamentos de impacto, o qual pode resultar
em reducao significativa em suas propriedades mecéanicas. Além disso, devido a sua
heterogeneidade e anisotropia, os mecanismos de iniciacdo e progressao de dano e falha
nao sao entendidos plenamente. Desta forma, a aplicacdo de materiais compoésitos em
estruturas aeronauticas ainda seguem filosofias de projeto conservadoras. Neste contexto,
é estratégico o estudo do comportamento mecanico e do processo de falha apresentado
por estes materiais. Além disso, o comportamento poés-falha, no sentido de prever sua
resisténcia residual, é de grande importancia para utilizagao de filosofias tolerantes ao
dano ao se projetar uma dada estrutura. Assim, este trabalho apresenta uma abordagem
experimental, auxiliada computacionalmente, para avaliar o comportamento de compoésitos
do tipo MPRF sob cisalhamento pés-impacto de baixa velocidade com reforgo unidirecional
tendo em vista que este é um tema pouco explorado pela literatura existente. Com base
na Mecéanica do Dano Continuo, emprega-se um modelo de material da literatura afim
de se investigar computacionalmente a falha e pds-falha destes materiais sob impacto e
cisalhamento pés-impacto. Assim, ensaios experimentais em espécimes [0°];4 sdo conduzidos
em um aparato de rail test (3 trilhos) e drop test a fim de se obter resultados de curvas
tensao-deformacao para os laminados com e sem dano. Baseado nestes, uma métrica de
dano fenomenolégica para cisalhamento pos-impacto é proposta para auxiliar na obtengao
da resisténcia residual destes materiais. Simulagoes computacionais sao realizadas afim de
se obter via método dos elementos finitos as tendéncias observadas experimentalmente e
para avaliar as potencialidades e limitagoes do modelo de material utilizado. Conclui-se
ao término deste trabalho que a metodologia proposta é promissora para se obter um

complementar as abordagens ja consolidadas de compressao e flexao pos-impacto.

Palavras-chave: Compésitos laminados. Carregamento de impacto. Comportamento

pos-impacto. Anélise de elementos finitos. Cisalhamento pds-impacto.






ABSTRACT

SOUZA, G. S. C. EVALUATION OF LAMINATED COMPOSITE PLATES
BEHAVIOR UNDER SHEAR-AFTER-IMPACT LOADING CONDITIONS:
A METHODOLOGY PROPOSAL. 2021. 145p. Dissertation (Master’s) - Sao Carlos
School of Engineering, University of Sao Paulo, Sao Carlos, 2021.

Fiber-reinforced polymer (FRP) laminated composite materials represents the greatest
revolution since the development of the jet turbine in aeronautical industry. Possessing high
stiffness and strength to weight ratio, they encounter increasingly space in high-performance
applications, particularly in aircrafts. However, nowadays there are limitations in their
usage attached to the complexity of prediction of behavior that these materials presents
under impact loadings, which can result in a significant reduction in their mechanical
properties. Moreover, due to its heterogeneity and anisotropy, the description of initiation
and propagation of damage and failure mechanisms are not fully understood yet. Thus,
the application of composite materials in aeronautical structures still follow conservative
design philosophies. In this context, it is strategic the study of the mechanical behavior
and the failure development and evolution presented by these materials. Following this, the
post-failure behavior comprehension, in the sense of prediction of its residual strength, it is
of major relevance to use damage tolerant design philosophies when designing one structure.
So, this work presents a experimental approach, computationally aided, to evaluate the
shear-after (low-velocity) impact behavior of FRP composites with unidirectional (UD)
reinforcement since this is a poorly explored theme by the existent literature. Based on
Continuum Damage Mechanics (CDM), a material model present in the literature is
employed to investigate computationally the failure and post-failure of these materials
under impact an shear-after-impact loadings. Thus, experimental tests in [0°];¢ specimens
are conducted in a 3-rail and drop-weight tests apparatus to obtain the stress-strain curves
results for laminates with and without damage. Based in these, a phenomenological damage
metric for shear-after-impact is proposed to aid the obtaining of the residual strength of
these materials. Computational simulations are realized aiming to obtain, using the finite
element method, the tendencies experimentally observed and to evaluate the potentialities
and limitations of the material model employed. It is concluded at the end of this work
that the proposed methodology is promising to obtain a complementary to the already

consolidated approaches of compression- and flexure-after-impact.

