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ABSTRACT

PACHECO, D.R.Q. Nonlínear íinite elernent aeroelastic modelling of

reínforced skin paneis in supersonic flows. 2018. 92p. MSc Ditísertation - Escola de

Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2018.

Panei flutter is an aeroelastic phenomenon that can cause criticai structural faílure m

aerospace vehicles operating at supersoníc speeds. A reliable modelling of such phenomenon

is crucial for safeíy predicting the Ufespan of aircraft skin, thus being of great importance to

aerospace structural design. The vast majority of works published on this subject treaí each

skin panei as an ísolated stmcture. In reality, however, aírcraft skin is typically composed of

large paneis mounted over spars, stringers and other types of reinforcement elements. The

presence of such stiffening components ends up subdividing the panei into multiple smaller

cells that can interact during flutter, thereby making the aeroelastic motion potentially

more complex and dangerous. Moreover, stiffeners are also deformable structures, whích

therefore take part in the dynamics of the problem. In this context, the present work

deals with the study and implementation of a computational finite element model for the

analysis of nonlinear flutíer in stiífened paneis. A combination of the Mindlin plate model

and the Timoshenko beam modeí, both with geomeíric non-linearities, is employed. The

model and the analyses tackle both isotropic and laminated paneis. The aerodynamic

forces are computed through first-order piston theory, which provides good results for

hígh-supersonic flows. The energy equations are díscretised via the Finite Element Method,

and the resulting aeroelastic equations of motíon are solved in the time domain through

an íterative Newmark-type integration scheme. The final code is verified and validated

through comparison with numerical solutions from the literature. As far as results and

analyses are concerned, the present work focuses on three main aspects, thereby aiming to

fill an existing gap in panei flutter literature: a) Investigating how stiffeners behave during

flutter, from a dynamic perspective, a.nd how their vibration affects the overall aeroelastíc

motion; b) Studying the influence of stiffener geometry on such effects; and c) Assessing

the ínaccuracies of the single-panel model by systematicalíy comparing its results with

those from the present multi-cell model. Results reveal novel aeroelastic phenomena arising

from the modeUing of stifteners as fiexible structural elements. Furthermore, the popular

assumption of ideal fixation is proven to be potentially unconservative regarding the onset

of flutter and the intensity of vibrations.

Keywords: Aerospace structures. Panei fiutter. Nonlinear aeroelasticity. Finite element

modelling. Reinforced plates. Nonlínear Tímoshenko beam.



RESUMO

PACHECO, D.R.Q. Modelagem aeroelástica não linear, pelo método dos

elementos finitos, de painéis reforçados em escoamentos supersônicos. 2018.

92p. Dissertação (Mestrado) - Escola de Engenharia, de São Carlos, Universidade de São

Paulo, São Carlos, 2018.

O flutter de painel é um fenómeno aeroelástico que pode lavar a falhas veículos aeroespaciais

operando em velocidades supersônicas. Uma modelagem confiável do fenómeno é crucial

para prever de maneira segura a vida útil de revestimentos aeronáuticos, sendo, portanto;

de grande importância para o projeto de estruturas aeroespaciais. A maioria dos trabalhos

publicados sobre este tema trata cada painel como uma estrutura isolada. Na realidade,

entretanto, revestimentos aeronáuticos são tipicamente compostos por grandes painéis

montados sobre longarinas, stringers e outros elementos de reforço. A presença destes

elementos acaba subdividindo o painel em múltiplas células menores capazes de interagir

durante o flutter — tornando, com isso, o movimento aeroeíástico potencialmente mais

complexo e perigoso. Ademais, reforçadores também são estruturas deformáveis, que,

portanto, participam da dinâmica do problema. Neste contexto, o presente trabalho trata

do estudo e implementação de um modelo computacional em elementos finitos para análise

de flutter em painéis reforçados. Emprega-se uma combinação do modelo de placa de

Mindlin com o modelo de viga de Timoshenko, incluindo não-lmearídade geométrica. O

modelo e au análises abordam tanto painéis isotrópicos quanto laminados. A aerodinâmica é

simulada pela teoria de pistão, adequada para escoamentos alto-supersônícos. As equações

de energia são discretizadas pelo Método dos Elementos Finitos, resultando em equações de

movimento que são resolvidas no domínio do tempo por meio de um método de Newmark

iterativo. O código final é verificado via comparação com soluções numéricas encontradas

na literatura. Em termos de análises, este trabalho foca em três aspectos, com o objetivo de

preencher uma lacuna da literatura específica: a) Investigar como reforçadores comporíam-

se durante o flutter, do ponto de vista dinâmico, e como sua vibração afeta o movimento

aeroelástico como um todo; b) Estudar a influência da geometria dos reforçadores sobre

fcais efeitos; e c) Avaliar as imprecisões do modelo de painel isolado por meio de uma

comparação siütemátíca entre os resultados deste modelo e aqueles gerados pela presente

abordagem multi-célula. Resultados revelam novos fenómenos aeoelásticos oriundos da

modelagem dos reforçadores como elementos estruturais flexíveis- Ademais, demonstra-se

que a popular hipótese de fixação ideal pode ser altamente não conservadora no que diz

respeito à condição crítica de flutter e à intensidade das vibrações.

Palavras-chave: Estruturas aeroespaciais. Flutter de painel. Aeroelasticidade não linear.

Método dos elementos finitos. Placa reforçada. Viga de Timoshenko não linear.
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l INTRODUCTION

Around the middle of the 20th century, structural faüures in the metallic skin

of experimental aircrafts and space launch vehicles drew the attentíon of the aerospace

community to aeroelastic problems involving skín paneis (DOVVELL; 1975). The physical

phenomena responsible for causing such failures were given the generic name of panei

flutter^ wíiich is a type of aeroelastic instability that can affect plates and shells immersed

in high-speed fíows, tipically during supersonic flíght. It is a fluid-structure interaction

problem: the flow produces a pressure field that deforms the panei, whose new (deformed)

shape modifies the pressure distribuíion. This process continues cyclically, resulting m

a self-excited oscillatory motion that can lead the panei to fatigue rupture. In that

context, inummerous scientific works were conducted in the 1960s to address panei flutter

(DOWELL, 1970). This aeroelastic phenomenon is still under íntense ínvestigation, with

tens or perhaps hundreds of articles being published every ytíar worldwide.

Thís chapter addresses the historical development of the mathematical models used

for studying panei flutter, as well as the evoluííon of aeroelastic modelling for reinforced

(stiífened) paneis, which are the main object of study of the present work. The importance

of reliable simulation of stiffener behaviour for proper aeroelastic design is highlighted.

1.1 The evolution of panei flutter modeHing

Due to the elevated cost and complexíty demanded by supersonic and hypersonic

aeroelastic experiments, panei flutter hás always been studied primarily via mathematical

models. According to Dowell (1970), the first. analytical methods conceived for studying the

problem were based on linear aeroelastlc models; using the principie of modal superposition

for the assessment of flutter eigen-modes. In general; an aeroelaâtic model is composed of

two essential elements: an aerodynamic model and a structural rnodel. The latter usually

simulates a. structure of engineering interest ~ e.g-, aírcraffc skin, wings, tails, etc - and

the former accounts for the forces loading such structural element. There exist a myriad

of different approaches and theories for addreyying both fieíds. Selecting which to adopt

depends upon the task at hand, resource availability and, especially, the specific goals of a

project or síudy.

1.1.1 Aerodynamic modelling

The oldest and still moyt popular aerodynamic model used for panei fiutter analysis

is the first-order piston theory, whose applicability to supersonic panei flutter was perhaps

first suggested by Ashley and Zartarian (1956). It is an extrerneiy simple model derived

from supersonic potentíal fíow theory by dropping convolution and nonlinear terms. The
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resulting linear model computes the pressure at a given point over the panei directly from

its locai slope and normal velocity. The conception of this model was the first step towards

making analytical panei flutter modelling viable, which in turn caused a no-number of

ücientific publications to emerge in the following years. Comparison between experiments

and theory showed that the pistou theory provides reasonably accurate estímates for the

pressure field in supersoníc regimes (MEÏ; ABDEL-MOTAGALY; CHEN, 1999).

A few years later, Cmmiugham (1963) and Dowell (1966a) devised more complex

aerodynarnic models based on linearised supersonic potential theory. Such methods are

considerably more intricate than piston fcheory, having multiple integrais of nonlinear,

complex mathematícal functions, and being strongly based upon assumed vibration modes

and frequencíes, Their use is required for low-supersonic Mach numbers, say, 1.0 < M < 1.5.

Dowell (1971) enhanced the model by introducing boundary layer effects based on shear

flow theory. He then concluded that, for low Mach numbers, shear velocity profiles can

greatly influence the aeroelastic response of fluttering paneis. Recently, Vedeneev (2012)

and Shitov and Vedeneev (2017) compared the flutter boundaries computed through

potential flow theory with those obtained through linear piston theory, and concluded that

the laíter yields ssitísfactory results for high-supersonic regimes, say, M > 1.7.

An even higher-fidelity approach is to solve the Euler or Navier-Stokes equations of

gás dynamics, thereby creating the generically called CFD-based methods. These methods

have the important downside of requiring the use of fluld meshes, which makes their

computational performance lower - by orders of magnitude ~ than that of potential flow

methods. Bein et al. (1993) compared hypersonic panei fiutter results obtained from an

Euler solver with those atta-ined through first-, second" and third-order piüton theories.

They concluded that íhe píston theory approximations for the pressure distribution over

the panei are generally satisfactory. Recently, Alder (2015) compared piston-theory panei

flutter with a finite-volume-based Euler solver. He then confirmed the validíty of Unear

piston theory for studying both fche stability boundary and the post-flutfcer response of

paneis in lügh-supersonic flight.

For the reasons bríefiy exposed here, the linear piston theory hás been chosen for

the present work. As demonstrated further on in chapter 2, it allows easy ímplementation

into any pre-existing fi-nite element structural solver and dismisses the need for fluid meshes,

whilst maintaimng sufficient accuracy for high-supersonic panei flutter iuvestigation. ít

is, thus, an extremely efficient tool for optimisation and parameíric studies, m which the

generatíon of large amounts of result data is required.

1.1-2 Structural modelling

The disseminaíion of finite-element- and finite-difference-based computational

methods made it possible to study panei flutíer with diverse geometries, loads and materiais
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(BISMARCK-NASR, 1992). Such diversification ofspatial discretisation methods fomented

the evolution of the structuraí models employed for studying panei flutter. Dowell (1966b)

combined vou Karman's geometrical non-linearity with íhe classical Kirchhoff plate theory,

using Galerking's method for discretiüatíon. Thiy allowed the reproduction of limít cycle

oscillaííons (LCOs), which are periodic aeroelastíc motions with limited amplitudes. Shortíy

after that, Dowell (1969) enhanced the model again by considering curved panei geometries.

Sawyer (1977), also using Galerkín's method, investigated the aeroelastic behaviour of

composite paneis including buckling effects, and studied the influence of fiber o^ientaion,

lamination sequence and in-plane íoad magnitude on the fiutter boundary (stabílity limit).

Bísmarck-Nasr (1976) applied the Finite Element Method (FEM) to supersonic fíutter

analysis of cylindrical paneis. Also using the FEM, Mei (1977) discretised von Karman^s

equations for infinite-span plates, aíming to study nonlinear flutter motion. In the years

that followed, a myriad of works adressing improvements and applications of the FEM for

panei fiutter were published (CHEN; LIN, 1985; KUO-JIUN; PONG-JEU; JÍANN-QUO,

1989; SARMA; VARADAN, 1988; SUNDER; RAMAKRISHNAN; SENGUPTA, 1983).

In the 1990s, íterative algoríthms that diymitítíed the need for time integration

became popular (DIXON; MEI, 1993; MEI; ABDEL-MOTAGALY; CHEN, 1999; SHORE;

MEI; GRAY, 1991; XUE; MEI, 1993a; XUE; MEÍ, 1993b). With the aid ofsuch algorithms,

and also owing to the íncrease of computer processing capacity; detailed study of nonlinear

aeroelastíc regimes was made properly viable. Then, the focus of panei flutter investigation

shifted from flutter onset prediction - which is typically linear ~ to the analysis of post-

flutter (nonlinear) regimes, in which LCOs are observed. Such cyclic motÍons can present

potentially large amplitudes and frequencies, which can drive wing and fuselage skin

towards fatigue failure. Xue and Mei (1993a) categorically demonstrated the importance

of studying the nonlínear regime by quantitatívely assessing the fatigue life of Umit-

cycling paneis. They íshowed that it is possible to design the skiïi in yuch a way that the

paneis operate in "infimte Ufe" regime, whilst allowmg flutter to happen. Therefore, it

was demonstrated that paneis designed to completely suppress the occurrence of fíutter

(instead of withstanding it) tend to be overdesigned.

Parallelly, FEM structural modeUing was also beíng improved with respect to plate

kinematics. In the 19903^ many aeroelasticians started to adopt the Mindlin kínematic

assumptions instead of the Kirchhoff-Love classica.l thin plate theory. Diíferently from

claysical theory, Mindlin'tí ayyumptíons do not require that trarmverse shear deformability

be neglected. Therefore, this model is not restricted to thin paneis, beíng also adequate

for representmg the behaviour of moderately thick plates. Abdel-Motagaíy, Duan and Mei

(1999) employed MmdUn's theory, coupled with von Karman's geometrícal non-Unearity, to

study flutter on acoustically excited paneis. Lee (1999) and Oh, Lee and Lee (2001) also used

the Mindlin-von Karman model for the paneis, coupled with the Timoshenko beam theory

to represent stiffeners. Marques, Natarajan and Ferreira (2017) used Mindlin's formulation
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for laminated paneis, aimíng at the aeroelastic tailormg of layers for increasing criticai

Ôutter speeds. In the present work, the finite element computational niodel represents

the panei as a nonlinear Míndlm-von Karman plate. The panei flutter problem is tackled

considering isotropic and laminated paneis, which have become a competitive trend in the

aerospace industry in the last decades. Furthermore; the role of stifÏening elements - such as

stringers, longerons and frames - is included in the model by considering one-dimensional

nonlinear beams coupled to the panel's lower surface.

