Aspectos biológicos, com ênfase na reprodução das fêmeas, das principais espécies de Sciaenidae da baía de Santos, costa central do estado de São Paulo

Dissertação apresentada ao Instituto Oceanográfico da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Mestre em Ciências, área de Oceanografia Biológica.

Orientadora: Profa. Dra. June Ferraz Dias

São Paulo
2011
Aspectos biológicos, com ênfase na reprodução das fêmeas, das principais espécies de Sciaenidae da baía de Santos, costa central do estado de São Paulo

Thassya Christina dos Santos Schmidt

Dissertação apresentada ao Instituto Oceanográfico da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Mestre em Ciências, área Oceanografia Biológica.

Julgada em__/__/____
ÍNDICE
AGRADECIMENTOS .. iii
LISTA DE TABELAS ... v
LISTA DE FIGURAS ... viii
RESUMO ... xiii
ABSTRACT .. xiv
INTRODUÇÃO GERAL ... 1
OBJETIVOS .. 7
ÁREA DE ESTUDO .. 7
MATERIAL E MÉTODOS ... 9
REFERÊNCIAS BIBLIOGRÁFICAS .. 11

1. Composição e influência dos fatores ambientais na distribuição espaço-temporal das espécies de Sciaenidae (Perciformes) na baía de Santos, SP. 19
Resumo ... 19
1.1. Introdução ... 19
1.2. Material e Métodos ... 21
1.2.1. Coleta dos exemplares e obtenção dos dados ... 21
1.2.2. Elaboração e análise dos resultados ... 21
1.3. Resultados ... 22
1.3.1. Fatores abióticos ... 22
1.3.2. Composição dos Sciaenidae .. 24
1.3.3. Variação espaço-temporal da distribuição da fauna de cienídeos 25
1.4. Discussão ... 34
1.5. Referências bibliográficas ... 39

2. Estrutura populacional de dez espécies de Sciaenidae (Perciformes) da baía de Santos, SP ... 44
Resumo ... 44
2.1. Introdução ... 45
2.2. Material e Métodos ... 47
2.2.1. Coleta de material e procedimentos laboratoriais 47
2.2.2. Estrutura populacional ... 47
2.3. Resultados ... 49
2.4. Discussão ... 63
2.5. Referências bibliográficas ... 73

3. Biologia reprodutiva das fêmeas das espécies principais da família
Sciaenidae (Perciformes) na baía de Santos, SP .. 80
Resumo .. 80
3.1. Introdução ... 80
3.2. Material e Métodos .. 82
3.2.1. Coleta do material e procedimentos laboratoriais ... 82
3.2.2. Análise populacional e dinâmica reprodutiva .. 83
3.3. Resultados ... 84
3.4. Discussão .. 93
3.5. Referências bibliográficas ... 98

4. Descrição e comparação entre a classificação macroscópica e
microscópica dos ovários de quatro espécies de Sciaenidae 104
Resumo .. 104
4.1. Introdução .. 104
4.2. Material e Métodos ... 106
4.3. Resultados .. 108
4.4. Discussão .. 124
4.5. Referências bibliográficas .. 130

5. Tipo de fecundidade do cangoá Stellifer rastrifer (Jordan, 1889)
(Sciaenidae: Perciformes) .. 135
Resumo .. 135
5.1. Introdução .. 135
5.2. Material e Métodos ... 138
5.3. Resultados .. 140
5.4. Discussão .. 145
5.5. Referências bibliográficas .. 148

CONSIDERAÇÕES FINAIS .. 152
AGRADECIMENTOS
À June Ferraz Dias, primeiramente por ter acreditado em mim, quando nem eu mesma acreditava mais, me dando a oportunidade de trabalhar com você. Por sua amizade, sua atenção e seus sábios conselhos. Você me proporcionou as melhores oportunidades profissionais. Serei eternamente grata por tudo que você fez e faz por mim.
À minha mãe por sempre acreditar nos meus sonhos e me ajudar a torná-los realidade, por mais estranhos e complicados que possam parecer, pelo eterno auxílio emocional que recebi durante todos esses anos, só você sabe tudo aquilo que passei e principalmente por nunca ter desistido de mim. Não tenho palavras para agradecer tudo o que você fez, faz e será fará por mim, só posso dizer que Te Amo.
À minha família, em especial ao meu pai, não somente pela ajuda financeira, mas por toda ajuda ao longo desses anos e as minhas irmãs Thaisy e Thiffany.
À minha tia Maria por ter me acompanhado na primeira vez em São Paulo, mas principalmente por sua ajuda e sua sabedoria.
À Camilla por sua amizade e cumplicidade ao longo desses anos, e a sua família, por me acolherem de maneira tão carinhosa, como membro da família.
Ao Conselho Nacional de Pesquisa (CNPq) pelo auxílio financeiro concedido.
Aos docentes do IO, em especial aos professores Mario Katsuragawa, Alex Turra, Rubens M. Lopes.
Aos professores Konstantinos Costas da Aristotle University of Thessaloniki e aos professores Olav Sigurd Kjesbu e Anders Thorsen do Institute of Marine Research pela ajuda, principalmente com o programa ImageJ e com a interpretação dos dados.
À super Maria de Lourdes, pelo auxílio incondicional ao longo desses anos, tenho certeza que você pagou todos os seus pecados comigo. Infelizmente fico devendo sua foto aqui.
À todos o pessoal do laboratório: Isa, Wellington, Carla, Michel, Jana, Diego, Riquel, Eudriano e Leonardo (Kenji).
Ao Wellington pela ajuda na histologia e em todas as dúvidas que foram aparecendo no decorrer do trabalho. Ao Diego, pela ajuda com as análises de crescimento e pelo ótimo tratamento das fotomicrografias, elas ficaram incríveis. À Luciana pela ajuda na correção do inglês.
Aos estagiários do laboratório, Dante (Pinguim), Valter André, Renan, Tati, Sophia, Raquel, Guilherme, e um agradecimento muito especial para todos aqueles que auxiliaram na coleta, triagem e identificação do material do ECOSAN, em especial a Isa, Diego, Natália (Dra. Bexiga), Cecília, Jaque, Carine, Dante, Vitor (Six), Jana, Michel, pessoal muito obrigada! Gostaria de agradecer também a Sophia e a Raquel, pela ajuda nos últimos meses, vocês adiantaram muito minha vida.
À todos os amigos que fiz durante estes anos no IO, em especial, Camilla, Renatinha, Claudia, Ana, Camila (Camis), Dri, Naira, Luciana, Lilian, Dani, Maurinho, Kenji, Lucas, Túlia, Marcio (Burcio), Catarina, Sandrinha, Kika, Andréa, Márcio, Pedro, Ruth, Carol e Marta.
Aos meus amigos do inglês: Paula, Silvio, Klester, Rafa, Carlos e Welington, por tornarem minhas noites muito mais divertidas e engraçadas, principalmente na reta final. Adorei conhecer todos vocês.
Às secretárias da pós-graduação Ana Paula, Silvana e Letícia por toda ajuda e atenção. Em especial a Ana Paula, que foi muito atenciosa comigo na minha primeira visita ao IO e ter me ajudado a chegar à June.
À técnica do laboratório Helcy.
Ao Valter Miyagi pelos auxílios técnicos, obrigada por nunca me deixar na mão.
Aos funcionários da biblioteca, em especial, Dona Rai, Cidinha, Vagner e Guilherme, sempre atenciosos.
À todos os funcionários do Instituto Oceanográfico, por toda atenção e auxílio ao longo desses anos, um agradecimento em especial ao Arimatéia, Jurandir e Piauí, pelos momentos de conversa.
LISTA DE TABELAS

Tabela 1.1. Lista de espécies de Sciaenidae capturadas da baía de Santos, SP, com as respectivas frequências absoluta (N) e relativa (N%) em número, frequência absoluta e relativa do peso e amplitude de comprimento total (CT).

Tabela 1.2. Índices ecológicos estimados por estação de coleta e por mês da família Sciaenidae na baía de Santos.

Tabela 1.3. Resultados da análise ANOVA dois critérios e Kruskal-Wallis (ª) da abundância total, biomassa total e das principais espécies de cienídeos da baía de Santos, SP. (*p>0,01; **p>0,05).

Tabela 1.4. Resultados da ordenação principal da análise de correspondência canônica.

Tabela 2.1. Lista de espécies de Sciaenidae, com os respectivos números de exemplares analisados e amplitude de comprimento total.

Tabela 2.2. Parâmetros das variáveis de crescimento (k e CT∞), utilizando frequências de classes de comprimento por mês, e os valores de t₀ e t_máx, valor do índice de performance (Φ') e o valor da taxa de mortalidade (M).

Tabela 2.3. Parâmetros das variáveis de crescimento (k e CT∞), utilizando as frequências de classes de comprimento por mês e os valores de t₀ e t_máx, valor do índice de performance (Φ') e o valor da taxa de mortalidade (M) das principais espécies de cienídeos separados por sexo.

Tabela 2.4. Valores obtidos da relação peso-comprimento, bem como seu coeficiente de correlação, para cada sexo estimado para as dez espécies estudadas na baía de Santos, SP.

Tabela 3.1. Lista de espécies com os respectivos números de exemplares utilizados para as análises de proporções sexuais (número total de machos e fêmeas), estádios de maturação e comprimento de primeira maturação gonadal (todas as fêmeas) e relação gonadossomática (somente fêmeas adultas e desovantes).

Tabela 3.2. Proporções sexuais por mês das espécies Stellifer rastifer (STRA), Isopisthus parvipinnis (ISPA), Stellifer brasiliensis (STBR) e Paralonchurus brasiliensis (PABR) da baía de Santos. (em negrito = diferença significativa).

Tabela 3.3. Proporções sexuais por classe de comprimento (mm) das espécies Stellifer rastifer (STRA), Isopisthus parvipinnis (ISPA), Stellifer brasiliensis
(STBR) e Paralonchurus brasiliensis (PABR) da baía de Santos. (em negrito = diferença significativa).………………………………………………………………………………. 87
Tabela 4.1. Número total de fêmeas a amostradas e de fêmeas selecionadas para as preparações permanentes……………………………………………………. 107
Tabela 4.2. Descrição dos estádios de maturação gonadal, com uma proporção de cada fase de desenvolvimento das células germinativas, de quatro espécies de cienídeos amostrados na baía de Santos, SP…………………………… 113
Tabela 4.3. Classificação dos estádios de maturação a partir das escalas macroscópica e microscópica de Stellifer rastrifer da baía de Santos (SP). Em negrito, os estádios em que houve coincidência dos dois métodos aplicados. ……………………………………………………………………………………………… 118
Tabela 4.4. Classificação dos estádios de maturação a partir das escalas macroscópica e microscópica das fêmeas de I. parvipinnis da baía de Santos (SP). Em negrito, os estádios em que houve coincidência de identificação entre os dois métodos aplicados. ……………………………………………………………………………………………… 118
Tabela 4.5. Classificação dos estádios de maturação a partir das escalas macroscópica e microscópica das fêmeas de Stellifer brasiliensis da baía de Santos. Em negrito, os estádios em que houve coincidência entre os dois métodos……………………………………………………………………………………………… 119
Tabela 4.6. Classificação dos estádios de maturação a partir das escalas macroscópica e microscópica das fêmeas de Paralonchurus brasiliensis da baía de Santos. Em negrito, os estádios em que houve coincidência entre os dois métodos……………………………………………………………………………………………… 119
Tabela 4.7. Comparação entre os métodos aplicados: análise macroscópica e microscópica. (STRA = Stellifer rastrifer, ISPA = Isopisthus parvipinnis, STBR = Stellifer brasiliensis e PABR = Paralonchurus brasiliensis, RGS = relação gonadossomática, L_{50} = comprimento médio de primeira maturação gonadal). ………………………………………………………………………………………………… 120
Tabela 1.8. Comparação entre o comprimento de primeira maturação (L_{50}) estimado para as espécies Stellifer rastrifer (STRA), Isopisthus parvipinnis (ISPA), Stellifer brasiliensis (STBR) e Isopisthus parvipinnis (ISPA) longo da costa brasileira, com destaque para a amplitude de comprimento dos exemplares estudados, o método aplicado e o tipo de avaliação realizado. (CTmáx. = comprimento total máximo, CTmín = comprimento total mínimo;
MICRO = avaliação macroscópica; MICRO = avaliação microscópica) Em negrito os valores de L₅₀ estimados no presente estudo.................................128
LISTA DE FIGURAS

Figura 1. Área amostrada da baía de Santos com suas respectivas estações oceanográficas (Modificado de NOAA – National Geophysical Data Center). 10

Figura 1.1. Valores médios de temperatura da coluna d’água, com seus respectivos desvios padrões, ao longo dos meses amostrados na baía de Santos. 23

Figura 1.2. Valores médios de salinidade da coluna d’água, com seus respectivos desvios padrões, ao longo dos meses amostrados na baía de Santos. 23

Figura 1.3. Análise de agrupamento das espécies pertencentes à família Sciaenidae na baía de Santos, SP, coletadas entre novembro de 2004 e dezembro de 2005. 25

Figura 1.4. Distribuição espacial da abundância numérica (N) e em peso (g) dos exemplares pertencentes à família Sciaenidae, por estação oceanográfica, capturados ao longo dos meses da baía de Santos. 27

Figura 1.5. Distribuição espacial da abundância numérica (N) das principais espécies de cienídeos amostrados na baía de Santos. 28

Figura 1.6. Agrupamento das estações oceanográficas da baía de Santos, baseado na similaridade dos valores de abundância das espécies da família Sciaenidae. 29

Figura 1.7. Frequência relativa da abundância (N) e peso (P) mensal dos cienídeos amostrados na baía de Santos. 30

Figura 1.8. Agrupamento dos meses de coleta na baía de Santos, baseado na abundância de espécies de Sciaenidae. 30

Figura 1.9. Análise de correspondência canônica (CCA) das espécies de cienídeos associadas com sua distribuição espacial e temporal na baía de Santos. 33

Figura 1.10. Análise de correspondência canônica (CCA) das espécies de cienídeos juntamente com os fatores ambientais (temperatura e profundidade). 34

Figura 2.1. Frequência relativa da distribuição dos exemplares por classe de comprimento total das principais espécies de cienídeos amostrados na baía de Santos (K=curtose, S=assimetria). 51
Figura 2.1. Frequentia relativa da distribuição dos exemplares por classe de comprimento total das principais espécies de cienídeos amostrados na baía de Santos (K=curtose, S=assimetria).

Figura 2.3. Coortes das espécies de cienídeos amostrados na baía de Santos. (A = machos de Stellifer rastrifer, B = fêmeas de Stellifer rastrifer, C = machos de Isopisthus parvipinnis, D = fêmeas de Isopisthus parvipinnis, E = machos de S. brasiliensis, F = fêmeas de S. brasiliensis, G = machos de Paralonchurus brasiliensis, H = fêmeas de Paralonchurus brasiliensis).

Figura 2.4. Relação peso-comprimento total das principais espécies de cienídeos amostrados na baía de Santos.

Figura 2.5. Fator de condição (K) calculado para todos os exemplares das dez espécies de cienídeos na baía de Santos (linha pontilhada – valores médios totais para a espécie).

Figura 3.2. Proporção de fêmeas adultas por classe de comprimento e estimativa do comprimento médio de primeira maturação gonadal (*L*₅₀) das espécies *Stellifer rastrifer* (STRA), *Isopisthus parvipinnis* (ISPA), *Stellifer brasiliensis* (STBR), *Paralichthys brasiliensis* (PABR) da baía de Santos.

Figura 3.3. Relação gonadosomática por estádio de maturação das fêmeas de *Stellifer rastrifer* (STRA), *Isopisthus parvipinnis* (ISPA), *Stellifer brasiliensis* (STBR), *Paralichthys brasiliensis* (PABR) da baía de Santos.

Figura 4.2. Fotomicrografias dos estágios de desenvolvimento dos ovários, com destaque para diferentes fases ovocitárias, de *Isopisthus parvipinnis*. A – fêmea imatura (estádio A) (aumento 40x), B – fêmea imatura (aumento 100x), C – fêmea em maturação (estádio B) (aumento 40x), D – fêmea em maturação (aumento 100x), E – fêmea madura (estádio C) (aumento 40x), F – fêmea madura (aumento 100x), G – fêmea hidratada (estádio H) (aumento 40x), H – fêmea hidratada (aumento 100x). OAV – ovócito avitelogênico, OER – ovócito do estoque de reserva, OVL – ovócito em vitelogênese lipídica, OM – ovócito maduro, OH – ovócito hidratado, N – núcleo, MN – migração nuclear.

Figura 4.3. Fotomicrografias dos estágios de desenvolvimento dos ovários, com destaque para diferentes fases ovocitárias, de *Stellifer brasiliensis*. A – fêmea em maturação (estádio B) (aumento 40x), B – fêmeas em maturação (aumento
100x), C – fêmea madura (estádio C) (aumento 40x), D – fêmea madura (aumento 100x), E – fêmea hidratada (estádio D) (aumento 40x), F – fêmea hidratada (aumento 100x), G – fêmea com ovário em reorganização (aumento 40x), H – fêmea com ovário em reorganização (aumento 100x). OAV – ovócito avitelogênico, OER – ovócito do estoque de reserva, OVL – ovócito em vitelogênese lipídica, OVP – ovócito com vitelogênese protéica, OM – ovócito maduro, OH – ovócito hidratado, NC – núcleo central. 116

Figura 4.4. Fotomicrografias dos estágios de desenvolvimento dos ovários, com destaque para diferentes fases ovocitárias, de Paralonchurus brasiliensis. A – fêmea imatura (estádio A) (aumento 40x), B – fêmea imatura (aumento 100x), C – fêmea em maturação (estádio B) (aumento 40x), D – fêmea em maturação (aumento 100x), E – fêmea madura (estádio C) (aumento 40x), F – fêmea madura (aumento 100x), OAV – ovócito avitelogênico, OER – ovócito do estoque de reserva, OVL – ovócito em vitelogênese lipídica, OVP – ovócito com vitelogênese protéica, OM – ovócito maduro, NC – núcleo central. 117

Figura 4.5. Comprimento de primeira maturação gonadal das fêmeas das espécies Stellifer rastrifer, Isopisthus parvipinnis e Paralonchurus brasiliensis da baía de Santos, calculados a partir da avaliação microscópica dos ovários. 121

Figura 4.6. Valores médios e desvio-padrão da relação gonadossomática das fêmeas de cienídeos estudadas microscopicamente na baía de Santos (STRA = Stellifer rastrifer (N= 150), ISPA = Isopisthus parvipinnis (N= 24), STBR = Stellifer brasiliensis (N= 55) e PABR = Paralonchurus brasiliensis (N= 50)). 122

Figura 4.7. Porcentagem da variação sazonal dos estágios de maturação das principais espécies de cienídeos estudadas na baía de Santos, baseado na identificação microscópica dos ovários. (STRA = Stellifer rastrifer, ISPA = Isopisthus parvipinnis, STBR = Stellifer brasiliensis e PABR = Paralonchurus brasiliensis, A = estádio imaturo, B = estádio em maturação, C = estádio maduro, D = estádio hidratado e RE = ovário em reorganização) 123

Figura 5.1. Fotomicrografia de fêmeas em maturação (estádio B) (A e B) e maduras (estádio C) (C e D) da espécie Stellifer rastrifer. A = fêmea em maturação (aumento 40x); B = fêmea em maturação (aumento 100x); C = fêmea madura (aumento 40x); D = fêmea madura (aumento 100x). 139
Figura 5.2. Fases de processamento das imagens dos ovócitos pelo programa ImageJ para a análise da frequência do diâmetro dos ovócitos. A – foto dos ovócitos, B – transformação da foto em preto e branco e separação dos ovócitos, C – imagem pronta para tomada dos dados de diâmetro. 140

Figura 5.3. Diâmetro dos ovócitos das fêmeas em maturação (estágio B) do cangoá *Stellifer rastrifer*, capturadas na baía de Santos. 141

Figura 5.4. Distribuição do diâmetro dos ovócitos das fêmeas maduras (estágio C) de *Stellifer rastrifer*, capturadas na baía de Santos. 141

Figura 5.5. Distribuição mensal do diâmetro dos ovócitos (mm) das fêmeas (N=20) em maturação (estágio B) do cangoá *Stellifer rastrifer*, capturadas na baía de Santos (SP). ... 142

cont. Figura 5.5. Distribuição mensal do diâmetro dos ovócitos (mm) das fêmeas (N=20) em maturação (estágio B) do cangoá *Stellifer rastrifer*, capturadas na baía de Santos (SP). ... 142

Figura 5.6. Distribuição do diâmetro dos ovócitos ao longo dos meses para as fêmeas (N = 71) maduras (estágio C) da espécie *Stellifer rastrifer*. 144

cont. Figura 5.6. Distribuição do diâmetro dos ovócitos ao longo dos meses para as fêmeas (N = 71) maduras (estágio C) da espécie *Stellifer rastrifer*. ... 144
RESUMO
O objetivo deste estudo foi descrever aspectos biológicos das espécies de cienídeos na baía de Santos. As coletas foram realizadas mensalmente, entre dezembro de 2004 e dezembro de 2005. Foram estudadas a composição específica; a estrutura populacional de dez espécies, incluindo idade e crescimento; a biologia reprodutiva de quatro espécies; e o tipo de fecundidade de *Stellifer rastrifer*. Foram capturados 29.306 exemplares pertencentes a 13 gêneros e 21 espécies, com *S. rastrifer* representando 70,4 % da composição total, seguido por *Isopisthus parvipinnis* e *Stellifer brasiliensis*, perfazendo 85%. A baía de Santos é caracterizada principalmente por indivíduos jovens, com a entrada de indivíduos para as populações ocorrendo em diversas épocas do ano. As análises reprodutivas e a confirmação histológica da maturação indicaram que as quatro principais espécies estudadas completam ciclo reprodutivo na região. As análises histológicas indicaram erros na identificação dos estádios macroscópicos dos ovários: fêmeas classificadas como “em maturação” (estádio B) foram reclassificadas como “em reorganização” após as análises microscópicas. *Isopisthus parvipinnis* e *Stellifer brasiliensis* apresentaram fêmeas desovantes nos meses de verão e *Paralonchurus brasiliensis* no inverno. A espécie *Stellifer rastrifer* apresentou distribuição de diâmetro dos ovócitos de maneira contínua, indicando que a espécie apresenta desenvolvimento assincrônico e fecundidade indeterminada.

Palavras-chave: Sciaenidae, baía de Santos, estrutura populacional, reprodução, *Stellifer rastrifer*.
ABSTRACT
The goal of this study was to describe the biological aspects of Sciaenid species in Santos bay. Samplings were performed monthly, between November/2004 to December/2005. The specific composition; the population structures of ten species, including the age and growth; the reproductive biology of four species and the type of fecundity of Stellifer rastrifer were studied. In the present study 29,306 individuals were caught, belonging to 13 genus and 21 species, with the species Stellifer rastrifer represented 70.4%, followed by Isopisthus parvipinnis and S. brasiliensis, resulting in 85% of the total Sciaenid composition. The Santos bay is mainly characterized by juveniles, with the recruitment of new individuals to the population occurring in several periods of the year. The reproductive analysis and the histological confirmation of the maturation stages indicated which the four main species studied complete their reproductive cycle in this region. The histological analysis indicated some errors in the identification of the macroscopic ovary stages, i.e., females classified as “in maturation” (stage B) were reclassified as “in reorganization” after the microscopic analysis. Hydrated females of Isopisthus parvipinnis and Stellifer brasiliensis occurred during the summer months while the hydrated females of Paralonchurus brasiliensis in the winter. The specie Stellifer rastrifer showed the oocytes diameter distribution in continuous pattern, indicating that the species has asynchronous development and indeterminate fecundity.

Key-words: Sciaenidae, Santos bay, biological structure, reproductive parameters, Stellifer rastrifer.
INTRODUÇÃO GERAL

Sciaenidae apresenta cerca de 70 gêneros e 270 espécies (Nelson, 2006). No litoral brasileiro é registrada a ocorrência de 21 gêneros e 54 espécies desta família, sendo que três gêneros e dezoito espécies ocorrem somente em águas interiores (Menezes et al., 2003). Os peixes da família são conhecidos popularmente como roncadores, porque emitem som característico, que às vezes se ouve à distância, produzido pela bexiga natatória (Sinque, 1980; Chao, 2002).

Por outro lado, os cienídeos estão entre itens alimentares prevalecentes do peixe-espada Trichiurus lepturus (Bittar et al., 2008), do tubarão Carcharhinus porosus (Lessa e Almeida, 1997), da fragata Fregata magnificens (Branco et al., 2007) e da toninha Pontoporia blainvillei que, segundo os autores, alimenta-se preferencialmente de exemplares medindo acima de 100 mm (Di Benedito e Arruda Ramos, 2001). A presença de espécies da família na dieta dessa ampla variedade de organismos nectônicos enfatiza o caráter de sua importância ecológica.
Os Sciaenidae representam o principal recurso pesqueiro de águas rasas em muitas regiões tropicais a temperadas quentes do mundo, no sudeste e sul do Brasil, estão entre os peixes mais pescados sobre a plataforma continental interna (Santos-Ninin, 2008). Estoques pesqueiros formados por espécies desta família, que vêm sendo alvo da intensa atividade pesqueira realizada pela frota comercial (Braga, 1990), constituem uma importante parcela das capturas comerciais efetuadas no sudeste do Brasil, capturada principalmente com redes de arrasto de fundo, mas também com picarés, emalhes e, no caso das espécies de coluna de água, com anzóis (Menezes e Figueiredo, 1980; Valentini e Pezzuto, 2006).

A pesca de arrasto-de-parelha é uma das mais tradicionais no segmento industrial da região Sudeste-Sul, sendo que na região Sul as principais espécies capturadas são cienídeos, como a castanha (*Umbrina canosa*), corvina (*Micropogonias furnieri*), pescadinha-real (*Macrodon ancylodon = M. atricauda*) e pescada-olhuda (*Cynoscion guatucupa*), enquanto que na região Sudeste as principais espécies capturadas são a corvina, o goete (*Cynoscion jamaicensis*) e a pescadinha-real (Valentini e Pezzuto, 2006). Além disso, há grande representatividade das espécies *Micropogonias furnieri* e *Menticirrhus americanus*, numa ampla parcela da categoria “mistura”, devido à captura de indivíduos de pequeno porte e espécies de baixo valor comercial (Souza *et al.*, 2007).

A pesca de emalhe sempre foi marcada pela captura de elasmobrânquios, contudo a participação deste grupo vem decrescendo, sendo atualmente substituído por cienídeos, principalmente corvina e castanha (Valentini e Pezzuto, 2006).

O sistema baía-estuário de Santos e São Vicente apresenta alta diversidade e abundância de peixes (Paiva Filho *et al.*, 1987), sendo que os Sciaenidae são os mais representativos (Paiva Filho e Schmiegelow, 1986; Ribeiro Neto, 1989; Dias, 2007).

Em 2004, a baixada Santista representou cerca de 75% da produção pesqueira total do litoral do estado de São Paulo com destaque das espécies de sardinha-verdadeira (*Sardinella brasiliensis*) e corvina (*Micropogonias furnieri*) (Ávila-da-Silva *et al.*, 2005). No ano de 2005, quando houve uma pequena queda na produção pesqueira em Santos, dentre as espécies
capturadas no estado de São Paulo, a corvina foi a mais abundante, correspondendo a 17% da captura total. Entre outros cienídeos que apresentaram captura expressiva estão a pescada goete (*Cynoscion jamaicensis*), a betara (*Menticirrhus spp.*) e pescada-foguete (*Macrodon ancylodon* = *M. atricauda*) (Ávila-da-Silva *et al.*, 2007).

Além da sua importância comercial, os cienídeos representam o maior componente da captura em arrasto de fundo e como fauna acompanhante (“by-catch”) na pesca dirigida ao camarão sete-barbas (Chao, 2002). Tal fato é justificado tanto pelos hábitos semelhantes entre os dois grupos como pelo hábito alimentar de muitos cienídeos, que consomem estes camarões (Soares e Vazzoler, 2001). De acordo com Coelho *et al.* (1986) as espécies *Isopisthus parvipinnis*, *Paralochirus brasiliensis*, *Stellifer rastifer* e *S. brasiliensis*, descartadas como rejeito da pesca direcionada ao camarão sete-barbas, apresentaram alguns espécimes adultos ou em início de maturação.

Com relação às características reprodutivas, vários estudos têm sido publicados sobre as espécies em diferentes áreas do litoral brasileiro. Camargo e Isaac (2005) estudaram *Macrodon ancylodon*, *Stellifer rastifer* e *S. naso*, no estuário do rio Caeté, região norte, e verificaram que os juvenis foram mais abundantes na região interna do estuário enquanto que os adultos eram mais abundantes na região externa do estuário e na área mais costeira, segundo aos autores, a espécie *Macrodon ancylodon* apresentou o período de desova entre outubro e fevereiro, enquanto que *Stellifer rastifer* e *S. naso* apresentaram uma desova contínua por todo o ano. Para a região nordeste, Alcântara (1989) analisou a ictiofauna presente no estuário do rio Sergipe, destacando a reprodução das principais espécies dentre elas, *Stellifer rastifer* e *S. stellifer* que apresentam padrões reprodutivos semelhantes, com picos de maturação, entre janeiro e abril e de julho a outubro. No estado da Bahia, Romero *et al.* (2008) analisaram a biologia de *Isopisthus parvipinnis* capturada na pesca dirigida ao camarão, e estimaram o comprimento de primeira maturação gonadal e de acordo com os autores 95% da população de tortinha estudada se encontram abaixo do valor de L$_{50}$ (159 mm).

Na região sudeste, Costa e Araújo (2003) analisaram a relação peso-comprimento e o fator de condição de *Micropogonias furnieri* na baía de Sepetiba (RJ), com os maiores valores de condição registrados em outubro,
novembro e abril, e na zona interna da baía, devido a presença de muitos indivíduos juvenis nesta área, de acordo com os autores a melhor condição na área interna está relacionada principalmente com a disponibilidade de alimento. Enquanto que Vicentini e Araújo (2003) verificaram a proporção sexual e estrutura de tamanho para esta mesma espécie e região, com maior proporção de machos na área externa, bem como indivíduos maduros. Ao longo do estado de São Paulo, Paiva Filho e Rossi (1980) estudaram a fecundidade e desova de *Paralonchurus brasiliensis* e verificaram que a espécie apresenta desova prolongada entre agosto e dezembro.