Keywords: Laminated composites. Impact loading. Post-impact behavior. Finite element

analysis. Shear-after-impact.
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1 INTRODUCTION

1.1 Contextualization

Due to the necessity of designing extremely light structures, especially for the
aeronautical industry, engineers search increasingly for materials that own high specific
strength and stiffness. Among these, composite materials play an important role because
aircraft structures are very weight-sensitive. In this sense, composites are ideal for some
applications in which they are cost-effective. There are many types of composite materials
and, by definition, they are composed of two or more distinct constituents possessing a
matrix and a reinforcement phase (HERAKOVICH, 1998). This combination is at the
macroscopic level and gives origin to a new material with unique desirable properties,
i.e. a composite usually is achieved by combining two different materials that contributes
isolatedly for the final properties of the former one; thus, a composite is heterogeneous.
Some of these characteristics that can be improved are: strength; stiffness; acoustic/thermal
insulation; weight; fatigue life; corrosion/wear resistance; among others (JONES, 1999). In
this text, attention is given to the fiber-reinforced polymer (FRP) type of composite that
is made of a polymer matrix reinforced with continuous fibers (usually glass, carbon or
aramid). Hereafter, the word composite material (or simply composite) is associated with

this type of material.

Besides all the advantages of composites, there are some challenges involving its
usage. As an example, for metals with ductile behavior it is widely accepted that until
the yield limit one can use von Mises failure criterion to evaluate the safety margin of
one structure subjected to some kind of loading. That is not true for composites. The
failure mechanisms are much more complex than that which play role in metals. There are
several damage and failure modes that can be considered to fully predict the mechanical
response of these materials. However, these modes are not fully understood yet (HINTON;
KADDOUR; SODEN, 2004; KADDOUR; HINTON, 2013). Consequently, this makes

designing with composite materials a much more difficult task than with metals.

Laminated composites are ensembles made of several layers called laminae that are
stacked together to build a plate-like structures. There are many ways to manufacture this
type of material, namely: hand-layup, resin transfer molding (RTM), resin film infusion
(RFI), automated fiber placement or filament winding, to name a few (HERAKOVICH,
1998). This type of structure usually does not possess significant transverse strength
being more susceptible to impact damage than a metallic plate. Thinking of an aircraft,
damage caused by this kind of loading can arise from numerous ways such as tool dropping
during the manufacturing or maintenance process, flying debris over take-off and landing
procedures, bird strike, collision with another vehicle, among others (ABRATE, 1998). The
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first example usually belongs to the category of low-velocity impacts (LVI). It is important
to note that this classification depends of several features besides its velocity such as
geometry of the impactor, constitution of the target and others. Thus, it is preferable and
more accurate classifying it as low-energy impact (LEI) although it still lacks important
information about the phenomena. In this context, one needs to strictly specify the
conditions in which impact takes place. For example, through this text the phenomenon
is investigated in controlled conditions of a drop-weight machine where variables such as

distance, velocity, mass and geometry of the impactor are well defined.

Low-energy impacts causes minimal superficial damage in composite laminates.
However, it can cause severe internal damage or even failure of the structure that
cannot be detected by naked eye which highly influences residual strength of the plate.
Generally, this type of damage is classified as barely visible impact damage (BVID) and
because of its characteristics can remain undetectable (THORSSON; WAAS; RASSAIAN,
2018a). Depending on the orientations of lamina in the laminate, impact can give rise to
intralaminar damage and interlaminar failure. Specially, the last one is of much concern
to the performance of the structure and usually is characterized by delamination. By
definition, a delamination is the physical separation between neighbor lamina which
drastically reduces the strength and stiffness of the laminate. It occurs when the stress
state between these lamina overcomes the interlaminar strength (TITA, 2003). Therefore,
the structural engineer needs to expend design time in well defining the material behavior

under such conditions.

Composite materials are currently used in numerous types of industry applications.
For example, there are the automobile, aerospace, sports, naval and medical industries.
Ideal usage of composites are those where high stiffness-weight and strength-weight ratios
are needed. Therefore, at aerospace industry this is justified since it is a very competitive
market. In an aircraft, composite structures usage affects directly the performance by
increasing its payload and range. Back in the 70s, where the application of composite
material in the aeronautical industry started, the Aircraft Energy Efficiency project
(ACEE), developed by NASA (National Aeronautics and Space Administration), used
composites to substitute metals in some primary and mostly in secondary aeroplane
structures. As a result, in some cases it was obtained reduction in 30% of the structure
self-weight when compared with its metallic counterpart (NIU, 1992). These results
represented a design paradigm change in structural engineering being considered the great
technical revolution since the jet turbine (JONES, 1999). Nowadays, composites are used
in several primary aircraft structures such as wing ribs, fuselage and wing panels, among
others. As main examples of its usage in aircraft civil industry, there are the Boeing 787
dreamliner (Fig. 1a) and the Airbus A380 (Fig. 1b) where the first one has its structures

composed by almost 50% of composite materials.
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Figure 1: Boeing 787 dreamliner (a) and Airbus A380 (b).