1.2 Flutter in reinforced paneis

The study of fiutter in stiffened paneis is of great practical interest, since aircraffc

skin is typically built of thin-walled paneis fixed on top of more robust structural elements

such as ribs and stiffeners (CARRERA; 2APPINO; PETROLO, 2013). Figure l shows

an aircraft fuselage from inside, where multiple stiffeners can be seen underneath the

skin. Liao and Sun (1993) used linear Timoshenko beam theory to simulate the stifFeners

underneath laminated paneis, in arder to study the influence of laminsition sequence and

stiffener number on the flutter boundary. Lee (1999) and Oh, Lee and Lee (2001) enhanced

the model by adding geometrical non-linearity and thermal loading. Zhao and Cão (2013)

studied the efFects of stiíïener geometry and distribution, modelling the stiffeners as Euler-

Bemoulli beams. Castro et al. (2016) analysed the aeroelastic behaviour of curved paneis

via a semi-analytical model that considered only the stifïener's base as a structural element.

Fernandes and Tamijani (2017) devised an aeroelastic model with curvillnear stiffeners

and showed that such unconventional geometric feature can be explored for efficient flutter

supression.

In most of these works; the analyses were focused on the efïects of stiffener addition

on the panelas aeroelastic behaviour. In other words; the comparison is always drawn

between the original (unstiffened) panei and the same panei wífch one or more stiffeners.

It seems somewhat natural to expect a panei to have its fiutter characteristics (criticai

speed, LCO amplitudes, etc) improved by the addition of stíffeners. A different standpoint

to be explored ~ instead of studying the same panei with and without stifïeners ~ is to

compare each cell (bay) in the reinforced panei with an individual (isolated) panei wíth

the same dimensions, as illustraíed in Figure 2. By doing só, this approach aims to study

the effecís of the structural coupling between the multiple cells in a panei, rather than to

quantify the additional reinforcement brought by stiffeners.

Such "multi-panel" approach was first performed in the 1960s by Dowell (1964) and

Rodden (1964), who used linear aeroelastic models for predicting the stabilíty boundary

of sets of coupled paneis. In their approach, also known as multibay analysís. tlie stiffeners

were modelled as simple supports positíoned between the subpanels. Aí that time, limited

by the restrictions of linear modelling, fche general conclusion reached by authors who
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Figure l — Typical fuselage skin with multipíe stiffeníng elements.

Source: Elaborated by the author.

investigated multibay panei fiutter was that paneis with multiple ceíls possess criticai

flutter speeds that are very similar to thcme of single-celled paneis (DOWELL, 1964; LOCK;

FARKAS, 1965). Probably for that reason, llterature on multibay panei flutter remained

íncipient for decades. To the best of the author's knowledge, only a handful of papers

were published on this subject for over fifty years (MUKHERJEE; PARTHAN, 1995;

PANY; PARTHAN, 2003; SHIAU; CHANG, 1991), ali of which stuck, once again, to

linear fiutter prediction. In order to fill an existing gap, the author of the present work

hás recently investigated the multibay problem from a post-flutter standpoint, using a

nonlinear aeroelastic model. The study hás revealed that the nonlinear structural coupling

between adjacent bays during LCOs can strongly influence the flutter mechanism and

the motion amplitudes. They showed that, depending on the relative vibration phase

between the cells, the maximum LCO amplitudes of a multibay panei can be several times

larger than that which each ceiï would undergo if vibrating isolatedly (PACHECO et al.,

2017; PACHECO; MARQUES; FERREIRA, 2017). It hás been thereby demonstrated

thaí idealising skin structures as individual paneis - as done in the vast majority of works
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Figure 2 ~ Schematíc representation of a single panei and a four-cell reinforced panei.
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Source: Elaborated by the author.

published on panei flutter - can be unsafe from the perspective of structural integrity.

Yet, the multibay approach still presents a considerable levei of structural idealisation

as it models stiffeners as simple supports, which have infinite translational stiffness and

zero torüional stíffness. In reality, stiífeners are deformable structural elementü, which are

thus subject to a certain degree of transverse translation, whilst imposing considerable

resistence to the locai rotation of the panei.

This Masters project proposes a higher-fidelity methodology for addressing the

problem of mulíi-ceUed (reinforced) paneis. The stifí'eners are modelled as nonlinear

Timoshenko beams, and the paneis (isotropic or laminated) as nonlinear Mindlin plates.

The approach used for the aerodynamic load is rather classical: the first-order piston

theory, which is suitable for high-supersonic flows. The energy equations are diycretised

through the Finite Element Method, and the resulting aeroelastic equaíions of motion are

solved directly in time by means of numerical íime-marchíng-

1.3 Objectives

High-speed flight imposes several challenges to the design of aerospace structures.

Some examples are panei fiutter, diverse types of shock-related performance loss; and

extreme temperatures caused by friction wíth air particles. In order for commercial

supersonic fiight - interrupted since 2003, when the last Concorde airplanes ceased to

operate — to reemerge, advances are required in analysis, desígn and modelling. In this

context, one of the mulíiphysícal phenomena that have been getting substantial attention
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from the scientific community lately is panei fíutter, as aerospace skin paneis can undergo

large-amplitude, high-frequency aeroelastic oscillatíons during supersonic flight. Such

intense cycling can lead to fatigue rupture after hours of fíight operation. Therefore, a

quantitatively accurate descriptíon of such oscillationy is crucial for safely estímating the

lifespan of aerospace structures. For this reason, reliable modellmg of the panei flutter

phenomenon is essential for aerospace structural design. Moreover, aircraffc skin is usually

buílt in the form of large paneis mounted and fixed on stiffeners, thereby dividing the panei

into multiple cells which are structurally coupled. In this context, the present research

project proposes the implementation and validation of a finíte element aeroelastic model

for aircraft skin paneis being reinforced by beams. By conducting a systematic comparative

analysis in which the aeroelastic response of coupled paneis is confronted with that of

single paneis, this project aims to fill a gap in the panei fiutter scientific Uterature. The

purpose here is not to propose a definitive model for reinforced skin. Rather than this,

the goal is to take one ütep further in modelling - by considermg double iimtead of single

paneis - in order to identify potential sources of inaccuracy in the classícal panei flutter

model. Furthermore, the inclusion of composite material behaviour into the model hás

the goal of making the present methodology compatíble with the growing trend of the

aerospace industry to employ this type of efScíent materiais in aircraft design.
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2 AEROELASTIC MODEL

2.1 Introduction

The computatíonal aeroelastic model proposed here for studying flutter in reinforced

paneis consists of two basic elements: an aerodynamic model and a nonlinear structural

model. The latter is composed of a plate model for the panei, a beam model for the

stíffener and, of course; a proper coupling between them. Figure 3 illuytrates the problem

setup and the typical coordínate system adopted. AU the parts of the model are combined

by the Principie of Virtual Work (PVW), whose mathematical statement is discretised

through the Fmíte Element Method (FEM).

Figure 3 — Panei flutter problem setup.

restrained
>;

elastic stiffener

x -r^ /
supersonic flow

(over upper surface)
restrained

Source: Elaborated by the author.

The following subsections deal with the detailed derivation ofthe aeroelastic model,

írom physical energy principies to the resulting computaíional model. First, the plate

model is addressed, followed by the derivation of the beam modei, which is coupled with

the former in order to produce the ytiffened (reinforced) panei structural model. Then,

the aerodynamic theory is described and mathematícally combined with the structural

equations, thereby resulting in the aeroelastic model. Finally, the numerical schemes used

for solving the aeroelastic equations are addressed.
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2.2 The nonlinear Mindlin plate

The Mindlin kinematic theory is an evolutiou of classical plate theory that considers

transverse shear deformabíiity. The Mindlin assumptions do not require that normais to the

midsurface remaín normal after deformation. For thís reason, it is capable of reproducing

the kinematics of moderately thick paneis- In a Míndlin plate, the displacement field at a

poiní (x,y, z) and a time t is (PICA; WOOD; HINTON, 1980)

u(x,y,z,t) =-ú(x,y,t) - z^[x,y,t},

v(x,y,z,t) =v(x,y,t) - z(j>y(x,y,t),

w(x,y,z,t) ==w(x,y,t),

(2.1)

(2.2)

(2.3)

in whích u, v and w are the displacements in the x, y and z directions, respectively, and

the symbol (A) indicates midsurface (z = 0) displacements. The quantities ^ and (j>y are

the rotation of the normais about the y and x axes, respectively. Note that such rotation

degrees of freedom are independent on the íranslational displacements, whereas classical

píate theory states that ^ == ^ and 4sy = ^- In tïie present model those relations are

not imposed, but will be observed (approximately) whenever plate thickness, /í, is much

smaller than the lateral dimensions. The Mindlin theory can be coupled with the von

Karman nonlinear strain-displacement relations só that the resultmg strucutural model

is able to account for geometrical non-linearities arising from large-displacement motion.

The relevant entries of íhe strain tensor for a Minlin-von Karman plate can be organísed

m a vector as (PICA; WOOD; HINTON, 1980)

£ =- <

ex

£y

/xy

/^XZ

^yz.

ôü
tíy
Qw
Qx
Qw
Qy

ou
Qx
Qv
ôy

+ Qv
àx

')x

^

z \ ô<j>^
~w

Q^
Qx

y^y
9y

o
o

9<f>v
Qx

<

l (9w\ï
Ï^Qx^
Ï^W\2
2 ». Qy i

Qw Qw
Qx Qy

o
o

(2.4)

in which the last term, quadratic with respect to w, is the von Karman strain. Note

that this model assumes uniform transverse shear {^^ and 7^) along the thickness. Such

assumed diütribution is not physically true, though, since 7^2 and 7y^ are known to vanish

at the upper and lower surfaces, whilst having nonzero values in between. In order to

compensate for such inconsistency, the classical approach is to introduce shear correction

factors. These coefíicients are applied to the transverse-shear strain energy só as to promote

energetic equivalence between íhe real distribution and the assumed one. For isotropic

plates, the correction factors are usually taken as 5/6, whereas for composite paneis they

depend on the lamination scheme (WHITNEY, 1973). The methodology for addressing

shear correction is discussed in subsection 2.2.2, although it is noí ofthe greatest relevance

to the present work, which focuses on thin paneis.
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The stresses are obtained by applying the proper constitutive relations to the

strains. For a Mindlin plate, the in-plane and out-of-plane (transverse) quantities are

constitutively uncoupled. For this reason, it is more praticai to separate the plate strain

into in-plane strain, £p, and transverse shear strain, €s'-

9ü
. Qy

Qú
Ox
Qv
Qy

+ ôv
9x

" + z <

Qx
Q^
Qy

04>x _ Q(f>i
Qy Qx

l fQw\2
2^~Sx)
1(Q±'\'2-
Ï\~Ôy)

9w Qw
Qx Qy

^ ^"m + 2:/í + £6i (2.5)

and

£< = (2.6)
õ^ _

h.J If-^J
Note that the in-plane strain is split ínto £m; ZK/ and CQ^ which are the membrane, bending

and nonlinear strains, respectively. The corresponding in-plane and transverse stresses are

av = Qï)£'o ancÏ ors ^ Qs£í (2.7)

in which Qp and Q,s are the constitutive matrices wíth respect to the (a;, y^ z) system. The

computatíon of these matrices is addressed in subsection 2.2.2.

The stresses and strains are combined by the Principie of Virtual Work, which

states an equality between the virtual works done by internai ana externai forces. The

internai work is computed ag the straiu energy variation caused by the stress field acting

over a virtual strain field:

SW^ = / (o-pT§£p + 0-^Ô£s) ÒV, (2.8)

with the variational operator, ô^ indicating virtual quantities. Upon substitution of the

constitutive equations, the virtual stain energy becomes

SW^= l (6£pTClpep+§£,TQ^s}dV.
iy

(2.9)

The infinitesimal volume can by factored into a thickness difïerential and a surface

differencial: áV ^ ázdA. Moreover, the ín-plane strain can be split ínto CQ + ZK,, in which

£Q = £.m + £@ is the midsurface straín. Só, the internai work can be written as

&w-^ =
l A J-^

^(5eo + ZÔK) Qp (£o + ZK,) + ^£5 Qs£s| dzáA. (2.10)

After expanding the products and performing the integration along the thickness, Eq.

(2.10) becomes

SW-^t = / (5£oTA£o + Ô£oTBK + (WrB£:o + (^TDK + §£,TC£,) dA, (2.11)

in whích

(A, B, D) l, z, z2'} Qp dz, (2.12)
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and C is a functíon of C, which is calculated as

^
C = / \ Q,á2. (2.13)

-ïï

The detailed expressions for such matrices are given in subsection 2.2.2.

The externai work will generally have two sets contributions. One commg from

an externai load field and another one coming from the inertial forces due to the plate?s

acceleration field:

ôl^ext - / Sw^p áA - l^p[ 8u^ + Sv^- + Sw^ ) dV, (2.14)IA ~ " —±~ "~ ~ Jv'~ \~ " 9t2 ' "' QÏ2- ' ~" Qt2

in which p is the material density. For now, the pressure field, Ap, is assumed to be

arbitrary and independent upon the displacemtínt field. Yet, in the final aeroelastic model,

the pressure shall be calculated from the aerodynamic model as a function of w.