Ainda no estado de São Paulo, Coelho *et al.* (1985; 1987; 1988; 1993) verificaram os aspectos biológicos de *Stellifer rastrifer*, *S. brasiliensis*, *Isopisthus parvipinnis* e *Paralonchurus brasiliensis*, respectivamente, presentes na pesca dirigida ao camarão sete-barbas, para cada espécie foi analisado alguns parâmetros biológicos, mas em todos os casos foram estimados o comprimento médio de primeira maturação gonadal, como para *S. rastrifer* que estimaram o L_{50} em 95 mm para as fêmeas e 97 mm para os machos, para *S. brasiliensis* os autores observaram um predomínio de fêmeas e o L_{50} estimado em 73 mm, para *I. parvipinnis* a proporção sexual foi maior de fêmeas, e a espécie apresentou longo período de recrutamento, para *P. brasiliensis* foi estimado o L_{50} em 146 mm.

Na região de Ubatuba, Isaac-Nahum e Vazzoler (1987) analisaram a biologia reprodutiva de *Micropogonias furnieri* utilizando como indicadores a relação gonadossomática, comprimento e peso dos ovários, a aplicação destes indicadores reflete o verdadeiro grau de maturação gonadal e para a espécie estudada os três indicadores apresentaram valores que coincidiram entre si identificando o período de desova (outono, inverno e primavera-verão). Já para a espécie *P. brasiliensis* pode ser citado o trabalho de Cunningham e Diniz Filho (1995) que verificaram um predomínio de fêmeas e o comprimento de primeira maturação gonadal em 145 mm, entretanto, os autores concluíram que as fêmeas não realizam sua desova na área estudada, devido a escassez de indivíduos maduros. Chaves (1989) analisou o desenvolvimento ovocitário de algumas espécies entre elas, *Isopisthus parvipinnis* e *Menticirrhus americanus*, as quais, segundo o autor, apresentam desova prolongada. Peres-Rios (2001), no sistema estuarino-lagunar de Cananéia-Iguape, verificou o papel do estuário
no ciclo de vida das espécies dominantes da ictiofauna, dentre estas, *Stellifer rastrifer* que completa todo o seu ciclo na regiões, devido a desova que ocorre de maneira prolongada durante todo o ano.

Na Baía de Guaratuba (PR), Chaves (1995) estudou a atividade reprodutiva de *Bairdiella ronchus* e verificou que indivíduos menores que 94 mm deslocam-se de áreas de manguezais no final do verão e início do outono e retorna na primavera, quando inicia a maturação gonadal, fêmeas hidratadas e desovadas foram encontradas no fim da primavera e início do verão, indicando assim os meses de desova. Por sua vez, também na Baía de Guaratuba, Chaves e Vendel (1997) estudaram a biologia reprodutiva *Stellifer rastrifer* e verificaram atividade reprodutiva mais intensa durante o inverno, e principalmente na primavera. A biologia de *Paralonchurus brasiliensis* foi estudada por Robert *et al.* (2007), na Plataforma Continental do Paraná, e seu período reprodutivo ocorreu entre o outono e verão.

Na Armação de Itapocoroy, litoral de Santa Catarina, Almeida e Branco (2002) e Branco *et al.* (2005) estudaram os aspectos biológicos, enfatizando a reprodução, de *Stellifer stellifer* e *Paralonchurus brasiliensis* associados a pesca do camarão sete-barbas, em ambos trabalhos foram registrado um predomínio de fêmeas capturadas, com a desova ocorrendo na primavera e outono.

Muniz e Chaves (2008), na região de Santa Catarina, analisaram a condição reprodutiva de *Menticirrhus americanus* associado a pesca do camarão, e verificaram que a atividade reprodutiva ocorre entre a primavera e verão, coincidindo com o período de pesca do camarão. No Rio Grande do Sul, Haimovici e Cousin (1989) estudaram a biologia reprodutiva da castanha *Umbrina canosai* e verificaram que a desova ocorre entre o final do inverno e no final da primavera, de acordo com os autores, a espécie apresenta um padrão de migração, iniciando com as fêmeas maiores que migram para as áreas de alimentação mais ao sul, seguido pelos machos e fêmeas menores, desta forma, a desova ocorre inicialmente na região norte do Rio Grande do Sul e finaliza mais ao sul do estado. Vieira e Haimovici (1997) analisaram aspectos reprodutivos da espécie *Cynoscion guatucupa*, e verificaram que a espécie apresenta ovócitos hidratados entre outubro e abril, entretanto durante a época de desova foram registrados a presença de ovócitos em vários grupos

Na região da baía de Santos, dentre os estudos sobre a fauna de cienídeos podem ser citados os de: Vazzoler (1970), que realizou levantamento da ocorrência e organizou uma chave de identificação das espécies amostradas; e Giannini e Paiva Filho (1990b), que levantaram quais espécies ocorreram na região, com ênfase na distribuição espacial e temporal, bem como a influência dos fatores abióticos nessa distribuição. Com relação às espécies, aspectos bioecológicos como recrutamento, crescimento e mortalidade foram abordados para *Stellifer rastrifer, Menticirrhus americanus, Isopisthus parvipinnis* e *S. brasiliensis* (Giannini e Paiva Filho, 1990a, 1992, 1994, 1995). De maneira geral apesar do grande número de estudos referentes a esta família, existe uma lacuna de conhecimento sobre os parâmetros reprodutivos para a região da baixada santista.

Os dados com os quais se realizou este estudo foram obtidos no âmbito do subprojeto Ictiofauna do projeto ECOSAN “A influência do complexo estuarino da baixada Santista sobre o ecossistema de plataforma continental adjacente”, cujos objetivos basicamente foram: 1. caracterizar a estrutura populacional em comprimento e biomassa das espécies de peixes mais abundantes, bem como verificar em quais as fases do ciclo de vida que essas espécies ocorrem; 2. detectar padrões de variação na distribuição espacial e temporal das espécies ictíicas e a influência dos parâmetros ambientais na comunidade; e 3. avaliar a saúde e a condição das espécies, a partir de diagnóstico patológico.

A partir dos objetivos do projeto, foram elencados aqueles que fazem parte deste estudo, e que contribuem para o entendimento da ictiofauna local.
OBJETIVOS

Os objetivos do presente estudo são:
- verificar a composição específica dos Sciaenidae na baía de Santos (SP), bem como sua distribuição espacial e temporal e a influência dos fatores abióticos sobre a comunidade local;
- caracterizar a dinâmica populacional das principais espécies da família;
- identificar quais os estratos populacionais das espécies Stellifer rastrifer, S. brasiliensis, S. stellifer, Isopisthus parvipinnis e Paralonchurus brasiliensis, ocupam a baía de Santos;
- verificar o tipo de desenvolvimento ovocitário e o tipo de fecundidade de S. rastrifer.

A hipótese geral deste trabalho é a de que os parâmetros das variáveis populacionais e reprodutivas das espécies de Sciaenidae da baía de Santos são diferentes dos de outras regiões. Para testá-la, foram utilizadas ferramentas como a anatomia microscópica das gônadas, tanto para a descrição do desenvolvimento ovocitário como para a caracterização dos estádios de maturidade gonadal, que subsidiam o entendimento do papel das espécies nesse sistema costeiro.

ÁREA DE ESTUDO

A baixada Santista, localizada na porção central do estado de São Paulo, é uma região caracterizada por intensa atividade industrial, portuária e de ocupação humana. Esta área compreende o sistema estuarino de Santos e São Vicente, a baía de Santos e a plataforma continental adjacente (CETESB, 2001).

O sistema baía-estuário de Santos e São Vicente é um ambiente heterogêneo, formado por vários subambientes: o costão rochoso, a praia arenosa, o manguezal e o fundo lodoso adjacente, originando uma considerável variedade faunística e grande interdependência entre as espécies, o que contribui para o equilíbrio dinâmico do ambiente (Meira et al., 1983).

Durante o verão, a temperatura da coluna d’água varia entre 22° e 28,2°C e a salinidade entre 32 e 35,5, as menores temperaturas são observadas no funda da baía associado com altos valores de temperatura,
indicando a influência da Massa de Água Central do Atlântico Sul (ACAS) para a formação das massas de água no interior da baía (Castro, 2007).

De maneira geral, a sedimentação na baía de Santos é predominantemente argilosa e siltosa em suas porções central e oriental, mas a porção mais a oeste é a mais arenosa (Tessler, 2007). O entorno do emissário compõem-se essencialmente de sedimento em suspensão e areia (Mandaji, 2008).

Segundo Fukumoto (2003) a região da baía de Santos pode ser dividida em duas porções muito distintas, do ponto de vista sedimentológico e geoquímico. A primeira porção corresponde a todo entorno da área (próximo ao continente e também no sul da baía), caracterizada por baixos teores de carbonato biodetrítico, silte, argila e matéria orgânica sedimentar, apresentando fundos com maior granulometria. A segunda porção corresponde ao centro e parte do sudoeste da área e está subdivida, em uma área intermediária e uma área que apresenta altos valores de carbonato biodetrítico, silte, argila e matéria orgânica sedimentar, além de baixas razões de C/N e C/S que indicam sedimento de grande contribuição marinha e ambientes menos oxidantes, de menor energia e, consequentemente, de sedimentos finos.

Há três principais fontes de contribuição da poluição na baixada santista: fonte de origem industrial, de origem portuária e de origem doméstica (CETESB, 2001; Medeiros e Bícego, 2004). A poluição de origem industrial constitui a principal fonte de contaminantes químicos para o sistema, não só pela diversidade dos poluentes envolvidos como pelo volume lançado, muito superior ao de outras fontes. As fontes de origem portuária são, por sua vez, bastante diversificadas em virtude da ampla pauta de produtos manipulados pelos terminais, especialmente os de granéis líquidos, e o potencial de contaminação por estas fontes, exceto em casos de acidente, é inferior ao das indústrias, por apresentarem uma vazão de efluente muito inferior (CETESB, 2001). Por último destaca-se a contribuição por esgotos domésticos que constitui uma grande fonte de nutrientes, matéria orgânica e microrganismos para o sistema estuarino e baía de Santos, levando à eutrofização do ambiente aquático e ao comprometimento da balneabilidade (CETESB, 2001). Estas fontes de eutrofização provêm dos canais estuarinos, dos canais de maré e do emissário (Braga et al., 2000).
Como destaque desta fonte de contaminação encontra-se o sistema de disposição oceânica de esgotos de Santos/São Vicente, que está em operação desde 1978, e consiste em uma estação de pré-condicionamento (EPC) e um emissário submarino (Fukumoto, 2007). O emissário submarino traz grande contribuição de nutrientes e de carga orgânica para o ambiente marinho, mas os poluentes tendem a se dispersar na coluna d’água (CETESB, 2001). Os efluentes domésticos também veiculam alguns contaminantes químicos como metais pesados, fenóis, clorofórmio e outros composto presentes em produtos domésticos ou hospitalares (CETESB, 2001).

O complexo industrial de Cubatão, a emissão de esgotos, o depósito de resíduos e o armazenamento de petróleo e seus derivados na região de Santos são os responsáveis pela contribuição antropogênica de hidrocarbonetos na baía de Santos e os canais adjacentes (Medeiros e Bícego, 2004).

A drenagem continental também carrega para a baía grandes concentrações de nutrientes, dando-lhe características acentuadamente eutróficas (Ribeiro-Neto, 1989). Moser et al. (2005) concluíram que o sistema estuarino de Santos e São Vicente apresenta-se como uma importante fonte para a contribuição da eutrofização na área costeira adjacente, no que se refere aos nutrientes, material em suspensão e clorofila-a, apesar de reter matéria orgânica dissolvida ou partículada.

MATERIAL E MÉTODOS

As coletas de peixes foram realizadas mensalmente na baía de Santos, entre o período de novembro de 2004 e dezembro de 2005, exceto em dezembro de 2004, por problemas logísticos. Foram determinadas seis estações de coleta para amostragem (estações 1, 2, 3, 4, 5 e 6) (figura 1), com profundidade média para as estações 1 e 2 de 12 m, na estação 3 de 10 m, e entre 7 e 8 m nas estações 4, 5 e 6.
Os arrastos foram efetuados utilizando-se os barcos de pesquisa Albacora e Veliger II do Instituto Oceanográfico da Universidade de São Paulo, equipados com rede de arrasto de portas, com malha nos braços de 40 mm e 30 mm no ensacador, comprimento da tralha até a bóia de 2,4 m, comprimento da tralha de chumbo de 16 m, comprimento total da rede de 11 m e comprimento do ensacador de 2,2 m. O arrasto foi realizado em sentido contrário à corrente, com velocidade média de 2 nós, durante aproximadamente 10 min. A temperatura e salinidade da coluna d' água de cada estação oceanográfica foram registradas com auxílio de um CTD (Condutivity, Temperature and Depth sonde) antes do início de cada arrasto.

Os exemplares coletados foram devidamente ensacados, as amostras identificadas (data e número da estação de coleta), congeladas e transportadas até a sede do Instituto Oceanográfico em São Paulo.

No laboratório foram realizadas as triagens do material biológico. Os exemplares de Sciaenidae foram identificados ao nível de espécie com o auxílio da chave de identificação presente em Menezes e Figueiredo (1980), sendo que para atualização da nomenclatura foram utilizados os trabalhos de Chao (2002) e Menezes et al. (2003), e para a atualização da espécie...
Macrodon ancyldodon para Macrodon atricauda foi utilizado o trabalho de Carvalho-Filho et al. (2010).

Seguida a identificação das espécies foram tomadas as medidas com os exemplares colocados com o flanco direito sobre o ictiómetro:
- comprimento total = CT (em mm): medida da ponta do focinho à maior extremidade da nadadeira caudal;
- comprimento padrão = CP (em mm): medida da ponta do focinho ao pedúnculo caudal.

Foi também tomado o peso total (PT) de cada exemplar com precisão de 0,01 g.

Após a tomada dos dados morfométricos, os exemplares foram dissecados para a verificação do sexo, de acordo com as características descritas por Vazzoler (1981, 1996).

Os procedimentos e análises específicas estão descritas nos capítulos correspondentes.

REFERÊNCIAS BIBLIOGRÁFICAS

CAMARGO, M.; ISAAC, V. Food categories reconstruction and feeding consumption estimates for the Sciaenid *Macrodon anclyodon* (Bloch e Schneider), and the congeneric fishes *Stellifer rastrifer* (Jordan) and *Stellifer naso* (Jordan) (Pisces, Perciformes) in the Caeté estuary, Northern Coast of Brazil. *Revta bras. Zool.*, v. 21, p. 85 – 89, 2004.

CARVALHO-FILHO, A.; SANTOS, S.; SAMPAIO, I. *Macrodon atricauda* (Günther, 1880) (Perciformes: Sciaenidae), a valid species from

COELHO, J. A. P.; PUZZI, A. GRAÇA LOPES, R.; RODRIGUES, E. S.; PRIETO Jr., O. Análise da rejeição de peixes na pesca artesanal dirigida ao

MANDAJI, D. S. *Emissário submarino de Santos contribuição nos sedimentos de fundo para Al, Mg, K, Ca, Fe, Ti, Na, Si, Ba, Cu, Zn, Cr,*

SOUZA, M. R.; CARNEIRO, M. H.; QUIRINO-DUARTE, G.; SERVO, G. J. M. Caracterização da “mistura” na pesca de arrasto-de-parelha desembarcada

1. Composição e influência dos fatores ambientais na distribuição espaço-temporal das espécies de Sciaenidae (Perciformes) na baía de Santos, SP

Resumo

No litoral brasileiro Sciaenidae está entre as famílias com maior riqueza específica, abundância e biomassa. O objetivo do presente estudo foi analisar a composição, a distribuição espaço-temporal e a influência da temperatura, salinidade e profundidade na comunidade de cienídeos da baía de Santos. Foram amostrados 29.306 exemplares, entre novembro de 2004 e dezembro de 2005, pertencentes a 13 gêneros e 21 espécies. *Stellifer rastrifer* representou 70,4 % da composição total. A estação oceanográfica 1, localizada do lado leste da baía, apresentou a maior abundância e biomassa, enquanto que na estação 6, interna e próxima da desembocadura do canal de Santos, foi registrada a maior riqueza (16 espécies), sendo a estação que apresentou menor similaridade com o restante da área amostrada. Em abril de 2005 foi registrada a maior abundância e em setembro de 2005 a menor. Os fatores ambientais que apresentaram diferenças significativas na distribuição da comunidade de cienídeos entre as estações de coleta na baía de Santos foram a profundidade, seguida pela temperatura.

Palavras-chave: baía de Santos, comunidade de cienídeos, distribuição espaço-temporal

1.1. Introdução

Sciaenidae, pertencente à ordem Perciformes, é composta por cerca de 70 gêneros e 270 espécies (Nelson, 2006). No litoral brasileiro é representada por 21 gêneros e 54 espécies, sendo que 14,4 % dos gêneros e 33,3 % das espécies ocorrem somente em águas interiores (Menezes *et al.*, 2003). Muitos cienídeos utilizam os ambientes estuarinos sazonalmente para a desova e passam as fases iniciais de seu ciclo de vida, bem como permanecem na área durante as fases jovens e adultas. Embora a grande maioria das espécies seja encontrada em ambientes de fundo arenoso e lamoso, algumas espécies habitam águas profundas e outras ocupam habitats especiais como recifes de
coral (*Equetus*) e zona de arrebentação (*Menticirrhus*) (Menezes e Figueiredo, 1980; Chao, 2002).

Os peixes desta família representam o principal recurso pesqueiro de águas rasas em muitas regiões tropicais e temperadas (Santos-Ninin, 2008), além de formarem uma importante parcela da fauna acompanhante direcionada à captura de outras espécies alvo, tais como o camarão rosa, camarão branco e principalmente o camarão sete-barbas (Coelho *et al.*, 1986; Santos *et al.*, 1998; Graça Lopes *et al.*, 2002; Bail e Branco, 2003; Vianna *et al.*, 2004; Branco e Verani, 2006; Gomes e Chaves, 2006). Segundo Coelho *et al.* (1986), na análise do rejeito de pesca dirigida ao camarão sete-barbas no litoral paulista, a família mais abundante em número e peso foi Sciaenidae, com destaque para as espécies *Stellifer rastrifer*, *S. brasiliensis*, *Isopisthus parvipinnis*, *Paralonchurus brasiliensis*, correspondendo a mais de 50% do rejeito total. Segundo os autores, a alta frequência de ocorrência indica que, ou as espécies são abundantes ou estão agrupadas no momento e na área dos arrastos. Considerando-se as relações ecológicas, a associação entre os cienídeos e os camarões Penaeoidea ocorre possivelmente pelo fato que muitas espécies de peixes buscam as mesmas áreas de ocorrência dos camarões em função dos fatores ambientais, como tipo de sedimento e profundidade, ou para utilizá-los como recurso alimentar (Santos *et al.*, 2008).

Nos levantamentos da comunidade de peixes realizados na baía de Santos, esta família esteve representada por nove gêneros e doze espécies (Vazzoler, 1970), quatorze gêneros e vinte espécies (Giannini e Paiva Filho, 1990b), e dentre as espécies mais abundantes na baía de Santos estão *Stellifer rastrifer*, *Isopisthus parvipinnis*, *Paralonchurus brasiliensis*, *Micropogonias furnieri*, *Stellifer brasiliensis* e *Menticirrhus americanus* (Giannini e Paiva Filho, 1990b).

Em ecossistemas costeiros, assume-se que variações na temperatura e salinidade influenciam os padrões espaciais e temporais das comunidades biológicas (Sosa-López, 2007). A influência dos fatores ambientais na distribuição de assembléias de peixes é bem documentada (Blaber e Blaber, 1980; Marshall e Elliott, 1998; Araújo *et al.*, 2002; Raz-Guzman e Huidobro, 2002; Araújo *et al.*, 2006; Sosa-López *et al.*, 2007; Barletta *et al.*, 2008). Estudos mostraram que o tipo de substrato pode influenciar a distribuição dos
cienídeos e a de suas presas, desde que muitas espécies vivem em associação com o fundo (Araújo et al., 2006). Araújo et al. (2006) verificaram a influência dos fatores ambientais, como a temperatura, salinidade, profundidade e transparência na distribuição de quatro espécies de cienídeos, *Ctenosciaena gracilicirrhus*, *Cynoscion leiarchus*, *Menticirrhus americanus* e *Micropogonias furnieri* ao longo da baía de Sepetiba, segundo os autores a profundidade, seguida pela transparência são os fatores ambientais que mais afetam a distribuição dos peixes.

O objetivo deste estudo foi descrever a estrutura da comunidade de cienídeos na baía de Santos, estudar sua distribuição espaço-temporal e examinar a influência das variáveis ambientais (temperatura, salinidade e profundidade) na composição da comunidade estudada.

1.2. **Material e Métodos**

1.2.1 **Coleta dos exemplares e obtenção dos dados**

A coleta dos exemplares e a tomada de dados morfométricos encontram-se descritos no item “Material e Métodos”.

1.2.2 **Elaboração e análise dos resultados**

Com o intuito de medir a diversidade da família Sciaenidae na baía de Santos, os seguintes parâmetros de comunidade foram calculados: índice de riqueza de Margalef (D), índice de equitabilidade de Pielou (J') e índice de diversidade de Shannon (H'), segundo Begon et al. (2006).

Para as análises estatísticas os dados foram transformados \([\log_{10}(x+1)]\).

A análise de variância (ANOVA) de dois critérios e o teste não paramétrico de Kruskal-Wallis com nível de significância de 5% (Zar, 1996), foram aplicados aos dados de abundância e biomassa da comunidade total para verificar se havia diferença entre as áreas de coleta e os meses amostrados, bem como aos dados das espécies de cienídeos mais abundantes com os dados ambientais. As espécies mais abundantes são aquelas que corresponderam aproximadamente 97% do total.

O índice de similaridade de Bray-Curtis foi aplicado para identificar a estrutura da comunidade e para detectar padrões específicos de distribuição, sendo analisada a abundância total entre os meses de coleta e entre as estações oceanográficas.
A análise de correspondência canônica (CCA) foi aplicada para visualizar e descrever a relação entre as espécies de Sciaenidae da baía de Santos no espaço e no tempo, e entre as variáveis ambientais (temperatura, salinidade e profundidade). A CCA produz um gráfico “biplot” no qual as variáveis ambientais são apresentadas em setas, sendo que o comprimento da seta está relacionado com a relação entre a variável ambiental que o vetor representa e a abundância da espécie analisada (Barletta et al., 2008).

1.3. Resultados
1.3.1. Fatores abióticos

Com relação aos fatores abióticos, a temperatura da coluna d’ água na baía de Santos ao longo dos meses apresentou pequena variação, oscilando entre 20,3 a 26,5 °C, com as maiores médias de temperatura registradas em março de 2005 (26,1 ± 0,8 °C) e as menores, em setembro de 2005 (20,5 ± 0,4 °C) (figura 1.1). Observa-se um aumento nos valores da temperatura da água entre os meses associados à primavera e verão (setembro a março) com uma queda gradual nos meses associados ao outono e inverno (abril a julho) (figura 1.1). O valor médio da salinidade na coluna d’água na baía de Santos ao longo do período estudado variou de 30,32 a 35,37, com os maiores valores de salinidade registrados em novembro de 2005 (35,3 ± 0,3) e os menores em outubro de 2005 (30,32 ± 0,5), sendo que em maio de 2005 foi registrada maior variação dos valores médios (33 ± 1,9) de salinidade da coluna d’água na baía de Santos (figura 1.2).
Figura 1.1. Valores médios de temperatura da coluna d’água, com seus respectivos desvios padrões, ao longo dos meses amostrados na baía de Santos.

Figura 1.2. Valores médios de salinidade da coluna d’água, com seus respectivos desvios padrões, ao longo dos meses amostrados na baía de Santos.
1.3.2. Composição dos Sciaenidae

Na baía de Santos foi amostrado um total de 29.306 indivíduos pertencentes a 13 gêneros e 21 espécies, sendo _Stellifer rastrifer_ a mais abundante correspondendo a 70,39 % do total e com biomassa de 227 kg (60,73 %) (tabela 1.1).

<table>
<thead>
<tr>
<th>Espécie</th>
<th>N</th>
<th>N(%)</th>
<th>Peso</th>
<th>Peso(%)</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellifer rastrifer (Jordan, 1889)</td>
<td>20629</td>
<td>70,39</td>
<td>227071,16</td>
<td>60,73</td>
<td>32-220</td>
</tr>
<tr>
<td>Isopisthus parvipinnis (Cuvier, 1830)</td>
<td>2246</td>
<td>7,66</td>
<td>12500,25</td>
<td>3,34</td>
<td>20-181</td>
</tr>
<tr>
<td>Stellifer brasiliensis (Schultz, 1945)</td>
<td>1670</td>
<td>5,70</td>
<td>27642,91</td>
<td>7,39</td>
<td>36-222</td>
</tr>
<tr>
<td>Paralonusculus brasiliensis (Steindacher, 1875)</td>
<td>1629</td>
<td>5,56</td>
<td>34213,33</td>
<td>9,15</td>
<td>44-240</td>
</tr>
<tr>
<td>Macrodon anclyodon (Bloch & Schneider, 1801)</td>
<td>1152</td>
<td>3,93</td>
<td>11837,6</td>
<td>3,17</td>
<td>22-355</td>
</tr>
<tr>
<td>Stellifer stelifer (Bloch, 1790)</td>
<td>668</td>
<td>2,28</td>
<td>4651,21</td>
<td>1,24</td>
<td>42-201</td>
</tr>
<tr>
<td>Nebris microps Cuvier, 1830</td>
<td>461</td>
<td>1,57</td>
<td>15822,14</td>
<td>4,23</td>
<td>35-290</td>
</tr>
<tr>
<td>Microgonaonias furnieri (Desmaret, 1823)</td>
<td>268</td>
<td>0,91</td>
<td>20256,3</td>
<td>5,42</td>
<td>40-478</td>
</tr>
<tr>
<td>Stellifer sp</td>
<td>229</td>
<td>0,78</td>
<td>1240,59</td>
<td>0,33</td>
<td>40-137</td>
</tr>
<tr>
<td>Larimus breviceps Cuvier, 1830</td>
<td>117</td>
<td>0,40</td>
<td>6134,36</td>
<td>1,64</td>
<td>47-222</td>
</tr>
<tr>
<td>Cynoscion virescens Cuvier, 1830</td>
<td>72</td>
<td>0,25</td>
<td>6158,76</td>
<td>1,65</td>
<td>66-331</td>
</tr>
<tr>
<td>Menticirrhus americanus (Linnaeus, 1758)</td>
<td>56</td>
<td>0,19</td>
<td>3212,85</td>
<td>0,86</td>
<td>63-410</td>
</tr>
<tr>
<td>Bairdiella ronchus (Cuvier, 1830)</td>
<td>45</td>
<td>0,15</td>
<td>2702,67</td>
<td>0,72</td>
<td>61-261</td>
</tr>
<tr>
<td>Cynoscion jamaicensis (Vaillant & Bocourt, 1883)</td>
<td>34</td>
<td>0,12</td>
<td>176,03</td>
<td>0,05</td>
<td>39-164</td>
</tr>
<tr>
<td>Cynoscion sp</td>
<td>9</td>
<td>0,03</td>
<td>2,02</td>
<td>0,00</td>
<td>25-51</td>
</tr>
<tr>
<td>Ophioscion punctatissimus Meek & Hildebrand, 1925</td>
<td>5</td>
<td>0,02</td>
<td>76,36</td>
<td>0,02</td>
<td>99-144</td>
</tr>
<tr>
<td>Umbrina canosa Berg, 1895</td>
<td>5</td>
<td>0,02</td>
<td>74,26</td>
<td>0,02</td>
<td>88-151</td>
</tr>
<tr>
<td>Ctenosiaena gracilicirrhus (Metzelaar, 1919)</td>
<td>3</td>
<td>0,01</td>
<td>21,44</td>
<td>0,01</td>
<td>89-107</td>
</tr>
<tr>
<td>Cynoscion leiarchus (Cuvier, 1830)</td>
<td>3</td>
<td>0,01</td>
<td>5,18</td>
<td>0,00</td>
<td>40-68</td>
</tr>
<tr>
<td>Umbrina coroides Cuvier, 1830</td>
<td>3</td>
<td>0,01</td>
<td>70,03</td>
<td>0,02</td>
<td>125-151</td>
</tr>
<tr>
<td>Menticirrhus littoralis (Holbrook, 1847)</td>
<td>2</td>
<td>0,01</td>
<td>35,98</td>
<td>0,01</td>
<td>142</td>
</tr>
</tbody>
</table>

A análise de agrupamento das espécies de Sciaenidae capturadas na baía de Santos apresentou dois grupos principais em nível de 75% de significância. O primeiro grupo foi constituído pelas espécies mais raras e o segundo, pelas mais abundantes, sendo que este último está subdividido entre as espécies que apresentaram maior número nas capturas, ou seja, _Stellifer rastrifer_, _Macrodon atricauda_, _Isopisthus parvipinnis_, _S. brasiliensis_, _Paralonusculus brasiliensis_, _Microgonaonias furnieri_, _Stellifer sp._, _S. stellifer_ e _Nebris microps_, e as espécies que formam um grupo intermediário de abundância, com _Larimus breviceps_, _Cynoscion jamaicensis_, _C. virescens_, _Menticirrhus americanus_ e _Bairdiella ronchus_ (figura 1.3).
1.3.3. Variação espaço-temporal da distribuição da fauna de cienídeos

A riqueza de espécies apresentou pequena variação entre as estações oceanográficas, porém na estação 6 registrou-se o maior índice de riqueza (D= 2,04), de diversidade (H'= 1,62) e de equitabilidade de Pielou (J'=0,58) (tabela 1.2). Em janeiro de 2005 foi registrada a maior riqueza (N=17; (D)= 2,14), enquanto que a maior diversidade de Shannon para os Sciaenidae foi registrada em setembro (H'= 1,65) e em dezembro de 2005 (H'= 1,64) e a menor em abril de 2005 (H'= 0,65), sendo que neste mês foi registrada a maior abundância numérica (tabela 1.2).
Com relação à distribuição espacial houve pequena variação no número de espécies coletadas, sendo que na estação 2 foram amostradas 15 espécies, na estação 3 somente 14 espécies e no restante das estações foram capturados 16 espécies (tabela 1.2). Em termos de abundância registrou-se maior frequência numérica dos exemplares ao longo da estação 1 (n=9.234; 31,5%) e menor na estação 6 (n= 1.544; 5,27%) (tabela 1.2). Na baía de Santos, a maior abundância e biomassa total foram registradas na estação 1 (tabela 1.2, figura 1.4). Na estação 3 observa-se uma elevada abundância, porém uma baixa frequência de peso, provavelmente pela captura de peixes pequenos, o que é diferente da estação 6, que apresentou baixa abundância com uma alta biomassa (figura 1.4). Das 21 espécies amostradas, dez foram capturadas em todas as estações oceanográficas, enquanto que a espécie Cynoscion leiarchus foi amostrada somente na estação 6.
Figura 1.4. Distribuição espacial da abundância numérica (N) e em peso (g) dos exemplares pertencentes à família Sciaenidae, por estação oceanográfica, capturados ao longo dos meses da baía de Santos.