Sources: The Boeing Company (a); Airbus SE (b).

In military aircraft industry the Northrop Grumman B-2 Spirit, Boeing F-18
and Lockheed Martin F-22 can be cited as good examples of composite materials usage.
Specially, it is highlighted that the B-2 Spirit (Fig. 2) possesses more than 50% of its

structures composed by composites.

Figure 2: Northrop Grumman B-2 Spirit.

— - o

Source: Wikipedia.

Numerous successful cases can be listed where the application of composite materials

was made at different industry sectors. Therefore, it is evident that composites are part
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not only of the present but also of the future of industry and academia.

1.2 Motivation

Airworthiness in civil aircraft industry is of much concern since passengers must have
a good experience during flight. Thus, composite materials still have limited applications in
this sector due to difficulties during the certification process. Challenges in the prediction
of composite failure modes and in its life during operational service (TRAVESA, 2006)
implies in structures designed with an infinite life philosophy. Thus, these structures are
designed to not experience fatigue when considering its loading envelopes. This translates
in a conservative design as the weight-saving concept cannot be applied in its full capacity.
Of course, aeronautic certification authorities must guarantee that human life is preserved

and worry about safety.

In this context, impact loadings that occur during the aircraft operational time must
also be taken into account when designing a composite structure. Due to the complexity of
the problem, many studies with the focus of overcoming these limitations were conducted
in the past decades and, at some level, obtained successful results. These works follows
analytical, computational and experimental approaches. Of course, an analytical strategy is
the less time consuming and the cheapest one. However, certification authorities commonly
requires one or both of the other analysis types to be made in conjunction with it. Regarding
to experimental approaches, it is the most time consuming and expensive but it is also the
one that produces the higher-fidelity results since no approximations of material behavior
are made, for example. Also, to be representative of reality, an experimental analysis has to
be repeated by a significant amount of times which can reveal being an almost impossible
task in some cases. Thus, pure computational or hybrid computational-experimental
approaches are currently used to model the composites material behavior when under
impact loadings. The first one sometimes lacks exactly of experimental data to support its
findings and, in this sense, hybrid strategies started to be a trend between analysts. In
these approaches, a trade-off between experimental and computational results data is done.
For example, a computational analysis can be conducted to guarantee that the impact
is of the LVI family while quasi-static (monotonic or cyclic) tensile tests can be done for
the material model parameters identification. Nowadays, this is the most powerful type
of approach to, essentially, any kind of engineering problem with this inherent level of

complexity.

According to Bogenfeld et al. (BOGENFELD; KREIKEMEIER; WILLE, 2018),
the current challenge is the application of impact analysis in the structural level. It is
worth mentioning that the evaluation of scale effects for this kind of problem on composite
materials is an interesting and difficult subject of study that escapes from the scope of this

work. On the other hand, sufficiently accurate models are available nowadays for predicting
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with good accuracy the response and failure behavior of composite laminated plates at
the coupon scale of analysis. However, the after impact behavior of such specimens is
currently being studied and still needs full comprehension. Several studies available in
the literature appoints for quite reduction of compression strength of these structures on
events of low-velocity impact (THORSSON; WAAS; RASSAIAN, 2018a). Furthermore,
there are certain studies accounting for the flexural strength after impact (MEDEIROS,
2016) but only a few considering the shear after impact (SAI) resistance of such laminates
(FENG et al., 2017b) under BVID conditions. In this context, it is important to study
the SAI behavior of these structures since that once in operation, laminated composite

structures are subjected to combined stress states which in most cases includes shear.

Therefore, the development of material models capable of reducing the number of
experimental tests and promoting economy on the development of structural design is of

great significance to the progression of composite materials application in industry.