The next step is to substitute the plate displacement fields (Eqs. (2.1) - (2.3)) ínto

Eq. (2.14), which after integration along the thickness yields

6W^ - — p
'A

\-^ , r^2ü , ^^2^^ , h3 (.. ^^ , r. <92^
^ l ^^ + ^T^ + SW^ j + ^ ( ^.^ + ^y-SL'^ " uu^t2 " '""^^ -r- 12 ^^^~ " ^y~ô^j \ ^'

(2.15)

The PVW complements Eqs. (2.10) and (2.15) by stating that 8W^ ^ 8W^.

Neveríheless, in arder to proceed with the formulation, a discretiüation technique is

required. In the present work, the Finite Element Method is employed for such purpose.

By introducing the FEM formulation into the PVW, it is possible to extract the equations

of motion from the energy equations.

2.2.1 Finite element formulation

in thiy work, a classical finite element formulation is employed for discretising the

PVW. The four-node lagrangian quadrilateral element is chosen for composing the mesh.

Each node hás five degrees of freedom (DOFs): ú, v, w, (j)x and ^, which for convenience

and computational efficiency are grouped in: membrane DOFs, (u, v), transverse DOF, w,

and rotation DOFs, (^, (j)y). Hence, the elemental DOF vector can be written as

(2.16)

wiíh

T
Um = {^1 ^1 U2 Ü2 ^3 í'3 ^4 ^} , (2.17)

U^ === {lüi Ws Ws W4} , (2.18)

u<^ ^ {^i ç^yi ^2 ^V2 ^3 ^,3 ^4 ^2/4} > (2-19)
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in which Índices l through 4 refer to the elemental nodes. Figure 4 shows the fmite element

and the node numbering adopted. Observe that node l is brought to the origin, which is

standard procedure to simplify explicit shape function calculation.

Figure 4 - Standard four-node rectangular finite element.

Source: Elaborated by the author.

Each node haü an associated shape function- The ï-th nodal shape function hás

the following property: it takes value l at node ?, and value O at the remaming nodes.

Mathemaíically:

N.(^y,)={ ^ ^l: (2.20)
0, iíj^i.

Sínce j = l; 2, 3,4, Eq. (2.20) provides four equations for each shape funcion. Thus, it is

possible to generate bilinear functíons of the form N^x^ y) = diX + biy + CiXy + di. Upon

substituting Eq. (2.20) into this general bilinear polynomial, the following shape functions

are obtained:

M(^)-l-

Nï (x, y) =

Nz(x,y)=

x y

Âx Ây
x xy

Ax
xy

+
xy

AxAy7

ArcAí/'

N^(x,y) =

AxAy'
y xy

(2.21)

(2.22)

(2.23)

(2.24)
Ay AxÂy

in which Ax and Ay are the element sizes. As a direct consequence of the definition of

nodal functions (Eq. (2.20)), ít is possible to approximate any diaplacement in terms of

shape functions and the respective nodal values. For instance, the transverse displacemení

can be interpolated as
4

^—^
w(x,y,t) = ^Ni(x,y)wi(t)./ ^

i==l

(2.25)
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Note that the shape functions do not depend upon í, só that the time dependence of any

DOF occurs through tlie nodal values. Eq. (2.25) can be rearranged as

T

w = N-u, u^,

in which N^ == {M N^ N3 N4} . The remaining DOFs can be written as

Ü = 'N u Um,

v == N-/u^,

<Âc = N^ïu^

•y — J. 1-y ".(p,

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

in which N^ - {M O A^ O TVs O A^ 0}T ana N^ = {O A^i O ^2 O TVs O ^4}^. The next

ütep is to write each of the strain components alüo in terms of nodal values and shape

functions, and introduce the resulting discretised strains ínto the PVW.

Take the membrane strain e^n, for instance. It can be written in discretised forrn

as

c)ü
Qx
Qv
Qym — t a

Qü
Qy

in wlúch

•òv

Qx

a(N,,Tu^)
Ô'£

ü(N,Tu^)

Qy
â(N,Tu^) ^ ô(N,Tu^)

Qy àx

ÕN,.T
Qx

9N^
Qy

0N^T t âN^T

Qy Qx

^ Um ^ B^Um, (2.31)

Ï3m =

ÍWi
ôx

o
9M
Qy

o 9N^
Qx

3M
~w
ÔM ÔN2
Qx Qy

o
o

9Ns
ôx

9N2
~Qy

ÔN2 QN3

o

Qx Qy

Analogously, the bending vector, /í, becomes simply

K == -B^U^.

o
ÕN3
"w
QN^
Qx

()N4
Qx

QN4
Qy

o
QN4
~w
ÔN^.
ôx

(2.32)

(2.33)

The nonlinear strain, eo^ requires a líttle more manipulation:

£Q

in whlch

and

lfQw\Ï
2 V Qx)
ifüw\2
2Yây^
Qw ôw
Qx Qy

l
2

ôw
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Qw
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^(Nuj'rUw)

Qy
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(2.34)

(2.35)

(2.36)



39

At last, the transverse shear strain, £5, can be written as

r<S\ í^l
£s=lS!-CT==Beuw-BCU"

in which

B.=
M O 7^2 O ^3 O ^4 O

O M O A^2 O ^3 O N4

(2.37)

(2.38)

The virtual strains must also be discretised. For the linear terms, the result is

trivial:

Ô£m = § (BmUm) = B^Um, (2.39)

ÔK - S (-B^K) - -B^Sn, (2.40)

Ôe, = 6 (B^u-y; - B^) - BQÔVL^ - BcSvi^. (2.41)

The nonlinear component yields

§£t

s(^((^\2 \^x

ô(^(Q^\2 \'0y)

9w Qw
9x 9y

Qw s ( ôw
9x \ 9x
9w s ! Qw
^ï/" \c)y

Qw ^ ( Qw\ _^ 9w ^ ( 8w\
layu {,~9xj ~T"9xu \~9y)

9w
~9x

o 9w
~Ôy

9w Qw
Qy ôx

©B^u/,.

i.42)

Now that ali the strain components and their corresponding virtual quantities have

been written in discrete form, it is possible to advance in the finite element formulation.

The PVW must be discretised and ultimately written in terms of nodal degrees

of freedom and their time derivatives. Recalling Eq. (2.11), it is possible to see that for

a general laminate (B / 0) the internai work hás five major contributions. Each one is

handled separately here. First, the bending energy within an element in the mesh is

(2.43)^KTDK dA,
'n,

with Hg being the elemental domain. Mind that every energy term in the PVW is calculated

for each finite element in the mesh. The eíemental contributions are ultimately assembled

in the forrn of global matrices and vectory. The procedure employed for integrating the

present quantities withín the elements is addressed in subsect.ion 2.2.3.

Substituting Eqs. (2.33) and (2.40) ínto Eq. (2.43) yields

<^TD/t dA = 1_ (-B^u^)TD (-B^u^ dA = 5u/ ( /, B^TDB^ dA) u^.
íïp J S-if \"^ÍÍC 7

It is conveníent to rewrite Eq. (2.44) as

SUrr, 6VL,,T SVÍ^T

o o

o o

O O J-^B^DB^dA

.Ti
== 8 v. k^ u.

i-44)

(2.45)
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The energy due to transverse shear is

^/Ce.dA- / (B^u^-B^u^)7'C(B^u^-B,u^)dA-5uTkcu, (2.46)

in which

kc ==
/n.

\

00 O

O B(9 CB^ —B@ CB^;

O -BTCBfi B.TCB.

dA (2.47)

The third contributíon comes frorn íhe midsurface strain:

S£QTA£Q dA = [ (B^íu^ + QBe§^)T A fe^u^ + ÍQB^U^^ dA, (2.48)
'fíe JCl^

which leads to four íerms:

T (rï T T\Su^T (B^TAB^) u^ + ^UmT (^BmTAQBe) u^ +

'l.
(2.49)

Su^T ^BeTQTAQB^ u^ + Su^T (B^TA@Be)T^ dA,

the fourth of which can be split into two equal parts só that Eq. (2.49) becomes

\Ôu,nT IB^AB^} u^ + Sn^T f ^B,nTAQB0 } u^ + 5^T f ÍB0TÔTA©Be l u,,+
2'

l ^ T ^/1_ m._.._\ï'

8u^T [-BmTA©Be) u^+5u^T(-B^A©B^) u, dA.

(2.50)

The fifth term in Eq. (2.50) naust undergo some algebraic manipulation in order for the

final kA stiffness matrix to be symmetric. It is possible to show that

Su^T ('JB^AQB^ u^ = 5u^T Ç^BeTN^B^ u^, (2.51)

in which

N^=
Nx. Nxy

m " 'm

Nxy Ny.
m, ^ '-m

and

W, N^ NS'} = (AB^u, ,T

(2.52)

(2.53)

Hence; the virtual midyurface strain energy becomes ou I<AU, in which

k^ ^

\

T
'm. •^~^-L-'mB^AB,

T
ÍB^TAOB( o

^TA@BoY iB0T(0TAQ+N^)Bü O
o o o

dA. (2.54)

Finally, the fourth and fifth contributions to the virtual strain energy come from

the coupling between bending and axial deformations:

S£QTBK + ÔKTB£Q áA,
'n,

(2.55)
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which after the FE discretísation becomes ÔVL kpu , with

/

^B
/n.

o o TBm BBm

O JB^N^B, |B^QTBB,
'm s~ÏSJrrL

T
B^BB^V fèB/WBB,

T
o

dA, (2.56)

in which

N^=
NÏ N^\
N? N^_

and

[NÏ ^ ^!'}=(BB^u,)T.

Finally, the virtual strain energy within an element e is

sw^t = SUT (kA +kB + kc + kn) u.

(2.57)

(2.58)

(2.59)

It is convenient to rearrange the stiffness matrices in Eq. (2.59) as zeroth-, first-

and second-order terms: k^j kÇ and k^, respectively:

^^/e ^ ^T ^P + k? + k^'
int 5uT (kg + k? + k?) u, (2.60)

in which

r?
Lo

fn,

kï=^
2Aï,

T
'rn •c^-LJm

o

Bm BBm

o

o

Bfí GB;

—Bm BBm
—B/? CB,

T T
B^ CB(; ) Bc CBç + Bm I-)Bm

B^TA0B, o

(B^TA©B,) B,T(N^~N^B_, -BeT@TBB
T

o

k^=

B/reTBB.

/

fn/

o o

O ^BeT@TAQBe O

o

dA,

dA, (2.61)

dA, (2.62)

(2.63)

V L° ° °J
superscript p standing for "plate"

The zeroth-order stííFness is constant, whereas the first- and second-order matrices

depend upon u linearly and quadratically; respectively. For this reason, the geometrical

non-linearity of the discretised plate model is expressed through k^ and k^. The classícal

linear Mindlin plate theory is recovered by setting k^ =^ k^ ==• 0.

The discretisation of the externai work is a simpler process. It consísts of inserting

Eqs. (2.27) - (2.30) inío Eq. (2.11). The work due to the pressure load becomes

ÔwAp áA= IS fuy,TN^) ^p(x, y, t) áA - ÔUwT l N^Aj?(:r, y, t) dA = SVLT{,
/íïe ~ JÁ v -/ ~ ' ' ' JÏÏÊ

(2.64)
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wíth
o

í={f^ N^Ap dA } . (2.65)

Note that, for now, the pressure field is assumed as arbitrary and independent on u. In

secíion 2.4, Ap is treated as an aerodynamic pressure which is a function of w and its

derivatives.

The inertial work withín an element becomes simply

^2U
-§uTmp

Qtï
(2.66)

with ïïïp being the elemental mass matrix, given by

mp=

in which

ïï\]Llm

o
o

o

m?.lu'

o

o

o

m51

m^. =

ïïly ==

ra,z —

h

/n

L
/„

(ïïLc + my) O

O hïí^z

o o

pN,N,r dA,
e

pN,N,T dA,
e

pN^,N^,T dA.

h3
12

o
o

(m^

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

After íhe imite element discretisation and assembly, the equality stated by the

Principie of Virtual Work becomes

SVT (F - M^Ü) = SVT (KS + K? + K^) U, (2.72)

or

(ÏÏJT [MPÜ + (Kg +K? +KS)U - F| = 0, (2.73)

in which the dot symbol represents time derivatives: Ú ==== ^- and Ü = -^-. It is ímportant

to note that the matrices and vectors in Eq. (2.73) are now written in capital letters;

meaning that they represent global quantlties (post-asyembly). For example, matrix K^ is

obtaíned by assembling ali the elemental contributions in terms of k^. Moreover, U is the

vector that contains ali the degrees of freedom in the FE mesh.

The PVW states that the internai and externai virtual works musí be equal for

any compatible virtual dísplacement field, ÍU. Thus, Eq (2.73) is reduced to

MPÜ + (Kg +K? +K^) U = F, (2.74)
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whích is the system of ordinary dífferencial equatíons (ODEs) that dictate the motion

of the discrete plate system. Moreover, it is a nonlinear ODE system, as the values of

matrices K^ and K^ at any given time depend on the solution, U, at that same time. In

order to solve Eq. (2.74), numerical time-marchmg is required, which is the üubject of

sectíon 2.5.

