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ABSTRACT

PACHECO, D.R.QQ. Nonlinear finite element aeroelastic modelling of
reinforced skin panels in supersonic flows. 2018. 92p. MSc Dissertation - Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sdo Carlos, 2018.

Panel flutter is an aeroelastic phenomenon that can cause critical structural failure in
aerospace vehicles operating at supersonic speeds. A reliable modelling of such phenomenon
is crucial for safely predicting the lifespan of aircraft skin, thus being of great importance to
aerospace structural design. The vast majority of works published on this subject treat each
skin panel as an isolated structure. In reality, however, aircraft skin is typically composed of
large panels mounted over spars, stringers and other types of reinforcement elements. The
presence of such stiffening components ends up subdividing the panel into multiple smaller
cells that can interact during flutter, thereby making the aeroelastic motion potentially
more complex and dangerous. Moreover, stiffeners are also deformable structures, which
therefore take part in the dynamics of the problem. In this context, the present work
deals with the study and implementation of a computational finite element model for the
analysis of nonlinear flutter in stiffened panels. A combination of the Mindlin plate model
and the Timoshenko beam model, both with geometric non-linearities, is employed. The
model and the analyses tackle both isotropic and laminated panels. The aerodynamic
forces are computed through first-order piston theory, which provides good results for
high-supersonic flows. The energy equations are discretised via the Finite Element Method,
and the resulting aeroelastic equations of motion are solved in the time domain through
an iterative Newmark-type integration scheme. The final code is verified and validated
through comparison with numerical solutions from the literature. As far as results and
analyses are concerned, the present work focuses on three main aspects, thereby aiming to
fill an existing gap in panel flutter literature: a) Investigating how stiffeners behave during
flutter, from a dynamic perspective, and how their vibration affects the overall aeroelastic
motion; b) Studying the influence of stiffener geometry on such effects; and ¢) Assessing
the inaccuracies of the single-panel model by systematically comparing its results with
those from the present multi-cell model. Results reveal novel aercelastic phenomena arising
from the modelling of stiffeners as flexible structural elements. Furthermore, the popular
assumption of ideal fixation is proven to be potentially unconservative regarding the onset

of flutter and the intensity of vibrations.

Keywords: Aerospace structures. Panel flutter. Nonlinear aeroelasticity. Finite element

modelling. Reinforced plates. Nonlinear Timoshenko beam.



RESUMO

PACHECO, D.R.Q. Modelagem aeroelastica nao linear, pelo método dos
elementos finitos, de painéis refor¢ados em escoamentos supersdnicos. 2018.
92p. Dissertagio (Mestrado) - Escola de Engenharia de Sdo Carlos, Universidade de Séao
Paulo, Sdo Carlos, 2018.

O flutter de painel é um fendmeno aeroeldstico que pode lavar a falhas veiculos aeroespaciais
operando em velocidades supersénicas. Uma modelagem confidvel do fendémeno ¢é crucial
para prever de maneira segura a vida util de revestimentos aeronduticos, sendo, portanto,
de grande importéncia para o projeto de estruturas aeroespaciais. A maioria dos trabalhos
publicados sobre este tema trata cada painel como uma estrutura isolada. Na realidade,
entretanto, revestimentos aeronauticos sao tipicamente compostos por grandes painéis
montados sobre longarinas, stringers e outros elementos de reforgo. A presenca destes
elementos acaba subdividindo o painel em miltiplas células menores capazes de interagir
durante o flutter — tornando, com isso, o movimento aeroeldstico potencialmente mais
complexo e perigoso. Ademais, reforcadores também sao estruturas deformaéveis, que,
portanto, participam da dindmica do problema. Neste contexto, o presente trabalho trata
do estudo e implementacio de um modelo computacional em elementos finitos para analise
de flutter em painéis reforcados. Emprega-se uma combinacdo do modelo de placa de
Mindlin com o modelo de viga de Timoshenko, incluindo ndo-linearidade geométrica. O
modelo e as andlises abordam tanto painéis isotrdpicos quanto laminados. A aerodinémica é
simulada pela teoria de pistdo, adequada para escoamentos alto-supersdnicos. As equacdes
de energia sao discretizadas pelo Método dos Elementos Finitos, resultando em equagoes de
movimento que sdo resolvidas no dominio do tempo por meio de um método de Newmark
iterativo. O cédigo final é verificado via comparagio com solugbes numéricas encontradas
na literatura. Em termos de andlises, este trabalho foca em trés aspectos, com o objetivo de
preencher uma lacuna da literatura especifica: a) Investigar como reforcadores comportam-
se durante o flutier, do ponto de vista dindmico, e como sua vibragao afeta o movimento
aeroeldstico como um todo; b) Estudar a influéncia da geometria dos reforgadores sobre
tais efeitos; e ¢} Avaliar as imprecisdes do modelo de painel isolado por meio de uma
comparacio sistemdtica entre os resultados deste modelo e aqueles gerados pela presente
abordagem multi-célula. Resultados revelam novos fendmenos aeoeldsticos oriundos da
modelagem dos reforgadores como elementos estruturais flexiveis. Ademais, demonstra-se
que a popular hipdtese de fixagdo ideal pode ser altamente ndo conservadora no que diz

respeito 4 condicdo critica de flutter e & intensidade das vibragoes.

Palavras-chave: Estruturas acroespaciais. Flutier de painel. Aeroelasticidade nao linear.

Método dos elementos finitos. Placa reforcada. Viga de Timoshenko néo linear.
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1 INTRODUCTION

Around the middle of the 20th century, structural failures in the metallic skin
of experimental aircrafts and space launch vehicles drew the attention of the aerospace
community to aeroelastic problems involving skin panels (DOWELL, 1975). The physical
phenomena responsible for causing such failures were given the generic name of panel
flutter, which is a type of aeroelastic instability that can affect plates and shells immersed
in high-speed flows, tipically during supersonic flight. It is a fluid-structure interaction
problem: the flow produces a pressure field that deforms the panel, whose new (deformed)
shape modifies the pressure distribution. This process continues cyclically, resulting in
a self-excited oscillatory motion that can lead the panel to fatigue rupture. In that
context, inummerous scientific works were conducted in the 1960s to address panel flutter
(DOWELL, 1970). This aeroclastic phenomenon is still under intense investigation, with
tens or perhaps hundreds of articles being published every year worldwide.

This chapter addresses the historical development of the mathematical models used
for studying panel flutter, as well as the evolution of aeroelastic modelling for reinforced
(stiffened) panels, which are the main object of study of the present work. The importance

of reliable simulation of stiffener behaviour for proper aeroelastic design is highlighted.

1.1 The evolution of panel flutter modelling

Due to the elevated cost and complexity demanded by supersonic and hypersonic
acroelastic experiments, panel flutter has always been studied primarily via mathematical
models. According to Dowell (1970), the first analytical methods conceived for studying the
problem were based on linear aeroelastic models, using the principle of modal superposition
for the assessment of flutter eigen-modes. In general, an aeroelastic model is composed of
two essential elements: an aerodynamic model and a structural model. The latter usually
simulates a structure of engineering interest — e.g., aircraft skin, wings, tails, etc — and
the former accounts for the forces loading such structural element. There exist a myriad
of different approaches and theories for addressing both fields. Selecting which to adopt
depends upon the task at hand, resource availability and, especially, the specific goals of a
project or study.

1.1.1  Aerodynamic modelling

The oldest and still most popular aerodynamic model used for panel flutter analysis
Is the first-order piston theory, whose applicability to supersonic panel Autter was perhaps
first suggested by Ashley and Zartarian (1956). It is an extremely simple model derived
from supersonic potential flow theory by dropping convolution and nonlinear terms. The
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resulting linear model computes the pressure at a given point over the panel directly from
its local slope and normal velocity. The conception of this model was the first step towards
making analytical panel flutter modelling viable, which in turn caused a no-number of
scientific publications to emerge in the following years. Comparison between experiments
and theory showed that the piston theory provides reasonably accurate estimates for the
pressure field in supersonic regimes (MEL; ABDEL-MOTAGALY; CHEN, 1999).

A few vears later, Cunningham (1963) and Dowell (1966a) devised more complex
aerodynamic models based on linearised supersonic potential theory. Such methods are
considerably more intricate than piston theory, having multiple integrals of nonlinear,
complex mathematical functions, and being strongly based upon assumed vibration modes
and frequencies. Their use is required for low-supersonic Mach numbers, say, 1.0 < M < 1.5.
Dowell (1971) enhanced the model by introducing boundary layer effects based on shear
flow theory. He then concluded that, for Jow Mach numbers, shear velocity profiles can
greatly influence the aeroelastic response of fluttering panels. Recently, Vedeneev (2012)
and Shitov and Vedeneev (2017) compared the flutter boundaries computed through
potential flow theory with those obtained through linear piston theory, and concluded that
the latter yields satisfactory results for high-supersonic regimes, say, M > 1.7.

An even higher-fidelity approach is to solve the Euler or Navier-Stokes equations of
gas dynamics, thereby creating the generically called CFD-based methods. These methods
have the important downside of requiring the use of fluid meshes, which makes their
computational performance lower — by orders of magnitude — than that of potential flow
methods. Bein et al. (1993) compared hypersonic panel flutter results obtained from an
Fuler solver with those attained through first-, second- and third-order piston theories.
They concluded that the piston theory approximations for the pressure distribution over
the panel are generally satisfactory. Recently, Alder (20 15) compared piston-theory panel
flutter with a finite-volume-based Euler solver. He then confirmed the validity of linear
piston theory for studying both the stability boundary and the post-flutter response of

panels in high-supersonic flight.

For the reasons briefly exposed here, the linear piston theory has been chosen for
the present work. As demonstrated further on in chapter 2, it allows easy implementation
into any pre-existing finite element structural solver and dismisses the need for fluid meshes,
whilst maintaining sufficient accuracy for high-supersonic panel flutter investigation. It
is, thus, an extremely efficient tool for optimisation and parametric studies, in which the

generation of large amounts of result data is required.

1.1.2 Structural modelling

The dissemination of finite-element- and finite-difference-based computational

methods made it possible to study panel flutter with diverse geometries, loads and materials
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(BISMARCK-NASR, 1992). Such diversification of spatial discretisation methods fomented
the evolution of the structural models employed for studying panel Autter. Dowell (1966b)
combined von Karman’s geometrical non-linearity with the classical Kirchhoff plate theory,
using Galerking’s method for discretisation. This allowed the reproduction of limit cycle
oscillations (LCOs), which are periodic aeroelastic motions with limited amplitudes. Shortly
after that, Dowell (1969) enhanced the model again by considering curved panel geometries.
Sawyer (1977), also using Galerkin’s method, investigated the aeroelastic behaviour of
composite panels including buckling effects, and studied the influence of fiber orientaion,
lamination sequence and in-plane load magnitude on the flutter boundary (stability limit).
Bismarck-Nasr (1976) applied the Finite Element Method (FEM) to supersonic flutter
analysis of cylindrical panels. Also using the FEM, Mei (1977) discretised von Karman’s
equations for infinite-span plates, aiming to study nonlinear flutter motion. In the years
that followed, a myriad of works adressing improvements and applications of the FEM for
panel flutter were published (CHEN: LIN, 1985; KUO-JIUN; PONG-JEU; JIANN-QUO,
198%; SARMA; VARADAN, 1988; SUNDER; RAMAKRISHNAN: SENGUPTA, 1983).

In the 1990s, iterative algorithms that dismissed the need for time integration
became popular (DIXON; MEI, 1993, MEIL; ABDEL-MOTAGALY; CHEN, 1999; SHORE;
MEIL GRAY, 1991; XUE; MEI, 1993a; XUE; MEI, 1993b). With the aid of such algorithms,
and also owing to the increase of computer processing capacity, detailed study of nonlinear
aeroelastic regimes was made properly viable. Then, the focus of panel flutter investigation
shifted from flutter onset prediction — which is typically linear — to the analysis of post-
flutter (nonlinear) regimes, in which LCOs are observed. Such cyclic motions can present
potentially large amplitudes and frequencies, which can drive wing and fuselage skin
towards fatigue failure. Xue and Mei (1993a) categorically demonstrated the Importance
of studying the nonlinear regime by quantitatively assessing the fatigue life of limit-
cycling panels. They showed that it is possible to design the skin in such a way that the
panels operate in “infinite life” regime, whilst allowing flutter to happen. Therefore, it
was demonstrated that panels designed to completely suppress the occurrence of futter

(instead of withstanding it} tend to be overdesigned.