1.3 Dissertation Goals

As aforementioned, the study of laminated composite plates with unidirectional
reinforcement under quasi-static and face-on impact loadings is of great relevance for
academia and industry. Besides several studies were conducted with the objective of
evaluating the compression after impact (CAI) and flexure after impact (FAI) behavior of
FRP composites, only a few aiming the SAI behavior were conducted throughout the last
years. Thus, this work arises due to the lack of computational and experimental studies in

the subject aiming the fulfillment of the gap that exists in the area.

In this sense, the main goal of the present work consists on proposing a methodology
to evaluate the residual strength of composite laminates under shear-after-impact conditions.

Therefore, some specific goals of this work are listed:

o Obtain material model parameters: experimental characterization of the in-house

hand-layup manufactured specimens;

« Have a computational code: computational analysis via subroutines written in

FORTRAN language and linked to ABAQUS finite element package;

o Compare computational results with experimental data: evaluate the potentialities

and limitations of the material model;

o Develop a methodology considering SAI: provided with experimental and finite
element method results, propose a methodology for shear-after-impact behavior

assessment.
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To fulfill these objectives, reproduction of the computational results done by Ferreira
(FERREIRA, 2014) are firstly made. For quasi-static simulations an UMAT (User Material
Subroutine - ABAQUS Standard) is used. Once the preliminary analyses and material
characterization are done, drop-weight tests are conducted with the manufactured coupons.
An usual stacking sequence of [0°];4 of carbon fiber-reinforced polymer (CFRP) is used. At
the end of this work, novel experimental guidelines for SAI testing aided by computational

investigations based on the aforementioned methods and standards are proposed.

1.4 Organization of the Work

The present work is organized in five chapters, each of them with its themes, scopes
and sections. Chapter 1 presents an overview on composite materials covering the subtopics
of damage and failure caused by impact and quasi-static loadings in a brief contextualization
of the theme. The relevance of the subject is highlighted giving attention to currently
existing challenges in the prediction of the material behavior post-impact conditions.
Motivations, goals and scope of this dissertation are presented. Chapter 2 is destined to
a literature review on the themes addressed across this text. In this, the stress-strain
relations for anisotropic elasticity are introduced and a more general discussion about
impact mechanics on composite materials is done. The damage and failure mechanisms
in these materials that occur under impact events are exposed and special attention is
given to the barely-visible impact damage (BVID) type. Failure criteria, degradation laws
and failure modes for composite materials are discussed. Continuum damage mechanics
fundamentals and its application for composite materials failure modeling are presented
and the mathematical formulation of the employed material model is introduced. A review
in experimental and computational analyses of impact is presented where, for the second
approach, the Finite Element Method (FEM) is focused with the implementation of user
material subroutines (mainly UMAT) in ABAQUS. Lastly, an overview on the most used
shear test methods for composite materials is done. In Chapter 3 post-impact CAI and FAI
methodologies are discussed to provide a solid basis for the SAI methodology proposed.
There is a section dedicated to materials and methods where manufacturing strategies,
material characterization by means of monotonic tests and needed parameters identification
via cyclic tests is performed. A new specimen is proposed for the shear-after-impact
experimental analysis and the adopted damage metric is discussed. Provided with literature
review and the proposed methodology, Chapter 4 deals with the experimental approach for
SAI in composite materials aided by computational analyses. There is a brief introduction,
followed by the experimental methodology employed and then, the obtained results are
presented and discussed. Also, finite elements analyses are performed to evaluate the
fidelity of the material model employed in obtaining the results needed for the SAI study.
Finally, Chapter 5 compiles the results obtained, dealing with the conclusions of the present

work and discuss about future works proposals. To fulfill these objectives some preliminary
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computational and experimental testing results needs to be realized and obtained. Thus,
in Appendices A and B these preliminary remarks are shown and discussed. Those are

used as the basis for the approach proposed through this text.






2 LITERATURE REVIEW

2.1 Stress-Strain Relations for Anisotropic Elasticity

Hooke’s Law generalized for three-dimensional (3D) anisotropy relating stress and

strain in contracted notation is,

0; = Cl'jz‘ij, (21)

where 0; (i = 1,...,6) are the stress components of a cubic 3D element in directions 1, 2

and 3, Cj; is the stiffness matrix and ¢; are the strain components as shown in Figure 3.

Figure 3: Stress in a cubic element.

Source: by the author.

The contracted notation for 3D stress and strain is defined in Table 1 with relation
to the usual tensorial notation for symmetric stress and strain tensors cases. In this, v;;

are the engineering shear strains and ¢;; are the tensorial shear strains.