2.2.2 Constitutive modelling

In arder to derive the fimte element formulation for tlie Mindlin-von Kármán plate

in section 2.2, it hás been assumed that the constitutive plate stiffnesses (A, B, C and D)

can be calculated. This section deals with the computation of such matríces for a general

laminated Míndlín plate.

Let there be a panei with m layers, só that the first layer's lower surface is at

z ^ —h/2 and the n;-th layer's upper surface is at z ^ h/2. Assume that the k-th layer hás

fibers uniformly oriented along direction l, which is rotated ôfc degrees counterclockwise

from direction y. Thus, direction 2 is the in-plane normal to l, and direction 3 coincides

with z. Figure 5 shows the local and global systems for a generic layer. The in-plane

constitutive matríx with respect to the local coordinate system is (NETTLES, 1994)

Qp=

Qn Qi2 O

Çi2 Qii O

O O ^66

(2.75)

whose entries are

Qn=

Q,iï

^1

l - í/12^21

^2

l ~ ^12^21

Çl2 ^ í/l2Ç22;

Qee = G\ï^

(2.76)

(2.77)

(2.78)

(2.79)

in which í/12 and í/si àie the in-plane Poisson's ratios, G^ is the ín-plane shear modulus

and £'1 e E<z are the ín-plane Young s moduli. The Poisson's ratios are related by

^21

^12

^
E,

(2.80)

The transverse shear matrix is

Qs==

in which 6?i3 and G^ are the transverse shear moduli.

Gl3 O

O Ü23
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Figure 5 - Local and global coordinate systems for a generic layer.

Source: Elaborated by the author.

The constitutive matrices must be transformed from the local to the global system

for calculation purposes. The in-plane matrbc with respect to the (x^ y, z) system is

QW=(PT^)-lQp(T,P), (2.82)

in which

l

o
o

o
l

o

o
o
l
2.

(2.83)

and

Tf =

Sk2 Cfc2 -^CkSk

Ck' Sk

CkSk -CkSk S},2 - Ck2

2ckSk (2.84)

with Sk == smOk Q Ck = cosOk- The transverse shear matrix becomes (REDDY, 2004)

Q (fe) Qb& Qí5

Qí5 Qí4
(2.85)

in which

QM. = G^Sk + G^Ck ,

^55 ^ G^Ck + C?23tsA; ;

Qís == (C?i3 ~ G^)s}:Ck.

(2.86)

(2.87)

(2.88)
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Since matrices Qp and Qs are layer-wise constant, the integrais in Eqs. (2.12) and

(2.13) turn into summations:

"h/í _ ni

A= f '_^Qpdz= ^ (^+1 - Zk) Qw, (2.89)
'~h/2 ' s

~/i/2 _ 1 "i

B = 1^ Q, cLz = ^ E (^i - ^2) Qw- (2.90)
"' k=l

= í n.. ^v.^ l v ^? . - ^ n(fc) i/9.ip az ^ ^ Z^ [zk+i ~ zkj '^p'/; lz-:
'-h/-2 • â ^

-h,/2 _ ^L

c= l _ a àz=^ (z^i - Zk) Qw. (2.92)

Matrix C must still be corrected for nommiform shear. The classical Mindlin plate

model accounts for shear deformabilíty, yet introduces an unrealist kinematíc consíderation

by assuming shear strains to be constant along the thickness. In reality, the transverse

shear strains normally present a near-parabolic disfcribution, being zero at z •== ±â aud

taking maxímum value in between. In order to compensate for such discrepancy between

assumed and real distributions, shear correction is required.

There exist several approaches for overcoming this issue (CHOW, 1971; LIU; SOH,

2007; SRINIVAS, 1973; WHITNEY, 1972; VVHITNEY, 1973). The most popular method

is perhaps the one proposed by Whitney (1972). ït is based on an energy equivalence

principie; imposing that the assumed (uniform) shear distribution yield the same amount

of strain energy as the phyyical one would. The present section explainü the mathematical

aspects and steps of such approach. Detaüs on the theoretical basis behind this method

can be found in Chow (1971) and Whítney (1972).

The corrected shear matrix is of the form

c= /9

kik^C^ k^ C'22;

in which the C^ coefficients are the elements of matrix C (Eq. (2.92)), and k\ and k^

are the so-called shear correction factors. The procedure described here is valid for an

asyrnmetric orthotropic plate. The calculations for a general anisotropic plate are similar,

yet somewhat more cumbersome, and can be found in detail in Whitney (1972). For an

orthotropic plate; the first factor is calculated as

•/i/2 „ "| ~~1

fci2=^n r\S^z)[g(z)fáz\ , (2.94)
-h ,2

in which <Sti is the inverse of the first element in raatrix Q,s, and g(z) is a layer-wise

parabolíc "shape function" of the form

9k(z) = 7fc + /?^ + akZ2. (2.95)
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Coefficients ^ and Ok are calculated as

nW
a, = -4^, (2.96)

2A 11

2J3u
'ak; ^z"

-11

in which An == An-Dn — -Bi i , and An, 5ii and -Dn are the first entries m matricey A,

B and D, respectively. The coefficients 7^ are obtained by enforcing coníinuity oí g(z),

that is,

9k(zk-i) = 9k^k-i}; (2^8)

which yields

7k = 7fc-i + (Pk-i - AO^-i + (^-i - ^)4^ (2.99)

Thus, /yfc is defined in a recursive manner for k > l. Since the shear strains must vanish at
h-

2the plate surfaces; it is known that g(—^) = 0, that is,

7i+A(-|)+^(-|) =0 ^ 7i=l(A-|"i). (2.100)

Now, the integral in Eq. (2.94) can be calculaíed:

"; (r . . /.?,- ^t "í

^ S,(.) [g(z)f d. = È ^ 5" f fc(.)]2 d4 = É { 5W
/i/2 - - ^ ^ ./^^ • - j ^

'h j '2
^ ^\ l ^^f f^-

_ SiW [gW dz^ï.\ sw J^ [9k(z)f dz^ = g ^ Sw \^l (zk - Zk-i) +

(zÏ - z2 ^ + ^fkak + A2 (z3 - zÏ .U ^^ ^4 - ^4 ,U al ^5 ». ^
kPk \zk ~ zk~l) ~t~ —^— {zk ~~ zk-l) ~1~ —^— ^fc ~~ zk-l) ~t- -^- ^fc "~ zk-l

;2.101)

The steps for calculating k^ are analogous; requiring only that the quantities of

interest be taken at positíon ()^ instead of ()n in theír respective matrices. Table l shows

two examples of shear correction factors for cross-ply lamínates whose material properties

are v^ == 0.25 and £2 - 0.04^i =. 2^12 = 2^13 - 5^23.

Table l - Shear correctíon fac-

tors for cross-ply Iam-

ínates.

Lamination

ío°

[0°

90o]

90°L

0.

0.

2
=1'

82123

59518

o

o

fe2

.82123

.72053

Source: Elaborated by the author.
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2.2.3 Numerical íntegration

The stiífness and rnass matrices can be calculated via numerícal quadrature. An

integral is computed/approximated within a finíte element by evaluatíng the íntegrands

at certain points and combining such values in a weíghted avarage. The approximmatíon

becomes more accurate as the number of pointy grows. An (N x A?')-point gaussian

quadrature over a quadrilateral element can be described as (SZABO; BABUÃSKA, 1991)

^ ri ^L^L
OK^MA, ^ E E

r-lj-1 ÍrIJrl
^^tô,^), (2.102)

in which <& is a generic function, ^ are the so-called Gauss points and Uk are their

respective weights. Note that the quadrature is defined for a reference square element:

í^ref ^= [—lil]- Therefore, an integral over a generic eleinent requirey transformation of

coordinates in order to be suitable for gaussian quadrature, as illustrated in Figure 6.

When the physical elements are rectangles, whích is the case herein, only stretchíng and

translatíon are required for transforiïiing [x^ y) ínto (^;??):

x(^r]} ==.<0 == ^—Aa;,

?7+ l
^r]}^y(r]) = —A?/.

(2.103)

(2.104)

Therefore, the jacobian determinant is simply

J^det
Qx
a?
Qx

.07]

Q^
9^
92Í
ô'n^

= det
Aa;
2

Ay
2

ArrAy
(2.105)

Figure 6 — Illustration of the transformation from a physical to a reference element.

^t rj.

(-1,1)

(AX, o) y

(-1.-1)

n ref

0.1)

€

(1.-1)

Source: Elaborated by the author.
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In general cases, J is a function of (^,?7). In the present case, however, the determi"

naní is constant due to the straight, structured nature of the spatial mesh. Finally, an

integral over an element can be evaluated as

^(x,y)áA^ 1_ 1_ ^(x,y) dxáy == / / ^ (x^r]),y(^r])) Já^dr)
<^ ~ "' JQ JQ ' ' ~ ' ~ J-ïJ-l

N N (2.106)
^ S ]L ^^-^^ Cï(^. ^-)> 2/tô. ^)) -

i=lj==l

Numerical integration can also be employed for overcoming a numerical issue

that arises when the FEM is applied to the first-order shear plate theory. As the plate

thicknesy-to-length ratio becomes smaller, the discretised stram energy due to transverse

shear becomes progressively higher than the other straín energy íerms, which is physically

inconsistent. This phenomenon is called shear lock, and can be overcome through selective

integration (FERREIRA, 2008). This simple technique consists ofevaluating the transverse-

shear-related stiffness matrices using fewer Gauss points than for the other matrices. This

reduced integration is only required when the length-to-tlückness ratío becomes large, say,

L/h > 40. In the present work, four points (i.e.; N = 2) are used for the main stiffness

and mass terms, whereas Kc is evaluated with N ^ l. For N == 2, the integration poínts

are ^ == -^ - --^, and the weights are ^ =0:2 - l (STROUD; SECREST, 1966). In

other words,

£ £ ?-??)d^ - / (-A' -A)+/ (-71- Tl)+/ (A- -Ti)+/ (71- Ti) •
(2.107)

The one-point integration is even simpler, with ^i = O and a;i = 2:

^ /K, 7?)d€d7? ^2 x 2 x /(O, 0) = 4/(0,0). (2.108)

2.3 The nonlinear eccentric Timoshenko beam

The Timoshenko beam is the one-dimensional equivalent of the Mindlin plate, as

it succeeds classical beam theory by accounting for shear deformability in bending. The

Timoshenko theory is thus suitable for short beams - as well as for long ones, of course.

lu the present work, this theory is used for modelling stifíeners fixed underneath the main

panei.

In the present case, the standard Timoshenko theory must me adapted in arder

to account for the eccentricity, i.e-, the offset beíween the stiffener?s neutral axis and the

plate's midsurface. Figure 7 shows the stiffenerïs geometry. By introducing the eccentricity

iïito the kinematic formulation, it is possible to write beam displacements in terms of plate
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DOFs. The displacement field for the eccentric stíffener is (LEE; LEE, 1995)

Ub=u-^(e-zf)(f>^ (2.109)

^=í)+(e-^/)^, (2.110)

Wb ^ w+y ^y, (2.111)

in which e is the eccentricity and (z , y ) are coordinates originating at the cross-sectional

centroid (cf. Figure 7). Subscript b indicates beam quantities. For símplicity, the stiíFener

is herein assumed to have a rectangular cross-section. Hence, the cross-sectíonal área is

Ab= b x c, (2.112)

with b and c being the beam s width and height, respectively. The eccentricity is simply

h + c
e=—. (2.113)

Figure 7 - Stiffener cross-section and dimensions.

2L
L

u/
fx

y

z

Source: Elaborated by the author.

It is important to note that the straín field described by Eqs. (2.109) - (2.111)

assumes that íhe stiffeners are monolithicaíly bound to the panei s lower surface, i.e., that

beam and plate displacements are identical at the junction (z =^ —t)- This is easy to

verífy from the displacemení fields, as z = z + e.
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It is also necessary to write the strain components in íerrns of píate DOFs. For an

eccentric Timoshenko beam, considering geometrical non-linearity, the relevant components

of the strain tensor can be given in vector form as (LEE, 1999; OH; LEE; LEE, 2001)

(e - z') ^ l (ôw\ï
ôx l l 2 {â-x

+<!(e-z')^M o
.i9^t

(2.114)

y 9x o

Considering the stiffener as isotropic, the virtual strain energy is

sw-^ = 1__ (ôe^c^ + S^yG^y + Ô^-^r^) áV,
Vb

in which (REDDY; MAHAFFEY, 2013)

C h ===
(l - ^)E,

(1+^)(1-2^)'

Gh =
Eh

(2.115)

(2.116)

(2.117)J6-2(l+^)'

and E^ and ^ are the Young's modulus and Poisson's ratio of the stiífener. Substítutmg

Eq. (2.114) into Eq. (2.115) yíelds several terms to the internai work. For instance, the

energy due to ^y can be expanded into

<Vb
(^yG^y)dV^G, Ô

O ^AE,

9v

Qx
+(e-')f ^+(e-.')^

Qx Qx
áAáx,

(2.118)

in which L is the stifíeners length. Since the croys-yectíon is rectangular (thus, bisymmetric),

zfdA - / yfdA - 0.
'Af, JA{,

//\2 ^ ^ _

/A,

2 ^ /i _ A b2

(2.119)

Besides, ^ (^)^dA = AfrfÍ, and f^ {y'Y dA = Aig. Hence, Eq. (2.118) becomes

-L ,(QV . ^y\ (OV ^ Q^ 9^\ (õ^
/. ^G^dv =GbAt L5(^+ e^) ^+ e^J + ï2Ã ^J ^Jd3:-

(2.120)

The contribution from xz-sheãr is

ÍVb
^xzïxz) ÔV

,0 JA^

Qw

Qx
íAr+ï/

/<^y

ôx
G,

9w

Qx
- 4>x t + y

/^ï
Qx

áAáx,

(2.121)

in which feb == | is íhe shear correction factor used for the Timoshenko beam. After6

integratíon along the cross-section, Eq. (2.121) becomes

'L _ - / <9u)

J^^ÍXZ'XZ}^- tl t} JQ ° ^ QX(hxzïxz) ÔV - GfaAfc / kbS (
/ü

^
9w

Qx
b\(9^\ f9^y+1̂2" l ôx Qx

àx.