Parallelly, FEM structural modelling was also being improved with respect to plate
kinematics. In the 1990s, many aeroelasticians started to adopt the Mindlin kinematic
assumptions instead of the Kirchhoff-Love classical thin plate theory. Differently from
classical theory, Mindlin’s assumptions do not require that transverse shear deformability
be neglected. Therefore, this model is not restricted to thin panels, being also adequate
for representing the behaviour of moderately thick plates. Abdel-Motagaly, Duan and Mei
(1999) employed Mindlin’s theory, coupled with von Karman’s geometrical non-linearity, to
study flutter on acoustically excited panels. Lee (1999) and Oh, Lee and Lee (2001) also used
the Mindlin-von Karman model for the panels, coupled with the Timoshenko beam theory

to represent stiffeners. Marques, Natarajan and Ferreira (2017) used Mindlin’s formulation
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for laminated panels, aiming at the aeroelastic tailoring of layers for increasing critical
flutter speeds. In the present work, the finite element computational model represents
the panel as a nonlinear Mindlin-von Karman plate. The panel flutter probiem is tackled
considering isotropic and laminated panels, which have become a competitive trend in the
aerospace industry in the last decades. Furthermore, the role of stiffening elements — such as
stringers, longerons and frames — is included in the model by considering one-dimensional

nonlinear beams coupled to the panel’s lower surface.

1.2 Flutter in reinforced panels

The study of flutter in stiffened panels is of great practical interest, since aircraft
skin is typically built of thin-walled panels fixed on top of more robust structural elements
such as ribs and stiffeners (CARRERA; ZAPPINO; PETROLO, 2013). Figure 1 shows
an aircraft fuselage from inside, where multiple stiffeners can be seen underneath the
skin. Liao and Sun (1993) used linear Timoshenko beam theory to simulate the stiffeners
underneath laminated panels, in order to study the influence of lamination sequence and
stiffener number on the flutter boundary. Lee (1999) and Oh, Lee and Lee (2001) enhanced
the model by adding geometrical non-linearity and thermal loading. Zhao and Cao (2013)
studied the effects of stiffener geometry and distribution, modelling the stiffeners as Fuler-
Bernoulli beams. Castro et al. (2016) analysed the aeroelastic behaviour of curved panels
via a semi-analytical model that considered only the stiffener’s base as a structural element.
Fernandes and Tamijani (2017) devised an acroelastic model with curvilinear stiffeners
and showed that such unconventional geometric feature can be explored for efficient flutter

supression.

In most of these works, the analyses were focused on the effects of stiffener addition
on the panel’s aeroelastic behaviour. In other words, the comparison is always drawn
between the original (unstiffened) panel and the same panel with one or more stiffeners.
Tt seerns somewhat natural to expect a panel to have its flutter characteristics (critical
speed, LCO amplitudes, etc) improved by the addition of stiffeners. A different standpoint
to be explored — instead of studying the same panel with and without stiffeners — 1s to
compare each cell (bay) in the reinforced panel with an individual (isolated) panel with
the same dimensions, as illustrated in Figure 2. By doing so, this approach aims to study
the effects of the structural coupling between the multiple cells in a panel, rather than to

quantify the additional reinforcement brought by stiffeners.

Such “multi-panel” approach was first performed in the 1960s by Dowell (1964) and
Rodden (1964), who used linear aeroelastic models for predicting the stability boundary
of sets of coupled panels. In their approach, also known as multibay analysis, the stiffeners
were modelled as simple supports positioned between the subpanels. At that time, limited

by the restrictions of linear modelling, the general conclusion reached by authors who
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Figure 1 — Typical fuselage skin with multiple stiffening elements.

stringer

Source: Elaborated by the author.

investigated multibay panel flutter was that panels with multiple cells possess critical
flutter speeds that are very similar to those of single-celled panels (DOWELL, 1964; LOCK;
FARKAS, 1965). Probably for that reason, literature on multibay panel flutter remained
incipient for decades. To the best of the author’s knowledge, only a handful of papers
were published on this subject for over fifty years (MUKHERJEE; PARTHAN, 1995;
PANY; PARTIIAN, 2003; SHIAU; CHANG, 1991), all of which stuck, once again, to
linear futter prediction. In order to fill an existing gap, the author of the present work
has recently investigated the multibay problem from a post-flutter standpoint, using a
nonlinear aeroelastic model. The study has revealed that the nonlinear structural coupling
between adjacent bays during LCOs can strongly influence the flutter mechanism and
the motion amplitudes. They showed that, depending on the relative vibration phase
between the cells, the maximum LCO amplitudes of a multibay panel can be several times
larger than that which each cell would undergo if vibrating isolatedly (PACHECO et al.,
2017; PACHECO; MARQUES; FERREIRA, 2017). It has been thereby demonstrated
that idealising skin structures as individual panels — as done in the vast majority of works
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Figure 2 — Schematic representation of a single panel and a four-cell reinforced panel.

Reinforced panel isolated panel

cell (subpanel)

—— fixed boundary

L | 7P stiffener

Source: Elaborated by the author.

published on panel flutter — can be unsafe from the perspective of structural integrity.
Yet, the multibay approach still presents a considerable level of structural idealisation
as it models stiffeners as simple supports, which have infinite translational stiffness and
zero torsional stiffness. In reality, stiffeners are deformable structural elements, which are
thus subject to a certain degree of transverse translation, whilst imposing considerable
resistence to the local rotation of the panel.

This Masters project proposes a higher-fidelity methodology for addressing the
problem of multi-celled (reinforced) panels. The stiffeners are modelled as nonlinear
Timoshenko beams, and the panels (isotropic or laminated) as nonlinear Mindlin plates.
The approach used for the aerodynamic load is rather classical: the first-order piston
theory, which is suitable for high-supersonic flows. The energy equations are discretised
through the Finite Element Method, and the resulting aeroelastic equations of motion are

solved directly in time by means of numerical time-marching.

1.3 Objectives

High-speed flight imposes several challenges to the design of aerospace structures.
Some examples are panel flutter, diverse types of shock-related performance loss, and
extreme temperatures caused by friction with air particles. In order for commercial
supersonic flight — interrupted since 2003, when the last Concorde airplanes ceased to
operate — to reemerge, advances are required in analysis, design and modelling. In this

context, one of the multiphysical phenomena that have been getting substantial attention
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from the scientific community lately is panel flutter, as aerospace skin panels can undergo
large-amplitude, high-frequency aeroelastic oscillations during supersonic flight. Such
intense cycling can lead to fatigue rupture after hours of flight operation. Therefore, a
quantitatively accurate description of such oscillations is crucial for safely estimating the
lifespan of aerospace structures. For this reason, reliable modelling of the panel flutter
phenomenon is essential for aerospace structural design. Moreover, aircraft skin is usually
built in the form of large panels mounted and fixed on stiffeners, thereby dividing the panel
into multiple cells which are structurally coupled. In this context, the present research
project proposes the implementation and validation of a finite element aeroelastic model
for aircraft skin panels being reinforced by beams. By conducting a systematic comparative
analysis in which the aeroelastic response of coupled panels is confronted with that of
single panels, this project aims to fill a gap in the panel flutter scientific literature. The
purpose here is not to propose a definitive model for reinforced skin. Rather than this,
the goal is to take one step further in modelling — by considering double instead of single
panels — in order to identify potential sources of inaccuracy in the classical panel flutter
model. Furthermore, the inclusion of composite material behaviour into the model has
the goal of making the present methodology compatible with the growing trend of the
aerospace industry to employ this type of efficient materials in aircraft design.
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2 AEROELASTIC MODEL

2.1 Introduction

The computational aeroelastic model proposed here for studying flutter in reinforced
panels consists of two basic elements: an aerodynamic model and a nonlinear structural
model. The latter is composed of a plate model for the panel, a beam model for the
stiffener and, of course, a proper coupling between them. Figure 3 illustrates the problem
setup and the typical coordinate system adopted. All the parts of the model are combined
by the Principle of Virtual Work (PVW), whose mathematical statement is discretised
through the Finite Element Method (FEM).

Figure 3 — Panel flutter problem setup.

...........................................

i .
supersonic flow T-.., restrained
(over upper surface)

X

Source: Elaborated by the author.

The following subsections deal with the detailed derivation of the aeroelastic model,
from physical energy principles to the resulting computational model. First, the plate
model is addressed, followed by the derivation of the beam model, which is coupled with
the former in order to produce the stiffened (reinforced) panel structural model. Then,
the aerodynamic theory is described and mathematically combined with the structural
equations, thereby resulting in the aeroelastic model. Finally, the numerical schemes used

for solving the aeroelastic equations are addressed.
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2.2  The nonlinear Mindlin plate

The Mindlin kinematic theory is an evolution of classical plate theory that considers
transverse shear deformability. The Mindlin assumptions do not require that normals to the
midsurface remain normal after deformation. For this reason, it is capable of reproducing
the kinematics of moderately thick panels. In a Mindlin plate, the displacement field at a
point (z,¥, z) and a time ¢ is (PICA; WOOD; HINTON, 1980)

u(®,y,2,t) = 4(x, 4, 1) — 2¢,(2, 4, 1), (2.1)
’U(ﬂ:,y,z, t) = {}(I¢y: t) - Z@y(m: Y, t)u (22)
w(a:) y? z’t) = fu‘}(x.‘r y) t)i (23)

in which u, v and w are the displacements in the z, y and z directions, respectively, and
the symbol () indicates midsurface (z = 0) displacements. The quantities ¢, and ¢, are
the rotation of the normals about the y and x axes, respectively. Note that such rotation
degrees of freedom are independent on the translational displacements, whereas classical

Sw

plate theory states that ¢, = Z¥ and ¢, = 3“’ . In the present model those relations are

not imposed, but will be observed (approxunately) whenever plate thickness, h, is much
smaller than the lateral dimensions. The Mindlin theory can be coupled with the von
Karman nonlinear strain-displacement relations so that the resulting strucutural model
is able to account for geometrical non-linearities arising from large-displacement motion.
The relevant entries of the strain tensor for a Minlin-von Karman plate can be organised

in a vector as (PICA; WOOD; HINTON, 1980)

’

= ( da [elom A aw)
e b Bx Oz
c 29 Oy (8w 2
Y Oy Sy dy
= 8t | gy \ __ Ods , Oy Bw feci) 2
€= Tey By + dr ( z dy + dx ¢+ Gu By ( (—‘4)
5
Yz % - (,33;5 0 0
o
\’sz) \ 8y qbya \ O 7 \ O /

in which the last term, quadratic with respect to w0, is the von Karman strain. Note
that this model assumes uniform transverse shear (7. and v,,) along the thickness. Such
assumed distribution is not physically true, though, since +,, and 7, are known to vanish
at the upper and lower surfaces, whilst having nonzero values in between. In order to
compensate for such inconsistency, the classical approach is to introduce shear correction
factors. These coefficients are applied to the transverse-shear strain energy so as to promote
energetic equivalence between the real distribution and the assumed one. For isotropic
plates, the correction factors are usually taken as 5/6, whereas for composite panels they
depend on the lamination scheme (WHITNEY, 1973). The methodology for addressing

shear correction is discussed in subsection 2.2.2,

although it is not of the greatest relevance

to the present work, which focuses on thin panels.
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The stresses are obtained by applying the proper constitutive relations to the
strains. For a Mindlin plate, the in-plane and out-of-plane (transverse) quantities are
constitutively uncoupled. For this reason, it is more pratical to separate the plate strain

into in-plane strain, €,, and transverse shear strain, €;:

o _ 0% L(2)2

Ex dx e 2(6:1,')
— _ B ¢ 1eodya =
Ep— Ey = a—y 2 —?ya -+ :—2'(“5-;‘) —Em+ZR+€9, (21))

ba y o0 _ose 09y o i

Ty By G oy oz Az dy

and

|
©-
8

b
Yyz ETRl qsy

Note that the in-plane strain is split into £,,, 2k and &y, which are the membrane, bending

and nonlinear strains, respectively. The corresponding in-plane and transverse stresses are

op = Qpe, and o, = Q.e, (2.7)
in which Q, and Q, are the constitutive matrices with respect to the (z,y, z) system. The
computation of these matrices is addressed in subsection 2.2.2.

The stresses and strains are combined by the Principle of Virtual Work, which
states an equality between the virtual works done by internal and external forces. The
internal work is computed as the strain energy variation caused by the stress field acting

over a virtual strain field:
Wi = _/ (%Tcs-'-:p + UsTchs) dv, (2.8)
v

with the variational operator, 4, indicating virtual quantities. Upon substitution of the

constitutive equations, the virtual strain energy becomes
Wi = f (6spTstp + 655TQ555) dv. (2.9)
\%

The infinitesimal volume can by factored into a thickness differential and a surface
differencial: dV = dzdA. Moreover, the in-plane strain can be split into gy -+ 2K, in which

€6 = Em + €4 is the midsurface strain. So, the internal work can be written as

E -— —_
Wiy = fA f_ " |(20 + 268)T Qp (€0 + 21) + 5e,"Que,] dzdA. (2.10)

2
After expanding the products and performing the integration along the thickness, Eq.
(2.10) becomes

SWint = /A (&ngAsg + 6eyTBk + 6rTBeg + 66TDr + 5ESTCES) dA, (2.11)

in which

[N

(A,B,D) = f ) (1,z,z2) Q, dz, (2.12)

2
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and C is a function of C, which is calculated as

o= [ 1o

The detailed expressions for such matrices are given in subsection 2.2.2.