Na baía de Santos, observou uma segregação de distribuição espacial, com preferência das espécies pela estação 1. A espécie *Stellifer rastrifer* apresentou a maior abundância na estação 1, seguida pela estação 4,
enquanto que *Isopisthus parvipinnis* apresentou as maiores abundâncias na área externa estudada (estações 1, 2 e 3). Para *Stellifer brasiliensis* o maior número de exemplares foi registrado na estação 1, seguido pelas estações 5 e 6. A maria-luíza *P. brasiliensis* apresentou as maiores abundâncias também na estação 1, seguida pela 2 (figura 1.5).

![Gráfico de distribuição espacial da abundância numérica (N) das principais espécies de cienídeos amostrados na baía de Santos.](image)

Figura 1.5. Distribuição espacial da abundância numérica (N) das principais espécies de cienídeos amostrados na baía de Santos.

As análises de agrupamento de abundância de espécies em termos espaciais na baía de Santos demonstraram maior similaridade entre as estações 2 e 3 (± 85%), as mais externas e profundas da baía e, 4 e 5 (± 88%) as mais rasas da baía. A estação 6 apresentou menor similaridade (70%) com o restante das estações (figura 1.6), devido principalmente a sua baixa abundância (figura 1.4).
Em termos temporais, maiores valores de abundância em número e peso ocorreram nos meses entre abril e julho, sendo o mês de abril de 2005 foi o mais abundante com 5.389 exemplares coletados (18,39 %), enquanto setembro de 2005 foi o mês com menor abundância (n=795; 2,71 %) (figura 1.7). Foram capturadas de 10 a 17 espécies ao longo dos meses, sendo que em janeiro de 2005 foi amostrada a maior riqueza (tabela 1.2).

Com relação à análise de similaridade de Bray-Curtis verifica-se que os meses de agosto a novembro, compondo os meses de inverno e início de primavera, apresentaram mais de 85 % de similaridade; os meses de abril a julho, mais de 80 % de similaridade, relacionados ao outono e início do inverno; e os meses de verão – dezembro a março – com mais de 75 % de similaridade na abundância. Novembro de 2004 foi o mês mais dissimilar. De maneira geral, observam-se dois grandes grupos, destacando os meses de verão do restante dos meses (figura 1.8).
Figura 1.7. Frequência relativa da abundância (N) e peso (P) mensal dos cienídeos amostrados na baía de Santos.

As relações entre abundância e biomassa total da comunidade de cienídeos e das espécies *Stellifer rastrifer*, *S. brasiliensis*, *Macrodon atricauda* e *S. stellifer* com os meses de coleta não apresentaram diferenças
significativas. A pescada banana *Nebris microps* apresentou diferenças significativas, ao longo dos meses de coleta, tanto na abundância quanto na biomassa (tabela 1.3). A comparação entre a abundância e biomassa da comunidade e de todas as espécies de cienídeos, exceto *Nebris microps*, registrou diferença significativa com as estações oceanográficas, sendo que na maioria dos casos a diferença esteve associada com as estações oceanográficas 1 e 6 (tabela 1.3).

Tabela 1.3. Resultados da análise ANOVA dois critérios e Kruskal-Wallis (a) da abundância total, biomassa total e das principais espécies de cienídeos da baía de Santos, SP. (*p>0,01; **p>0,05).

<table>
<thead>
<tr>
<th>Meses de coleta</th>
<th>Abundância</th>
<th>Biomassa</th>
<th>Estações oceanográficas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>n.s.</td>
<td>n.s.</td>
<td>1-6, 2-6, 4-6 e 5-6*; 3-6**; 1-3 e 1-6**</td>
</tr>
<tr>
<td>Stellifer rastrifer</td>
<td>n.s.</td>
<td>n.s.</td>
<td>1-6, 2-6, 5-6*; 1-6 e 2-6*; 3-6 e 5-6**</td>
</tr>
<tr>
<td>Isopisthus parvipinnis</td>
<td>Jan-Sep/05**</td>
<td>n.s.</td>
<td>1-6 e 2-6*; 3-6**; 1-6 e 2-6*; 3-6 e 5-6**</td>
</tr>
<tr>
<td>Stellifer brasiliensis</td>
<td>n.s.</td>
<td>n.s.</td>
<td>1-2, 1-3, 1-4, 2-6, 3-5, 1-2, 1-3, 1-4, 2-6, 3-5, 3-6 e 4-6*; 3-6 e 5-6**</td>
</tr>
<tr>
<td>Paralonus brasiliensis</td>
<td>Jan-Ago, Jul-Dez, Ago-Nov, Ago-Dez e Set-Dec/05*</td>
<td>n.s.</td>
<td>1-3, 1-4, 1-5, 1-6, 2-3 e 1-3 e 1-6*; 1-4, 1-5 e 2-6**</td>
</tr>
<tr>
<td>Macrodon atricauda</td>
<td>n.s.</td>
<td>n.s.</td>
<td>1-4, 1-6, 2-4, 2-6, 3-6*; 1-6 e 3-6*; 1-4, 1-5 e 2-6*</td>
</tr>
<tr>
<td>Stellifer stellifer</td>
<td>n.s.</td>
<td>n.s.</td>
<td>1-2, 2-4, 2-5, 3-5, 4-6 e 5-6*; 1-6 e 3-4**</td>
</tr>
<tr>
<td>Nebris microps</td>
<td>Jan-Abr/05*; Nov/04-Jan/05, Fev-Abr, Abr-Mai e Abr-Out/05**</td>
<td>n.s.</td>
<td>5-6*; 1-6 e 3-4**</td>
</tr>
</tbody>
</table>

A soma de todos os autovalores na análise de correspondência canônica na matriz das espécies foi 0,596 (tabela 1.4).
Tabela 1.4. Resultados da ordenação principal da análise de correspondência canônica.

<table>
<thead>
<tr>
<th>Eixos</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlação dos meses e estações oceanográficas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novembro</td>
<td>0,02</td>
<td>0,1</td>
<td>-0,11</td>
<td>0,31</td>
</tr>
<tr>
<td>Janeiro</td>
<td>-0,07</td>
<td>0,16</td>
<td>-0,3</td>
<td>-0,13</td>
</tr>
<tr>
<td>Março</td>
<td>0,12</td>
<td>0,04</td>
<td>-0,09</td>
<td>-0,06</td>
</tr>
<tr>
<td>Abril</td>
<td>0,29</td>
<td>-0,21</td>
<td>-0,1</td>
<td>0,05</td>
</tr>
<tr>
<td>Maio</td>
<td>0</td>
<td>0,01</td>
<td>-0,38</td>
<td>-0,1</td>
</tr>
<tr>
<td>Junho</td>
<td>0,11</td>
<td>-0,2</td>
<td>0</td>
<td>0,25</td>
</tr>
<tr>
<td>Julho</td>
<td>0,11</td>
<td>-0,31</td>
<td>0,14</td>
<td>0,03</td>
</tr>
<tr>
<td>Agosto</td>
<td>-0,13</td>
<td>-0,11</td>
<td>0,17</td>
<td>0</td>
</tr>
<tr>
<td>Setembro</td>
<td>-0,17</td>
<td>0,03</td>
<td>0,31</td>
<td>0,09</td>
</tr>
<tr>
<td>1</td>
<td>0,03</td>
<td>0,24</td>
<td>-0,02</td>
<td>0,46</td>
</tr>
<tr>
<td>2</td>
<td>-0,5</td>
<td>0,19</td>
<td>-0,08</td>
<td>-0,11</td>
</tr>
<tr>
<td>3</td>
<td>-0,35</td>
<td>0,01</td>
<td>0,15</td>
<td>-0,1</td>
</tr>
<tr>
<td>6</td>
<td>0,53</td>
<td>0,27</td>
<td>-0,31</td>
<td>-0,21</td>
</tr>
<tr>
<td>Autovalor</td>
<td>0,14</td>
<td>0,08</td>
<td>0,02</td>
<td>0,02</td>
</tr>
</tbody>
</table>

Correlação das espécies com os meses e estações oceanográficas	0,85	0,74	0,63	0,57
Porcentagem da variação acumulativa (%)	16,2	25,2	28	30,3
dados de espécie	47,8	74,1	82,4	89,2
relação espécie-distribuição espacial e temporal				
Inércia total	0,596			

Quando estudada a distribuição espaço-temporal pela análise de correspondência canônica verificou-se que a espécie *S. rastrifer* está correlacionada principalmente com os meses de abril, maio, junho e julho; *I. parvipinnis* e *P. brasiliensis* estão associadas com as estações 1 e 2, enquanto que *M. atricauda* está com a estação 2. A espécie *S. stellifer* está correlacionada com o mês de abril e estação 5, enquanto que *Stellifer sp.* está associada, com os meses de abril, junho e julho de 2005 e com as estações 4 e 5, devido suas maiores abundâncias; e as espécies *Bairdiella ronchus* e *Umbrina canosai* apresentaram maior correlação com a estação 6 (figura 1.9).
De acordo com a análise de correspondência canônica (CCA) entre a abundância das espécies e as variáveis ambientais, o fator mais significativo foi a profundidade seguido pela temperatura. A salinidade foi a única variável ambiental que não apresentou diferença significativa em relação à distribuição das espécies na baía de Santos. Na figura 1.9 observa-se que a abundância da espécie *Menticirrhus littoralis* apresentou maior relação com a temperatura, enquanto que a abundância das espécies *Isopisthus parvipinnis* e *Paralonchurus brasiliensis* está mais relacionadas com a profundidade (figura 1.10).
1.4. Discussão

Conhecer a diversidade de espécies numa área é fundamental para a compreensão da natureza e, por extensão, para otimizar o gerenciamento da área em relação a atividades de exploração de baixo impacto, conservação de recursos naturais ou recuperação de ecossistemas degradados (Melo, 2008). Entretanto, há dificuldade na comparação da riqueza e abundância de espécies em diferentes áreas, uma vez que os habitats apresentam diferenças e os esforços de captura também podem ser diferentes (Araújo et al., 2006).

A alta representatividade dos Sciaenidae, tanto em riqueza de espécies, abundância e biomassa, nos estudos sobre comunidades ictícas com arrastos, é bem documentada (Araújo et al., 1997; Araújo et al., 1998; Chaves e Corrêa, 1998; Chaves e Bouchereau, 2000; Pessanha et al., 2000; Castro, 2001; Araújo et al., 2002; Raz-Guzman e Huidobro, 2002; Godefroid et al., 2004; Queiroz et al., 2006; Santos, 2006; Schwarz Jr. et al., 2006; Schwarz Jr. et al., 2007;
Carvalho-Neta e Castro, 2008; Azevedo et al., 2007; Rocha et al., 2010). Esta predominância é decorrente do fato das espécies desta família serem comumente encontradas no estrato demersal do ambiente costeiro (Coelho et al., 1986). Desta forma, se a prospecção envolve coletas mais próximas do fundo, haverá alta representatividade de cienídeos nas amostras. De acordo com Paiva Filho e Schmiegelow (1986), a família Sciaenidae é a que contém maior número e biomassa em exemplares de peixes nos arrastos de fundo na baía de Santos, bem como na região costeira adjacente.

Há mais de 20 anos, Giannini e Paiva Filho (1990b), estudando a baía de Santos, registraram um total de 20 espécies, sendo que Stellifer rastrifer, Isopisthus parvipinnis, Paralonchurus brasiliensis, Micropogonias furnieri, Stellifer brasiliensis e Menticirrhus americanus, corresponderam a mais de 90% do total capturado, com a comunidade sendo composta por uma espécie altamente dominante e abundante, representada por Stellifer rastrifer. O mesmo padrão de abundância se observou no presente estudo, com um total de 21 espécies e com o cangoá S. rastrifer representando, sozinha, 70% da abundância total dos cienídeos.

Comparando-se a composição de Sciaenidae do presente estudo com o trabalho de Giannini e Paiva Filho (1990b), realizado na mesma região, verifica-se mudanças na abundância de algumas espécies, passados vinte anos, tais como: uma diminuição no número de exemplares de M. furnieri, que caiu de quarta para oitava espécie; e um aumento na ocorrência de Stellifer brasiliensis, Macrodon ancyledon (=M. atricauda), S. stellifer e Nebris microps.

Durante o mesmo período e área de estudo do presente trabalho, foi analisada a composição do ictioplâncton por Katsuragawa (2007), que registrou Sciaenidae como a segunda família mais abundante na baía de Santos (12,31 larvas*m$^{-2}$), a terceira no canal de Bertioga (18,63 larvas*m$^{-2}$) e a quinta no porto de Santos (20,30 larvas*m$^{-2}$). Os cienídeos estavam presentes em todas as campanhas, exceto em abril de 2005 na baía de Santos, quando não foi possível coletar devido a más condições meteorológicas. As espécies de larvas de Sciaenidae capturadas na baía de Santos, segundo Katsuragawa (2007) foram: Bairdiella ronchus, Cynoscion sp., Isopisthus parvipinnis, Stellifer spp., Stellifer rastrifer, Micropogonias furnieri, Menticirrhus spp., Macrodon ancyledon (=M. atricauda), Paralonchurus brasiliensis. A presença de larvas de cienídeos
pode ser um indicativo que a família complete todo o seu ciclo ou use a área estudada para a reprodução.

Estudos sobre a distribuição espacial de comunidades de peixes podem ser usados como ferramentas complementares para avaliar o nível da influência marinha em ecossistemas lagunares (Mariani, 2001).

Segundo Ribeiro Neto (1989) a comunidade de peixes da baía de Santos é a mais abundante e apresenta maior número de espécies em seu lado leste, com destaque para os cienídeos *Paralonchurus brasiliensis, Stellifer rastrifer* e *S. brasiliensis*. Tal constatação é corroborada pelos resultados encontrados no presente estudo para a comunidade de cienídeos, uma vez que a estação 6 apresentou maior riqueza e diversidade e a estação 1 apresentou elevados valores de abundância e biomassa total e o predomínio das espécies mais abundantes, lembrando que estas duas estações localizam-se na área leste da baía de Santos, próximo ao canal de Santos.

Como mencionado anteriormente, no presente trabalho observou-se a maior ocorrência das espécies com determinados locais da baía de Santos. A espécie *Stellifer rastrifer*, apesar de sua elevada abundância em toda a área de estudo, foi mais abundante na estação 1, semelhante a *Stellifer brasiliensis* e *Paralonchurus brasiliensis*; *Isopisthus parvipinnis*, por sua vez, ocorreu principalmente na área externa estudada (estações 1 a 3).

Além da maior ocorrência no lado leste da baía, Ribeiro Neto (1989) observou um padrão de distribuição das espécies *Stellifer rastrifer, S. brasiliensis, S. stellifer, Bairdiella ronchus, P. brasiliensis, I. parvipinnis* e *Macrodon ancylodon* (= *M. atricauda*), conforme o tamanho dos exemplares, ou seja, estas espécies são recrutadas pela rede a partir da área externa mais a oeste da baía e os exemplares de maiores comprimento encontrados na área leste. Entretanto segundo o autor, estas espécies apresentam dois padrões diferentes de distribuição: as espécies de pertencentes ao gênero *Stellifer* e *B. ronchus* se deslocam para áreas mais rasas do lado oeste, permanecendo em frente ao canal de São Vicente até se dirigirem para a área leste; as outras espécies dirigem-se da área oeste diretamente para a área leste. Este padrão de deslocamento pode justificar as maiores abundâncias de *Isopisthus parvipinnis* na área externa da baía de Santos, no presente estudo.
De maneira geral a preferência das espécies pela área leste da baía, pode estar associada ao fato que a região mais central e oriental da baía de Santos apresenta substrato predominantemente lamoso (Tessler, 2007). Ribeiro Neto (1989) verificou que a variação espacial da baía de Santos, está associada principalmente ao tipo de fundo, que pode estar relacionado com a disponibilidade de alimento, e à heterogeneidade ambiental, ou seja, na região com sedimentos mais finos há maior abundância e riqueza, e em ambientes com maior heterogeneidade ambiental há maior número de espécies e diversidade.

Araújo et al. (2006) observaram que o tipo de substrato pode influenciar a distribuição dos cienídeos e de suas presas, uma vez que muitas espécies estão associadas com o fundo, sendo que segundo Santos (2006), a grande representatividade da família Sciaenidae parece ser padrão comum nas áreas de fundo areno-lodosos das regiões sudeste, sul e em algumas partes do nordeste do Brasil.

Semelhante ao presente estudo, outros trabalhos registraram uma nítida segregação espacial dos cienídeos. Schwarz Jr. et al. (2007) verificaram diferenças nos padrões de distribuição espacial das principais espécies amostradas na baía de Pinheiros (PR). Segundo os autores, as espécies Isopisthus parvipinnis, Stellifer rastrifer e S. brasiliensis revelaram uma preferência pela porção da baía com maior influência de águas oceânicas. Enquanto que Araújo et al. (2006) verificaram nítida segregação espacial das espécies de Sciaenidae na baía de Sepetiba, na qual a espécie Micropogonias furnieri ocorre principalmente na zona interna, Menticirrhus americanus distribui-se em toda a baía, sendo comum na zona central, enquanto que Ctenosciaena gracilicirrhus e Cynoscion leiarchus são abundantes na zona externa.

Além do tipo de substrato, a estrutura e a abundância de comunidades de peixes em áreas estuarinas e baía é amplamente influenciada por uma variedade de fatores ambientais (Ansari et al., 2003). As flutuações de temperatura e salinidade parecem influenciar diferentes aspectos da comunidade, sendo que a temperatura interfere mais na abundância total, enquanto a salinidade influencia a riqueza de espécies e biomassa (Marshall e Elliott, 1998).
Na baía de Santos, nos estudos sobre estrutura e dinâmica da comunidade e de populações de peixes demonstraram que a abundância e a distribuição espaço-temporal das espécies de teleósteos da família Sciaenidae é influenciada pela temperatura, salinidade e a concentração de oxigênio dissolvido na água (Giannini e Paiva Filho 1990b, 1994). No presente estudo, das variáveis mensuradas somente a temperatura e profundidade apresentaram relação com a distribuição das espécies de cienídeos, sendo que a temperatura apresentou correlação com a distribuição da betara *M. littoralis*, uma vez que somente dois exemplares foram amostrados nos meses de janeiro e abril de 2005, com temperatura média da coluna d' água em torno de 25 °C. A profundidade, por sua vez, foi significativa na distribuição de algumas espécies dentre elas, *I. parvipinnis* e *P. brasiliensis*.

Ainda no litoral sudeste outros fatores ambientais demonstraram relação com a distribuição dos peixes da família Sciaenidae, como no levantamento realizado por Muto *et al.* (2000), as espécies dominantes na plataforma interna de São Sebastião foram *Ctenosciaena gracilicirrhus*, *Paralonchurus brasiliensis* e *Cynoscion jamaicensis*, sendo a temperatura a variável mais importante para explicar a distribuição destes peixes.

Segundo Araújo *et al.* (2006), na baía de Sepetiba (RJ), a profundidade foi a variável ambiental que mais influenciou a distribuição das espécies *Micropogonias furnieri*, *Menticirrhus americanus*, *Ctenosciaena gracilicirrhus* e *Cynoscion leiarchus*, seguido pela transparência. Na baía de Pinheiros (PR), a profundidade foi o parâmetro que exerceu maior influência sobre a abundância de *I. parvipinnis* e *S. rastrifer*, pois estas espécies ocorreram em maiores profundidades. Na área de estudo, *Isopisthus parvipinnis* foi abundante em águas mais profundas, de baixas temperaturas, altas salinidades e concentração de oxigênio (Giannini e Paiva Filho, 1994).

Considerando-se os objetivos propostos para este estudo, pode-se afirmar que: a estrutura da comunidade de cienídeos na baía de Santos é dominada por *Stellifer rastrifer*, padrão que se mantém há mais de vinte anos, mas com outras espécies tendo alterado sua abundância; o local com maior riqueza e diversidade na baía é próximo ao canal de Santos; janeiro é o mês com maior riqueza e diversidade. Dentre as variáveis ambientais mensuradas,
a profundidade e a temperatura apresentam forte influência na estruturação da comunidade de cienídeos.

1.5. Referências bibliográficas

2. Estrutura populacional de dez espécies de Sciaenidae (Perciformes) da baía de Santos, SP

Resumo

Os aspectos bioecológicos de dez espécies de cienídeos, a partir de características individuais e processos individuais, com ênfase na estrutura populacional em tamanho, crescimento e condição, foram analisados para exemplares coletados na baía de Santos, entre novembro de 2004 e dezembro de 2005. A partir da estrutura em comprimento verificou-se que a região estudada abriga, em sua grande maioria, exemplares de pequeno porte, sendo que a amplitude de comprimento variou de 20 a 478 mm para diferentes espécies da família. Em todas as relações estudadas as espécies apresentaram crescimento alométrico, ou seja, os valores do coeficiente angular foram significativamente diferentes de 3. Seis espécies apresentaram crescimento alométrico positivo e quatro apresentaram crescimento alométrico negativo. Na análise da relação peso-comprimento, a amplitude do coeficiente de determinação variou de 3,01 a 3,43, enquanto que por sexo a variação foi de 3,06 a 3,45 para as fêmeas e entre 2,88 e 3,48 para os machos. Com relação aos parâmetros de crescimento, o comprimento total assintótico calculado variou entre 189 e 493,5 mm, a taxa de crescimento (k) entre 0,11 e 0,71 e o índice de performance de 4,12 a 5,13. O recrutamento das diferentes espécies de cienídeos, avaliado pela entrada de indivíduos pequenos na população capturada, apresentou-se quase-contínuo e sucessivo ao longo do tempo: *Stellifer rastrifer, S. brasiliensis, S. stellifer* e *Micropogonias furnieri* em novembro, *Isopisthus parvipinnis* em dezembro, *Nebris microps* em janeiro, *P. brasiliensis, Macrodon ancyldon* e *Larimus breviceps* em fevereiro, enquanto para *Stellifer sp.* o recrutamento iniciou-se maio. As médias mensais dos valores do fator de condição para as espécies de cienídeos apresentaram pequena variação, mas a condição esteve melhor no verão, com tendência a diminuição no outono e no inverno.

Palavras-chave: cienídeos, relação peso-comprimento, parâmetros de crescimento, costa central de São Paulo
2.1. **Introdução**

Estudos sobre o ciclo de vida das espécies subsidiam o entendimento de processos populacionais que levam ao conhecimento das diferenças entre o crescimento em tamanho e em peso de indivíduos de mesma espécie, entre gêneros e entre jovens e adultos, mas em diferentes épocas ou estações do ano (Anderson e Neumann, 1996). Desta forma, dados de comprimento e peso de indivíduos de uma população são referidos como parâmetros básicos para qualquer estudo de monitoramento de pesca, uma vez que fornecem informações importantes relativas à estrutura e função da população (Anderson e Neumann, 1996).

Nos estudos que utilizam métodos de estudo do crescimento, como os indiretos, por exemplo, análise de progressão modal das frequências de comprimento, ou os diretos, como a observação direta em cativo, marcação e recaptura ou a estimativa da idade, dados de comprimento são essenciais por representarem a expressão quantitativa do desenvolvimento, que implica em mudanças de magnitude ao longo do tempo.

Estudos sobre o crescimento individual são importantes na interpretação da dinâmica de uma população e do impacto na exploração pesqueira. Estimativas da estrutura populacional em idade das espécies que são consideradas recursos pesqueiros permitem a construção de relações idade-comprimento e o cálculo dos parâmetros de crescimento para a aplicação em modelos de avaliação e manejo dos estoques (Jennings *et al.*, 2001; Nóbrega e Lessa, 2009; Gwinn *et al.*, 2010).

O padrão de crescimento deve ser reavaliado periodicamente, tendo em vista sua dependência de variações temporais na densidade, causadas principalmente pela intensidade do esforço de pesca. Essas informações são básicas para: - estimar a população em número e biomassa; - avaliar o impacto da exploração pesqueira sobre sua produção, em ambiente natural e, quando submetida a confinamento para fins de cultivo; - definir o tamanho ótimo de despesca e otimizar seu manejo em termos de taxa de conversão alimentar e frequência de arraçoamento (Villlacorta-Corrêa, 1997).

Além do estudo do crescimento, outra prática comum é medir o comprimento e o peso de peixes amostrados de uma população e sumarizar essa relação usando a equação que descreve a relação: \(P=aC^b \), em que \(P \) é o
peso, \(C \) o comprimento, \(a \) e \(b \) coeficientes. Se o peixe não muda sua forma ou densidade quando cresce (crescimento isométrico), então o parâmetro \(b \) terá o valor três e o parâmetro \(a \) será proporcional à densidade. Esta relação matemática é sempre usada para converter medidas de comprimento para esperadas medidas de peso ou vice-versa (Salles e Feitosa, 2000; Vianna et al., 2004), o que pode indicar crescimento diferenciado em alguma dessas variáveis. A relação pode também ser usada para avaliar a condição do indivíduo ou população de peixes (Anderson e Neumann, 1996).

O fator de condição é um parâmetro quantitativo que descreve o bem estar dos peixes e reflete suas condições alimentares recentes (Vazzoler, 1996). A condição varia de acordo com fatores fisiológicos, e principalmente de acordo com os diferentes estágios de desenvolvimento (Costa e Araújo, 2003), provendo uma importante informação sobre a estrutura e função da população (Anderson e Neumann, 1996), bem como uma avaliação do potencial para crescimento.

Ao longo da costa brasileira, diferentes estudos sobre as espécies de Sciaenidae têm sido publicados para caracterizar aspectos bioecológicos, tais como crescimento, mortalidade, reprodução e alimentação das espécies (Haimovici e Reis, 1984; Coelho et al., 1987; Coelho et al., 1988; Braga, 1990; Coelho et al., 1993; Cunningham e Diniz Filho, 1995; Almeida e Branco, 2002; Castro et al., 2002; Branco et al., 2005; Carneiro e Castro, 2005; Carneiro et al., 2005; Castro et al., 2005; Haimovici e Ignácio, 2005; Haimovici e Miranda, 2005; Haimovici et al., 2006). Na baía de Santos, área deste estudo, os aspectos bioecológicos, com destaque para os parâmetros de crescimento das espécies *Stellifer rastrifer*, *Menticirrhus americanus*, *Isopisthus parvipinnis* e *S. brasiliensis*, foram estudados por Giannini e Paiva Filho (1990a, 1992, 1994, 1995). Segundo os autores as espécies *M. americanus*, *I. parvipinnis* e *S. brasiliensis* apresentaram dois picos anuais de recrutamento, enquanto *S. rastrifer* apresentou apenas um pulso de recrutamento. Os cangoás *S. rastrifer* e *S. brasiliensis* apresentaram elevadas taxas de mortalidade e explotação, enquanto que *M. americanus* e *I. parvipinnis* foram encontradas baixas taxas, indicando que estas espécies não se encontram sobreexplotadas (Giannini e Paiva Filho (1990a, 1992, 1994, 1995).
O objetivo do presente trabalho foi analisar o crescimento, a condição e o recrutamento para a rede das espécies *Stellifer rastrifer*, *Isopisthus parvipinnis*, *Stellifer brasiliensis*, *Paralonchurus brasiliensis*, *Macrodon ancyldodon*, *Stellifer stellifer*, *Nebris microps*, *Micropogonias furnieri*, *Stellifer sp.* e *Larimus breviceps* na baía de Santos, subsidiando o entendimento da estrutura populacional das espécies. Após o transcurso de vinte anos da realização dos trabalhos anteriores na baía de Santos, espera-se que a melhoria das condições ambientais e a pesca de camarão na região tenham modificado os resultados anteriormente obtidos.

2.2. Material e Métodos

2.2.1 Coleta de material e procedimentos laboratoriais

Os procedimentos de coleta das amostras e tomada de dados biológicos encontram-se descritos no item geral “Material e Métodos” desta dissertação. Cabe ressaltar que a rede utilizada foi sempre a mesma ao longo do período estudado.

2.2.2. Estrutura populacional

A estrutura populacional das espécies de cienídeos foi analisada pela distribuição da frequência de classes de comprimento total ao longo do período estudado, na qual foi possível verificar os comprimentos máximos e mínimos, bem como identificar os períodos de recrutamento para a rede das espécies amostradas, ou seja, quando ocorreu a captura dos menores indivíduos. Foi realizada uma análise univariada, para definir o padrão de distribuição, obtendo-se os valores de curtose (K) e assimetria (S).

Para a determinação das classes de tamanho aplicou-se a seguinte fórmula: $k = 1 + 3,222 \times \log(n)$, na qual k é o número de classes e n é o número total de indivíduos (Vieira, 1980).

A partir dos dados de distribuição da frequência das classes de comprimento total foi aplicada a rotina “ELEFAN I” (*Eletronic Length Frequency Analysis*) do programa FISAT II (FAO-ICLARM Fish Stock Assessment Tools / versão 1.2.2) para estimar os valores das variáveis de crescimento, como o comprimento total assintótico ($C_T\infty$) e a taxa de crescimento (k) de cada espécie na área de estudo. Para o cálculo da idade teórica no comprimento zero (t_0) e da longevidade ($t_{\text{máx}}$) foi aplicada a fórmula empírica de Pauly (1983):
\[\log(t_0) = -0.3922 - 0.2752 \cdot \log CT_\infty - 1.038 \cdot \log k \]
\[t_{\text{máx}} = t_0 + 2.9957/k \]

Posteriormente, os dados foram ajustados à curva de crescimento em comprimento através da equação de von Bertalanffy (1938):
\[CT = CT_\infty \left[1 - e^{-k(t-t_0)} \right], \]
em que CT é o comprimento total médio em milímetros para a idade t, CT_\infty é o comprimento assintótico para a população, k é a taxa de crescimento e t_0 é a idade teórica no comprimento zero (Munro e Pauly, 1983).