(2.122)
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The axial term becomes

.L

'Vb

-L i / ^i. 1 /^Í,
(S^C^}àV=C^I"\8[^+^

/o i'\Qx ' 2\9x
+e

Qü l f Qw
Qx 2 \. 9x

+e
Q^
Qx

c2 ^ l Q4>x\ l 94>3

Ï2 [ôx 9x
dx.

(2.123)

The virtual externai work for the ytiffener is

QÏUb . ^ ô ^
5wbext = ~ kpb [5ut^ + svt^+ 5W•Ç?)-. :2.124)

Upon substituting Eqs. (2.109) - (2.111) into Eq. (2.124), the inertial work becomes

SW^ = -p,A,
,0

Q Qï
Ô (ü + e^) -^ (ü + e^) + 5 (v + e^y) ^ (ü + e^>y) +

6w

^ , ^-^^^ , ^ ^ , ^.^ ^^

Q2w .c2,, ô2^ , ^2+c2\ ,, Q2^
+7^Qt2 ' 12 ôt2 +

12
\s^, 9tï

(2.125)
dx.

The expressions obtained here for the externai and internai works are as far the

formulation can reach without spatíal discretísation. Therefore, the FEM is employed in

order to solve the integrais along the axial directíon.

In order to maintain compatibility between the plate and beam models; a two-node

lagrangian element is used for discretísing the stiffener. This guarantees that the beam

elements share nodes with plate elements. Íf the plate element had nine nodes Ínstead of

four, the beam element wouÍd have three nodes, and só on. Figure 8 exemplifies the FE

mesh for a stíffened panei díscretísed with 24 elements. It is possíble to observe that the

beam elements are connected to the adjacent plate elements by the nodes.

The elemental DOF vector for íhe beam is written in a manner which is analogous

to what hás been done for the plate (cf. Eqs. (2.16) - (2.19)):

u"
Lm

"6=R
u^J

(2.126)

in whích

u;
T

= {ül Vi Ü2 ^2}' ,

T
< = {^i w^}' ,

rà= 'x l

T
'y\ ^x2 v/y2

The five kinematic quantities can then be interpolated within an element as

^ = Nfu^, and ^ = Nfu:w=N?,ruL ü-NfuL ^=Nfu6L, ^-N?Tuí, and ^,=NfuÍ••W Ï

(2.127)

(2.128)

(2.129)

(2.130)
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Figure 8 - Example of a FE mesh for a stiffened panei.

_31 _32 ,33 34 35
-•

130

discretísation

4 3
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^
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l- l

29

24

19

14

9
1

4
-<

x
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15

10

Source: Elaborated by the author.

in which the shape functíon vectors are N^ == {^ O N^ ü} , N^- {o N^ O Arf

and N^ ^ \ N^ N^\ . The shape functions for a two-node beam element are linear:

Nb,(x) = l -
x

Âx'

N^x) =
x

Aa;

(2.131)

(2.132)

The expressions given in Eqs. (2.131) and (2.132) are built considering that x^ -= 0. i.e-,

that the first node of the element hás been translated to the origin for calcuíation purposes.

As seen in aectiou 2.3, the virtual internai work hás contributions from axial strain,

rrï/~shear and ï^-shear. Símilarly io what hás been done for the plate in subsection 2.2.1,

the FEM approximation must be introduced into the strain energy expressions m order to

produce the st.iffness matrices.

First, recallmg Eq. (2.120), Ít is possÍble to see that the expansion of the xy-sheax

strain energy yields several terms. They are composed of the multiplication of either |i

with g, g with %S or ^ with ^. The latter, for instance, can be discretised as

'ÔÊ^\ Q4>v =_ s
ôx } Qx

9 bT-^i)«N Q
Qx, (Nfu^) - ÇS^

T ÔN^ fô^
T'

Qx \ Qx
VL\ ;2.133)
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Hence,

•Are Q(j)y\ Q^
Qx / Qx

/

dx=f5u&
T

Sn1
T •Aa;

\

o
l

Are

o
l

Aa;

r^ <9N^ ^5N^
o Qx \ Qx )
l7 \

T

da; uí-

Az

l.

A3;

dx
TS

(2.134)
.b í s-^.b\~t ^vv^={s<y^u

/
in which

(2.135)

[0000
|0 l O -li

lo o o o
|0 -l O l

It is analogous for the other products, só that the total xy-shea,r virtual strain contributíon

(Eq. (2.120)) integrated over an element can be writíen as

(h.yG^y} dV = (SvQT [!€„„] < + (5u^)r [eK^] u^ + {5n^T [(5-Y^G^y) àV = [S^y [K^] ^ + [Sv^y [eK^] u^ + [Suff [eK^ u^

Sul
T

e'+
12

K, tt

in which
Gb^b,

•W — ~ A - ^-'vv

(2.136)

(2.137)

The same procedure can be applied to the xz-sïiea.r strain energy, which hás

contributíonü from ^, ~^- and ^ (c/ Eq. (2.122)). For instance:

^=^TN^(N^M^)T N.
^N6,V

U\~Q^)

T

u?,,. (2.138)

Thus,

'Ax 9wM^)^=K)T 'Aíf

Nf
'<9NÏ

Qx

b\T

dx u:

Sul
T

(

b

^

•A:E

r-

x
Ase

o
x

Aa;

o
^

l l

Âx Ax J
dx u:

/

^<
T
b

^

o
-l

o

li

Oi

u
o'

(2.139)

u:,,.

In order to avoid shear lock, the integral in Eq. (2.139) would normally need to be

evaluated through reduced íntegratíon. in this case, however; the result would be the same

regardless of the number of Gauss points used, as the iníegrand is a linear polynomial
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and is thus integrated exactly for any N ~> l. Nonetheless, reduced integration will be

required when evaluatlng higher-order integrais coming from the xz-sïiesiï strain energy.

In the presení formulation; the only such term is the following:

/
•Ax

G^Ab l hô^x^x = (§v^
'o

T
GbAbkf)

Ax

l x
Aï

o
x

Aï

o

> ^

l x
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o
x
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o

^
> àx

)

u:

/

íuy
T kbGbAb^x f1

\

(l -^)2 O 1-<^2 O

o o o o
l-^2 O (l+^)2 O

(2.140)
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/

u;

o o o o|

The Íntegra! must be evaluated by one-point Gauss quadrature, which is of the form

f^dí ^ 2/(0). (2.141)

Hence, Eq. (2.140) becomes

/

~AX f >'.:

GbAb l k^4>^àx= (5u;
kbObAffAx
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l

o

o
o
o
o
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o
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o

o
o
o
o

^

)

u; (2.142)

The remaimng energy terms due to xz-sh.ea.r, as well as those coming from the

linear ternas of the axial straín energy, cau be derived simply by analytical integration.

As there are innumerous energy íerms and submatrices, the detailed derivation is herein

omitted, especially because the steps for obtaining the submatrices are very similar to

what hás been done in Eqs (2.133) - (2.139). Ultímately, the virtual straín energy wiíhin

an element becomes

J (5e,C^ + ô^yG^y + S^r,,} dV - (<^u6)T [k^ + k^ + k^] ufc. (2.143)

The zeroth-order stiífness is

^ ="o —

'-mm

o

rb 1
'mm J

T

o

^̂
w<j>

T

'mm

"tü^l (2.144)

the dementai submatrices being

OAb^-b

Are

10-10

0000
'1010

0000

G^Ab^-b

Ax

0000

010-1

0000

0-101

(2.145)
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k^GbA^x
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+
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+(ez+ ^k6..
12 / ^mm' (2.146)

k^G^At,

2

k6.... = cbA
'ww ~ ~^x

1010
l O -;

l -l

-l l

o
(2.147)

(2.148)

The first- and second-order stiffness matrices come from the strain energy due to

axial deformatíon (Eq. (2.123)). The linear contributions from that energy are already

accounted for in the zeroth-order matrix, k^. The second-order stiff'ness, k^, originates

from the term

C,A,
•Aa.'

s
l f9w
2 {9x

l (Qw
2 \9x

dx,

wíth

Hence,

C,A,

l f9w
2 \9x

Qw\ , ( ôw

9x Qx r

;2.149)

(2.150)

-Aa; l f9w'

2 [9 x.
if^=^ r^ fëiï^d. (2.i5i)2\ôxj ^~ 2 Jo v\Qx)\Qx) \ôx

As done previously for the linear terms, the FE ínterpolation for w is introduced ínto Eq.

(2.149). Upon domg só, the second-order energy contribution becomeü

C,A,

in which

with

•Az l Ow
2 [Qx

l fõw
2 [9x

àx = (áui>)
T
000

O k,^ O
000

ub={Sut)T^'1,

k6'2.-1 (b<\kL
'ww~~ 2 [ ò.x l "ww''

b={-l l}.

(2.152)

(2.153)

(2.154)

It is possible to notíce from Eq. (2.153) that the second-order stiffness, indeed, depends

quadratícally upon u^,.
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The remaíníng nonlinear terms frorn the axial strain energy produce the first-order

elemental stiffness matrix, wlüch is

k^
o

^ ]
^rnw\

T

whose yubmatrices are

Al _
-mw

,Í>,1
'mw

,&,!
"ww

?,1
'mw

C,Ab (buS

ek:

o

:M.Í
"mwj

o

T
;2.155)

2 (Arr)-
E,

,M ^
CÏ,A,

rE'T tó, + eu6. b,

(2.156)

;2.157)

T

(2.158)

2(A^)2J

in which

E=|\ ° -1 °|
1-1 O l 0|

The linear dependence of k^ upon the displacement vectors becomes clear from Eqs. (2.155)

- (2.157). Furthermore, from the expressions of k^, k^ and k^, it is possible to notice that

the present stiffener model is a very complete one: the zeroth-order matrix accounts for

axial motion, torsion, bending, transverse shear deforiïiability and eccentricifcy eífects,

whilst the first- and second-order matrices represent geométrica,! non-lmearity.

Obtaining the mass matrices is even simpler than the procedure required for the

stiffness matrices, as the ineríial term is purely linear. AU it takes is substituting Eqs.

(2.130) into Eq. (2.125) and rearranging the resulting equation só that the virtual externai

work over a beam element becomes

sw.b,e
ext

T
Svibymb 9V

ôtï
(SVL

r
m; em;;

em

m
T

in which
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(2.162)
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The kmematic couplíng between the panei and the stíffener is already satisfied by

the imposed displacement field equations. However, since the plate and the beam have been

discretised, they have yet to be numerically coupíed. It would be physicaüy correct to sum

the respective contributíons, e.g., kj == k^+k^. Nevertheless, this would be mathematically

problematíc, since the plate and beam elemental matrices have inconsistent dimensions (due

to the diíferent number of elemental nodes). One possíble solution would be to expand the

beam matrices by scattering its eíements over larger matrices maíching the dímensions of

the corresponding plate quantities. However, this would not be a computationally efËcient

solution, as in nonlínear analysis the stiífnesy maíriceü must be constantly re-evaluaíed, yo

that every unnecessary operation (summing zeros) can ultimately resulí in considerable

computational overhead.

A more efficient method is to sum the contributions only at the nodes where plate

and beam elements meei, and at a submatrix levei. For clarity, consider the 35-node

mesh shown in Figure 8. Let plate elements {9} and {13} be the ones formed by nodes

(11,12,16,17) and (16,17, 21, 22), respectively; and beam element {1} be the one formed

by nodes (16,17). As a calculation example, lei M-u, be the global tranyverye mayB matrix.

Then, the entry at position i6,i6 is computed as

^PÃQ}} ^ fm^Wl -^ í'mi>'íl>'
(u^i6,16 — ^//í-w~ '^4^4-1-V/6ïü' 'A.i ~r l//f"tü~ 'A.l' ^"

It is completely analogous for the remaining mass and stiffness submatrices. Refer again

to Figure 8 for more details on the correspondence between local (elemental) and global

nodes for the example at hand here.

After assembling the contributions from a.U the plate and beam elements, the

resultíng ODE system is

MU + (Ko + Ki + Ka) U - F. (2.164)

Note that now the matrices have no superscripts (p or &); meaning that tlxey represent

total (beam + plate) quantities.

2.4 Aerodynamic mode!

The supersonic aerodynamic load is modelled by the first-order piston theory.

Thís method is derived from supersomc potential fiow theory by neglectmg convolutíon

and high-order terms. According to it, the pressure fleld acting over the panei can be

approximated as (BISMARCK-NASR, 1992)

ò.p{w(x,y,t)) = -
2ç

\/MT~T

9w ÍM2-2\ l Qw

Qy ' \M2-\) U Qt
(2.165)

in which U, q and M are the íree-stream velocity, dynamíc pressure and Mach number,

respectively. The simplicity of this theory becomes clear from Eq. (2.165), in which it is
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possible to see that the aerodynamic pressure is linearly related to the panei s insfcantaneous

shape and velocity. It is also a local theory; as the pressure at any point is assumed to

depend exclusively on the values of ^ and ^ at that very spot. For these reasons, this

model avoids the need for fiuid meshes, thereby rendering the reyuiting aeroelastic yystem

considerably simpler than CFD-based solvers - and also making computations extremely

cheaper.