The external work will generally have two sets contributions. One coming from
an external load field and another one coming from the inertial forces due to the plate’s

acceleration field:

- 82u 82'0 5w
in which p is the material density. For now, the pressure field, Ap, is assumed to be
arbitrary and independent upon the displacement field. Yet, in the final aeroelastic model,

the pressure shall be calculated from the aerodynamic model as a function of .

The next step is to substitute the plate displacement fields (Egs. (2.1) - (2.3)) into
Eq. (2.14), which after integration along the thickness yields

N R O AN PN %9,
5Wext = / 5’(UA_’p P [h ( 12 + 07 EY + oW a1 ) <5¢z 512 (5¢y 5 J)] dA.
(2.15)

The PVW complements Egs. (2.10) and {2.15) by stating that éWi,, = dW.y.
Nevertheless, in order to proceed with the formulation, a discretisation technique is
required. In the present work, the Finite Element Method is employed for such purpose.
By introducing the FEM formulation into the PVW, it is possible to extract the equations

of motion from the energy equations.

2.2.1 Finite element formulation

In this work, a classical finite element formulation is employed for discretising the
PVW. The four-node lagrangian quadrilateral element is chosen for composing the mesh.
Each node has five degrees of freedom (DOFs): 4, 9, @, ¢, and ¢y, which for convenience
and computational efficiency are grouped in: membrane DO¥s, (&, 8), transverse DOF, 10,
and rotation DOFs, {¢,, ¢,). Hence, the elemental DOF vector can be written as

Uy,
u=4quy s, (2'16)
Ug
with
um={u1 U1 Ug o U V3 Ug U4}T, (217)
W, = {wy wy ws ws}’, (2.18)

u¢={¢m1 Py1 Pro Gyy Pr3 ¢y3 o ¢y4}Ta (2.19)
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in which indices 1 through 4 refer to the elemental nodes. Figure 4 shows the finite element
and the node numbering adopted. Observe that node 1 is brought to the origin, which is

standard procedure to simplify explicit shape function calculation.

Figure 4 — Standard four-node rectangular finite element.

1 I

Source: Elaborated by the author.

Each node has an associated shape function. The ¢-th nodal shape function has
the following property: it takes value 1 at node i, and value 0 at the remaining nodes.
Mathematically:

1, if j =1,
0, if j # 4.
Since j = 1,2, 3,4, Eq. (2.20) provides four equations for each shape funcion. Thus, it is

Ni(z;,u5) = { (2.20)

possible to generate bilinear functions of the form N;(x,y) = a;z + byy + e;xy + d;- Upon
substituting Eq. (2.20) into this general bilinear polynomial, the following shape functions

are obtained:

Ni(z,y)=1— Ai$ - Aiy + Aiiy’ (2.21)
No(z,y) = é - Aiiy’ (2.22)
Na(@,9) = a0 (2.23)
Ny(z,y) = Aiy - AzyAy, (2.24)

in which Az and Ay are the element sizes. As a direct consequence of the definition of
nodal functions (Eq. (2.20)), it is possible to approximate any displacement in terms of
shape functions and the respective nodal values. For instance, the transverse displacement

can be interpolated as

1
bz, y,t) =Y Ni(z, )it (2.25)
i=1
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Note that the shape functions do not depend upon ¢, so that the time dependence of any
DOF occurs through the nodal values. Eq. (2.23) can be rearranged as

= Ny gy, (2.26)

in which N, = {N; Na N N4}T. The remaining DOFs can be written as

o =N, T, (2.27)
=N, u,, (2.28)
¢e = Ny, (2.29)
by = N, Tug, (2.30)

in which N, = {N; 0 N; 0 N3 0 N5 0}7 and N, = {0 N; 0 N, 0 N3 0 Ny}". The next
step is to write each of the strain components also in terms of nodal values and shape

functions, and introduce the resulting discretised strains into the PVW.

Take the membrane strain &,,, for instance. It can be written in discretised form

as
T
o4 B (N um ) BN,
oz & ) BwT
- ad _ BNy _ AN . P
da 4 99 (NuTum) | 8{NuTum) aN, T, BN, T
oy dx P - By ox
Yy O
in which
ON B3 BNy ON4
oz 0 oz U Ox y 8z 0
= Ny Ny ON3 8Ny
B, 0 Fr 0 2 0 H2 00 Hr. (2.32)
8N; 8N, 8N, 8N, 8Ny &N3 8Ny 8Ns
dy Oz Dy oz oy dx Oy da
Analogously, the bending vector, &, becomes simply
K = —-Bjuy. (2.33)

The nonlinear strain, £¢, requires a little more manipulation:

]
&
&)

1 hiz
5(%) 1 —é; 0 @;}: 1 peing 1 S(Nle.lw) 1
— Jlrdmy2 L _ pein) O = = O I Ou - =
Ep = E( ay) = 5 0 By i 2@ 9w 9@ S(NwTuw) 2(")B9uw,
00 B o o | L By dy - &
ox Oy Y Bz
(2.34)
in which
ON1 9Ny ONa ONa
dr oz dxr dr 9
By N1 ANy 0N BNl (2.35)
dy ay 8y B
and
aln]
% O
—_ Sl
o=|0 2| (2.36)
din O
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At last, the transverse shear strain, &, can be written as

o0 o)
£y = g_; — ¢ 7% = Beu,, — Bouy, (2.37)

oy ¢y
in which

N, 0 Ny, 0 N; 0 Ng 0
= ? g 4} (2.38)

C_lo Ny 0O Ny 0 N; 0 N

The virtual strains must also be discretised. For the linear terms, the result is

trivial:
6em = 6 {Bpuy) = Bduy,, (2.39)
6k = § (—Bpk) = —B,dk, (2.40)
de, = 6 (Byu, — B.ouy) = Bydu, — B.duy. (2.41)

The nonlinear component yields

o (3 (5 %5 (%) 2 0] (w
sl | (G +&(F)) 15 =] "
(2.42)

Now that all the strain components and their corresponding virtual gquantities have

been written in discrete form, it is possible to advance in the finite element formulation.

The PVW must be discretised and ultimately written in terms of nodal degrees
of freedom and their time derivatives. Recalling Eq. (2.11), it is possible to see that for
a general laminate (B # 0} the internal work has five major contributions. Each one is

handled separately here. First, the bending energy within an element in the mesh is

6k Dr dA, {(2.43)

Qe
with (0, being the elemental domain. Mind that every energy term in the PVW is calculated
for each finite element in the mesh. The elemental contributions are ultimately assembled
in the form of global matrices and vectors. The procedure employed for integrating the

present quantities within the elements is addressed in subsection 2.2.3.
Substituting Eqs. (2.33) and (2.40) into Eq. {2.43) yields

557D dA = [ (~Bduy)” D (~Bpug) dA = bu,” ( /| B."DE., dA) .

0.
(2.44)
It is convenient to rewrite Eq. (2.44) as
0 0 0 Ty,
{5umT su,,T (5u¢,T} 00 0 w, + = 6uTkpu. (2.45)
0 0 Jy B,,”DB,, dA uy
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The energy due to transverse shear is
f 5e,TCe, dA = A (Bpduy, — Bobug)” C (Byuy — Boug)dA = sulkeu,  (2.46)
2, Qe

in which
0 0 0

ke = L 0 B,CB, -B,”CB.||dA (2.47)
“\lo -B.,”CB, B.”CB.

The third contribution comes from the midsurface strain:
1
fﬂ seoT Acy dA = fﬂ (Br.0u,, + ©Bgbu,)” A (Bmum + §®Bguw) d4,  (2.48)
which leads to four terms:

/ﬂ [5umT (BnTAB,,) wy + Suy, (%BmTA@Be) u, +
/1

(2.49)
su,, T (ngT@)TAGBBg) w, + ou,” (BmT A@BQ)T um] dA,

the fourth of which can be split into two equal parts so that Eq. (2.49) becomes
1 1
/ [&zmT (Bn"AB,,) t + ST (gBmTA@Bg) Uy + Su,” (ngTGTAGBg) Uyt

T T
su,T (%BmTA@Bg) u,, + 6u,” G—BmTA@Bg) um} dA.

= Jra

(2.50)

The fifth term in Eq. (2.50) must undergo some algebraic manipulation in order for the

final ka stiffness matrix to be symmetric. It is possible to show that

SuyT (%BmTA@BB)Tum = u,” (éBgTNmB{;) ) (2.51)
in which
and
{NZ NY N2} = (ABju,)". (2.53)
Hence, the virtual midsurface strain energy becomes Ju®kau, in which
B AB,, 1B,"AOB, 0
k= | | |(3Bn748B,)" 1B/T(67AB+N,) B, O] |dA (2.54)
0 0 0

Finally, the fourth and fifth contributions to the virtual strain energy come from

the coupling between bending and axial deformations:

] 5ea"Bk + 6xTBey dA, (2.55)
Qe

i i i i, e i i b e
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which after the FE discretisation becomes du’kgu”, with

0 0 BmTBBm
kg = — fg 0 1BTNyBy  1B,"OTBB,| |d4,  (2.56)
"\[(B."BB.)" (3B O7BB,)" 0
in which
NE N
N¢={ ¢ ,ﬂ’ (2.57)
Ne™ Ny
and
{Nz N} N3'} = (BBnug)”. (2.58)

Finally, the virtual strain energy within an element e is

(SVVEE = §u? (kA + kg + ko + kD) u. (259)

It is convenient to rearrange the stiffness matrices in Eq. (2.59) as zeroth-, first-

and second-order terms: ki, k] and k3, respectively:

W, = du’ (k5 + kI + kb u, (2.60)
in which
BmTAB'm 0 _BmTBBm
K = f 0 B,7CB, ~B,"CB, dA,  (2.61)
e T T T T T T
(me BBm) (—B19 CBC) B.7CB, + B,,”DB,,
0 B..T A®B, 0
1 T
K= /Q e (BmTA®B;) B, (N, — Ny) By —B,"OTBB,,| |d4,  (2.62)
0 (—BGT@TBBm) 0
0 0 0
K=/ ||o }BO7AGB, of |d4, (2.63)
“\lo 0 0

superscript p standing for “plate”.

The zeroth-order stiffness is constant, whereas the first- and second-order matrices
depend upon u linearly and quadratically, respectively. For this reason, the geometrical
non-linearity of the discretised plate model is expressed through ki and k3. The classical

linear Mindlin plate theory is recovered by setting kf = kf = 0.

The discretisation of the external work is a simpler process. It consists of inserting
Egs. (2.27) - (2.30) into Eq. {2.11). The work due to the pressure load becomes

/ SiAp dA = f (1,"NL) Ap(z,y, 1) dA = 6u,” / N, Ap(z,y,t) dA = §u’T,
(2.64)



with
0
f=4q/fo NoApdA,. (2.65)
0
Note that, for now, the pressure field is assumed as arbitrary and independent on u. In
section 2.4, Ap is treated as an aerodynamic pressure which is a function of ¥ and its

derivatives.
The inertial work within an element becomes simply

8*u

with m” being the elemental mass matrix, given by

m’ 0 O h(my+m,) O 0
m'’=|0 m O0]|= 0 hm, 0 , (2.67)
0 0 mh 0 0 2 (m, +m,)
in which
m, = / pN.N.T dA, (2.68)
Qe
m, = / pN,N,T dA, (2.69)
Qe
m, = /ﬂ pNL N, T dA. (2.70)

(2.71)

After the finite element discretisation and assembly, the equality stated by the

Principle of Virtual Work becomes
sUT (F - MPU) = §UT (K5 + KE + K3) U, (2.72)

or
SUT [MPU + (K5 + K} +K§) U - F| =0, (2.73)

in which the dot symbol represents time derivatives: U = %-tU— and U = %%—zg. It is important

to note that the matrices and vectors in Eq. (2.73) are now written in capital letters,
meaning that they represent global quantities (post-assembly). For example, matrix K} is
obtained by assembling all the elemental contributions in terms of k. Moreover, U is the

vector that contains all the degrees of freedom in the FE mesh.

The PVW states that the internal and external virtual works must be equal for

any compatible virtual displacement field, §U. Thus, Eq (2.73) is reduced to

MU+ (KE+ K, +K2)U=F, (2.74)
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which is the system of ordinary differencial equations (ODEs) that dictate the motion
of the discrete plate system. Moreover, it is a nonlinear ODE system, as the values of
matrices K? and K} at any given time depend on the solution, U, at that same time. In
order to solve Eq. (2.74), numerical time-marching is required, which is the subject of

section 2.3.

2.2.2  Constitutive modelling

In order to derive the finite element formulation for the Mindlin-von Karman plate
in section 2.2, it has been assumed that the constitutive plate stiffnesses (A, B, C and D)
can be calculated. This section deals with the computation of such matrices for a general

laminated Mindlin plate.