O índice de performance foi calculado de acordo com a seguinte equação:
\[\Phi' = \log(k) + 2 \log(CT_\infty) \]
na qual: \(\log(CT_\infty) \) é o log do comprimento assintótico para a população, \(\log(k) \) é o log da taxa de crescimento.

Para a estimativa da mortalidade natural foi aplicada a equação empírica de Pauly (1980), com auxílio do programa FISAT II, com a seguinte equação:
\[\log(M) = -0.0066 - 0.279 \cdot \log(CT_\infty) + 0.6543 \cdot \log(k) + 0.4634 \cdot \log(T) \]
na qual: CT_\infty é o comprimento total assintótico, k é a taxa de crescimento e T é a temperatura média do ambiente. Para a baía de Santos a temperatura média estimada para o período de estudo foi 23.5°C.

As mesmas rotinas dos parâmetros de crescimento, utilizadas anteriormente, foram aplicadas para machos e fêmeas separadamente das principais espécies de Sciaenidae, *Stellifer rastrifer, Isopisthus parvipinnis, S. brasiliensis* e *Paralonchurus brasiliensis*, amostradas da baía de Santos.

A relação peso-comprimento total de cada espécie foi estimada para todo o período e com todos exemplares agrupados sem distinção dos sexos (Lima Jr et al., 2002). O modelo que descreve a relação é o potencial e a expressão derivada, ajustada pelo método dos mínimos quadrados é \(PT = a \cdot CT^b \), no qual: \(PT \) corresponde ao peso total (em g), \(CT \) ao comprimento total (em mm), a corresponde à estimativa dos parâmetros de correlação e b à estimativa dos parâmetros de curvatura. Estes dois parâmetros foram estimados por meio de regressão não-linear. Para verificar se o valor de b calculado das espécies foi significativamente diferente do valor isométrico (b = 3), foi aplicado o teste-t Student (\(H_0: b = 3 \)) com um nível de confiança de ± 95% (\(\alpha = 0.05 \)) (Zar, 1996).
O fator de condição (K), que indica o grau de bem-estar dos indivíduos, refletindo condições alimentares recentes (Vazzoler, 1996), é dado pela relação entre seu peso e seu comprimento. Neste estudo foi estimado o fator de condição de alométrico, uma vez, este fator reflete mais adequadamente a realidade dos locais de ocorrência dos indivíduos que aquela obtida a partir do fator de condição isométrico ou de Foulton, em que se usa o valor de b=3 e se assume, a priori, crescimento isométrico das espécies (Braga, 1986). A expressão do fator de condição aplicada foi:

\[K_{alométrico} = \frac{Pt}{Ct^b} \]

na qual: \(b \) é estimado pela equação da relação peso-comprimento, após ajuste dos dados pelo método dos mínimos quadrados.

Assim como a análise de crescimento pelo método indireto, os valores do fator de condição podem ser entendidos como uma medida indireta de crescimento em peso para indivíduos de mesmo comprimento.

2.3. Resultados

A tabela 2.1 mostra a lista de espécies, com os respectivos números dos exemplares analisados, bem como valores máximos e mínimos de ocorrência.

Tabela 2.1. Lista de espécies de Sciaenidae, com os respectivos números de exemplares analisados e amplitude de comprimento total.

<table>
<thead>
<tr>
<th>Espécie</th>
<th>N</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellifer rastrifer (Jordan, 1889)</td>
<td>20182</td>
<td>32-220</td>
</tr>
<tr>
<td>Isopisthus parvipinnis (Cuvier, 1830)</td>
<td>2144</td>
<td>20-181</td>
</tr>
<tr>
<td>Stellifer brasiliensis (Schultz, 1945)</td>
<td>1622</td>
<td>36-222</td>
</tr>
<tr>
<td>Paralonchurus brasiliensis (Steindachner, 1875)</td>
<td>1591</td>
<td>44-240</td>
</tr>
<tr>
<td>Macrodon atricauda (Günther, 1880)</td>
<td>1091</td>
<td>22-355</td>
</tr>
<tr>
<td>Stellifer stelifer (Bloch, 1790)</td>
<td>649</td>
<td>42-201</td>
</tr>
<tr>
<td>Nebris microps Cuvier, 1830</td>
<td>456</td>
<td>35-290</td>
</tr>
<tr>
<td>Micropogonias furnieri (Desmarest, 1823)</td>
<td>264</td>
<td>40-478</td>
</tr>
<tr>
<td>Stellifer sp.</td>
<td>227</td>
<td>40-137</td>
</tr>
<tr>
<td>Larimus breviceps Cuvier, 1830</td>
<td>116</td>
<td>47-222</td>
</tr>
</tbody>
</table>

A espécie *Stellifer rastrifer* apresentou amplitude de comprimento entre 32 e 220 mm, com moda em 65 mm (32,3%), e um decréscimo na distribuição dos exemplares (menos que 1%) com mais de 170 mm de comprimento total. Para *Isopisthus parvipinnis* a amplitude de comprimento variou de 20 a 185
mm, com moda em 69 mm (25%), e menos de 1% dos exemplares amostrados acima de 155 cm. Os exemplares de *S. brasiliensis* apresentaram variação no comprimento entre 36 e 222 mm, com moda em 80 mm (23,7%) e baixa distribuição a partir dos 185 mm. A espécie *P. brasiliensis* apresentou uma distribuição mais uniforme, com amplitude de comprimento de 44 a 240 mm e as maiores frequências entre 80 e 124 mm (± 44%), tornando-se escassa a ocorrência de exemplares a partir de 215 mm. O restante das espécies apresentou menor abundância, para as quais a distribuição de comprimento total pode ser verificada na tabela 2.1 e figura 2.1.

Com relação ao padrão de distribuição das frequências de comprimento, as espécies *Stellifer rastifer*, *Macrodon atricauda*, *S. stellifer*, *Nebris microps*, *Micropogonias furnieri* e *Larimus breviceps* apresentaram assimetria positiva, enquanto que as espécies *I. parvipinnis*, *S. brasiliensis*, *Paralonchurus brasiliensis* e *Stellifer sp.* apresentaram assimetria negativa (figura 2.1). Todas as espécies apresentaram distribuição platicúrtica, ou seja, todos os valores de curtose são menores que 3 (figura 2.1).
Figura 2.1. Frequência relativa da distribuição dos exemplares por classe de comprimento total das principais espécies de cienídeos amostrados na baía de Santos (K=curtose, S=assimetria).
Cont. Figura 2.1. Frequência relativa da distribuição dos exemplares por classe de comprimento total das principais espécies de cienídeos amostrados na baía de Santos (K=curtose, S=assimetria).

Os valores estimados dos parâmetros das variáveis de crescimento das espécies de cienídeos amostradas na baía de Santos estão descritas na tabela 2.2. As espécies *Stellifer rastrifer* e *Larimus breviceps* apresentaram valores idênticos de comprimento assintótico. A variação na taxa de crescimento (k) esteve entre o mínimo de 0,11 para *M. atricauda* e o máximo de 0,71 para *S. stellifer* e *Stellifer sp.* (tabela 2.2). Na baía de Santos, a longevidade (t máx) para os cienídeos estudados apresentou variação de 4,13 a 26,26, sendo que as espécies *M. atricauda*, *N. microps* e *L. breviceps* apresentaram altos valores de longevidade (26,26; 16,12 e 15,25, respectivamente) (tabela 2.2). Já o índice de performance de crescimento apresentou pequena variação entre as espécies (tabela 2.2), a taxa de mortalidade (M) apresentou valores baixos para as espécies *Macrodon atricauda* e *Micropogonias furnieri*.
Quando analisadas as quatro espécies de cienídeos mais abundantes por sexos separados, os parâmetros da taxa de crescimento para *I. parvipinnis* e *S. brasiliensis* apresentaram valores aproximados, enquanto que para *S. rastrifer* e *P. brasiliensis* os valores das taxas de crescimento foram mais elevados (tabela 2.3). Como a taxa de crescimento para as fêmeas de *S. rastrifer* foi alta (*k* = 0,64), a longevidade calculada foi menor e a mortalidade maior, em relação à encontrada para os machos e ao estimado para a espécie analisada como um todo (tabelas 2.2 e 2.3). O índice de performance apresentou valores semelhantes entre as fêmeas e machos e da população total, exceto para *Paralichthys brasiliensis* na qual os valores foram idênticos da população e das fêmeas, enquanto que os machos apresentaram valores bem menores (tabelas 2.2 e 2.3).

Tabela 2.2. Parâmetros das variáveis de crescimento (k e CTₙ), utilizando frequências de classes de comprimento por mês, e os valores de t₀ e tₘₐₓ, valor do índice de performance (Φ') e o valor da taxa de mortalidade (M).

<table>
<thead>
<tr>
<th>CTₙ</th>
<th>K</th>
<th>t₀</th>
<th>tₘₐₓ</th>
<th>Φ</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellifer rastrifer</td>
<td>262,5</td>
<td>0,41</td>
<td>-0,18</td>
<td>7,12</td>
<td>4,45</td>
</tr>
<tr>
<td>Isopisthus parvipinnis</td>
<td>189</td>
<td>0,47</td>
<td>-0,17</td>
<td>6,20</td>
<td>4,23</td>
</tr>
<tr>
<td>Stellifer brasiliensis</td>
<td>231</td>
<td>0,36</td>
<td>-0,23</td>
<td>8,09</td>
<td>4,28</td>
</tr>
<tr>
<td>Paralichthys brasiliensis</td>
<td>252</td>
<td>0,42</td>
<td>-0,18</td>
<td>6,95</td>
<td>4,43</td>
</tr>
<tr>
<td>Macrodon ancylophon</td>
<td>378</td>
<td>0,11</td>
<td>-0,10</td>
<td>26,26</td>
<td>4,20</td>
</tr>
<tr>
<td>Stellifer stellifer</td>
<td>210</td>
<td>0,71</td>
<td>-0,05</td>
<td>4,16</td>
<td>4,50</td>
</tr>
<tr>
<td>Nebris microps</td>
<td>304,5</td>
<td>0,18</td>
<td>-0,52</td>
<td>16,12</td>
<td>4,22</td>
</tr>
<tr>
<td>Micropogonias furnieri</td>
<td>493,5</td>
<td>0,12</td>
<td>-0,08</td>
<td>4,13</td>
<td>4,12</td>
</tr>
<tr>
<td>Larimus breviceps</td>
<td>262,5</td>
<td>0,19</td>
<td>-0,51</td>
<td>15,25</td>
<td>4,12</td>
</tr>
</tbody>
</table>

Tabela 2.3. Parâmetros das variáveis de crescimento (k e CTₙ), utilizando as frequências de classes de comprimento por mês e os valores de t₀ e tₘₐₓ, valor do índice de performance (Φ') e o valor da taxa de mortalidade (M) das principais espécies de cienídeos separados por sexo.

<table>
<thead>
<tr>
<th></th>
<th>CTₙ</th>
<th>K</th>
<th>t₀</th>
<th>tₘₐₓ</th>
<th>Φ</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machos</td>
<td>Stellifer rastrifer</td>
<td>231</td>
<td>0,32</td>
<td>-0,28</td>
<td>9,09</td>
<td>4,23</td>
</tr>
<tr>
<td>Fêmeas</td>
<td>231</td>
<td>0,64</td>
<td>-0,07</td>
<td>4,61</td>
<td>4,53</td>
<td>0,69</td>
</tr>
<tr>
<td>Machos</td>
<td>189</td>
<td>0,39</td>
<td>-0,23</td>
<td>7,46</td>
<td>4,14</td>
<td>0,53</td>
</tr>
<tr>
<td>Fêmeas</td>
<td>189</td>
<td>0,31</td>
<td>-0,31</td>
<td>9,35</td>
<td>4,04</td>
<td>0,46</td>
</tr>
<tr>
<td>Machos</td>
<td>231</td>
<td>0,29</td>
<td>-0,31</td>
<td>10,02</td>
<td>4,19</td>
<td>0,48</td>
</tr>
<tr>
<td>Fêmeas</td>
<td>231</td>
<td>0,36</td>
<td>-0,23</td>
<td>8,08</td>
<td>4,28</td>
<td>0,24</td>
</tr>
<tr>
<td>Machos</td>
<td>252</td>
<td>0,13</td>
<td>-0,87</td>
<td>22,2</td>
<td>3,92</td>
<td>0,24</td>
</tr>
<tr>
<td>Fêmeas</td>
<td>252</td>
<td>0,42</td>
<td>-0,18</td>
<td>6,95</td>
<td>4,43</td>
<td>0,51</td>
</tr>
</tbody>
</table>
Através da análise das frequências de comprimento ao longo do tempo nota-se que, considerando-se todas as espécies de cienídeos, houve um recrutamento contínuo (figura 2.2). As curvas mostraram que: os cangoás *Stellifer rastrifer*, *S. brasiliensis*, *S. stellifer* e a corvina *Micropogonias furnieri* apresentaram o período de captura dos menores indivíduos iniciando-se no mês de novembro; para a pescada banana *Nebris microps* em janeiro; para as espécies *Paralonchurus brasiliensis*, *Macrodon atricauda* e *Larimus breviceps* o período de recrutamento para a rede iniciou-se em fevereiro; para o cangoá *Stellifer sp.* em maio; e para a tortinha *Isopisthus parvipinnis* tal período ocorreu nos meses de janeiro, julho e dezembro (figura 2.2).

Ao se analisar as coortes existentes durante o período de coleta, verifica-se a presença de duas coortes para *Stellifer rastrifer*, *Isopisthus parvipinnis*, *S. brasiliensis*, *Macrodon atricauda* e *Micropogonias furnieri*, o que sugere dois periodos de pico de recrutamento para estas espécies, e apenas uma coorte para as demais espécies (figura 2.2).

Dentre as quatro espécies mais abundantes, a análise por sexos separados indica que machos e fêmeas das espécies *S. rastrifer* e *I. parvipinnis* apresentaram duas coortes, enquanto que *S. brasiliensis* e *P. brasiliensis* apresentaram três coortes (figura 2.3). Os menores indivíduos de *S. rastrifer*, de ambos os sexos, foram recrutados em julho a agosto; os machos de *I. parvipinnis*, *S. brasiliensis* e *P. brasiliensis* em março, e as fêmeas em abril, junho e maio, respectivamente (figura 2.3).
Figura 2.3. Coortes das espécies de cienídeos amostrados na baía de Santos. (A = machos de *Stellifer rastifer*, B = fêmeas de *Stellifer rastifer*, C = machos de *Isopisthus parvipinnis*, D = fêmeas de *Isopisthus parvipinnis*, E = machos de *S. brasiliensis*, F = fêmeas de *S. brasiliensis*, G = machos de *Paralonchurus brasiliensis*, H = fêmeas de *Paralonchurus brasiliensis*).
Cont. Figura 2.3. Coortes das espécies de cienideos amostradas na baía de Santos. (A = machos de *Stellifer rastrifer*, B = fêmeas de *Stellifer rastrifer*, C = machos de *Isopisthus parvipinnis*, D = fêmeas de *Isopisthus parvipinnis*, E = machos de *S. brasiliensis*, F = fêmeas de *S. brasiliensis*, G = machos de *Paralonchurus brasiliensis*, H = fêmeas de *Paralonchurus brasiliensis*).
Na relação peso-comprimento total, o coeficiente angular (b) variou entre 3,01 para *Macrodon atricauda* e 3,43 para *Paralonchurus brasiliensis* (figura 2.4). Em todos os casos o intervalo de confiança para estes valores (p = 0,05) revelou que o valor obtido pelo coeficiente angular é significativamente diferente de 3, indicando um crescimento alométrico. *Isopisthus parvipinnis* foi a espécie que apresentou maior número de indivíduos com peso menor em relação à curva calculada para o mesmo comprimento.

Figura 2.4. Relação peso-comprimento total das principais espécies de cienídeos amostrados na baía de Santos.
Na análise de relação peso-comprimento para os sexos separados os valores do coeficiente angular (b) variaram de 3,06 a 3,45 para as fêmeas e entre 2,88 e 3,48 para os machos. Em todos os casos, os valores do coeficiente angular foram diferentes de 3, demonstrando que para todas as espécies de cienídeos aqui analisadas, tanto os machos quanto as fêmeas, apresentaram crescimento alométrico, sendo que apenas os machos de *I. parvipinnis* apresentaram alometria negativa (tabela 2.4).
Tabela 2.4. Valores obtidos da relação peso-comprimento, bem como seu coeficiente de correlação, para cada sexo estimado para as dez espécies estudadas na baía de Santos, SP.

<table>
<thead>
<tr>
<th></th>
<th>Fêmea</th>
<th></th>
<th>Macho</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Equação</td>
<td>R^2</td>
<td>Equação</td>
<td>R^2</td>
</tr>
<tr>
<td>Stellifer rastrifer</td>
<td>$y=3E-06x^{3,2808}$</td>
<td>0,9869</td>
<td>$y=3E-06x^{3,2793}$</td>
<td>0,9836</td>
</tr>
<tr>
<td>Isopisthus parvipinnis</td>
<td>$y=7E-06x^{3,0646}$</td>
<td>0,9715</td>
<td>$y=2E-07x^{2,8772}$</td>
<td>0,9594</td>
</tr>
<tr>
<td>Stellifer brasiliensis</td>
<td>$y=2E-06x^{3,3982}$</td>
<td>0,9809</td>
<td>$y=2E-06x^{3,3319}$</td>
<td>0,9826</td>
</tr>
<tr>
<td>Paralonchurus brasiliensis</td>
<td>$y=8E-07x^{3,4591}$</td>
<td>0,9786</td>
<td>$y=7E-07x^{3,4857}$</td>
<td>0,9884</td>
</tr>
<tr>
<td>Macrodon atricauda</td>
<td>$y=5E-06x^{3,0826}$</td>
<td>0,9932</td>
<td>$y=1E-06x^{3,3392}$</td>
<td>0,9811</td>
</tr>
<tr>
<td>Stellifer stellifer</td>
<td>$y=4E-06x^{3,2419}$</td>
<td>0,9729</td>
<td>$y=2E-06x^{3,3882}$</td>
<td>0,9591</td>
</tr>
<tr>
<td>Nebris microps</td>
<td>$y=2E-06x^{3,2916}$</td>
<td>0,9794</td>
<td>$y=5E-06x^{3,1201}$</td>
<td>0,9835</td>
</tr>
<tr>
<td>Micropogonias furnieri</td>
<td>$y=7E-06x^{3,0846}$</td>
<td>0,974</td>
<td>$y=7E-06x^{3,0686}$</td>
<td>0,942</td>
</tr>
<tr>
<td>Stellifer sp.</td>
<td>$y=3E-06x^{3,2758}$</td>
<td>0,9649</td>
<td>$y=1E-06x^{3,5313}$</td>
<td>0,9726</td>
</tr>
<tr>
<td>Larimus breviceps</td>
<td>$y=4E-06x^{3,2237}$</td>
<td>0,9854</td>
<td>$y=3E-06x^{3,265}$</td>
<td>0,9933</td>
</tr>
</tbody>
</table>

As médias mensais dos valores do fator de condição, calculadas para todas as espécies de cienídeos, demonstraram pequena variação, exceto para *Macrodon atricauda* (figura 2.5). Quando se compara os valores médios obtidos para todo o período com aqueles mensais para cada espécie, verifica-se as médias mensais pouco flutuaram em torno da média de todo o período, exceto para *M. atricauda*. No mês de dezembro de 2005, para a espécie *Larimus breviceps*, o valor obtido do fator de condição foi menor ao valor médio total, pelo fato que somente um exemplar juvenil foi amostrado neste mês (figura 2.5). De maneira geral, a condição esteve melhor nos meses de verão, com tendência à diminuição no outono e no inverno.
Figura 2.5. Fator de condição (K) calculado para todos os exemplares das dez espécies de cienídeos na baía de Santos (linha pontilhada – valores médios totais para a espécie).
Cont. Figura 2.5. Fator de condição (K) calculado para todos os exemplares das dez espécies de cienídeos na baía de Santos (linha pontilhada – valores médios totais para a espécie).

2.4. Discussão

Apesar da ictiofauna da baía de Santos ser relativamente bem estudada, a defasagem temporal entre os estudos já realizados, associada a alterações ambientais decorrentes da contaminação que acontece desde a década de 1950 e a implementação de programas de tratamento de efluentes industriais na década de 1980 (CETESB, 2001; 2008), certamente foram responsáveis por possíveis alterações nos padrões da fauna de peixes.

Com relação à autoecologia das espécies, na baía de Santos, o maior exemplar capturado de *Stellifer rastrifer* apresentou 220 mm de comprimento total, enquanto que para a mesma região, Giannini e Paiva Filho (1990a) registraram a captura de exemplares com 209 mm. Em ambos os casos indivíduos maiores que 150 mm foram raros. De acordo com Chao (2002), esta espécie apresenta um comprimento máximo de 250 mm, sendo comuns exemplares de até 150 mm. Com relação aos parâmetros de crescimento, o comprimento assintótico (CT∞) calculado para esta espécie de cangoá foi
262,5 mm, a taxa de crescimento (k) foi 0,41, sendo que o CT∞ foi menor quando analisados os sexos separados (CT∞ = 231 mm), com elevado k para as fêmeas em 0,64. A alta taxa de crescimento das fêmeas desta espécie resultou numa menor longevidade e maior mortalidade quando comparada com os valores dos machos. Há quase duas décadas, valores mais elevados (CT∞ = 303 mm e k=0,48) foram registrados por Giannini e Paiva Filho (1990a). Segundo esses autores, o período de recrutamento para a rede desta espécie inicia-se em novembro, segue pelo verão-outono, das áreas mais externas para regiões mais internas da baía.

Na baía de Santos, a tortinha *Isopisthus parvipinnis* apresentou um valor de crescimento total assintótico de 189 mm, tanto o total da população, quanto para machos e fêmeas. A taxa de crescimento calculada foi 0,41 para o total de indivíduos, 0,39 para machos e 0,31 para fêmeas. Giannini e Paiva Filho (1994) utilizando a mesma rotina aqui aplicada obtiveram valores de 242 mm para o crescimento total assintótico e 0,30 para k. Quando estes foram aplicados na fórmula de Pauly (1980), os autores acima obtiveram valores de 9,4 anos para a longevidade, o que se mostrou pouco realista. Excetuando-se o valor da taxa de crescimento, todos os demais valores mostraram-se maiores que os do presente estudo, sugerindo uma superestimação no estudo de Giannini e Paiva Filho (1994) ou uma subestimação nos valores do presente trabalho para a espécie, ou ainda que as condições ambientais provocaram mudanças nos parâmetros. Vale ressaltar que a rede amostrada em ambos os trabalhos apresentaram as mesmas dimensões, sendo amostrados treze meses no presente estudo e quinze meses no trabalho de Giannini e Paiva Filho (1994). Quando analisados os parâmetros de crescimento para os sexos separadamente, verificou-se que a espécie apresentou elevado valor da taxa de crescimento (k) para os machos, diferentes ao observado entre os sexos das outras espécies analisadas no presente estudo resultando numa menor longevidade e maior mortalidade.

No presente estudo verificou-se a presença de duas coortes na população da tortinha, semelhante ao registrado por Giannini e Paiva Filho (1994), sendo que, segundo os autores estas coortes ocorrem pela entrada de jovens nos meses de outono-inverno e uma mais fraca no final da primavera (Giannini e Paiva Filho, 1994). Este maior pico é decorrente de uma provável
desova que ocorre no inverno e primavera (Soares, 1983). No presente estudo a presença de fêmeas com ovócitos hidratados foi registrada durante os meses associados ao final da primavera e início do verão (ver capítulo 4 desta dissertação).

A espécie *Stellifer brasiliensis*, na região da baía de Santos, apresentou valores de CT_{∞} de 231 mm, k de 0,47, enquanto estudos anteriores registraram um comprimento total assintótico de 300 mm, com uma taxa de crescimento de 0,38 e uma longevidade de 7,45 anos (Giannini e Paiva Filho, 1995). O período de recrutamento para a rede de *S. brasiliensis* apresentou-se de forma contínua de acordo com os dados analisados para o presente trabalho. Giannini e Paiva Filho (1995) registraram duas coortes distintas, embora de modo pouco definido, uma mais evidente no outono e outra mais fraca na primavera-verão. Coelho *et al.* (1987) registraram 60 mm como o comprimento de recrutamento para *S. brasiliensis*, na pesca artesanal dirigida ao camarão sete-barbas, porém as dimensões das malhas para o arrasto do camarão são menores (30 mm na manga e no corpo e 20 mm no ensacador) (Almeida e Branco, 2002) quando comparada com a malha utilizada no presente estudo.

De maneira geral, todas as espécies estudadas por Giannini e Paiva Filho (1990a, 1994, 1995) apresentaram maiores valores de crescimento assintótico e longevidade, quando comparados com os do presente estudo. Como a arte de pesca e o número de meses de coleta foram semelhantes, estas diferenças nos valores de crescimento entre os trabalhos podem ser explicadas, pelo fato, que as espécies *Stellifer rastrifer, S. brasiliensis, Isopisthus parvipinnis, Paralonchurus brasiliensis*, correspondem a mais de 50% do rejeito de pesca total direcionada ao camarão sete-barbas (Coelho *et al.*, 1986), permanecendo ainda atualmente exploradas (Bail e Branco, 2003; Branco e Verani, 2006).

Na área de estudo, a variação da amplitude de comprimento da *P. brasiliensis* foi entre 44 e 240 mm, com comprimento total assintótico em 252 mm, e taxa de crescimento de 0,42. Braga (1990), estudando a mortalidade desta espécie na área de pesca do camarão sete-barbas, registrou um comprimento total assintótico de 263 mm.
Os altos valores de k (taxa de crescimento) estão associados a uma baixa idade e tamanho de maturação, alta taxa reprodutiva, ciclo de vida curto e baixo comprimento assintótico, evidenciando caracteristicamente espécies r-eestrategistas, enquanto que espécies com menor k têm maior idade e comprimento, menor taxa reprodutiva, ciclo de vida longo e maior comprimento assintótico (Jennings et al., 2001).

A pescada-foguete, Macrodon atricauda, apresenta um comprimento máximo de 450 mm, sendo comuns indivíduos com 350 mm (Menezes e Figueiredo, 1980; Chao, 2002). Na baía de Santos foi registrado um comprimento total assintótico de 378 mm, sendo que em levantamento realizado na Zona Econômica Exclusiva (ZEE), Carneiro e Castro (2005) registraram um comprimento assintótico de 504 mm, no qual os exemplares apresentaram a amplitude de comprimento total de 110 a 460 mm, valores mais altos do que os amostrados no presente estudo (22 – 355 mm). O período de recrutamento de M. ancyloodon (=M. atricauda) tem início no mês de março prolongando-se até agosto, sendo mais acentuado no mês de junho (Juras, 1979). Esses resultados também são semelhantes aos aqui obtidos, bem como àqueles de Vazzoler et al. (1963) para a espécie sugerindo-se que a frequência de peixes pequenos capturados aumenta durante o outono-inverno. Porém, tais resultados devem ser vistos com cautela: valores de taxas de crescimento de 0,11 como os aqui encontrados são reflexo do pequeno tamanho dos indivíduos capturados, abaixo do encontrado por Castro (2000) na plataforma continental (k=0,17). Além disso, pela grande diferença de tamanho entre os exemplares capturados na ZEE e os da baía de Santos, além do trabalho de Camargo e Isaac (2005) reforçam o fato de que apenas parte de seu ciclo de vida se completa na baía.

O cangoá S. stellifer, apresentou um comprimento total assintótico de 210 mm e taxa de crescimento de 0,71, com longevidade de 4,2 anos. Enquanto o valor de longevidade foi um pouco menor do que o das outras espécies do mesmo gênero aqui estudadas, tal valor está próximo ao registrado para a própria espécie, uma vez que a mesma apresenta comprimento total máximo de 210 mm, com exemplares comuns com 120 mm (Chao, 2002). Com relação à taxa de crescimento calculada, esta é muito mais alta que a do congênero S. rastrifer e, apesar de idêntica à de Stellifer sp., o
valor sugere que essas informações não são realistas e estão baseadas no pequeno tamanho dos exemplares capturados. O período de recrutamento desta espécie na baía de Santos iniciou-se em novembro. Segundo Almeida e Branco (2002), estudando a espécie *S. stellifer* em Santa Catarina, verificou-se que a entrada dos recrutas está restrita aos meses do verão. Provavelmente isso não ocorre em Cananéia (SP), pois foram observados indivíduos pequenos no final do outono e início do inverno e na primavera (Santos-Ninin, 2008).

A corvina *M. furnieri* apresentou um comprimento total assintótico de 493,5 mm e taxa de crescimento de 0,12, sendo que o maior exemplar amostrado apresentou 478 mm. No levantamento realizado na ZEE, com o estoque sudeste de corvina, o comprimento total assintótico estimado foi 961,58 mm, a taxa de crescimento foi 0,088 e o maior exemplar capturado na ZEE tinha 710 mm (Carneiro et al., 2005). Apesar da diferença entre os valores de comprimento assintótico e dos maiores tamanhos capturados, as taxas de crescimento aqui calculadas foram realistas para esta espécie.

Não foi encontrada na literatura nenhuma informação relacionada com os parâmetros de crescimento para as espécies *Nebris microps*, *Stellifer sp.* e *Larimus breviceps*. Entretanto o comprimento total assintótico obtido para as espécies *N. microps* e *L. breviceps* foi menor ao comprimento total registrado na literatura, 500 e 300 mm, respectivamente (Chao, 2002).

As diversas redes de pesca não capturam todos os peixes, sendo que esta seletividade está baseada no comprimento do corpo (Jørgensen et al., 2009). Desta forma, a seletividade da rede de pesca afeta a captura dos espécimes, com consequências para o comprimento e idade dos indivíduos encontrados nas amostras. Redes de pesca tipicamente têm maior eficiência de captura de indivíduos maiores. Contudo, o comprimento médio das classes de comprimento recrutadas pela rede pode ser superestimado devido à maior probabilidade de captura dos maiores indivíduos da coorte (Taylor et al., 2005). O efeito desta captura influencia o recrutamento das classes etárias, por remover os indivíduos maiores de uma coorte, permanecendo peixes de crescimento lento (Kristiansen e Svåsand, 1998; Sinclair et al., 2002) e de menor porte. Entretanto, as restrições impostas nas dimensões da rede são uma tentativa para diminuir a seletividade de pesca de espécies preferenciais e
de determinadas classes de comprimento, principalmente para evitar a captura de peixes menores, fato que resultaria no melhor recrutamento para as maiores classes de comprimento (Cochrane, 2009). Esses efeitos podem levar à subestimação do comprimento assintótico (CT∞) e superestimação da taxa de crescimento (k) do modelo de crescimento de von Bertalanffy (Taylor et al., 2005).

