• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.18.2024.tde-09092024-155909
Documento
Autor
Nome completo
Rodolfo da Silva Collares
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2024
Orientador
Banca examinadora
Bidinotto, Jorge Henrique (Presidente)
Gandolfi, Ricardo
Nova, Helcio Francisco Villa
 
Título em inglês
A thermal management system parametric model for fuel cell powered aircraft conceptual design
Palavras-chave em inglês
aircraft concept studies
fuel cell
hybrid-electric aircraft
Meredith effect
sustainable aviation
thermal management system
Resumo em inglês
It is a widely accepted fact that the world ambient temperature is rising, and it is correlated with the CO2 emissions produced by economic sectors such as energy, industry and transports. Aerospace segment has an important contribution to the CO2 emissions, therefore it studies solutions to reduce or eliminate it from its products. The studies include the replacement of fossil fuel aeronautical engines per Fuel Cells, which are devices that operate with hydrogen and produce electrical energy, water, and heat. Since fuel cells release considerable amount of heat, it requires a substantial TMS (thermal management system), which impacts the airplane weight and drag. Studies of fuel cell powered aircraft have been published, and the TMS is not neglected, but a deep discussion regarding its weight and drag estimation was not found. The present work develops a TMS weight and drag parametric model for fuel cell powered aircraft conceptual design, based on fuel cell and radiators physical models, and representing an optimum compromise between weight and drag. The work reveals linear correlation between the TMS parameters and fuel cell power. Significant dependence on fuel cell temperature has also been shown, therefore, three temperature levels were tested. It has also been observed that optimum solutions tend to require too large radiators, difficult to install, so, a limitation was inserted in the optimization cycle and models for three different area limits were generated. Then, regression equations have been determined to correlate the TMS parameters with fuel cell power, for various combinations of fuel cell operating temperature and radiator area limits, accomplishing the purpose of the work. It is recommended, for future works, the conduction of studies to investigate more efficient radiators, heat enhancement devices and TMS large radiators installation solutions.
 
Título em português
Um modelo paramétrico de sistema de gerenciamento térmico para projeto conceitual de aeronaves movidas a célula de combustível
Palavras-chave em português
aeronaves híbridas
aviação sustentável
célula de combustível
efeito Meredith
estudos conceituais de aeronaves
gerenciamento térmico
Resumo em português
É fato reconhecido que a temperatura ambiente da Terra está aumentando e isso está associado às emissões de CO2 provenientes de segmentos como energia, indústria e transportes. O setor aeroespacial responde por uma parcela dessas emissões, por isso pesquisa produtos para reduzi-las ou eliminá-las. Estudos incluem a viabilidade de substituir os motores a combustão por células de combustível, que consomem hidrogênio, produzindo eletricidade, água e calor. Por gerarem alta taxa de calor, esses equipamentos requerem um substancial SGT (sistema de gerenciamento térmico), que afeta o peso e arrasto da aeronave. Muitos estudos de aeronaves com célula de combustível foram publicados, e o SGT não foi ignorado, mas uma discussão dedicada a estimar seu peso e arrasto não foi encontrada. Este trabalho cria um modelo paramétrico de peso e arrasto de SGT de células de combustível para estudos conceituais de aeronaves, baseado em modelos físicos de células de combustível e radiadores, e representando o ponto ótimo entre peso e arrasto. O trabalho mostrou correlação linear entre os parâmetros do SGT e a potência da célula. Foi observada uma dependência desses parâmetros com a temperatura de operação da célula, então três temperaturas foram testadas. Observou-se que soluções ótimas requerem um SGT de grandes dimensões, de difícil instalação, então uma limitação foi inserida no ciclo de otimização e três limites de área foram testados. Regressões lineares foram, então, criadas correlacionando os parâmetros do SGT com a potência da célula, para diversas combinações de temperatura de operação e limite de área, cumprindo, assim, o propósito do trabalho. Recomenda-se, para trabalhos futuros, a condução de investigações de radiadores mais eficientes, técnicas de aumento de efetividade de troca de calor e soluções de instalação de radiadores de grandes dimensões.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2024-09-11
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Teses e Dissertações da USP.