Let there be a panel with n; layers, so that the first layer’s lower surface is at
z == —h/2 and the n;-th layer’s upper surface is at z = h/2. Assuwe that the k-th layer has
fibers uniformly oriented along direction 1, which is rotated €j degrees counterclockwise
from direction y. Thus, direction 2 is the in-plane normal to 1, and direction 3 coincides
with z. Figure 5 shows the local and global systems for a generic layer. The in-plane
constitutive matrix with respect to the local coordinate system is (NETTLES, 1994)

11 Qi O
Qp= |G Qo 0 |, (2.75)
0 0 (s
whose entries are
E
Q1 = 1—1, {2.76)
— Viala1
E
Q= ‘i“““?mm, (2.77)
— VizVa1
G2 = 112l, (2.78)
Qes = G12, (2.79)

in which 115 and s are the in-plane Poisson’s ratios, 12 is the in-plane shear modulus

and Fy e E are the in-plane Young’s moduli. The Poisson’s ratios are related by

n _ B (2.80)
V312 En
The transverse shear matrix is
Q=% % (281)
0 Go

in which Gi3 and Gaa are the transverse shear moduli.

L)
* 33
Fne 5“‘
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Figure 5 — Local and global coordinate systems for a generic layer.

Source: Elaborated by the author.

The constitutive matrices must be transformed from the local to the global system

for calculation purposes. The in-plane matrix with respect to the {z,v, 2) system is

QP = (PTw) ™ Q, (TxP), (2.82)
in which
1 0 0
P=1i0 1 0}, (2.83)
00 1
and
Sk?’ C}c2 —QC;:S)C
T =12 5.2 2068k | » (2.84)

CrSry —CrSkr 3k2_0k2

with s = sinfy e ¢ = cos ;. The transverse shear matrix becomes (REDDY, 2004)

QW = 6_255 @45 , (2.85)
Qas Qua
in which
Qu1 = Gz + Gozer®, (2.86)
Q55 = Gscr” + Gassi®, (2.87)
Qus = (Gis — Gas)siCr. (2.88)



45

Since matrices Qp and Q are layer-wise constant, the integrals in Egs. (2.12) and

(2.13) turn into summations:

Rf2 _ ™ .
A= / Qp dz = {2k — 21) Qg"), (2.89)
—h/2 k=1
hf2 _ 1M _
B=/, ,Qdi=3 > (2t —22) QW (2.90)
- = k=1
B2 LSk g 3\ Ak
D= o Q, dz = ggl (81— 22) QY (2.91)
" hf2 _ i —
C=| Q.dz=3 (zes—2) Q¥ (2.92)
—h/2 k=1

Matrix C must still be corrected for nonuniform shear. The classical Mindlin plate
model accounts for shear deformability, yet introduces an unrealist kinematic consideration
by assuming shear strains to be constant along the thickness. In reality, the transverse
shear strains normally present a near-parabolic distribution, being zero at z = :t% and
taking maximum value in between. In order to compensate for such discrepancy between

assumed and real distributions, shear correction is required.

There exist several approaches for overcoming this issue (CHOW, 1971; LIU; SOH,
2007; SRINIVAS, 1973; WHITNEY, 1972; WHITNEY, 1973). The most popular method
is perhaps the one proposed by Whitney (1972). It is based on an energy equivalence
principle, imposing that the assumed (uniform) shear distribution yield the same amount
of strain energy as the physical one would. The present section explains the mathematical
aspects and steps of such approach. Details on the theoretical basis behind this method
can be found in Chow (1971) and Whitney (1972).

The corrected shear matrix is of the form

E2CH Kk Cog
kikoCro ko2 Chy,

(2.93)

in which the Cj; coefficients are the elements of matrix C (Eq. (2.92)), and k; and &,
are the so-called shear correction factors. The procedure described here is valid for an
asymmetric orthotropic plate. The calculations for a general anisotropic plate are similar,
vet somewhat more cumbersome, and can be found in detail in Whitney (1972). For an

orthotropic plate, the first factor is calculated as

k2= {5'11 /hjz 81(z) [g(2)] dz} ) (2.94)

in which S is the inverse of the first element in matrix Q,, and g(z) is a layer-wise

parabolic “shape function” of the form

gk(2) = 1 + Brz + en2®. (2.95)
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Coefficients i and oy are calculated as

43, Q8
, = — 2.96
2B
Br = ~ T Lo, (2.97)
i1

in which Ay = 44, D11 — BM?, and A, By; and Dy; are the first entries in matrices A,
B and D, respectively. The coefficients v, are obtained by enforcing continuity of g(z),
that is,

gr(zr-1) = gr—1(2-1), (2.98)
which yields
Yo = Y1+ (Bro1 — Br)ae—1 + (a1 — n)za_y. (2.99)

Thus, ; is defined in a recursive manner for £ > 1. Since the shear strains must vanish at

the plate surfaces, it is known that g(—2%) = 0, that is,

T+ 5 <—%) + (‘“g)m =0 = mn= g (ﬂl - gal) : (2.100)

Now, the integral in Eq. (2.94) can be calculated:

[ si@iera=3{s® [ ek =38 G-

—h/2

B (Zf _ Z%ul) + w (zf - Z}%—J n Bro (z4 B z}%_l) n % (zi - Zg_l)} } .
2.1

3 2 \%k 5

The steps for calculating ks are analogous, requiring only that the quantities of
interest be taken at position ()sq instead of ()1; in their respective matrices. Table 1 shows
two examples of shear correction factors for cross-ply laminates whose material properties
are vyp = .25 and E, = 0.04F; = 2G5 = 2G13 = 5Gas.

Table 1 — Shear correction fac-
tors for cross-ply lam-
inates.

Lamination ki? ka2

[0°90°]  0.82123 0.82123
0° 90°],  0.59518 0.72053

Source: Elaborated by the author.
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2.2.3 Numerical integration

The stiffness and mass matrices can be calculated via numerical quadrature. An
integral is computed /approximated within a finite element by evaluating the integrands
at certain points and combining such values in a weighted avarage. The approximmation
becomes more accurate as the number of points grows. An (N x N)-point gaussian
quadrature over a quadrilateral element can be described as (SZABO; BABUASKA, 1991)

[ [ Wdedn = 33w (6 6, (2.102)

i=1 j=1
in which @ is a generic function, &, are the so-called Causs points and wy are their
respective weights. Note that the quadrature is defined for a reference square element:
Qe = [—1, 1]%. Therefore, an integral over a. generic element requires transformation of
coordinates in order to be suitable for gaussian quadrature, as illustrated in Figure 6.
When the physical elements are rectangles, which is the case herein, only stretching and

translation are required for transforming (z,v) into (&, n):

w67 = o(e) = 2 As, (2.103)
y(Em) = yln) = -’7;“—1Ay. (2104

Therefore, the jacobian determinant is simply

or By Az A

J = det ({g’f ng = det ([ D _ Az Y. (2.105)
gz gy 0 Ay 4
bn  On

Figure 6 ~ Ilustration of the transformation from a physical to a reference element.

Ly 7,

.(0, Ay) (Az, Ay) -1, (1,1

(0,0) az0y Y

(-1'_1_). - : -

Source: Elaborated by the author.
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In general cases, J is a function of (£, 7). In the present case, however, the determi-
nant is constant due to the straight, structured nature of the spatial mesh. Finally, an

integral over an element can be evaluated as

/Qc@(ﬁ:,y) dA:/OAyf:z (z,v) dxdy_/ f (€, m)) Jd&dy

N N
~ 3N wwy JB (26, 6), y(& &) -

i=1j=1

(2.106)

Numerical integration can also be employed for overcoming a numerical issue
that arises when the FEM is applied to the first-order shear plate theory. As the plate
thickness-to-length ratio becomes smaller, the discretised strain energy due to transverse
shear becomes progressively higher than the other strain energy terms, which is physically
inconsistent. This phenomenon is called shear lock, and can be overcome through selective
integration (FERREIRA, 2008). This simple technique consists of evaluating the transverse-
shear-related stiffness matrices using fewer Gauss points than for the other matrices. This
reduced integration is only required when the length-to-thickness ratio becomes large, say,
L/h > 40. In the present work, four points (i.e., N = 2) are used for the main stiffness
and mass terms, whereas K¢ is evaluated with N = 1. For N = 2, the integration points
are £ = —£y = ——= 75 and the weights are w; = wy = 1 (STROUD; SECREST, 1966). In
other words,

[ orewen=o{- oo i) (o)

The one-point integration is even simpler, with §; = 0 and w; = 2:

fll ]'11 f(€,m)dEdn ~ 2 x 2 x f(0,0) = 4f(0,0). (2.108)

2.3 The nonlinear eccentric Timoshenko beam

The Timoshenko beam is the one-dimensional equivalent of the Mindlin plate, as
it succeeds classical beam theory by accounting for shear deformability in bending. The
Timoshenko theory is thus suitable for short beams — as well as for long ones, of course.
In the present work, this theory is used for modelling stiffeners fixed underneath the main

panel.

In the present case, the standard Timoshenko theory must me adapted in order
to account for the eccentricity, i.e., the offset between the stiffener’s neutral axis and the
plate’s midsurface. Figure 7 shows the stiffener’s geometry. By introducing the eccentricity

into the kinematic formulation, it is possible to write beam displacements in terms of plate
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DOFs. The displacement field for the eccentric stiffener is (LEE; LEE, 1995)

up =10+ (e — 2') ¢y, (2.109)
=0+ (e—2) ¢, (2.110)
wn = D+ 9y, (2.111)

in which e is the eccentricity and (2, y') are coordinates originating at the cross-sectional
centroid (¢f. Figure 7). Subscript b indicates beam quantities. For simplicity, the stiffener

is herein assumed to have a rectangular cross-section. Hence, the cross-sectional area is
Ay=bxe, (2.112)

with b and ¢ being the beam’s width and height, respectively. The eccentricity is simply

h .
e= ; ‘. (2.113)

Figure 7 — Stiffener cross-section and dimensions.

Source: Elaborated by the author.

It is important to note that the strain field described by Egs. (2.109) - (2.111)
assumes that the stiffeners are monolithically bound to the panel’s lower surface, i.e., that
beam and plate displacements are identical at the junction (z = —%) This is easy to

verify from the displacement fields, as 2’ = z + e.
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It is also necessary to write the strain components in terms of plate DOFs. For an
eccentric Timoshenko beam, considering geometrical non-linearity, the relevant components
of the strain tensor can be given in vector form as (LEE, 1999; OH; LEE; LEE, 2001)

B az )
o % s AN EC)

SR BT Gk UV B Rl I L R
,Y-’L'Z d’w gb.b yl a(i’b‘ 0

Considering the stiffener as isotropic, the virtual strain energy is
SWE, = /V (62,0380 + 070y oYy + 69eTaz) AV, (2.115)
b

in which (REDDY; MAHAFFEY, 2013)

_ (1 — Ub)Eb 5
Cp = T+ o) (= 20) (2.116)
Gy = AL (2.117)

and Ej and v, are the Young's modulus and Poisson’s ratio of the stiffener. Substituting
Eq. (2.114) into Eq. (2.115) yields several terms to the internal work. For instance, the

energy due to 7y, can be expanded into

j (6%y Coey) AV = Gy j /A ,, [&E (e — )%qiy] [—(%—i—(e—z’)%l dAdz,
(2.118)

in which L is the stiffener’s length. Since the cross-section is rectangular (thus, bisymmetric),
f A= [ ydA=0. (2.119)
A Ay

Besides, [, (#)>dA = 4%, and [,, () dA = A,%. Hence, Eq. (2.118) becomes
B'U a¢y i a¢y a¢y 8§£5y
/ (072 GoYay) AV = GbAb/ 5 (8:5 +e—3—3_—) (3_x +egt +

The contribution from xz-shear is

L o oo oW O
5$”de=//5——$ T2 Gy |y [ 22 = 6, | + v/ 2 | dAda,
Lb(fYT) 0o Ja, [8:1: ¢+y8:{: BI Br ¢ +y82¢ v
(2.121)
in which %, = 2 is the shear correction factor used for the Timoshenko beam. After

6
integration along the cross-section, Eq. (2.121) becomes

d
J v = o [F 1 (52— 00) (57 - )+ 130 (32 (32 =
(2.122)

k\?

{)

_n
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The axial term becomes

Flafot  1(00\ 8¢\ (60 1/86\* o4,
_/"/b (‘55me€$) dV = CbAb/U [5 (‘(‘g + “2— (Fx‘*) + 6?3?) (55 + 3 (—;) +e ir +

(2.123)
The virtual external work for the stiffener is
- 821&5 82‘05 82wb
SWh = —/ 5 5 S =2 ) Qv 2124
exe y ( W T T Ow s (2:124)

Upon substituting Egs. (2.109) - (2.111) into Eq. (2.124), the inertial work becomes

2

b L . & ) 5
5wwx~—pbAbj0 $0+ o) 55 (A ¢8u) 45 (0+ ey) 5 (6 -+ e6,) +

SO P e (B g

(2.125)

The expressions obtained here for the external and internal works are as far the
formulation can reach without spatial discretisation. Therefore, the FEM is emploved in

order to solve the integrals along the axial direction.