A arte de pesca seletiva também tem ampla influência no tamanho da distribuição e na taxa de crescimento das coortes quando há variabilidade no crescimento e idade. A variabilidade na taxa de crescimento é um importante fator nos estudos de populações de peixes, que deve ser considerada nos modelos de manejo pesqueiro e em estudos ecológicos (Kristiansen e Svásand, 1998).

Um exemplo da falta de seletividade na pesca é o caso da pesca artesanal dirigida ao camarão sete-barcas, que captura acidentalmente uma grande quantidade de peixes sem interesse comercial, com destaque para as espécies de cienídeos, além de serem realizadas em áreas de elevada ocorrência de jovens de importantes espécies (Coelho et al., 1986). Apesar da maior parcela da fauna acompanhante ser de espécies sem interesse comercial, como S. rastrifer, I. parvipinnis, S. brasiliensis, P. brasiliensis, vale ressaltar que estas espécies estão associadas com a manutenção dos estoque de espécies de interesse comercial (Coelho et al., 1986).

Lizama e Takemoto (2000) compararam a relação entre o padrão de crescimento em peixes e os diferentes níveis da cadeia trófica. Os autores observaram que as espécies que foram classificadas nas categorias tróficas de comedores de invertebrados bentônicos (IB), de presas pelágicas (PP) e de piscívoros pelágicos (PIS) apresentaram menores valores da taxa de crescimento (k), entre 0,02 a 0,39. Já os comedores de invertebrados bentônicos e peixes (IB/P) e onívoros (ONI) constituem um grupo intermediário, com valores de k entre 0,29 e 0,48. Os planctófagos (PLA) apresentam os maiores valores médios de k (entre 0,31 e 1,21). Tomando como base essas categorias tróficas, as espécies amostradas no presente estudo foram classificadas da seguinte forma: grupo 1: as espécies S. rastrifer, I. parvipinnis e M. atricauda como comedores de presas pelágicas (PP) e grupo 2: as espécies P. brasiliensis, N. microps, M. furnieri e L. breviceps como comedores.
de invertebrados bentônicos. No primeiro grupo o valor médio de k foi estimado entre 0,11 e 0,47, enquanto que no segundo grupo de espécies os valores da taxa de crescimento ficaram entre 0,12 e 0,47, ou seja, todas as espécies apresentam uma lenta taxa de crescimento, corroborando os resultados encontrados no presente estudo com a relação proposta por Lizama e Takemoto (2000) para as espécies dos grupos tróficos discriminados.

Por outro lado, as espécies *S. stellifer* e *Stellifer sp.* apresentaram valores elevados da taxa de crescimento (k= 0,71), e se fosse considerada a relação de Lizama e Takemoto (2000), estas espécies deveriam pertencer ao grupo das planctófagas; entretanto, segundo Chao (2002) a espécie *S. stellifer* alimenta-se de pequenos crustáceos e peixes planctônicos, sendo a espécie classificada na categoria presas pelágicas, semelhante a classificação da espécie *S. rastrifer*. Desta forma, a relação proposta por Lizama e Takemoto (2000) deve ser analisada cuidadosamente antes de ser aplicada de forma generalizada, pois no caso de duas espécies aqui estudadas não foi corroborada a hipótese apresentada pelos autores.

De acordo com Munro e Pauly (1983), o indicador de performance de crescimento caracteriza uma família ou grupo de espécies em um habitat e pode ser usado como um indicador de características energéticas do grupo ou do seu nicho ecológico. O valor de índice de performance de crescimento (φ') calculado para todas as espécies de cienídeos apresentou pequena variação (de 4,12 a 5,13) lembrando que quase todas as espécies, exceto *Macrodon atricauda*, *Nebris microps* e *Micropogonias furnieri*, apresentam um ciclo de vida curto e crescimento rápido. De maneira geral, os valores do índice de performance de crescimento calculados para os cienídeos estão acima dos de Scombridae e Serranidae (Munro e Pauly, 1983). Talvez a reprodução seja um fator importante e não considerado para as estimativas deste índice, já que influencia o crescimento dos organismos. Além disso, a ocorrência de indivíduos adultos na área para as espécies de menor porte indica ocupação diferencial das espécies da família no local.

Na baía de Santos, os coeficientes de mortalidade natural variaram entre 0,18 a 0,86, indicando que as espécies *Micropogonias furnieri* e *Macrodon atricauda* apresentam as menores taxas de mortalidades (0,18 e 0,19, respectivamente), enquanto que *Stellifer sp.* e *S. stellifer* são as espécies mais
sujetas à maior mortalidade natural. Há vinte anos, os coeficientes de mortalidade total e exploração foram elevados para os cangoás *Stellifer rastrifer* e *S. brasiliensis*, na baía de Santos, indicando que as espécies se encontravam submetidas à elevada pressão de pesca indireta, uma vez que ambas são abundantes como fauna acompanhante na pesca associada ao camarão sete-barbas (Coelho *et al.*, 1985, 1986; Paiva Filho e Schmiegelow, 1986).

Apesar da pesca artesanal atuar sobre o estrato jovem da população, as taxas de mortalidade e exploração para *I. parvipinnis* na baía de Santos, não sugeriram um padrão de sobrepesca e sim que a espécie estaria sendo explorada otimamente (Giannini e Paiva Filho, 1994). O resultado da taxa de mortalidade natural obtida neste estudo (0,60) foi menor do que o registrado por Giannini e Paiva Filho (1994) (M= 0,79). O período de suspensão da pesca do camarão sete-barbas nos meses de março e abril pode ser benéfico para a tortinha, uma vez que o período de defeso está relacionado com o período de recrutamento da tortinha (Coelho *et al.*, 1988) já que a espécie apresenta atividade intensa principalmente no verão (Pina e Chaves, 2009). Este período de defeso, realmente pode ser benéfico para as tortinhas, uma vez que, esta espécie foi a segunda mais abundante na comunidade de cienídeos na Baía de Santos, tanto no presente estudo quanto no levantamento realizado há vinte anos por Giannini e Paiva Filho (1990b).

No presente estudo e no trabalho de Braga (1990) os coeficientes de mortalidade natural registrados para a espécie *Paralonchurus brasiliensis* foram próximos entre si. De acordo com Braga (1990) a espécie não é visada comercialmente, entretanto devido à intensa pesca do camarão sete-barbas, há uma atuação indireta sobre a maria-luiça. Desta forma, Robert *et al.* (2007) sugerem a interdição do arrasto na profundidade em torno de 10 m, durante a primavera e verão, pois reduziria a captura de indivíduos recrutadas ou em proximidade de desova de *P. brasiliensis*.

Souza e Chaves (2007) recomendam que seja mantida a primavera como época de defeso do camarão sete-barbas, beneficiando não apenas as espécies de peixes que desovam nesta estação, mas também aquelas que se preparam para a desova no verão. Entretanto, os barcos camaroeiros estarão ativos durante a época de desova da maioria dos Sciaenidae (verão) e também na época de alta frequência de peixes na fase de transformação (larvas para
juvenis), certamente afetando o estoque de peixes na região de Cananéia (Santos-Ninin, 2008).

O recrutamento de qualquer espécie depende em grande parte da mortalidade durante a fase pelágica na fase inicial de desenvolvimento. Contudo, além dos fatores físicos há a influência de outros fatores, como a predação sobre as larvas, juvenis e adultos de diversas espécies, principalmente aquelas de interesse comercial; as mudanças na disponibilidade de suas presas e competição (O’Brien, 2009).

A baía de Santos é uma área usada pelos Sciaenidae, tanto no período larval e juvenil, como por adultos e desovantes, sendo que o ciclo anual de abundância das espécies está associado aos períodos de recrutamento (Ribeiro Neto, 1989). O mesmo autor identificou dois padrões de recrutamento das espécies de cienídeos nos seguintes grupos: as espécies do gênero *Stellifer, Paralonchurus brasiliensis, Micropogonias furnieri* e *Menticirrhus americanus* recrutadas entre a primavera e o outono, que utilizam a baía como área em que os indivíduos crescem, principalmente deste período ao inverno; e as espécies *Isopisthus parvipinnis, Macrodon ancyldodon* e *Bairdiella ronchus* que são recrutadas entre o outono e primavera e que crescem na região deste período até o verão. No presente estudo, foi observado um recrutamento contínuo das espécies *S. rastrifer, I. parvipinnis*, já *P. brasiliensis, M. atricauda*, *M. furnieri* o recrutamento ocorreu principalmente nos meses que compõe a primavera e para *N. microps* e *L. breviceps* o recrutamento ocorreu principalmente no outono.

A maioria das espécies de cienídeos aqui estudadas apresentou crescimento alométrico positivo, no qual tanto na análise da relação comprimento e peso do total de indivíduos como para os sexos separados, foram muito semelhantes entre si. Costa e Araújo (2003) registraram para *Micropogonias furnieri* crescimento isométrico na baía de Sepetiba, não havendo mudanças de forma ou proporções ao longo das fases ontogenéticas. Como tal relação depende do peso e este está relacionado às condições alimentares recentes, essa diferença mais reflete diferenças no grau de repleção do trato digestório ou mesmo de maior higidez do que de crescimento diferencial.
Com o coeficiente angular \((b)\) da relação peso-comprimento foi calculado o fator de condição por espécie, os valores médios do fator de condição apresentaram pequena variação ao longo dos meses para todas as espécies estudadas. Na literatura somente encontram-se estudos sobre o fator de condição para as algumas espécies de cienídeos como *S. rastrifer*, *S. brasiliensis* e *S. stellifer* (Pombo, 2010), *Paralochirus brasiiliensis* (Braga et al., 1985), *Macrodon ancylodon* (Carneiro e Castro, 2005) e *Micropogonias furnieri* (Isaac-Nahum e Vazzoler, 1983; Carneiro et al., 2005). Desta forma, informações sobre o fator de condição para as espécies *I. parvipinnis*, *N. microps*, *Stellifer sp.* e *L. breviceps* são inéditas na literatura.

Os valores do fator de condição encontrados para a maria-luíza *P. brasiliensis* foram menores quando comparados a outras espécies. Segundo Braga et al. (1985) os exemplares imaturos apresentaram um valor médio do K inferior e distinto dos exemplares maduros. Uma vez que os jovens passaram a fazer parte da população adulta, estão se alimentando ativamente, e consequentemente apresentam um ótimo proveito metabólico, os valores de K tornam-se elevados.

A espécie *M. atricauda*, dentre todas as espécies de cienídeos, apresentou as maiores oscilações entre os valores médios do fator de condição ao longo dos meses, com os valores mais elevados nos meses de janeiro a abril de 2005, e um novo pico entre novembro e dezembro de 2005. Carneiro e Castro (2005) também registraram elevados valores em dezembro e abril, e, segundo os autores, tais valores podem estar relacionados com os picos de atividade reprodutiva da espécie, visto que nem sempre se estima o fator de condição retirando-se o peso gonadal.

No presente estudo a corvina (*M. furnieri*) apresentou uma distribuição uniforme entre os valores de K, com um pico registrado em maio de 2005. Por sua vez, Carneiro et al. (2005) registrou um aumento no fator de condição no início da primavera e no início do outono, o que coincide parcialmente com o aqui encontrado, uma vez que a abrangência das capturas dos dois trabalhos não permitem comparações.

Apesar de uma lacuna de vinte anos, entre o presente estudo e os trabalhos realizados por Giannini e Paiva Filho (1990a, 1992, 1994, 1995) na mesma área de estudo, e do presente estudo com outros trabalhos realizados
ao longo da costa brasileira, verificou-se pequena variação entre os valores dos parâmetros de crescimento, relação peso-comprimento e fator de condição calculados. Além disso, informações inéditas foram apresentadas para as espécies Isopisthus parvipinnis, Stellifer sp., Nebris microps e Larimus breviceps.

2.5. Referências bibliográficas

SANTOS-NININ, A. P. Morfologia e distribuição de peixes da família Sciaenidae no estágio de transformação na costa sul e sudeste do

3. Biologia reprodutiva das fêmeas das espécies principais da família Sciaenidae (Perciforme) na baía de Santos, SP

Resumo

A biologia reprodutiva das espécies *Stellifer rastrifer*, *Isopisthus parvipinnis*, *Stellifer brasiliensis* e *Paralonchurus brasiliensis* foi estudada, com ênfase no papel que a baía de Santos desempenha para as espécies. As coletas foram realizadas entre novembro de 2004 e dezembro de 2005. Ao longo do período estudado, a área apresentou predomínio significativo de fêmeas nos maiores comprimentos, exceto em *S. rastrifer*. Na baía de Santos, as fêmeas dos cienídeos estudados apresentaram valores elevados do comprimento de primeira maturação, variando de 132,54 mm a 176,55 mm. Ocorreram fêmeas desovantes das quatro espécies, sendo que somente em *S. rastrifer* estas foram registradas quase ao longo de todo o ano. As maiores médias da relação gonadossomática foram registradas em setembro e outubro para as espécies *S. rastrifer* e *P. brasiliensis*, e em novembro para *I. parvipinnis* e *S. brasiliensis*, com valores individuais alcançando 19,45 % para *S. rastrifer*, 4,66 % para *I. parvipinnis*, 11,14 % para *S. brasiliensis*, 6,11 % para *P. brasiliensis*. De maneira geral, e em diferentes níveis de importância, todas as espécies estudadas indicaram completar o ciclo reprodutivo na região estudada.

Palavras-chave: proporções sexuais, comprimento de primeira maturação, relação gonadossomática, cienídeos, baía de Santos.

3.1. Introdução

Informações sobre o desenvolvimento cíclico das gônadas, época e local de desova e comprimento em que os indivíduos iniciam o processo reprodutivo fazem parte do conhecimento acerca da biologia reprodutiva de uma espécie. Estas informações são subsídios importantes para a elaboração da regulamentação de pesca, quanto à época, ao local e ao tamanho dos indivíduos que podem ser capturados dentro de um programa de manejo, permitindo também a tomada de medidas racionais na preservação de estoques ou no controle de espécies indesejáveis (Marques *et al.*, 2000; Souza *et al.*, 2007).
As áreas costeiras rasas, assim como os estuários e baías, atuam como importantes locais de refúgio e alimentação para diversas espécies de peixes que, embora muitas vezes possuam distribuição bastante ampla na plataforma continental, durante as fases juvenis ocupam estratos de menor profundidade (Schwarz Jr., 2009). Os cienídeos são exemplo de espécies que utilizam os ambientes estuarinos para crescimento durante as fases de jovens e adultas, bem como área de desova e nas suas fases iniciais de desenvolvimento (Menezes e Figueiredo, 1980; Chao, 2002).

Os Sciaenidae são peixes primariamente marinhos, costeiros, mais comumente encontrados em águas rasas da plataforma continental, próximas das desembocaduras de grandes rios, em fundos de areia ou lama (Santos-Ninin, 2008), são comuns também em regiões estuarinas (Menezes e Figueiredo, 1980; Chao, 2002). Cienídeos apresentam elevada abundância em toda a costa brasileira, do Maranhão até o Rio Grande do Sul (Haimovici e Mendonça, 1996a e 1996b; Haimovici et al., 1996; Araújo et al., 1997; Araújo et al., 1998; Chaves e Corrêa, 1998; Chaves e Bouchereau, 2000; Pessanha et al., 2000; Castro, 2001; Araújo et al., 2002; Godefroid et al., 2004; Queiróz et al., 2006; Santos, 2006; Azevedo et al., 2007; Schwarz Jr. et al., 2006; Schwarz Jr. et al., 2007; Carvalho-Neta e Castro, 2008; Rocha et al., 2010).

As principais espécies encontradas na baía de Santos, em termos de abundância e dominância nesse sistema costeiro, são Stellifer rastrifer (Jordan, 1889), Isopisthus parvipinnis (Cuvier, 1830), S. brasiliensis (Schultz, 1945) e Paralonchurus brasiliensis (Steindachner, 1875), relacionadas no capítulo 1 desta dissertação.

O cangoá S. rastrifer apresenta um padrão de distribuição espacial, com os juvenis presentes tanto em baías quanto em rios, enquanto os adultos são mais abundantes em baías, local considerado como área de desova da espécie
(Camargo e Isaac, 2005). A análise morfológica das gônadas e a relação gonadossomática indicaram altas frequências de indivíduos em atividade reprodutiva nos meses de primavera, entretanto uma razoável ocorrência de indivíduos em atividade reprodutiva foi verificada em junho (Chaves e Vendel, 1997), este padrão foi observado por Camargo e Isaac (2005) também no rio Caeté. Para a congênere S. brasiliensis somente informação referente ao comprimento de primeira maturação gonadal (L₅₀) está disponível na literatura.

A tortinha Isopisthus parvipinnis apresenta desova entre o inverno e primavera (Soares, 1983). Como as outras espécies de cienídeos o período de reprodução da maria-luíza P. brasiliensis ocorre na primavera (Cunningham e Diniz Filho, 1995), entretanto este período estende-se do outono (início da maturação) ao verão (final da desova) (Robert et al., 2007), mas sempre com a maior atividade reprodutiva ocorrendo nos meses que compõe a primavera e verão (Lewis e Fontoura, 2005).

O objetivo principal do presente estudo foi identificar, através de mais de um indicador, se as espécies Stellifer rastrifer, Isopisthus parvipinnis, S. brasiliensis e Paralonchurus brasiliensis utilizam a baía de Santos como área de desenvolvimento gonadal, de desova e/ou para seu crescimento.

3.2. Material e Métodos
3.2.1. Coleta do material e procedimentos laboratoriais

A descrição dos procedimentos de coleta encontra-se no item “Material e Métodos” desta dissertação.

No laboratório, os exemplares pertencentes às espécies Stellifer rastrifer (Jordan, 1889), S. brasiliensis (Schultz, 1945), Paralonchurus brasiliensis (Steindachner, 1875) e Isopisthus parvipinnis (Cuvier, 1830) foram identificados com o auxílio da chave presente em Menezes e Figueiredo (1980), e para a atualização da nomenclatura foram utilizados os trabalhos de Chao (2002) e Menezes et al. (2003).

Após a identificação das espécies foram tomados dados de comprimento total (CT) (mm) e peso total (PT) (com precisão de 0,01g). Posteriormente, os exemplares foram dissecados para a verificação do sexo, segundo descrição de Vazzoler (1981, 1996), e para a identificação dos estádios de maturidade das fêmeas, segundo escala proposta por Dias et al. (1998), que classifica os
ovários em: imaturos (estádio A), em maturação (estádio B), maduros (estádio C), hidratados (estádio D) e desovados (estádio E).

3.2.2. Análise populacional e dinâmica reprodutiva

A estrutura da população em sexo para cada espécie foi verificada pelas proporções sexuais por classes de comprimento e por mês, buscando-se verificar diferenças significativas no predomínio de um dos sexos, pelo teste do χ^2, tanto para a hipótese de 1:1 (50 % machos e 50 % fêmeas) como para aquela observada em todo o período de coleta (porcentagem dos sexos considerando a observação de todo o período como o esperado).

A determinação das classes de comprimento para a análise das proporções sexuais foi baseada de acordo com a equação, presente em Viera (1980). Entretanto, optou-se em manter semelhante a amplitude entre as classes de comprimento das diferentes espécies para facilitar a comparação.

A dinâmica reprodutiva para cada uma das espécies foi estudada através de indicadores qualitativos e quantitativos apenas das fêmeas, uma vez que são mais indicadas para estudos que envolvem periodicidade do desenvolvimento gonadal (West, 1990).

a. indicadores qualitativos

A frequência de ocorrência dos indivíduos nos diferentes estádios de maturidade gonadal foi verificada por mês, agrupando-se os resultados em três conjuntos: indivíduos jovens (estádio A de maturidade gonadal), indivíduos adultos (estádios B e C) e indivíduos desovantes (estádios D e E).

A partir da estimativa da frequência dos estádios de maturidade ovariana foi também estimado o comprimento médio de início de primeira maturação gonadal (L_{50}), definido como o comprimento no qual 50% dos indivíduos iniciam o processo reprodutivo (Vazzoler, 1996). As proporções de adultos foram obtidas através da frequência de indivíduos nos estádios B (em maturação), maduros (C) e os maduros desovantes (D+E). A equação que descreve o modelo é a da curva logística, em que a proporção de fêmeas adultas foi calculada segundo King (1995):

$$P = \frac{1}{1 + \exp[-r(L-L_m)]},$$

em que L é o comprimento, L_{50} ou L_m corresponde a 50% de adultos e r é a inclinação da curva.
O comprimento médio de início de primeira maturação gonadal (L50) é uma variável reprodutiva lábil, dependente do crescimento e da maturidade dos indivíduos, e que apresenta relação com as condições ambientais prevalecentes na área de sua ocorrência. Sua estimativa é fundamental para o entendimento da dinâmica reprodutiva e do crescimento das populações, tanto de espécies de importância econômica como de importância ecológica (Vazzoler, 1996).

O valor de L50 foi calculado somente para as fêmeas, pelo fato dos machos não terem sido classificados quanto ao estádio de maturidade gonadal.

b. indicadores quantitativos

A relação gonadossomática (RGS), que representa a porcentagem de participação do peso da gônada em relação ao peso total dos espécimes (Vazzoler, 1996), foi analisada pelos indivíduos agrupados por mês e por estádio de maturação, expressa pela fórmula:

\[
RGS = \frac{Pg}{Pc} \times 100,
\]

sendo que:

\[Pc = Pt - Po,\]

em que: Po= peso dos ovários, Pt= peso total, Pc= peso do corpo.

Todas as fêmeas foram utilizadas para o cálculo da relação gonadossomática por estádio de maturação, para que se pudesse identificar a magnitude das diferenças nos valores da RGS, enquanto que para a relação gonadossomática por mês, somente as fêmeas classificadas como adultas (estádios B e C) e desovantes (estádios D e E) foram utilizadas nas análises.

A estimativa dos valores da relação gonadossomática é uma alternativa para as técnicas laboratoriais mais precisa tais como a histologia das gônadas e medida do diâmetro dos ovócitos (West, 1990).

3.3. Resultados

Na tabela 3.1 encontram-se as espécies estudadas, com os respectivos números de exemplares utilizados para cada análise.
Tabela 3.1. Lista de espécies com os respectivos números de exemplares utilizados para as análises de proporções sexuais (número total de machos e fêmeas), estádios de maturação e comprimento de primeira maturação gonadal (todas as fêmeas) e relação gonadossomática (somente fêmeas adultas e desovantes).

<table>
<thead>
<tr>
<th>Especie</th>
<th>Proporção sexual</th>
<th>Estadios de maturação</th>
<th>Comprimento de primeira maturação</th>
<th>Relação Gonadossomática</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellifer rastrifer (Jordan 1889)</td>
<td>7338</td>
<td>3617</td>
<td>3521</td>
<td>715</td>
</tr>
<tr>
<td>Isopisthus parvipinnis (Cuvier, 1830)</td>
<td>406</td>
<td>331</td>
<td>305</td>
<td>48</td>
</tr>
<tr>
<td>Stellifer brasiliensis (Schultz, 1945)</td>
<td>795</td>
<td>568</td>
<td>558</td>
<td>201</td>
</tr>
<tr>
<td>Paralonchurus brasiliensis (Steindachner, 1875)</td>
<td>514</td>
<td>399</td>
<td>381</td>
<td>112</td>
</tr>
</tbody>
</table>

Os resultados das proporções sexuais estimadas para todo o período de estudo indicam que o cangoá Stellifer rastrifer foi a única espécie que não apresentou diferença significativa \(\chi^2 = 0,14; \text{gl} = 1, \ p < 0,05 \) na análise das proporções sexuais totais, sendo registrada uma fêmea para cada macho. Isopisthus parvipinnis apresentou proporções de 4,8 fêmeas para cada macho \(\chi^2 = 176,02; \text{gl} = 1; \ p < 0,05 \), enquanto para o cangoá S. brasiliensis foi registrada a maior diferença significativa \(\chi^2 = 198,75; \text{gl} = 1; \ p<0,05 \), sendo três fêmeas para cada macho. A proporção de fêmeas de P. brasiliensis foi 4,9 para cada macho \(\chi^2 = 224,9, \text{gl} = 1, \ p < 0,05 \) (tabela 3.2).
Ainda com relação à análise mensal das proporções sexuais, *S. rastrifer* não apresentou diferença significativa entre o número de indivíduos de cada sexo durante os meses de fevereiro, julho e setembro de 2005 (tabela 3.2). As fêmeas, por sua vez, foram predominantes nos meses de janeiro, abril, maio, junho e agosto de 2005, com a maior diferença em maio de 2005 ($\chi^2 = 118,5$). *I. parvipinnis* apresentou diferenças significativas em oito meses, de março a agosto, outubro e novembro de 2005, sendo a maior registrada em junho de 2005 ($\chi^2 = 71,53$, gl = 1, $p < 0,05$). Nos meses de novembro de 2004, fevereiro e outubro de 2005 não foram registradas diferenças significativas para *S. brasiliensis*. *Paralonchurus brasiliensis* apresentou diferenças significativas em quase todos os meses amostrados, com exceção de fevereiro e agosto de 2005, no qual houve uma igualdade entre as proporções (tabela 3.2).
maneira geral, as quatro espécies demonstraram um padrão semelhante nas proporções sexuais ao longo dos meses, com diferenças significativas na distribuição de machos e fêmeas entre março e junho de 2005 e em novembro de 2005 (tabela 3.2).

Todas as quatro espécies estudadas apresentaram predomínio de fêmeas nas proporções sexuais por classe de comprimento, principalmente nas classes mais abundantes. Para *S. rastrifer* foi registrada diferença significativa em sete das treze classes de comprimento estipuladas, sendo que a partir de 195 mm somente fêmeas foram capturadas. *I. parvipinnis* apresentou diferença significativa em seis classes de comprimento, enquanto que *S. brasiliensis* e *P. brasiliensis* registraram diferenças significativas nas proporções sexuais entre as classes de comprimento de 84 a 169 mm e 95 a 229 mm, respectivamente (tabela 3.3). Nas últimas classes de comprimento, para as espécies analisadas foram identificadas apenas fêmeas.

Tabela 3.3. Proporções sexuais por classe de comprimento (mm) das espécies *Stellifer rastrifer* (STRA), *Isopisthus parvipinnis* (ISPA), *Stellifer brasiliensis* (STBR) e *Paralonchurus brasiliensis* (PABR) da baía de Santos. (em negrito = diferença significativa).

<table>
<thead>
<tr>
<th>STRA</th>
<th>Macho</th>
<th>Fêmea</th>
<th>1:1 (F:M)</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>50-64</td>
<td>6</td>
<td>85,7</td>
<td>1</td>
<td>14,3</td>
</tr>
<tr>
<td>65-79</td>
<td>27</td>
<td>64,2</td>
<td>15</td>
<td>35,8</td>
</tr>
<tr>
<td>80-94</td>
<td>97</td>
<td>54,4</td>
<td>81</td>
<td>45,6</td>
</tr>
<tr>
<td>95-109</td>
<td>812</td>
<td>46,2</td>
<td>944</td>
<td>53,8</td>
</tr>
<tr>
<td>110-124</td>
<td>535</td>
<td>41,3</td>
<td>759</td>
<td>58,7</td>
</tr>
<tr>
<td>125-139</td>
<td>472</td>
<td>46,5</td>
<td>543</td>
<td>53,5</td>
</tr>
<tr>
<td>140-154</td>
<td>326</td>
<td>55,9</td>
<td>257</td>
<td>44,1</td>
</tr>
<tr>
<td>155-169</td>
<td>7</td>
<td>14,2</td>
<td>91</td>
<td>85,8</td>
</tr>
<tr>
<td>170-184</td>
<td>11</td>
<td>100</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>185-199</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200-214</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISPA</th>
<th>Macho</th>
<th>Fêmea</th>
<th>1:1 (F:M)</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>20-34</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35-49</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50-64</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>65-79</td>
<td>1</td>
<td>4,7</td>
<td>20</td>
<td>95,2</td>
</tr>
<tr>
<td>80-94</td>
<td>12</td>
<td>12,9</td>
<td>81</td>
<td>87,1</td>
</tr>
<tr>
<td>95-109</td>
<td>15</td>
<td>13,1</td>
<td>99</td>
<td>86,8</td>
</tr>
<tr>
<td>110-124</td>
<td>13</td>
<td>18,5</td>
<td>57</td>
<td>81,4</td>
</tr>
<tr>
<td>125-139</td>
<td>14</td>
<td>25</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>140-154</td>
<td>11</td>
<td>34,3</td>
<td>21</td>
<td>65,6</td>
</tr>
<tr>
<td>155-169</td>
<td>3</td>
<td>20</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>170-184</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>185-199</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STBR</th>
<th>Macho</th>
<th>Fêmea</th>
<th>1:1 (F:M)</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>50-64</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>65-79</td>
<td>7</td>
<td>35</td>
<td>13</td>
<td>65</td>
</tr>
<tr>
<td>80-94</td>
<td>23</td>
<td>22,3</td>
<td>80</td>
<td>77,7</td>
</tr>
<tr>
<td>95-109</td>
<td>38</td>
<td>23,6</td>
<td>123</td>
<td>76,4</td>
</tr>
<tr>
<td>110-124</td>
<td>37</td>
<td>23,5</td>
<td>120</td>
<td>76,5</td>
</tr>
<tr>
<td>125-139</td>
<td>50</td>
<td>31,6</td>
<td>108</td>
<td>68,4</td>
</tr>
<tr>
<td>140-154</td>
<td>23</td>
<td>23,9</td>
<td>73</td>
<td>76,1</td>
</tr>
<tr>
<td>155-169</td>
<td>13</td>
<td>21,3</td>
<td>48</td>
<td>78,7</td>
</tr>
<tr>
<td>170-184</td>
<td>8</td>
<td>32</td>
<td>17</td>
<td>68</td>
</tr>
<tr>
<td>185-199</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>200-214</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>215-229</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PABR</th>
<th>Macho</th>
<th>Fêmea</th>
<th>1:1 (F:M)</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>65-79</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>80-94</td>
<td>3</td>
<td>50</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>95-109</td>
<td>4</td>
<td>19</td>
<td>17</td>
<td>81</td>
</tr>
<tr>
<td>110-124</td>
<td>7</td>
<td>13,2</td>
<td>46</td>
<td>86,8</td>
</tr>
<tr>
<td>125-139</td>
<td>7</td>
<td>10,6</td>
<td>59</td>
<td>89,4</td>
</tr>
<tr>
<td>140-154</td>
<td>20</td>
<td>19,2</td>
<td>84</td>
<td>80,8</td>
</tr>
<tr>
<td>155-169</td>
<td>15</td>
<td>14,2</td>
<td>91</td>
<td>85,8</td>
</tr>
<tr>
<td>170-184</td>
<td>17</td>
<td>21,2</td>
<td>63</td>
<td>78,8</td>
</tr>
<tr>
<td>185-199</td>
<td>10</td>
<td>21,7</td>
<td>36</td>
<td>78,3</td>
</tr>
<tr>
<td>200-214</td>
<td>4</td>
<td>18,2</td>
<td>18</td>
<td>81,8</td>
</tr>
<tr>
<td>215-229</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>230-244</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>100</td>
</tr>
</tbody>
</table>
Com relação à distribuição dos estádios de maturação das fêmeas de *Stellifer rastrifer*, registrou-se a presença de fêmeas jovens (estádio A) e maduras (estádios B e C) ao longo de todos os meses estudados, enquanto que fêmeas desovantes (estádios D e E) ocorreram em oito meses, com destaque principalmente nos meses de fevereiro, setembro e outubro de 2005, sugerindo desova de longa duração (figura 3.1). Para *Isopisthus parvipinnis* verificou-se a ocorrência de fêmeas juvenis em todos os meses e fêmeas adultas em dez dos meses estudados; fêmeas desovantes desta espécie foram registradas somente em junho de 2005. Em todos os meses foram encontradas fêmeas juvenis e adultas de *Stellifer brasiliensis*, exceto no mês de julho de 2005 no qual ocorreram apenas exemplares jovens. Nesta espécie, somente o estádio hidratado (D) não foi identificado e no estádio desovado (E) foi registrado apenas um exemplar em março de 2005 (figura 3.1). A espécie *P. brasiliensis* apresentou fêmeas jovens e adultas em todos os meses, mas a presença de fêmeas desovantes foi registrada em novembro de 2004, janeiro, fevereiro e abril de 2005, sugerindo também para esta espécie uma desova prolongada (figura 3.1). Assim, considerando o período como um todo, é nítido que as espécies de cienídeos estudadas na baía de Santos são predominantemente constituídas por exemplares juvenis, mas, com representação significativa de fêmeas maduras em quase todo o período de estudo.

