• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.21.2016.tde-05092016-162955
Document
Author
Full name
Wandrey de Bortoli Watanabe
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2016
Supervisor
Committee
Polito, Paulo Simionatto (President)
Ambrizzi, Tercio
Camargo, Ricardo de
Campos, Edmo Jose Dias
Dottori, Marcelo
Title in Portuguese
Propagação de ondas de Rossby em dois modelos quase-geostróficos
Keywords in Portuguese
Altímetro
Escaterômetro
Ondas de Rossby
Quase-geostrofia
Abstract in Portuguese
As ondas de Rossby são o mecanismo de ajuste às perturbações de grande escala dos fluidos geofísicos. Elas podem ser geradas localmente, forçadas pelo rotacional da tensão de cisalhamento do vento, ou remotamente, devido às perturbações na altura da picnoclina na borda leste. Medidas altimétricas da anomalia da altura do mar tem fornecido evidências robustas da existência destas ondas. Estudos recentes mostram que vórtices não lineares de mesoescala são responsáveis por uma grande parte da variabilidade dos registros altimétricos, tendo sido observados propagando juntamente com as ondas de Rossby. Os objetivos deste estudo são identificar (1) as regiões onde as ondas de Rossby longas lineares explicam as observações, (2) qual mecanismo de geração é dominante e (3) se as ondas propagam-se de forma contínua em condições de não linearidade. Um modelo linear de 1½ camada de ondas de Rossby forçado por dados de tensão de cisalhamento do vento de escaterômetros é utilizado para reproduzir as anomalia da altura do mar. As correlações entre os resultados do modelo linear e os dados altimétricos são de até 0,88. Os resultados sugerem que a dinâmica linear de ondas de Rossby longas explica uma parte significativa da variabilidade anual da anomalia da altura do mar nas regiões tropicais. A oscilação da picnoclina na borda leste é o principal mecanismo gerador de ondas de Rossby nos oceanos Atlântico e Índico, enquanto no Pacífico a fonte dominante das ondas é a forçante atmosférica local. Um modelo quase-geostrófico não linear é utilizado para analisar como as ondas de Rossby geradas na borda leste propagam-se e dissipam-se em condições idealizadas. Em latitudes mais baixas que 32°S, as ondas atravessam toda a bacia oceânica até adentrar a região de meandramento da corrente de borda oeste. Nesta região, a energia é espalhada em todas as bandas de frequência. As ondas de Rossby que estão na latitude crítica tem um papel intermediário na cascata de energia. Em latitudes mais altas que 32°S, as ondas de Rossby não cruzam a totalidade da bacia oceânica, tendo sua energia transferida para outros períodos em uma distância de pelo menos 1000 km da borda oeste.
Title in English
Rossby waves propagation in two quasi-geostrophic models
Keywords in English
Altimeter
Quasi-geostrophy
Rossby waves
Scatterometer
Abstract in English
Rossby waves are the large scale mechanism of adjustment to perturbations of geophysical fluids. They can be generated locally, due to forcing by wind stress curl, or remotely, due to perturbations in the pycnocline level at the eastern boundary. Altimetric measurements of sea level anomaly have been providing sturdy evidences of the existence of these waves. Recent studies argue that mesoscale eddies are responsible for a substantial amount of the variability of the altimeter records. Eddies have been shown to propagate along with Rossby waves. The purposes of this study are (1) to identify the regions where linear long Rossby waves explain the observations, (2) to determine which generation mechanism is dominant, and (3) to verify if these waves can continuously propagate in nonlinearity conditions. A linear 1½ layer model forced by scatterometer wind stress data has been used to reproduce the sea level anomaly. Correlations between the results of the linear model and the altimetric data are up to 0.88. Results suggest that the linear long Rossby wave dynamics explain a significant part of the sea level anomaly annual variability in the tropical oceans. The pycnocline fluctuations at the eastern boundary are the main mechanism of generation of Rossby waves in the Atlantic and Indian oceans. The local atmospheric forcing is the principal source of the waves in the Pacific Ocean. A quasi-geostrophic nonlinear model has been used to analyze how the Rossby waves generated at the eastern boundary propagate and dissipate in idealized conditions. In latitudes lower than 32°S, the waves cross all the ocean basin until entering the region where the western boundary current meanders. In this region, energy is scattered throughout the spectrum. The Rossby waves that are in their critical latitude have an intermediate role in the energy cascade. In latitudes higher than 32°S, the Rossby waves fail to completely cross the ocean basin. Their energy is transfered to other periods in a distance of at least 1000 km from the western boundary.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2016-09-06
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.