In order to maintain compatibility between the plate and beam models, a two-node
lagrangian element is used for discretising the stiffener. This guarantees that the beam
elements share nodes with plate elements. If the plate element had nine nodes instead of
four, the beam element would have three nodes, and so on. Figure § exemplifies the FE
mesh for a stiffened panel discretised with 24 elements. It is possible to observe that the

beam elements are connected to the adjacent plate elements by the nodes.

The elemental DOF vector for the beam is written in a manner which is analogous
to what has been done for the plate (cf. Eqs. (2.16) - (2.19)):

u,
u=<{ub b, (2.126)
ug
in which
wl, = {u; v v} 7 (2.127)
ug, = {wy wy}7”, (2.128)
T
ug={¢m1 ¢'y1 ‘?332 ¢y2} . (2-129)

The five kinematic quantities can then be interpolated within an element as

T T T T T
w=N"u’ u=N"u, v=Nu, ¢y = N° ug), and ¢, = N? ul,  (2.130)



Figure 8 — Example of a F'E mesh for a stiffened panel.
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} Plate element
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i i—2 Beam element

: Source: Elaborated by the author.

T T
in which the shape function vectors are NE == {Nf 0 N& 0} , NE = {0 N? O NS}

T
and N2, = {Nf Né’} . The shape functions for a two-node beam element are linear:

Ni(z)=1—-—— (2.131)

Ni(z) = —. (2.132)

The expressions given in Egs. (2.131) and (2.132) are built considering that z; = 0. i.e.,

that the first node of the element has been translated to the origin for calculation purposes.

As seen in section 2.3, the virtual internal work has contributions from axial strain,
zy-shear and zz-shear. Similarly to what has been done for the plate in subsection 2.2.1,
the FEM approximation must be introduced into the strain energy expressions in order o

produce the stiffness matrices.

First, recalling Eq. {2.120), it is possible to see that the expansion of the my-shea.r
strain energy yields several terms. They are composed of the multiplication of elther

with £ ”, 5, with a‘b“ , OT %ﬂ with 5¢” . The latter, for instance, can be discretised as

96\ 8 5 5 ONE (aNE\T
5(8?) a? :5{%( bTNb)] E_(NbT u) = (suy)” [ i ( axv) }ug. (2.133)
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Hence,
az [ (3¢.\ d¢ 7| roe NY /oNe\T
5 i ke’ — b / v K b:
fa [ (62:) adex (5u¢) [9 Oz ((% dz) uy
o) o))"
1 1 (2.134)
N %5 -5 b \T Suy_
1. 1
Azx Ax
in which _
60 0 0 0o
0 1 0 -—-1
Syy = (2.135)
0 0 0 0
0 -1 0 1

It is analogous for the other products, so that the total zy-shear virtual strain contribution

(Eq. (2.120)) integrated over an element can be written as

fvb (67, Cory) AV = (5)” (K], + (5ud,) " (K] ut + (5)" [eK] ul+
2

\T 2, € b
(6u¢) Ke + ——12) KWJ u;,
(2.136)
in which

_ Ghdy
Koy = =0

Sy (2.137)

The same procedure can be applied to the zz-shear strain energy, which has
contributions from 2% %% anqd ¢, (¢f. Eq. (2.122)). For instance:

gz’ Bz
. T
5%2—;" =6 (ugTNg) é% (NE;,Tuf;) = (5ug)T [Nﬁ (6;’;,) J ul. (2.138)
Thus,
& 7 @ T
fOA ky (5¢$%) dx = (5ug)T !:kb/GA Nz (aaNju) dx} ufv =
. 1 :)‘Am_x 1 ‘01 é (2.139)
T z 1 T
(51135) kb/o " {_A—:c E}dx w = (Jug) kg 1 .
0 0 0

In order to avoid shear lock, the integral in Eq. (2.139) would normally need to be
evaluated through reduced integration. In this case, however, the result would be the same

regardless of the number of Gauss points used, as the integrand is a linear polynomial
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and is thus integrated exactly for any N = 1. Nonetheless, reduced integration will be
required when evaluating higher-order integrals coming from the xz-shear strain energy.

In the present formulation, the only such term is the following:

T
1-2) [1-2&
Az Az 0 0
Gos [ kedsadz = (5us)" | Goctoks | : Db de|ul=
0 0
(2.140)
(1-6° 0 1-€ 0
L 0
(é_ugb)T kbiAbef 0 . 0 0 , dé ug‘
8 il 1—€% 0 (1+&° 0

0 0 0 0

The integral must be evaluated by one-point Gauss quadrature, which is of the form

i
[ 1€ = 25(0) (2.141)
Hence, Eq. {2.140) becomes
1010
Az 7| kGApAz |0 0 0 O
: = (su)" | 2 b 2.142
Gy jﬂ kobbudedr = (505) : Do 1ol [ (2.142)
0000

The remaining energy terms due to rz-shear, as well as those coming from the
linear terms of the axial strain energy, can be derived simply by analytical integration.
As there are innumerous energy terms and submatrices, the detailed derivation is herein
omitted, especially because the steps for obtaining the submatrices are very similar to
what has been done in Egs (2.133) - (2.139). Ultimately, the virtual strain energy within
an element becomes

/V  (02:CEs + 61 Gty + 6erme) AV = (500) kS + K + 13| . (2.143)

The zeroth-order stiffness is

Ko 0 ekb,,
kg=| 0 IS P (2.144)
T T
(ektn] [Khe] K
the elemental submatrices being
1 0 -1 0 0 0 0 O
CyAy |0 0 0 O Ay 10 1 0 -1
Kb e T2 Go sy , (2.145)
Az (-1 0 1 0 Ar |0 0 0 O
0 0 0 O 0 -1 0 1
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101 0 0 0 0 0
AbiAbACE 000 0 Gb.Abe 0 1 0 -1 62

K, = SRRy | . 2.146
¢ 4 1010+12Aa:0000+6+12 mms )

0000 0 -1 0 1

BGA, 11 0 1 o0

b A B Y]
Kb, = . [_1 0 1 OJ, (2.147)
1 -1

Kb = Cz‘i” {—1 : J : (2.148)

The first- and second-order stiffness matrices come from the strain energy due to
axial deformation (Eq. (2.123)). The linear contributions from that energy are already
accounted for in the zeroth-order matrix, k}. The second-order stiffness, k3, originates

Az (1 fau\?] 1 fon\?
s P 2
C’bAb/D 5[2 (5‘2:) } ; (39:) dr, (2.149)
1 /0w\? B o
el T Y A DY i 2,
0 [2 (89:) J (5‘3:) d (8:1:) (2.150)
Hence,

az 11 faw\?] 1 /om\2 Cyly 8 (30N [0\ ? (00
CbAbe 5{5 (5”5(5) dr = =22 | 6(5;) (5) (55) dz  (2.151)

As done previously for the linear terms, the FE interpolation for 1 is introduced into Eq.

from the term

with

(2.149). Upon doing so, the second-order energy contribution becomes

0 0 0
Az 11 (30\*| 1 [on)? AT o \ AT b
i 5{5(&5”5(5;) do=(50)" o 12 0 | w = (5u) 1wt
C 0 o
(2.152)
in which \
1 /b
Mol 2) kb 2.153
K =7 (%) K, 2159)
with
b={-11}. (2.154)

It is possible to notice from Eq. (2.153) that the second-order stiffness, indeed, depends

quadratically upon u?,.
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The remaining nonlinear terms from the axial strain energy produce the first-order

clemental stiffness matrix, which is

0 kol 0
T T
= (feal” L fadi]"] (2159
0 ek®l, 0
whose submatrices are \
K ME (2.156)
i 2(Az)®
ChA
b1l __ b<4b T b b
K = 5 A5 (AI)QE (b, + eu’}) b, (2.157)
in which "
1 0 -10
E= . (2.158)
-1 0 1 0

The linear dependence of k3 upon the displacement vectors becomes clear from Eqs. (2.155)
~ (2.157). Furthermore, {rom the expressions of k2, kb and kJ, it is possible to notice that
the present stiffener model is a very complete one: the zeroth-order matrix accounts for
axial motion, torsion, bending, transverse shear deformability and eccentricity effects,

whilst the first- and second-order matrices represent geometrical non-linearity.

Obtaining the mass matrices is even simpler than the procedure required for the
<tiffness matrices, as the inertial term is purely linear. All it takes is substituting Eqgs.
(2.130) into Eq. (2.125) and rearranging the resulting equation so that the virtual external

work over a beam element becomes

TS ) e BN L B SR

in which
2 010
pbAbACL‘ 0 2 01
My =61, o 2 ol (2.160)
010 2
AAr |21
mb,,, = 2 d L 9}, (2.161)
and _
0 000
,ObAbe bz 0 201 (22
%="6 1200 00 0| ¢+ 73 ) W (2.162)
01 0 2
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The kinematic coupling between the panel and the stiffener is already satisfied by
the imposed displacement field equations. However, since the plate and the beam have been
discretised, they have yet to be numerically coupled. It would be physically correct to sum
the respective contributions, e.g., ki = k7 +kJ. Nevertheless, this would be mathematically
problematic, since the plate and beam elemental matrices have inconsistent dimensions (due
to the different number of elemental nodes). One possible solution would be to expand the
beam matrices by scattering its elements over larger matrices matching the dimensions of
the corresponding plate quantities. However, this would not be a computationally efficient
solution, as in nonlinear analysis the stiffness matrices must be constantly re-evaluated, so
that every unnecessary operation (summing zeros) can ultimately result in considerable

computational overhead.

A more efficient method is to sum the contributions only at the nodes where plate
and beam elements meet, and at a submatrix level. For clarity, consider the 35-node
mesh shown in Figure 8. Let plate clements {9} and {13} be the ones formed by nodes
(11,12,16,17) and (16, 17, 21, 22), respectively; and beam element {1} be the one formed
by nodes (16, 17). As a calculation example, let M, be the global transverse mass matrix.
Then, the entry at position 16,16 18 computed as

(Mw)Is,lﬁ = (mﬁ{g})u + (mﬁ}{lg})m + (mfg“})lil- (2.163)

3

It is completely analogous for the remaining mass and stiffness submatrices. Refer again
to Figure 8 for more details on the correspondence between local {elemental) and global

nodes for the example at hand here.
After assembling the contributions from all the plate and beam elements, the
resulting ODE system is
MU + (Ky +K; + K,) U = F. (2.164)

Note that now the matrices have no superscripts (p or b), meaning that they represent

total (beam + plate) quantities.

2.4 Aerodynamic model

The supersonic aerodynamic load is modelled by the first-order piston theory.

This method is derived from supersonic potential flow theory by neglecting convolution

and high-order terms. According to it, the pressure field acting over the panel can be
approximated as (BISMARCK-NASR, 1992)

2 ob ([ M?2—2\ 18w

Ap (1 t) = e | — — | ==, 2.165

p(B(3,9,1) r__w_l[aﬁ(w_l)wﬁ} 2.165)

in which U, ¢ and M are the free-stream velocity, dynamic pressure and Mach number,

respectively. The simplicity of this theory becomes clear from Eq. (2.165), in which it is
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possible to see that the aerodynamic pressure is linearly related to the panel’s instantaneous
shape and velocity. It is also a local theory, as the pressure at any point is assumed to
depend exclusively on the values of %—f and %‘—;‘1 at that very spot. For these reasons, this
model avoids the need for fluid meshes, thereby rendering the resulting aeroelastic system
considerably simpler than CFD-based solvers — and also making computations extremely

cheaper.

Of course, this model has limitations. The accuracy of piston theory for panel flutter
problems is considered to be satisfactory for M > 1.7 (ALDER, 2015; VEDENEEV, 2012).
For lower Mach numbers, nonlocal theories are recommended. Therefore, the analyses
performed in the present work are quantitatively accurate for high-supersonic regimes only.
For such cases, Alder (2015) has recently compared the post-flutter response of a panel
(with von Karman structural non-linearity) using two different aerodynamic models: the
linear piston theory and the Euler equations (using finite volumes). He concluded that the
Jatter high-fidelity CFD approach yields LCO amplitudes which are very similar to those
obtained via piston theory, differing in around 3%. Therefore, despite being linear and
very simple, the first-order piston theory is suitable for parametric assessment of LCO

amplitudes, which is the focus of the present work.

In order to make parametric studies simpler, Eq. (2.165) can be conveniently

rewritten as DN 86 55
i) 1D
ﬁ') ?9:; - Gu (phWO) 5{7 (2166)

in which wy is a reference frequency and D is a reference flexural stiffness, namely,

I D
Wy = ;}},L_‘i’ (2167)

BB
a 12 (1 s Vlgl'/gl)

Moreover, analyses are normally parametrised with respect to two dimensionless coefficients:

Apz—/\(

and

D

(2.168)

the dimensionless dynamic pressure, A, and the damping factor, g,, namely

2qL*
DMz =1

B o (M2=2\ D 2170
o= Ar—T \Mr-1) SN (2.170)

in which y = %"-ﬁ is the mass ratio.