Table 1: Tensorial and contracted notations for stress and strain

Stress Strain

Tensorial Notation Contracted Notation Tensorial Notation Contracted Notation

011 01 €11 &1
0922 02 €22 €2
033 03 €33 €3
T23 = 032 04 Vo3 = 2€93 &4
T3l = 031 o5 Y31 = 2€31 Es

Ti2 = 012 06 Y12 = 2€12 €6
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Thus, for small deformations, strains are defined as (JONES, 1999):

ou

:%,
_Ov
62—@,
_ Ow
=5

€1
(2.2)
€3

and,

ov  OJw

92 oy’
ow Ou

ax—i_&’
ou @

%2:87y+@x’

Y23 =

Y31 = (2.3)

where u, v and w are displacements in the x, y and z directions, respectively. Also, Eqgs.

(2.2) and (2.3) are only valid for small strains and displacements.

Figure 4 highlights the difference between engineering and tensorial shear strains.
Notice that the v;; strain is the total angle that the element experiences when submitted
to a simple shear state. On the other hand, the ¢;; strain represents half of this “~;;”
angle that the same element experiences when submitted to a pure shear state. Physically,

engineering shear strain implies in a rotation of the element while tensorial shear strain is

followed by a stretching of it.

Figure 4: Engineering and tensorial shear strains.

—

T
T ' l
<—
Simple shear Pure shear
T2 = 2612 €12
12

K €12

Engineering shear strain Tensorial shear strain

Source: adapted from (JONES, 1999) by the author.

The stiffness (or constitutive) matrix in Eq. (2.1) possess 36 constants. This number

can be reduced when considering important strain energy aspects. Elastic materials, for
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which a elastic potential exists and is equal to the strain energy density (LEKHNITSKII,
1965), has an increment of specific work given by (JONES, 1999),

dW = O'idﬁi, (24)

when stresses o; acts by means of the incremental strains de;. Making use of Eq. (2.1), it
follows:
dW = Cijffjdéfj. (25)

Integrating the last with respect to the strains, specific work is given by,

1
W = 501']'51'6]'. (26)

On the other hand, Hooke’s Law can be obtained from Eq. (2.6):

882/ = Cyjej, (2.7)
and, taking the second derivative,

;:g; = Cj;. (2.8)
Analogously, it follows that, )

;;g; = Cji. (2.9)

Since the derivative of W is immaterial! (JONES, 1999), it is trivial that:

Hence, the stiffness matrix is symmetric and possess 21 different constants but
only 18 of them are independent (JONES, 1999). Another way to prove Eq. (2.10) is to
demonstrate that the stress and strain tensors are both symmetric and, consequently,
the stiffness tensor is symmetric as well. Hypothetically, it is considered a continuous
media that follows the generalized Hooke’s law. Moreover, only small strains are taken
into account. Thus, the strain components are linear functions of the stress components
(LEKHNITSKII, 1965). So, it follows immediately that Eq. (2.10) is valid.

Similarly, W can be expressed in terms of compliance and stress. Thus, differentiating

twice with respect to stresses, it can be proven that S;; = Sj;. That is, the compliance

L' The order of 41,...,i; is immaterial on the differentiation of a function f with respect to
the variables x;,,...,x;, if the same possesses continuous partial derivatives of all orders.
Functions with this property are called C* functions (SPIVAK, 1971). This result is known
as Clairaut-Schwarz Theorem (HUBBARD; HUBBARD, 2015).
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matrix S;; is also symmetric. Finally, the stress-strain relations for linear-elastic anisotropic
materials is given by (GIBSON, 2012):

o1
02
03
T23

T31

T12

Cn Crp Ci3
Co Co3
Cs3

Sym

C'14
C(24
C(34
C'44

Cis
C(25
CV?)S
Cus
C(55

Cie
C’26
036
Cue
C156
066

€1
€2
€3
V23
V31
Y12

(2.11)

where there are no symmetry planes in the material. For the case where exists two planes of
material symmetry, it follows that symmetry will also exist for a third mutually orthogonal
plane with respect to both of them. For a coordinate system aligned with the materials

directions (1, 2 and 3), Hooke’s law is given as (JONES, 1999),

01 i Cin Cip Ciz 0 0 0 €1
op) Cia Cyp Ty 0 0 0 €9
o3 | _ Cis Co3 C33 0 0 0 €3 7 (2.12)
To3 0 0 0 Cyu O 0 Y23
T31 0 0 0 0 Cs5 O Y31
) [0 0 0 0 0 G|l e

and these materials are said