Of course; this model hás Umitations. The accuracy of piston theory for panei flutter

problems is considered to be saíisfactory for M > 1.7 (ALDER, 2015; VEDENEEV, 2012).

For lower Mach numbers, nonlocal theories are recommendecL Therefore, the analyses

performed in the preseut work are quantitatively accurate for high-supersonic regimes only.

For such cases, Alder (2015) hás receníly compared the post-flutter response of a panei

(wiíh vou Karman structural non-linearity) using two different aerodynamic models: the

linear piston theory and the Euler equations (using finite volumes). He concluded that the

latter high-fidelity CFD approach yields LCO amplitudes which are very similar to those

obtained via piston theory, differing in around 39o. Therefore, despite being linear and

very simple, the first-order piston theory is suitable for parametric aüsessment of LCO

amplitudes, which is the focus of the present work.

In order to make parametric studies simpler, Eq. (2.165) can be conveniently

rewritten as
D\ 9w / , , ôw

Ap = -X ^J ^- - p» (p/i^o):^, (2.166)

in which LÚQ is a reference frequency and D is a reference flexural stiffness, namely,

UO=V^TÏ- (2-167)

and

D ' Ï2(T^) (2-168)

Moreover, analyses are normally parametrised with respect to two dimensionless coefficients;

the dimensíonless dynamíc pressure, À, and the dampíng factor, g^ namely

À=ü7fcT (2-169)

and

Xp. (MÏ-Ï
í)a=V71íT=TU^-ïM^' (2'170)

in which p. = L£^- is the mass ratio.

The work done by the pressure field over a virtual displacement field is

WeT - /. (^Ap) dA = ^ /^ (^wAp) dA. (2J71)
A piateeÏements ne
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Then, as hás been done for the inertial terms in section 2.2, the nodal interpolatíon

w = Nu, u^j = u^TN^ is introduced ínto Eq. (2.171) só as to yield (after assembly)

WeT = -WT (AK,U + ^C,Ú) ,ext (2.172)

in which AKa and 5aCa are the aerodynamic stiffnetíü and damping matrices, reypectiveíy,

whose corresponding elemental quantities are

ka
D
L3

o o o

O L.N»(a^)'dA O
o o o

(2.173)

phujQ

000

O ;^N^N^dA O
000

(2.174)

It becomes evident that piston theory maíntams its símplicity after discretísed: the

aerodynamic load is ultimately translated into two matrices that can be readily introduced

into the pre-existing structural model. The complete aeroelastíc equations of motion are,

thus,

MU + gaCa^ + (AK^ + Ko + Ki + Ks) U - F, (2.175)

with F generally set as zero for aeroelastic analysis.

The low computationaí cost enabled by the use of linear piston theory makes

it a powerful tool for parametric studies that require rapid assessment of post-flutter

amplitudes — provided, of course, that a nonlinear structural model is employed. The

methods used for solving the aeroelastic problem is dealt with in yection 2.5.

2.5 Solution methods

Before introducing the solution procedures, let Eq. (2.175) be rewritten as

p,

in which

MÜ+|G(^,^|U+[K(A)+H(U)]U=F,

K (À) - XKa + Ko,

G(A-^)= c.

(2.176)

(2.177)

(2.178)

and

H(U) = Ki(U) + K2(U). (2.179)

This shows that, for fixed material properties and geornetry, the aeroelastic system depends

on two parameters: À and /^/M, which essentíally represent the flight condition.
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There are two solutions of interest: a) the fiutter boundary, or criticai condition,

which is the highest va-lue of À for which the system presents damped niotion; and b)

the post-flutíer behaviour, which is the noniinear transient response for flight condítions

beyond the flutter boundary. However, before actually solvíng the aeroelastic equations, it

is necessary to apply the boundary conditíons (BCs), as the stifFness matríces, per se. are

singular.

2.5.1 Boundary conditions

The rnost efficient way to enforce zero-displacement boundary conditions is to

eliminate rows and columns from the matrices and vectors in Eq. (2.176). For instance,

suppose that the system hás n degrees of freedom, meaning that vector U hás n entries. If,

üay; íhe A;-th degree of freedom in U (e.g-, the transverse dísplacement at a certaín node)

is known to be zero, then the A-th coluiïin and the À-th row of ali the matrices (mass,

stiffness and damping), as well the Á;-th entry in U, U and U, are eliminated. This will

lead to an ODE system whose dimension is now equal to (n — l).

Three types ofBCs are considered herein: clamped, simply yupported and üymmetry

boundaries. The simplest one is the clamped conditíon: a clamped edge satisfies ü ^= v =

U) == (j)^ = (p =1 Q Q,t ali of its nodes. The simple support is similar, but the rotation

about the edge is released. The symmetry condition consists of restricting perpendicular

displacements and parallel roíations, as ülustrated in Figure 9.

Figure 9 - Applicatíon of symmetry BCs to a syrnmetric problem.

L Ü^ 0^=0 Lf2clamped-<-
u^ (p^ = O

(symmetry)

k

stiffener
ÍÍ

y

L

L

- •> cl am ped
x

Source: Elaborated by the author.
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In the panei fiutter problem, the existence of mathematical symmetry requíres

symmetry of: material properties, fiow direction, boundary conditíons and ínítíal conditions.

Symmetry, when applicable, is a powerful tecnhique for reducing computational time, as

it reduces the number of nodeü and DOFü in the syytem. In the present work, symmetry

BCs are used whenever possible, which is the case of isotropic and cross-ply paneis.

2.5.2 Flutter boundary prediction

One of the most important results to be obtained from an aeroelastic system is

the flutter boundary, or stability boundary, which is the criticai condition from which

Umit cycle oscillations ütart to occur. Let Xf be the dimensionless dynamic pressure that

corresponds to the flutter boundary. Then; for A < À^-j the system is expected to display

damped motion. This means that, after possible perturbations to the static equilíbrium,

the panei should vibrate and gradually return to its static condition. For À > À^-, the panei

should undergo limit cycle oscillations, which are periodic motions with limited amplitude.

This so-called post-flutter regime is where non-linearities dominate the aeroelastic motiou.

The value of \f can be obtained by solving the linear problem, i.e., by dropping

the nonlínear stiffness, H (XUE; MEI, 1993a). Besidey, what is typically done is to fix a

value for p,/ 'M \ só that the resulting linear system relies on only one parameter (A):

MU + [G (À)] U + [K (A)] U = 0, (2J80)

which can be rearranged as a first-oder ODE system:

q-[R(A)]q=0, (2.181)

in which

R (À) =
O ÍM-1M]

[-M-1K(A)] [-M-1G(À)]
(2.182)

and

q={s}- (2J83)
The linear ODE system can be solved by assuming a solution ofthe form q(í) == e qo? with

qo ^ 0, and subtítituting it in Eq. (2.181), which yields the classícal eigenvalue problem:

det[R (À) - a;I] = 0, (2.184)

in which I is the identity matríx. The general solution consists of complex eigenvalues:

Lu == C^re + ^im- (2.185)

If, for a cerfcain A, ali the eigenvalues have negative real parts (a^re < 0), then ali

the aeroelastic modes are damped, which means that there is no flutter at such flight
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condition. Otherwise; if at least one of the eígenvalues have a negative real part, then

the system's response to any disturbance should display growing amplitude, i.e., flutter

(BISMÁRCK-NASR, 1992). The flutter boundary, \^ is the value of A for which Eq.

(2.184) yields purely imaginary frequencies, that is, ^re == O for ali modeü. In practical

terms, this can be done by solving Eq. (2.184) for successively increasmg values of X and

assessing the sign of íJre- If oïie crf the ú^re changes sign between, say, \j and À^+i, then

^j ^ Ây < \j+i. Then, the value of X f can be sought within that shorter interval. This

can be done iteratively until \f is found within desirable tolerance. Note that the task at

hand is very similar to a root-findmg problem, hence there are several possible algoríthms

for numerically deíerminmg Ày.

Predicting the flutter boundary is crucial for the present study, as it determines

when transient analysis is required. For À < À^, the panei does not undergo flutter and

should return to static equílibrium after perturbed, só there is no need for spending

computational resources in simulating its Èirae response. Beyond the flutter boundary,

it is necessary to simulate the aeroelastic system in the time domain (including the

non-linearitíes) in order to assess LCO amplitudes and vibration patterns.

2.5.3 Transient analysis

The solution ofthe nonlinear aeroelastic ODE system in Eq. (2.176) requires numer-

ical time marching. Through the course of this work, several algorithms were Ímplemented,

such as the third- and fourth-order explicit Runge-Kutta methods, and varatíons of the

implicit Newmark method. Tests were performed using benchmark nonlinear structural

vibration and flutter problems, leading to the conclusion that the modified Newmark

method proposed by Akay (1980) is the most efficient one for the present problem.

The method starts by selecting a time step Aí and expanding íhe displacement

and velocity vecíorü at time tn+i ^ (n + l)Aí as

Ün+i - Ú, + ^ (Ü^i + Ü,) , (2.186)
2

and

U^i = !;„ + AíÚn + (^) (Ü^, + Ü») , (2.187)
•At\2

iu which Un is short for U (t == í^)- Equations (2.186) and (2.187) can be combined só as

to attain new relatíons:

Vn+1 = -Vn + -^ (U^i - U» - AíÚ») , (2.188)

an d

Ú.^i =-Ú» + ^ (U^i-U^), (2.189)
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which can be substituted into Eq. (2.176), thereby forming the time-discretísed equatíon:

At\
K

4
Hn+l

Aí2 _
Un+1 = —T-Fn+1 + PT

with
K=M+AÍG+AÍ2:

2 - ' 4

M n, + AÍ U n + —~~ U n +G
A^, , Aí2,,
Tu"+ ^u-

(2.190)

(2.191)

(2.192)

and Ïin+i :== H (U == Un+i). Assuming a constant (for structural vibration studies) or zero

(for fiutter analysis) force vector, then Fn+i =" ï1'-

It is important to note that, for each time instant, Eq. (2.190) is a nonlínear

algebraic system, as Hn+i is a function of Un+i. The iterative approach proposed by

Akay (1980) for solving it consists of moving the nonlinear term, -^-Hn+iUn+i, to the

right-hand side of Eq. (2.190) and treating it as a forcing term. Hence, the (k + l)-th

iteration for an (n + l)-th time step is computed as (CHEN; SUN, 1985)

KTT^+1) = -F.. - Aí TTW.TT^
'71+1 Ln+l "^n+1;

in which

n —
Aí;

4
F + M Vn + AÍU^ +

Aí;

4 a +G Àíu. + AÍ2ú.'
Tun^~T^n

(2.193)

(2.194)

The iterations should continue untií a sufficiently accurate solution at each time síep is

achieved.

The computational efficiency of this modified iterative time-marching scheme lies

in the fact that the coefficient matrix, K, is constant at ali times and iterations; só that it

only needs to be inverted once, duríng pre-processing. Therefore, the new solution can be

straightforwardly calculated from the previous iteration:

u<fe+l)
n+1

t2
-W^. \ TT(fc).

Ln+l J ^n+1
rW -l-+(K-1F (2.195)

Since no inverüion of the nonlinear stiffness matrix is required, the CPU time üpení at

each time step is drastícally reduced when compared to classical Runge-Kutta meíhods.

At each time step, the values used when k == O correspond to the converged vaíues

from the previous time step, that is, U^,i == Un. After convergence, the values of Un

and Un are updated using Eqs (2.188) and (2.186). Note that initial conditions must be

provided for U, U and U.

This variation of the Newmark scheme is very efficient, but this comes as a trade-off

for unconditional stability (AKAY, 1980). This means that this method is conditionally
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stable, i.e., a minimum time step is required for convergence. For nonlinear analysis;

especially when aerodynamic terms are involved, there is no closed-form solution for

determining this minimum Aí. Many difierent estimates are proposed in the literature.

One that hás worked for ali the analyses conducted herein is íhe one by Leech (1965):

, ^.
UQ \ 2L

in which Ax is the minimum element size in the mesh.
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3 VALIDATION AND VERIFICATION

3.1 Introduction

Before beginning the analysis of novel cases, it is crucial to validate the finite

element model and very íhe solution algorithms implemented. In order to do that, results

obtained through the present model are compared to those from the scientific literature. The

validai ion/verification is carried ouí in multiple leveis: üt.arting with nonlinear structural

vibration (in vácuo) oí composite paneis, then movíng to linear and nonlinear panei flutter,

including linear flutter prediction in beam-reínforced paneis.

3.2 Nonlinear plate vibration

In order to verify the present nonlinear plate model agaínüt the avaílable líterature,

results have been generated for simply supported square cross-ply paneis subject to a

uniform step load, i.e-,

0, for í < 0;
Ap(.r, y, t) = { ^ 7;,'^ (3.1)

po, for t ^ 0.

For the mesh convergence study, a two-ply (0° 90°]) moderately thick plate is

considered with the followmg parameters:

4

í/i2 - 0.25,

EL = 25, í±í2 = G^3. = 0.5, ç23 == o.2.
E^ -E12 -Ë'2 -E'2

The validation parameter is the central transverse displacement, Wc; taken at the first peak

of the oscillatory motion. Several different FE meshes of the form ^ x n are consídered, i.e-,

half-plate symmetry is used. The coarsest mesh corresponds to n = 6, and the finest one

hás n = 50. Instead of using Leech's formula (Eq. (3.1)) to define the time step for each

mesh, the same step hás been fixed for ali the meshes. The selected step is Aí ^ J^ ;

or, nondimensionally, Ar == 3.3 x 10" . The results are gíven in terms of Wc/h versus n.