A= (2.169)

and

The work done by the pressure field over a virtual displacement field is

swiz = [ (Goapda= Y [ (s0Ap)d4 (2171)

piate elements
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Then, as has been done for the inertial terms in section 2.2, the nodal interpolation

W = N u, = u,”N,, is introduced into Eq. (2.171) so as to yield (after assembly)
sWES = —5U” (MK, U + .C.U), (2.172)

in which AK, and g,C, are the aerodynamic stiffness and damping matrices, respectively,

whose corresponding elemental quantities are

o 0 0

T ¥

ko =75 |0 fo, Nu (Zi2) dA 0], (2.173)
0 0 0
0 0 0

¢o = pho |0 fo NN,7 d4 0] . (2.174)
0 0 0

It becomes evident that piston theory maintains its simplicity after discretised: the
aerodynamic load is ultimately translated into two matrices that can be readily introduced
into the pre-existing structural model. The complete aeroelastic equations of motion are,
thus,

MU + ¢,C U+ 0K, + Ko+ K; + K)U=F, (2.175)

with F' generally set as zero for aeroelastic analysis.

The low computational cost enabled by the use of linear piston theory makes
it a powerful tool for parametric studies that require rapid assessment of post-flutter
amplitudes — provided, of course, that a nonlinear structural model is employed. The

methods used for solving the aeroelastic problem is dealt with in section 2.5.

2.5 Solution methods

Before introducing the solution procedures, let Eq. (2.175) be rewritten as

MU + [G (A, %)] U+ [K(\)+HU)U=F, (2.176)
in which
K () = MK, + Ko, (2.177)
G ()\, %) - \/%ca, (2.178)
and
H(U) = K, (U) + K,(U). (2.179)

This shows that, for fixed material properties and geometry, the aeroelastic system depends
on two parameters: A and u/M, which essentially represent the flight condition.
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There are two solutions of interest: a) the flutter boundary, or critical condition,
which is the highest value of A for which the system presents damped motion; and b)
the post-flutter behaviour, which is the nonlinear transient response for flight conditions
beyond the flutter boundary. However, before actually solving the aeroelastic equations, it
is necessary to apply the boundary conditions (BCs), as the stiffness matrices, per se, are

singular.

2.5.1 Boundary conditions

‘The most efficient way to enforce zero-displacement boundary conditions is to
eliminate rows and columns from the matrices and vectors in Eq. (2.176). For instance,
suppose that the system has n degrees of freedom, meaning that vector U has n entries. If,
say, the k-th degree of freedom in U (e.g., the transverse displacement at a certain node)
is known to be zero, then the k-th column and the k-th row of all the matrices (mass,
stiffness and damping}, as well the k-th entry in U, U and U, are eliminated. This will

lead to an ODE system whose dimension is now equal to {n — 1).

Three types of BCs are considered herein: clamped, simply supported and symmetry
boundaries. The simplest one is the clamped condition: a clamped edge satisfies &4 = & =
W= ¢, = ¢, = 0 at all of its nodes. The simple support is similar, but the rotation
about the edge is released. The symmetry condition consists of restricting perpendicular

displacements and parallel rotations, as illustrated in Figure 9.

Figure 9 — Application of symmetry BCs to a symmetric problem.
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In the panel flutter problem, the existence of mathematical symmetry requires
symmetry of: material properties, flow direction, boundary conditions and initial conditions.
Symmetry, when applicable, is a powerful tecnhique for reducing computational time, as
it reduces the number of nodes and DOFs in the system. In the present work, symmetry

BCs are used whenever possible, which is the case of isotropic and cross-ply panels.

2.5.2 Flutter boundary prediction

One of the most important results to be obtained from an aeroelastic system is
the flutter boundary, or stability boundary, which is the critical condition from which
limit cycle oscillations start to occur. Let Ay be the dimensionless dynamic pressure that
corresponds to the flutter boundary. Then, for A < Ay, the system is expected to display
damped motion. This means that, after possible perturbations to the static equilibrium,
the panel should vibrate and gradually return to its static condition. For A > Ay, the panel
should undergo limit cycle oscillations, which are periodic motions with limited amplitude.

This so-called post-flutter regime is where non-linearities dominate the aeroelastic motion.

The value of As can be obtained by solving the linear problem, i.e., by dropping
the nonlinear stiffness, H (XUE; MEI, 1993a). Besides, what is typically done is to fix a

value for p/M, so that the resulting linear system relies on only one parameter (A):
MU+ [GMVU+[KW]U=0, (2.180)

which can be rearranged as a first-oder ODE system:

¢—R{N]g=0, (2.181)
in which
_ 0 [M~IM]
= [[—M*K o] MG (A)J | (2182)
and

q= {g} (2.183)

The linear ODE system can be solved by assuming a solution of the form g(t) = ¢“*qg, with
qo # 0, and substituting it in Eq. (2.181), which yields the classical eigenvalue problem:

det[R(A) —wlI] =0, (2.184)
in which I is the identity matrix. The general solution consists of complex eigenvalues:

W= Wre + i (2.185)

If, for a certain X, all the eigenvalues have negative real parts {w < 0}, then all

the aeroelastic modes are damped, which means that there is no flutter at such flight



condition. Otherwise, if at least one of the eigenvalues have a negative real part, then
the system’s response to any disturbance should display growing amplitude, i.e., flutter
(BISMARCK-NASR, 1992). The flutter boundary, A;, is the value of A for which Eq.
(2.184)} yields purely imaginary frequencies, that is, wy. = 0 for all modes. In practical
terms, this can be done by solving Eq. (2.184) for successively increasing values of A and
assessing the sign of wr. If one of the w,, changes sign between, say, A\; and A;.1, then
A; < Ay < Ajyr. Then, the value of Ay can be sought within that shorter interval. This
can be done iteratively until As is found within desirable tolerance. Note that the task at
hand is very similar to a root-finding problem, hence there are several possible algorithms

for numerically determining A;.

Predicting the flutter boundary is crucial for the present study, as it determines
when transient analysis is required. For A < Ay, the panel does not undergo flutter and
should return to static equilibrium after perturbed, so there is no need for spending
computational resources in simulating its time response. Beyond the flutter boundary,
it is necessary to simulate the aeroelastic system in the time domain (including the

non-linearities) in order to assess LCO amplitudes and vibration patterns.

2.5.3 'lransient analysis

The solution of the nonlinear aeroelastic ODE system in Eq. (2.176) requires numer-
ical time marching. Through the course of this work, several algorithms were implemented,
such as the third- and fourth-order explicit Runge-Kutta methods, and varations of the
implicit Newmark method. Tests were performed using benchmark nonlinear structural
vibration and flutter problems, leading to the conclusion that the modified Newmark
method proposed by Akay (1980) is the most efficient one for the present problem.

The method starts by selecting a time step At and expanding the displacement

and velocity vectors at time t,,1 = (n + 1)Al as

. ) At . .
Un-i—l = U, + Y (Un-i-l -+ Un) 3 (2186)
and
: AP .
Upr = Un + AU, + (7) (Un+;. + Un) , (2.187)

in which U, is short for U (¢ = %,). Equations (2.186) and (2.187) can be combined so as

to attain new relations:

.. .. 4 .
Unn= Ut 55 (Unsr = Un — ALT,) (2.188)
and
. . 2
U.n+1 = _Un + (Un+1 - Un) 3 (2189)

At
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which can be substituted into Eq. (2.176), thereby forming the time-discretised equation:

. AL At? N
(K + _&“‘_Hn%—l) Uppr = TFT&-H + P, (2190)
with At AL
K=M+ -G+ 7K (2.191)
. . 2 At 2.
P,=M [Un -+ AtU, + %Un] + G {TU” + ATUH} ; (2.192)

and Hpiy = H (U = U,,1). Assuming a constant (for structural vibration studies) or zero

(for flutter analysis) force vector, then F,,,1 = F.

It is important to note that, for each time instant, Eq. (2.190) is a nonlinear
algebraic system, as Hyy; is a function of U,,;. The iterative approach proposed by
Akay (1980) for solving it consists of moving the nonlinear term, AT"ZH,H_IUnH, to the
right-hand side of Eq. (2.190) and treating it as a forcing term. Hence, the (k4 1)-th
tteration for an (n + 1)-th time step is computed as (CHEN; SUN, 1985)

- . At?
KUY = Fo - ——Hl, U, (2.193)
in which
. At? . At? . At At

The iterations should continue until a sufficiently accurate solution at each time step is

achieved.

The computational efficiency of this modified iterative time-marching scheme lies
in the fact that the coefficient matrix, K, is constant at all times and iterations, so that it
only needs to be inverted once, during pre-processing. Therefore, the new solution can be
straightforwardly calculated from the previous iteration:

2
U = (—‘%R‘lﬂﬂﬁl) Ul + (K'F). (2.195)

Since no inversion of the nonlinear stiffness matrix is required, the CPU time spent at

each time step is drastically reduced when compared to classical Runge-Kutta methods.

At each time step, the values used when k = 0 correspond to the converged values
from the previous time step, that is, Ug)ll = Uy,. After convergence, the values of U,
and U, are updated using Eqgs (2.188) and (2.186). Note that initial conditions must be
provided for U, U and U.

This variation of the Newmark scheme is very efficient, but this comes as a trade-off
for unconditional stability (AKAY, 1980}. This means that this method is conditionally
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stable, i.e., & minimum time step is required for convergence. For nonlinear analysis,
especially when aerodynamic terms are involved, there is no closed-form solution for
determining this minimum A¢. Many different estimates are proposed in the literature.

One that has worked for all the analyses conducted herein is the one by Leech (1965):

- 2
1 /A

in which Az is the minimum element size in the mesh.
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3 VALIDATION AND VERIFICATION

3.1 Introduction

Before beginning the analysis of novel cases, it is crucial to validate the finite
element model and very the solution algorithms implemented. In order to do that, results
obtained through the present model are compared to those from the scientific literature. The
validation/verification is carried out in multiple levels: starting with nonlinear structural
vibration (in vacuo) of composite panels, then moving to linear and nonlinear panel flutter,

including linear flutter prediction in beam-reinforced panels.

3.2 Nonlinear plate vibration

In order to verify the present nonlinear plate model against the available literature,
results have been generated for simply supported square cross-ply panels subject to a

uniform step load, i.e.,
0, fort < 0;

3.1
Ppo, fort > 0. (3-1)

Ap(z,y,t) = {

For the mesh convergence study, a two-ply ([0° 90°]) moderately thick plate is

considered with the following parameters:

4
L g & (ﬁ) =50, g = 0.25,

h Fa \ L
Iy Gz Gz Gz
5B B

The validation parameter is the central transverse displacement, w,, taken at the first peak
of the oscillatory motion. Several different FE meshes of the form § x n are considered, i.e.,
half-plate symmetry is used. The coarsest mesh corresponds to n = 6, and the finest one

has n = 50. Instead of using Leech’s formula (Eq. (3.1)) to define the time step for each

3.3x1074
wo !

or, nondimensionally, A7 = 3.3 x 107%. The results are given in terms of w./h versus n.

mesh, the same step has been fixed for all the meshes. The selected step is At =

Mind that n = ﬁ, as the meshes are uniform. From Figure 10 it is possible to verify
that the solution clearly converges as the mesh is refined. Since no closed-form solution is
available for this case, error convergence analyses are not performed. However, the solution
at n = 24 has a 0.2% difference from the solution at n = 50, which makes it possible
to conclude that the 12 x 24 mesh is sufficiently fine for delivering accurate nonlinear

vibration solutions.

Furthermore, Figure 11 shows the transient solution in comparison with those
from Chen and Sun (1985) and Reddy {1983), who also used the Newmark time-marching
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scheme, but a higher-order (9-node) quadrilateral element. The comparison reveals good
agreement between the present solution and results from the literature — especially those

by Chen and Sun (1985). The results are plotted in dimensionless time, namely,

T = wyt. (3.2)

Figure 10 — FE mesh convergence for a nonlinear vibrating plate.
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Source: Elaborated by the author.