O comprimento médio de início de primeira maturação gonadal para as fêmeas das quatro espécies foi estimado para *Stellifer rastrifer* em 136,30 mm, para *I. parvipinnis* em 132,54 mm, para *S. brasiliensis* em 133,30 mm e para *P. brasiliensis* em 176,55 mm (figura 3.2).
Figura 3.2. Proporção de fêmeas adultas por classe de comprimento e estimativa do comprimento médio de primeira maturação gonadal (L_{50}) das espécies Stellifer rastrifer (STRA), Isopisthus parvipinnis (ISPA), Stellifer brasiliensis (STBR), Paralonchurus brasiliensis (PABR) da baía de Santos.

Outro indicador de maturidade, a relação gonadossomática por estádio de maturação das quatro espécies, apresentou um aumento crescente de acordo com o desenvolvimento ovocitário, exceto para I. parvipinnis, no qual o estádio hidratado (D) apresentou valores mais baixos que os de fêmeas maduras, mas vale ressaltar que apenas um exemplar foi amostrado (figura 3.3). Os cangoás apresentaram valores da relação gonadossomática semelhantes entre si, e este padrão pode estar relacionado com o fato de que são espécies congêneres.
Figura 3.3. Relação gonadossomática por estádio de maturação das fêmeas de *Stellifer rastrifer* (STRA), *Isopisthus parvipinnis* (ISPA), *Stellifer brasiliensis* (STBR), *Paralonchurus brasiliensis* (PABR) da baía de Santos.

A relação gonadossomática (RGS) estimada para as fêmeas adultas e desovantes da espécie *S. rastrifer* apresentou menores valores médios entre março e maio de 2005, e os maiores valores em fevereiro (2,5 ± 5,5), setembro e outubro de 2005, com maior pico em outubro de 2005 (3,62 ± 1,6) (Figura 3.4). Em fevereiro de 2005 foi registrado o maior valor da relação gonadossomática individual deste cangoá (RGS = 19,45). A queda nos valores da relação gonadossomática, principalmente em março e abril, pode indicar o período de desova, uma vez que nestes meses foram capturadas fêmeas desovantes, como pode ser observado na figura 3.1. Por outro lado, as fêmeas da tortinha *Isopisthus parvipinnis* apresentaram, ao longo de período de coleta, uma pequena variação nos valores de RGS, sendo que os maiores foram encontrados nos meses de novembro de 2004, e setembro a novembro de
2005, com o maior valor individual registrado em novembro de 2005 (RGS = 4,66) (figura 3.4).

Já nas fêmeas do cangoá *S. brasiiliensis*, os maiores valores foram registrados em novembro de 2004 e novembro de 2005, meses estes que também registraram os maiores valores de RGS individual (RGS = 11,14 e 10,86, respectivamente), sendo que em dezembro de 2005 observa-se uma pequena queda, provavelmente devido à captura somente de fêmeas em maturação (figura 3.1). Os maiores valores médios da relação gonadossomática para as fêmeas de maria-luíza foram registrados entre setembro e dezembro de 2005, sendo o maior valor individual registrado em outubro de 2005 (RGS = 6,11), e o menor em março e maio de 2005 (figura 3.4).

3.4. **Discussão**

Os ecossistemas podem ser impactados de muitas maneiras, incluindo poluição, doenças, destruição pesqueira e práticas de turismo, com resultados diretos no potencial reprodutivo das espécies alvo e remanescentes (Cochrane, 2009). A importância dos estudos sobre reprodução de peixes em áreas impactadas baseia-se no fato de que possíveis mudanças afetariam não somente a sobrevivência do indivíduo, mas a da população (Heath, 1995). Segundo Dias *et al.* (1998), estudos sobre a biologia reprodutiva em populações de peixes permitem não só compreender os mecanismos envolvidos na perpetuação das espécies, mas também, de maneira indireta, uma administração pesqueira baseada no uso que os indivíduos destas espécies fazem de um sistema ou área.

As proporções sexuais, por exemplo, podem fornecer subsídios importantes para o conhecimento da relação entre indivíduos e o meio ambiente, bem como sobre o potencial reprodutivo de uma população (Vicentini e Araújo, 2003). As proporções sexuais em peixes variam ao longo do ciclo de vida em função de eventos sucessivos, que atuam de modo distinto sobre os indivíduos de cada sexo (Vazzoler, 1996). De acordo com Vicentini e Araújo (2003) a diferenciação na taxa de crescimento entre os sexos pode causar um desequilíbrio na proporção, uma vez que, se um determinado sexo apresenta rápida taxa de crescimento este consequentemente, irá passar mais rapidamente pelas fases vulneráveis de menor comprimento e, portanto diminuirá a proporção de predação. Enquanto que, se o outro sexo apresenta uma taxa de crescimento mais lenta sofrerá mais com a predação, resultando na diminuição da abundância na próxima fase de desenvolvimento (Vicentini e Araújo, 2003). Além disso, deve-se considerar que se as espécies apresentam bimaturismo, ou seja, se machos e fêmeas amadurecem em tamanhos e idades diferentes, a predação diferencial dos indivíduos também atuará para acentuar os desvios nas proporções sexuais do esperado.

A presença de ambos os sexos em proporções apropriadas para a reprodução é essencial para a sustentabilidade dos estoques de peixes (Cochrane, 2009). Dentre as espécies estudadas na baía de Santos, somente *Stellifer rastrifer* não apresentou diferenças significativas entre o número total de machos e fêmeas amostrados. Segundo Peres-Rios (2001), no estuário de
Cananéia (SP), esta espécie não apresenta diferenças significativas entre as proporções sexuais totais estudadas, mas há o predomínio de fêmeas no verão e outono. Coelho *et al.* (1987) afirmam que o predomínio de fêmeas na captura acidental na pesca do camarão sete-barbas acarreta maior dano à população, pois é de sua abundância que depende o potencial reprodutivo de uma população. Um padrão diferente nas proporções de machos e fêmeas foi encontrado por Pombo (2010), na enseada de Caraguatatatuba, que registrou um predomínio de machos de *S. rastrifer* na área, sendo também um macho o maior exemplar amostrado.

As quatro espécies estudadas apresentaram predomínio de fêmeas por classe de comprimento. Segundo Vazzoler (1996), quando estudadas em nível populacional, espécies apresentam proporções de 1:1, mas quando a análise é aprofundada e se considera classes de comprimento, pode ocorrer predomínio de fêmeas nos maiores tamanhos, em função de estas apresentarem taxa de crescimento maior que os machos e, como consequência, atingirem comprimentos maiores. O maior tamanho das fêmeas está também relacionado com sua fecundidade (Nikolsky, 1963; Vaz dos Santos *et al.*, 2009).

Na baía de Santos as fêmeas apresentaram maiores taxas de crescimento do que os machos, exceto *Isopisthus parvipinnis* (ver capítulo 2 desta dissertação), justificando assim a diferença nas proporções sexuais encontradas entre as classes de comprimento e a presença de fêmeas de comprimento mais elevado no presente estudo.

Em relação à desova de *S. rastrifer*, Sinque (1980), utilizando a ocorrência de larvas, infere que a espécie apresenta pelo menos duas grandes épocas de desova por ano, pois grandes quantidades de larvas foram coletadas em mais de uma época do ano na região de Cananéia (SP). Já Peres-Rios (2001), também no estuário de Cananéia (SP), encontrou evidências que a espécie *S. rastrifer* pode desovar no verão e primavera, ou mesmo ao longo de todo ano. Este padrão de desova contínua foi observado também no presente estudo, uma vez que foram identificadas fêmeas desovantes em oito meses dos treze amostrados. Chaves e Vendel (1997) afirmam que a espécie completa sua reprodução na baía de Guaratuba (PR), uma vez que a desova ocorre, sobretudo durante os meses de primavera, época em que há grande concentração de indivíduos com gônadas maduras e
médias mensais mais elevadas da relação gonadossomática, havendo também uma pequena parcela desovando no inverno. Segundo Camargo e Isaac (2005), esta espécie apresenta desova com dois picos mais intensos de outubro a dezembro e durante junho, em um estuário no nordeste do Brasil.

Ainda com relação à desova prolongada na baía de Santos, o cangoá *S. rastrifer* apresentou os maiores valores da relação gonadossomática, tendo sido registrados picos em fevereiro e entre setembro e outubro, principalmente devido à captura de fêmeas hidratadas, e a presença de fêmeas desovadas nos meses seguintes a estes picos. Segundo Giannini e Paiva Filho (1990a) o recrutamento deste cangoá parece ocorrer em um único pico bem distinto, representado pela entrada de jovens nos meses de verão-outono, entretanto, o presente estudo registrou recrutamento contínuo para a espécie (ver capítulo 2 desta dissertação).

No caso de *I. parvipinnis*, Sinque (1980) infere, a partir da ocorrência de exemplares muito pequenos na região de Cananéia (SP) (SP), que sua desova ocorre em mar aberto, uma vez que os indivíduos foram capturados apenas no canal de acesso ao mar aberto e com comprimento superior a 350 mm. Já Chaves e Bouchereau (2000), estudando a espécie na baía de Guaratuba (PR), inferem que a desova ocorra em lugares abrigados. Na baía de Santos, a população desta espécie constitui-se da maioria de indivíduos jovens (81,5%) e fêmeas imaturas (84,4%).

Os maiores valores de RGS da tortinha foram obtidos em novembro de 2004 e de setembro a novembro de 2005, sendo que somente em julho de 2005 foram amostradas fêmeas maduras e hidratadas. A análise histológica das fêmeas de *I. parvipinnis* verificou a presença de apenas duas fêmeas hidratadas, uma em setembro e outra em novembro de 2005 (ver capítulo 4), o que sugere que alguns indivíduos da população estão desovando na região estudada. O recrutamento ocorre em dois picos, representados pela entrada de indivíduos jovens nos meses de dezembro e janeiro e em julho.

Não há relato na literatura sobre o período de sua desova da espécie *S. brasiliensis*. No presente estudo, a espécie apresentou somente uma elevação nos valores de RGS nos meses de novembro, seguida por uma queda em dezembro. A desova desta espécie ocorre nos meses associados à primavera, uma vez que várias fêmeas hidratadas foram registradas em novembro de

Estimativas do comprimento de primeira maturação (*L*₅₀) são úteis para o manejo de estoques naturais (Fontoura et al., 2009), pois fornecem informação básica para a determinação do tamanho mínimo de captura e dimensionamento das malhas de rede (Vazzoler, 1996; Vieira e Haimovici, 1997). O comprimento de primeira maturação estimado na baía de Santos para *Stellifer rastrifer* foi 136 mm, para *Isopisthus parvipinnis* foi 132,5 mm, para *S. brasiliensis* foi 133,3 mm e para *Paralonchurus brasiliensis* foi 176,5 mm. Na literatura, os valores estimados de *L*₅₀ para as fêmeas das espécies *Stellifer rastrifer* foram 95 mm (Coelho et al., 1985; Camargo e Isaac, 2005) no litoral de São Paulo e no estuário do Rio Caeté (PA), respectivamente; para *Isopisthus parvipinnis* em 107 mm (Coelho et al., 1988) e para *Stellifer brasiliensis* em 73 mm (Coelho et al., 1987), ambos no litoral de São Paulo; para *Paralonchurus brasiliensis* em 146 mm, 154 mm, 154 mm e 150 mm (Cunningham e Diniz Filho, 1995; Lewis e Fontoura, 2005; Coelho et al., 1993; Branco et al., 2005, respectivamente), no litoral paulista e paranaense. Em todos os casos os valores foram menores que os estimados no presente estudo. Apenas o valor calculado para *P. brasiliensis* em 175 mm na plataforma continental interna do Paraná por Robert et al. (2007) foi próximo ao amostrado na baía de Santos, enquanto que Romero et al. (2008), na região de Ilhéus (BA) registraram para a tortinha *I. parvipinnis* o maior comprimento de primeira maturação (159 mm).

Segundo Vazzoler (1996) a maturação precoce pode acarretar menor fecundidade e, provavelmente uma exposição à maior gama de predadores.

A estimativa de elevados valores do comprimento de primeira maturação gonadal encontrados para os cangoás e a maria-luiza no presente estudo,
pode ser as altas taxas de crescimento (k) registradas para as fêmeas destas espécies (capítulo 2 desta dissertação).

As quatro espécies estudadas apresentaram aumento no valor médio da relação gonadossomática de acordo com a mudança do estádio de desenvolvimento ovariano, do imaturo ao hidratado. Esta variação provavelmente ocorre devido ao aumento da quantidade de ovócitos vitelogênicos entre o início do período reprodutivo, a desova e/ou atresia folicular. Os maiores valores médios da relação gonadossomática ocorrem no estádio hidratado (D), que antecede a desova, somente para *I. parvipinnis*, o valor da RGS foi baixo devido a captura de apenas um exemplar hidratado. Segundo Santos *et al.* (2005) estes valores elevados são devido ao volume acentuado das gônadas, que ocupam na fase hidratada quase toda a cavidade celomática.

Os indicadores usados para a avaliação do processo reprodutivo para as espécies de cienídeos estudadas (*Stellifer rastrifer, Isopisthus parvipinnis, S. brasiliensis e Paralonchurus brasiliensis*) apresentaram resultados controversos e não complementares. Ao longo da baía de Santos ocorreu um predomínio de fêmeas ao longo dos meses, principalmente para a espécie *P. brasiliensis* no qual as fêmeas dominaram onze dos treze meses de coleta. Para as quatro espécies de cienídeos, as maiores médias da relação gonadossomática foram registradas entre agosto e dezembro, apesar das maiores RGS de *S. rastrifer* ocorrerem entre setembro e novembro, fêmeas desovantes (hidratadas e esvaziadas) da espécie estavam presentes em quase todos os meses de coleta. Já as fêmeas desovantes de *I. parvipinnis* foram encontradas somente em junho, de *S. brasiliensis* em março e de *P. brasiliensis* principalmente no final do verão e outono, períodos distintos das maiores médias de RGS.

As quatro espécies aqui estudadas, *Stellifer rastrifer, Isopisthus parvipinnis, Stellifer brasiliensis e Paralonchurus brasiliensis*, parecem utilizar a baía de Santos ou áreas contíguas, como o canal de Bertioga ou o de Santos para se reproduzir, uma vez que foram amostradas fêmeas em todos os estádios de maturação. Larvas dos cienídeos *Isopisthus parvipinnis, Stellifer spp, Stellifer rastrifer e Paralonchurus brasiliensis* foram capturadas na baía de Santos (Katsuragawa, 2007), reforçando a idéia sugerida de que estas espécies completam o ciclo na baía de Santos.
3.5. Referências bibliográficas

QUEIROZ, G. M. L. N.; SPACH, H. L.; SOBOLEWSKI-MORCELOS, M.; SANTOS, L. O.; SCHWARZ JR, R. Caracterização da ictiofauna demersal

4. Descrição e comparação entre a classificação macroscópica e microscópica dos ovários de quatro espécies de Sciaenidae

Resumo

A histologia é uma ótima ferramenta utilizada nos estudos sobre reprodução em peixes, uma vez que minimiza erros contidos na identificação macroscópica. Este trabalho teve como objetivo realizar a descrição microscópica dos estádios de desenvolvimento gonadal e a correção da identificação da avaliação macroscópica de gônadas das fêmeas de quatro espécies de cienídeos da baía de Santos. Não foram encontradas fêmeas desovadas (estádio E) no presente estudo, entretanto para as espécies *Stellifer rastrifer* e *S. brasiliensis* identificou-se um estádio descrito como “ovário em reorganização”, no qual se observa reorganização celular para o início de um novo ciclo reprodutivo. As taxas de erro na identificação macroscópica variaram entre 53,3 e 74,5 %. Para todas as espécies, a maior taxa de coincidência entre as classificações ocorreu no estádio C (fêmeas maduras). Verificou-se a presença de fêmeas com ovócitos hidratados, principalmente nos meses de verão para *I. parvipinnis* e *S. brasiliensis* e nos meses de inverno para a espécie *P. brasiliensis*. A aplicação da histologia para a correção da identificação dos estádios de maturação foi de suma importância para as análises dos parâmetros reprodutivos das espécies de cienídeos na baía de Santos.

Palavras-chave: histologia, reprodução, cienídeos, classificação de ovários

4.1. Introdução

A histologia oferece uma poderosa ferramenta no estudo da reprodução de peixes, e é normalmente usada para verificação de sexo, identificação do estágio de desenvolvimento, identificação inequívoca da desova, documentação da presença de intersexo, tumores, parasitas e outras anomalias, além de quantificar atresia (Blazer, 2002).

A utilização de análises histológicas na identificação dos estádios de desenvolvimento ovariano colabora para uma melhor compreensão do processo reprodutivo e diminui os erros contidos nas análises macroscópicas (Fávaro *et al.*, 2005). A descrição das diferentes fases de desenvolvimento da
ovogênese é importante na avaliação microscópica por escalas de maturidade para as espécies, auxiliando na classificação do tipo e época de desova (Schultz et al., 2002).

A classificação microscópica das gônadas requer equipamentos e técnicas dispendiosas e que demandam tempo e pessoal treinado, mas é mais precisa, pois reflete a dinâmica do desenvolvimento ovocitário. Por outro lado, a análise macroscópica dos ovários fornece resultados imediatos ao exame visual, mas considera características facilmente alteráveis pelo processo de conservação das gônadas ou dos exemplares, e incorpora a experiência prévia do observador no reconhecimento das características consideradas, o que pode resultar em erros de avaliação e classificação das gônadas em estádios de maturidade (Dias et al., 1998).

As classificações existentes dos estádios de maturidade gonadal podem ser complementadas com outras análises, como a relação gonadossomática, que é amplamente usada como um indicador do período de desova em peixes (Plaza et al., 2007). Entretanto, seu uso em estudos sobre biologia reprodutiva é mais confiável quando associado e referendado por outros indicadores de maturidade e reprodução, como técnicas macroscópicas e histológicas, medidas do diâmetro dos ovócitos, ou dosagem hormonal (West, 1990, Santos et al., 2005). Tal fato pode ser justificado por alterações no peso total das fêmeas dadas pelo maior grau de repleção do trato digestório ou mesmo o conteúdo de tecido gorduroso.

Para se entender o uso que uma espécie faz de uma área, diferentes abordagens podem ser usadas. Lowerre-Barbieri et al. (1996) relacionam três evidências para que se considere que uma espécie complete seu ciclo reprodutivo numa região e apresente desova múltipla: (1) a aparência e o padrão temporal dos estágios ovarianos macroscópicos; (2) a ocorrência de ovócitos hidratados e folículos pós-ovulatórios remanescentes em ovários parcialmente desovados ou em novo ciclo de desenvolvimento, e (3) o padrão de desenvolvimento do ovócito e o tipo de fecundidade. Neste caso, está clara a utilização de abordagens tanto macro- como microscópicas para a avaliação das gônadas.

Com base nessas informações e usando como modelo quatro espécies de cienídeos estudadas na baía de Santos, com o intuito de minimizar
possíveis erros contidos na identificação macroscópica de ovários, este estudo teve como objetivos: 1 – propor uma classificação microscópica e realizar a correção da identificação macroscópica a partir da análise microscópica de ovários previamente analisados; 2 – recalcular o comprimento de primeira maturação gonadal e os valores da relação gonadossomática, com base na avaliação microscópica das gônadas.

4.2. Material e Métodos

Os procedimentos de coleta encontram-se descritos no item “Material e métodos” desta dissertação.

Os exemplares foram dissecados para a verificação do sexo, segundo as descrições contidas em Vazzoler (1981, 1996) e para a identificação dos estádios de maturidade, segundo a escala proposta por Dias et al. (1998), que considera cinco estádios: imaturos (estádio A), em maturação (estádio B), maduros (estádio C), hidratados (estádio D) e desovados (estádio E). As gônadas foram retiradas para a tomada do peso total a fresco (PG) (0,01 g) e os ovários foram fixados em solução de formalina a 10% tamponada para posterior processamento.

Apenas as fêmeas das espécies foram analisadas histologicamente. Os ovários são os órgãos mais apropriados para estudos sobre reprodução por fornecerem informações sobre o grau de maturação e, por conseguinte, de épocas e locais de desova, bem como sobre o número possível de descendentes (Lara, 1951; Chaves, 1985; West, 1990). Além disso, o fato de se investir na microscopia de ovários ocorre por ser a ovogênese mais complexa que a espermatogênese, pois a fêmea além de produzir o gameta feminino é ainda responsável pela incorporação de substâncias nutritivas e ricas em energia nos ovócitos, para serem utilizadas nas primeiras fases de vida dos embriões (Fávaro et al., 2003). Outro aspecto relevante é que as células da linhagem gamética feminina são maiores que as células da linhagem espermática, fator facilitador nas análises microscópicas (Fávaro et al., 2003).

A preparação dos cortes para a análise histológica seguiu as seguintes etapas, adaptadas de Vazzoler (1996): desidratação do tecido por sequência crescente de concentração de alcoóis (70%, 80%, 90%, 95%, absoluto I e absoluto II), com 1 hora de duração em cada concentração; diafanização do
tecido com álcool+xicol e xicol, permanecendo 1 hora em cada solução; impregnação em parafina pura I, parafina pura II durante 1 hora em cada parafina; inclusão do tecido em parafina para o preparo dos blocos; microtomia para a obtenção de cortes com espessura de 5 μm; colagem imediata dos cortes sobre láminas de vidro; coloração com hematoxilina-eosina (HE); colocação das lamínulas com meio de montagem e visualização em microscopia de luz.

Para a preparação dos cortes foram selecionados até 30 ovários por classe de comprimento total da espécie _Stellifer rastrifer_ e até 15 ovários para _Isopisthus parvipinnis, Stellifer brasiliensis_ e _Paralonchurus brasiliensis_ (tabela 4.1). A escolha dos ovários para a preparação permanente seguiu os seguintes critérios: fêmeas que apresentaram dúvidas de identificação macroscópica, e todas as fêmeas classificadas macroscopicamente como hidratadas (D) e desovadas (E). Para alcançar o número proposto, o restante dos ovários foi escolhido de modo aleatório para abranger todos os meses de coleta e as respectivas estações oceanográficas. No presente estudo, apesar da elevada abundância de fêmeas imaturas amostradas, poucas amostras foram utilizadas para a preparação dos cortes, uma vez que grande parte dessas amostras foi descartada após a classificação macroscópica, devido à elevada quantidade de material a ser processado.

As preparações permanentes foram observadas e fotomicrografadas sob microscópio de luz, analisando-se a organização citológica do ovário e as características morfológicas e celulares de desenvolvimento do ovócito e do folículo ovariano.

Tabela 4.1. Número total de fêmeas a amostradas e de fêmeas selecionadas para as preparações permanentes.

<table>
<thead>
<tr>
<th>Espécie</th>
<th>Nº de fêmeas identificadas</th>
<th>Nº de fêmeas estudadas</th>
<th>% de fêmeas estudadas histologicamente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellifer rastrifer</td>
<td>2064</td>
<td>150</td>
<td>7,3</td>
</tr>
<tr>
<td>Isopisthus parvipinnis</td>
<td>152</td>
<td>24</td>
<td>15,8</td>
</tr>
<tr>
<td>Stellifer brasiliensis</td>
<td>413</td>
<td>55</td>
<td>13,3</td>
</tr>
<tr>
<td>Paralonchurus brasiliensis</td>
<td>331</td>
<td>50</td>
<td>15,1</td>
</tr>
</tbody>
</table>
Para a elaboração e proposição de uma escala de maturidade, foram compiladas as informações disponíveis na literatura, a partir de diversos trabalhos (Wallace e Selman, 1981; Guraya, 1986; West, 1990; Vazzoler, 1996; Dias et al., 1998; Blazer, 2002; Patiño e Sullivan, 2002; Stequert et al., 2003; McMillan, 2007; Lubzens et al., 2010), que pudessem explicar as observações realizadas durante a leitura das preparações permanentes.

A correção do sexo e dos estádios de maturação das gônadas foi realizada a partir da releitura das preparações permanentes sob microscopia de luz. Com os mesmos exemplares analisados macro- e microscopicamente de cada espécie foi estimado o comprimento médio de início de primeira maturação gonadal (L₅₀) e a relação gonadossomática (RGS), para comparar a avaliação do uso da área pelas espécies feita com base na análise mais comumente realizada, a macroscópica, em relação à microscópica dos mesmos exemplares. Os resultados da avaliação macroscópica estão descritos no capítulo anterior. A descrição das análises e a equação utilizada para a estimativa do L₅₀ e da relação gonadossomática encontram-se descritos no item material e métodos do capítulo 3 desta dissertação.

4.3. Resultados

Para cada espécie estudada (Stellifer rastrifer, Isopisthus parvipinnis, S. brasiliensis e Paralonchurus brasiliensis), foi proposta uma escala com a descrição microscópica para os estádios de maturidade, baseada nas seguintes fases de desenvolvimento das células germinativas:

a) Ovogônias ou células germinativas jovens: as ovogônias apresentam citoplasma escasso e com um núcleo grande e central, ou seja, alta relação núcleo-citoplasma, sendo que o núcleo apresenta apenas um único nucléolo basófilo. As ovogônias são as precursoras de numerosas células germinativas no ovário e representam o estoque inicial dos ovócitos, a partir de sucessivas divisões celulares (hiperplasia). A transição de ovogônia para as células primárias (fase 1) é caracterizada pelo início da primeira divisão meiótica.

b) Ovócitos fase 1: ovócitos avitelogênicos ou do estoque de reserva: durante esta fase, o volume do ovócito aumenta, a relação núcleo-citoplasma diminui. No núcleo verifica-se a presença de vários nucléolos
próximos à carioteca e o citoplasma aparece menos basófilo. Estes ovócitos estão presentes em gônadas de todos os estádios de maturidade, sendo inicialmente arredondados e, posteriormente, assumem outras formas em função das deformações decorrentes de seu crescimento.

c) Ovócitos fase 2: ovócitos em vitelogênese lipídica ou com alvéolos corticais: presença de pequenas vesículas na periferia do citoplasma. Nesta fase, as três camadas do folículo (zona radiata acelular, células foliculares ou granulosas e células da teca) começam a ser reconhecidas. A vitelogênese consiste no processo celular pelo qual o citoplasma tem seu volume aumentado pelo acúmulo de substâncias nutritivas que posteriormente serão utilizadas para a nutrição e manutenção do embrião, resultando num citoplasma com aspecto vacuolado.

O principal evento associado a esta fase é o surgimento dos alvéolos corticais, constituídos por proteínas sintetizadas pelo retículo endoplasmático, que são transportadas ao complexo de Golgi onde são complexados com carbohidratos. A formação dos alvéolos corticais se inicia precocemente no desenvolvimento ovocitário, mas sua função está associada a eventos tardios, como formar o espaço perivitelínico após a fecundação, que evita a poliespermia.

d) Ovócitos fase 3: ovócitos com vitelogênese lipídica e proteica: esta fase se caracteriza pelo início da deposição de proteínas na forma de plaquetas acidófilas na periferia do citoplasma do ovócito. O acúmulo de vitelo em muitas espécies ocorre primeiramente pela inclusão de vitelo lipídico na forma de distintas gotas de lipídio, provavelmente formadas endogenamente, enquanto que a acumulação de vitelo protéico é de origem exógena e ocorre após o início, e concomitantemente, à acumulação lipídica. Em muitos teleósteos, o vitelo protéico se acumula sob a forma de esferas fluidas de vitelo que podem manter sua integridade por todo o crescimento do ovócito ou se fundir centripetamente, formando uma massa contínua de vitelo fluido, um processo que confere aos ovócitos de muitos teleósteos o aspecto transparente. Nesta fase é distinto o espessamento da membrana vitelina (zona radiata) e há aumento evidente no tamanho das células foliculares e tecais. Nesta fase, as células foliculares assumem aparência granular, o que lhes confere a denominação de células da camada granulosa.
e) Ovócitos fase 4: ovócitos com vitelogênese completa ou maduros: o ovócito aumenta rapidamente de tamanho, devido ao acelerado aumento do número de grânulos de vitelo acidófilo, praticamente desaparecendo a basofilia citoplasmática, característica das fases anteriores. O núcleo mantém suas características, com nucléolos pequenos, perdendo sua forma esférica. Esta fase termina com o início da migração nuclear, a partir de processos de tração por miofibrilas, para o local que passará a ser denominado polo animal do ovócito, próximo da micrópila.