Mind that n = -^-, as the meshes are uniform. From Figure 10 it is possible to verify

that the solution clearly converges as the mesh is refined. Since no closed-form solution is

available for this case, error convergence analyses are not performed. However, the solution

at n = 24 hás a 0.2% diíference from the solution at n = 50, which makes it possible

to conclude that the 12 x 24 mesh is sufficiently fine for deUvering accurate nonlinear

vibration solutions.

Furthermore, Figure 11 shows the transient solution in comparison with those

from Chen and Sun (1985) and Reddy (1983), who also used the Newmark time-marching
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scheme, but a higher-order (9-node) quadrilateral element. The comparison reveals good

agreement between the presení solution and results from the literature -- especially those

by Chen and Sun (1985). The results are plotted in dimensionless time, namely,

T UJQÍ. (3.2)

Figure 10 - FE mesh convergence for a nonlinear vibrating plate.
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In arder to make sure that the present model is lock-free, i.e-, that the reduced inte-

gration technique efÏectively prevents shear lock, a thin-plate solution hás also been

compared to results from Chen and Sun (1985). The forced vibration of a ten-ply

([0° 90° 0° 90° 0°) ) plate hás been simulated, with the following parameters:

L
h
£a

E^

- 100,
Po

^2
'ff - -.

= 15.19,
G 12 G13

i/i2 == 0.3,

GÏZ

^ ^ E.
= 0.6962.

A 12 x 24 half-plate mesh hás been used. Figure 12 exhibits the comparison. Once

again, the present solution matches almost exactly the results from Chen and Sun (1985).

ThÍs demonstrates that the method is indeed lock-free, and corroborates the satisfactory

accuracy provided by the 12 x 24 mesh.
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Figure 11 - Nonlinear vibration of a cross-ply asymmetric moderately thick plate.
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3.3 Aeroelastic solutíons

3.3.1 Linear flutter in a multibay composite panei

In arder to validate the aeroelaytic model, and also to verify results for oblique

laminations (rather than only cross-ply plates), the flutter boundary of a three-bay panei

hás been calculated for different fiber orientation angles. The expressíon three-bay panei

refers to a simpíy supported L x 3Í/ panei wlth two additional support lines that subdivide

it in three bays, as illustrated in Figure 13. Paneis in which internai stiffeners are replaced

by símple supports are usually called multïbay paneis.

Following the analysis conducted by Shiau and Chang (1991), flutter boundary

results have been generated for lamination sequences of the form [6 -Q Q -Q 0]s, wiíh

Q == 20°, 40°, 60°, 80°. A 24 x 72 mesh hás been considered, and the geometric and material

parameters are

T - 100'
p,

M
0, ^ = 0.21, i]- = 26.5,

',2

G\ï

^2

G13 G23

^ ^
= 1.184.

Figure 14 depicts the present results and those by Slúau and Chang (1991); who employed

a thin-plate FE model. The plot relates the angle ô and the criticai dynamic pressure, X f.

The comparison reveals good agreement, despite the use of different síructural models.



Figure 12 - Nonlínear vibration of a cross-ply symrnetríc thin plate.
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Figure 14 - Flutter boundary as a function of fiber orientation, for a three-bay panei.
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However, before starting the analyses, it is important to investigate mesh conver-

gence for the stiffened-panel model. In order to do that, the fiutter boundary values for

Case A (c./. Figure 15) are plotted against the mesh size, òj£-. From Figure 16, it is possible

to observe that the solution converges. The value of \f for a 20 x 20 mesh is 854.3, whích

is 1.32% higher than the result obtained by Fernandes and Tamijani (2017) via the Ritz

method. For a 24 x 24 mesh, this difïerence reduces to 0.6%. This ghowy, once again, that

n = 24 provides sufíicent accuracy for the purposes of the present work.

Takíng that into consideration, fiutter boundary results obtained by using a 24 x 24

mesh are compared in Table 2 to those from Liao and Sun (1993). The comparison

reveals good agreement between the solutíons, for ali the geometries considered. The small

discrepancy is probably due to the differences in modellmg, as Liao and Sun (1993) used a

shell model for the panei, and considered one additional degree of freedom for the beam.

Table 2 - Flutter boundaries for stiíFened ísotropic paneis.

Geometry

Case A

Case B

Case C

X f (Present)

848.31

1449.2

1176.3

Xf (LIAO; SUN, 1993)

840.716

1434.209

1172.723

Difference

0.90%

1.04%

0.31%

Source: Elaborated by the author.
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Figure 15 ~ Reinforced paneis considered in the validation study.
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Figure 16 - Convergence study: Flutter boundary for stiffened isotropic paneis.
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3.3.3 Nonlinear flutter in single paneis

In arder to verify the nonlmear aeroelastic model, an unstiffened clamped isotropic

square panei hás been simulated in time at posí-flutter dynarrdc pressures, i.e., À > Xf.

li hás been assumed that v =- 0.25 and -§- = 0.1. Results have been compareci to those

obtained by Kuo; Morino and Dugundji (1972) through perturbation method. Figure 17

reveals very good agreement between the LCO amplitudes attained by the present model
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and those from the reference.

Figure 17 - LCO amplitudes for an isotropic clamped square panei (v = 0.25, -^ ^ 0.1)
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4 AEROELASTIC ANALYSIS OF REINFORCED PANELS

4.1 Introduction

The main goal of this project is to provide a systematic comparative study between

ytiffened (coupled) and single (isolated) paneis, with respecí to variouü aspects of their

aeroelastic behaviour. Two factors can yield differences between these two models: a) The

fiexibiUty/mobílity of stiffeners; and b) Cell-cell coupiing, i.e-, adjacent cells interacting

structurally. If a stiífener is sufi&ciently rigid, it should provide, in practice, a clamped-

like restriction, which means that it will neither move nor allow the cells to exchange

moments, forces, rotation, etc. Therefore, it ultimately comes down to the ytiffness of the

reinforcement, that is, how rigid the stiffener must be for one to be able to safely model

each cell in a reinforced panei as a singíe, isolated, ideally-restrained panei.

A neat way to carry out such analysis is to parametrise results in terras of the

stiífener's height-to-thickness ratio. Consider that the length and cross-sectional área of

the stiffener are fixed, thereby fbcing its weight. Then, its cross-sectional aspect ratío is the

only parameter that can afïect its bending and torsional stíffnesses and inertias (minding

that a rectangular cross-section is being considered in the present work, for neatness and

simplicity). Therefore, the analyses performed in the present work have the cross-sectional

aspect ratio as an ímportant síructural parameter.

Furthermore, the present study consíders double paneis; i.e-, L x 2L paneis with a

stiífener fixed at y = L (cf. Figure 7 and Figure 3). The aeroelastic behaviour of each of

the two square cells is compareci to that of a single, isoiated square panei. A detailed study

is carried out for isotropic paneis, considermg linear behaviour, nonliuear response and

component-wise mechanícal energy quantification. Laminated paneis are aiso investigated

in the nonUnear regime in terms of limít cycle amplitudes. Analyses are parametrised in

terms of nonlinear dynamic pressures and the síiffener's cross-sectional aspect ratio.

4.2 Flutter boundary

The examination of Eq. (2.146) reveals that the linear bending and torsional

moments of inertia for an eccentric beam element are, respectively,

c
4=|^+e2)A,, (4.1)L!/ ~ l 12

and

^(^-^A, withe=^. (4.2)
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Let a be the stiíïener's cross-secíional aspect ratío, namely,

c
a=b- (4.3)

Thus, if the cross-sectional área, A^, is fixed, then Eqs. (4.1) and (4.2) can be rewritten as

and

It is clear that

w
It(a) = |4a+6/ï

12

Um /-u (o;) ^ Um It{a} ^ oo
Q; —ï 00

(4.4)

(4.5)

(4.6)

which reveals that both torsional and bending stiffnesses tend to become very large for

sufficiently slender cross-sections. It is thus of ínterest to study how the fíutter boundary

of a double panei varies with respect to a;. Consider andouble stiffened isotropic panei with

j- = 100 and j^ = 0.02. Also consider the following properties for the stiffener, arbitrarily

defined: A^ == 20/i , p^ ^ 3p, E]^ === 3£1i and ^ ^ v ^ 0.25 (the quantitíes without subscripts

refer to the plate). Figure 18 shows the parametric flutter boundary assessment for such

panei. The results reveal that the fiutter boundary of the stiífened panei asymptotically

approaches that of a single clamped square panei. This is a direct consequence of how the

beam's stiffness varies with respect to a; as a becomes progressively larger, the stiffener

tends to approximate a clamped Une, só that each cell tends to behave as an isolated

panei. Another important conclusion that can be drawn from these resullts is the fact that

the single-panel model is an unconservative one, at least as far as the onset of flutter is

concerned. In other words, modelling each ceiï in a skin structure as an Ísolated panei may

lead to highly-over estimai ed flutter speeds, which can result, in structural unsafety.

Figure 18 - Flutter boundary of a double panei for dlfferent cross-sectional aspect ratios.
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4.3 Nonlinear aeroelastic response

Linear analysis hás revealed that the discrepancies between the single- and stiffened-

panei models íncrease as the cross-sectional aspect ratio decreases. It may not be as simple

in the post-fiutter regime, due to the presence of non-linearities. Solutíons have been

generated for several values of X and cr, mcluding ísotropíc (especially) and laminated

paneis.

4.3.1 Isotropíc paneis

In order to investigate the nonlinear aeroelastic regime, the same isotropic panei

írom section 4.2 ha-s been simulated at post-flutter conditions, that is, A > \f. At such

conditions, even the smallest perturbaíion should lead the system to periodically vibrate

in what is caiïed limit cycle oscillations. Só, as initial condition, a very small displacement

field is input, corresponding to the applicatíon of a uníform pressure A^po ^ 0.01^2 (^-/^/) i

which is then removed.

Transient solutions have been generated for several values of o;, and the maximum

and minimum transverse displacements are shown in Figure 19. The reference point where

LCO amplitudes are taken is y ^ ^ Jr L at the symmetry Une, wlüch corresponds to the

mldspan three-quarter position in the rear cell. Once again; the results are compared to

those from a single panela taken at y ^ 3jL.

Figure 19 - Maximum and minimum LCO displacements for several values of À and a.

850 1100 1150

Source: Elaborated by the author.

As expecíed, for large values of a the cell responds similarly to a single, clamped
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panei. The magmtudes of the maximuiïi and minimum displacements increase as a

decreases, which is also a direct consequence of how the beam stiffness is related to a.

The single panei model is, thus, a lower bound for the LCO amplitude leveis and an

upper bound for the fíutter boundary (cf. yection 4.2). In practical terms, thís means that

simulatmg isolated fluttering paneis is an unconservative approach when dealing with

reinforced skin.

It is also possible to verify, from Figure 19, that the maximum and minimum

displacements can diífer, which is explained by the stiíïener's eccentricity. Yet the most

remarkable feature from the LCO plot is perhaps the sudden jump in amplitude observed

for a = l- Similar discontinuities have been identified by the author in previous works

(PACHECO; MARQUES; FERREIRA, 2017; PACHECO; MARQUES; FERREIRA, 2018;
PACHECO et al-, 2017). Through a detailed sequential continuation study, it was proved

that such jurnps are actually bifurcation points related to the coexistence of multiple stable

limit cycles at certain dynamic pressures. Thís means that, under special ímtial conditions,

the branch that existed before the jump can be continued (PACHECO; MARQUES;

FERREIRA, 2017), but the branch seen after the jump in Figure 19 is generally more

stable.

Let Àjump be the condition at which the solution bifurcates. Figure 20 depicts the

fluttering shapes for À -== 1015.5 < Àjump and A = 1015.7 > Àjump- The fluttering shape is

an instantaneous shot of the panePs midspan deformed shape, taken when the reference

point is at a peak of its LCO. It is possible to see that the relative position between the

celís is very diíïerent prior to and after the jump, i.e., the flutter mechanism changes at

the jump. As a matter of fact, a quick examinatíon of Figure 21 shows that the relative

phase between the cells changes considerably. The LCO displacements presented are taken

at points y == ^, y === L and y ==; ^ +-L, which are located in the front cell, the stiffener

and the rear cell, respectively, along the midspan (symmetry) line. In order to improve

viewing; the displacements at each of those reference points have been divided by their

respective maximum LCO displacements. It is clear that the stiffener and the front cell

vibrate practically in phase both prior to and after the jump, but the phase of íhe rear

cell changes considerably. Before the jump, the rear cell vibrates roughly in antiphase

with the front cell and the stiífener. This type of opposed rnotion is not uncommon in

stififened paneis in nonUnear aeroelastic regimes, ít hás been observed by Oh, Lee and Lee

(2001) and also by the author in previous workü (PACHECO; MARQUES; FERREIRA,

2017; PACHECO et al., 2017). However, after the jump, the motion is more similar to

a 90°-phase vibration, i-e-, the refence points located at the front cell and the stiffener

reach íheir peaks when the reference poínt of the rear cell is dose to a zero-displacement

position.