In order to make sure that the present model is lock-free, i.e., that the reduced inte-
gration technique effectively prevents shear lock, a thin-plate solution has also been
compared to results from Chen and Sun (1985). The forced vibration of a ten-ply
([0° 90° 0° 90° 0°],) plate has been simulated, with the following parameters:

L . Po h * _ _n«
-}; = 1007 —E"; (E) == 124; Vg = G‘Sa
E, Gz Gz Gas

7 10.19, z, Z, oA

A 12 x 24 half-plate mesh has been used. Figure 12 exhibits the comparison. Once
again, the present solution matches almost exactly the results from Chen and Sun (1885).
This demonstrates that the method is indeed lock-free, and corroborates the satisfactory

accuracy provided by the 12 x 24 mesh.
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Figure 11 — Nonlinear vibration of a cross-ply asymmetric moderately thick plate.
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3.3 Aeroelastic solutions
3.3.1 Linear flutter in a multibay composite panel

In order to validate the aeroelastic model, and also to verify results for oblique
laminations (rather than only cross-ply plates), the flutter boundary of a three-bay panel
has been calculated for different fiber orientation angles. The expression three-bay panel
refers to a simply supported L x 3L panel with two additional support lines that subdivide
it in three bays, as illustrated in Figure 13. Panels in which internal stiffeners are replaced

by simple supports are usually called multibay panels.

Following the analysis conducted by Shiau and Chang (1991}, Hutter boundary
results have been generated for lamination sequences of the form ¢ -@ 8 -8 0], with
# = 20°,40°,60°, 80°. A 24 x 72 mesh has been considered, and the geometric and material

parameters are

L E G G
~ = 100, P 0, vp=021, =—L—25 G2 _ Gz _ G

= = 1.184.
h E, E, Es Es

Figure 14 depicts the present results and those by Shiau and Chang (1991), who employed
a thin-plate FE model. The plot relates the angle 8 and the critical dynamic pressure, Ay.

The comparison reveals good agreement, despite the use of different structural models.
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Figure 12 — Nonlinear vibration of a cross-ply symmetric thin plate.
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Figure 13 — Representation of a three-bay panel.
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3.3.2 Linear flutter in reinforced panels

The next stage in the aeroelastic validation involves flutter on actual beam-
reinforced panels. Flutter boundary results generated by the present model are compared
to those from Liao and Sun {1993), who used three-dimenional degenerated elements for
both the panel and the stiffener. The geometries considered for comparison are depicted

in Figure 15. All the panels are square, fully clamped and isotropic.
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Figure 14 — Flutter boundary as a function of fiber orientation, for a three-bay panel.
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However, before starting the analyses, it is important to investigate mesh conver-
gence for the stiffened-panel model. In order to do that, the flutter boundary values for
Case A (c.f. Figure 15) are plotted against the mesh size, é‘f. From Figure 16, it is possible
to observe that the solution converges. The value of A; for a 20 x 20 mesh is 854.3, which
is 1.32% higher than the result obtained by Fernandes and Tamijani (2017) via the Ritz
method. For a 24 x 24 mesh, this difference reduces to 0.6%. This shows, once again, that

n = 24 provides sufficent accuracy for the purposes of the present work.

Taking that into consideration, flutter boundary results obtained by using a 24 x 24
mesh are compared in Table 2 to those from Liao and Sun (1993). The comparison
reveals good agreement between the solutions, for all the geometries considered. The small
discrepancy is probably due to the differences in modelling, as Liao and Sun (1993) used a
shell model for the panel, and considered one additional degree of freedom for the beam.

Table 2 — Flutter boundaries for stiffened isotropic panels.

Geometry s (Present) Ay (LIAO; SUN, 1993) Difference

Case A 848.31 840.716 0.90%
Case B 1449.2 1434.209 1.04%
Case C 1176.3 1172.723 0.31%

Source: Elaborated by the author.
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Figure 15 ~ Reinforced panels considered in the validation study.
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Figure 16 — Convergence study: Flutter boundary for stiffened isotropic panels.
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3.3.3 Nonlinear flutter in single panels

In order to verify the nonlinear aeroelastic model, an unstiffened clamped isotropic
square panel has been simulated in time at post-flutter dynamic pressures, i.e., A > Ay.
It has been assumed that » = 0.25 and £ = 0.1. Results have been compared to those
obtained by Kuo, Morino and Dugundji (1972) through perturbation method. Figure 17

reveals very good agreement between the LCO amplitudes attained by the present model
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and those from the reference.

Figure 17 — LCO amplitudes for an isotropic clamped square panel (v = 0.25, £- = 0.1)
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3.3.4 Summary and remarks

The validation/verification study carried out in this chapter demonstrates that
the present aeroelastic model has been correctly formulated and implemented, being
capable of accurately reproducing results from the scientific literature. The computer code
created for this work involves several numerical techniques: the Finite Element Method for
spatial discretisation, gaussian quadrature for numerical integration, an iterative Newmark-
type scheme for time-marching, root-finding algorithms for determining linear stability
boundaries. Although each of these methods provides approximate results, the accuracy
of the ultimate aeroelastic solutions has proven very satisfactory. The solutions yielded
by discretising square panels into 24 x 24 elements have shown to generally differ in less
than 1% from results reported in the literature. Thus, Az = i is henceforth considered as
the standard element size for analyses. This means, for instance, that an L x 2L stiffened
plate (i.e., a double panel) is meshed with 24 x 48 elements. If symmetry is used, then

only 12 x 48 elements are used.
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4 AEROELASTIC ANALYSIS OF REINFORCED PANELS

4.1 Introduction

The main goal of this project is to provide a systematic comparative study between
stiffened (coupled) and single (isolated) panels, with respect to various aspects of their
aeroelastic behaviour. Two factors can yield differences between these two models: a) The
flexibility /mobility of stiffeners; and b) Cell-cell coupling, i.e., adjacent cells interacting
structurally. If a stiffener is sufficiently rigid, it should provide, in practice, a clamped-
like restriction, which means that it will neither move nor allow the cells to exchange
moments, forces, rotation, etc. Therefore, it ultimately comes down to the stiffness of the
reinforcement, that is, how rigid the stiffener must be for one to be able to safely model

each cell in a reinforced panel as a single, isolated, ideally-restrained panel.

A neat way to carry out such analysis is to parametrise results in terms of the
stiffener’s height-to-thickness ratio. Consider that the length and cross-sectional area of
the stiffener are fixed, thereby fixing its weight. Then, its cross-sectional aspect ratio is the
only parameter that can affect its bending and torsional stiffnesses and inertias (minding
that a rectangular cross-section is being considered in the present work, for neatness and
simplicity). Therefore, the analyses performed in the present work have the cross-sectional

aspect ratio as an important structural parameter.

Furthermore, the present study considers double panels, i.e., L x 2L panels with a
stiffener fixed at y = L (¢f. Figure 7 and Figure 3). The aeroelastic behaviour of each of
the two square cells is compared to that of a single, isolated square panel. A detailed study
is carried out for isotropic panels, considering linear behaviour, nonlinear response and
component-wise mechanical energy quantification. Laminated panels are also investigated
in the nonlinear regime in terms of limit cycle amplitudes. Analyses are parametrised in

terms of nonlinear dynamic pressures and the stiffener’s cross-sectional aspect ratio.

4.2 Flutter boundary

The examination of Eq. (2.146) reveals that the linear bending and torsional

moments of inertia for an eccentric beam element are, respectively,

I —(C—2+82)A (4.1)
¥ 12 b3 .

and

12

F

2 2 nd R
I, = (c b ~f—62) Ay, with e= r_: . (4.2)
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Let o be the stiffener’s cross-sectional aspect ratio, namely,

a= g (4.3)

Thus, if the cross-sectional area, Ay, is fixed, then Egs. (4.1) and (4.2) can be rewritten as

[ac  3h2\ A7

and ) 5
8 1 3h Ab
= |4 —_——t = — | —. 4.5
L) (a+%J&+a+AJ12 (4.5)
It is clear that
Jim 1,(0) = lim 1,(a) = oo, (46)

which reveals that both torsional and bending stiffnesses tend to become very large for
sufliciently slender cross-sections. It is thus of interest to study how the flutter boundary
of a double panel varies with respect to «. Consider andouble stiffened isotropic panel with
% = 100 and 4 = 0.02. Also consider the following properties for the stiffener, arbitrarily
defined: A, = 20R?, p, = 3p, E, = 3FE, and 1y, = v = 0.25 (the quantities without subscripts
refer to the plate). Figure 18 shows the parametric flutter boundary assessment for such
panel. The results reveal that the flutter boundary of the stiffened panel asymptotically
approaches that of a single clamped square panel. This is a direct consequence of how the
beam’s stiffness varies with respect to a: as & becomes progressively larger, the stiffener
tends to approximate a clamped line, so that each cell tends to behave as an isolated
panel. Another important conclusion that can be drawn from these resullts is the fact that
the single-panel model is an unconservative one, at least as far as the onset of flutter is
concerned. In other words, modelling each cell in a skin structure as an isolated panel may

lead to highly-overestimated flutter speeds, which can result in structural unsafety.

Figure 18 — Flutter boundary of a double panel for different cross-sectional aspect ratios.
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4.3 Nonlinear aeroelastic response

Linear analysis has revealed that the discrepancies between the single- and stiffened-
panel models increase as the cross-sectional aspect ratio decreases. It may not be as simple
in the post-flutter regime, due to the presence of non-linearities. Solutions have been
generated for several values of A and ¢, including isotropic (especially) and laminated

panels.

4.3.1 Isotropic panels

In order to investigate the nonlinear aeroelastic regime, the same isotropic panel
from section 4.2 has been simulated at post-flutter conditions, that is, A > A;. At such
conditions, even the smallest perturbation should lead the system to periodically vibrate
in what is called limit cycle oscillations. So, as initial condition, a very small displacement
field is input, corresponding to the application of a uniform pressure Apy = 0.01E; (h/ L)4,

which is then removed.

Transient solutions have been generated for several values of «, and the maximum
and minimum transverse displacements are shown in Figure 19. The reference point where
LCO amplitudes are taken is y = % -+ L at the symmetry line, which corresponds to the
midspan three-quarter position in the rear cell. Once again, the results are compared to

3L

those from a single panel, taken at y = 2.

Figure 19 — Maximum and minimum LCO displacements for several values of A and a.
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As expected, for large values of « the cell responds similarly to a single, clamped
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panel. The magnitudes of the maximum and minimum displacements increase as «
decreases, which is also a direct consequence of how the beam stiffness is related to «.
The single panel model is, thus, a lower bound for the LCO amplitude levels and an
upper bound for the flutter boundary (cf. section 4.2). In practical terms, this means that
simulating isolated fluttering panels is an unconservative approach when dealing with

reinforced skin.

It is also possible to verify, from Figure 19, that the maximum and minimum
displacements can differ, which is explained by the stiffener’s eccentricity. Yet the most
remarkable feature from the LCO plot is perhaps the sudden jump in amplitude observed
for & = 1. Similar discontinuities have been identified by the author in previous works
(PACHECO; MARQUES; FERREIRA, 2017; PACHECO; MARQUES; FERREIRA, 2018;
PACHECO et al., 2017). Through a detailed sequential continuation study, it was proved
that such jumps are actually bifurcation points related to the coexistence of multiple stable
limit cycles at certain dynamic pressures. This means that, under special initial conditions,
the branch that existed before the jump can be continued (PACHECO; MARQUES:
FERREIRA, 2017), but the branch seen after the jump in Figure 19 is generally more
stable.

Let Ajump be the condition at which the solution bifurcates. Figure 20 depicts the
fluttering shapes for A = 1015.5 < Ajymp and A = 1015.7 > Ajump. The fluttering shape is
an instantaneous shot of the panel’s midspan deformed shape, taken when the reference
point is at a peak of its LCO. It is possible to see that the relative position between the
cells is very different prior to and after the jump, i.e., the flutter mechanism changes at
the jump. As a matter of fact, a quick examination of Figure 21 shows that the relative
phase between the cells changes considerably. The LCO displacements presented are taken
at points y = %, y=Land y = % + L, which are located in the front cell, the stiffener
and the rear cell, respectively, along the midspan {symmetry) line. In order to improve
viewing, the displacements at each of those reference points have been divided by their
respective maximum LCO displacements. It is clear that the stiffener and the front cell
vibrate practically in phase both prior to and after the jump, but the phase of the rear
cell changes considerably. Before the jump, the rear cell vibrates roughly in antiphase
with the front cell and the stiffener. This type of opposed motion is not uncommon in
stiffened panels in nonlinear aeroelastic regimes. It has been observed by Oh, Lee and Lee
(2001) and also by the author in previous works (PACHECO; MARQUES; FERREIRA,
2017, PACHECO et al., 2017). However, after the jump, the motion is more similar to
a 90°-phase vibration, i.e., the refence points located at the front cell and the stiffener
reach their peaks when the reference point of the rear cell is close to a zero-displacement

position.

Two hypotheses are plausible, in theory, for explaining why the reference cell
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Figure 20 — Midspan fluttering shapes prior to and after the jump.
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Figure 21 — Normalised LCO amplitudes. (a) A = 1015.5; (b) A = 1015.7.