De acordo com Guraya (1986) os percussores de vitelo seguem três complexos padrões: 1 – os percussores são produzidos pelas organelas do ovócito, padrão chamado de vitelogênese endógena; 2 – os percussores são sintetizados fora do ovócito, e do ovário, por outro órgão, como por exemplo, o fígado, e subsequentemente são sequestrados pelo ovoplasma por micropinocitose, padrão chamado vitelogênese exógena; 3 – os percussores têm origem dupla, com ambos os padrões anteriormente mencionados. A específica proteína feminina, a vitelogenina, é uma grande glicofosfolipoproteína, cujo precursor é sintetizado pelo fígado, liberado no sangue, e transportado para o ovário. A associação entre o fígado e ovário é indicada pelo simultâneo aumento nos índices hepatossomático e gonadossmático durante a ovogênese.

No final da vitelogênese os ovócitos contêm RNA maternal, proteínas, lipídios, carboidratos, vitaminas e hormônios que são importantes para o futuro desenvolvimento do embrião.

f) Ovócitos fase 5: ovócitos hidratados ou em hialinização: durante a migração nuclear tem início um rápido aumento no tamanho do ovócito devido à hidratação. Esta fase se caracteriza pelo processo de coalescência dos grânulos de vitelo, resultando em um citoplasma com aspecto róseo. Os vacúolos lipídicos concentram-se numa ou mais gotas de óleo que migram para o polo vegetativo do ovócito. A hidratação pode ser considerada importante para a eliminação do ovócito, uma vez que o folículo ovariano se distende muito. As células foliculares possuem miofibrilas, responsáveis pela contração folicular para expulsão do ovócito.

O processo de hidratação é altamente evidente entre os actinopterígricos marinhos com ovos pelágicos, embora sua ocorrência seja em menor grau
durante a maturação de espécies marinhas com ovos não flutuantes ou demersais e em águas estuarinas (Dias et al., 1998).

Após a maturação estar completa, o ovócito geralmente sai do folículo e passa ao lúmen ovariano, estando envolvido pelo córion (McMillan, 2007), resultante da zona radiata. Após a expulsão do ovócito, as células foliculares e da teca formam uma estrutura, o chamado folículo pós-ovulatório, que permanece no ovário do peixe (McMillan, 2007; Gania et al., 2010). Durante este processo as células foliculares iniciam sua hipertrofia, penetrando no espaço antes ocupado pelo ovócito.

Outra estrutura encontrada no ovário são os folículos atrésicos, que correspondem aos folículos cujos ovócitos não foram eliminados e estão sofrendo processos degenerativos, sendo desintegrados e absorvidos (Vazzoler, 1996). Segundo Santos et al. (2005), este fenômeno degenerativo que ocorre no ovário pode acontecer em qualquer fase do ciclo reprodutivo. O processo de absorção do ovócito pode se estender desde a maturação até a desova, devido principalmente à presença de distúrbios de origem biótica (limitação de alimento e patologias) e/ou abiótica (mudanças de temperatura e fotoperíodo) (Santos et al., 2005).

Com base nas fases de desenvolvimento ovocitário foram descritos os estádios de maturidade gonadal, em nível microscópico, para as espécies Stellifer rastrifer, Isopisthus parvipinnis, S. brasiliensis e Paralonchurus brasiliensis (tabela 4.2). Para facilitar a comparação entre a avaliação macro- e microscópica dos ovários, manteve-se os cinco estágios de desenvolvimento (imaturo = A; em maturação = B; maduro = C; hidratado = D e desovado = E). Os estádios descritos na tabela abaixo (tabela 4.2) para as espécies estudadas podem ser visualizadas nas figuras 4.1 a 4.4.

Para o cangoá Stellifer rastrifer não foram encontradas características que indicassem a presença de ovócitos hidratados (estágio D), exceto pela presença de migração nuclear, ou seja, a migração nuclear corresponde à transição dos ovócitos maduros para os hidratados. Para todas as espécies estudadas não foram encontrados folículos pós-ovulatórios, que indicariam desova recente. Desta forma, não foi possível descrever as características histológicas do estádio de maturação D para a espécie S. rastrifer e do estádio E (desovado) para todas as espécies (tabela 4.2).
As espécies *Isopisthus parvipinnis*, *Stellifer brasiliensis* e *Paralonchurus brasiliensis* apresentaram ovócitos hidratados, caracterizados por seu formato irregular, em decorrência do processo de desidratação do fragmento do ovário anterior ao emblocamento (figuras 4.2 a 4.4).

Os cangoás *Stellifer rastrifer* e *S. brasiliensis* apresentaram gônadas classificadas como “ovário em reorganização”, uma vez que são encontrados ovócitos na fase 1. Este estádio apresenta um padrão semelhante ao descrito para as fêmeas classificadas como imaturas (estádio A), entretanto foi adicionado um segundo critério cara caracterizá-las, ou seja, o tamanho dos exemplares ser maior que o comprimento de primeira maturação. Além disso, outro critério gonadal a ser considerado é a presença de alguma desorganização lamelar indicando que, provavelmente, estes indivíduos já passaram por, pelo menos, um ciclo reprodutivo e estão em processo de reestruturação ovariana (figuras 4.1 e 4.3).

Folículos atrésicos foram encontrados em todas as espécies e em todos os diferentes estádios de maturação (tabela 4.2), por sua vez, nenhum folículo pós-ovulatório, um indicador seguro de desova, foi encontrado para nenhuma espécie do presente estudo.
Tabela 4.2. Descrição dos estádios de maturação gonadal, com uma proporção de cada fase de desenvolvimento das células germinativas, de quatro espécies de cienídeos amostrados na baía de Santos, SP.

<table>
<thead>
<tr>
<th>Estágio</th>
<th>Stellifer rastrifer</th>
<th>Isopisthus parvipinnis</th>
<th>Stellifer brasiliensis</th>
<th>Paralonchurus brasiliensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (imaturo)</td>
<td>não encontrado</td>
<td>ovócitos avitelogênicos ou do estoque de reserva (fase 1) (100%), ovócitos na mesma fase de desenvolvimento</td>
<td>presença do ovócito avitelogênicos ou do estoque de reserva (fase 1) (100%), ovócitos apresentam o mesmo padrão de desenvolvimento</td>
<td>organização celular, lamelas bem definidas, ovócitos avitelogênicos (fase 1) (±100%) com núcleos com apenas um núcleo (fase 1) ou vários núcleos (fase 2), presença de atrésicos, poucos ovócitos de maior tamanho, início do desenvolvimento e transição para o próximo estádio</td>
</tr>
<tr>
<td>B (em maturação)</td>
<td>presença de ovócitos do estoque de reserva (fase 1) (±50%), ovócitos em vitelogênese lipídica (fase 2) (±20%), início de vitelogênese protéica (fase 3) (±30%) e presença de atrésicos</td>
<td>presença de ovócitos do estoque de reserva (fase 1) (±60%), ovócitos em vitelogênese lipídica (fase 2) (±30%), início de vitelogênese protéica (fase 3) (±10%), presença de atrésicos</td>
<td>presença do ovócito do estoque de reserva (fase 1) (±50%), ovócitos em vitelogênese lipídica (fase 2) (±25%) e início da vitelogênese protéica (±25%), ovócitos com núcleo central, presença de atrésicos</td>
<td>presença de ovócitos do estoque de reserva (fase 1) (±60%), ovócitos em vitelogênese lipídica (fase 2) (±30%), início de vitelogênese protéica (fase 3) (±10%), presença de atrésicos; alguns exemplares apresentaram centros de melanomacrólagos</td>
</tr>
<tr>
<td>C (maduro)</td>
<td>ovócitos do estoque de reserva (fase 1) (±25%), ovócitos em vitelogênese lipídica e protéica (fase 3) (±25%), núcleo central, ovócitos maduros (fase 4) (±50%) e presença de atrésicos</td>
<td>ovócitos do estoque de reserva (fase 1) (±40%), ovócitos em vitelogênese lipídica e protéica (fase 3) (±25%), núcleo central, ovócitos maduros (fase 4) (±35%), presença de atrésicos, apresenta padrão de desenvolvimento ovocitário assincrônico</td>
<td>presença do ovócito do estoque de reserva (fase 1) (±50%), ovócitos em vitelogênese lipídica e em vitelogênese protéica (fase 2 e 3) (±20%), ovócitos com núcleo central, início de migração nuclear (fase 4) (±30%), presença de atrésicos</td>
<td>presença de ovócitos do estoque de reserva (fase 1) (±50%), ovócitos em vitelogênese lipídica e protéica (fase 3) (±10%), ovócitos maduros (fase 4) (±40%), pré-migração nuclear (fase 5) (±1%), padrão de desenvolvimento ovocitário assincrônico</td>
</tr>
<tr>
<td>D (hidratado)</td>
<td>não encontrado</td>
<td>presença de ovócitos do estoque de reserva (fase 1) (±30%), ovócitos maduros (fase 4) (±30%) e hidratados (fase 5) (±40%)</td>
<td>presença de ovócitos do estoque de reserva (fase 1) (±30%), ovócitos em vitelogênese lipídica e protéica (±30%) e principalmente ovócitos hidratados (fase 5) (±40%), presença de atrésicos</td>
<td>presença de ovócitos do estoque de reserva (fase 1) (±30%), ovócitos maduros (fase 4) (±30%) e hidratados (fase 5) (±40%)</td>
</tr>
<tr>
<td>E (desovado)</td>
<td>não encontrado</td>
<td>não encontrado</td>
<td>não encontrado</td>
<td>não encontrado</td>
</tr>
<tr>
<td>repouso</td>
<td>presença de ovócitos avitelogênicos (fase 1) (100%), ovócitos na mesma fase de desenvolvimento, boa organização celular, diferencia do estádio imaturo principalmente pelo comprimento do indivíduo</td>
<td>não encontrado</td>
<td>presença de ovócitos avitelogênicos (fase 1) (100%), ovócitos na mesma fase de desenvolvimento, boa organização celular, diferencia do estádio imaturo principalmente pelo comprimento do indivíduo</td>
<td>não encontrado</td>
</tr>
</tbody>
</table>
Figura 4.2. Fotomicrografias dos estágios de desenvolvimento dos ovários, com destaque para diferentes fases ovocitárias, de *Isopisthus parvipinnis*. A – fêmea imatura (estádio A) (aumento 40x), B – fêmea imatura (aumento 100x), C – fêmea em maturação (estádio B) (aumento 40x), D – fêmea em maturação (aumento 100x), E – fêmea madura (estádio C) (aumento 40x), F – fêmea madura (aumento 100x), G – fêmea hidratada (estádio H) (aumento 40x), H – fêmea hidratada (aumento 100x). OAV – ovócito avitelogênico, OER – ovócito do estoque de reserva, OVL – ovócito em vitelogênese lipídica, OM – ovócito maduro, OH – ovócito hidratado, N – núcleo, MN – migração nuclear.
Figura 4.3. Fotomicrografias dos estágios de desenvolvimento dos ovários, com destaque para diferentes fases ovocitárias, de *Stellifer brasiliensis*. A – fêmea em maturação (estádio B) (aumento 40x), B – fêmeas em maturação (aumento 100x), C – fêmea madura (estádio C) (aumento 40x), D – fêmea madura (aumento 100x), E – fêmea hidratada (estádio D) (aumento 40x), F – fêmea hidratada (aumento 100x), G – fêmea com ovário em reorganização (aumento 40x), H – fêmea com ovário em reorganização (aumento 100x). OAV – ovócito avitelogênico, OER – ovócito do estoque de reserva, OVL – ovócito em vitelogênese lipídica, OVP – ovócito com vitelogênese protéica, OM – ovócito maduro, OH – ovócito hidratado, NC – núcleo central.
Figura 4.4. Fotomicrografias dos estágios de desenvolvimento dos ovários, com destaque para diferentes fases ovocitárias, de *Paralonchurus brasiliensis*. A – fêmea imatura (estádio A) (aumento 40x), B – fêmea imatura (aumento 100x), C – fêmea em maturação (estádio B) (aumento 40x), D – fêmea em maturação (aumento 100x), E – fêmea madura (estádio C) (aumento 40x), F – fêmea madura (aumento 100x), OAV – ovócito avitelogênico, OER – ovócito do estoque de reserva, OVL – ovócito em vitelogênese lipídica, OM – ovócito maduro, NC – núcleo central.

É importante lembrar que para a confirmação microscópica do desenvolvimento gonadal das quatro espécies de cienídeos foi utilizada a mesma nomenclatura dos estádios classificados macroscopicamente; entretanto, como mencionado anteriormente, um dos critérios de escolha para o processamento dos ovários para histologia, incluía dúvidas de identificação macroscópica, ou seja, fêmeas que foram classificadas com dois estádios de desenvolvimento, desta forma, as espécies *Stellifer rastrifer*, *S. brasiliensis* e
Paralonchurus brasiliensis apresentam oito, sete e oito estádios de desenvolvimento macroscópico, respectivamente.

A maior coincidência entre a classificação macro- e a microscópica dos ovários de Stellifer rastrifer foi registrada para as fêmeas maduras (estádio C) (83,1 %), seguida por fêmeas em maturação (41,5 %) (tabela 4.3). Em 30 fêmeas desta espécie foi encontrado o ovário em reorganização, na qual as características microscópicas se assemelham às de fêmeas imaturas (figura 4.1).

Tabela 4.3. Classificação dos estádios de maturação a partir das escalas macroscópica e microscópica de Stellifer rastrifer da baía de Santos (SP). Em negrito, os estádios em que houve coincidência dos dois métodos aplicados.

<table>
<thead>
<tr>
<th>Macro/Micro</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>RE</th>
<th>TOTAL</th>
<th>% Erro</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>17</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>41</td>
<td>58,5</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>9</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>65</td>
<td>16,9</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>2</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>18</td>
<td>100</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>11</td>
<td>100</td>
</tr>
<tr>
<td>TOTAL</td>
<td>8</td>
<td>28</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>148</td>
<td></td>
</tr>
</tbody>
</table>

Das 152 amostras de ovário de Isopisthus parvipinnis pré-selecionadas para análise somente 24 preparações permanentes foram montadas, uma vez que o restante das amostras classificadas como imaturas (estádio A) foram descartadas após a identificação macroscópica. Após a leitura sob microscopia, um total de 45,8 % de coincidência foi registrado nas duas classificações, destacando-se o estádio B, com 41,2 % de erro na análise macroscópica, tendo sido classificadas como imaturas, maduras e hidratadas (tabela 4.4).

Tabela 4.4. Classificação dos estádios de maturação a partir das escalas macroscópica e microscópica das fêmeas de I. parvipinnis da baía de Santos (SP). Em negrito, os estádios em que houve coincidência de identificação entre os dois métodos aplicados.

<table>
<thead>
<tr>
<th>Macro/Micro</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>RE</th>
<th>TOTAL</th>
<th>% Erro</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>58,8</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>33,3</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>
Para a espécie *Stellifer brasiliensis* foi analisado um total de 55 preparações permanentes referentes a todo o período estudado. A verificação da classificação dos estádios pela análise microscópica encontra-se descrita na tabela 4.2. Nota-se que para esta espécie a porcentagem de coincidências foi 23,6 %, com erros de interpretação macroscópica principalmente entre os estádios B (em maturação) e C (maduros). Vale ressaltar que macroscopicamente, das 21 fêmeas classificadas como em maturação (B), microscopicamente 11 fêmeas eram maduras (estádio C), enquanto que para o estádio D (hidratado) somente uma fêmea foi registrada como hidratada na análise macroscópica, mas microscopicamente outras dez fêmeas foram encontradas dentre as classificadas como C (tabela 4.5). Semelhante ao observado para *Stellifer rastrifer*, foi identificado para *S. brasiliensis* fêmeas com ovário em reorganização.

Tabela 4.5. Classificação dos estádios de maturação a partir das escalas macroscópica e microscópica das fêmeas de *Stellifer brasiliensis* da baía de Santos. Em negrito, os estádios em que houve coincidência entre os dois métodos.

<table>
<thead>
<tr>
<th>Macro/Micro</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>RE</th>
<th>TOTAL</th>
<th>% Erro</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>33,3</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>2</td>
<td>21</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>26</td>
<td>92,3</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>24</td>
<td>54,2</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1</td>
<td>4</td>
<td>33</td>
<td>13</td>
<td>0</td>
<td>4</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>

A espécie *Paralonchurus brasiliensis* apresentou 40 % de coincidência entre as duas classificações. Os estádios que mais apresentaram discordância foram os estádios D e E (tabela 4.6). Os ovários classificados como imaturos na análise macroscópica se mantiveram corretos também na análise microscópica. A maior parte dos ovários classificados macroscopicamente como em maturação (B), após a correção microscópica foi reclassificada como imaturos (estádio A) (tabela 4.6).
Tabela 4.6. Classificação dos estádios de maturação a partir das escalas macroscópica e microscópica das fêmeas de *Paralonchurus brasiliensis* da baía de Santos. Em negrito, os estádios em que houve coincidência entre os dois métodos.

<table>
<thead>
<tr>
<th>Macro/Micro</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>RE</th>
<th>TOTAL</th>
<th>% Erro</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>81,0</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>46,2</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>TOTAL</td>
<td>23</td>
<td>10</td>
<td>14</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

O comprimento médio de início de primeira maturação gonadal, considerando os estádios de maturidade classificados segundo a observação microscópica, foi estimado para as quatro espécies estudadas: 128,4 mm para o cangoá *Stellifer rastrifer*, 112,7 para a tortinha *I. parvipinnis*, e 170,2 para maria-luiza *P. brasiliensis* (figura 4.5). A partir de 130 mm todas as fêmeas de *S. rastrifer* podem ser consideradas adultas (figura 4.5). Para o cangoá *Stellifer brasiliensis*, não foi possível calcular o L₅₀ com base na avaliação microscópica, uma vez que foram amostradas somente fêmeas em maturação.
Figura 4.5. Comprimento de primeira maturação gonadal das fêmeas das espécies *Stellifer rastrifer*, *Isopisthus parvipinnis* e *Paralonchurus brasiliensis* da baía de Santos, calculados a partir da avaliação microscópica dos ovários.

Os valores calculados da RGS por estádio de maturidade gonadal das fêmeas das quatro espécies estudadas mostrou que a espécie *S. rastrifer* apresentou um aumento nas médias da relação gonadossomática, principalmente entre os meses de agosto e dezembro de 2005, e entre novembro de 2004 e fevereiro de 2005. Uma queda brusca na média foi registrada em março (figura 4.6), mês em que foram identificadas duas fêmeas “em reorganização do ovário” (figura 4.7).

O mesmo padrão se observa para as espécies *I. parvipinnis* e *S. brasiliensis*, com maiores valores registrados nos meses de novembro de 2004, e de outubro a dezembro de 2005 (figura 4.6), meses nos quais foram encontradas fêmeas hidratadas (figura 4.7), demonstrando assim que haviam fêmeas com desova iminente nesses meses.

Para a maria-luíza *P. brasiliensis* observa-se um aumento gradual nos valores de RGS a partir de julho de 2005, com uma queda em dezembro de
2005 (figura 4.6), meses estes em que foram identificados ovócitos hidratados e maduros para a espécie (figura 4.7).

Figura 4.6. Valores médios e desvio-padrão da relação gonadossomática das fêmeas de cienídeos estudadas microscopicamente na baía de Santos (STRA = *Stellifer rastrifer* (N= 150), ISPA = *Isopisthus parvipinnis* (N= 24), STBR = *Stellifer brasiliensis* (N= 55) e PABR = *Paralonchurus brasiliensis* (N= 50)).

No presente trabalho não foram encontradas fêmeas hidratadas e desovadas de *S. rastrifer*, entretanto observa-se a presença de fêmeas da espécie com “ovários em reorganização” ao longo de dez meses exceto em fevereiro, Novembro e dezembro de 2005 (figura 4.7), enquanto que fêmeas maduras foram identificadas em todos os meses, exceto em março de 2005, indicando que a espécie está constantemente se reproduzindo na região de estudo. As gônadas femininas das espécies *I. parvipinnis* e *S. brasiliensis*, analisadas histologicamente, apresentaram fêmeas hidratadas somente nos meses associados à primavera (outubro e novembro, e em novembro e dezembro, respectivamente), enquanto que *P. brasiliensis* apresentou maior amplitude na distribuição de fêmeas hidratadas, com a ocorrência nos meses
de março, e de junho a setembro de 2005. Para todas as espécies analisadas não foram identificadas fêmeas desovadas (estádio E) (figura 4.7).

Na tabela 4.7 encontra-se uma breve comparação dos resultados obtidos entre as análises macroscópica e microscópica, a relação gonadossomática, e o comprimento de primeira maturação. De maneira geral, somente a distribuição de fêmeas desovantes (estádios D e E) apresentou maior diferença entre os métodos aplicados. Já o \(L_{50} \) estimado para as espécies apresentou pequena nos valores, exceto para \(S. brasiliensis \), espécie para a qual não foi possível estimar o comprimento de primeira maturação, devido à escassez de fêmeas imaturas.

Tabela 4.7. Comparação entre os métodos aplicados: análise macroscópica e microscópica. (STRA = Stellifer rastrifer, ISPA = Isopisthus parvipinnis, STBR = Stellifer brasiliensis e PABR = Paralonchurus brasiliensis, RGS = relação gonadossomática, \(L_{50} = \) comprimento médio de primeira maturação gonadal).

<table>
<thead>
<tr>
<th>Espécies</th>
<th>Fêmeas</th>
<th>Fêmeas</th>
<th>RGS</th>
<th>(L_{50})</th>
<th>Fêmeas</th>
<th>RGS</th>
<th>(L_{50})</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRA</td>
<td>todos os meses</td>
<td>novembro a maio, setembro e outubro</td>
<td>setembro, outubro, novembro, dezembro</td>
<td>136,0</td>
<td>todos os meses, exceto março</td>
<td>-</td>
<td>outubro, novembro, dezembro</td>
</tr>
<tr>
<td>ISPA</td>
<td>todos os meses, exceto janeiro e dezembro</td>
<td>junho</td>
<td>setembro, outubro, novembro</td>
<td>132,5</td>
<td>novembro, maio a novembro</td>
<td>outubro e novembro</td>
<td>outubro, novembro, dezembro</td>
</tr>
<tr>
<td>STBR</td>
<td>todos os meses, exceto julho</td>
<td>março</td>
<td>setembro, outubro, novembro, dezembro</td>
<td>133,3</td>
<td>todos os meses, exceto abril e agosto</td>
<td>novembro/04, novembro e dezembro</td>
<td>novembro/04, novembro e dezembro</td>
</tr>
<tr>
<td>PABR</td>
<td>todos os meses</td>
<td>novembro, fevereiro, março, maio</td>
<td>setembro, outubro, novembro</td>
<td>176,5</td>
<td>todos os meses</td>
<td>março, junho a setembro</td>
<td>setembro e outubro</td>
</tr>
</tbody>
</table>

4.4. Discussão

A histologia se mostrou uma técnica muito eficiente no presente estudo, tanto para confirmação como para a correção dos estádios de desenvolvimento gonadal, resultando numa maior precisão quanto às informações sobre os aspectos reprodutivos das espécies de cienídeos estudadas na baía de Santos. Segundo Dias et al. (1998) uma classificação errônea traz como consequência o não-entendimento do ciclo reprodutivo de uma espécie, além de não identificar áreas e épocas de desova.

Uria et al. (1998) recomendam a utilização dos critérios anatômicos e histológicos, para descrever com maior precisão o tipo de estrutura e a organização da gônada para assim compreender melhor a biologia da espécie. No presente estudo, as características histológicas entre as gônadas das espécies estudadas foram muito semelhantes, principalmente entre \(S. rastrifer \) e \(S. brasiliensis \). O fato das espécies pertencerem à mesma família, e no último

Na baía de Santos foram identificadas fêmeas desovantes das quatro espécies. Para *S. rastrifer* foram identificados ovários com ovócitos em pré-hidratação, ou seja, com migração do núcleo ovocitário, enquanto que para o restante das espécies foi identificada a presença de fêmeas com ovócitos hidratados (estágio D). No caso de *S. brasiliensis* e *I. parvipinnis* os indicadores de desova foram encontrados principalmente nos meses associados ao verão, enquanto para a espécie *Paralonchurus brasiliensis* aos meses de inverno.

A hidratação é um processo que precede a eliminação do ovócito e resulta num aspecto hialino dos ovócitos, sendo um ótimo indicador de desova iminente (West, 1990). Chaves (1988) observou que o processo de hidratação dos ovários de *Stellifer brasiliensis* tem início com o deslocamento do núcleo para um dos polos do ovócito, e concomitantemente, os grânulos vitelínicos do citoplasma homogeneizam progressivamente, a partir do polo oposto do núcleo.

Durante a desova, a ruptura da membrana, esvazia os folículos pela liberação do ovócito (Murua et al., 1998). A presença do folículo colapsado após a liberação do ovócito forma uma estrutura chamada folículo pós-ovulatório, também indicador ovariano de desova recente, mas estas estruturas não permanecem no ovário por um longo tempo (Maddock e Burton, 1999). De acordo com Ganias et al. (2007) a duração do folículo pós-ovulatório na sardinha ibérica não excede meio dia. Segundo os autores o aumento na temperatura pode acelerar a taxa de desintegração e absorção dos folículos em 3 %, contudo este efeito de temperatura não deve ser analisado como uma tendência na avaliação da desova diária. A apoptose, ou seja, a morte celular programada, é a maior responsável pela eliminação de células foliculares no
folículo pós-ovulatório durante a reorganização ovariana após a desova, sendo os folículos pós-ovulatórios rapidamente absorvidos pela atividade fagocitária (McMillan, 2007).

Para as espécies de cienídeos estudadas não foram registrados folículos pós-ovulatórios, entretanto, a desova das espécies *S. rastrifer*, *I. parvipinnis* e *S. brasiliensis*, no presente estudo pode ser identificada ocorrendo nos meses associados à primavera e ao verão (novembro e dezembro), enquanto que para *P. brasiliensis* o período de desova é mais longo ocorrendo desde o inverno até verão.

Atresia foi encontrada em todos os estádios de desenvolvimento gonadal para todas as espécies estudadas na baía de Santos, corroborando Santos *et al.* (2005). O processo de absorção do ovócito pode se estender desde a maturação até a desova, devido principalmente à presença de distúrbios de origem biótica (limitação de alimento e patologias) e/ou abiótica (mudanças de temperatura e fotoperíodo) (Santos *et al.*, 2005). De acordo com Guraya (1986) o folículo atrésico ocorre comumente durante os períodos de pré-desova, desova e pós-desova.

Folículos atrésicos no estágio alfa (α) e beta (β) foram encontrados nos ovócitos em vitelogênese avançada em fêmeas de *Cynoscion regalis* (Lowerre-Barbieri *et al.*, 1996). Segundo os autores a presença de ovócitos atrésicos juntamente com muitos ovócitos saudáveis não significa a absorção de todos os ovócitos vitelogênicos, como aquela vista no final do período de desova, em que processos atrésicos removem da gônada ovócitos que não serão eliminados naquele período reprodutivo (Lowerre-Barbieri *et al.*, 1996).

Evidências como a aparência e o padrão temporal dos estádios ovarianos macroscópicos, a ocorrência de ovócitos hidratados e folículos pós-ovulatórios avaliados por microscopia e o padrão de desenvolvimento do ovócito e o tipo de fecundidade, são úteis para a avaliação sobre o ciclo de vida de uma espécie numa determinada área (Lowerre-Barbieri *et al.*, 1996). Desta forma, a complementaridade das avaliações por múltiplas ferramentas seria a abordagem mais adequada.

A habilidade de estimar precisamente a idade ou comprimento de primeira maturação gonadal é importante no estudo e manejo de espécies de
peixes exploradas comercialmente (Morgan e Hoeing, 1997), além de serem úteis para a gestão de estoques naturais (Fontoura et al., 2009).

O comprimento de primeira maturação gonadal das espécies de cienídeos aqui estudadas apresentou-se mais elevado quando comparado a outros trabalhos (tabela 4.7). Estas diferenças no comprimento podem ser devido às diferenças na malhagem amostragem, tanto com a rede, tempo de arrasto e áreas de coleta. De acordo com Fernandez (2007) as diferenças entre os valores de L_{50} para uma mesma espécie em diferentes épocas podem estar associadas à própria localização geográfica das populações estudadas, segundo o autor, dependendo do local de coleta, como por exemplo, para a espécie *Atherinella brasiliensis*, na parte mais interna do rio, se um maior número de indivíduos jovens fosse capturado influenciaria na proporção de adultos e, por conseguinte, os valores de L_{50}.
Tabela 4.8. Comparação entre o comprimento de primeira maturação (L₅₀) estimado para as espécies *Stellifer rastrifer* (STRA), *Isopisthus parvipinnis* (ISPA), *Stellifer brasiliensis* (STBR) e *Isopisthus parvipinnis* (ISPA) longo da costa brasileira, com destaque para a amplitude de comprimento dos exemplares estudados, o método aplicado e o tipo de avaliação realizado. (CTmax. = comprimento total máximo, CTmín = comprimento total mínimo; MICRO = avaliação macroscópica; MICRO = avaliação microscópica) Em negrito os valores de L₅₀ estimados no presente estudo.