Two hypotheses are plausible, in theory, for explaining why the reference cell



Figure 20 - Mídspan fluttermg shapes prior to aud after the jump.
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Figure 21 - Normalised LCO amplitudes, (a) \ - 1015.5, (b) À - 1015.7.
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displays highly discrepant LCO amplitudes for virtually identical dynamic pressures: a)

The energy transfer from the flow to the structure is more üevere in the post-jump flutter

mechanism; or b) The total mean energy prior to and after the jump is the same, but the

cells and íhe stiffener exchange íhe avaííable energy between themselves in such a way as

to yield larger amplitudes, ïn order to determine the answer; it is necessary to calculate
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the mechanical energy (kinetic plus elastic) instantaneously stored in the structure:

Em(t) =
V+Vt,

2 / CL. \ 2 / ci- \ '

Tt) + \^t) + [-31^ ^dV+

CTpT£p + CT,T£^ ^^ f CT^S^ + T^y7xy + W^z
';

'V 2 JVh 2

(4.7)

which after discretisation becomeü

E^t) = JÚTMÚ + ÍUT [K (U^)] U, (4.8)

with

K (U,) = Ko + Ki (U^ = U^ = 0) + Í,K2 (U). (4.9)

The energy can be nondimensionalísed as:

É^ _ m_,,. (4.1
D(h/Lf ^'^

The mechanical energy can also be calculated locally ~ rear cell, front cell, stiffener

by integrating in specific elements in the mesh. The total and component-wise eaergies

have been computed for \ =^ 1015.5 and A == 1015.7. The results are exhíbited in Figure 22

and Figure 23. The total mean energy is clearly much higher after the jump than prior to

it. This means that the post-jump flutter mechanism is capable of extracting more energy

from the flow. It is possible to conclude from Figure 22 that the jump happens because

the üystem moveu from one limit cycíe to a more energetic one. A difference of less than

0.01% in the dynamic pressure - from 1015.5 to 1015.7 - is sufficient for changing the

flutter mechanism and íaking the system to a considerably more energetic motion. This

is not unusual, and is a consequence of the non-lmearity of the aeroelastic system. For

instance, Shishaeva, Vedeneev and Aksenov (2015) recently found out that, at certain flow

conditions, a fluttering panei can undergo two diütinct Umit cycles at the same dynamic

pressure.

Furthermore, Figure 23 reveals important information about íhe energy distribution

in the stiffened panei. In both pré- and post-jump conditíons, the mean energy contained

by the froní cell is considerably lower than that of the rear cell. This m.akes perfect sense,

since rear cells tend to vibrate with larger amplitudes in in tandem panei arrangements

(PACHECO et al-, 2017). Also, the energy absorbed by the stiffener is negligible when

compared to the euergy abBorbed by the panei.

Since paneis with more rigid stiffeners (a = 2, 5, 20) showed no jump, it is very rea-

sonable to conclude that the mobility of the stiífener is directly related to the discontinuity.

Moreover, as the energy stored in the stiffener is very small, it is possible to conclude that

the stiffener influences the aeroelastic motion more as a dynamic boundary condition

than as an energy absorber. Therefore, in spite of moving with very small amplitudes and
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Figure 22 ~ Pré- and post-jump energy time histories.
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Figure 23 - Component-wise LCO energy. (a) A = 1015.5; (b) X - 1015.7.
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storing very little energy, the strínger s dynamics can substantially affect the aeroelastic

motion of the whole system. Figure 24 shows the LCO amplitude plot for a ^ 0.5. A jump

similar to what happened for a = l cau be seen here. but the díscontinuity occurs earlier

for this more flexible stiífener. Hence it is poüüible to conclude that ytíffener mobility playü

indeed an extremely importaní role on the aeroelastic motíon.

It becomes clear, from íhe present analysis, that neglecting stiffener fiexibílity

can result in unsafe structural desígn. The LCO amplitudes - and, consequently, straíns

and stresses - predicted by considering ideal restrains (single plate) can be substantially

lower than in an actual reinforced panei. Moreover, the amplitude jumps observed in

"weakly-stiffened paneis offer pontential risks if not predicted carefully. It is common

for a.írcraft design philoüophies to allow for üome levei of cyclíng before inspection and

maintenance. Therefore, reliable calculation of oscillation frequencies and strain/stress

leveis is crucial for structural desígn and, for this reason, sudden amplitude jumps are

definitely undesirable.



Figure 24 - LCO amplitudes for a panei with a very fíexible síifFener.
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4.3.2 Lamínated paneis

Analyses have also been performed for composite paneis. The material propertíes

considered here for the laminated plates are those of boron-epoxy as found in Dixon

and Mei (1993): ^ = 10, ^ = j and 1/12 = 0.3. It is assumed that G^ = G^ = G^,

-^ ^ 0.05 and ^ == 100. The stiffener is considered to be made of aluminium, só that

^ ^ l, ^ ^= 1.35 and -|ÍL ^ i. The crosü-yectional área is taken as A^ ^ f4A)2.
1/12 'R -tí'1

Nonlinear transient response hás been simulated for a three-layer symmetric cross-

ply plate ([0° 90° 0° ). The LCO amplitude diagrams for a -= 10 and cr == 20 are shown in

Figure 25, in comparison to those from a single panei. The trend observed in isotropic

paneis is confirmed: a double panei cari display extremely-larger amplitudes when compared

to an idealised single panei. Moreover, a more flexibile stiffener (o; = 10) hás yielded

discontinuities in the LCO amplitude diagrams. In this case, the jump appears to be

somewhat less intense than for the isotropic panei. The phase portraits depicted in Figure 26

reveal that Índeed there are no drastíc changes to the dynamic motion after thís jump.

The cases simulated só far have considered cells positioned in tandem, in which

the structural coupling occurs along the fiow direction. In order to investígate spanwise

coupling, a stiffened angle-ply ([45° -45°]) panei hás been simulated with the flow aligned

with the x direction, which is dane by simply changing ^- for ^ in Eq. (2.173). Figure 27

illustrates the reference points, PI and P2, where displacements are taken, and the

amplitude plot for a ^ l is shown in Figure 28. It is possible to see that, even for thís

low aspect ratio, each cell in the stiffened panei behaves very similarly to a single isolated

panei. This happens because in this case none of the layers hás fibers aligned with the

flow direction, which renders the panei considerably less resistant to the aerodynamic load
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Figure 25 - LCO amplitude plots for a cross-ply stífFened panei (0° 90° 0° ).
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when compared to a cross-ply panei. Therefore, even at low aspect ratíos the stíífener is

considerably more rigid than the plate.

Even for a == 0.1, the amplitudes of the double panei are not drasticaily discrepant

from those of a single panei, as shown in Figure 29. Note that, although the problem is not

symmetric about the reinforcement Une, the two cellü vibrate with very similar amplitudes

for a wide range if dynamic pressures. There is no apparent junap in this case, yet the

dynamics do change as \ increases. Figure 30 and Figure 31 depict the relative LCO

motion of points PI and P2 at A == 200 and À = 400, respectively. For the smaiïer dynamíc

pressure, the phase between the cells is very small, and só is the amplitude difference,

au also seen in Figure 32. However, at A == 400 the phase becomes larger, meaning that,

despite the inexistence of an abrupt, jump-like change, íhe flutter dynamics do vary as a

function of the dynamic pressure.

4.3.3 Remarks

Through linear analysis; Shíau aud Chang (1991) concluded that fiber orientation

and stacking sequence play a major role in the aeroelastic response of reinforced paneis.

They showed that, depending on the material arrangement, spanwise coupling can be
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Figure 26 ~ Pré- and post-jump phase portraits for the cross-ply panei, with a ^ 10.

50

40

30

20

10

o

-10

-20

-30

-40

-50
-l -0.5 o

w/h
0.5

Source: Elaborated by the author.

as important as síreamwise coupling, which is not true for isotropic paneis. The present

nonlinear study hás revealed that the post-flutter response is âlso highíy influenced by

these factors. Of course, it would be ideal to simulate several laminatíon schemes and

geometrical arrangements (tríple/multíple paneis, spanwise plus streaniwise couplíng;

composite stiffeners, non-square cells, etc), but in practical situations there are ínfiníte

combinations of material properties, stacking sequences, stiíïener geometries, number of

cells, fíow angle, among other parameterü. In üpite of this, it is possible to conclude that

the cases presenteei and thoroughly analysed here are sufficient to demonstrate that the

single-panel model cannot be used indiscriminately without a careful exammaíion on how

rigid specific stiffeners are when compared to the skin paneis. Reínforced paneis have been

shown to exhibit potentially complex aeroelastic behaviour that cannoí be predicted when

ídealised fixation/isolation is considered.



Figure 27 - Reference points and schematic representatíon for a spanwise arrangement.
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Figure 28 - LCO amplitude plots for an angle-ply stíffened panei (spanwise) with a = l.
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Figure 29 - LCO amplitude plots for an angle-ply stiffened panei (spanwise) with a •== 0.1.
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Figure 30 - Transverse LCO displacements at points Pi and P2, for A = 200.
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Figure 31 - Transverse LCO displacements at poínts PI and P2, for À === 400.
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Figure 32 - Fluttering shape of a spanwise-double panei at A = 200, with o; == 0.1.

Source: Elaborated by the author.
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5 CONCLUSIONS SUMMARY

This work hás presenteei a numerical ínvestigation on the linear and nonlinear

(especialíy) aeroelastic behaviour of reinforced aircraft skin paneis subject to one-yided

supersoníc flow. The main goal was to develop and impíement a computer code (formulation,

model and solvers) for flutter analysis in beam-reinforced paneis, in order to study

potentially complex behaviour of such aerospace structuraí elements.

The aeroelastic model employs the Míndlín plate theory to simulate the skin,

and an eccentric Timoshenko beam theory for the stifFening elements. Geometncal non-

linearity is included by the von Karman strain-displacement relations, for both plate and

beam. The model is formulated só as to consider isotropic and composite paneis. The

aerodynamic load is computed via first-order piston theory, which is a linear model suitable

for high-supersonic regimes. The structural and aerodynamic theories are combined by

the Principie of Virtual Work, which in turn is díscretised using the Finite Element

Method. The plate and beam models are nodally coupled through the global stiffness

and mass matrices. There are two t.ypes of solutions of interest: a) Flutter boundary

prediction, which consists of finding the maximum dynamic pressure that the systern can

withstand wiíhout experiencing flutter; and b) Post-fiutter transient simulation. in which

the structural non-línearities cause the occurence of limit cycle oscillations (LCOs). The

former (a) is done by iteratively varying the dynamic pressure in the search for negatively

damped eigenmodes, and the latter (b) requires direcí üolution in the time domain, which

is achieved via an implícit, iterative Newmark-type scheme.

The model and solvers have been verified through compariyon with several bench-

mark result.s from the líterature. The comparative study hás been performed in multiple

leveis: mesh convergence, nonlinear laminated plate vibration (purely structural), flutter

boundary predictíon for stiffened paneis, and nonlinear aeroelastic simulation of unstíffened

paneis. Results have demonstrated that the code developed for thís project is capable

of yielding accurate solutíons for stíífened and unstíffened^ thin and thick, isotropic and

laminated paneis, in boíh linear and nonlinear regimes.

The main novel caye studied here considers a double panei, i.e.; a rectangular

plate with a centrally-placed stiffener that subdivides it into two equal square cells. By

comparing the linear and nonlinear aeroelastic behaviour of double-celled paneis with

those of a reference single square panei; this work hás focused on assessing the Umitations

and inaccuracies of the classical assumption of consídering each cell in a skin structure

as an isolated^ ideally-fixed panei. Ïn order to do that, results ha-ve been parametrised in

terms of the stifFener's cross-sectional aspect ratio, a, which determines its torsional and

bending stiffnesses and controls the structural coupUng between adjacent cells. In this



context; the present analysis hás been able to show that;

* Flutter tends to occurs earlier for double-celled paneis. The criticai dynamic pressure

obtained for a double-celled panei Íncreases as the stiffener becomes more rigid,

asymptotically approaching that of a single panei (isolated and fully clamped) as a

becomes larger.

• The maximum LCO amplitudes of double paneis can be several times higher than

that displayed by the corresponding single paneis.

• Jump discontinuities in LCO amplitude diagrams can occur for paneis stíífened by

relatively flexible beams. Such discontinuities are due to the non-linearity of the

complex aeroelastic system, and are related to a change in the flutter mechanism.

The post-jump mechanism is capable of extractíng considerably more energy from

the flow than the pre-jump mechanism.

• In the post-fluíter regime, íhe cells in â reinforced panei can display highly-uneven

maximum displacements and mean mechanical energies.

• The stifïener absorbs a very small amount of mechanical energy, playing the role of

a dynamic boundary condition rather than that of an energy absorber.

• The answer to the question "when can stiffeners be safely approximated as ideal

fixations (clamped boundaries)?" depends greatly upon the structural arragement at

hand. For instance, the same stiffener can be considered as extremely rigid (practically

clamped) when used on an angle-ply panei, but very fiexible for a cross-ply panei (of

course, depending of flow direction).

This work hás therefore demonstrated that the single-panel model, widely explored

in the literature, should not be employed mdiscriminately without an assessment of the

effective stiffness of reinforcements. Spars, frames and longerons tend to be rather síurdy,

but íhis is not always true for strmgers; which are used in both wing and fuselage structures.

This is due to the fact that their role is not to withstand loads, but to províde the skin with

stability against buckling and other thin-shell phenomena. Therefore, when conüidering

panei flutter, it is important to either simulate the whole structure - which could demand

prohibitive computational cost/time — or evaluate how stiff the stringers effecfcively are

when compared to the skin.

The results presenteei in this work offer a new perspective on the flutter of reinforced

paneis. The comparative study between single and double-celled paneis and the examination

of amplitude jumps represent important novelty, especially the energy-based analysis. The

results have resulted in an orginal article which hás been submitted to the Jouvnal of

Sound and Vibration (Elsevier) and is currently under peer review.
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