1.5

—Rear cell

1k

0.5
3 0
0.5t
-1t
4.7 4.75 4.8 4.85 4.9 13.3 13.4 13.5
(a) ) (b) . :
Dimensionless time Dimensionless time

Source: Elaborated by the author.

displays highly discrepant LCO amplitudes for virtually identical dynamic pressures: a)
The energy transfer from the flow to the structure is more severe in the post-jump flutter
mechanism; or b) The total mean energy prior to and after the jump is the same, but the
cells and the stiffener exchange the available energy between themselves in such a way as

to yield larger amplitudes. In order to determine the answer, it is necessary to calculate
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the mechanical energy (kinetic plus elastic) instantaneously stored in the structure:

ou\’ dv\* ow\’ P
En(t) = f ou 9y N | Pav
m(t) V4, Kat) +(8t) +(at) g 47
f o, e, + 07 e, v [ ZeEe T ¥ Tates gy,
1% 2 A 2
which after discretisation becomes
1. . 1 -
En(t) = 5UT™U + 5U” K (U,)|U, (4.8)
with .
K(U,) =Ko+ K; (Up =Uy =0) + ;K2 (U). (4.9)
The energy can be nondimensionalised as:
_ E.,,
E=— (4.10)
D (h/L)

The mechanical energy can also be calculated locally -~ rear cell, front cell, stiffener
— by integrating in specific elements in the mesh. The total and component-wise energies
have been computed for A = 1015.5 and A = 1015.7. The results are exhibited in Figure 22
and Figure 23. The total mean energy is clearly much higher after the jump than prior to
it. This means that the post-jump flutter mechanism is capable of extracting more energy
from the flow. It is possible to conclude from Figure 22 that the jump happens because
the system moves from one limit cycle to a more energetic one. A difference of less than
0.01% in the dynamic pressure — from 1015.5 to 1015.7 — is sufficient for changing the
flutter mechanism and taking the system to a considerably more energetic motion. This
Is not unusual, and is a consequence of the non-linearity of the aeroelastic system. For
instance, Shishaeva, Vedeneev and Aksenov {2015) recently found out that, at certain flow
conditions, a fluttering panel can undergo two distinet limit cycles at the same dynamic

pressure.

Furthermore, Figure 23 reveals important information about the energy distribution
in the stiffened panel. In both pre- and post-jump conditions, the mean energy contained
by the front cell is considerably lower than that of the rear cell. This makes perfect sense,
since rear cells tend to vibrate with larger amplitudes in in tendem panel arrangements
(PACHECO et al., 2017). Also, the energy absorbed by the stiffener is negligible when
compared to the energy absorbed by the panel.

Since panels with more rigid stiffeners (o = 2, 5, 20) showed no jump, it is very rea-
sonable to conclude that the mobility of the stiffener is directly related to the discontinuity.
Moreover, as the energy stored in the stiffener is very small, it is possible to conclude that
the stiffener influences the aercelastic motion more as a “dynamic boundary condition”

than as an energy absorber. Therefore, in spite of moving with very small amplitudes and
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Figure 22 — Pre- and post-jump energy time histories.
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Figure 23 — Component-wise LCO energy. (a) A = 1015.5; (b) A = 1015.7.
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storing very little energy, the stringer’s dynamics can substantially affect the aeroelastic
motion of the whole system. Figure 24 shows the LCO amplitude plot for o = 0.5. A jump
similar to what happened for & = 1 can be seen here, but the discontinuity occurs earlier
for this more flexible stiffener. Hence it is possible to conclude that stiffener mobility plays

indeed an extremely important role on the aeroelastic motion.

It becomes clear, from the present analysis, that neglecting stiffener flexibility
can result in unsafe structural design. The LCO amplitudes — and, consequently, strains
and stresses — predicted by considering ideal restrains (single plate) can be substantially
lower than in an actual reinforced panel. Moreover, the amplitude jumps observed in
“weakly-stiffened” panels offer pontential risks if not predicted carefully. It is common
for aircraft design philosophies to allow for some level of cycling before inspection and
maintenance. Therefore, reliable calculation of oscillation frequencies and strain/stress
levels is crucial for structural design and, for this reason, sudden amplitude jumps are

definitely undesirable.
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Figure 24 — LCO amplitudes for a panel with a very flexible stiffener.
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4.3.2 Laminated panels

Analyses have also been performed for composite panels. The material properties
considered here for the laminated plates are those of boron-epoxy as found in Dixon
and Mei (1993): %12- = 10, %’21 = % and v2 = 0.3. It is assumed that Gi3 = Gz = Gha,
+ = 0.05 and % = 100. The stiffener is considered to be made of aluminium, so that
oo =1, 2 =135 and % = 2. The cross-sectional area is taken as A, = (4h)>.

Nonlinear transient response has been simulated for a three-layer symmetric cross-
ply plate ([0° 90° 0°]). The LCO amplitude diagrams for o = 10 and « = 25 are shown in
Figure 25, in comparison to those from a single panel. The trend observed in isotropic
panels is confirmed: a double panel can display extremely-larger amplitudes when compared
to an idealised single panel. Moreover, a more flexibile stiffener (o = 10) has yielded
discontinuities in the LCO amplitude diagrams. In this case, the jump appears to be
somewhat less intense than for the isotropic panel. The phase portraits depicted in Figure 26

reveal that indeed there are no drastic changes to the dynamic motion after this jump.

The cases simulated so far have considered cells positioned in tandem, in which
the structural coupling occurs along the flow direction. In order to investigate spanwise
coupling, a stiffened angle-ply ([45° -45°]) panel has been simulated with the flow aligned
with the z direction, which is done by simply changing 3% for % in Eq. (2.173). Figure 27
illustrates the reference points, P1 and P2, where displacements are taken, and the
amplitude plot for & = 1 is shown in Figure 28. It is possible to see that, even for this
low aspect ratio, each cell in the stiffened panel behaves very similarly to a single isolated
panel. This happens because in this case none of the layers has fibers aligned with the

flow direction, which renders the panel considerably less resistant to the aerodynamic load
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Figure 25 — LCO amplitude plots for a cross-ply stiffened panel ([0° 90° 0°]).
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when compared to a cross-ply panel. Therefore, even at low aspect ratios the stiffener is

considerably more rigid than the plate.

Even for o = 0.1, the amplitudes of the double panel are not drastically discrepant
from those of a single panel, as shown in Figure 29. Note that, although the problem is not
symmetric about the reinforcement line, the two cells vibrate with very similar amplitudes
for a wide range if dynamic pressures. There is no apparent jump in this case, yet the
dynamics do change as A increases. Figure 30 and Figure 31 depict the relative LCO
motion of points P1 and P2 at A = 200 and )\ = 400, respectively. For the smaller dynamic
pressure, the phase between the cells is very small, and so is the amplitude difference,
as also seen in Figure 32. However, at A = 400 the phase becomes larger, meaning that,
despite the inexistence of an abrupt, jump-like change, the flutter dynamics do vary as a

function of the dynamic pressure.

4.3.3 Remarks

Through linear analysis, Shiau and Chang (1991) concluded that fiber orientation
and stacking sequence play a major role in the aeroelastic response of reinforced panels.

They showed that, depending on the material arrangement, spanwise coupling can be
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Figure 26 — Pre- and post-jump phase portraits for the cross-ply panel, with a = 10.

Source: Elaborated by the author.

as important as streamwise coupling, which is not true for isotropic panels. The present
nonlinear study has revealed that the post-flutter response is also highly influenced by
these factors. Of course, it would be ideal to simulate several lamination schemes and
geometrical arrangements (triple/multiple panels, spanwise plus streamwise coupling,
composite stiffeners, non-square cells, etc), but in practical situations there are infinite
combinations of material properties, stacking sequences, stiffener geometries, number of
cells, flow angle, among other parameters. In spite of this, it is possible to conclude that
the cases presented and thoroughly analysed here are sufficient to demonstrate that the
single-panel model cannot be used indiscriminately without a careful examination on how
rigid specific stiffeners are when compared to the skin panels. Reinforced panels have been
shown to exhibit potentially complex aercelastic behaviour that cannot be predicted when

idealised fixation/isolation is considered.
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Figure 27 — Reference points and schematic representation for a spanwise arrangement.
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Figure 28 - LCO amplitude plots for an angle-ply stiffened panel (spanwise) with o = 1.
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Figure 29 — LCO amplitude plots for an angle-ply stiffened panel (spanwise) with o = 0.1.
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Figure 30 — Transverse LCO displacements at points P1 and P2, for A = 200.
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Figure 31 - Transverse LCO displacements at points P1 and P2, for A = 400.
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Figure 32 - Fluttering shape of a spanwise-double panel at A = 200, with o = 0.1.

Source: Elaborated by the author.
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5 CONCLUSIONS SUMMARY

This work has presented a numerical investigation on the linear and nonlinear
(especially) aeroelastic behaviour of reinforced aircraft skin panels subject to one-sided
supersonic flow. The main goal was to develop and implement a computer code (formulation,
model and solvers) for flutter analysis in beam-reinforced panels, in order to study

potentially complex behaviour of such aerospace structural elements.

The aeroelastic model employs the Mindlin plate theory to simulate the skin,
and an eccentric Timoshenko beam theory for the stiffening elements. Geometrical non-
linearity is included by the von Karman strain-displacement relations, for both plate and
beam. The model is formulated so as to consider 1sotropic and composite panels. The
aerodynamic load is computed via first-order piston theory, which is a linear model suitable
for high-supersonic regimes. The structural and aerodynamic theories are combined by
the Principle of Virtual Work, which in turn is discretised using the Finite Element
Method. The plate and beam models are nodally coupled through the global stiffness
and mass matrices. There are two types of solutions of interest: a) Flutter boundary
prediction, which consists of finding the maximum dynamic pressure that the syster can
withstand without experiencing flutter; and b) Post-flutter transient simulation, in which
the structural non-linearities cause the occurence of limit cycle oscillations (LCOs). The
former (a) is done by iteratively varying the dynamic pressure in the search for negatively
damped eigenmodes, and the latter (b) requires direct solution in the time domain, which

is achieved via an implicit, iterative N ewmark-type scheme.

The model and solvers have been verified through comparison with several bench-
mark results from the literature. The comparative study has been performed in multiple
levels: mesh convergence, nonlinear laminated plate vibration (purely structural), flutter
boundary prediction for stiffened panels, and nonlinear acroelastic simulation of unstiffened
panels. Results have demonstrated that the code developed for this project is capable
of yielding accurate solutions for stiffened and unstiffened, thin and thick, isotropic and

laminated panels, in both linear and nonlinear regimes.

The main novel case studied here considers a double panel, i.e., a rectangular
plate with a centrally-placed stiffener that subdivides it into two equal square cells. By
comparing the linear and nonlinear aercelastic behaviour of double-celled panels with
those of a reference single square panel, this work has focused on assessing the limitations
and inaccuracies of the classical assumption of considering each cell in a skin structure
as an isolated, ideally-fixed panel. In order to do that, results have been parametrised in
terms of the stiffener’s cross-sectional aspect ratio, @, which determines its torsional and
bending stiffnesses and controls the structural coupling between adjacent cells. In this
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context, the present analysis has been able to show that:

. Flutter tends to occurs earlier for double-celled panels. The critical dynamic pressure
obtained for a double-celled panel increases as the stiffener becomes more rigid,
asymptotically approaching that of a single panel {isolated and fully clamped) as o

becomes larger.

+ The maximum LCO amplitudes of double panels can be several times higher than

that displayed by the corresponding single panels.

+ Jump discontinuities in LCO amplitude diagrams can occur for panels stiffened by
relatively flexible beams. Such discontinuities are due to the non-linearity of the
complex aeroelastic system, and are related to a change in the flutter mechanism.
The post-jump mechanism is capable of extracting considerably more energy from

the low than the pre-jump mechanism.

« In the post-flutter regime, the cells in a reinforced panel can display highly-uneven

maximum displacements and mean mechanical energies.

« The stiffener absorbs a very small amount of mechanical energy, playing the role of

a dynamic boundary condition rather than that of an energy absorber.

« The answer to the question “when can stiffeners be safely approximated as ideal
fixations {clamped boundaries)?” depends greatly upon the structural arragement at
hand. For instance, the same stiffener can be considered as extremely rigid (practically
clamped) when used on an angle-ply panel, but very flexible for a cross-ply panel (of

course, depending of flow direction).

This work has therefore demonstrated that the single-panel model, widely explored
in the literature, should not be employed indiscriminately without an assessment of the
effective stiffness of reinforcements. Spars, frames and longerons tend to be rather sturdy,
but this is not always true for stringers, which are used in both wing and fuselage structures.
This is due to the fact that their role is not to withstand loads, but to provide the skin with
stability against buckling and other thin-shell phenomena. Therefore, when considering
panel flutter, it is important to either simulate the whole structure — which could demand
prohibitive computational cost/time — or evaluate how stiff the stringers effectively are

when compared to the skin.

The results presented in this work offer a new perspective on the flutter of reinforced
panels. The comparative study between single and double-celled panels and the examination
of amplitude jumps represent important novelty, especially the energy-based analysis. The
results have resulted in an orginal article which has been submitted to the Journal of

Sound and Vibration (Elsevier) and is currently under peer review.
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