<table>
<thead>
<tr>
<th>Autor (ano)</th>
<th>Local</th>
<th>Espécie</th>
<th>L₅₀ (mm)</th>
<th>CT máx.</th>
<th>CT mín.</th>
<th>Método</th>
<th>Avaliação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coelho et al. (1985)</td>
<td>litoral de São Paulo</td>
<td>STRA</td>
<td>95</td>
<td>170</td>
<td>40</td>
<td>Vazzoler (1962)</td>
<td>MACRO</td>
</tr>
<tr>
<td>Camargo e Isaac (2005)</td>
<td>baía de Santos (SP)</td>
<td>STRA</td>
<td>95</td>
<td>170</td>
<td></td>
<td>King (1995)</td>
<td>MACRO</td>
</tr>
<tr>
<td>presente estudo (2011)</td>
<td>baía de Santos (SP)</td>
<td>STRA</td>
<td>136</td>
<td>220</td>
<td>32</td>
<td>King (1995)</td>
<td>MACRO</td>
</tr>
<tr>
<td>presente estudo (2011)</td>
<td>baía de Santos (SP)</td>
<td>STRA</td>
<td>128,4</td>
<td>220</td>
<td>32</td>
<td>King (1995)</td>
<td>MICRO</td>
</tr>
<tr>
<td>Coelho et al. (1988)</td>
<td>litoral de São Paulo</td>
<td>ISPA</td>
<td>107</td>
<td>150</td>
<td>30</td>
<td>Vazzoler (1962)</td>
<td>MACRO</td>
</tr>
<tr>
<td>Romero et al. (2008)</td>
<td>Ilhéus (SP)</td>
<td>ISPA</td>
<td>159</td>
<td>228</td>
<td>30</td>
<td>Zar (1996)</td>
<td>MACRO</td>
</tr>
<tr>
<td>presente estudo (2011)</td>
<td>baía de Santos (SP)</td>
<td>ISPA</td>
<td>132,5</td>
<td>181</td>
<td>20</td>
<td>King (1995)</td>
<td>MACRO</td>
</tr>
<tr>
<td>presente estudo (2011)</td>
<td>baía de Santos (SP)</td>
<td>ISPA</td>
<td>112,8</td>
<td>181</td>
<td>20</td>
<td>King (1995)</td>
<td>MICRO</td>
</tr>
<tr>
<td>Coelho et al. (1987)</td>
<td>litoral de São Paulo</td>
<td>STBR</td>
<td>73</td>
<td>180</td>
<td>60</td>
<td>Vazzoler (1962)</td>
<td>MACRO</td>
</tr>
<tr>
<td>presente estudo (2011)</td>
<td>baía de Santos (SP)</td>
<td>STBR</td>
<td>133,3</td>
<td>222</td>
<td>36</td>
<td>King (1995)</td>
<td>MACRO</td>
</tr>
<tr>
<td>Coelho et al. (1993)</td>
<td>litoral de São Paulo</td>
<td>PABR</td>
<td>150</td>
<td>240</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robert et al. (2007)</td>
<td>plataforma Interna de Paraná</td>
<td>PABR</td>
<td>175</td>
<td>237</td>
<td>22</td>
<td>Vazzoler (1996)</td>
<td>MACRO</td>
</tr>
<tr>
<td>presente estudo (2011)</td>
<td>baía de Santos (SP)</td>
<td>PABR</td>
<td>176,5</td>
<td>240</td>
<td>44</td>
<td>King (1995)</td>
<td>MACRO</td>
</tr>
<tr>
<td>presente estudo (2011)</td>
<td>baía de Santos (SP)</td>
<td>PABR</td>
<td>170,2</td>
<td>240</td>
<td>44</td>
<td>King (1995)</td>
<td>MICRO</td>
</tr>
<tr>
<td>Lewis e Fontoura (2005)</td>
<td>Pier de Cidreira (RS)</td>
<td>PABR</td>
<td>154</td>
<td>236</td>
<td>124</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- não consta

No presente estudo, após a reavaliação dos mesmos ovários pela análise microscópica notou-se pequena variação nas estimativas L₅₀, sendo que para *Stellifer rastrifer* a diferença nos métodos calculados foi menor que 10 mm (tabela 4.8), para a tortinha tal diferença se mostrou mais elevada (19,75 mm). Esta variação pode parecer pequena, mas tais resultados devem ser avaliados com atenção, uma vez que o comprimento de primeira maturação fornece informação básica para a determinação do tamanho mínimo de captura e dimensionamento das malhas de rede (Vazzoler, 1996; Vieira e Haimovici, 1997). Nenhuma das espécies aqui analisadas é importante economicamente,
mas sem dúvida são importantes ecologicamente na estruturação da comunidade de peixes da baía de Santos.

A aplicação da histologia, associada com a distribuição dos estádios de desenvolvimento dos ovócitos e os valores de RGS ao longo dos meses, permitiu uma adequada identificação do ciclo reprodutivo das espécies de cienídeos amostrados na baía de Santos, além de possibilitar o entendimento do uso que as espécies fazem da área. As quatro espécies estudadas no presente estudo completam seu ciclo de vida na área estudada, com base na relação gonadossomática verificou-se que o pico reprodutivo destas espécies ocorrem nos meses que compõe a primavera e verão, a desova das espécies *I. parvipinnis* e *S. brasiliensis* ocorrem em outubro e novembro, e em novembro e dezembro, respectivamente, apesar dos elevados valores de RGS a maria-luiza *P. brasiliensis*, na baía de Santos, apresentou fêmeas desovantes em março e entre junho a setembro. Vale lembrar que segundo Dias et al. (1989) a utilização simultânea das variações de outros indicadores de maturação, como os índices quantitativos (RGS) e a determinação do comprimento médio de primeira maturação gonadal (*L₅₀*), a partir de dados obtidos por análise microscópica podem minimizar os desvios das avaliações da maturidade.

Além das ferramentas aqui utilizadas, a ocorrência de ovos e larvas das espécies, localizando no tempo e no espaço áreas de desova das espécies, também fornece importantes subsídios (Rochet, 2000). Nesse sentido, o estudo realizado por Katsuragawa (2007) reforça a conclusão de que as espécies estudadas completam seu ciclo de vida na baía de Santos, uma vez que foram capturadas larvas de *Isopisthus parvipinnis*, *Stellifer spp.*, *Stellifer rastrier* e *Paralonchurus brasiliensis*, na região durante o mesmo período de estudo. Segundo Sardiña e Carzola (2005) muitas espécies de cienídeos utilizam os estuários como berçários, que devido às suas características aumentam as taxas de sobrevivência, de alimentação e de crescimento.

A aplicação da histologia para a confirmação dos estádios de maturação das quatro espécies de Sciaenidae mostrou-se eficaz no presente estudo, demonstrando a importância deste método em estudos sobre os parâmetros reprodutivos, corroborando outros estudos (Dias et al., 1989, Fávaro et al., 2005, Honji et al., 2006) que também enfatizam a importância deste método.
4.5. Referências bibliográficas

COELHO, J. A. P.; GRAÇA LOPES, R. da; RODRIGUES, E. S.; PUZZI, A.; FARIAS, D. S. Aspectos biológicos e pesqueiros do Sciaenidae *Paralonchurus brasiliensis* Steindachner, 1875) presente no rejeitado da
pesca artesanal dirigida ao camarão sete-barbas (São Paulo, Brasil). Bol.

CUNNINGHAM, P. T. M.; DINIZ FILHO, A. M. Aspectos da biologia de
Paralonchurus brasiliensis – Sciaenidae – no litoral norte de São Paulo,
Brasil. **Publiação esp. Inst. oceanogr.**, São Paulo, v. 11, p. 203 – 210,
1995.

DE MARTINI, E. E.; LAU, B. B. Morphometric criteria for estimating sexual
maturity on two snappers, *Etelis carbunculus* and *Pristipomoides sieboldii*.

DIAS, J. F.; PERES-RIOS, E.; CHAVES, P. T. C.; ROSSI-WONGTSCHOWSKI,
C. L. B. Análise macroscópica dos ovários de teleósteos: problemas de
classificação e recomendações de procedimentos. **Rev. Brasil. Biol.**, Rio

FÁVARO, L. F.; LOPES, C. G. S.; SPACH, H. L. Reprodução do peixe-rei,
Atherinella brasiliensis (Quoy & Gaimard) (Atheriniformes, Atherinidae), em
uma planície de maré adjacente à gamboa do Baguaçu, Baía de

FÁVARO, L. F.; FREHSE, F. A.; OLIVEIRA, R. N.; SCHWARZ JÚNIOR, R.
Reprodução do bagre amarelo, *Cathorops spixii* (Agassiz) (Siluriformes,
Ariidae), da baía de Pinheiros, região estuarina do litoral do Paraná, Brasil.

FERNANDEZ, W. S. **Dinâmica populacional de Atherinella brasiliensis**
(Quoy & Gaimard, 1824) da praia de Itamambuca, Ubatuba (SP). 2007.
145 f. Dissertação (Mestrado em Oceanografia Biológica) – Instituto

FONTOURA, N. F.; BRAUN, A. S.; MILANI, P. C. C. Estimating size at first
maturity (*L*50) from Gonadossomatic Index (GSI) data. **Neotrop. Ichthyol.**,

GANIAS, K.; NUNES, C.; STRATOUDAKIS, Y. Degeneration of postovulatory
follicles in the Iberian sardine, *Sardina pilchardus*: structural changes and

GANIAS, K.; RAKKA, M.; VAVALIDIS, T.; NUNES, C. Measuring batch
fecundity using automated particle counting. **Fish. Res.**, v. 106, p. 570 –
574, 2010.

5. Tipo de fecundidade do cangoá *Stellifer rastrifer* (Jordan, 1889)
(Sciaenidae: Perciformes)

Resumo

Estudos sobre os diferentes padrões de desenvolvimento ovocitário podem ser úteis para o reconhecimento do tipo de fecundidade para as espécies de peixes. Utilizando-se a metodologia da avaliação da distribuição das frequências de diâmetro dos ovócitos em amostras aleatórias de fêmeas em maturação e maduras de *Stellifer rastrifer*, foi investigado o tipo de fecundidade da espécie, se determinado ou indeterminado. Após a confirmação histológica dos estádios de maturidade gonadal, o diâmetro dos ovócitos de foi analisado, através da dissociação, registro fotográfico e análise de imagens. De maneira geral, tanto no período total de coleta quanto mensalmente, os ovócitos apresentaram distribuição contínua, indicando que a espécie apresenta fecundidade indeterminada.

Palavras-chave: diâmetro dos ovócitos, *Stellifer rastrifer*, tipo de fecundidade

5.1. Introdução

Estudos sobre a reprodução de peixes tais como a avaliação do tamanho de maturação, a duração do período de desova, a frequência de desova e a fecundidade, requerem conhecimento dos estágios de desenvolvimento gonadal em peixes individualmente (West, 1990). O conhecimento sobre o crescimento do foliculo ovariano, sua maturação e eliminação em teleósteos é importante em muitos aspectos para as pesquisas básicas e biomédicas, manejo pesqueiro, aquicultura e ciência ambiental (Patiño e Sullivan, 2002; Lubzens *et al.*, 2010).

O crescimento do ovócito é iniciado ou modificado de várias maneiras, em função principalmente da estratégia reprodutiva da espécie, visando o sucesso reprodutivo. Exemplos dessa estratégia são o tamanho do ovócito e a dinâmica de organização do ovário (Santos, 2006).

No desenvolvimento sincrônico todos os ovócitos, uma vez formados, crescem e são eliminados do ovário em uma única desova, não ocorrendo reposição dos ovócitos. Este tipo de desenvolvimento pode ser encontrado em teleósteos que desovam apenas uma vez e morrem. O padrão sincrônico em grupos apresenta, ao mesmo tempo, pelo menos dois grupos de ovócitos em distintas etapas de desenvolvimento, um grupo visivelmente sincrônico de grandes ovócitos e outro mais heterogêneo de pequenos ovócitos. Este é o padrão mais comum encontrado nos ovários dos teleósteos. No ovário com desenvolvimento assincrônico, ovócitos de todas as fases de desenvolvimento estão presentes sem um estágio dominante. Este padrão de desenvolvimento ovariano pode acarretar um padrão de desova, no qual ovócitos são recrutados e liberados em vários lotes durante cada estação de desova (Wallace e Selman, 1981, Plaza et al., 2007, Gordo et al., 2008).

Espécies com desenvolvimento ovariano assincrônico podem exibir fecundidade determinada ou indeterminada (Gordo et al., 2008). Fecundidade determinada é aquela em que o recrutamento do estoque de ovócitos vitelogênicos é fixo antes da desova, ou seja, a fecundidade potencial pode ser estimada para esses ovários antes do início da desova, uma vez que todos os ovócitos recrutados são liberados e nenhum ovócito adicional se desenvolverá, a partir do início da desova (Hunter et al., 1992; Maddock e Burton, 1999; Gordo et al., 2008).

Ao contrário, quando a espécie apresenta fecundidade indeterminada, a vitelogênese continua ao longo do período de desova, tornando a avaliação exata da fecundidade impossível devido ao permanente recrutamento de novos ovócitos, ou seja, ovócitos pré-vitelogênicos continuam seu desenvolvimento para ovócito vitelogênico durante o período de desova (Hunter et al., 1992; Gordo et al., 2008; Pavlov et al., 2009).

A distinção entre os dois tipos de fecundidade pode facilmente ser identificada tendo como base o aparecimento ou não de hiatos (gaps) entre os ovócitos pré-vitelogênicos e vitelogênicos, numa distribuição de frequência de tamanho dos ovócitos. Assim, uma espécie com fecundidade determinada mostra este hiato, enquanto que em uma com fecundidade indeterminada não se observa este padrão (Whitthames et al., 1995). O hiato formado entre
ovócitos vitelogênicos e ovócitos hidratados em desova individual tem auxiliado nesta definição (Kjesbu, 2009).

Uma consideração final sobre a dinâmica ovariana envolve o papel da atresia durante o desenvolvimento do ovócito e seu recrutamento (Wallace e Selman, 1981). A atresia pode estar presente em todos os estágios do ciclo reprodutivo e sua avaliação é importante em estudos pesqueiros que tem como objetivo avaliar o estado reprodutivo das fêmeas ou para estimar corretamente a fecundidade anual realizada em peixes com fecundidade determinada (Ganias et al., 2008).

A fecundidade é normalmente estimada pela aplicação de três métodos. O método gravimétrico consiste na relação entre o peso do ovário e a densidade do ovócito no ovário (Thorsen e Kjesbu, 2001; Murua et al., 2003). O método volumétrico está baseado nos mesmos princípios que o anterior, mas usa o volume ovariano e o volume da subamostra retirada da gônada (Murua et al., 2003). Já no método estereométrico é possível estimar o número de células em diferentes categorias, ou seja, fases da ovogênese (Murua et al., 2003) em estudos histológicos.

Atualmente há uma nova metodologia para estimar a fecundidade que consiste na medida do diâmetro dos ovócitos. Segundo Thorsen e Kjesbu (2001) e Thorsen et al. (2006) a média de diâmetro dos ovócitos pode ser usada como um indicador da proximidade do período de desova. Esta metodologia otimiza a tomada de dados de um grande número de amostras em um curto período, e vem sendo amplamente aplicada (Plaza et al., 2007; Gordo et al., 2008; Kurita e Kjesbu, 2009; Withames et al., 2009; Kjesbu et al., 2010; Korta et al., 2010; Ganias et al., 2010; Mehault et al., 2010; Thorsen et al., 2010).

O cangoá Stellifer rastifer (Jordan, 1889) é uma espécie costeira e abundante, que atinge 200 mm de comprimento total, sendo encontrada sobre fundos de areia ou lama e em regiões estuarinas, ocorrendo da Colômbia ao sul do Brasil (Menezes e Figueiredo, 1980). Esta espécie caracteriza-se por possuir um ciclo de vida curto, comprimento da primeira maturação gonadal reduzido, caracterizando-a como r-estrategista (Peres-Rios, 2001). Além disso, apresenta desova parcelada e com período prolongado e ser abundante em
regiões estuarinas, utilizando a mesma como área de criação e crescimento (Alcântara, 1989).

O objetivo deste trabalho foi analisar o padrão de desenvolvimento ovocitário e o tipo de fecundidade de Stellifer rastrifer (Jordan, 1889) pela aplicação do método de distribuição das classes de tamanho dos ovócitos.

5.2. Material e Métodos

A descrição da metodologia de coleta e procedimentos laboratoriais encontram-se descritos nos itens “Material e Métodos” e Material e métodos (capítulo 3) desta dissertação.

Durante a preparação das preparações permanentes para os estudos sobre a análise microscópica dos ovários, fragmentos do ovário foram retirados e armazenados em frascos, devidamente identificados, com solução de Gilson para a dissociação dos ovócitos. Após a completa dissociação, os ovócitos foram fotografados para a análise do padrão de desenvolvimento ovocitário, que consiste da avaliação da distribuição das frequências de tamanho dos ovócitos em amostras aleatórias. A tomada dos dados morfométricos dos ovócitos foi realizada com o auxílio do programa ImageJ, um programa de acesso livre.

A medida do diâmetro dos ovócitos foi tomada após a confirmação histológica de fêmeas em maturação (estádio B) e maduras (estádio C) (figura 5.1). Para a análise do diâmetro dos ovócitos foram processados um total de 91 fêmeas, sendo 20 fêmeas classificadas microscopicamente como B e 71 fêmeas classificadas como C. Neste método, a distribuição da frequência de tamanho do ovócito é construída e o grupo modal mais avançado, ou seja, a moda composta pelos maiores ovócitos é avaliada (Hunter et al., 1985).
Figura 5.1. Fotomicrografia de fêmeas em maturação (estádio B) (A e B) e maduras (estádio C) (C e D) da espécie *Stellifer rastrifer*. A = fêmea em maturação (aumento 40x); B = fêmea em maturação (aumento 100x); C = fêmea madura (aumento 40x); D = fêmea madura (aumento 100x).

A metodologia aplicada para o processamento das imagens no programa ImageJ basicamente consistiu na transformação das fotos dos ovócitos dissociados para preto e branco, na separação das partículas (segmentação) e na contagem e medição dos ovócitos vitelogênicos. Maiores detalhes sobre o procedimento encontram-se descritos em Ganias *et al.* (2010).

5.3. Resultados

A distribuição dos diâmetros dos ovócitos em maturação (estádio B) e maduros (estádio C) das fêmeas de *Stellifer rastrifer* apresentaram um crescimento contínuo, não apresentando hiato na distribuição do tamanho dos ovócitos (figuras 5.3 e 5.4). De maneira geral observa-se que os ovócitos em maturação e maduros não apresentaram variações no tamanho dos ovócitos, em ambos os estádios a moda foi registrada nas classes de 0,070 a 0,109 mm (figuras 5.3 e 5.4), entretanto, no estádio C verifica-se a presença de ovócitos de tamanho mais elevados (até 0,209 mm) (figura 5.4). A distribuição dos diâmetros dos ovócitos de fêmeas em maturação (estádio B) e maduras (estádio C) de *Stellifer rastrifer* apresentou desenvolvimento contínuo, sem um hiato na distribuição do tamanho dos ovócitos (figuras 5.3 e 5.4). De maneira geral observa-se que os ovócitos das fêmeas em maturação e maduras não apresentaram variações no tamanho, sendo que para ambos os estádios a moda foi registrada nas classes de 0,070 a 0,109 mm (figuras 5.3 e 5.4).
entretanto, no estádio C verifica-se a presença de ovócitos de tamanho maiores (até 0,209 mm) (figura 5.4).

Figura 5.3. Diâmetro dos ovócitos das fêmeas em maturação (estádio B) do cangoá *Stellifer rastrifer*, capturadas na baía de Santos.

Figura 5.4. Distribuição do diâmetro dos ovócitos das fêmeas maduras (estádio C) de *Stellifer rastrifer*, capturadas na baía de Santos.

A distribuição mensal dos diâmetros dos ovócitos das fêmeas em maturação (estádio B) apresentou um deslocamento das classes de comprimento, principalmente entre os meses de novembro de 2004 e janeiro
de 2005, e de maio a setembro de 2005, sendo que em setembro se registrou maior recrutamento de ovócitos de pequeno diâmetro (figura 5.5). Outro recrutamento de ovócitos avitelogênicos é observado em maio de 2005. Nos meses de novembro de 2004 e outubro de 2005 foram registrados os maiores diâmetros dos ovócitos (entre 0,190 e 0,209 mm) (figura 5.5).

Figura 5.5. Distribuição mensal do diâmetro dos ovócitos (mm) das fêmeas (N=20) em maturação (estádio B) do cangoá *Stellifer rastrifer*, capturadas na baía de Santos (SP).
Cont. Figura 5.5. Distribuição mensal do diâmetro dos ovócitos (mm) das fêmeas (N=20) em maturação (estádio B) do cangoá *Stellifer rastrifer*, capturadas na baía de Santos (SP).

Para as fêmeas maduras do cangoá *Stellifer rastrifer* em novembro de 2004 observa-se uma distribuição mais homogênea do diâmetro dos ovócitos, com o aumento do tamanho dos ovócitos em janeiro e fevereiro de 2005, este padrão parece se repetir em abril e maio de 2005, com as maiores modas ocorrendo em junho e julho de 2005 (figura 5.6). Este padrão de distribuição continua ao longo dos meses, com um pico de abundância de ovócitos maduros ocorrendo em dezembro de 2005 (figura 5.6).
Figura 5.6. Distribuição do diâmetro dos ovócitos ao longo dos meses para as fêmeas (N = 71) maduras (estádio C) da espécie *Stellifer rastrifer*.
Cont. Figura 5.6. Distribuição do diâmetro dos ovócitos ao longo dos meses para as fêmeas (N = 71) madras (estádio C) da espécie *Stellifer rastrifer.*

5.4. Discussão

A frequência de distribuição dos ovócitos é um indicador da desova natural dos peixes e a presença de diversos grupos de ovócitos vitelogênicos é o critério mais aceito do que uma única desova (Blaxter e Hunter, 1982).

A distribuição do tamanho dos ovócitos das fêmeas de *Stellifer rastrifer* apresentou-se de maneira contínua, indicando assim um desenvolvimento ovocitário assincrônico. Segundo Chaves (1989) as espécies de cienídeos,
Isopisthus parvipinnis e *Menticirrhus americanus*, apresentam crescimento ovocitário sincrônico em mais que dois grupos (Chaves, 1989).

Para o cangoá *S. rastrifer* foi registrado uma ausência de um hiato entre ovócitos avitelogênicos, de menor diâmetro, e os vitelogênicos sugere que a espécie tenha fecundidade do tipo indeterminada. De maneira geral, o tamanho dos ovócitos do cangoá *Stellifer rastrifer* foi registrado entre 0,01 a 0,209 mm, com pequena variação entre a distribuição das frequências do diâmetro dos ovócitos dos espécimes classificados microscopicamente como em maturação (estádio B) e maduras (estádio C).

Ovócitos de pequeno diâmetro (± 0,01 mm) foram bem representativos nas fêmeas em maturação e maduras de *Stellifer rastrifer*. Entretanto, vale lembrar que a ocorrência de pequenos ovócitos junto com os maiores no ovário, nem sempre indica desova parcelada, em muitos peixes os ovócitos permanecem pequenos no ovário após a desova e são gradualmente absorvidos (Nikolsky, 1963).

A amplitude do diâmetro dos ovócitos que iniciam a vitelogênese e hidratação, respectivamente, foi 140 e 640 μm para *Isopisthus parvipinnis* e 100 e 540 μm para *Menticirrhus americanus* (Chaves *et al.*, 1989). Os valores encontrados para o cangoá *Stellifer rastrifer* no presente trabalho, foram menores ao encontrado por Chaves (1989), entretanto, as metodologias aplicadas para o cálculo do diâmetro dos ovócitos foram diferentes.

Os ovos de Sciaenidae são pelágicos e esféricos com 0,5 a 1,7 mm de diâmetro, e apresentam somente um único glóbulo de óleo (Neira *et al.*, 1998). Até o momento informações sobre os ovos de *Stellifer rastrifer* são totalmente desconhecidas na literatura, entretanto há registro do diâmetro dos ovos de algumas espécies de cienídeos, dentre as quais destacam-se ovos de *Pogonias cromis* com 0,8 a 1,1 mm de diâmetro, ovos de *Sciaenops ocellata* com 0,86 e 0,98 mm e ovos de *Cynoscion regalis* com 0,74 e 1,1 mm de diâmetro (Richards, 2006).

A fecundidade para a espécie *S. rastrifer*, no presente estudo, foi classificada como indeterminada, com ovogênese contínua. Segundo Pavlov et al. (2009) nos peixes que apresentam ovogênese descontínua e, portanto, fecundidade determinada, o último lote de ovócitos que será liberado na desova seguinte, é representado por ovócitos vitelogênicos e a fecundidade pode ser facilmente estimada. Por outro lado, nos peixes com ovogênese contínua, a avaliação exata da fecundidade não é possível devido ao permanente recrutamento de novos ovócitos do estoque de reserva (Pavlov et al., 2009). Neste caso, os ovócitos podem ser liberados em pequeno número de lotes ou em vários lotes (liberação múltipla de ovócitos) (Pavlov et al., 2009), havendo variação na frequência de desova.

Peixes de desova múltipla (parcelada) com desenvolvimento dos ovócitos assincrônicos mostram uma contínua distribuição da frequência de tamanho dos ovócitos em ovários maduros sem uma população ovocitária dominante, exceto durante a hidratação quando ovócitos hidratados aparecem claramente separados, por seu maior tamanho, dos ovócitos não hidratados (Plaza et al., 2007). Não foi possível verificar a diferença entre o diâmetro dos ovócitos hidratados dos não hidratados para *S. rastrifer* no presente estudo, devido à ausência de fêmeas hidratadas nas coletas (ver capítulo 4).

Além da determinação do tipo de desenvolvimento ovocitário, a presença de um distinto hiato na frequência de distribuição do tamanho dos ovócitos indica que a fecundidade é determinada e a ausência de tais hiatos normalmente indica uma fecundidade indeterminada (Gordo et al., 2008). No presente estudo a espécie *Stellifer rastrifer* apresentou crescimento contínuo entre os diferentes estágios de desenvolvimento ovocitários, indicando que a espécie apresenta uma estratégia de fecundidade indeterminada. Este padrão foi encontrado para outras espécies, tais como *Merluccius merluccius* (Murua et al., 1998), *Etrumeus teres* (Plaza et al., 2007) e *Trachurus trachurus* (Gordo et al., 2008).

A partir da análise de distribuição do diâmetro dos ovócitos foi possível identificar o tipo de desenvolvimento ovocitário da espécie, bem como o tipo de fecundidade.
5.5. Referências bibliográficas

CONSIDERAÇÕES FINAIS

Apesar dos muitos trabalhos existentes, estudos sobre comunidades de peixes e dinâmica de suas populações demonstram-se fundamentais uma vez que os padrões variam de região para região e de espécie para espécie. A região de estudo é considerada um ambiente contaminado, segundo a CETESB (2001), devido às atividades industriais, portuárias e urbanização. Entretanto, comparando-se os resultados obtidos no presente estudo com os de Giannini e Paiva Filho (1990b), obtidos duas décadas atrás, na baía de Santos, houve pequena variação na classificação dos cienídeos. A espécie *S. rastrifer* manteve a maior abundância relativa, porém registrou-se um aumento numérico e relativo de *Stellifer brasiliensis*, *Macrodon ancylodon*, *S. stellifer* e *Nebris microps*, mas com uma diminuição relativa no número de exemplares da corvina *Micropogonias furnieri* amostrados.

As espécies estudadas, apesar de não apresentarem interesse comercial, receberam destaque no presente estudo, em função da sua alta abundância na baía de Santos, indicando que as mesmas apresentam um importante papel biológico no sistema estudado, com destaque para *Stellifer rastrifer* que representou cerca de 70% dos cienídeos da baía. Além do seu papel ecológico, este trabalho tentou preencher algumas lacunas do conhecimento sobre os parâmetros biológicos das espécies ao longo do litoral brasileiro.

A baía de Santos é caracterizada principalmente pela presença de juvenis, que utilizam a região como área de crescimento e alimentação, entretanto as espécies *Stellifer rastrifer*, *Isopisthus parvipinnis*, *S. brasiliensis* e *Paralonchurus brasiliensis* realizam seu ciclo reprodutivo também na baía, uma vez que fêmeas desovantes foram identificadas, principalmente nos meses que compõem a primavera e verão.

Diferenças significativas nas proporções sexuais foram registradas para as espécies *Isopisthus parvipinnis*, *Stellifer brasiliensis* e *Paralonchurus brasiliensis*. Como em outros trabalhos, principalmente aqueles associados à fauna acompanhante do camarão sete-barras, verificou-se o predominio de fêmeas das populações capturadas e esta informação deve ser sempre avaliada com atenção, pois o predominio de fêmeas pode interferir no estoque reprodutivo da espécie.
A comparação entre o comprimento médio de primeira maturação gonadal \((L_{50})\), calculado tanto com a identificação macroscópica quanto a microscópica, mostrou pequena diferença; entretanto, os valores estimados na baía de Santos apresentaram-se mais elevados do que em outros trabalhos. Essa diferença entre a identificação macro- e microscópica indica a histologia como uma ferramenta mais robusta nestes casos. Por outro lado, as diferenças entre as estimativas realizadas em outros locais podem estar associada tanto à malha das redes usadas, bem como às próprias forças ambientais que modulam os processos biológicos, como reprodução e crescimento.

Nos ovários analisados das fêmeas de *S. rastrifer* e *S. brasiliensis* foi possível descrever um estádio microscópico classificado como “ovário em reorganização”, no qual se observa características de fêmeas imaturas, ou seja, ovários com boa organização celular, presença de ovócitos avitelogênicos, mas com um indício inequívoco de que tais fêmeas estariam reiniciando um novo ciclo reprodutivo: seu elevado comprimento.

De maneira geral, no presente estudo, a histologia mostrou-se uma ferramenta útil para avaliar com maior precisão os aspectos reprodutivos, como por exemplo, o período de desova das espécies, uma vez que para três espécies foram identificadas fêmeas hidratadas ou fêmeas que apresentaram migração nuclear, característica que precede a hidratação e indicativa de desova iminente. Contudo, a aplicação da histologia se mostrou mais eficiente na análise individual, pois permitiu a identificação correta dos estádios de desenvolvimento gonadal. Ressalte-se, porém, que numa aplicação mais ampla, em nível populacional, o efeito desta correção é minimizado, principalmente quando as fêmeas são agrupadas como juvenis, adultas e desovantes, ou quando se aplica a relação gonadossomática, que leva em consideração o peso da gônada.

A espécie *S. rastrifer* apresentou desenvolvimento assincrônico com fecundidade indeterminada. Sugere-se a aplicação da análise de distribuição do diâmetro dos ovócitos para outras espécies, pois além de ser um método alternativo, ele auxilia o entendimento das estratégias reprodutivas.